JPWO2020032143A1 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JPWO2020032143A1
JPWO2020032143A1 JP2020535857A JP2020535857A JPWO2020032143A1 JP WO2020032143 A1 JPWO2020032143 A1 JP WO2020032143A1 JP 2020535857 A JP2020535857 A JP 2020535857A JP 2020535857 A JP2020535857 A JP 2020535857A JP WO2020032143 A1 JPWO2020032143 A1 JP WO2020032143A1
Authority
JP
Japan
Prior art keywords
insulating layer
insulated wire
ppm
remaining
residual amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020535857A
Other languages
Japanese (ja)
Inventor
直樹 太田
直樹 太田
優介 黒澤
優介 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Publication of JPWO2020032143A1 publication Critical patent/JPWO2020032143A1/en
Priority to JP2024012208A priority Critical patent/JP2024032896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計を1500ppm以下とすることを特徴とする。特に、絶縁層がオルガノポリシロキサンを含有する場合は、D4〜D10の低分子環状シロキサンを低減させる。また、導体の周囲に、第1絶縁層と第2絶縁層を含む少なくとも2つの絶縁層を被覆した絶縁電線である場合には、全ての絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下であることを特徴とする。The total residual amount of the volatile organic compound and the quasi-volatile organic compound having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the insulating layer is 1500 ppm or less. In particular, when the insulating layer contains organopolysiloxane, the small molecule cyclic siloxanes D4 to D10 are reduced. Further, in the case of an insulated wire in which at least two insulating layers including a first insulating layer and a second insulating layer are coated around the conductor, the boiling point remaining in all the insulating layers is in the range of 150 ° C. to 360 ° C. The total residual amount of the volatile organic compound and the semi-volatile organic compound in the above is 1500 ppm or less.

Description

本発明は絶縁電線に関するものであり、特に自動車に使用される、高電圧電力ケーブルに好適なものである。 The present invention relates to an insulated wire, and is particularly suitable for a high voltage power cable used in an automobile.

自動車等の車両に使用される絶縁電線は、機械特性、難燃性、耐熱性、耐寒性等、種々の特性が要求されており、要求される特性の1つに発煙特性がある。 Insulated electric wires used in vehicles such as automobiles are required to have various characteristics such as mechanical characteristics, flame retardancy, heat resistance, and cold resistance, and one of the required characteristics is smoke emission characteristics.

昨今は、電気によるモーター駆動を利用した電気自動車、モーター駆動と従来のガソリンエンジン駆動を併用したハイブリッド自動車が登場している。このようなモーター駆動を使用する自動車は、モーター駆動のために高電圧、大電流を供給する必要がある。
高電圧、大電流を供給する絶縁電線は高温となりやすく、一般的に高温環境における絶縁電線の発煙特性は低下する。
Recently, electric vehicles that use electric motor drive and hybrid vehicles that use both motor drive and conventional gasoline engine drive have appeared. An automobile using such a motor drive needs to supply a high voltage and a large current for the motor drive.
Insulated wires that supply high voltage and large current tend to reach high temperatures, and the smoke generation characteristics of insulated wires in a high temperature environment generally deteriorate.

発煙特性を改善する手法の1つとして、絶縁電線の導体断面積を増やし、通電時の発熱を減らす方法があるが、高電圧、大電流を供給する絶縁電線は、元から導体断面積が大きく設計されていることが多く、更なる導体断面積の増大は絶縁電線の肥大化を招き、絶縁電線の配設スペースの確保が困難、重量の増加による燃費の悪化と言った問題が存在する。 One of the methods to improve the smoke generation characteristics is to increase the conductor cross-sectional area of the insulated wire and reduce the heat generation when energized. However, the insulated wire that supplies high voltage and large current has a large conductor cross-sectional area from the beginning. It is often designed, and further increase in conductor cross-sectional area leads to enlargement of the insulated wire, it is difficult to secure a space for arranging the insulated wire, and there are problems such as deterioration of fuel efficiency due to an increase in weight.

