WO2013094610A1 - Silicone rubber composition, molded article and electric wire - Google Patents

Silicone rubber composition, molded article and electric wire Download PDF

Info

Publication number
WO2013094610A1
WO2013094610A1 PCT/JP2012/082806 JP2012082806W WO2013094610A1 WO 2013094610 A1 WO2013094610 A1 WO 2013094610A1 JP 2012082806 W JP2012082806 W JP 2012082806W WO 2013094610 A1 WO2013094610 A1 WO 2013094610A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone rubber
rubber composition
mass
molded product
Prior art date
Application number
PCT/JP2012/082806
Other languages
French (fr)
Japanese (ja)
Inventor
猛 深井
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2013094610A1 publication Critical patent/WO2013094610A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the present invention relates to a silicone rubber composition having excellent long-term heat resistance, a molded product obtained using the silicone rubber composition, and an electric wire using the molded product.
  • Silicone rubber is known as a useful material that has high heat resistance, cold resistance and flexibility, and has a low environmental impact. Utilizing these characteristics, silicone rubber is widely used as a molded product from household goods to industrial products. Yes. Usually, polysiloxane is blended with fillers, additives, reinforcing agents, etc. depending on the purpose, and the compounded composition is commercially available for general use, and it is crosslinked with organic peroxide or metal catalyst. A silicone rubber molded article is produced by adding an agent, kneading, and crosslinking by heating. However, since the composition compounded as described above is used, it is not easy for the user to obtain a silicone rubber whose characteristics are finely adjusted by the user.
  • Silicone rubber is excellent in heat resistance.
  • a silicone rubber having instantaneous heat resistance that can withstand use at 250 ° C. for a short time of 1 to 50 hours. However, for example, it is usually used at 180 ° C. or lower for a long period exceeding 200 hours.
  • materials such as fluororubber and fluororesin that are further excellent in heat resistance are used.
  • materials such as fluororubber and fluororesin that are further excellent in heat resistance are used.
  • a material having no long-term heat resistance has been demanded.
  • engineering plastics and super engineering plastics are known. However, since these materials are inferior in flexibility, their use is limited, for example, not suitable for use as a coating material for electric wires. There was a problem. Therefore, it is desired to further improve the heat resistance of the silicone rubber, and a silicone rubber obtained by using a silicone rubber composition containing cerium oxide is disclosed (see Patent Document 1).
  • cerium is a metal element belonging to rare earths, and cerium oxide has poor versatility as a raw material, and there is a problem that it is not easy to produce silicone rubber having long-term heat resistance.
  • the present invention has been made in view of the above circumstances, and can be produced without the use of special raw materials, and a silicone rubber molded product having long-term heat resistance, and a silicone rubber composition suitable for production of the molded product.
  • the issue is to provide.
  • the silicone rubber composition of the first aspect of the present invention is 0.1 to 15 parts by mass with respect to 100 parts by mass of polysiloxane having a plurality of polymerizable unsaturated bonds in one molecule. Copper (I) oxide and a crosslinking agent.
  • the silicone rubber composition according to the first aspect of the present invention preferably contains 0.1 to 10 parts by mass of the copper (I) oxide with respect to 100 parts by mass of the polysiloxane.
  • the content of copper (I) oxide in the silicone rubber composition is in the above-mentioned range (0.1 to 10 parts by mass)
  • the molded product of the silicone rubber is impaired in the characteristic and long-term heat resistance of the silicone rubber. And excellent mechanical properties.
  • the molded article of the second aspect of the present invention is obtained by crosslinking and molding the silicone rubber composition of the first aspect.
  • the molded article has long-term heat resistance in addition to the characteristics unique to silicone rubber.
  • the electric wire of the 3rd aspect of this invention is equipped with the molded article of the said 2nd aspect as a coating layer.
  • the electric wire has a high protective effect and exhibits a stable function over a long period of time.
  • a molded product of silicone rubber that can be produced without using a special raw material and has long-term heat resistance, and a silicone rubber composition suitable for producing the molded product.
  • the silicone rubber composition according to the present invention comprises 0.1 to 15 parts by mass of copper (I) oxide (Cu 2 O) with respect to 100 parts by mass of polysiloxane having a plurality of polymerizable unsaturated bonds in one molecule. ) And a crosslinking agent.
  • a molded product having long-term heat resistance can be produced without impairing mechanical properties, as will be described later. Further, a molded product can be manufactured without using special raw materials such as rare earths and other difficult raw materials or expensive raw materials.
  • the polysiloxane constitutes the main skeleton of the silicone rubber and has a plurality of polymerizable unsaturated bonds in one molecule in order to be cured by a crosslinking reaction, and (A) is bonded to a silicon atom in the polysiloxane.
  • the group other than the group having a polymerizable unsaturated bond may be either an organic group or a hydrogen atom.
  • Known polysiloxanes can be used as appropriate.
  • the number of the polymerizable unsaturated bonds in the polysiloxane may be two or more, may be two, or may be three or more.
  • the polysiloxane preferably has an unsaturated bond between carbon atoms as the polymerizable unsaturated bond, preferably has a double bond, and preferably has an alkenyl group.
  • alkenyl group examples include ethenyl group (vinyl group), 2-propenyl group (allyl group), and 1-propenyl group.
  • the plurality of alkenyl groups in the polysiloxane may all be the same, all may be different, or only a part may be different.
  • the alkenyl group is preferably bonded to a silicon atom constituting the main skeleton of polysiloxane.
  • Examples of the organic group other than the alkenyl group constituting the polysiloxane include an alkyl group and an aryl group which may have a substituent.
  • the alkyl group may be linear, branched or cyclic, but preferably has 1 to 10 carbon atoms.
  • Preferred examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • Examples thereof include groups having 3 to 10 carbon atoms.
  • the aryl group may be monocyclic or polycyclic.
  • a phenyl group, o-tolyl group (2-methylphenyl group), m-tolyl group (3-methylphenyl group), p-tolyl group (4-methylphenyl group), 1-naphthyl group, 2-naphthyl group examples thereof include groups having 6 to 15 carbon atoms such as groups.
  • the alkyl group and aryl group may have a substituent.
  • “the alkyl group (aryl group) has a substituent” means that one or more hydrogen atoms constituting the alkyl group (aryl group) are substituted with a group other than a hydrogen atom, or an alkyl group It means that one or more carbon atoms constituting (aryl group) are substituted with a group other than carbon atoms. And both the hydrogen atom and the carbon atom may be substituted with a substituent.
  • the alkyl group and aryl group having a substituent preferably include the substituent in the above-mentioned range (an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms).
  • Examples of the substituent for substituting the hydrogen atom of the alkyl group and aryl group include an alkyl group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, an alkoxy group, an alkylcarbonyl group, an alkenyl group, an alkenyloxy group, an aryl group, and an alkylaryl group. And an arylalkyl group, an aryloxy group, an arylalkyloxy group, an alkylaryloxy group, a hydroxyl group (—OH), a cyano group (—CN), and a halogen atom.
  • Examples of the alkyl group that substitutes a hydrogen atom include the same groups as the alkyl group in the organic group.
  • Examples of the alkyloxycarbonyl group that substitutes a hydrogen atom include monovalent groups in which an alkyl group in the organic group is bonded to an oxycarbonyl group.
  • Examples of the alkylcarbonyloxy group that substitutes a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to a carbonyloxy group.
  • Examples of the alkoxy group for substituting a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to an oxygen atom.
  • Examples of the alkylcarbonyl group replacing a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to a carbonyl group.
  • the alkenyl group for substituting a hydrogen atom is an alkyl group in the organic group, a group in which one single bond (C—C) between carbon atoms is replaced with a double bond (C ⁇ C), and polymerization. Examples thereof include groups that do not correspond to the alkenyl group having a polymerizable unsaturated bond.
  • the position of the double bond between carbon atoms in the alkenyl group substituting for a hydrogen atom is not particularly limited.
  • Examples of the alkenyloxy group that substitutes a hydrogen atom include monovalent groups in which the alkenyl group as a substituent is bonded to an oxygen atom.
  • Examples of the aryl group that substitutes a hydrogen atom include the same groups as the aryl group in the organic group.
  • Examples of the alkylaryl group for substituting a hydrogen atom include groups in which one hydrogen atom bonded to the carbon atom constituting the aromatic ring of the aryl group in the organic group is substituted with the alkyl group in the organic group it can.
  • Examples of the arylalkyl group that substitutes a hydrogen atom include a group in which one hydrogen atom of an alkyl group in the organic group is substituted with an aryl group in the organic group.
  • Examples of the aryloxy group replacing a hydrogen atom include a monovalent group in which the aryl group in the organic group is bonded to an oxygen atom.
  • Examples of the arylalkyloxy group for substituting a hydrogen atom include a monovalent group in which an aryl group and an oxygen atom in the organic group are bonded to an alkylene group obtained by removing one hydrogen atom from the alkyl group in the organic group.
  • an alkylaryloxy group for substituting a hydrogen atom an arylene group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aryl group in the organic group, and an alkyl group in the organic group And a monovalent group in which an oxygen atom is bonded.
  • halogen atom that replaces the hydrogen atom
  • examples of the halogen atom that replaces the hydrogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the number of substituents replacing the hydrogen atom is not particularly limited, and may be one or plural. Moreover, all the hydrogen atoms may be substituted with a substituent. Moreover, the position of the hydrogen atom substituted with a substituent is not particularly limited.
