WO2013094641A1 - Styrene-based optical resin composition - Google Patents

Styrene-based optical resin composition Download PDF

Info

Publication number
WO2013094641A1
WO2013094641A1 PCT/JP2012/082940 JP2012082940W WO2013094641A1 WO 2013094641 A1 WO2013094641 A1 WO 2013094641A1 JP 2012082940 W JP2012082940 W JP 2012082940W WO 2013094641 A1 WO2013094641 A1 WO 2013094641A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
styrene
polyoxyethylene
content
Prior art date
Application number
PCT/JP2012/082940
Other languages
French (fr)
Japanese (ja)
Inventor
広平 西野
秀隆 藤松
雅史 塚田
佐藤 誠
Original Assignee
東洋スチレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋スチレン株式会社 filed Critical 東洋スチレン株式会社
Priority to KR1020197019425A priority Critical patent/KR102087770B1/en
Priority to CN201280061401.7A priority patent/CN103998514B/en
Priority to JP2013550305A priority patent/JP6035249B2/en
Priority to KR1020147019808A priority patent/KR101998748B1/en
Priority to KR1020197019413A priority patent/KR102087769B1/en
Publication of WO2013094641A1 publication Critical patent/WO2013094641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a transparent styrenic resin composition in which whitening due to environmental changes is suppressed.
  • Styrenic resins have excellent properties such as transparency, rigidity, low water absorption, and dimensional stability, and are excellent in molding processability. Therefore, various types of molding methods such as injection molding, extrusion molding, blow molding, etc. Widely used as industrial materials, food packaging containers, miscellaneous goods and the like. Moreover, it is used also for optical members, such as a light-guide plate, as an application using transparency.
  • the light guide plate is incorporated in the edge-light type backlight and plays the role of guiding the light from the side to the liquid crystal panel, and is used in a wide range of applications such as televisions, desktop personal computer monitors, notebook personal computers, mobile phones, car navigation systems.
  • the An acrylic resin typified by PMMA (polymethylmethacrylate) is used for the light guide plate.
  • PMMA polymethylmethacrylate
  • Patent Document 1 has been proposed as an improvement technique of MS resin such as water absorption and reduction of discoloration during molding.
  • Patent Document 1 discloses a light guide plate having a weight average molecular weight (Mw) of styrene- (meth) acrylate copolymer resin of 60 to 170,000, a residual monomer amount of 3000 ppm or less, and an oligomer amount of 2% or less.
  • Mw weight average molecular weight
  • the water-absorbing property and the dimensional stability tend to be worse than those of the styrene resin using a styrene monomer as a raw material.
  • Non-Patent Document 1 a styrene resin using a styrene monomer as a raw material has low water absorption, the styrene resin has a problem that a molded product becomes cloudy due to environmental changes such as temperature, humidity, and warm water immersion (Non-Patent Document 1). There is a whitening phenomenon), and the transparency, which is an advantage, may be impaired depending on the application. Specifically, when a molded product was exposed to an environmental change from a high-temperature and high-humidity environment to a room temperature environment or an environment change from a room temperature environment to a low-temperature environment, it was uniformly present in the styrene resin.
  • An object of the present invention is to provide a transparent styrenic resin composition in which whitening due to environmental changes is suppressed.
  • a styrene resin composition containing a styrene resin having a weight average molecular weight of 150,000 to 700,000 and a hydrophilic additive, wherein the hydrophilic additive has an average added mole number of ethylene oxide.
  • the hydrophilic additive has an average added mole number of ethylene oxide.
  • the content of the styrene resin composition for optical use is 0.4 to 2.0% by mass.
  • the inventors of the present invention have intensively studied to suppress the whitening phenomenon due to environmental changes, and have found that the addition of a hydrophilic additive is effective in suppressing the whitening phenomenon.
  • further investigations have revealed that simply adding a hydrophilic additive may not work. Therefore, when further investigation was made, (1) the hydrophilic additive has a characteristic configuration, (2) its HLB value is within a specific range, and (3) its content is When the amount is in a specific range, the heat resistance of the styrene resin composition is maintained, and the whitening phenomenon suppressing effect is extremely high, and the transparency of the styrene resin is not impaired. It was.
  • the operational effect for obtaining such an effect is not necessarily clarified, it is considered to be due to the synergistic effect of these three conditions because it is exhibited effectively only when the above three conditions are met.
  • the hydrophilic additive is a polyoxyethylene surfactant having an average addition mole number of ethylene oxide of 10 to 60, and the content in 100% by mass of the styrene resin composition is 0.00. 6 to 1.4% by mass.
  • the hydrophilic additive is a polyoxyethylene type surfactant having an average addition mole number of ethylene oxide of 13 to 35, and the content in 100% by mass of the styrene resin composition is 0.00. It is 6 to 0.9% by mass.
  • the hydrophilic additive has an HLB value of 10-18.
  • the polyoxyethylene type surfactant is a polyoxyethylene type nonionic surfactant.
  • the polyoxyethylene type nonionic surfactant is selected from the group of polyoxyethylene alkyl ether represented by the following general formula (1) and / or polyoxyethylene fatty acid ester represented by the following general formula (2).
  • R represents an alkyl group having 8 to 20 carbon atoms.
  • the hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 10,000, and the content in 100% by mass of the styrenic resin composition is 0.6 to 1.4% by mass.
  • the hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 1800.
  • the hydrophilic additive has a content of 0.6 to 0.9% by mass in 100% by mass of the styrene resin composition.
  • the styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and (meth) acrylic acid, and the styrene resin is a styrene resin.
  • the unit content is 90.0 to 99.9% by mass, and the (meth) acrylic acid unit content is 0.1 to 10.0% by mass.
  • the total content of styrene monomer units and (meth) acrylic acid units in the styrene resin is 100% by mass.
  • the styrenic resin is a styrene- (meth) acrylic acid ester copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylic acid ester.
  • the content of the monomer unit is 40.0 to 99.0% by mass, and the content of the (meth) acrylate unit is 1.0 to 60.0% by mass.
  • the total content of styrene monomer units and (meth) acrylic acid ester units in the styrene resin is 100% by mass.
  • the styrenic resin composition of the present invention has low water absorption and is inexpensive compared to PMMA and MS resins, and does not cause whitening due to environmental changes, which is a drawback of styrenic resins, and is excellent in colorless transparency. Therefore, it can be suitably used for applications utilizing the original transparency of the styrene resin.
  • the styrene resin of the present invention can be obtained by polymerizing a styrene monomer.
  • the styrene monomer is an aromatic vinyl monomer, such as styrene, ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, or a mixture of two or more, preferably styrene.
  • acrylic acid monomers such as acrylic acid and methacrylic acid
  • vinyl cyanide monomers such as acrylonitrile and methacrylonitrile
  • butyl acrylate Acrylic monomers such as ethyl acrylate, methyl acrylate, and methyl methacrylate
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid
  • imide monomers such as phenyl maleimide and cyclohexyl maleimide.
  • the styrene resin composition is preferably composed of a styrene resin and various additives.
  • the ratio of the styrene resin in 100% by mass of the styrene resin composition is, for example, 90 to 99.6% by mass. It is preferably 95 to 99.6% by mass.
  • the ratio of the styrenic resin is, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.6% by mass, and any of the numerical values exemplified here is 2 It may be within a range between the two.
  • the styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and (meth) acrylic acid
  • the content of the styrene resin unit of the styrene resin The amount is preferably 90.0 to 99.9% by mass, and the content of (meth) acrylic acid units is preferably 0.1 to 10.0% by mass.
  • the total content of styrene monomer units and (meth) acrylic acid units is 100% by mass.
  • (Meth) acrylic acid is acrylic acid, methacrylic acid or the like, with methacrylic acid being preferred.
  • the content of the (meth) acrylic acid unit in the styrenic resin can be adjusted by the composition ratio of the raw styrene monomer and the (meth) acrylic acid monomer during the polymerization of the styrene resin.
  • a styrene resin containing a (meth) acrylic acid unit and a styrene resin not containing a (meth) acrylic acid unit can be blended and adjusted.
  • the styrene resin is a styrene- (meth) acrylate copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylate ester
  • a styrene monomer unit of the styrene resin The content of is preferably 40.0 to 99.0% by mass, and the content of (meth) acrylic acid ester units is preferably 1.0 to 60.0% by mass. However, the total content of the styrene monomer unit and the (meth) acrylate unit is 100% by mass.
  • the (meth) acrylic acid ester is a methacrylic acid ester such as methyl methacrylate or ethyl methacrylate, or an acrylic acid ester such as methyl acrylate or ethyl acrylate.
  • the content of the (meth) acrylic acid ester unit in the styrene resin can be measured under the following conditions by pyrolysis gas chromatography.
  • Pyrolysis furnace PYR-2A (manufactured by Shimadzu Corporation) Pyrolysis furnace temperature setting: 525 ° C
  • Gas chromatograph GC-14A (manufactured by Shimadzu Corporation) Column: Glass 3mm diameter x 3m Filler: FFAP Chromsorb WAW 10% Injection, detector temperature: 250 ° C Column temperature: 120 ° C Carrier gas: Nitrogen
  • Examples of the polymerization method of the styrene resin include known styrene polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable.
  • Examples of the solvent include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.
  • a polymerization initiator and a chain transfer agent can be used as needed during the polymerization of the styrene resin.
  • a radical polymerization initiator is preferable.
  • 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) butane, 2,2- Peroxyketals such as di (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-di (t-amylperoxy) cyclohexane, cumene hydroperoxide, t-butyl hydroperoxide, etc.
  • Alkyl peroxides such as hydroperoxides, t-butylperoxyacetate, t-amylperoxyisononanoate, t-butylcumyl peroxide, di-t-butylperoxide, dicumylperoxide, di-t -Dialkyl peroxides such as hexyl peroxide, t-butylperoxyacetate Peroxyesters such as t-butyl peroxybenzoate and t-butylperoxyisopropyl monocarbonate, peroxycarbonates such as t-butyl peroxyisopropyl carbonate and polyether tetrakis (t-butyl peroxycarbonate) N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N′-azobis (2,4-dimethylvaleronitrile), N, N '-Azobis [2- (hydroxymethyl
  • the polymerization reaction is first controlled by adjusting the polymerization temperature to achieve the target molecular weight, molecular weight distribution, and reaction conversion rate using a well-known complete mixing tank type stirring tank or tower reactor in the polymerization process. Is done.
  • the polymerization solution containing the polymer exiting the polymerization step is transferred to the devolatilization step, and unreacted monomers and polymerization solvent are removed.
  • the devolatilization process includes a vacuum devolatilization tank with a heater, a vented devolatilization extruder, and the like.
  • the polymer in the molten state that has exited the devolatilization step is transferred to the granulation step.
  • the molten resin is extruded in a strand form from a porous die and processed into a pellet shape by a cold cut method, an air hot cut method, or an underwater hot cut method.
  • the styrene resin of the present invention has a weight average molecular weight of 150,000 to 700,000, preferably 180,000 to 500,000. If it is less than 150,000, the strength of the molded product becomes insufficient, and if it exceeds 700,000, the moldability is remarkably lowered.
  • the weight average molecular weight of the styrenic resin should be controlled by the reaction temperature of the polymerization process, the residence time, the type and amount of polymerization initiator, the type and amount of chain transfer agent, the type and amount of solvent used during polymerization, etc. Can do.
  • the weight average molecular weight (Mw), the Z average molecular weight (Mz), and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC model Shodex GPC-101 manufactured by Showa Denko KK Column: PLgel 10 ⁇ m MIXED-B manufactured by Polymer Laboratories
  • Mobile phase Tetrahydrofuran Sample concentration: 0.2% by mass
  • Temperature 40 ° C oven, 35 ° C inlet, 35 ° C detector
  • Detector Differential refractometer
  • the molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.
  • the hydrophilic additive is a compound having a hydrophilic group capable of interacting with water (hydrogen bonding).
  • the hydrophilic group is preferably a polyether chain.
  • the polyether chain is a skeleton structure in which ether bonds are linked.
  • EO ethylene oxide
  • a polyglycerol chain synthesized by dehydration condensation of a polyoxypropylene chain, a polyoxybutylene chain or glycerin can be mentioned, and a polyoxyethylene chain is preferable.
  • the polyether chain may have not only one set per molecule but also a plurality of sets.
  • a polyoxyethylene surfactant having an average added mole number of ethylene oxide of 3 to 150 and a polyethylene glycol having an average molecular weight of 200 to 10,000 are selected. Add at least one. This is because it has been experimentally found that it is essential to use a hydrophilic additive having such a specific configuration in order to enhance the effect of suppressing the whitening phenomenon.
  • the HLB value of the hydrophilic additive is 5 to 20. This is because it has been experimentally found that it is essential to use a hydrophilic additive having such a specific HLB value in order to enhance the whitening phenomenon suppressing effect.
  • the HLB value is preferably 8 to 20, more preferably 10 to 20, and more preferably 10 to 18.
  • HLB (Hydrophilic-lipophilic balance) value is a value that represents the hydrophilicity of the additive. When the HLB value is 8-10, it is stably dispersed in water, and when it exceeds 10, it completely dissolves transparently from a transparent dispersion state. It becomes a state to do.
  • the HLB value (molecular weight of hydrophilic group part) / (molecular weight of additive) ⁇ 20.
  • the hydrophilic additive is added so that the content in 100% by mass of the styrene resin composition is 0.4 to 2.0% by mass. This is because it has been experimentally found that it is essential to add such a content in order to increase the whitening phenomenon suppressing effect while maintaining the heat resistance of the styrene-based resin composition.
  • the content of the hydrophilic additive in 100% by mass of the styrenic resin composition is preferably 0.7 to 1.6% by mass or 0.6 to 1.4% by mass, and more preferably 0.6%. Is 0.9 mass%.
  • the heating loss of the hydrophilic additive at 200 ° C. in a nitrogen atmosphere is 10% by mass or less.
  • Heat loss in a nitrogen atmosphere at a temperature of 200 ° C. can be determined by thermogravimetric analysis (TGA). Heating is performed at a temperature increase rate of 10 ° C./min from a room temperature in a nitrogen atmosphere, and the weight loss at a temperature of 200 ° C. It can be determined from the quantity.
  • An additive having a temperature loss of 200 ° C. and a heating loss of more than 10% by mass in a nitrogen atmosphere has high volatility, and gas is generated during the molding process of the styrene-based resin, which may cause mold or roll contamination.
  • a method for adding a hydrophilic additive a method of adding and mixing in a polymerization process of a styrene resin, a devolatilization process, a granulation process, a method of adding and mixing with an extruder or the like at the time of molding, a high concentration of hydrophilic additive
  • a method of diluting and mixing the resin composition adjusted to the desired content with an additive-free styrenic resin can be mentioned, and is not particularly limited.
  • a styrene resin composition containing 0.5 to 50.0% by mass of a hydrophilic additive and an additive-free styrene resin are mixed using an extruder or an injection molding machine to obtain a styrene resin having a desired concentration.
  • the method include obtaining a resin composition, a molded product, and a light guide plate.
  • Polyoxyethylene type surfactants include polyoxyethylene type nonionic surfactants, polyoxyethylene type anionic surfactants, polyoxyethylene type cationic surfactants, polyoxyethylene type amphoteric surfactants And a polyoxyethylene type nonionic surfactant is preferable.
  • Polyoxyethylene type nonionic surfactants include polyoxyethylene alkyl ether represented by the following general formula (1), polyoxyethylene fatty acid ester represented by the following general formula (2), polyoxyethylene hydrogenated castor oil, polyoxy Ethylene sorbitan fatty acid ester and polyoxyethylene sorbitol fatty acid ester are exemplified, but one or more selected from the group of polyoxyethylene alkyl ether and / or polyoxyethylene fatty acid ester are preferable.
  • polyvalent polyoxyethylene alkyl ethers having a plurality of polyoxyethylene alkyl ether skeletons in one molecule and polyvalent polyoxyethylene fatty acid esters having a plurality of polyoxyethylene fatty acid ester skeletons in one molecule are used.
  • the valence of polyoxyethylene alkyl ether or polyoxyethylene fatty acid ester means the number of polyoxyethylene alkyl ether skeleton or polyoxyethylene fatty acid ester skeleton present in one molecule.
  • R represents an alkyl group having 8 to 20 carbon atoms.
  • a polyvalent polyoxyethylene alkyl ether up to hexavalent having a plurality of polyoxyethylene alkyl ether skeletons, and a plurality of polyoxyethylene fatty acid ester skeletons.
  • It may be a polyvalent polyoxyethylene fatty acid ester having up to 6 valences, where n is an integer and represents the number of added moles of ethylene oxide units.
  • Polyoxyethylene alkyl ether is made by adding ethylene oxide to alcohol
  • polyoxyethylene fatty acid ester is made by adding ethylene oxide to fatty acid or directly esterifying fatty acid and polyethylene glycol.
  • the number is 3 to 150. This is because it has been experimentally found that it is essential that the average added mole number is within such a specific range in order to enhance the whitening phenomenon suppressing effect.
  • the average added mole number is preferably 7 to 100, more preferably 10 to 60, still more preferably 10 to 50, and further preferably 13 to 35.
  • polyoxyethylene surfactant of the present invention examples include, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene octyl decyl ether, polyoxyethylene myristyl ether Polyoxyethylene alkyl ethers such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan tristearate, polyoxyethylene sorbite tetraoleate, etc.
  • Oxyethylene sorbitol fatty acid ester polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene Polyoxyethylene fatty acid esters such as glycol distearate, polyethylene glycol monooleate, polyoxyethylene hydrogenated castor oil, polyoxyethylene monomethyl ether, polyoxyethylene dimethyl ether, polyoxyethylene glyceryl ether, polyoxyethylene tetraoleic acid, poly Examples thereof include oxyethylene triisostearic acid and polyoxyethylene coconut fatty acid glyceryl.
  • the average molecular weight of polyethylene glycol used in the present invention is 200 to 10,000. 200 to 4000 is preferable, 200 to 1800 is more preferable, and 300 to 1000 is more preferable. If the average molecular weight of polyethylene glycol is less than 200, gas is generated during the molding process, and the mold and roll are soiled, which is not preferable. In addition, if it exceeds 10,000, the effect of preventing the whitening phenomenon tends to be reduced, and the compatibility with the styrene resin is reduced, and the styrene resin composition and the molded product thereof may become cloudy.
  • the average molecular weight is calculated from the hydroxyl group concentration (based on JIS K1557) measured by the pyridine phthalic anhydride method.
  • the styrenic resin composition of the present invention may contain mineral oil as long as the colorless transparency of the present invention is not impaired.
  • internal lubricants such as stearic acid and ethylenebisstearic acid amide, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, lactone antioxidants, hindered amine stabilizers, UV absorbers
  • additives such as an antistatic agent may be contained.
  • the external lubricant ethylene bis stearamide is preferable, and the content is preferably 30 to 200 ppm in the resin composition.
  • the styrenic resin composition of the present invention is suitable for optical applications as a field utilizing transparency, for example, an optical material, because the deterioration of optical properties such as transmittance, hue, and transparency, which are characteristics of the styrene resin, is small. Can be used.
  • optical applications include lenses, light guide plates, films, optical fibers, and optical waveguides.
  • the styrenic resin composition of the present invention contains (c) 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyl.
  • Dibenzo [d, f] [1,3,2] dioxaphosphine hereinafter referred to as “compound X”
  • compound X Dibenzo [d, f] [1,3,2] dioxaphosphine
  • compound X dibenzo [d, f] [1,3,2] dioxaphosphine
  • phosphorus antioxidant phosphorus antioxidant
  • e hindered phenol antioxidant
  • Long-term thermal stability represents changes in hue and transmittance due to heat in long-term use, and those having excellent thermal stability have small changes in hue and transmittance.
  • the long-term thermal stability can be evaluated as an accelerated test by storing the molded product under a high temperature condition (60 to 90 ° C.) that does not cause deformation of the resin, and changing the hue and transmittance over time.
  • Compound X is a processing stabilizer having a hindered phenol antioxidant skeleton and a phosphorus antioxidant skeleton in the same molecule.
  • the content of compound X in 100% by mass of the styrene resin composition is preferably 0.02 to 0.40% by mass, and more preferably 0.05 to 0.20% by mass. If the content of the compound X is less than 0.02% by mass, the long-term thermal stability is inferior, and the initial hue and transmittance are also inferior. Moreover, even if it exceeds 0.40 mass%, long-term thermal stability will deteriorate. Long-term thermal stability represents changes in hue and transmittance due to heat in long-term use, and those having excellent thermal stability have small changes in hue and transmittance.
  • the long-term thermal stability can be evaluated as an accelerated test by storing the molded product under a high temperature condition (60 to 90 ° C.) that does not cause deformation of the resin, and changing the hue and transmittance over time.
  • the content of the compound X in 100% by mass of the styrene resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08. 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 mass%, and the range between any two of the numerical values exemplified here It may be within.
  • long-term thermal stability can be imparted, and long-term thermal stability can also be achieved by adding phosphorus-based antioxidants and / or hindered phenol-based antioxidants. Can be granted.
  • the phosphorus-based antioxidant is preferably contained in an amount of 0.02 to 0.50% by mass, more preferably 0.05 to 0.40% by mass in 100% by mass of the styrene resin composition, and 0.05 to More preferably, the content is 0.30% by mass. If it is less than 0.02% by mass, the long-term thermal stability is poor, and the initial hue and transmittance are also poor. Even if it exceeds 0.50 mass%, long-term thermal stability will deteriorate.
  • the content of the phosphorus antioxidant in 100% by mass of the styrene resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 mass%, where It may be within a range between any two of the exemplified numerical values.
  • the hindered phenolic antioxidant is preferably contained in an amount of 0.02 to 0.50% by mass, more preferably 0.02 to 0.30% by mass in 100% by mass of the styrene resin composition. More preferably, the content is from 05 to 0.30% by mass. If it is less than 0.02% by mass, the long-term thermal stability is poor, and the initial hue and transmittance are also poor. Even if it exceeds 0.50 mass%, long-term thermal stability will deteriorate.
  • the content of the hindered phenol-based antioxidant in 100% by mass of the styrene-based resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.0. 07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50% by mass, It may be within a range between any two of the numerical values exemplified here.
  • Phosphorous antioxidants are phosphites that are trivalent phosphorus compounds.
  • Phosphorus antioxidants include, for example, tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2- Ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 4,4′-biphenylenediphosphinic acid tetrakis (2,4-di-tert-butylphenyl), 3,9-bis (2 , 6-Di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, cyclic neopentanetetraylbis (2,4-di -T-butylphenyl pho
  • phosphorus-based antioxidant those excellent in hydrolysis resistance are preferable, such as tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-). Butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 3,9-bis (2,6-di-tert-butyl-4-methyl) Phenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane is preferred. Particularly preferred is tris (2,4-di-tert-butylphenyl) phosphite. Phosphorous antioxidants may be used alone or in combination of two or more.
  • the hindered phenol antioxidant is an antioxidant having a phenolic hydroxyl group in the basic skeleton.
  • hindered phenol antioxidants include octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- [3- (3-tert-butyl).
  • octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methyl) Phenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4 -Hydroxy-m-tolyl) propionate].
  • Hindered phenolic antioxidants may be used alone or in combination of two or more.
  • Compound X can be added by adding and mixing in the polymerization process, devolatilization process and granulation process of styrene resin, and extruders and injections during molding.
  • the ultraviolet absorber has a function of suppressing deterioration and coloring due to ultraviolet rays.
  • benzophenone, benzotriazole, triazine, benzoate, salicylate, cyanoacrylate, oxalic anilide, malonic ester UV absorbers such as those of formaldehyde and formamidine. These can be used alone or in combination of two or more thereof, and a light stabilizer such as hindered amine may be used in combination.
  • the styrenic resin composition of the present invention can obtain a molded product by various molding methods according to purposes such as injection molding, extrusion molding, blow molding, compression molding and the like.
  • the shape of the molded product can be a shape according to the purpose, and is not limited. For example, if it is a plate-shaped molded article, it can be used as a light guide plate.
  • As a method of forming a light guide plate it is known to provide a reflection pattern such as a dot pattern on the back surface of the plate-shaped molded product (opposite the surface from which light is emitted).
  • a prism pattern can be provided on the surface (surface from which light is emitted) of the plate-shaped molded product.
  • the pattern on the front surface or the back surface of the plate-shaped molded product can be formed at the time of molding the plate-shaped molded product.
  • the pattern can be formed by a mold shape in injection molding or roll transfer in extrusion molding.
  • the Vicat softening temperature of the styrene resin composition of the present invention is preferably 95 to 104 ° C, more preferably 97 to 104 ° C. If the Vicat softening temperature is less than 95 ° C., the heat resistance is insufficient, and the molded product may be deformed depending on the use environment.
  • the haze of the styrenic resin composition of the present invention is a molded product having a thickness of 4 mm, preferably 5% or less, and more preferably 1% or less.
  • the polymerization reactor is configured by connecting a first reactor, which is a complete mixing tank, a second reactor, and a third reactor, which is a plug flow reactor with a static mixer.
  • the styrene resin was manufactured by the above.
  • the capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor.
  • a raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1.
  • the polymerization initiator was added to the raw material solution at the inlet of the first reactor so that the addition concentration shown in Table 1 (concentration based on mass with respect to the total amount of raw styrene and methacrylic acid) was mixed.
  • the polymerization initiators listed in Table 1 are as follows: Polymerization initiator-1: 2,2-di (4,4-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF Corporation was used).
  • Polymerization initiator-2 1,1-di (t-butylperoxy) cyclohexane (Perhexa C manufactured by NOF Corporation was used.)
  • a temperature gradient was provided along the flow direction, and the temperature in Table 1 was adjusted at the intermediate part and the outlet part. Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1.
  • Examples 1-1 to 1-33, Comparative Examples 1-1 to 1-9 With the contents shown in Table 2, styrene resins A-1 to A-3 and additives were melt-kneaded using a single screw extruder with a screw diameter of 40 mm at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm. Pellets were obtained.
  • the additives used in Table 2 are shown below.
  • B-5: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide 30 (Emulgen 130K manufactured by Kao Corporation)
  • Example 1-33 styrene resin A-1 and additive B-1 were melt kneaded using a single screw extruder with a screw diameter of 40 mm at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm, and then added.
  • This is a molded product obtained by once obtaining pellets having a concentration of 20% by mass of agent B-1 and then mixing the pellets and styrene resin A-1 in a ratio of 1:24, followed by injection molding. .
  • MFR melt mass flow rate
  • ⁇ Early hue evaluation> A test piece having a thickness of 115 ⁇ 85 ⁇ 3 mm was cut out from the obtained plate-shaped product, and the end surface was polished by buffing to obtain a plate-shaped product having a mirror surface on the end surface.
  • the obtained plate-like molded product was measured using an ultraviolet-visible spectrophotometer V-670 manufactured by JASCO Corporation, with an incident light having a size of 20 ⁇ 1.6 mm and a spread angle of 0 °, and a wavelength at an optical path length of 115 mm.
  • Spectral transmittances from 350 nm to 800 nm were measured, and the YI value with a C light source at a visual field of 2 ° was calculated according to JIS K7105.
  • the obtained value is “YI 115 mm” in Table 2.
  • “Transmittance 115 mm” shown in Table 2 represents an average transmittance at a wavelength of 380 nm to 780 nm.
  • “Haze 4 mm” in Table 2 is a plate-shaped molded article having a thickness of 55 ⁇ 50 ⁇ 4 mm by performing injection molding at a cylinder temperature of 220 ° C. and a mold temperature of 40 ° C. using the pellets obtained in the above process.
  • Is a value obtained by performing measurement in accordance with JIS K-7105 using NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) using a test piece obtained by molding YY 4 mm in Table 2.
  • ⁇ Whitening suppression effect> Furthermore, in order to confirm the whitening phenomenon due to environmental changes, a plate-like molded article having a mirror surface on the end face is exposed to an environment of 60 ° C. and 90% relative humidity for 150 hours, and the test piece is placed in an environment of 23 ° C. and 50% relative humidity. Taking out and observing the whitening phenomenon occurring inside the molded product, the following judgment was made as a whitening suppression effect. ⁇ : No whitening occurs. ⁇ : Whitening occurs slightly after 1 hour after removal, but disappears after 24 hours. ⁇ : Whitening occurs after 1 hour after removal, but almost disappears after 24 hours. , Will not disappear after 24 hours
  • the Vicat softening temperature was determined according to JIS K-7206 at a heating rate of 50 ° C./hr and a test load of 50 N.
  • Table 2 shows the characteristics and evaluation results of each resin composition.
  • the molded articles of the examples were excellent in the whitening suppressing effect, were excellent in transparency and hue without deterioration in transmittance and YI value.
  • Comparative Examples 1-1, 1-2, and 1-4 where the hydrophilic additive was not added or the addition amount was too small, the suppression of the current whitening state was insufficient.
  • Comparative Examples 1-3 and 1-5 in which the hydrophilic additive was excessively added, the heat resistance was excessively lowered.
  • the tests were performed with the addition of stearyl alcohol and stearic acid monoglyceride, which are hydrophilic additives, respectively, but the effect of inhibiting whitening was insufficient.
  • styrenic resin was a copolymer of a styrenic monomer and (meth) acrylic acid or (meth) acrylic acid ester. was found to be obtained.
  • the polymerization reactor is configured by connecting a first reactor, which is a complete mixing tank, a second reactor, and a third reactor, which is a plug flow reactor with a static mixer.
  • the styrene resin was manufactured by the above.
  • the capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor.
  • a raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1.
  • hydrophilic additive which has a polyether chain
  • the types of additives and polyethylene glycol used are as follows.
  • B-1 Polyethylene glycol having an average molecular weight of 400 (PEG # 400 manufactured by NOF Corporation)
  • B-2 Polyethylene glycol having an average molecular weight of 1000 (PEG # 1000 manufactured by NOF Corporation)
  • B-3 Polyethylene glycol having an average molecular weight of 2000 (PEG # 2000 manufactured by NOF Corporation)
  • B-8 Polyethylene glycol monolaurate Ethylene oxide average addition mole
  • a solution containing a polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and after separating unreacted styrene and ethylbenzene, strands were formed. After being extruded and cooled, it was cut into pellets.
  • the resin temperature in the first stage devolatilization tank is set to 160 ° C.
  • the pressure in the vacuum devolatilization tank is set to 65 kPa
  • the resin temperature in the second stage devolatilization layer is set to 235 ° C.
  • the pressure in the volatilization tank was 0.8 kPa.
  • Compound X is 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [ 1,3,2] dioxaphosphepine, additive D represents a phosphorus-based antioxidant, and additive E represents a hindered phenol-based antioxidant.
  • D-1 Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168 manufactured by BASF Japan Ltd.)
  • D-2 2,2′-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus (ADEKA STAB HP-10 manufactured by ADEKA Corporation)
  • D-3 Bis (2,4-dicumylphenyl) pentaerythritol diphosphite (Doverphos S-9228 manufactured by Dober Chemical Corporation)
  • D-4 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane ADEKA ADK STAB PEP-36)
  • E-1 Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propyl
  • the melt mass flow rate (MFR) is in accordance with JIS K 7210, under conditions of 200 ° C. and 49 N load, and the Vicat softening temperature is in accordance with JIS K 7206, at a heating rate of 50 ° C./hr and a test load of 50 N. It was measured.
  • injection molding was performed at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. to form a plate-shaped molded article having a thickness of 127 ⁇ 127 ⁇ 3 mm.
  • the obtained molded product was stored in an oven at 80 ° C. for 1000 hours.
  • a 115 ⁇ 85 ⁇ 3 mm thickness test piece was cut out from the plate-shaped molded product, the end surface was polished by buffing, and a mirror surface was formed on the end surface.
  • a plate-shaped molded article having the same was prepared.
  • the polished plate-like molded product was measured using an ultraviolet-visible spectrophotometer V-670 manufactured by JASCO Corporation, with an incident light having a size of 20 ⁇ 1.6 mm and a spread angle of 0 °, and a wavelength at an optical path length of 115 mm.
  • Spectral transmittances from 350 nm to 800 nm were measured, and the YI value at 2 ° for the C light source was calculated according to JIS K7105.
  • the transmittance shown in Table 3 represents the average transmittance at a wavelength of 380 nm to 780 nm.
  • ⁇ YI difference (YI difference from initial in Example with additional additive) ⁇ (YI difference from initial in Example without additional additive)
  • ⁇ YI difference (YI difference from initial in Example without additional additive)
  • the value of the YI difference from the initial value was 1.1
  • the YI difference from the initial value in Example 2-1 without an additional additive was 5.1. Therefore, the ⁇ YI difference in Example 2-2 is ⁇ 4.0.
  • This value represents the long-term thermal stability improvement effect of the additive (compound X, phosphorus-based D, hindered phenol-based E), and the smaller the value, the greater the long-term thermal stability improvement effect. I mean.
  • a plate-like molded article having a mirror surface on the end face is exposed to an environment of 60 ° C. and 90% relative humidity for 150 hours, and the test piece is placed in an environment of 23 ° C. and 50% relative humidity. Taking out and observing the whitening phenomenon occurring inside the molded product, the following judgment was made as a whitening suppression effect.
  • No whitening occurs.
  • Whitening occurs slightly after 1 hour after removal, but disappears after 24 hours.
  • Whitening occurs after 1 hour after removal, but almost disappears after 24 hours. , Will not disappear after 24 hours
  • Table 3 shows the characteristics and evaluation results of each resin composition.
  • styrene resin A-1 prepared according to Condition 1 was used, and in Examples 2-43 to 2-44, styrene resin A-2 prepared according to Condition 2 was used.
  • styrene resin A-3 produced according to Condition 3 was used.
  • Test 3 (Examples 3-1 to 3-36)
  • the evaluation was performed in the same manner as in Test 2, except that Compound X was not added.
  • styrene resin A-1 prepared according to Condition 1 was used, and in Examples 3-33 to 3-34, styrene resin A-2 prepared according to Condition 2 was used.
  • styrene resin A-3 prepared according to Condition 3 was used. The results are shown in Table 4.
  • the styrenic resin composition of the present invention prevents the whitening phenomenon due to environmental changes and is excellent in transparency and hue, so that it is an advantage of the styrenic resin even in applications where the whitening phenomenon has conventionally occurred due to environmental changes. It can maintain transparency and can be used suitably. Furthermore, since the styrenic resin composition having excellent long-term thermal stability has a small hue change, it can be used while maintaining transparency and hue for a long period of time. For example, light guide plate applications such as a television, a desktop personal computer, a notebook personal computer, a mobile phone, and a car navigation can be used.