燃焼時の発煙量を低減する方法としては、絶縁電線に使用する絶縁材料にハロゲンを使用しない方法(特許文献1)や、テトラフルオロエチレンと炭素数2〜4のαオレフィンとを重合させて得られるテトラフルオロエチレン−αオレフィン共重合体を含むベースポリマを含有する含フッ素エラストマ組成物を使用する方法(特許文献2)などが知られている。 As a method for reducing the amount of smoke generated during combustion, a method in which halogen is not used as the insulating material used for the insulated electric wire (Patent Document 1) or a method obtained by polymerizing tetrafluoroethylene and an α-olefin having 2 to 4 carbon atoms is obtained. A method of using a fluoroelastomer composition containing a base polymer containing a tetrafluoroethylene-α-olefin copolymer (Patent Document 2) is known.

しかしながら、これらの方法はあくまで絶縁電線の燃焼時という非常事態における発煙量の低減を意図したものであり、燃焼に至る前の安全指標としての意味合いが強い発煙特性の向上に必ずしも寄与するものではない。 However, these methods are intended to reduce the amount of smoke generated in an emergency situation such as when an insulated wire is burned, and do not necessarily contribute to the improvement of smoke generation characteristics, which has a strong meaning as a safety index before combustion. ..

また、図2に示したように絶縁層が複数ある場合、絶縁層が一層のみの絶縁電線と比べて、発煙特性が悪化する傾向がある。 Further, as shown in FIG. 2, when there are a plurality of insulating layers, the smoke emitting characteristics tend to be deteriorated as compared with an insulated wire having only one insulating layer.

自動車向けの高電圧電力ケーブルの一部では、図4に示したように、第1絶縁層の外周にシールド層を設け、さらに第2絶縁層を設けた態様のものも採用されており、このような態様の高電圧電力ケーブルにおいても発煙特性の向上が求められている。 As shown in FIG. 4, some of the high-voltage power cables for automobiles are provided with a shield layer on the outer periphery of the first insulating layer and further provided with a second insulating layer. Improvement of smoke generation characteristics is also required for high-voltage power cables of such a mode.

特開2000−191845号公報Japanese Unexamined Patent Publication No. 2000-191845 特開2017−33784号公報Japanese Unexamined Patent Publication No. 2017-33784

本発明の課題は、導体断面積を増やすことなく発煙特性が改善された絶縁電線を提供することにある。また、複数の絶縁層を有する態様であっても、優れた発煙特性を有する絶縁電線を提供することにある。 An object of the present invention is to provide an insulated wire having improved smoke emitting characteristics without increasing the cross-sectional area of the conductor. Another object of the present invention is to provide an insulated electric wire having excellent smoke emitting characteristics even in a mode having a plurality of insulating layers.

本発明者は、絶縁電線の発煙メカニズムを詳細に分析した結果、絶縁層に含まれる揮発性成分を低減することで、また、揮発性有機化合物類の低減処理時における揮発性有機化合物類の挙動に注目し、内周側の絶縁層に再吸着される現象を抑制することで、従来の問題を解決するに至った。 As a result of detailed analysis of the smoke generation mechanism of the insulated wire, the present inventor has reduced the volatile components contained in the insulating layer and the behavior of the volatile organic compounds during the reduction treatment of the volatile organic compounds. By paying attention to the above and suppressing the phenomenon of re-adsorption to the insulating layer on the inner peripheral side, the conventional problem has been solved.

本発明は、導体の周囲に絶縁層を被覆した絶縁電線であって、絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下であることを特徴とする。 The present invention is an insulated wire in which an insulating layer is coated around a conductor, and the total residual amount of volatile organic compounds and quasi-volatile organic compounds having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the insulating layer is It is characterized by being 1500 ppm or less.