  • Examples of the hetero atom that substitutes a carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, and a boron atom.
  • the number of substituents replacing the carbon atom is not particularly limited, and may be one or more. Further, the position of the carbon atom substituted with the substituent is not particularly limited.
  • polysiloxane a commercially available product may be used, or a polysiloxane synthesized according to a known method may be used.
  • Polysiloxane may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
  • the polysiloxane content is preferably 84 to 99.5% by mass, more preferably 85.5 to 99% by mass, and further preferably 88 to 99% by mass. preferable.
  • the molded product has more remarkable characteristics specific to silicone rubber, and when it is at most the upper limit (99.5% by mass), the molded product has long-term heat resistance. It can be easily obtained.
  • Copper (I) oxide imparts long-term heat resistance to the silicone rubber composition. Copper oxide may be produced by a known method, or commercially available copper oxide may be used. The reason why copper (I) oxide can provide long-term heat resistance is not clear, but it is presumed that the deterioration caused by radicals is suppressed by erasing radicals generated by heating.
  • the content of copper oxide (I) with respect to 100 parts by mass of polysiloxane is 0.1 to 15 parts by mass, preferably 0.1 to 10 parts by mass.
  • the molded product has sufficient long-term heat resistance, and by being below the upper limit (15 parts by mass), the molded product has characteristics specific to silicone rubber. Is more prominently obtained.
  • the content of copper oxide (I) is 10 parts by mass or less, the mechanical properties of the molded product are further improved.
  • the crosslinking agent a known crosslinking agent that cures polysiloxane can be used.
  • the crosslinking agent include organic peroxides such as dialkyl peroxides, diacyl peroxides, peroxyketals, and peroxyesters; and metal catalysts such as platinum.
  • the cross-linking agent is preferably a metal catalyst, and more preferably a platinum catalyst.
  • an organic peroxide for example, by heating at a temperature of 160 ° C. or higher at the time of manufacturing a molded product to be described later, a decomposition product of the organic peroxide can be easily removed as a gas.
  • dialkyl peroxide examples include dicumyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, 1,3-bis (tert-butylperoxyisopropyl) benzene, and tert-butyl.
  • dialkyl peroxide examples include cumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) -3-hexyne and the like.
  • diacyl peroxide examples include dibenzoyl peroxide, di (2-methylbenzoyl) peroxide, di (3-methylbenzoyl) peroxide, di (4-methylbenzoyl) peroxide, and the like.
  • peroxyketal examples include n-butyl 4,4-di (tert-butylperoxy) valerate, 1,1-di (tert-butylperoxy) cyclohexane, 1,1-di (tert-hexylperoxy).
  • a cyclohexane etc. can be illustrated.
  • peroxyester examples include 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, tert-hexylperoxybenzoate, tert-butylperoxy-3-methylbenzoate, and tert-butylperoxybenzoate Can be illustrated.
  • the crosslinking agent may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose. However, it is usually sufficient to use a kind of crosslinking agent.
  • the content of the crosslinking agent with respect to 100 parts by mass of the polysiloxane is preferably 0.5 to 3 parts by mass, and more preferably 1 to 2 parts by mass.
  • the cross-linking reaction of (A) polysiloxane proceeds more sufficiently, and by being the upper limit (3 parts by mass) or less, the molded product has better characteristics. Is obtained.
  • the silicone rubber composition may further contain other components in addition to polysiloxane, copper (I) oxide and a crosslinking agent within a range not impeding the effects of the present invention. By including other components, the desired characteristics can be imparted to the molded product.
  • silicone rubber composition As other components constituting the silicone rubber composition, known components can be used as appropriate, and examples thereof include fillers, additives, reinforcing agents, pigments, anti-aging agents, etc. Preferred materials include silica, carbon black, oxidation titanium (TiO 2) or the like can be exemplified. Other components may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
  • the silicone rubber composition preferably has a content of other components of less than 10% by mass. That is, the silicone rubber composition preferably has a total content of polysiloxane, copper (I) oxide and crosslinking agent of 90% by mass or more. By doing in this way, the molded article excellent in long-term heat resistance is obtained. It is preferable to adjust the content of other components in the silicone rubber composition as appropriate according to the type of the component. For example, silica is less than 10% by mass, carbon black is less than 0.5% by mass, and titanium oxide is 5% by mass. It is preferable that it is less than.
  • a silicone rubber composition can be manufactured by mix
  • each component it is preferable to add the above-described components and sufficiently mix them with various apparatuses and methods. And each component may be mixed, adding these sequentially, and may be mixed after adding all the components.
  • the mixing method of each component is not particularly limited. For example, a known method of mixing for a predetermined time at normal temperature or under heating conditions using a stirring blade, a ball mill, a roll mill, an ultrasonic disperser, a kneader, or the like. Apply. Moreover, when kneading this immediately after manufacture of a silicone rubber composition and manufacturing a molded article by heat-molding, you may knead
  • the molded product according to the present invention is obtained by crosslinking and molding the silicone rubber composition.
  • This molded product can be produced in the same manner as a conventional silicone rubber molded product except that the silicone rubber composition is used.
  • Crosslinking and molding may be performed separately, or crosslinking and molding may be performed in parallel.
  • the crosslinking reaction may be carried out by a known method. For example, a method of heating and crosslinking by reacting at 150 to 180 ° C. for 5 to 20 minutes can be exemplified.
  • the molded article has long-term heat resistance without impairing mechanical properties in addition to the characteristics unique to silicone rubber such as heat resistance (instant heat resistance), cold resistance and flexibility.
  • heat resistance instant heat resistance
  • cold resistance cold resistance
  • “having long-term heat resistance” means that a change in physical properties of the molded product is suppressed at 200 ° C. or more for 200 hours or more and endures use.
  • the said molded article can be manufactured without using a special raw material so that it may be clear from the description so far.
  • the mechanical properties of the molded product can be evaluated based on the strength and elongation values before heating. Molded products with inferior mechanical properties are not suitable for practical use. And the molded product after a heating can evaluate long-term heat resistance by the value of intensity
  • the strength and elongation of the molded product before and after heating can be measured in accordance with, for example, JIS K 6251, but the measurement method is not limited thereto. If the sample can be obtained from the molded product, the strength and elongation may be measured using this sample. For example, a sheet-like molded product having a thickness of about 1 to 2 mm is manufactured using the same silicone rubber composition used for manufacturing the product, and a sample is obtained from the sheet-like molded product and measured. Good.
  • the molded product preferably has mechanical properties such that the strength is 9.0 MPa or more and the elongation is 350% or more. Moreover, it is preferable that the residual strength has a long-term heat resistance of 4.5 MPa or more and the residual elongation is 200% or more.
  • the molded article is suitable for mounting on various household goods or industrial articles or for the purpose of covering or protecting the members used therein. Since the molded product has long-term heat resistance, a product or member to which the molded product is attached can obtain a high protection action and can exhibit a stable function over a long period of time.
  • the shape of the molded product is not particularly limited, and can be arbitrarily selected according to the purpose, such as a sheet shape or a cylindrical shape.
  • a cylindrical molded product is suitable as a coating layer included in various cables, and an electric wire can be exemplified as the preferable cable.
  • the mechanical properties of the molded product can be improved by adjusting the content of copper (I) oxide in the silicone rubber composition, the molded product is particularly suitable as a coating layer for electric wires.
  • the thickness of the molded product can be arbitrarily set according to the purpose.
  • the thickness of the sheet-like molded product is preferably 3.0 mm or less.
  • the thickness of the sheet is preferably 3.0 mm or less.
  • the molding method may be a known method such as an injection molding method, an extrusion molding method, or a mold molding method, and may be appropriately selected according to the purpose.
  • the silicone rubber compositions containing 0.1 to 15 parts by mass of copper (I) oxide were used for the molded articles of Examples 1 to 7 with respect to 100 parts by mass of polysiloxane.
  • the strength and elongation values before and after heating were large, and both mechanical properties and long-term heat resistance were excellent.
  • the molded products of Comparative Examples 1 to 10 were inferior in at least one of mechanical properties and long-term heat resistance.
  • Comparative Example 2 using a silicone rubber composition
  • the molded products of Comparative Examples 3-7 and 9-10 using a silicone rubber composition containing other metal oxides instead of copper (I) oxide It was inferior in heat resistance.
  • the molded product of Comparative Examples 6 and 8 was also inferior in mechanical properties.
  • the long-term heat resistance of Comparative Example 8 has not been confirmed directly, it is clear from the results of Comparative Example 7 that the long-term heat resistance is similarly inferior.
  • the long-term heat resistance of the molded article obtained from the silicone rubber composition is greatly changed by the content of copper (I) oxide and the type of metal oxide to be blended.
  • the present invention can be used as a molded product used for various purposes such as covering and protection in various daily goods or industrial goods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Conductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Insulating Materials (AREA)