Abstract

The present invention addresses the problem of providing a transparent styrene-based optical resin composition that minimizes a shortcoming of styrene-based resins, namely that environmental changes such as changes in temperature or humidity, or immersion in water cause the clouding (bleaching) of molded products thereof. The present invention provides a styrene-based optical resin composition that contains a styrene-based resin having a weight-average molecular weight of 150,000-700,000 and a hydrophilic additive, and is characterized in that the hydrophilic additive: is at least one substance selected from among polyoxyethylene surfactants having an average added mole number of ethylene oxide of 3-150 and/or polyethylene glycols having an average molecular weight of 200-10,000; has an HLB value of 5-20; and composes 0.4-2.0 mass% of the 100 mass% of the styrene-based resin composition.

Description

光学用スチレン系樹脂組成物Styrenic resin composition for optics
 本発明は、環境変化による白化現象が抑制された透明なスチレン系樹脂組成物に関するものである。 The present invention relates to a transparent styrenic resin composition in which whitening due to environmental changes is suppressed.
 スチレン系樹脂は、透明性、剛性、低吸水性、寸法安定性などの特性に優れ、成形加工性に優れることから、射出成形、押出成形、ブロー成形などの各種成形方法により、電気製品や各種工業材料、食品包装容器、雑貨等として広く用いられている。また、透明性を生かした用途として、導光板等の光学部材にも用いられている。 Styrenic resins have excellent properties such as transparency, rigidity, low water absorption, and dimensional stability, and are excellent in molding processability. Therefore, various types of molding methods such as injection molding, extrusion molding, blow molding, etc. Widely used as industrial materials, food packaging containers, miscellaneous goods and the like. Moreover, it is used also for optical members, such as a light-guide plate, as an application using transparency.
 液晶ディスプレイのバックライトには光源を表示装置の正面に配置する直下型バックライトと側面に配置するエッジライト型バックライトがある。導光板はエッジライト型バックライトに組み込まれ、側面からの光を液晶パネルに導く役割を果たし、テレビ、デスクトップ型パーソナルコンピューターのモニター、ノート型パーソナルコンピューター、携帯電話機、カーナビゲーションなど幅広い用途で使用される。導光板にはPMMA(ポリメチルメタクリレート)に代表されるアクリル樹脂が使用されているが、吸水性が高いため、成形品に反りが発生する問題や寸法の変化が発生する場合がある。 There are two types of backlights for liquid crystal displays: a direct type backlight that arranges the light source in front of the display device and an edge light type backlight that arranges the light source on the side. The light guide plate is incorporated in the edge-light type backlight and plays the role of guiding the light from the side to the liquid crystal panel, and is used in a wide range of applications such as televisions, desktop personal computer monitors, notebook personal computers, mobile phones, car navigation systems. The An acrylic resin typified by PMMA (polymethylmethacrylate) is used for the light guide plate. However, since the water absorption is high, there may be a problem that the molded product is warped or a change in dimensions.
 そのため、これら特性を改善したスチレンと(メタ)アクリル酸メチルとの共重合体であるMS樹脂を用いることが提案されている。MS樹脂の、吸水性や成形時の変色低減等の改良技術としては特許文献1が提案されている。 Therefore, it has been proposed to use an MS resin which is a copolymer of styrene and methyl (meth) acrylate with improved properties. Patent Document 1 has been proposed as an improvement technique of MS resin such as water absorption and reduction of discoloration during molding.
 しかしながら、特許文献1では、スチレン-(メタ)アクリル酸エステル系共重合体樹脂の重量平均分子量(Mw)6~17万、残存モノマー量3000ppm以下、更にオリゴマー量が2%以下の導光板が開示されているが、吸水性が高く寸法安定性がスチレン系単量体を原料とするスチレン系樹脂よりも悪い傾向にあった。 However, Patent Document 1 discloses a light guide plate having a weight average molecular weight (Mw) of styrene- (meth) acrylate copolymer resin of 60 to 170,000, a residual monomer amount of 3000 ppm or less, and an oligomer amount of 2% or less. However, the water-absorbing property and the dimensional stability tend to be worse than those of the styrene resin using a styrene monomer as a raw material.
 一方、スチレン系単量体を原料とするスチレン系樹脂は吸水性が低いものの、スチレン系樹脂には温度や湿度、温水浸漬(非特許文献1)などの環境変化により成形品が白濁する問題(白化現象)があり、用途によっては長所である透明性が損なわれることがあった。具体的には、高温高湿環境下から室温環境下への環境変化や室温環境下から低温環境下への環境変化に成形品が曝された場合、スチレン系樹脂中に均一に存在していた水分が不安定となって相分離して円盤状の欠陥が生成し、その結果、成形品の内部が白濁する現象である。また、温水にスチレン系樹脂の成形品を一定時間以上、浸漬後、成形品を取り出すと白化することがあるが、これも同じ機構による現象である。 On the other hand, although a styrene resin using a styrene monomer as a raw material has low water absorption, the styrene resin has a problem that a molded product becomes cloudy due to environmental changes such as temperature, humidity, and warm water immersion (Non-Patent Document 1). There is a whitening phenomenon), and the transparency, which is an advantage, may be impaired depending on the application. Specifically, when a molded product was exposed to an environmental change from a high-temperature and high-humidity environment to a room temperature environment or an environment change from a room temperature environment to a low-temperature environment, it was uniformly present in the styrene resin. This is a phenomenon in which moisture becomes unstable and phase separation occurs to form a disk-like defect, and as a result, the inside of the molded product becomes cloudy. In addition, when a molded product of a styrene resin is immersed in warm water for a certain period of time or more and then the molded product is taken out, whitening may occur. This is also a phenomenon caused by the same mechanism.
 成形品が白濁すると、導光板のように光路長が長い場合、光散乱により透過率が大きく低下して、ディスプレイの輝度が低下する問題がある。 When the molded product becomes clouded, when the optical path length is long like a light guide plate, there is a problem that the transmittance is greatly reduced due to light scattering and the luminance of the display is lowered.
特開2003-075648号公報Japanese Patent Laid-Open No. 2003-075648
 本発明は、環境変化による白化現象を抑制した透明なスチレン系樹脂組成物を提供することを課題とする。 An object of the present invention is to provide a transparent styrenic resin composition in which whitening due to environmental changes is suppressed.
 本発明によれば、重量平均分子量が15万~70万のスチレン系樹脂と親水性添加剤を含有するスチレン系樹脂組成物であって、前記親水性添加剤は、エチレンオキサイドの平均付加モル数が3~150であるポリオキシエチレン型界面活性剤と、平均分子量200~10000のポリエチレングリコールから選ばれる少なくとも1種であり、HLB値が5~20であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.4~2.0質量%であることを特徴とする光学用スチレン系樹脂組成物が提供される。 According to the present invention, there is provided a styrene resin composition containing a styrene resin having a weight average molecular weight of 150,000 to 700,000 and a hydrophilic additive, wherein the hydrophilic additive has an average added mole number of ethylene oxide. Is at least one selected from polyoxyethylene surfactants having a molecular weight of 3 to 150 and polyethylene glycol having an average molecular weight of 200 to 10,000, an HLB value of 5 to 20, and 100 masses of the styrenic resin composition. The content of the styrene resin composition for optical use is 0.4 to 2.0% by mass.
 本発明者らは、環境変化による白化現象を抑制すべく鋭意検討を行い、まず親水性添加剤の添加が白化現象の抑制に有効であることが分かった。しかし、さらに検討を進めたところ、単に親水性添加剤を添加しただけではうまくいかない場合があることが分かった。そこで、さらに検討を進めたところ、(1)親水性添加剤が特性の構成を有するものであり、(2)そのHLB値が特定の範囲内の値であり、且つ(3)その含有量が特定の範囲の量である場合に、スチレン系樹脂組成物の耐熱性が維持されると共に白化現象の抑制効果が極めて高くなること、また、スチレン系樹脂の透明性を損なうこともないことが分かった。このような効果が得られる作用効果は必ずしも明らかになっていないが、上記3条件が揃った場合にのみ効果的に発揮されることから、これら3条件による相乗効果によるものであると考えられる。 The inventors of the present invention have intensively studied to suppress the whitening phenomenon due to environmental changes, and have found that the addition of a hydrophilic additive is effective in suppressing the whitening phenomenon. However, further investigations have revealed that simply adding a hydrophilic additive may not work. Therefore, when further investigation was made, (1) the hydrophilic additive has a characteristic configuration, (2) its HLB value is within a specific range, and (3) its content is When the amount is in a specific range, the heat resistance of the styrene resin composition is maintained, and the whitening phenomenon suppressing effect is extremely high, and the transparency of the styrene resin is not impaired. It was. Although the operational effect for obtaining such an effect is not necessarily clarified, it is considered to be due to the synergistic effect of these three conditions because it is exhibited effectively only when the above three conditions are met.
 以下、本発明の種々の実施形態を例示する。
 好ましくは、前記親水性添加剤は、エチレンオキサイドの平均付加モル数が10~60であるポリオキシエチレン型界面活性剤であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~1.4質量%である。
 好ましくは、前記親水性添加剤は、エチレンオキサイドの平均付加モル数が13~35であるポリオキシエチレン型界面活性剤であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~0.9質量%である。
 好ましくは、前記親水性添加剤は、HLB値が10~18である。
 好ましくは、前記ポリオキシエチレン型界面活性剤がポリオキシエチレン型非イオン性界面活性剤である。
 好ましくは、ポリオキシエチレン型非イオン性界面活性剤が下記一般式(1)で示されるポリオキシエチレンアルキルエーテル及び/又は下記一般式(2)で示されるポリオキシエチレン脂肪酸エステルの郡から選ばれる1種類以上である。
Figure JPOXMLDOC01-appb-I000002
(式中、Rは炭素数8~20のアルキル基を示す。また、ポリオキシエチレンアルキルエーテル骨格を複数個有する6価までの多価ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル骨格を複数個有する6価までの多価ポリオキシエチレン脂肪酸エステルであっても良い。nは整数でエチレンオキサイド単位の付加モル数を表す。)
 好ましくは、前記親水性添加剤は、平均分子量200~10000のポリエチレングリコールであり、且つ且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~1.4質量%である。
 好ましくは、前記親水性添加剤は、平均分子量200~1800のポリエチレングリコールである。
 好ましくは、前記親水性添加剤は、前記スチレン系樹脂組成物100質量%中の含有量が0.6~0.9質量%である。
 また、前記スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸とを共重合して得られるスチレン-(メタ)アクリル酸共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が90.0~99.9質量%、(メタ)アクリル酸単位の含有量が0.1~10.0質量%である。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸単位の含有量の合計を100質量%とする。
 また、前記スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステルとを共重合して得られるスチレン-(メタ)アクリル酸エステル共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が40.0~99.0質量%、(メタ)アクリル酸エステル単位の含有量が1.0~60.0質量%である。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸エステル単位の含有量の合計を100質量%とする。
 また、6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピンを含む。
 また、リン系酸化防止剤及び/又はヒンダードフェノール系酸化防止剤を含む。
 また、上記の光学用スチレン系樹脂組成物からなる成形品である。
 また、上記の成形品からなる導光板である。
Hereinafter, various embodiments of the present invention will be exemplified.
Preferably, the hydrophilic additive is a polyoxyethylene surfactant having an average addition mole number of ethylene oxide of 10 to 60, and the content in 100% by mass of the styrene resin composition is 0.00. 6 to 1.4% by mass.
Preferably, the hydrophilic additive is a polyoxyethylene type surfactant having an average addition mole number of ethylene oxide of 13 to 35, and the content in 100% by mass of the styrene resin composition is 0.00. It is 6 to 0.9% by mass.
Preferably, the hydrophilic additive has an HLB value of 10-18.
Preferably, the polyoxyethylene type surfactant is a polyoxyethylene type nonionic surfactant.
Preferably, the polyoxyethylene type nonionic surfactant is selected from the group of polyoxyethylene alkyl ether represented by the following general formula (1) and / or polyoxyethylene fatty acid ester represented by the following general formula (2). One or more types.
Figure JPOXMLDOC01-appb-I000002
(In the formula, R represents an alkyl group having 8 to 20 carbon atoms. In addition, a polyvalent polyoxyethylene alkyl ether up to hexavalent having a plurality of polyoxyethylene alkyl ether skeletons, and a plurality of polyoxyethylene fatty acid ester skeletons. (It may be a polyvalent polyoxyethylene fatty acid ester having up to 6 valences, where n is an integer and represents the number of added moles of ethylene oxide units.)
Preferably, the hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 10,000, and the content in 100% by mass of the styrenic resin composition is 0.6 to 1.4% by mass.
Preferably, the hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 1800.
Preferably, the hydrophilic additive has a content of 0.6 to 0.9% by mass in 100% by mass of the styrene resin composition.
The styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and (meth) acrylic acid, and the styrene resin is a styrene resin. The unit content is 90.0 to 99.9% by mass, and the (meth) acrylic acid unit content is 0.1 to 10.0% by mass. However, the total content of styrene monomer units and (meth) acrylic acid units in the styrene resin is 100% by mass.
The styrenic resin is a styrene- (meth) acrylic acid ester copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylic acid ester. The content of the monomer unit is 40.0 to 99.0% by mass, and the content of the (meth) acrylate unit is 1.0 to 60.0% by mass. However, the total content of styrene monomer units and (meth) acrylic acid ester units in the styrene resin is 100% by mass.
In addition, 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3, 2] Including dioxaphosphine.
Moreover, a phosphorus antioxidant and / or a hindered phenol antioxidant are included.
Moreover, it is a molded article which consists of said styrene resin composition for optics.
Moreover, it is a light-guide plate which consists of said molded article.
 本発明のスチレン系樹脂組成物は、PMMAやMS樹脂と比較して、吸水性が低く安価であり、スチレン系樹脂の欠点である環境変化による白化現象が発生せず、無色透明性に優れることから、スチレン系樹脂本来の透明性を生かした用途に好適に用いることができる。 The styrenic resin composition of the present invention has low water absorption and is inexpensive compared to PMMA and MS resins, and does not cause whitening due to environmental changes, which is a drawback of styrenic resins, and is excellent in colorless transparency. Therefore, it can be suitably used for applications utilizing the original transparency of the styrene resin.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<<スチレン系樹脂>>
 本発明のスチレン系樹脂は、スチレン系単量体を重合して得ることができる。スチレン系単量体とは、芳香族ビニル系モノマーである、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン等の単独または2種以上の混合物であり、好ましくはスチレンである。また、本発明の特徴を損ねない範囲でスチレン系単量体と共重合してもよく、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、アクリル酸エチル、アクリル酸メチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β-エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。
 スチレン系樹脂組成物は、スチレン系樹脂と、各種添加剤とで構成されていることが好ましく、スチレン系樹脂組成物100質量%中のスチレン系樹脂の割合は、例えば90~99.6質量%であり、95~99.6質量%が好ましい。スチレン系樹脂の割合は、具体的には例えば、90、91、92、93、94、95、96、97、98、99、99.6質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<< Styrenic resin >>
The styrene resin of the present invention can be obtained by polymerizing a styrene monomer. The styrene monomer is an aromatic vinyl monomer, such as styrene, α-methyl styrene, o-methyl styrene, p-methyl styrene, or a mixture of two or more, preferably styrene. Further, it may be copolymerized with a styrene monomer within the range not impairing the characteristics of the present invention, acrylic acid monomers such as acrylic acid and methacrylic acid, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, and butyl acrylate. , Acrylic monomers such as ethyl acrylate, methyl acrylate, and methyl methacrylate; α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid; and imide monomers such as phenyl maleimide and cyclohexyl maleimide. .
The styrene resin composition is preferably composed of a styrene resin and various additives. The ratio of the styrene resin in 100% by mass of the styrene resin composition is, for example, 90 to 99.6% by mass. It is preferably 95 to 99.6% by mass. Specifically, the ratio of the styrenic resin is, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.6% by mass, and any of the numerical values exemplified here is 2 It may be within a range between the two.
 スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸とを共重合して得られるスチレン-(メタ)アクリル酸共重合樹脂である場合、スチレン系樹脂のスチレン系単量体単位の含有量が90.0~99.9質量%、(メタ)アクリル酸単位の含有量が0.1~10.0質量%であることが好ましい。ただし、スチレン系単量体単位と(メタ)アクリル酸単位の含有量の合計を100質量%とする。(メタ)アクリル酸とは、アクリル酸、メタクリル酸等であり、メタクリル酸が好ましい。 When the styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and (meth) acrylic acid, the content of the styrene resin unit of the styrene resin The amount is preferably 90.0 to 99.9% by mass, and the content of (meth) acrylic acid units is preferably 0.1 to 10.0% by mass. However, the total content of styrene monomer units and (meth) acrylic acid units is 100% by mass. (Meth) acrylic acid is acrylic acid, methacrylic acid or the like, with methacrylic acid being preferred.