また、本発明は、導体の周囲に、第1絶縁層と第2絶縁層を含む少なくとも2つの絶縁層を被覆した絶縁電線であって、全ての絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下であることを特徴とする。 Further, the present invention is an insulated wire in which at least two insulating layers including a first insulating layer and a second insulating layer are coated around a conductor, and the boiling points remaining in all the insulating layers are 150 ° C. to 360 ° C. The total residual amount of the volatile organic compound and the quasi-volatile organic compound in the range of is 1500 ppm or less.

本発明によれば、導体断面積を増大させることなく、発煙特性を改善することができ、また、絶縁層を複数有する絶縁電線であっても、良好な発煙特性を得ることができる。 According to the present invention, the smoke emitting characteristics can be improved without increasing the cross-sectional area of the conductor, and good smoke emitting characteristics can be obtained even with an insulated wire having a plurality of insulating layers.

本発明の絶縁電線の基本的構造を示す図である。It is a figure which shows the basic structure of the insulated wire of this invention. 本発明の絶縁電線の一例で、絶縁層を複数有する態様を示す図である。It is an example of the insulated wire of this invention, and is the figure which shows the aspect which has a plurality of insulating layers. 本発明の絶縁電線の一例で、透過抑制層を有する態様を示す図である。It is an example of the insulated wire of this invention, and is the figure which shows the aspect which has the transmission | transmission suppression layer. 本発明の絶縁電線の一例で、シールド層を有する態様を示す図である。It is an example of the insulated wire of this invention, and is the figure which shows the aspect which has a shield layer. 本発明の絶縁電線の一例で、透過抑制層とシールド層を有する態様を示す図である。It is an example of the insulated wire of this invention, and is the figure which shows the aspect which has a transmission suppression layer and a shield layer.

以下、本発明の基本的構成を、添付図面を参照しながら説明する。図1において、1は本発明の絶縁電線、10は導体、12は絶縁層である。なお、本発明の構成は図1に限定されず、本発明の思想の範囲内において変更が可能である。
本発明で特徴的なことは、絶縁層12に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下となっていることである。
Hereinafter, the basic configuration of the present invention will be described with reference to the accompanying drawings. In FIG. 1, 1 is an insulated wire of the present invention, 10 is a conductor, and 12 is an insulating layer. The configuration of the present invention is not limited to FIG. 1, and can be changed within the scope of the idea of the present invention.
What is characteristic of the present invention is that the total residual amount of the volatile organic compound and the quasi-volatile organic compound in which the boiling point remaining in the insulating layer 12 is in the range of 150 ° C. to 360 ° C. is 1500 ppm or less. be.

揮発性有機化合物(VOC)は大気中に気体で存在する有機化合物のうち沸点が50〜260℃程度のものの総称、準揮発性有機加工物(SVOC)は大気中に気体で存在する有機化合物のうち沸点が260〜400℃程度のものの総称である。
以下、特に断りが無い限り、「VOC」を揮発性有機化合物と準揮発性有機化合物の両者を指す言葉として使用する。
Volatile organic compounds (VOCs) are a general term for organic compounds that exist in the atmosphere as a gas and have a boiling point of about 50 to 260 ° C. Semi-volatile organic compounds (SVOCs) are organic compounds that exist in the atmosphere as a gas. It is a general term for those having a boiling point of about 260 to 400 ° C.
Hereinafter, unless otherwise specified, "VOC" is used as a term referring to both volatile organic compounds and semi-volatile organic compounds.