Abstract

This silicone rubber composition comprises: 0.1 to 15 parts by mass of a copper oxide (I) with respect to 100 parts by mass of a polysiloxane, which has a plurality of polymerizable unsaturated bonds in one molecule; and a cross-linking agent.

Description

シリコーンゴム組成物、成形品及び電線Silicone rubber composition, molded product and electric wire
 本発明は、長期耐熱性に優れたシリコーンゴム組成物、該シリコーンゴム組成物を用いて得られた成形品、及び該成形品を用いた電線に関する。
 本願は、2011年12月21日に日本に出願された特願2011-279747号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a silicone rubber composition having excellent long-term heat resistance, a molded product obtained using the silicone rubber composition, and an electric wire using the molded product.
This application claims priority based on Japanese Patent Application No. 2011-279747 for which it applied to Japan on December 21, 2011, and uses the content here.
 シリコーンゴムは、耐熱性、耐寒性及び柔軟性が高く、環境への負荷が小さい有用な材料として知られており、これらの特性を生かして、成形品として生活用品から工業用品まで幅広く利用されている。通常は、ポリシロキサンに目的に応じて充填材、添加剤、補強剤等が配合され、コンパウンディングされた組成物が汎用的に市販されており、これに有機過酸化物又は金属触媒等の架橋剤を添加して混錬し、加熱架橋させることで、シリコーンゴムの成形品が製造される。しかし、上記のようにコンパウンディングされた組成物を用いるため、ユーザーが自ら特性を微調整したシリコーンゴムを得ることは容易ではない。 Silicone rubber is known as a useful material that has high heat resistance, cold resistance and flexibility, and has a low environmental impact. Utilizing these characteristics, silicone rubber is widely used as a molded product from household goods to industrial products. Yes. Usually, polysiloxane is blended with fillers, additives, reinforcing agents, etc. depending on the purpose, and the compounded composition is commercially available for general use, and it is crosslinked with organic peroxide or metal catalyst. A silicone rubber molded article is produced by adding an agent, kneading, and crosslinking by heating. However, since the composition compounded as described above is used, it is not easy for the user to obtain a silicone rubber whose characteristics are finely adjusted by the user.
 シリコーンゴムは耐熱性に優れ、例えば、1~50時間という短時間であれば、250℃での使用にも耐え得るという瞬間耐熱性を有するシリコーンゴムも存在する。ただし、例えば、200時間を超えるような長期では、通常、180℃以下で使用される。これよりも高温では、さらに耐熱性に優れるフッ素ゴム、フッ素樹脂等の材料が使用される。しかし、近年は環境への配慮から、長期耐熱性を有する材料としてハロゲンを含まないものが求められるようになってきている。このような材料としては、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックが知られているが、これらは柔軟性に劣る点から、例えば、電線の被覆材としての使用には向かないなど、用途が制限されてしまうという問題点があった。そこで、シリコーンゴムの耐熱性をさらに向上させることが望まれており、酸化セリウムを含有するシリコーンゴム組成物を用いて得られたシリコーンゴムが開示されている(特許文献1参照)。 Silicone rubber is excellent in heat resistance. For example, there is a silicone rubber having instantaneous heat resistance that can withstand use at 250 ° C. for a short time of 1 to 50 hours. However, for example, it is usually used at 180 ° C. or lower for a long period exceeding 200 hours. At higher temperatures, materials such as fluororubber and fluororesin that are further excellent in heat resistance are used. However, in recent years, in consideration of the environment, a material having no long-term heat resistance has been demanded. As such materials, engineering plastics and super engineering plastics are known. However, since these materials are inferior in flexibility, their use is limited, for example, not suitable for use as a coating material for electric wires. There was a problem. Therefore, it is desired to further improve the heat resistance of the silicone rubber, and a silicone rubber obtained by using a silicone rubber composition containing cerium oxide is disclosed (see Patent Document 1).
日本国特開2002-179917号公報Japanese Patent Laid-Open No. 2002-179917
 しかし、セリウムはレアアースに属する金属元素であり、酸化セリウムは原料として汎用性に乏しく、長期耐熱性を有するシリコーンゴムの製造は容易ではないという問題点があった。 However, cerium is a metal element belonging to rare earths, and cerium oxide has poor versatility as a raw material, and there is a problem that it is not easy to produce silicone rubber having long-term heat resistance.
 本発明は、上記事情に鑑みてなされたものであり、特殊な原料を用いずに製造でき、長期耐熱性を有するシリコーンゴムの成形品、及び該成形品の製造に好適なシリコーンゴム組成物を提供することを課題とする。 The present invention has been made in view of the above circumstances, and can be produced without the use of special raw materials, and a silicone rubber molded product having long-term heat resistance, and a silicone rubber composition suitable for production of the molded product. The issue is to provide.
 上記課題を解決するため、本発明の第一態様のシリコーンゴム組成物は、一分子中に複数個の重合性不飽和結合を有するポリシロキサン100質量部に対して、0.1~15質量部の酸化銅(I)、及び架橋剤を含有する。
 前記シリコーンゴム組成物を用いることで、特殊な原料を用いずに、長期耐熱性を有するシリコーンゴムの成形品を製造できる。
In order to solve the above problems, the silicone rubber composition of the first aspect of the present invention is 0.1 to 15 parts by mass with respect to 100 parts by mass of polysiloxane having a plurality of polymerizable unsaturated bonds in one molecule. Copper (I) oxide and a crosslinking agent.
By using the silicone rubber composition, a molded product of silicone rubber having long-term heat resistance can be produced without using a special raw material.
 本発明の第一態様のシリコーンゴム組成物は、前記酸化銅(I)を前記ポリシロキサン100質量部に対して、0.1~10質量部含有することが好ましい。
 シリコーンゴム組成物における酸化銅(I)の含有量が前記範囲(0.1~10質量部)であることで、シリコーンゴムの成形品は、シリコーンゴム特有の特性と長期耐熱性とを損なうことなく、優れた機械特性も有する。
The silicone rubber composition according to the first aspect of the present invention preferably contains 0.1 to 10 parts by mass of the copper (I) oxide with respect to 100 parts by mass of the polysiloxane.
When the content of copper (I) oxide in the silicone rubber composition is in the above-mentioned range (0.1 to 10 parts by mass), the molded product of the silicone rubber is impaired in the characteristic and long-term heat resistance of the silicone rubber. And excellent mechanical properties.
 また、本発明の第二態様の成形品は、上記第一態様のシリコーンゴム組成物を架橋及び成形して得られる。
 前記成形品は、シリコーンゴム特有の特性に加え、長期耐熱性を有する。
The molded article of the second aspect of the present invention is obtained by crosslinking and molding the silicone rubber composition of the first aspect.
The molded article has long-term heat resistance in addition to the characteristics unique to silicone rubber.
 また、本発明の第三態様の電線は、上記第二態様の成形品を被覆層として備える。
 前記電線は、前記被覆層を備えることで、高い保護作用が得られ、長期間に渡って安定した機能を発揮する。
Moreover, the electric wire of the 3rd aspect of this invention is equipped with the molded article of the said 2nd aspect as a coating layer.
By providing the coating layer, the electric wire has a high protective effect and exhibits a stable function over a long period of time.
 本発明によれば、特殊な原料を用いずに製造でき、長期耐熱性を有するシリコーンゴムの成形品、及び前記成形品の製造に好適なシリコーンゴム組成物が提供される。 According to the present invention, there can be provided a molded product of silicone rubber that can be produced without using a special raw material and has long-term heat resistance, and a silicone rubber composition suitable for producing the molded product.
<シリコーンゴム>
 本発明に係るシリコーンゴム組成物は、一分子中に複数個の重合性不飽和結合を有するポリシロキサン100質量部に対して、0.1~15質量部の酸化銅(I)(CuO)、及び架橋剤を含有する。シリコーンゴム組成物が、酸化銅(I)を所定量含有することで、後述するように、機械特性を損なうことなく、長期耐熱性を有する成形品を製造できる。また、レアアースをはじめとする入手が困難な原料、高価な原料等、特殊な原料を用いずに、成形品を製造できる。
<Silicone rubber>
The silicone rubber composition according to the present invention comprises 0.1 to 15 parts by mass of copper (I) oxide (Cu 2 O) with respect to 100 parts by mass of polysiloxane having a plurality of polymerizable unsaturated bonds in one molecule. ) And a crosslinking agent. When the silicone rubber composition contains a predetermined amount of copper (I) oxide, a molded product having long-term heat resistance can be produced without impairing mechanical properties, as will be described later. Further, a molded product can be manufactured without using special raw materials such as rare earths and other difficult raw materials or expensive raw materials.
 ポリシロキサンは、シリコーンゴムの主骨格を構成し、架橋反応によって硬化するために、一分子中に複数個の重合性不飽和結合を有し、(A)ポリシロキサン中のケイ素原子に結合している、前記重合性不飽和結合を有する基以外の基は、有機基及び水素原子のいずれでもよい。ポリシロキサンとしては、公知のものが適宜使用できる。
 ポリシロキサン中の前記重合性不飽和結合の数は二以上であればよく、二でもよいし、三以上でもよい。
The polysiloxane constitutes the main skeleton of the silicone rubber and has a plurality of polymerizable unsaturated bonds in one molecule in order to be cured by a crosslinking reaction, and (A) is bonded to a silicon atom in the polysiloxane. The group other than the group having a polymerizable unsaturated bond may be either an organic group or a hydrogen atom. Known polysiloxanes can be used as appropriate.
The number of the polymerizable unsaturated bonds in the polysiloxane may be two or more, may be two, or may be three or more.
 ポリシロキサンは、前記重合性不飽和結合として、炭素原子間の不飽和結合を有することが好ましく、二重結合を有することが好ましく、アルケニル基を有することが好ましい。
 前記アルケニル基としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、1-プロペニル基が例示できる。そして、ポリシロキサン中の複数個のアルケニル基は、すべて同じでもよいし、すべて異なっていてもよく、一部のみが異なっていてもよい。
 前記アルケニル基は、ポリシロキサンの主骨格を構成するケイ素原子に結合していることが好ましい。
The polysiloxane preferably has an unsaturated bond between carbon atoms as the polymerizable unsaturated bond, preferably has a double bond, and preferably has an alkenyl group.
Examples of the alkenyl group include ethenyl group (vinyl group), 2-propenyl group (allyl group), and 1-propenyl group. The plurality of alkenyl groups in the polysiloxane may all be the same, all may be different, or only a part may be different.
The alkenyl group is preferably bonded to a silicon atom constituting the main skeleton of polysiloxane.
 ポリシロキサンを構成する前記アルケニル基以外の有機基としては、置換基を有していてもよいアルキル基及びアリール基が例示できる。 Examples of the organic group other than the alkenyl group constituting the polysiloxane include an alkyl group and an aryl group which may have a substituent.