 スチレン系樹脂中の(メタ)アクリル酸単位含有量の測定は室温で実施する。スチレン系樹脂0.5gを秤量し、トルエン/エタノール=8/2(体積比)の混合溶液に溶解後、水酸化カリウム0.1mol/Lエタノール溶液にて中和滴定を行い、終点を検出し、水酸化カリウムエタノール溶液の使用量より、(メタ)アクリル酸単位の質量基準の含有量を算出する。なお、電位差自動滴定装置を使用することができ、京都電子工業株式会社製AT-510により測定を行うことができる。スチレン系樹脂中の(メタ)アクリル酸単位の含有量は、スチレン系樹脂の重合時における原料のスチレン系単量体と(メタ)アクリル酸単量体との組成比によって調整することができるが、相溶する範囲において(メタ)アクリル酸単位を含有するスチレン系樹脂と(メタ)アクリル酸単位を含有しないスチレン系樹脂とをブレンドして調整することもできる。 The measurement of the (meth) acrylic acid unit content in the styrene resin is carried out at room temperature. Weigh 0.5 g of styrene resin, dissolve in toluene / ethanol = 8/2 (volume ratio) mixed solution, then perform neutralization titration with potassium hydroxide 0.1 mol / L ethanol solution to detect the end point. From the amount of potassium hydroxide ethanol solution used, the mass-based content of (meth) acrylic acid units is calculated. An automatic potentiometric titrator can be used, and measurement can be performed with AT-510 manufactured by Kyoto Electronics Industry Co., Ltd. The content of the (meth) acrylic acid unit in the styrenic resin can be adjusted by the composition ratio of the raw styrene monomer and the (meth) acrylic acid monomer during the polymerization of the styrene resin. In a compatible range, a styrene resin containing a (meth) acrylic acid unit and a styrene resin not containing a (meth) acrylic acid unit can be blended and adjusted.
 スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステルとを共重合して得られるスチレン-(メタ)アクリル酸エステル共重合樹脂である場合、スチレン系樹脂のスチレン系単量体単位の含有量が40.0~99.0質量%、(メタ)アクリル酸エステル単位の含有量が1.0~60.0質量%であることが好ましい。ただし、スチレン系単量体単位と(メタ)アクリル酸エステル単位の含有量の合計を100質量%とする。(メタ)アクリル酸エステルとは、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル等である。 When the styrene resin is a styrene- (meth) acrylate copolymer resin obtained by copolymerizing a styrene monomer and a (meth) acrylate ester, a styrene monomer unit of the styrene resin The content of is preferably 40.0 to 99.0% by mass, and the content of (meth) acrylic acid ester units is preferably 1.0 to 60.0% by mass. However, the total content of the styrene monomer unit and the (meth) acrylate unit is 100% by mass. The (meth) acrylic acid ester is a methacrylic acid ester such as methyl methacrylate or ethyl methacrylate, or an acrylic acid ester such as methyl acrylate or ethyl acrylate.
 スチレン系樹脂中の(メタ)アクリル酸エステル単位の含有量は熱分解ガスクロマトグラフィーで以下の条件にて測定できる。
  熱分解炉:PYR-2A(株式会社島津製作所製)
  熱分解炉温度設定:525℃
  ガスクロマトグラフ:GC-14A(株式会社島津製作所製)
  カラム:ガラス製3mm径×3m
  充填剤:FFAP Chromsorb WAW 10%
  インジェクション、ディテクター温度:250℃
  カラム温度:120℃
  キャリアーガス:窒素
The content of the (meth) acrylic acid ester unit in the styrene resin can be measured under the following conditions by pyrolysis gas chromatography.
Pyrolysis furnace: PYR-2A (manufactured by Shimadzu Corporation)
Pyrolysis furnace temperature setting: 525 ° C
Gas chromatograph: GC-14A (manufactured by Shimadzu Corporation)
Column: Glass 3mm diameter x 3m
Filler: FFAP Chromsorb WAW 10%
Injection, detector temperature: 250 ° C
Column temperature: 120 ° C
Carrier gas: Nitrogen
 スチレン系樹脂の重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知のスチレン重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒として例えばベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。 Examples of the polymerization method of the styrene resin include known styrene polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable. Examples of the solvent include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.
 スチレン系樹脂の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t-ブチルパーオキシアセテート、t-アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t-ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N'-アゾビス(シクロヘキサン-1-カルボニトリル)、N,N'-アゾビス(2-メチルブチロニトリル)、N,N'-アゾビス(2,4-ジメチルバレロニトリル)、N,N'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。連鎖移動剤としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマー及びテルピノーレン等が挙げられる。 A polymerization initiator and a chain transfer agent can be used as needed during the polymerization of the styrene resin. As the polymerization initiator, a radical polymerization initiator is preferable. For example, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) butane, 2,2- Peroxyketals such as di (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-di (t-amylperoxy) cyclohexane, cumene hydroperoxide, t-butyl hydroperoxide, etc. Alkyl peroxides such as hydroperoxides, t-butylperoxyacetate, t-amylperoxyisononanoate, t-butylcumyl peroxide, di-t-butylperoxide, dicumylperoxide, di-t -Dialkyl peroxides such as hexyl peroxide, t-butylperoxyacetate Peroxyesters such as t-butyl peroxybenzoate and t-butylperoxyisopropyl monocarbonate, peroxycarbonates such as t-butyl peroxyisopropyl carbonate and polyether tetrakis (t-butyl peroxycarbonate) N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N′-azobis (2,4-dimethylvaleronitrile), N, N '-Azobis [2- (hydroxymethyl) propionitrile] and the like can be mentioned, and these can be used alone or in combination. Examples of the chain transfer agent include aliphatic mercaptan, aromatic mercaptan, pentaphenylethane, α-methylstyrene dimer, terpinolene and the like.
 連続重合の場合、まず重合工程にて公知の完全混合槽型攪拌槽や塔型反応器等を用い、目標の分子量、分子量分布、反応転化率となるよう、重合温度調整等により重合反応が制御される。重合工程を出た重合体を含む重合溶液は、脱揮工程に移送され、未反応の単量体及び重合溶媒が除去される。脱揮工程は加熱器付きの真空脱揮槽やベント付き脱揮押出機などで構成される。脱揮工程を出た溶融状態の重合体は造粒工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。 In the case of continuous polymerization, the polymerization reaction is first controlled by adjusting the polymerization temperature to achieve the target molecular weight, molecular weight distribution, and reaction conversion rate using a well-known complete mixing tank type stirring tank or tower reactor in the polymerization process. Is done. The polymerization solution containing the polymer exiting the polymerization step is transferred to the devolatilization step, and unreacted monomers and polymerization solvent are removed. The devolatilization process includes a vacuum devolatilization tank with a heater, a vented devolatilization extruder, and the like. The polymer in the molten state that has exited the devolatilization step is transferred to the granulation step. In the granulation step, the molten resin is extruded in a strand form from a porous die and processed into a pellet shape by a cold cut method, an air hot cut method, or an underwater hot cut method.
 本発明のスチレン系樹脂の重量平均分子量は15万~70万であり、18万~50万であることが好ましい。15万未満では成形品の強度が不十分となり、70万を超えると成形性が著しく低下する。スチレン系樹脂の重量平均分子量は、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。
 重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて、次の条件で測定した。
   GPC機種:昭和電工株式会社製Shodex GPC-101
   カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED-B
   移動相:テトラヒドロフラン
   試料濃度:0.2質量%
   温度:オーブン40℃、注入口35℃、検出器35℃
   検出器:示差屈折計
 本発明の分子量は単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
The styrene resin of the present invention has a weight average molecular weight of 150,000 to 700,000, preferably 180,000 to 500,000. If it is less than 150,000, the strength of the molded product becomes insufficient, and if it exceeds 700,000, the moldability is remarkably lowered. The weight average molecular weight of the styrenic resin should be controlled by the reaction temperature of the polymerization process, the residence time, the type and amount of polymerization initiator, the type and amount of chain transfer agent, the type and amount of solvent used during polymerization, etc. Can do.
The weight average molecular weight (Mw), the Z average molecular weight (Mz), and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC) under the following conditions.
GPC model: Shodex GPC-101 manufactured by Showa Denko KK
Column: PLgel 10 μm MIXED-B manufactured by Polymer Laboratories
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer The molecular weight of the present invention is calculated as the molecular weight in terms of polystyrene by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene.
<<親水性添加剤>>
 親水性添加剤とは、水と相互作用(水素結合)が可能な親水基をもった化合物である。親水基はポリエーテル鎖が好ましい。ポリエーテル鎖はエーテル結合の連なった骨格構造であり、例えば、エチレンオキサイド(以下EOと記載することがある)、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドの付加反応によって合成されるポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシブチレン鎖やグリセリンの脱水縮合などによって合成されるポリグリセロール鎖が挙げられるが、ポリオキシエチレン鎖であることが好ましい。ポリエーテル鎖は、1分子中に1組だけでなく、複数組有していても良い。
<< Hydrophilic additive >>
The hydrophilic additive is a compound having a hydrophilic group capable of interacting with water (hydrogen bonding). The hydrophilic group is preferably a polyether chain. The polyether chain is a skeleton structure in which ether bonds are linked. For example, a polyoxyethylene chain synthesized by an addition reaction of alkylene oxide such as ethylene oxide (hereinafter sometimes referred to as EO), propylene oxide, butylene oxide, A polyglycerol chain synthesized by dehydration condensation of a polyoxypropylene chain, a polyoxybutylene chain or glycerin can be mentioned, and a polyoxyethylene chain is preferable. The polyether chain may have not only one set per molecule but also a plurality of sets.
 このような種々の親水性添加剤のうち、本発明においては、エチレンオキサイドの平均付加モル数が3~150であるポリオキシエチレン型界面活性剤と、平均分子量200~10000のポリエチレングリコールから選ばれる少なくとも1種を添加する。白化現象の抑制効果を高めるには、このような特定の構成の親水性添加剤を用いることが必須であることが実験的に見出されたからである。 Among these various hydrophilic additives, in the present invention, a polyoxyethylene surfactant having an average added mole number of ethylene oxide of 3 to 150 and a polyethylene glycol having an average molecular weight of 200 to 10,000 are selected. Add at least one. This is because it has been experimentally found that it is essential to use a hydrophilic additive having such a specific configuration in order to enhance the effect of suppressing the whitening phenomenon.
 また、親水性添加剤のHLB値は、5~20である。白化現象の抑制効果を高めるには、このような特定のHLB値を有する親水性添加剤を用いることが必須であることが実験的に見出されたからである。HLB値は、好ましくは8~20であり、より好ましくは10~20であり、より好ましくは10~18である。HLB(Hydrophilic-lipophilic blance)値は、添加剤の親水性を表す値であり、HLB値が8~10では水中に安定に分散し、10を超えると透明感のある分散状態から透明に完全溶解する状態となる。ポリエーテル鎖を有する非イオン性界面活性剤では、HLB値=(親水基部分の分子量)/(添加剤の分子量)×20で計算され、親水基を含まないパラフィンのようなものはHLB値=0で、親水基のみのポリエチレングリコールではHLB値=20となり、非イオン性界面活性剤ではHLB値は0~20の間となる。 Further, the HLB value of the hydrophilic additive is 5 to 20. This is because it has been experimentally found that it is essential to use a hydrophilic additive having such a specific HLB value in order to enhance the whitening phenomenon suppressing effect. The HLB value is preferably 8 to 20, more preferably 10 to 20, and more preferably 10 to 18. HLB (Hydrophilic-lipophilic balance) value is a value that represents the hydrophilicity of the additive. When the HLB value is 8-10, it is stably dispersed in water, and when it exceeds 10, it completely dissolves transparently from a transparent dispersion state. It becomes a state to do. For nonionic surfactants having a polyether chain, the HLB value = (molecular weight of hydrophilic group part) / (molecular weight of additive) × 20. For paraffins that do not contain a hydrophilic group, the HLB value = 0, the polyethylene glycol having only hydrophilic groups has an HLB value = 20, and the nonionic surfactant has an HLB value of 0-20.
 親水性添加剤は、スチレン系樹脂組成物100質量%中の含有量が0.4~2.0質量%となるように添加する。スチレン系樹脂組成物の耐熱性を維持しつつ白化現象の抑制効果を高めるには、このような含有量になるように添加することが必須であることが実験的に見出されたからである。スチレン系樹脂組成物100質量%中の親水性添加剤の含有量は、好ましくは、0.7~1.6質量%又は0.6~1.4質量%であり、さらに好ましくは0.6~0.9質量%である。 The hydrophilic additive is added so that the content in 100% by mass of the styrene resin composition is 0.4 to 2.0% by mass. This is because it has been experimentally found that it is essential to add such a content in order to increase the whitening phenomenon suppressing effect while maintaining the heat resistance of the styrene-based resin composition. The content of the hydrophilic additive in 100% by mass of the styrenic resin composition is preferably 0.7 to 1.6% by mass or 0.6 to 1.4% by mass, and more preferably 0.6%. Is 0.9 mass%.
 親水性添加剤の温度200℃、窒素雰囲気下における加熱減量は10質量%以下であることが好ましい。温度200℃、窒素雰囲気下における加熱減量は、熱重量分析(TGA)にて求めることができ、窒素雰囲気で室温状態から10℃/分の昇温速度で加熱し、温度200℃での重量減少量から求めることができる。温度200℃、窒素雰囲気下における加熱減量が10質量%を超える添加剤は揮発性が高く、スチレン系樹脂の成形加工時にガスが発生して金型やロール汚れの可能性がある。 It is preferable that the heating loss of the hydrophilic additive at 200 ° C. in a nitrogen atmosphere is 10% by mass or less. Heat loss in a nitrogen atmosphere at a temperature of 200 ° C. can be determined by thermogravimetric analysis (TGA). Heating is performed at a temperature increase rate of 10 ° C./min from a room temperature in a nitrogen atmosphere, and the weight loss at a temperature of 200 ° C. It can be determined from the quantity. An additive having a temperature loss of 200 ° C. and a heating loss of more than 10% by mass in a nitrogen atmosphere has high volatility, and gas is generated during the molding process of the styrene-based resin, which may cause mold or roll contamination.
 親水性添加剤の添加方法としては、スチレン系樹脂の重合工程、脱揮工程、造粒工程で添加混合する方法や成形加工時の押出機などで添加混合する方法、親水性添加剤を高濃度に調整した樹脂組成物を無添加のスチレン系樹脂によって目的の含有量に希釈混合する方法などが挙げられ、特に限定されることではない。 As a method for adding a hydrophilic additive, a method of adding and mixing in a polymerization process of a styrene resin, a devolatilization process, a granulation process, a method of adding and mixing with an extruder or the like at the time of molding, a high concentration of hydrophilic additive A method of diluting and mixing the resin composition adjusted to the desired content with an additive-free styrenic resin can be mentioned, and is not particularly limited.
 例えば、親水性添加剤を0.5~50.0質量%含有するスチレン系樹脂組成物と無添加のスチレン系樹脂を、押出機や射出成形機を用いて混合し、目的の濃度のスチレン系樹脂組成物や、成形品、導光板を得る方法が挙げられる。 For example, a styrene resin composition containing 0.5 to 50.0% by mass of a hydrophilic additive and an additive-free styrene resin are mixed using an extruder or an injection molding machine to obtain a styrene resin having a desired concentration. Examples of the method include obtaining a resin composition, a molded product, and a light guide plate.
<ポリオキシエチレン型界面活性剤>
 ポリオキシエチレン型界面活性剤としては、ポリオキシエチレン型非イオン性界面活性剤、ポリオキシエチレン型陰イオン性界面活性剤、ポリオキシエチレン型陽イオン性界面活性剤、ポリオキシエチレン型両性界面活性剤などが挙げられ、ポリオキシエチレン型非イオン性界面活性剤が好ましい。
<Polyoxyethylene type surfactant>
Polyoxyethylene type surfactants include polyoxyethylene type nonionic surfactants, polyoxyethylene type anionic surfactants, polyoxyethylene type cationic surfactants, polyoxyethylene type amphoteric surfactants And a polyoxyethylene type nonionic surfactant is preferable.
 ポリオキシエチレン型非イオン性界面活性剤は、下記一般式(1)で示されるポリオキシエチレンアルキルエーテルや下記一般式(2)で示されるポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステルが挙げられるがポリオキシエチレンアルキルエーテル及び/又はポリオキシエチレン脂肪酸エステルの郡から選ばれる1種類以上であることが好ましい。また、一分子中に複数個のポリオキシエチレンアルキルエーテル骨格を有する多価ポリオキシエチレンアルキルエーテルや一分子中に複数個のポリオキシエチレン脂肪酸エステル骨格を有する多価ポリオキシエチレン脂肪酸エステルを用いても本発明の目的を達成できる。ポリオキシエチレンアルキルエーテルやポリオキシエチレン脂肪酸エステルの価数とは、一分子中に存在するポリオキシエチレンアルキルエーテル骨格やポリオキシエチレン脂肪酸エステル骨格の数をいう。
Figure JPOXMLDOC01-appb-I000003
(式中、Rは炭素数8~20のアルキル基を示す。また、ポリオキシエチレンアルキルエーテル骨格を複数個有する6価までの多価ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル骨格を複数個有する6価までの多価ポリオキシエチレン脂肪酸エステルであっても良い。nは整数でエチレンオキサイド単位の付加モル数を表す。)
Polyoxyethylene type nonionic surfactants include polyoxyethylene alkyl ether represented by the following general formula (1), polyoxyethylene fatty acid ester represented by the following general formula (2), polyoxyethylene hydrogenated castor oil, polyoxy Ethylene sorbitan fatty acid ester and polyoxyethylene sorbitol fatty acid ester are exemplified, but one or more selected from the group of polyoxyethylene alkyl ether and / or polyoxyethylene fatty acid ester are preferable. In addition, polyvalent polyoxyethylene alkyl ethers having a plurality of polyoxyethylene alkyl ether skeletons in one molecule and polyvalent polyoxyethylene fatty acid esters having a plurality of polyoxyethylene fatty acid ester skeletons in one molecule are used. Can also achieve the object of the present invention. The valence of polyoxyethylene alkyl ether or polyoxyethylene fatty acid ester means the number of polyoxyethylene alkyl ether skeleton or polyoxyethylene fatty acid ester skeleton present in one molecule.