絶縁電線1の発煙特性は、自動車規格JASO D609に記載された試験によって測定される。具体的には、一定の長さの絶縁電線1を試料として準備し、試験温度に設定された環境下で水平に維持する。電流値を変えて何種類かの直流電流を試料に流し、発煙が確認されるまでの時間を測定する。試験温度は何種類か設定され、試験温度ごとに電流値と発煙開始時間の関係を求め、その結果が絶縁電線1の発煙特性として扱われる。 The smoke emitting characteristics of the insulated wire 1 are measured by the test described in the Japanese Automotive Standards Organization JASO D609. Specifically, an insulated wire 1 having a certain length is prepared as a sample and maintained horizontally in an environment set to a test temperature. Various types of direct current are passed through the sample by changing the current value, and the time until smoke is confirmed is measured. Several types of test temperatures are set, the relationship between the current value and the smoke emission start time is obtained for each test temperature, and the result is treated as the smoke emission characteristic of the insulated wire 1.

発煙特性試験における発煙は、高温環境下に置かれた絶縁電線1に電流を流し、高温と通電による発熱によって絶縁層12が劣化し、劣化した絶縁層12の材料が目視可能な煙として蒸発・飛散することで発生する。 In the smoke generation characteristic test, a current is passed through the insulated wire 1 placed in a high temperature environment, the insulating layer 12 deteriorates due to heat generated by the high temperature and energization, and the deteriorated material of the insulating layer 12 evaporates as visible smoke. It is generated by scattering.

しかしながら、絶縁層12にVOCが残存している場合、絶縁層12の耐熱温度や、絶縁電線1の短時間許容温度に到達する前にVOCの蒸発・飛散が始まり、飛散したVOCが目視可能な煙となるため、絶縁電線1及び絶縁層12が高い耐熱性を有していたとしても、発煙特性が悪化する場面が存在する。 However, when the VOC remains in the insulating layer 12, the VOC starts to evaporate and scatter before reaching the heat resistant temperature of the insulating layer 12 and the short-time allowable temperature of the insulated wire 1, and the scattered VOC is visible. Since it becomes smoke, even if the insulating electric wire 1 and the insulating layer 12 have high heat resistance, there are situations where the smoke emitting characteristics deteriorate.

そのため、絶縁層12に残存するVOCを低減させることで、VOC由来の発煙が低減するため、絶縁層12が本来有する耐熱性に応じた発煙特性を得ることができ、結果として絶縁電線1の発煙特性が向上する。 Therefore, by reducing the VOC remaining in the insulating layer 12, smoke generation derived from VOC is reduced, so that smoke generation characteristics corresponding to the heat resistance inherent in the insulating layer 12 can be obtained, and as a result, smoke generation of the insulating wire 1 can be obtained. The characteristics are improved.

一般的に発煙特性が要求される絶縁電線1は耐熱性も要求されることが多く、150〜200℃程度の耐熱温度を有する電線の発煙特性(発煙温度)は、耐熱温度よりも十分高い温度が要求されることが多い。このため、150℃以上の沸点を有するVOCを低減することで、効果的に絶縁電線1の発煙特性を向上させることができる。 Insulated electric wires 1 that are generally required to have smoke emitting characteristics are often required to have heat resistance, and the smoke emitting characteristics (smoke temperature) of an electric wire having a heat resistant temperature of about 150 to 200 ° C. are sufficiently higher than the heat resistant temperature. Is often required. Therefore, by reducing the VOC having a boiling point of 150 ° C. or higher, the smoke generation characteristics of the insulated wire 1 can be effectively improved.

具体的には、沸点が150℃から360℃の範囲にあるVOCの残存量を1500ppm以下とすることで、発煙特性試験において発生する煙の原因となるVOCの大半が除去されるため、発煙特性が向上する。 Specifically, by setting the residual amount of VOCs having a boiling point in the range of 150 ° C. to 360 ° C. to 1500 ppm or less, most of the VOCs that cause smoke generated in the smoke emission characteristic test are removed, so that the smoke emission characteristics Is improved.

VOCの残存量の低下に伴って発煙特性が向上する傾向にあるため、より好ましくは沸点が150℃から360℃の範囲にあるVOCの残存量を1000ppm以下とするのが良い。 Since the smoke emission characteristics tend to improve as the residual amount of VOC decreases, it is more preferable that the residual amount of VOC having a boiling point in the range of 150 ° C. to 360 ° C. is 1000 ppm or less.