 前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、炭素数が1~10であることが好ましい。
 好ましい前記直鎖状又は分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基等の、炭素数が1~10の基が例示できる。
 前記環状のアルキル基は、単環状及び多環状のいずれでもよい。好ましくは、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基の、炭素数が3~10の基が例示できる。
The alkyl group may be linear, branched or cyclic, but preferably has 1 to 10 carbon atoms.
Preferred examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl. Group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group N-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, Such as 3-ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group, etc. 0 groups can be exemplified.
The cyclic alkyl group may be monocyclic or polycyclic. Preferably, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group Examples thereof include groups having 3 to 10 carbon atoms.
 前記アリール基は、単環状及び多環状のいずれでもよい。好ましくは、フェニル基、o-トリル基(2-メチルフェニル基)、m-トリル基(3-メチルフェニル基)、p-トリル基(4-メチルフェニル基)、1-ナフチル基、2-ナフチル基等の、炭素数が6~15の基が例示できる。 The aryl group may be monocyclic or polycyclic. Preferably, a phenyl group, o-tolyl group (2-methylphenyl group), m-tolyl group (3-methylphenyl group), p-tolyl group (4-methylphenyl group), 1-naphthyl group, 2-naphthyl group Examples thereof include groups having 6 to 15 carbon atoms such as groups.
 前記アルキル基及びアリール基は、置換基を有していてもよい。ここで、「アルキル基(アリール基)が置換基を有する」とは、アルキル基(アリール基)を構成する一つ以上の水素原子が、水素原子以外の基で置換されているか、あるいはアルキル基(アリール基)を構成する一つ以上の炭素原子が、炭素原子以外の基で置換されていることを指す。そして、水素原子及び炭素原子が共に置換基で置換されていてもよい。
 置換基を有する前記アルキル基及びアリール基は、置換基も含めて炭素数が前記範囲(炭素数が1~10のアルキル基、炭素数が6~15のアリール基)内であることが好ましい。
The alkyl group and aryl group may have a substituent. Here, “the alkyl group (aryl group) has a substituent” means that one or more hydrogen atoms constituting the alkyl group (aryl group) are substituted with a group other than a hydrogen atom, or an alkyl group It means that one or more carbon atoms constituting (aryl group) are substituted with a group other than carbon atoms. And both the hydrogen atom and the carbon atom may be substituted with a substituent.
The alkyl group and aryl group having a substituent preferably include the substituent in the above-mentioned range (an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms).
 前記アルキル基及びアリール基の水素原子を置換する置換基としては、アルキル基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、アルコキシ基、アルキルカルボニル基、アルケニル基、アルケニルオキシ基、アリール基、アルキルアリール基、アリールアルキル基、アリールオキシ基、アリールアルキルオキシ基、アルキルアリールオキシ基、水酸基(-OH)、シアノ基(-CN)及びハロゲン原子が例示できる。 Examples of the substituent for substituting the hydrogen atom of the alkyl group and aryl group include an alkyl group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, an alkoxy group, an alkylcarbonyl group, an alkenyl group, an alkenyloxy group, an aryl group, and an alkylaryl group. And an arylalkyl group, an aryloxy group, an arylalkyloxy group, an alkylaryloxy group, a hydroxyl group (—OH), a cyano group (—CN), and a halogen atom.
 水素原子を置換するアルキル基としては、前記有機基におけるアルキル基と同様の基が例示できる。
 水素原子を置換するアルキルオキシカルボニル基としては、前記有機基におけるアルキル基がオキシカルボニル基に結合した一価の基が例示できる。
 水素原子を置換するアルキルカルボニルオキシ基としては、前記有機基におけるアルキル基がカルボニルオキシ基に結合した一価の基が例示できる。
 水素原子を置換するアルコキシ基としては、前記有機基におけるアルキル基が酸素原子に結合した一価の基が例示できる。
 水素原子を置換するアルキルカルボニル基としては、前記有機基におけるアルキル基がカルボニル基に結合した一価の基が例示できる。
Examples of the alkyl group that substitutes a hydrogen atom include the same groups as the alkyl group in the organic group.
Examples of the alkyloxycarbonyl group that substitutes a hydrogen atom include monovalent groups in which an alkyl group in the organic group is bonded to an oxycarbonyl group.
Examples of the alkylcarbonyloxy group that substitutes a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to a carbonyloxy group.
Examples of the alkoxy group for substituting a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to an oxygen atom.
Examples of the alkylcarbonyl group replacing a hydrogen atom include a monovalent group in which an alkyl group in the organic group is bonded to a carbonyl group.
 水素原子を置換するアルケニル基としては、前記有機基におけるアルキル基で、炭素原子間の一つの単結合(C-C)が、二重結合(C=C)に置換された基で、且つ重合性不飽和結合を有する前記アルケニル基に該当しない基が例示できる。水素原子を置換する前記アルケニル基における炭素原子間の二重結合の位置は、特に限定されない。
 水素原子を置換するアルケニルオキシ基としては、置換基としての前記アルケニル基が酸素原子に結合した一価の基が例示できる。
The alkenyl group for substituting a hydrogen atom is an alkyl group in the organic group, a group in which one single bond (C—C) between carbon atoms is replaced with a double bond (C═C), and polymerization. Examples thereof include groups that do not correspond to the alkenyl group having a polymerizable unsaturated bond. The position of the double bond between carbon atoms in the alkenyl group substituting for a hydrogen atom is not particularly limited.
Examples of the alkenyloxy group that substitutes a hydrogen atom include monovalent groups in which the alkenyl group as a substituent is bonded to an oxygen atom.
 水素原子を置換するアリール基としては、前記有機基におけるアリール基と同様の基が例示できる。
 水素原子を置換するアルキルアリール基としては、前記有機基におけるアリール基の芳香族環を構成する炭素原子に結合している一つの水素原子が、前記有機基におけるアルキル基で置換された基が例示できる。
 水素原子を置換するアリールアルキル基としては、前記有機基におけるアルキル基の一つの水素原子が前記有機基におけるアリール基で置換された基が例示できる。
 水素原子を置換するアリールオキシ基としては、前記有機基におけるアリール基が酸素原子に結合した一価の基が例示できる。
 水素原子を置換するアリールアルキルオキシ基としては、前記有機基におけるアルキル基から一つの水素原子を除いたアルキレン基に、前記有機基におけるアリール基と酸素原子が結合した一価の基が例示できる。
 水素原子を置換するアルキルアリールオキシ基としては、前記有機基におけるアリール基から、芳香族環を構成する炭素原子に結合している一つの水素原子を除いたアリーレン基に、前記有機基におけるアルキル基と酸素原子が結合した一価の基が例示できる。
Examples of the aryl group that substitutes a hydrogen atom include the same groups as the aryl group in the organic group.
Examples of the alkylaryl group for substituting a hydrogen atom include groups in which one hydrogen atom bonded to the carbon atom constituting the aromatic ring of the aryl group in the organic group is substituted with the alkyl group in the organic group it can.
Examples of the arylalkyl group that substitutes a hydrogen atom include a group in which one hydrogen atom of an alkyl group in the organic group is substituted with an aryl group in the organic group.
Examples of the aryloxy group replacing a hydrogen atom include a monovalent group in which the aryl group in the organic group is bonded to an oxygen atom.
Examples of the arylalkyloxy group for substituting a hydrogen atom include a monovalent group in which an aryl group and an oxygen atom in the organic group are bonded to an alkylene group obtained by removing one hydrogen atom from the alkyl group in the organic group.
As the alkylaryloxy group for substituting a hydrogen atom, an arylene group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aryl group in the organic group, and an alkyl group in the organic group And a monovalent group in which an oxygen atom is bonded.
 水素原子を置換するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。 Examples of the halogen atom that replaces the hydrogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 水素原子を置換する置換基の数は特に限定されず、一つでもよいし、複数でもよい。また、すべての水素原子が置換基で置換されていてもよい。
 また、置換基で置換される水素原子の位置は特に限定されない。
The number of substituents replacing the hydrogen atom is not particularly limited, and may be one or plural. Moreover, all the hydrogen atoms may be substituted with a substituent.
Moreover, the position of the hydrogen atom substituted with a substituent is not particularly limited.
 前記アルキル基及びアリール基の炭素原子を置換する置換基としては、カルボニル基(-C(=O)-)、エステル結合(-C(=O)-O-)、アミド結合(-NH-C(=O)-)、ヘテロ原子が例示できる。
 炭素原子を置換するヘテロ原子としては、酸素原子、窒素原子、硫黄原子、ホウ素原子が例示できる。
 炭素原子を置換する置換基の数は特に限定されず、一つでもよいし、複数でもよい。
 また、置換基で置換される炭素原子の位置は特に限定されない。
Examples of the substituent for substituting the carbon atom of the alkyl group and aryl group include a carbonyl group (—C (═O) —), an ester bond (—C (═O) —O—), an amide bond (—NH—C). (= O)-), a hetero atom can be exemplified.
Examples of the hetero atom that substitutes a carbon atom include an oxygen atom, a nitrogen atom, a sulfur atom, and a boron atom.
The number of substituents replacing the carbon atom is not particularly limited, and may be one or more.
Further, the position of the carbon atom substituted with the substituent is not particularly limited.
 ポリシロキサンとしては、市販品を使用してもよいし、公知の方法にしたがって合成したポリシロキサンを使用してもよい。
 ポリシロキサンは、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、目的に応じて適宜選択すればよい。
As the polysiloxane, a commercially available product may be used, or a polysiloxane synthesized according to a known method may be used.
Polysiloxane may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
 シリコーンゴム組成物において、ポリシロキサンの含有量は、84~99.5質量%であることが好ましく、85.5~99質量%であることがより好ましく、88~99質量%であることがさらに好ましい。下限値(84質量%)以上であることで、成形品はシリコーンゴム特有の特性がより顕著に得られ、上限値(99.5質量%)以下であることで、成形品の長期耐熱性が容易に得られるようになる。 In the silicone rubber composition, the polysiloxane content is preferably 84 to 99.5% by mass, more preferably 85.5 to 99% by mass, and further preferably 88 to 99% by mass. preferable. When it is at least the lower limit (84% by mass), the molded product has more remarkable characteristics specific to silicone rubber, and when it is at most the upper limit (99.5% by mass), the molded product has long-term heat resistance. It can be easily obtained.
 酸化銅(I)は、シリコーンゴム組成物に長期耐熱性を付与する。酸化銅は、公知の方法で製造されてもよいし、市販品の酸化銅を使用してもよい。
 酸化銅(I)が長期耐熱性を付与できる理由は定かではないが、加熱により発生したラジカルを消去することで、ラジカルによる劣化を抑制しているのではないかと推測される。
Copper (I) oxide imparts long-term heat resistance to the silicone rubber composition. Copper oxide may be produced by a known method, or commercially available copper oxide may be used.