Figure JPOXMLDOC01-appb-I000003
(In the formula, R represents an alkyl group having 8 to 20 carbon atoms. In addition, a polyvalent polyoxyethylene alkyl ether up to hexavalent having a plurality of polyoxyethylene alkyl ether skeletons, and a plurality of polyoxyethylene fatty acid ester skeletons. (It may be a polyvalent polyoxyethylene fatty acid ester having up to 6 valences, where n is an integer and represents the number of added moles of ethylene oxide units.)
 ポリオキシエチレンアルキルエーテルはアルコールにエチレンオキサイドを付加させて作られ、ポリオキシエチレン脂肪酸エステルは脂肪酸にエチレンオキサイドを付加させるか脂肪酸とポリエチレングリコールを直接エステル化させて作られ、エチレンオキサイドの平均付加モル数は3~150である。白化現象の抑制効果を高めるには、平均付加モル数がこのような特定の範囲内であることが必須であることが実験的に見出されたからである。平均付加モル数は、好ましくは7~100であり、さらに好ましくは10~60であり、さらに好ましくは10~50であり、さらに好ましくは13~35である。 Polyoxyethylene alkyl ether is made by adding ethylene oxide to alcohol, and polyoxyethylene fatty acid ester is made by adding ethylene oxide to fatty acid or directly esterifying fatty acid and polyethylene glycol. The number is 3 to 150. This is because it has been experimentally found that it is essential that the average added mole number is within such a specific range in order to enhance the whitening phenomenon suppressing effect. The average added mole number is preferably 7 to 100, more preferably 10 to 60, still more preferably 10 to 50, and further preferably 13 to 35.
 本発明のポリオキシエチレン型界面活性剤としては、具体的には例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオクチルドエシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレン2-エチルヘキシルエーテルなどのポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタントリステアレートなどのポリオキシエチレンソルビタン脂肪酸エステル、テトラオレイン酸ポリオキシエチレンソルビットなどのポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエートなどのポリオキシエチレン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル、ポリオキシエチレングリセリルエーテル、ポリオキシエチレンテトラオレイン酸、ポリオキシエチレントリイソステアリン酸、ポリオキシエチレンヤシ脂肪酸グリセリルなどが挙げられる。 Specific examples of the polyoxyethylene surfactant of the present invention include, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene octyl decyl ether, polyoxyethylene myristyl ether Polyoxyethylene alkyl ethers such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan tristearate, polyoxyethylene sorbite tetraoleate, etc. Oxyethylene sorbitol fatty acid ester, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene Polyoxyethylene fatty acid esters such as glycol distearate, polyethylene glycol monooleate, polyoxyethylene hydrogenated castor oil, polyoxyethylene monomethyl ether, polyoxyethylene dimethyl ether, polyoxyethylene glyceryl ether, polyoxyethylene tetraoleic acid, poly Examples thereof include oxyethylene triisostearic acid and polyoxyethylene coconut fatty acid glyceryl.
<ポリエチレングリコール>
 本発明に用いるポリエチレングリコールの平均分子量は200~10000である。200~4000であることが好ましく、200~1800であることがより好ましく、300~1000であることがより好ましい。ポリエチレングリコールの平均分子量が200未満では成形加工時にガスが発生し、金型やロールを汚すため好ましくない。また、10000を超えると白化現象を防止する効果が低下する傾向にある他、スチレン系樹脂との相溶性が低下し、スチレン系樹脂組成物やその成形品が白濁する場合がある。平均分子量は、ピリジン無水フタル酸法にて測定された水酸基の濃度(JIS K1557に準拠)から計算されるものである。
<Polyethylene glycol>
The average molecular weight of polyethylene glycol used in the present invention is 200 to 10,000. 200 to 4000 is preferable, 200 to 1800 is more preferable, and 300 to 1000 is more preferable. If the average molecular weight of polyethylene glycol is less than 200, gas is generated during the molding process, and the mold and roll are soiled, which is not preferable. In addition, if it exceeds 10,000, the effect of preventing the whitening phenomenon tends to be reduced, and the compatibility with the styrene resin is reduced, and the styrene resin composition and the molded product thereof may become cloudy. The average molecular weight is calculated from the hydroxyl group concentration (based on JIS K1557) measured by the pyridine phthalic anhydride method.
<<添加剤・酸化防止剤>>
 本発明のスチレン系樹脂組成物には、本発明の無色透明性を損なわない範囲でミネラルオイルを含有しても良い。また、ステアリン酸、エチレンビスステアリン酸アミド等の内部潤滑剤やヒンダードフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ラクトン系酸化防止剤、ヒンダードアミン系安定剤、紫外線吸収剤、帯電防止剤等の添加剤が含まれていても良い。また、外部潤滑剤としては、エチレンビスステアリン酸アミドが好適であり、含有量としては樹脂組成物中に30~200ppmであることが好ましい。
<< Additives / Antioxidants >>
The styrenic resin composition of the present invention may contain mineral oil as long as the colorless transparency of the present invention is not impaired. In addition, internal lubricants such as stearic acid and ethylenebisstearic acid amide, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, lactone antioxidants, hindered amine stabilizers, UV absorbers In addition, additives such as an antistatic agent may be contained. Further, as the external lubricant, ethylene bis stearamide is preferable, and the content is preferably 30 to 200 ppm in the resin composition.
 本発明のスチレン系樹脂組成物は、スチレン系樹脂の特徴である透過率や色相、透明性などの光学特性の悪化が小さいため、透明性を活かした分野、例えば光学用材料として光学用途に好適に用いることができる。光学用途としては、レンズ、導光板、フィルム、光ファイバー、光導波路等が挙げられる。 The styrenic resin composition of the present invention is suitable for optical applications as a field utilizing transparency, for example, an optical material, because the deterioration of optical properties such as transmittance, hue, and transparency, which are characteristics of the styrene resin, is small. Can be used. Examples of optical applications include lenses, light guide plates, films, optical fibers, and optical waveguides.
 本発明のスチレン系樹脂組成物に、(c)6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン(以下、「化合物X」と称する。)、(d)リン系酸化防止剤、(e)ヒンダードフェノール系酸化防止剤のうちの少なくとも1つを加えることで、長期の熱安定性を付与することができる。光学用途のように長期間使用される分野において、長期の熱安定性は重要な特性の一つである。長期の熱安定性は、長期間の使用における熱による色相および透過率の変化を表し、熱安定性に優れるものは色相および透過率の変化が小さい。長期の熱安定性は、加速試験として、樹脂が変形しない程度の高温度条件(60~90℃)に成形品を保管し、色相および透過率の経時変化によって評価することができる。 The styrenic resin composition of the present invention contains (c) 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyl. Dibenzo [d, f] [1,3,2] dioxaphosphine (hereinafter referred to as “compound X”), (d) phosphorus antioxidant, (e) hindered phenol antioxidant By adding at least one of them, long-term thermal stability can be imparted. In fields that are used for a long period of time, such as optical applications, long-term thermal stability is an important characteristic. Long-term thermal stability represents changes in hue and transmittance due to heat in long-term use, and those having excellent thermal stability have small changes in hue and transmittance. The long-term thermal stability can be evaluated as an accelerated test by storing the molded product under a high temperature condition (60 to 90 ° C.) that does not cause deformation of the resin, and changing the hue and transmittance over time.
 化合物Xは、同一分子内にヒンダードフェノール系酸化防止剤の骨格とリン系酸化防止剤の骨格をもった加工安定剤である。 Compound X is a processing stabilizer having a hindered phenol antioxidant skeleton and a phosphorus antioxidant skeleton in the same molecule.
 化合物Xは、スチレン系樹脂組成物100質量%中の含有量が0.02~0.40質量%が好ましく、0.05~0.20質量%であることがより好ましい。化合物Xの含有量が0.02質量%未満では長期の熱安定性に劣り、初期の色相および透過率にも劣る。また、0.40質量%を超えても長期の熱安定性が悪化する。長期の熱安定性は、長期間の使用における熱による色相および透過率の変化を表し、熱安定性に優れるものは色相および透過率の変化が小さい。長期の熱安定性は、加速試験として、樹脂が変形しない程度の高温度条件(60~90℃)に成形品を保管し、色相および透過率の経時変化によって評価することができる。スチレン系樹脂組成物100質量%中の化合物Xの含有量は、具体的には例えば、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.20、0.25、0.30、0.35、0.40質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The content of compound X in 100% by mass of the styrene resin composition is preferably 0.02 to 0.40% by mass, and more preferably 0.05 to 0.20% by mass. If the content of the compound X is less than 0.02% by mass, the long-term thermal stability is inferior, and the initial hue and transmittance are also inferior. Moreover, even if it exceeds 0.40 mass%, long-term thermal stability will deteriorate. Long-term thermal stability represents changes in hue and transmittance due to heat in long-term use, and those having excellent thermal stability have small changes in hue and transmittance. The long-term thermal stability can be evaluated as an accelerated test by storing the molded product under a high temperature condition (60 to 90 ° C.) that does not cause deformation of the resin, and changing the hue and transmittance over time. Specifically, the content of the compound X in 100% by mass of the styrene resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08. 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 mass%, and the range between any two of the numerical values exemplified here It may be within.
 本発明のスチレン系樹脂組成物に化合物Xを加えることで長期の熱安定性を付与できる他、リン系酸化防止剤および/またはヒンダードフェノール系酸化防止剤を加えることでも長期の熱安定性を付与できる。 In addition to adding compound X to the styrenic resin composition of the present invention, long-term thermal stability can be imparted, and long-term thermal stability can also be achieved by adding phosphorus-based antioxidants and / or hindered phenol-based antioxidants. Can be granted.
 リン系酸化防止剤はスチレン系樹脂組成物100質量%中0.02~0.50質量%含有することが好ましく、0.05~0.40質量%含有することがより好ましく、0.05~0.30質量%含有することがさらに好ましい。0.02質量%未満では長期の熱安定性に劣り、初期の色相および透過率にも劣る。0.50質量%を超えても長期の熱安定性が悪化する。スチレン系樹脂組成物100質量%中のリン系酸化防止剤の含有量は、具体的には例えば、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The phosphorus-based antioxidant is preferably contained in an amount of 0.02 to 0.50% by mass, more preferably 0.05 to 0.40% by mass in 100% by mass of the styrene resin composition, and 0.05 to More preferably, the content is 0.30% by mass. If it is less than 0.02% by mass, the long-term thermal stability is poor, and the initial hue and transmittance are also poor. Even if it exceeds 0.50 mass%, long-term thermal stability will deteriorate. Specifically, the content of the phosphorus antioxidant in 100% by mass of the styrene resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 mass%, where It may be within a range between any two of the exemplified numerical values.
 ヒンダードフェノール系酸化防止剤はスチレン系樹脂組成物100質量%中0.02~0.50質量%含有することが好ましく、0.02~0.30質量%含有することがより好ましく、0.05~0.30質量%含有することがさらに好ましい。0.02質量%未満では長期の熱安定性に劣り、初期の色相および透過率にも劣る。0.50質量%を超えても長期の熱安定性が悪化する。スチレン系樹脂組成物100質量%中のヒンダードフェノール系酸化防止剤の含有量は、具体的には例えば、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The hindered phenolic antioxidant is preferably contained in an amount of 0.02 to 0.50% by mass, more preferably 0.02 to 0.30% by mass in 100% by mass of the styrene resin composition. More preferably, the content is from 05 to 0.30% by mass. If it is less than 0.02% by mass, the long-term thermal stability is poor, and the initial hue and transmittance are also poor. Even if it exceeds 0.50 mass%, long-term thermal stability will deteriorate. Specifically, the content of the hindered phenol-based antioxidant in 100% by mass of the styrene-based resin composition is, for example, 0.02, 0.03, 0.04, 0.05, 0.06, 0.0. 07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50% by mass, It may be within a range between any two of the numerical values exemplified here.
 リン系酸化防止剤とは、三価のリン化合物である亜リン酸エステル類である。リン系酸化防止剤は、例えば、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、4,4'-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニルフォスファイト)、ジステアリルペンタエリスリトールジフォスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス-[2-メチル-4,6-ビス-(1,1-ジメチルエチル)フェニル]エチルフォスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト等が挙げられる。リン系酸化防止剤としては、耐加水分解性に優れたものが好ましく、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカンであることが好ましい。特に好ましくは、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイトである。リン系酸化防止剤は、単独でもよいが二種以上を併用してもよい。 Phosphorous antioxidants are phosphites that are trivalent phosphorus compounds. Phosphorus antioxidants include, for example, tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2- Ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 4,4′-biphenylenediphosphinic acid tetrakis (2,4-di-tert-butylphenyl), 3,9-bis (2 , 6-Di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, cyclic neopentanetetraylbis (2,4-di -T-butylphenyl phosphite), distearyl pentaerythritol diphosphite, bis (nonylphenyl) pe Taerythritol diphosphite, bis- [2-methyl-4,6-bis- (1,1-dimethylethyl) phenyl] ethyl phosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 -Oxide, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, and the like. As the phosphorus-based antioxidant, those excellent in hydrolysis resistance are preferable, such as tris (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-). Butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 3,9-bis (2,6-di-tert-butyl-4-methyl) Phenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane is preferred. Particularly preferred is tris (2,4-di-tert-butylphenyl) phosphite. Phosphorous antioxidants may be used alone or in combination of two or more.
 ヒンダードフェノール系酸化防止剤とは、基本骨格にフェノール性水酸基を持つ酸化防止剤である。ヒンダードフェノール系酸化防止剤は、例えば、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、4,6-ビス(オクチルチオメチル)-o-クレゾール、4,6-ビス〔(ドデシルチオ)メチル〕-o-クレゾール、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、DL-α-トコフェロール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-〔1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル〕-4,6-ジ-t-ペンチルフェニルアクリレート、4,4'-チオビス(6-t-ブチル-3-メチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、ビス-[3,3-ビス-(4'-ヒドロキシ-3'-tert―ブチルフェニル)-ブタン酸]-グリコールエステル等が挙げられる。好ましくは、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕である。ヒンダードフェノール系酸化防止剤は、単独でもよいが二種以上を併用してもよい。 The hindered phenol antioxidant is an antioxidant having a phenolic hydroxyl group in the basic skeleton. Examples of hindered phenol antioxidants include octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- [3- (3-tert-butyl). -4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], 4,6-bis (octylthiomethyl) -o-cresol, 4,6-bis [(dodecylthio) methyl] -o-cresol, 2 , 4-Dimethyl-6- (1-methylpentadecyl) phenol, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate] methane, DL-α-tocopherol, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydroxy −3,5-di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenyl acrylate, 4,4′-thiobis (6-t-butyl-3-methylphenol), 1,1, 3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), bis- [3,3-bis- (4 And '-hydroxy-3'-tert-butylphenyl) -butanoic acid] -glycol ester. Preferably, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methyl) Phenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4 -Hydroxy-m-tolyl) propionate]. Hindered phenolic antioxidants may be used alone or in combination of two or more.
 化合物X、リン系酸化防止剤及びヒンダードフェノール系酸化防止剤の添加方法としては、スチレン系樹脂の重合工程、脱揮工程、造粒工程で添加混合する方法や成形加工時の押出機や射出成形機などで添加混合する方法、これらの添加剤を高濃度に調整した樹脂組成物を無添加のスチレン系樹脂によって目的の含有量に希釈混合する方法などが挙げられ、特に限定されることではない。 Compound X, phosphorus antioxidant and hindered phenol antioxidant can be added by adding and mixing in the polymerization process, devolatilization process and granulation process of styrene resin, and extruders and injections during molding. A method of adding and mixing with a molding machine, etc., a method of diluting and mixing a resin composition prepared by adding these additives to a high concentration with an additive-free styrenic resin, etc. Absent.
 紫外線吸収剤は、紫外線による劣化や着色を抑制する機能を有するものであって、例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、ベンゾエート系、サリシレート系、シアノアクリレート系、蓚酸アニリド系、マロン酸エステル系、ホルムアミジン系などの紫外線吸収剤が挙げられる。これらは、単独又は2種以上組み合わせて用いることができ、ヒンダートアミン等の光安定剤を併用してもよい。 The ultraviolet absorber has a function of suppressing deterioration and coloring due to ultraviolet rays. For example, benzophenone, benzotriazole, triazine, benzoate, salicylate, cyanoacrylate, oxalic anilide, malonic ester UV absorbers such as those of formaldehyde and formamidine. These can be used alone or in combination of two or more thereof, and a light stabilizer such as hindered amine may be used in combination.
<<スチレン系樹脂組成物>>
 本発明のスチレン系樹脂組成物は、射出成形、押出成形、ブロー成形、圧縮成形などの目的に応じた各種成形方法で成形品を得ることができる。成形品の形状は目的に応じた形状とすることができ、限定されるものではない。例えば板状成形品であれば、導光板として用いることができる。導光板とする方法として、板状成形品の背面(光を出射する面の反対側)にドットパターンなどの反射パターンを設けることが知られている。樹脂板から導光板に加工する際、光の入射面あるいは樹脂板の端面全面を研磨処理して、鏡面とすることが好ましい。また、出射光の均一性を高めるために、板状成形品の表面(光が出射される面)にプリズムパターンを設けることができる。板状成形品の表面あるいは背面のパターンは、板状成形品の成形時に形成させることができ、例えば射出成形では金型形状、押出成形ではロール転写などによって、パターン形成させることができる。