本発明は、絶縁層12を構成する材料がオルガノポリシロキサンを含有している際に、特に好適に利用できる。 The present invention can be particularly preferably used when the material constituting the insulating layer 12 contains an organopolysiloxane.

オルガノポリシロキサンを含有する絶縁材料の代表例として、柔軟性、絶縁性、耐熱性、耐寒性等に優れたシリコーンゴムが知られている。通常、シリコーンゴムはシリコーンゴムコンパウンドに加硫剤、顔料などを配合・混錬し、これを所定の条件で加熱、加硫して硬化して使用される。 As a typical example of an insulating material containing an organopolysiloxane, silicone rubber having excellent flexibility, insulating property, heat resistance, cold resistance and the like is known. Usually, silicone rubber is used by blending and kneading a vulcanizing agent, a pigment, etc. with a silicone rubber compound, heating and vulcanizing the silicone rubber under predetermined conditions, and then curing the silicone rubber.

シリコーンゴムコンパウンドは環状ジメチルシロキサン4量体(D4)を開環重合して得られたジメチルポリシロキサンを主成分とするが、この開環重合反応が可逆的な反応であるために、シリコーンゴムコンパウンド中にはいわゆる低分子環状シロキサンが残存する。 The silicone rubber compound contains dimethylpolysiloxane obtained by ring-opening polymerization of cyclic dimethylsiloxane tetramer (D4) as a main component. However, since this ring-opening polymerization reaction is a reversible reaction, the silicone rubber compound So-called low molecular weight cyclic siloxane remains inside.

すなわち、絶縁層12を構成する材料がオルガノポリシロキサンを含有している場合は、絶縁層12に低分子環状シロキサンが残存することになる。低分子環状シロキサンはVOCの一種であり、絶縁電線1の発煙特性を下げる要因の一つとなる。 That is, when the material constituting the insulating layer 12 contains an organopolysiloxane, the small molecule cyclic siloxane remains in the insulating layer 12. The small molecule cyclic siloxane is a type of VOC and is one of the factors that lower the smoke generation characteristics of the insulated wire 1.

一般的に、環状ジメチルシロキサン3量体(D3)〜環状ジメチルシロキサン10量体(D10)が低分子環状シロキサンとして扱われている。環状ジメチルシロキサンにおいて、D3の沸点は大気圧下で134℃、D4の沸点は大気圧下で175℃であり、D5、D6・・・と分子量が増えるにつれて、沸点が増加し、D10の沸点は大気圧下で360℃程度と推測されている。D3の沸点は比較的小さいため絶縁電線1の製造過程で大半が蒸発し、残存量は少ないが、D4〜D10についてはD3と比較して残存量が多い。 Generally, cyclic dimethylsiloxane trimers (D3) to cyclic dimethylsiloxane dequotes (D10) are treated as small molecule cyclic siloxanes. In cyclic dimethylsiloxane, the boiling point of D3 is 134 ° C. under atmospheric pressure, the boiling point of D4 is 175 ° C. under atmospheric pressure, and the boiling point increases as the molecular weight increases, such as D5, D6 ... It is estimated to be about 360 ° C under atmospheric pressure. Since the boiling point of D3 is relatively small, most of it evaporates in the manufacturing process of the insulated wire 1, and the residual amount is small, but the residual amount of D4 to D10 is larger than that of D3.