The reason why copper (I) oxide can provide long-term heat resistance is not clear, but it is presumed that the deterioration caused by radicals is suppressed by erasing radicals generated by heating.
 シリコーンゴム組成物において、ポリシロキサンの含有量100質量部に対する、酸化銅(I)の含有量は、0.1~15質量部であり、0.1~10質量部であることが好ましい。下限値(0.1質量部)以上であることで、成形品は十分な長期耐熱性を有するようになり、上限値(15質量部)以下であることで、成形品はシリコーンゴム特有の特性がより顕著に得られる。特に、酸化銅(I)の含有量が10質量部以下であることで、成形品の機械特性がより向上する。 In the silicone rubber composition, the content of copper oxide (I) with respect to 100 parts by mass of polysiloxane is 0.1 to 15 parts by mass, preferably 0.1 to 10 parts by mass. By being above the lower limit (0.1 part by mass), the molded product has sufficient long-term heat resistance, and by being below the upper limit (15 parts by mass), the molded product has characteristics specific to silicone rubber. Is more prominently obtained. Particularly, when the content of copper oxide (I) is 10 parts by mass or less, the mechanical properties of the molded product are further improved.
 架橋剤は、ポリシロキサンを硬化させる公知の架橋剤が使用できる。
 架橋剤としては、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシケタール、パーオキシエステル等の有機過酸化物;白金等の金属触媒が例示できる。成形品中に分解物がより残り難いという点からは、架橋剤は、金属触媒であることが好ましく、白金触媒であることがより好ましい。有機過酸化物を用いる場合は、例えば、後述する成形品製造時に、160℃以上の温度で加熱することにより、有機過酸化物の分解物をガスとして容易に除去できる。
As the crosslinking agent, a known crosslinking agent that cures polysiloxane can be used.
Examples of the crosslinking agent include organic peroxides such as dialkyl peroxides, diacyl peroxides, peroxyketals, and peroxyesters; and metal catalysts such as platinum. From the viewpoint that decomposition products are less likely to remain in the molded article, the cross-linking agent is preferably a metal catalyst, and more preferably a platinum catalyst. In the case of using an organic peroxide, for example, by heating at a temperature of 160 ° C. or higher at the time of manufacturing a molded product to be described later, a decomposition product of the organic peroxide can be easily removed as a gas.
 前記ジアルキルパーオキサイドとしては、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)-3-ヘキシン等が例示できる。
 前記ジアシルパーオキサイドとしては、ジベンゾイルパーオキサイド、ジ(2-メチルベンゾイル)パーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド等が例示できる。
 前記パーオキシケタールとしては、n-ブチル 4,4-ジ(tert-ブチルパーオキシ)バリレート、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン等が例示できる。
 前記パーオキシエステルとしては、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、tert-ヘキシルパーオキシベンゾエート、tert-ブチルパーオキシ-3-メチルベンゾエート、tert-ブチルパーオキシベンゾエート等が例示できる。
Examples of the dialkyl peroxide include dicumyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, 1,3-bis (tert-butylperoxyisopropyl) benzene, and tert-butyl. Examples thereof include cumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butylperoxy) -3-hexyne and the like.
Examples of the diacyl peroxide include dibenzoyl peroxide, di (2-methylbenzoyl) peroxide, di (3-methylbenzoyl) peroxide, di (4-methylbenzoyl) peroxide, and the like.
Examples of the peroxyketal include n-butyl 4,4-di (tert-butylperoxy) valerate, 1,1-di (tert-butylperoxy) cyclohexane, 1,1-di (tert-hexylperoxy). A cyclohexane etc. can be illustrated.
Examples of the peroxyester include 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, tert-hexylperoxybenzoate, tert-butylperoxy-3-methylbenzoate, and tert-butylperoxybenzoate Can be illustrated.
 架橋剤は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、目的に応じて適宜選択すればよい。ただし通常は、一種の架橋剤を使用すれば十分である。 The crosslinking agent may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose. However, it is usually sufficient to use a kind of crosslinking agent.
 シリコーンゴム組成物において、ポリシロキサンの含有量100質量部に対する、架橋剤の含有量は、0.5~3質量部であることが好ましく、1~2質量部であることがより好ましい。下限値(0.5質量部)以上であることで、(A)ポリシロキサンの架橋反応がより十分に進行し、上限値(3質量部)以下であることで、特性がより良好な成形品が得られる。 In the silicone rubber composition, the content of the crosslinking agent with respect to 100 parts by mass of the polysiloxane is preferably 0.5 to 3 parts by mass, and more preferably 1 to 2 parts by mass. By being the lower limit (0.5 part by mass) or more, the cross-linking reaction of (A) polysiloxane proceeds more sufficiently, and by being the upper limit (3 parts by mass) or less, the molded product has better characteristics. Is obtained.
 シリコーンゴム組成物は、ポリシロキサン、酸化銅(I)及び架橋剤以外に、本発明の効果を妨げない範囲内において、さらにその他の成分を含有していてもよい。その他の成分を含有させることで、目的とする特性を成形品に付与できる。 The silicone rubber composition may further contain other components in addition to polysiloxane, copper (I) oxide and a crosslinking agent within a range not impeding the effects of the present invention. By including other components, the desired characteristics can be imparted to the molded product.
 シリコーンゴム組成物を構成するその他の成分としては、公知の成分が適宜使用でき、充填材、添加剤、補強剤、顔料、老化防止剤等が例示でき、好ましい材料としてはシリカ、カーボンブラック、酸化チタン(TiO)等が例示できる。
 その他の成分は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、目的に応じて適宜選択すればよい。
As other components constituting the silicone rubber composition, known components can be used as appropriate, and examples thereof include fillers, additives, reinforcing agents, pigments, anti-aging agents, etc. Preferred materials include silica, carbon black, oxidation titanium (TiO 2) or the like can be exemplified.
Other components may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
 シリコーンゴム組成物は、その他の成分の含有量が10質量%未満であることが好ましい。すなわち、シリコーンゴム組成物は、ポリシロキサン、酸化銅(I)及び架橋剤の総含有量が90質量%以上であることが好ましい。このようにすることで、長期耐熱性により優れた成形品が得られる。
 その他の成分は、その種類に応じて適宜シリコーンゴム組成物における含有量を調節することが好ましく、例えば、シリカは10質量%未満、カーボンブラックは0.5質量%未満、酸化チタンは5質量%未満であることが好ましい。
The silicone rubber composition preferably has a content of other components of less than 10% by mass. That is, the silicone rubber composition preferably has a total content of polysiloxane, copper (I) oxide and crosslinking agent of 90% by mass or more. By doing in this way, the molded article excellent in long-term heat resistance is obtained.
It is preferable to adjust the content of other components in the silicone rubber composition as appropriate according to the type of the component. For example, silica is less than 10% by mass, carbon black is less than 0.5% by mass, and titanium oxide is 5% by mass. It is preferable that it is less than.
 シリコーンゴム組成物は、ポリシロキサン、酸化銅(I)、架橋剤、及び必要に応じてその他の成分を配合することで製造できる。
 各成分の配合時には、上述した成分を添加して、各種装置及び方法により十分に混合することが好ましい。そして、各成分は、これらを順次添加しながら混合してもよいし、全成分を添加してから混合してもよい。
 前記各成分の混合方法は、特に限定されず、例えば、撹拌翼、ボールミル、ロールミル、超音波分散機、混錬機等を使用して、常温又は加熱条件下で所定時間混合する公知の方法を適用すればよい。
 また、シリコーンゴム組成物の製造後に直ちにこれを混錬し、加熱成形して成形品を製造したい場合には、シリコーンゴム組成物の製造を兼ねて混錬を行ってもよい。
A silicone rubber composition can be manufactured by mix | blending polysiloxane, copper (I) oxide, a crosslinking agent, and another component as needed.
At the time of blending each component, it is preferable to add the above-described components and sufficiently mix them with various apparatuses and methods. And each component may be mixed, adding these sequentially, and may be mixed after adding all the components.
The mixing method of each component is not particularly limited. For example, a known method of mixing for a predetermined time at normal temperature or under heating conditions using a stirring blade, a ball mill, a roll mill, an ultrasonic disperser, a kneader, or the like. Apply.
Moreover, when kneading this immediately after manufacture of a silicone rubber composition and manufacturing a molded article by heat-molding, you may knead | mix kneading also as manufacture of a silicone rubber composition.
<成形品>
 本発明に係る成形品は、前記シリコーンゴム組成物を架橋及び成形してなる。この成形品は、前記シリコーンゴム組成物を用いる点以外は、従来のシリコーンゴムの成形品と同様の方法で製造できる。
<Molded product>
The molded product according to the present invention is obtained by crosslinking and molding the silicone rubber composition. This molded product can be produced in the same manner as a conventional silicone rubber molded product except that the silicone rubber composition is used.
 架橋及び成形は別々に行ってもよいし、架橋と成形を並行しておこなってもよい。
 架橋反応は公知の方法で行えばよく、例えば、150~180℃で5~20分間反応させることで、加熱架橋させる方法が例示できる。
Crosslinking and molding may be performed separately, or crosslinking and molding may be performed in parallel.
The crosslinking reaction may be carried out by a known method. For example, a method of heating and crosslinking by reacting at 150 to 180 ° C. for 5 to 20 minutes can be exemplified.
 前記成形品は、前記シリコーンゴム組成物を用いたことにより、耐熱性(瞬間耐熱性)、耐寒性及び柔軟性というシリコーンゴム特有の特性に加え、機械特性を損なうことなく、長期耐熱性を有する。ここで、「長期耐熱性を有する」とは、200℃以上で200時間以上、成形品は物性の変化が抑制され、使用に耐えることを意味する。
 また、前記成形品は、ここまでの説明から明らかなように、特殊な原料を用いずに製造できる。
By using the silicone rubber composition, the molded article has long-term heat resistance without impairing mechanical properties in addition to the characteristics unique to silicone rubber such as heat resistance (instant heat resistance), cold resistance and flexibility. . Here, “having long-term heat resistance” means that a change in physical properties of the molded product is suppressed at 200 ° C. or more for 200 hours or more and endures use.
Moreover, the said molded article can be manufactured without using a special raw material so that it may be clear from the description so far.