<< Styrenic resin composition >>
The styrenic resin composition of the present invention can obtain a molded product by various molding methods according to purposes such as injection molding, extrusion molding, blow molding, compression molding and the like. The shape of the molded product can be a shape according to the purpose, and is not limited. For example, if it is a plate-shaped molded article, it can be used as a light guide plate. As a method of forming a light guide plate, it is known to provide a reflection pattern such as a dot pattern on the back surface of the plate-shaped molded product (opposite the surface from which light is emitted). When processing from the resin plate to the light guide plate, it is preferable to polish the light incident surface or the entire end surface of the resin plate to make a mirror surface. In addition, in order to improve the uniformity of the emitted light, a prism pattern can be provided on the surface (surface from which light is emitted) of the plate-shaped molded product. The pattern on the front surface or the back surface of the plate-shaped molded product can be formed at the time of molding the plate-shaped molded product. For example, the pattern can be formed by a mold shape in injection molding or roll transfer in extrusion molding.
 本発明のスチレン系樹脂組成物のビカット軟化温度は95~104℃であることが好ましく、97~104℃であることがより好ましい。ビカット軟化温度が95℃未満では耐熱性が不足し、使用環境によっては成形品が変形する可能性がある。 The Vicat softening temperature of the styrene resin composition of the present invention is preferably 95 to 104 ° C, more preferably 97 to 104 ° C. If the Vicat softening temperature is less than 95 ° C., the heat resistance is insufficient, and the molded product may be deformed depending on the use environment.
 本発明のスチレン系樹脂組成物の曇り度は、4mm厚みの成形品で、5%以下であることが好ましく、1%以下であることがより好ましい。 The haze of the styrenic resin composition of the present invention is a molded product having a thickness of 4 mm, preferably 5% or less, and more preferably 1% or less.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
<<試験1>>
(スチレン系樹脂A-1~A-3の製造)
 完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成し、表1に示す条件によりスチレン系樹脂の製造を実施した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。重合開始剤は、第1反応器の入口で表1に記載の添加濃度(原料スチレン及びメタクリル酸の合計量に対する質量基準の濃度)となるように原料溶液に添加し、均一混合した。表1に記載の重合開始剤は次の通り
重合開始剤-1: 2,2-ジ(4,4-t-ブチルパーオキシシクロヘキシル)プロパン(日油株式会社製パーテトラAを使用した。)
重合開始剤-2: 1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(日油株式会社製パーヘキサCを使用した。)
 なお、第3反応器では、流れの方向に沿って温度勾配をつけ、中間部分、出口部分で表1の温度となるよう調整した。
 続いて、第3反応器より連続的に取り出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、表1に記載の樹脂温度となるよう予熱器の温度を調整し、表1に記載の圧力に調整することで、未反応スチレン及びエチルベンゼンを分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化した。
<< Test 1 >>
(Production of styrene resins A-1 to A-3)
The polymerization reactor is configured by connecting a first reactor, which is a complete mixing tank, a second reactor, and a third reactor, which is a plug flow reactor with a static mixer. The styrene resin was manufactured by the above. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1. The polymerization initiator was added to the raw material solution at the inlet of the first reactor so that the addition concentration shown in Table 1 (concentration based on mass with respect to the total amount of raw styrene and methacrylic acid) was mixed. The polymerization initiators listed in Table 1 are as follows: Polymerization initiator-1: 2,2-di (4,4-t-butylperoxycyclohexyl) propane (Pertetra A manufactured by NOF Corporation was used).
Polymerization initiator-2: 1,1-di (t-butylperoxy) cyclohexane (Perhexa C manufactured by NOF Corporation was used.)
In the third reactor, a temperature gradient was provided along the flow direction, and the temperature in Table 1 was adjusted at the intermediate part and the outlet part.
Subsequently, the solution containing the polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and the preheater was adjusted to the resin temperature shown in Table 1. By adjusting the temperature and adjusting to the pressure shown in Table 1, unreacted styrene and ethylbenzene are separated and then extruded into a strand shape from a perforated die, and the strand is cooled and cut by a cold cut method. Pelletized.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例1-1~1-33、比較例1-1~1-9)
 表2に示す含有量にて、スチレン系樹脂A-1~A-3と添加剤をスクリュー径40mmの単軸押出機を用いて、シリンダー温度230℃、スクリュー回転数100rpmで溶融混錬してペレットを得た。表2で用いた添加剤を次に示す。
 B-1:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=25(花王株式会社製エマルゲン123P)
 B-2:ポリオキシエチレンエチレンステアリルエーテル エチレンオキサイド平均付加モル数=12(花王株式会社製エマルゲン320P)
 B-3:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=9(花王株式会社製エマルゲン109P)
 B-4:ポリオキシエチレンエチレンセチルエーテル エチレンオキサイド平均付加モル数=7(花王株式会社製エマルゲン210P)
 B-5:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=30(花王株式会社製エマルゲン130K)
 B-6:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=47(花王株式会社製エマルゲン150)
 B-7:ポリオキシエチレンエチレンミリスチルエーテル エチレンオキサイド平均付加モル数=85(花王株式会社製エマルゲン4085)
 B-8:ポリエチレングリコールモノラウレート エチレンオキサイド平均付加モル数=12(花王株式会社製エマノーン1112)
 B-9:ポリオキシエチレンエチレンステアリルエーテル エチレンオキサイド平均付加モル数=6(花王株式会社製エマルゲン306P)
 B-10:ポリオキシエチレン硬化ヒマシ油(花王株式会社製エマノーンCH-40)
 B-11:平均分子量が400のポリエチレングリコール(日油株式会社製PEG#400)
 B-12:平均分子量が300のポリエチレングリコール(日油株式会社製PEG#300)
 B-13:平均分子量が600のポリエチレングリコール(日油株式会社製PEG#600)
 B-14:平均分子量が1000のポリエチレングリコール(日油株式会社製PEG#1000)
 B-15:平均分子量が2000のポリエチレングリコール(日油株式会社製PEG#2000)
 B-16:平均分子量が3100のポリエチレングリコール(日油株式会社製PEG#4000)
 B-17:平均分子量が8800のポリエチレングリコール(日油株式会社製PEG#6000)
 B-18:ポリオキシエチレンモノメチルエーテル(日油株式会社製ユニオックスM-550)
 B-19:ポリオキシエチレントリイソステアリン酸(日油株式会社製ユニオックスGT-20IS)
 B-20:ポリオキシエチレンオクチルドデシルエーテル(花王株式会社製エマルゲン2025G)
 B-21:ポリオキシエチレングリセリルエーテル(日油株式会社製ユニオックスG-750)
 B-22:ポリオキシエチレンテトラオレイン酸(日油株式会社製ユニオックスST-30E)
 B-23:ステアリルアルコール(花王株式会社製カルコール8098)
 B-24:ステアリン酸モノグリセライド(花王株式会社製エキセルS-95)
 B-25:平均分子量が60000のポリエチレングリコール(明成化学工業株式会社製アルコックスL-6) 
 B-26:平均分子量が500のポリグリセリン(阪本薬品工業株式会社製ポリグリセリン#500) 
(Examples 1-1 to 1-33, Comparative Examples 1-1 to 1-9)
With the contents shown in Table 2, styrene resins A-1 to A-3 and additives were melt-kneaded using a single screw extruder with a screw diameter of 40 mm at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm. Pellets were obtained. The additives used in Table 2 are shown below.
B-1: Polyoxyethylene ethylene lauryl ether Ethylene oxide average added mole number = 25 (Emulgen 123P manufactured by Kao Corporation)
B-2: Polyoxyethylene ethylene stearyl ether Average addition mole number of ethylene oxide = 12 (Emulgen 320P manufactured by Kao Corporation)
B-3: Polyoxyethylene ethylene lauryl ether Ethylene oxide average added mole number = 9 (Emulgen 109P manufactured by Kao Corporation)
B-4: Polyoxyethylene ethylene cetyl ether Ethylene oxide average addition mole number = 7 (Emalgen 210P manufactured by Kao Corporation)
B-5: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 30 (Emulgen 130K manufactured by Kao Corporation)
B-6: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 47 (Emalgen 150 manufactured by Kao Corporation)
B-7: Polyoxyethylene ethylene myristyl ether Average addition mole number of ethylene oxide = 85 (Emulgen 4085 manufactured by Kao Corporation)
B-8: Polyethylene glycol monolaurate Ethylene oxide average addition mole number = 12 (Emanon 1112 manufactured by Kao Corporation)
B-9: Polyoxyethylene ethylene stearyl ether, average number of moles of ethylene oxide added = 6 (Emulgen 306P manufactured by Kao Corporation)
B-10: Polyoxyethylene hydrogenated castor oil (Emanon CH-40 manufactured by Kao Corporation)
B-11: Polyethylene glycol having an average molecular weight of 400 (PEG # 400 manufactured by NOF Corporation)
B-12: Polyethylene glycol having an average molecular weight of 300 (PEG # 300 manufactured by NOF Corporation)
B-13: Polyethylene glycol having an average molecular weight of 600 (PEG # 600 manufactured by NOF Corporation)
B-14: Polyethylene glycol having an average molecular weight of 1000 (PEG # 1000 manufactured by NOF Corporation)
B-15: Polyethylene glycol having an average molecular weight of 2000 (PEG # 2000 manufactured by NOF Corporation)
B-16: Polyethylene glycol having an average molecular weight of 3100 (PEG # 4000 manufactured by NOF Corporation)
B-17: Polyethylene glycol having an average molecular weight of 8800 (PEG # 6000 manufactured by NOF Corporation)
B-18: Polyoxyethylene monomethyl ether (Niox M-550, NOF Corporation)
B-19: Polyoxyethylene triisostearic acid (Niox GT-20IS manufactured by NOF Corporation)
B-20: Polyoxyethylene octyldodecyl ether (Emulgen 2025G manufactured by Kao Corporation)
B-21: Polyoxyethylene glyceryl ether (UNIOX G-750, NOF Corporation)
B-22: Polyoxyethylene tetraoleic acid (UNIOX ST-30E manufactured by NOF Corporation)
B-23: Stearyl alcohol (Calcoal 8098 manufactured by Kao Corporation)
B-24: Stearic acid monoglyceride (Excel S-95 manufactured by Kao Corporation)
B-25: Polyethylene glycol having an average molecular weight of 60000 (Alcox L-6 manufactured by Meisei Chemical Co., Ltd.)
B-26: Polyglycerin having an average molecular weight of 500 (Polyglycerin # 500 manufactured by Sakamoto Pharmaceutical Co., Ltd.)
 得られたペレットを用いて、シリンダー温度230℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。
 また、実施例1-33は、スチレン系樹脂A-1と添加剤B-1をスクリュー径40mmの単軸押出機を用いて、シリンダー温度230℃、スクリュー回転数100rpmで溶融混錬し、添加剤B-1の濃度20質量%のペレットを一度得た後、このペレットとスチレン系樹脂A-1を1:24の比率となるように混合し、射出成形して得られた成形品である。
Using the obtained pellets, injection molding was performed at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. to form a plate-shaped molded article having a thickness of 127 × 127 × 3 mm.
In Example 1-33, styrene resin A-1 and additive B-1 were melt kneaded using a single screw extruder with a screw diameter of 40 mm at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm, and then added. This is a molded product obtained by once obtaining pellets having a concentration of 20% by mass of agent B-1 and then mixing the pellets and styrene resin A-1 in a ratio of 1:24, followed by injection molding. .
<MFR>
 スチレン系樹脂組成物のMFR(メルトマスフローレイト)は、200℃、49N荷重の条件で、JIS K 7210に基づき測定した。
<MFR>
The MFR (melt mass flow rate) of the styrene-based resin composition was measured based on JIS K 7210 under the conditions of 200 ° C. and 49 N load.
<初期の色相評価>
 得られた板状成形品から115×85×3mm厚みの試験片を切り出し、端面をバフ研磨によって研磨し、端面に鏡面を有する板状成形品を得た。得られた板状成形品について、日本分光株式会社製の紫外線可視分光光度計V-670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における、視野2°でのYI値をJIS K7105に倣い算出した。得られた値が表2の「YI 115mm」である。また、表2に示す「透過率 115mm」とは、波長380nm~780nmの平均透過率を表す。
 さらに、表2の「ヘーズ 4mm」は、上記工程で得られたペレットを用いて、シリンダー温度220℃、金型温度40℃にて射出成形を行い、55×50×4mm厚みの板状成形品を成形して得られた試験片を使用し、NDH5000(日本電色工業株式会社製)を用い、JIS K-7105に準拠し測定を行って得られた値であり、表2の「YI 4mm」は、この試験片を使用して、測色色差計NDJ4000(日本電色工業株式会社製)を用い、反射法にて測定を行って得られた値である。
<Early hue evaluation>
A test piece having a thickness of 115 × 85 × 3 mm was cut out from the obtained plate-shaped product, and the end surface was polished by buffing to obtain a plate-shaped product having a mirror surface on the end surface. The obtained plate-like molded product was measured using an ultraviolet-visible spectrophotometer V-670 manufactured by JASCO Corporation, with an incident light having a size of 20 × 1.6 mm and a spread angle of 0 °, and a wavelength at an optical path length of 115 mm. Spectral transmittances from 350 nm to 800 nm were measured, and the YI value with a C light source at a visual field of 2 ° was calculated according to JIS K7105. The obtained value is “YI 115 mm” in Table 2. Further, “Transmittance 115 mm” shown in Table 2 represents an average transmittance at a wavelength of 380 nm to 780 nm.
Furthermore, “Haze 4 mm” in Table 2 is a plate-shaped molded article having a thickness of 55 × 50 × 4 mm by performing injection molding at a cylinder temperature of 220 ° C. and a mold temperature of 40 ° C. using the pellets obtained in the above process. Is a value obtained by performing measurement in accordance with JIS K-7105 using NDH5000 (manufactured by Nippon Denshoku Industries Co., Ltd.) using a test piece obtained by molding YY 4 mm in Table 2. "Is a value obtained by performing a measurement by a reflection method using a colorimetric color difference meter NDJ4000 (manufactured by Nippon Denshoku Industries Co., Ltd.) using this test piece.
<白化抑制効果>
 さらに、環境変化による白化現象を確認するため、端面に鏡面を有する板状成形品を60℃、90%相対湿度の環境に150時間暴露し、23℃、50%相対湿度の環境に試験片を取出し、成形品内部に発生する白化現象を観察し、白化抑制効果として下記の通り判定を行った。
 ◎:全く白化が発生しない
 ○:取出し1時間後にやや白化するが、24時間後には消失する
 △:取出し1時間後に白化するが、24時間後にはほとんど消失する
 ×:取出し1時間後に著しく白化し、24時間経っても消失しない
<Whitening suppression effect>
Furthermore, in order to confirm the whitening phenomenon due to environmental changes, a plate-like molded article having a mirror surface on the end face is exposed to an environment of 60 ° C. and 90% relative humidity for 150 hours, and the test piece is placed in an environment of 23 ° C. and 50% relative humidity. Taking out and observing the whitening phenomenon occurring inside the molded product, the following judgment was made as a whitening suppression effect.
◎: No whitening occurs. ○: Whitening occurs slightly after 1 hour after removal, but disappears after 24 hours. Δ: Whitening occurs after 1 hour after removal, but almost disappears after 24 hours. , Will not disappear after 24 hours
<ビカット軟化温度>
 ビカット軟化温度については、JIS K-7206により、昇温速度50℃/hr、試験荷重50Nで求めた
<Vicat softening temperature>
The Vicat softening temperature was determined according to JIS K-7206 at a heating rate of 50 ° C./hr and a test load of 50 N.
<総合評価>
 以下の基準に従って、総合評価を行った。
 S:白化抑制効果が◎であり且つビカット軟化温度が100℃以上
 A:Sの条件を充足せず、白化抑制効果が◎であり且つビカット軟化温度が98℃以上、又は白化抑制効果が○であり且つビカット軟化温度が100℃以上
 B:Aの条件を充足せず、白化抑制効果が◎であり且つビカット軟化温度が95℃以上、又は白化抑制効果が○であり且つビカット軟化温度が98℃以上、又は白化抑制効果が△であり且つビカット軟化温度が100℃以上
 C:上記何れの条件も充足しないもの
<Comprehensive evaluation>
Comprehensive evaluation was performed according to the following criteria.
S: The whitening suppression effect is ◎ and the Vicat softening temperature is 100 ° C or higher. A: The condition of S is not satisfied, the whitening suppression effect is ◎ and the Vicat softening temperature is 98 ° C or higher, or the whitening suppression effect is ○. Yes and the Vicat softening temperature is 100 ° C. or higher B: The condition of A is not satisfied, the whitening suppression effect is ◎ and the Vicat softening temperature is 95 ° C. or higher, or the whitening suppression effect is ○ and the Vicat softening temperature is 98 ° C. Above, or whitening suppression effect is Δ and Vicat softening temperature is 100 ° C. or higher C: None of the above conditions is satisfied
 表2に各樹脂組成物の特性及び評価結果を示す。 Table 2 shows the characteristics and evaluation results of each resin composition.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例の成形品は、白化抑制効果に優れ、透過率とYI値の悪化もなく透明性と色相にも優れていた。親水性添加剤を添加していないか又は添加量が少なすぎる比較例1-1、1-2、1-4では白化現状の抑制が不十分であった。親水性添加剤が過剰に添加された比較例1-3及び1-5では、耐熱性が過度に低下してしまった。また、比較例1-6及び1-7では、それぞれ、親水性添加剤であるステアリルアルコール、ステアリン酸モノグリセライドを添加して試験を行ったが、白化抑制効果が不十分であった。さらに、比較例1-8及び1-9では、分子量が大きいポリエチレングリコール、ポリグリセリンを添加して試験を行ったが、親水性添加剤がスチレン系樹脂と相溶せず、成形品が白濁した。
 以上の結果から、(1)親水性添加剤が特性の構成を有するものであり、(2)そのHLB値が特定の範囲内の値であり、且つ(3)その含有量が特定の範囲の量であるという3条件を充足することが、スチレン系樹脂組成物の耐熱性、透明性を維持しつつ白化現象を抑制するには必須であることが分かった。実施例1-20~1-21を参照すると、スチレン系樹脂が、スチレン系単量体と、(メタ)アクリル酸又は(メタ)アクリル酸エステルとの共重合体である場合にも同様の結果が得られることが分かった。