なお、絶縁電線1の発煙特性を下げる要因の一つである低分子環状シロキサンは、環状ジメチルシロキサンに限定されるものではない。シロキサン結合のケイ素原子に結合する有機置換基はメチル基だけでなく、エチル基、ビニル基、フェニル基等が挙げられ、これらの組み合わせも任意である。
また、絶縁電線1の発煙特性を下げる要因は、低分子環状シロキサンの他に、安息香酸や安息香酸の誘導体等の昇華性物質が挙げられる。
The small molecule cyclic siloxane, which is one of the factors that lower the smoke generation characteristics of the insulated wire 1, is not limited to the cyclic dimethylsiloxane. Examples of the organic substituent bonded to the silicon atom of the siloxane bond include not only a methyl group but also an ethyl group, a vinyl group, a phenyl group and the like, and a combination thereof is also arbitrary.
In addition to the small molecule cyclic siloxane, sublimable substances such as benzoic acid and derivatives of benzoic acid can be mentioned as factors that lower the smoke generation characteristics of the insulated wire 1.

このため、オルガノポリシロキサンを含有する絶縁層12を用いた絶縁電線1において、沸点が150℃から360℃の範囲にあるVOCであるD4〜D10の低分子環状シロキサンの残存量合計が、1500ppm以下であることで、絶縁電線1の発煙特性を向上させることができる。 Therefore, in the insulated wire 1 using the insulating layer 12 containing the organopolysiloxane, the total residual amount of the small molecule cyclic siloxanes D4 to D10, which are VOCs having a boiling point in the range of 150 ° C. to 360 ° C., is 1500 ppm or less. Therefore, the smoke generation characteristics of the insulated wire 1 can be improved.

オルガノポリシロキサンを含有する絶縁層12の材料としては、各種のシリコーンゴムや、シリコーンゴムと他の材料の混合物などが使用できる。 As the material of the insulating layer 12 containing the organopolysiloxane, various silicone rubbers, a mixture of silicone rubber and other materials, and the like can be used.

絶縁層12をシリコーンゴムと他の材料の混合物とする際、シリコーンゴムの混合割合が増加するほど、低分子環状シロキサンの残存量も増加し発煙特性が悪化する傾向にあるが、シリコーンゴムの混合割合が高いものであっても、沸点が150℃から360℃の範囲にある低分子環状シロキサンの残存量合計を1500ppm以下とすることで、発煙特性を向上させることができる。 When the insulating layer 12 is a mixture of silicone rubber and other materials, as the mixing ratio of silicone rubber increases, the residual amount of low-molecular-weight cyclic siloxane tends to increase and the smoking characteristics tend to deteriorate. Even if the ratio is high, the smoke generation characteristics can be improved by setting the total residual amount of low molecular weight cyclic siloxane in the range of 150 ° C. to 360 ° C. to 1500 ppm or less.

本来、低分子環状シロキサンが特に多く残存するシリコーンゴム単体で構成された絶縁層12であっても、沸点が150℃から360℃の範囲にある低分子環状シロキサンの残存量合計を1500ppm以下とすることで、発煙特性を向上させることができるため、絶縁層12がシリコーンゴム単体の場合には、特に効果が高くなる。 Originally, even in the insulating layer 12 composed of a single silicone rubber in which a particularly large amount of low-molecular-weight cyclic siloxane remains, the total residual amount of low-molecular-weight cyclic siloxane having a boiling point in the range of 150 ° C. to 360 ° C. is set to 1500 ppm or less. As a result, the smoke generation characteristics can be improved, so that the effect is particularly high when the insulating layer 12 is a single silicone rubber.

オルガノポリシロキサンを含有する絶縁層12を用いて絶縁電線1を構成する場合、絶縁層12に残存するD4〜D6の低分子環状シロキサンのうち、少なくとも1つの残存量を1000ppm以下とするのが好ましい。 When the insulating electric wire 1 is constructed by using the insulating layer 12 containing the organopolysiloxane, the residual amount of at least one of the small molecule cyclic siloxanes D4 to D6 remaining in the insulating layer 12 is preferably 1000 ppm or less. ..