 前記成形品は、加熱前の強度及び伸びの値により、機械特性を評価できる。機械特性が劣る成形品は、実用に適さない。そして、加熱後の成形品は、同様に強度(残存強度)及び伸び(残存伸び)の値により、長期耐熱性を評価できる。ここで、成形品の加熱前後の強度及び伸びは、例えば、JIS K 6251号に準拠して測定できるが、測定方法はこれに限定されない。強度及び伸びの測定は、成形品から試料が取得できる場合には、この試料を用いて行えばよく、試料が取得できない場合や、取得した試料での測定が困難である場合には、この成形品の製造に用いたものと同じシリコーンゴム組成物を用いて、例えば、厚さが1~2mm程度のシート状成形品を製造し、このシート状成形品から試料を取得して、測定すればよい。 The mechanical properties of the molded product can be evaluated based on the strength and elongation values before heating. Molded products with inferior mechanical properties are not suitable for practical use. And the molded product after a heating can evaluate long-term heat resistance by the value of intensity | strength (residual strength) and elongation (residual elongation) similarly. Here, the strength and elongation of the molded product before and after heating can be measured in accordance with, for example, JIS K 6251, but the measurement method is not limited thereto. If the sample can be obtained from the molded product, the strength and elongation may be measured using this sample. For example, a sheet-like molded product having a thickness of about 1 to 2 mm is manufactured using the same silicone rubber composition used for manufacturing the product, and a sample is obtained from the sheet-like molded product and measured. Good.
 前記成形品は、前記強度が9.0MPa以上、且つ前記伸びが350%以上の機械特性を有することが好ましい。また、前記残存強度が4.5MPa以上、且つ前記残存伸びが200%以上の長期耐熱性を有することが好ましい。 The molded product preferably has mechanical properties such that the strength is 9.0 MPa or more and the elongation is 350% or more. Moreover, it is preferable that the residual strength has a long-term heat resistance of 4.5 MPa or more and the residual elongation is 200% or more.
 前記成形品は、各種生活用品若しくは工業用品又はこれらに使用される部材の被覆あるいは保護を目的として、これらへの装着用として好適である。前記成形品は、長期耐熱性を有するので、これが装着された製品又は部材は、高い保護作用が得られ、長期間に渡って安定した機能を発揮できる。 The molded article is suitable for mounting on various household goods or industrial articles or for the purpose of covering or protecting the members used therein. Since the molded product has long-term heat resistance, a product or member to which the molded product is attached can obtain a high protection action and can exhibit a stable function over a long period of time.
 前記成形品の形状は、特に限定されず、シート状、筒状等、目的に応じて任意に選択できる。例えば、筒状の成形品は、各種ケーブルが備える被覆層として好適であり、好ましい前記ケーブルとしては電線が例示できる。例えば、シリコーンゴム組成物の酸化銅(I)の含有量を調節することで、成形品の機械特性を向上させることができるので、成形品は、特に、電線の被覆層として好適である。 The shape of the molded product is not particularly limited, and can be arbitrarily selected according to the purpose, such as a sheet shape or a cylindrical shape. For example, a cylindrical molded product is suitable as a coating layer included in various cables, and an electric wire can be exemplified as the preferable cable. For example, since the mechanical properties of the molded product can be improved by adjusting the content of copper (I) oxide in the silicone rubber composition, the molded product is particularly suitable as a coating layer for electric wires.
 成形品の厚さは、目的に応じて任意に設定できる。例えば、シート状の成形品の厚さは、3.0mm以下であることが好ましい。また、筒状の成形品が、シート状の成形品が中空状に丸まった構造を有する場合、このシートの厚さは3.0mm以下であることが好ましい。 The thickness of the molded product can be arbitrarily set according to the purpose. For example, the thickness of the sheet-like molded product is preferably 3.0 mm or less. Further, when the tubular molded product has a structure in which the sheet-shaped molded product is rounded into a hollow shape, the thickness of the sheet is preferably 3.0 mm or less.
 成形方法は、射出成形法、押出成形法、金型成形方等、公知の方法でよく、目的に応じて適宜選択すればよい。 The molding method may be a known method such as an injection molding method, an extrusion molding method, or a mold molding method, and may be appropriately selected according to the purpose.
 以下、具体的実施例により、本発明についてさらに詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
[実施例1~7、比較例1~10]
<シリコーンゴム組成物及び成形品の製造>
 表1に示す組成となるように、ポリシロキサン、酸化銅(I)又は酸化銅(I)以外の金属酸化物(以下、「金属酸化物」と略記する。)、及び架橋剤を添加し、室温(23℃)で二本ロールミルによりこれらを混合して、シリコーンゴム組成物を得た。
 次いで、このシリコーンゴム組成物を使用して、プレス機での160℃、10分間の加熱プレスにより、成形品として厚さ1mmのシートを製造した。
[Examples 1 to 7, Comparative Examples 1 to 10]
<Manufacture of silicone rubber composition and molded product>
Add a polysiloxane, a metal oxide other than copper oxide (I) or copper oxide (I) (hereinafter abbreviated as “metal oxide”), and a crosslinking agent so as to have the composition shown in Table 1. These were mixed by a two-roll mill at room temperature (23 ° C.) to obtain a silicone rubber composition.
Next, using this silicone rubber composition, a sheet having a thickness of 1 mm was produced as a molded article by a heating press at 160 ° C. for 10 minutes using a press.
 なお、表1中の各成分を以下に示す。
 ポリシロキサン:TSE2425U(モメンティブ社製)
 酸化銅(I):昭和化学社製
 架橋剤:TC-12(モメンティブ社製、ジ(3-メチルベンゾイル)パーオキサイド)
 金属酸化物:酸化亜鉛(和光純薬工業社製)、酸化マグネシウム(協和化学工業社製)、酸化スズ(和光純薬工業社製)
In addition, each component in Table 1 is shown below.
Polysiloxane: TSE2425U (manufactured by Momentive)
Copper (I) oxide: Showa Chemical Co., Ltd. Crosslinker: TC-12 (Momentive, Di (3-methylbenzoyl) peroxide)
Metal oxide: Zinc oxide (manufactured by Wako Pure Chemical Industries), magnesium oxide (manufactured by Kyowa Chemical Industry), tin oxide (manufactured by Wako Pure Chemical Industries)
<成形品の評価>
 得られた成形品について、JIS K 6251号に準拠してダンベル状に打ち抜いた試験片を作製し、その強度(MPa)及び伸び(%)を測定した。強度及び伸びはJIS K6521号に準拠して測定した。
 次いで、この試験片をオーブン中において225℃で10日間加熱した後、上記と同じ方法で強度(MPa)及び伸び(%)を測定し、それぞれ残存強度(MPa)及び残存伸び(%)とした。
 これら測定値から、下記評価基準に従って、成形体の機械特性及び長期耐熱性について評価した。結果を表1に示す。
 機械特性:オーブンによる加熱前の試験片について、強度9.0MPa以上、且つ伸び350%以上という結果が得られた試験片は合格(表1において記号「○」で示された試験片)と判定し、それ以外の結果が得られた試験片は不合格(表1において記号「×」で示された試験片)と判定した。
 長期耐熱性:オーブンによる加熱後の試験片について、残存強度4.5MPa以上、且つ残存伸び200%以上という結果が得られた試験片は合格(表1において記号「○」で示された試験片)と判定し、それ以外の結果が得られた試験片は不合格(表1において記号「×」で示された試験片)と判定した。
<Evaluation of molded products>
About the obtained molded product, a test piece punched into a dumbbell shape according to JIS K 6251 was prepared, and its strength (MPa) and elongation (%) were measured. The strength and elongation were measured according to JIS K6521.
Next, after heating the test piece in an oven at 225 ° C. for 10 days, the strength (MPa) and the elongation (%) were measured by the same method as described above to obtain the residual strength (MPa) and the residual elongation (%), respectively. .
From these measured values, the mechanical properties and long-term heat resistance of the molded products were evaluated according to the following evaluation criteria. The results are shown in Table 1.
Mechanical properties: About the test piece before heating by the oven, the test piece obtained with the result of the strength of 9.0 MPa or more and the elongation of 350% or more was determined to be acceptable (the test piece indicated by the symbol “◯” in Table 1). And the test piece from which the result other than that was obtained was determined to be rejected (the test piece indicated by the symbol “x” in Table 1).
Long-term heat resistance: About the test piece after heating in the oven, the test piece obtained with the result that the residual strength was 4.5 MPa or more and the residual elongation was 200% or more passed (the test piece indicated by the symbol “◯” in Table 1). The test piece from which the other results were obtained was judged as rejected (the test piece indicated by the symbol “x” in Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、実施例1~7の成形品は、ポリシロキサン100質量部に対して、0.1~15質量部の酸化銅(I)を含有するシリコーンゴム組成物を用いたことで、加熱前後の強度及び伸びの値が大きく、機械特性及び長期耐熱性の両方に優れていた。
 これに対して、比較例1~10の成形品は、機械特性及び長期耐熱性の少なくとも一方が劣っていた。具体的には、酸化銅(I)及び金属酸化物をいずれも含有しないシリコーンゴム組成物を用いた比較例1、ポリシロキサン100質量部に対して、20質量部の酸化銅(I)を含有するシリコーンゴム組成物を用いた比較例2、酸化銅(I)に代わり、その他の金属酸化物を含有するシリコーンゴム組成物を用いた比較例3~7及び9~10の成形品は、長期耐熱性に劣っていた。そして、比較例6及び8の成形品は、機械特性も劣っていた。比較例8の長期耐熱性は直接確認していないが、比較例7の結果から、同様に長期耐熱性が劣ることは明らかである。
 このように、酸化銅(I)の含有量、配合する金属酸化物の種類が異なることで、シリコーンゴム組成物から得られた成形品の長期耐熱性が大きく変化することが確認された。
As is apparent from the above results, the silicone rubber compositions containing 0.1 to 15 parts by mass of copper (I) oxide were used for the molded articles of Examples 1 to 7 with respect to 100 parts by mass of polysiloxane. Thus, the strength and elongation values before and after heating were large, and both mechanical properties and long-term heat resistance were excellent.
In contrast, the molded products of Comparative Examples 1 to 10 were inferior in at least one of mechanical properties and long-term heat resistance. Specifically, Comparative Example 1 using a silicone rubber composition containing neither copper oxide (I) nor metal oxide, containing 20 parts by mass of copper (I) oxide with respect to 100 parts by mass of polysiloxane. Comparative Example 2 using a silicone rubber composition, and the molded products of Comparative Examples 3-7 and 9-10 using a silicone rubber composition containing other metal oxides instead of copper (I) oxide It was inferior in heat resistance. And the molded product of Comparative Examples 6 and 8 was also inferior in mechanical properties. Although the long-term heat resistance of Comparative Example 8 has not been confirmed directly, it is clear from the results of Comparative Example 7 that the long-term heat resistance is similarly inferior.
Thus, it was confirmed that the long-term heat resistance of the molded article obtained from the silicone rubber composition is greatly changed by the content of copper (I) oxide and the type of metal oxide to be blended.
 本発明は、各種生活用品又は工業用品において、被覆や保護等の目的に使用する成形品として利用可能である。 The present invention can be used as a molded product used for various purposes such as covering and protection in various daily goods or industrial goods.