The molded articles of the examples were excellent in the whitening suppressing effect, were excellent in transparency and hue without deterioration in transmittance and YI value. In Comparative Examples 1-1, 1-2, and 1-4 where the hydrophilic additive was not added or the addition amount was too small, the suppression of the current whitening state was insufficient. In Comparative Examples 1-3 and 1-5 in which the hydrophilic additive was excessively added, the heat resistance was excessively lowered. In Comparative Examples 1-6 and 1-7, the tests were performed with the addition of stearyl alcohol and stearic acid monoglyceride, which are hydrophilic additives, respectively, but the effect of inhibiting whitening was insufficient. Further, in Comparative Examples 1-8 and 1-9, the tests were performed by adding polyethylene glycol and polyglycerin having a large molecular weight, but the hydrophilic additive was not compatible with the styrene resin, and the molded product became cloudy. .
From the above results, (1) the hydrophilic additive has a characteristic configuration, (2) its HLB value is within a specific range, and (3) its content is within a specific range. It has been found that satisfying the three conditions of the amount is essential for suppressing the whitening phenomenon while maintaining the heat resistance and transparency of the styrene resin composition. Referring to Examples 1-20 to 1-21, similar results were obtained when the styrenic resin was a copolymer of a styrenic monomer and (meth) acrylic acid or (meth) acrylic acid ester. Was found to be obtained.
<<試験2>>
 (実施例2-1~2-46)
 完全混合型撹拌槽である第1反応器と第2反応器及び静的混合器付プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成し、表1に示す条件によりスチレン系樹脂の製造を実施した。各反応器の容量は、第1反応器を39リットル、第2反応器を39リットル、第3反応器を16リットルとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。
<< Test 2 >>
(Examples 2-1 to 2-46)
The polymerization reactor is configured by connecting a first reactor, which is a complete mixing tank, a second reactor, and a third reactor, which is a plug flow reactor with a static mixer. The styrene resin was manufactured by the above. The capacity of each reactor was 39 liters for the first reactor, 39 liters for the second reactor, and 16 liters for the third reactor. A raw material solution was prepared with the raw material composition described in Table 1, and the raw material solution was continuously supplied to the first reactor at a flow rate described in Table 1.
 また、第3反応器の入口に、ポリエーテル鎖を有する親水性添加剤を表3に示す種類と含有量になるよう添加した。使用した添加剤及びポリエチレングリコールの種類は次の通り。
 B-1:平均分子量が400のポリエチレングリコール(日油株式会社製PEG#400)
 B-2:平均分子量が1000のポリエチレングリコール(日油株式会社製PEG#1000)
 B-3:平均分子量が2000のポリエチレングリコール(日油株式会社製PEG#2000)
 B-4:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=25(花王株式会社製エマルゲン123P)
 B-5:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=12(花王株式会社製エマルゲン320P)
 B-6:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=9(花王株式会社製エマルゲン109P)
 B-7:ポリオキシエチレンエチレンラウリルエーテル エチレンオキサイド平均付加モル数=30(花王株式会社製エマルゲン130K)
 B-8:ポリエチレングリコールモノラウレート エチレンオキサイド平均付加モル数=12(花王株式会社製エマノーン1112)
Moreover, the hydrophilic additive which has a polyether chain | strand was added to the inlet_port | entrance of a 3rd reactor so that it might become a kind and content shown in Table 3. The types of additives and polyethylene glycol used are as follows.
B-1: Polyethylene glycol having an average molecular weight of 400 (PEG # 400 manufactured by NOF Corporation)
B-2: Polyethylene glycol having an average molecular weight of 1000 (PEG # 1000 manufactured by NOF Corporation)
B-3: Polyethylene glycol having an average molecular weight of 2000 (PEG # 2000 manufactured by NOF Corporation)
B-4: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 25 (Emulgen 123P manufactured by Kao Corporation)
B-5: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 12 (Emulgen 320P manufactured by Kao Corporation)
B-6: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 9 (Emulgen 109P manufactured by Kao Corporation)
B-7: Polyoxyethylene ethylene lauryl ether Average addition mole number of ethylene oxide = 30 (Emulgen 130K manufactured by Kao Corporation)
B-8: Polyethylene glycol monolaurate Ethylene oxide average addition mole number = 12 (Emanon 1112 manufactured by Kao Corporation)
 続いて、第3反応器より連続的に取出した重合体を含む溶液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、未反応スチレン及びエチルベンゼンを分離した後、ストランド状に押し出しして冷却した後、切断してペレットとした。なお、1段目の脱揮槽内の樹脂温度は160℃に設定し、真空脱揮槽の圧力は65kPaとし、2段目の脱揮層内の樹脂温度は235℃に設定し、真空脱揮槽の圧力は0.8kPaとした。 Subsequently, a solution containing a polymer continuously taken out from the third reactor was introduced into a vacuum devolatilization tank with a preheater constituted by two stages in series, and after separating unreacted styrene and ethylbenzene, strands were formed. After being extruded and cooled, it was cut into pellets. The resin temperature in the first stage devolatilization tank is set to 160 ° C., the pressure in the vacuum devolatilization tank is set to 65 kPa, the resin temperature in the second stage devolatilization layer is set to 235 ° C. The pressure in the volatilization tank was 0.8 kPa.
 次に、表3に示す含有量となるよう、上記で得られたスチレン系樹脂のペレットと追加添加剤として化合物X、添加剤Dおよび添加剤Eをスクリュー径40mmの単軸押出機を用いて、シリンダー温度230℃、スクリュー回転数100rpmで溶融混錬してペレットを得た。表3で用いた化合物X、DおよびEを次に示す。なお、化合物Xは、6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン、添加剤Dは、リン系酸化防止剤、添加剤Eは、ヒンダードフェノール系酸化防止剤を表す。
化合物X:6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン(住友化学株式会社製 スミライザーGP)
D-1:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト(BASFジャパン株式会社製 Irgafos 168)
D-2:2,2'-メチレンビス(4,6-ジ-tert-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス(株式会社ADEKA製 アデカスタブHP-10)
D-3:ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト(Dover Chemical Corporation製 Doverphos S-9228)
D-4:3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン(株式会社ADEKA製 アデカスタブ PEP-36)
E-1:オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASFジャパン株式会社製 Irganox 1076)
E-2:3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(株式会社ADEKA製 アデカスタブAO-80)
E-3:エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕(BASFジャパン株式会社製 Irganox 245)
Next, using the single-screw extruder with a screw diameter of 40 mm, compound X, additive D, and additive E as pellets of the styrenic resin obtained as described above and additive E are added so as to have the contents shown in Table 3. The mixture was melt kneaded at a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm to obtain pellets. The compounds X, D and E used in Table 3 are shown below. Compound X is 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [ 1,3,2] dioxaphosphepine, additive D represents a phosphorus-based antioxidant, and additive E represents a hindered phenol-based antioxidant.
Compound X: 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3 , 2] Dioxaphosphepine (Sumitomo Chemical Co., Ltd. Sumilizer GP)
D-1: Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168 manufactured by BASF Japan Ltd.)
D-2: 2,2′-methylenebis (4,6-di-tert-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus (ADEKA STAB HP-10 manufactured by ADEKA Corporation)
D-3: Bis (2,4-dicumylphenyl) pentaerythritol diphosphite (Doverphos S-9228 manufactured by Dober Chemical Corporation)
D-4: 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane ADEKA ADK STAB PEP-36)
E-1: Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Irganox 1076 manufactured by BASF Japan Ltd.)
E-2: 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10 -Tetraoxaspiro [5.5] undecane (Adeka Corporation Adeka Stub AO-80)
E-3: Ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (Irganox 245 manufactured by BASF Japan Ltd.)
 また、メルトマスフローレート(MFR)は、JIS K 7210に準拠し、200℃、49N荷重の条件で、ビカット軟化温度は、JIS K 7206に準拠し、昇温速度50℃/hr、試験荷重50Nで測定した。 The melt mass flow rate (MFR) is in accordance with JIS K 7210, under conditions of 200 ° C. and 49 N load, and the Vicat softening temperature is in accordance with JIS K 7206, at a heating rate of 50 ° C./hr and a test load of 50 N. It was measured.
 また、得られたペレットを用いて、シリンダー温度230℃、金型温度50℃にて射出成形を行い、127×127×3mm厚みの板状成形品を成形した。長期の熱安定性を評価するため、得られた成形品を80℃のオーブン内で1000時間保管した。保管前の初期の成形品と保管後の成形品について光学特性を評価するため、板状成形品から115×85×3mm厚みの試験片を切り出し、端面をバフ研磨によって研磨し、端面に鏡面を有する板状成形品を作成した。研磨後の板状成形品について、日本分光株式会社製の紫外線可視分光光度計V-670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における、視野2°でのYI値をJIS K7105に倣い算出した。表3に示す透過率とは、波長380nm~780nmの平均透過率を表す。 Further, by using the obtained pellets, injection molding was performed at a cylinder temperature of 230 ° C. and a mold temperature of 50 ° C. to form a plate-shaped molded article having a thickness of 127 × 127 × 3 mm. In order to evaluate long-term thermal stability, the obtained molded product was stored in an oven at 80 ° C. for 1000 hours. In order to evaluate the optical properties of the initial molded product before storage and the molded product after storage, a 115 × 85 × 3 mm thickness test piece was cut out from the plate-shaped molded product, the end surface was polished by buffing, and a mirror surface was formed on the end surface. A plate-shaped molded article having the same was prepared. The polished plate-like molded product was measured using an ultraviolet-visible spectrophotometer V-670 manufactured by JASCO Corporation, with an incident light having a size of 20 × 1.6 mm and a spread angle of 0 °, and a wavelength at an optical path length of 115 mm. Spectral transmittances from 350 nm to 800 nm were measured, and the YI value at 2 ° for the C light source was calculated according to JIS K7105. The transmittance shown in Table 3 represents the average transmittance at a wavelength of 380 nm to 780 nm.
 次に、以下の式に基いてΔYI差を算出した。
 ΔYI差=(追加添加剤ありの実施例での初期とのYI差)-(追加添加剤なしの実施例での初期とのYI差)
 一例では、追加添加剤ありの実施例2-2では、初期とのYI差の値が1.1であり、追加添加剤なしの実施例2-1での初期とのYI差が5.1であるので、実施例2-2のΔYI差は-4.0となる。この値は、追加添加剤(化合物X、リン系D、ヒンダードフェノール系E)による長期の熱安定性向上効果を表しており、値が小さいほど、長期の熱安定性向上効果が大きいことを意味している。
Next, the ΔYI difference was calculated based on the following formula.
ΔYI difference = (YI difference from initial in Example with additional additive) − (YI difference from initial in Example without additional additive)
In one example, in Example 2-2 with an additional additive, the value of the YI difference from the initial value was 1.1, and the YI difference from the initial value in Example 2-1 without an additional additive was 5.1. Therefore, the ΔYI difference in Example 2-2 is −4.0. This value represents the long-term thermal stability improvement effect of the additive (compound X, phosphorus-based D, hindered phenol-based E), and the smaller the value, the greater the long-term thermal stability improvement effect. I mean.
 さらに、環境変化による白化現象を確認するため、端面に鏡面を有する板状成形品を60℃、90%相対湿度の環境に150時間暴露し、23℃、50%相対湿度の環境に試験片を取出し、成形品内部に発生する白化現象を観察し、白化抑制効果として下記の通り判定を行った。
 ◎:全く白化が発生しない
 ○:取出し1時間後にやや白化するが、24時間後には消失する
 △:取出し1時間後に白化するが、24時間後にはほとんど消失する
 ×:取出し1時間後に著しく白化し、24時間経っても消失しない
Furthermore, in order to confirm the whitening phenomenon due to environmental changes, a plate-like molded article having a mirror surface on the end face is exposed to an environment of 60 ° C. and 90% relative humidity for 150 hours, and the test piece is placed in an environment of 23 ° C. and 50% relative humidity. Taking out and observing the whitening phenomenon occurring inside the molded product, the following judgment was made as a whitening suppression effect.
◎: No whitening occurs. ○: Whitening occurs slightly after 1 hour after removal, but disappears after 24 hours. Δ: Whitening occurs after 1 hour after removal, but almost disappears after 24 hours. , Will not disappear after 24 hours
<総合評価>
 以下の基準に従って、白化抑制効果、ΔYI差、ビカット軟化温度の評価結果を数値化した。
白化抑制効果のスコア◎→3、○→2、△→1、×→0)
ΔYI差のスコア(-4.0以下→4、-3.5以下→3、-2.5以下→2、-1.5以下→1、それ以外→0)
ビカット軟化温度のスコア(99℃以上→3、97℃以上→2、95℃以上→1、それ以外→0)
<Comprehensive evaluation>
According to the following criteria, the evaluation results of the whitening suppression effect, the ΔYI difference, and the Vicat softening temperature were quantified.
Whitening suppression effect score ◎ → 3, ○ → 2, △ → 1, × → 0)
ΔYI difference score (-4.0 or lower → 4, −3.5 or lower → 3, −2.5 or lower → 2, −1.5 or lower → 1, otherwise → 0)
Vicat softening temperature score (99 ° C or higher → 3, 97 ° C or higher → 2, 95 ° C or higher → 1, otherwise → 0)
 上記基準に従って得られたスコアの合計について、以下の基準に従って総合評価を行った。
S:10、A:9、B:8、C:7、D:6以下
The total score obtained according to the above criteria was comprehensively evaluated according to the following criteria.
S: 10, A: 9, B: 8, C: 7, D: 6 or less
 表3に各樹脂組成物の特性及び評価結果を示す。実施例2-1~2-42では、条件1に従って作製したスチレン系樹脂A-1を使用し、実施例2-43~2-44では条件2に従って作製したスチレン系樹脂A-2を使用し、実施例2-45~2-46では条件3に従って作製したスチレン系樹脂A-3を使用した。
Figure JPOXMLDOC01-appb-T000006
Table 3 shows the characteristics and evaluation results of each resin composition. In Examples 2-1 to 2-42, styrene resin A-1 prepared according to Condition 1 was used, and in Examples 2-43 to 2-44, styrene resin A-2 prepared according to Condition 2 was used. In Examples 2-45 to 2-46, styrene resin A-3 produced according to Condition 3 was used.
Figure JPOXMLDOC01-appb-T000006
 表3を参照すると、全ての実施例の白化抑制効果が優れていることが分かる。また、実施例2-1~2-35と、実施例2-36~2-42を比較すると、化合物Xの含有量が0.02~0.40質量%の場合に、長期の熱安定性が特に優れることが分かる。また、実施例2-43~2-46を参照すると、スチレン系樹脂が、スチレン系単量体と、(メタ)アクリル酸又は(メタ)アクリル酸エステルとの共重合体である場合にも同様の結果が得られることが分かった。 Referring to Table 3, it can be seen that the whitening suppression effect of all the examples is excellent. Further, when Examples 2-1 to 2-35 and Examples 2-36 to 2-42 are compared, long-term thermal stability is obtained when the content of Compound X is 0.02 to 0.40 mass%. Can be seen to be particularly excellent. Further, referring to Examples 2-43 to 2-46, the same applies when the styrene resin is a copolymer of a styrene monomer and (meth) acrylic acid or (meth) acrylic acid ester. It turned out that the result of is obtained.
<<試験3>>
(実施例3-1~3-36)
 試験3では、化合物Xを添加しなかったこと以外は、試験2と同様の方法で評価を行った。実施例3-1~3-32では、条件1に従って作製したスチレン系樹脂A-1を使用し、実施例3-33~3-34では条件2に従って作製したスチレン系樹脂A-2を使用し、実施例3-35~3-36では条件3に従って作製したスチレン系樹脂A-3を使用した。
 その結果を表4に示す。
<< Test 3 >>
(Examples 3-1 to 3-36)
In Test 3, the evaluation was performed in the same manner as in Test 2, except that Compound X was not added. In Examples 3-1 to 3-32, styrene resin A-1 prepared according to Condition 1 was used, and in Examples 3-33 to 3-34, styrene resin A-2 prepared according to Condition 2 was used. In Examples 3-35 to 3-36, styrene resin A-3 prepared according to Condition 3 was used.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4を参照すると、全ての実施例の白化抑制効果が優れていることが分かる。また、実施例3-1~3-24と、実施例3-25~3-32を比較すると、リン系Dの含有量が0.05~0.40質量%であり、且つフェノール系Eの含有量が0.02~0.30質量%である場合に、長期の熱安定性が特に優れることが分かる。また、実施例3-33~3-36を参照すると、スチレン系樹脂が、スチレン系単量体と、(メタ)アクリル酸又は(メタ)アクリル酸エステルとの共重合体である場合にも同様の結果が得られることが分かった。 Referring to Table 4, it can be seen that the whitening suppression effect of all the examples is excellent. Further, when Examples 3-1 to 3-24 and Examples 3-25 to 3-32 are compared, the content of phosphorus D is 0.05 to 0.40% by mass, and phenol E It can be seen that long-term thermal stability is particularly excellent when the content is 0.02 to 0.30 mass%. Further, referring to Examples 3-33 to 3-36, the same applies when the styrene resin is a copolymer of a styrene monomer and (meth) acrylic acid or (meth) acrylic acid ester. It turned out that the result of is obtained.
 本発明のスチレン系樹脂組成物は、環境変化による白化現象が防止され、透明性と色相に優れることから、従来では環境変化によって白化現象が発生していた用途でも、スチレン系樹脂の長所である透明性を維持することができ、好適に用いることができる。
 更に、長期の熱安定性に優れるスチレン系樹脂組成物については、色相変化が小さいため、従来より長期間透明性と色相を保ったまま使用できる。
 例えば、テレビ、デスクトップ型パーソナルコンピューター、ノート型パーソナルコンピューター、携帯電話機、カーナビゲーションなどの導光板用途等が挙げられる。
The styrenic resin composition of the present invention prevents the whitening phenomenon due to environmental changes and is excellent in transparency and hue, so that it is an advantage of the styrenic resin even in applications where the whitening phenomenon has conventionally occurred due to environmental changes. It can maintain transparency and can be used suitably.
Furthermore, since the styrenic resin composition having excellent long-term thermal stability has a small hue change, it can be used while maintaining transparency and hue for a long period of time.
For example, light guide plate applications such as a television, a desktop personal computer, a notebook personal computer, a mobile phone, and a car navigation can be used.

Claims (15)

  1. 重量平均分子量が15万~70万のスチレン系樹脂と親水性添加剤を含有するスチレン系樹脂組成物であって、前記親水性添加剤は、エチレンオキサイドの平均付加モル数が3~150であるポリオキシエチレン型界面活性剤と、平均分子量200~10000のポリエチレングリコールから選ばれる少なくとも1種であり、HLB値が5~20であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.4~2.0質量%であることを特徴とする光学用スチレン系樹脂組成物。 A styrene resin composition comprising a styrene resin having a weight average molecular weight of 150,000 to 700,000 and a hydrophilic additive, wherein the hydrophilic additive has an average added mole number of ethylene oxide of 3 to 150. It is at least one selected from polyoxyethylene surfactants and polyethylene glycol having an average molecular weight of 200 to 10,000, has an HLB value of 5 to 20, and has a content in 100% by mass of the styrenic resin composition. An optical styrenic resin composition characterized by being 0.4 to 2.0% by mass.
  2. 前記親水性添加剤は、エチレンオキサイドの平均付加モル数が10~60であるポリオキシエチレン型界面活性剤であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~1.4質量%である、請求項1に記載の光学用スチレン系樹脂組成物。 The hydrophilic additive is a polyoxyethylene-type surfactant having an average addition mole number of ethylene oxide of 10 to 60, and a content in 100% by mass of the styrene resin composition is 0.6 to 1 The styrenic resin composition for optical use according to claim 1, wherein the content is 4% by mass.
  3. 前記親水性添加剤は、エチレンオキサイドの平均付加モル数が13~35であるポリオキシエチレン型界面活性剤であり、且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~0.9質量%である、請求項1又は請求項2に記載の光学用スチレン系樹脂組成物。 The hydrophilic additive is a polyoxyethylene-type surfactant having an average addition mole number of ethylene oxide of 13 to 35, and a content in 100% by mass of the styrene resin composition is 0.6 to 0. The optical styrenic resin composition according to claim 1 or 2, which is .9% by mass.
  4. 前記親水性添加剤は、HLB値が10~18である、請求項3に記載の光学用スチレン系樹脂組成物。 The optical styrene resin composition according to claim 3, wherein the hydrophilic additive has an HLB value of 10 to 18.
  5. 前記ポリオキシエチレン型界面活性剤がポリオキシエチレン型非イオン性界面活性剤であることを特徴とする、請求項1~請求項4のいずれか1つに記載の光学用スチレン系樹脂組成物。 The optical styrenic resin composition according to any one of claims 1 to 4, wherein the polyoxyethylene-type surfactant is a polyoxyethylene-type nonionic surfactant.
  6. ポリオキシエチレン型非イオン性界面活性剤が下記一般式(1)で示されるポリオキシエチレンアルキルエーテル及び/又は下記一般式(2)で示されるポリオキシエチレン脂肪酸エステルの郡から選ばれる1種類以上であることを特徴とする請求項1~請求項5のいずれか1つに記載の光学用スチレン系樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは炭素数8~20のアルキル基を示す。また、ポリオキシエチレンアルキルエーテル骨格を複数個有する6価までの多価ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル骨格を複数個有する6価までの多価ポリオキシエチレン脂肪酸エステルであっても良い。nは整数でエチレンオキサイド単位の付加モル数を表す。)
    The polyoxyethylene-type nonionic surfactant is one or more selected from the group of polyoxyethylene alkyl ether represented by the following general formula (1) and / or polyoxyethylene fatty acid ester represented by the following general formula (2) The optical styrenic resin composition according to any one of claims 1 to 5, wherein:
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, R represents an alkyl group having 8 to 20 carbon atoms. In addition, a polyvalent polyoxyethylene alkyl ether up to hexavalent having a plurality of polyoxyethylene alkyl ether skeletons, and a plurality of polyoxyethylene fatty acid ester skeletons. (It may be a polyvalent polyoxyethylene fatty acid ester having up to 6 valences, where n is an integer and represents the number of added moles of ethylene oxide units.)
  7. 前記親水性添加剤は、平均分子量200~10000のポリエチレングリコールであり、且つ且つ前記スチレン系樹脂組成物100質量%中の含有量が0.6~1.4質量%である、請求項1に記載の光学用スチレン系樹脂組成物。 The hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 10,000, and the content in 100% by mass of the styrene resin composition is 0.6 to 1.4% by mass. The styrenic resin composition for optics as described.
  8. 前記親水性添加剤は、平均分子量200~1800のポリエチレングリコールである、請求項7に記載の光学用スチレン系樹脂組成物。 The optical styrenic resin composition according to claim 7, wherein the hydrophilic additive is polyethylene glycol having an average molecular weight of 200 to 1,800.
  9. 前記親水性添加剤は、前記スチレン系樹脂組成物100質量%中の含有量が0.6~0.9質量%である、請求項8に記載の光学用スチレン系樹脂組成物。 The optical styrene resin composition according to claim 8, wherein a content of the hydrophilic additive in 100% by mass of the styrene resin composition is 0.6 to 0.9% by mass.
  10. 前記スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸とを共重合して得られるスチレン-(メタ)アクリル酸共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が90.0~99.9質量%、(メタ)アクリル酸単位の含有量が0.1~10.0質量%であることを特徴とする請求項1~請求項9の何れか1つに記載の光学用スチレン系樹脂組成物。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸単位の含有量の合計を100質量%とする。 The styrene resin is a styrene- (meth) acrylic acid copolymer resin obtained by copolymerizing a styrene monomer and (meth) acrylic acid, and is a styrene monomer unit of the styrene resin. 10. The content of any one of claims 1 to 9, wherein the content is 90.0 to 99.9% by mass, and the content of the (meth) acrylic acid unit is 0.1 to 10.0% by mass. A styrenic resin composition for optics as described in 1. However, the total content of styrene monomer units and (meth) acrylic acid units in the styrene resin is 100% by mass.
  11. 前記スチレン系樹脂が、スチレン系単量体と(メタ)アクリル酸エステルとを共重合して得られるスチレン-(メタ)アクリル酸エステル共重合樹脂であって、スチレン系樹脂のスチレン系単量体単位の含有量が40.0~99.0質量%、(メタ)アクリル酸エステル単位の含有量が1.0~60.0質量%であることを特徴とする請求項1~請求項9の何れか1つに記載の光学用スチレン系樹脂組成物。ただし、スチレン系樹脂のスチレン系単量体単位と(メタ)アクリル酸エステル単位の含有量の合計を100質量%とする。 The styrenic resin is a styrene- (meth) acrylic acid ester copolymer resin obtained by copolymerizing a styrenic monomer and a (meth) acrylic acid ester, wherein the styrenic monomer is a styrenic resin. 10. The content of the unit is 40.0 to 99.0% by mass, and the content of the (meth) acrylic acid ester unit is 1.0 to 60.0% by mass. The optical styrenic resin composition according to any one of the above. However, the total content of styrene monomer units and (meth) acrylic acid ester units in the styrene resin is 100% by mass.
  12. 6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピンを含むことを特徴とする請求項1~請求項11の何れか1つに記載の光学用スチレン系樹脂組成物。 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] The optical styrenic resin composition according to any one of claims 1 to 11, which contains dioxaphosphepine.
  13. リン系酸化防止剤及び/又はヒンダードフェノール系酸化防止剤を含むことを特徴とする請求項1~請求項12の何れか1つに記載の光学用スチレン系樹脂組成物。 The optical styrene resin composition according to any one of claims 1 to 12, comprising a phosphorus antioxidant and / or a hindered phenol antioxidant.
  14. 請求項1~請求項13のいずれか1つに記載の光学用スチレン系樹脂組成物からなる成形品。 A molded article comprising the optical styrenic resin composition according to any one of claims 1 to 13.
  15. 請求項14に記載の成形品からなる導光板。 A light guide plate comprising the molded product according to claim 14.
PCT/JP2012/082940 2011-12-20 2012-12-19 Styrene-based optical resin composition WO2013094641A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197019425A KR102087770B1 (en) 2011-12-20 2012-12-19 Styrene-based optical resin composition
CN201280061401.7A CN103998514B (en) 2011-12-20 2012-12-19 Styrene-based optical resin composition
JP2013550305A JP6035249B2 (en) 2011-12-20 2012-12-19 Styrenic resin composition for optics
KR1020147019808A KR101998748B1 (en) 2011-12-20 2012-12-19 Styrene-based optical resin composition
KR1020197019413A KR102087769B1 (en) 2011-12-20 2012-12-19 Styrene-based optical resin composition