Claims (4)

  1.  一分子中に複数個の重合性不飽和結合を有するポリシロキサン100質量部に対して、0.1~15質量部の酸化銅(I)、及び架橋剤を含有することを特徴とするシリコーンゴム組成物。 Silicone rubber characterized by containing 0.1 to 15 parts by mass of copper (I) oxide and a crosslinking agent with respect to 100 parts by mass of polysiloxane having a plurality of polymerizable unsaturated bonds in one molecule Composition.
  2.  前記酸化銅(I)を前記ポリシロキサン100質量部に対して、0.1~10質量部含有することを特徴とする請求項1に記載のシリコーンゴム組成物。 The silicone rubber composition according to claim 1, wherein the copper oxide (I) is contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane.
  3.  請求項1又は2に記載のシリコーンゴム組成物を架橋及び成形してなることを特徴とする成形品。 A molded article obtained by crosslinking and molding the silicone rubber composition according to claim 1 or 2.
  4.  請求項3に記載の成形品を被覆層として備えたことを特徴とする電線。 An electric wire comprising the molded product according to claim 3 as a coating layer.
PCT/JP2012/082806 2011-12-21 2012-12-18 Silicone rubber composition, molded article and electric wire WO2013094610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-279747 2011-12-21
JP2011279747A JP5712121B2 (en) 2011-12-21 2011-12-21 Silicone rubber composition, molded product and electric wire