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2011-279019 2011-12-20
JP2011279019 2011-12-20
JP2011-279020 2011-12-20
JP2011-279021 2011-12-20
JP2011279020 2011-12-20
JP2011279021 2011-12-20
JP2011279014 2011-12-20
JP2011-279014 2011-12-20
JP2012-033401 2012-02-17
JP2012033401 2012-02-17
JP2012-157750 2012-07-13
JP2012157750 2012-07-13
JP2012157742 2012-07-13
JP2012-157742 2012-07-13

Publications (1)

Publication Number Publication Date
WO2013094641A1 true WO2013094641A1 (en) 2013-06-27

Family

ID=48668525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082940 WO2013094641A1 (en) 2011-12-20 2012-12-19 Styrene-based optical resin composition

Country Status (5)

Country Link
JP (4) JP6035249B2 (en)
KR (3) KR102087769B1 (en)
CN (3) CN103998514B (en)
TW (3) TWI605086B (en)
WO (1) WO2013094641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067650A (en) * 2013-09-27 2015-04-13 東洋スチレン株式会社 Styrene resin composition for optical use
JP2015149155A (en) * 2014-02-05 2015-08-20 Psジャパン株式会社 light guide plate
WO2016056319A1 (en) * 2014-10-09 2016-04-14 コニカミノルタ株式会社 Infrared radiation shielding layer and infrared radiation shielding film
WO2018047443A1 (en) * 2016-09-09 2018-03-15 花王株式会社 Crystals of dicarboxylic acid and production process therefor
JP2018053265A (en) * 2018-01-10 2018-04-05 東洋スチレン株式会社 Optical styrene resin composition
JP2018145309A (en) * 2017-03-06 2018-09-20 東洋スチレン株式会社 Styrene-based resin composition for optical use, molded article and light guide body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998514B (en) * 2011-12-20 2017-04-26 东洋苯乙烯股份有限公司 Styrene-based optical resin composition
JP7247200B2 (en) * 2018-08-09 2023-03-28 株式会社カネカ Expandable resin particles, method for producing the same, and expanded molded article
CN113661207A (en) * 2019-04-23 2021-11-16 电化株式会社 Styrene resin composition, molded article, and light guide plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268160A (en) * 2002-03-14 2003-09-25 Asahi Kasei Corp Latex composition and composition for paper coating
JP2005015744A (en) * 2003-06-25 2005-01-20 Toho Chem Ind Co Ltd Antistatic resin composition
WO2007034789A1 (en) * 2005-09-20 2007-03-29 Toyo Styrene Co., Ltd. Composition containing aromatic vinyl compound/(meth)acrylic acid copolymer resin and process for producing the same
JP2008156585A (en) * 2006-03-30 2008-07-10 Sekisui Plastics Co Ltd Expandable styrenic resin particle and method for producing the same, styrenic resin expanded particle and styrenic resin expanded and molded product
JP2010180395A (en) * 2009-01-09 2010-08-19 Sumitomo Chemical Co Ltd Polymer stabilizer, and polymer composition containing the polymer stabilizer
JP2011122131A (en) * 2009-11-12 2011-06-23 Sumitomo Chemical Co Ltd Thermoplastic resin composition, processing stabilizer for thermoplastic resin, and method for stabilizing thermoplastic resin

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418851A (en) * 1977-07-13 1979-02-13 Kao Corp Thermoplastic resin composition
JPS6051502B2 (en) * 1978-08-30 1985-11-14 旭化成株式会社 Styrenic resin composition with good mold release properties
JPS5670044A (en) * 1979-11-12 1981-06-11 Idemitsu Petrochem Co Ltd Polystyrene resin composition for extrusion molding
JP2681643B2 (en) * 1988-01-14 1997-11-26 出光興産株式会社 Polystyrene resin composition
JP2812972B2 (en) * 1989-02-02 1998-10-22 出光興産株式会社 Styrene resin composition and method for producing molded article
JP3076419B2 (en) * 1991-09-24 2000-08-14 旭電化工業株式会社 Flame retardant rubber reinforced styrenic resin composition
JPH069839A (en) * 1992-06-26 1994-01-18 Kuraray Co Ltd Transparent resin composition having antistatic performance
JP3582104B2 (en) * 1994-08-24 2004-10-27 住友化学工業株式会社 Styrene resin composition for carbon dioxide laser processing and its processing method
JPH08194101A (en) * 1995-01-13 1996-07-30 Olympus Optical Co Ltd Highly chemical-resistant anticlouding optical element
JP3526503B2 (en) * 1995-07-07 2004-05-17 出光石油化学株式会社 Styrene resin materials for extrusion molding and pellets, films or sheets made thereof
JPH0948895A (en) * 1995-08-04 1997-02-18 Olympus Optical Co Ltd Anti-fogging optical element having high chemical resistance
JP2001114962A (en) * 1999-10-15 2001-04-24 Sumitomo Chem Co Ltd High-molecular-weight aromatic monovinyl resin composition, its preparation method, and method for preventing thermal decomposition of high-molecular- weight aromatic monovinyl resin
JP2003075648A (en) 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk Light guide plate
KR100771019B1 (en) 2002-03-20 2007-10-29 주식회사 만도 Hydraulic pressure control device for brake
JP2005047969A (en) * 2003-07-30 2005-02-24 Tosoh Corp Transparent resin composition
JP2006089544A (en) * 2004-09-22 2006-04-06 Mitsubishi Chemicals Corp Antistatic thermoplastic resin composition and sheet made therefrom
JPWO2006070624A1 (en) * 2004-12-27 2008-06-12 株式会社カネカ Styrenic elastomer composition in which styrene formation is suppressed
JP2008063569A (en) * 2006-08-08 2008-03-21 Mitsubishi Engineering Plastics Corp Conductive resin composition and molded article obtained by molding the same
JP5248094B2 (en) * 2007-01-10 2013-07-31 旭化成イーマテリアルズ株式会社 Resin composition for optical materials
JP4905971B2 (en) * 2007-03-13 2012-03-28 電気化学工業株式会社 Anti-fogging styrene resin sheet and its molded product
JP2010159396A (en) * 2008-12-12 2010-07-22 Sumitomo Chemical Co Ltd Polyolefin composition for rotation molded body
JP5597550B2 (en) * 2008-12-17 2014-10-01 電気化学工業株式会社 Optical molded body, light guide plate and light diffuser using the same
JP5415788B2 (en) * 2009-03-09 2014-02-12 東洋スチレン株式会社 Light guide plate
EP2518108A4 (en) * 2009-12-21 2013-05-29 Sumitomo Chemical Co Resin composition
CN103998514B (en) * 2011-12-20 2017-04-26 东洋苯乙烯股份有限公司 Styrene-based optical resin composition
JP5879240B2 (en) * 2011-12-28 2016-03-08 積水化成品工業株式会社 Polystyrene resin film, laminated foam sheet, and foamed resin container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268160A (en) * 2002-03-14 2003-09-25 Asahi Kasei Corp Latex composition and composition for paper coating
JP2005015744A (en) * 2003-06-25 2005-01-20 Toho Chem Ind Co Ltd Antistatic resin composition
WO2007034789A1 (en) * 2005-09-20 2007-03-29 Toyo Styrene Co., Ltd. Composition containing aromatic vinyl compound/(meth)acrylic acid copolymer resin and process for producing the same
JP2008156585A (en) * 2006-03-30 2008-07-10 Sekisui Plastics Co Ltd Expandable styrenic resin particle and method for producing the same, styrenic resin expanded particle and styrenic resin expanded and molded product
JP2010180395A (en) * 2009-01-09 2010-08-19 Sumitomo Chemical Co Ltd Polymer stabilizer, and polymer composition containing the polymer stabilizer
JP2011122131A (en) * 2009-11-12 2011-06-23 Sumitomo Chemical Co Ltd Thermoplastic resin composition, processing stabilizer for thermoplastic resin, and method for stabilizing thermoplastic resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067650A (en) * 2013-09-27 2015-04-13 東洋スチレン株式会社 Styrene resin composition for optical use
JP2015149155A (en) * 2014-02-05 2015-08-20 Psジャパン株式会社 light guide plate
WO2016056319A1 (en) * 2014-10-09 2016-04-14 コニカミノルタ株式会社 Infrared radiation shielding layer and infrared radiation shielding film
WO2018047443A1 (en) * 2016-09-09 2018-03-15 花王株式会社 Crystals of dicarboxylic acid and production process therefor
JP2018145309A (en) * 2017-03-06 2018-09-20 東洋スチレン株式会社 Styrene-based resin composition for optical use, molded article and light guide body
JP7064827B2 (en) 2017-03-06 2022-05-11 東洋スチレン株式会社 Optical styrene resin composition, molded product and light guide
JP2018053265A (en) * 2018-01-10 2018-04-05 東洋スチレン株式会社 Optical styrene resin composition

Also Published As

Publication number Publication date
JP2017061697A (en) 2017-03-30
JP6248169B2 (en) 2017-12-13
JP6035249B2 (en) 2016-11-30
KR20190084338A (en) 2019-07-16
CN106947177B (en) 2019-07-09
JP2017078172A (en) 2017-04-27
CN106947178A (en) 2017-07-14
TW201716488A (en) 2017-05-16
KR20190085556A (en) 2019-07-18
KR20140107474A (en) 2014-09-04
TWI605086B (en) 2017-11-11
TW201712064A (en) 2017-04-01
CN103998514A (en) 2014-08-20
TWI570179B (en) 2017-02-11
TWI653276B (en) 2019-03-11
TW201345967A (en) 2013-11-16
KR101998748B1 (en) 2019-10-01
CN103998514B (en) 2017-04-26
JPWO2013094641A1 (en) 2015-04-27
JP2018090813A (en) 2018-06-14
CN106947178B (en) 2019-07-09
CN106947177A (en) 2017-07-14
KR102087769B1 (en) 2020-03-11
KR102087770B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6248169B2 (en) Styrenic resin composition for optics
JP6496339B2 (en) Styrenic resin composition for optics, molded product and light guide plate
JP6000978B2 (en) Styrenic resin composition for optics, molded product and light guide plate
JP7367114B2 (en) Optical styrenic resin compositions, molded products, and light guides
JP6310219B2 (en) Styrenic resin composition for optics
JP2014031491A (en) Styrene-based resin composition, planar molded article and light guide plate
JP6585742B2 (en) Styrenic resin composition for optics
JP7229226B2 (en) Optical styrene resin composition and optical parts
JP2016190425A (en) Optical styrene-based multilayer molded article and light guide plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019808

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12859443

Country of ref document: EP

Kind code of ref document: A1