Publications (1)

Publication Number Publication Date
WO2013094610A1 true WO2013094610A1 (en) 2013-06-27

Family

ID=48668497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082806 WO2013094610A1 (en) 2011-12-21 2012-12-18 Silicone rubber composition, molded article and electric wire

Country Status (2)

Country Link
JP (1) JP5712121B2 (en)
WO (1) WO2013094610A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220345A1 (en) * 2018-05-16 2019-11-21 3M Innovative Properties Company Electric field grading composition, methods of making the same, and composite articles including the same
WO2020032143A1 (en) * 2018-08-09 2020-02-13 日星電気株式会社 Insulated electric wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750420B2 (en) * 2012-09-25 2015-07-22 株式会社フジクラ Silicone rubber composition, molded product and electric wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131813A (en) * 2004-11-09 2006-05-25 Shin Etsu Chem Co Ltd Self adhesive thermosetting-accelerating-type liquid silicone rubber composition
JP2006137787A (en) * 2004-11-10 2006-06-01 Shin Etsu Chem Co Ltd Autohesive thermoset-promoting liquid silicone rubber composition
JP2007106905A (en) * 2005-10-14 2007-04-26 Shin Etsu Chem Co Ltd Heat curing type liquid silicone rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131813A (en) * 2004-11-09 2006-05-25 Shin Etsu Chem Co Ltd Self adhesive thermosetting-accelerating-type liquid silicone rubber composition
JP2006137787A (en) * 2004-11-10 2006-06-01 Shin Etsu Chem Co Ltd Autohesive thermoset-promoting liquid silicone rubber composition
JP2007106905A (en) * 2005-10-14 2007-04-26 Shin Etsu Chem Co Ltd Heat curing type liquid silicone rubber composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220345A1 (en) * 2018-05-16 2019-11-21 3M Innovative Properties Company Electric field grading composition, methods of making the same, and composite articles including the same
US11873403B2 (en) 2018-05-16 2024-01-16 3M Innovative Properties Company Electric field grading composition, methods of making the same, and composite articles including the same
WO2020032143A1 (en) * 2018-08-09 2020-02-13 日星電気株式会社 Insulated electric wire
CN112384996A (en) * 2018-08-09 2021-02-19 日星电气株式会社 Insulated wire
JPWO2020032143A1 (en) * 2018-08-09 2021-08-12 日星電気株式会社 Insulated wire
CN112384996B (en) * 2018-08-09 2023-02-17 日星电气株式会社 Insulated wire
JP7492454B2 (en) 2018-08-09 2024-05-29 日星電気株式会社 Insulated wire and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013129740A (en) 2013-07-04
JP5712121B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
TWI617623B (en) In situ method for forming thermally conductive thermal radical cure silicone composition
JP5219367B2 (en) Addition-curing silicone rubber composition and molded article thereof
JP5530080B2 (en) Curable silicone rubber composition
CN101967281A (en) Flame-retardant silicone rubber composition and preparation method thereof
US8912262B2 (en) Heat curable silicone rubber composition
EP1726622A1 (en) Heat conductive silicone composition
JP2011042749A (en) Organopolysilmethylene composition and cured product thereof
JP5712121B2 (en) Silicone rubber composition, molded product and electric wire
CN110791103A (en) Novel conductive liquid silicone rubber and preparation method and application thereof
JPH0564659B2 (en)
JP5299850B2 (en) Rubber composition and insulated wire coated therewith
US20200017685A1 (en) Silicone rubber composite and method for producing same
JP5750420B2 (en) Silicone rubber composition, molded product and electric wire
JP2007186544A (en) Electroconductive silicone rubber composition
JP2009270101A (en) Curable silicone composition for semiconductor and semiconductor device therewith
JP6184629B1 (en) Silicone rubber composition, molded product and electric wire
JP3838562B2 (en) Oil-bleedable silicone rubber composition and method for producing the same
KR101905183B1 (en) Heat curable silicone rubber compositions and manufacturing method of the same
JP4704713B2 (en) Silicone rubber composition
JPH0693186A (en) Oil-bleeding silicone rubber composition and cure product thereof
KR20160008234A (en) Aluminium chelate compound, and room-temperature-curable resin composition including same
WO2008138944A2 (en) Use of ferrocene or ferrocene-derivatives for producing insulators
JP3894099B2 (en) Flame retardant silicone rubber composition
JP2019023267A (en) Silicone rubber composition, molded article, and electric wire
JP2020164742A (en) Method for producing polymer-coated inorganic filler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859356

Country of ref document: EP

Kind code of ref document: A1