D4〜D6の低分子環状シロキサンは揮発性有機化合物に属し、高沸点にも関わらず蒸気圧が大きいため、室温でも比較的揮発しやすいとともに、絶縁層12に残存するVOCの大半を占める傾向がある。このような性質を有するD4〜D6の低分子環状シロキサンのうち、少なくとも1つの残存量を1000ppm以下とすることで発煙特性が改善される。 The small molecule cyclic siloxanes D4 to D6 belong to volatile organic compounds and have a high vapor pressure despite their high boiling points, so they tend to volatilize relatively easily even at room temperature and occupy most of the VOC remaining in the insulating layer 12. be. Smoke emission characteristics are improved by setting the residual amount of at least one of the small molecule cyclic siloxanes of D4 to D6 having such properties to 1000 ppm or less.

D4〜D6の低分子環状シロキサンのうち、少なくとも1つの残存量を1000ppmとすることで発煙特性の改善効果を得られるが、低分子環状シロキサンの残存量合計を1500ppm以下とする観点から、D6の残存量を100ppm以下とするのが好ましい。望ましくは、D4〜D6の低分子環状シロキサンの残存量の合計が100ppm以下とするのがより好ましい。 The effect of improving smoke emission characteristics can be obtained by setting the residual amount of at least one of the small molecule cyclic siloxanes D4 to D6 to 1000 ppm, but from the viewpoint of keeping the total residual amount of the small molecule cyclic siloxane to 1500 ppm or less, D6 The residual amount is preferably 100 ppm or less. More preferably, the total residual amount of the small molecule cyclic siloxanes D4 to D6 is 100 ppm or less.

D4〜D6の低分子環状シロキサンのうち、D6は比較的多く絶縁層12に残存する傾向があるため、D6の残存量を集中的に低減させることで、効果的に発煙特性を改善することができる。また、D6の残存量の低減に伴って、D4、D5の残存量も低減する傾向にあり、D4〜D6の低分子環状シロキサンの残存量の合計を100ppm以下とすることで発煙特性がより一層改善される。 Of the small molecule cyclic siloxanes D4 to D6, D6 tends to remain in the insulating layer 12 in a relatively large amount. Therefore, by intensively reducing the residual amount of D6, the smoke emission characteristics can be effectively improved. can. Further, as the residual amount of D6 is reduced, the residual amount of D4 and D5 tends to be reduced, and by setting the total residual amount of the small molecule cyclic siloxanes of D4 to D6 to 100 ppm or less, the smoke emitting characteristics are further improved. It will be improved.

オルガノポリシロキサンを含有する絶縁層12を用いて絶縁電線1を構成する場合、D4〜D8の低分子環状シロキサンの残存量合計を500ppm以下とするのが実用的な範囲の設計を鑑みた場合に好適である。 When the insulating electric wire 1 is constructed by using the insulating layer 12 containing the organopolysiloxane, the total residual amount of the small molecule cyclic siloxanes D4 to D8 should be 500 ppm or less in consideration of the design in a practical range. Suitable.

D4〜D6の低分子環状シロキサンに加えて、D7、D8発煙特性試験において特に目視可能な煙となりやすいVOCであるため、D8の残存量を集中的に低下させ、これに付随してD7の残存量も低下させることで、絶縁電線1の発煙特性をより効果的に向上させることができる。
望ましくは、D8の低分子環状シロキサンの残存量を300ppm以下とするのが好ましい。
In addition to the small molecule cyclic siloxanes D4 to D6, the VOCs are particularly prone to visible smoke in the D7 and D8 smoke emission characteristic tests, so the residual amount of D8 is intensively reduced, and the residual amount of D7 accompanies this. By reducing the amount, the smoke generation characteristics of the insulated wire 1 can be improved more effectively.
Desirably, the residual amount of the small molecule cyclic siloxane of D8 is preferably 300 ppm or less.

オルガノポリシロキサンを含有する絶縁層12を用いて絶縁電線1を構成する場合、さらに好ましくは、D4〜D10の低分子環状シロキサンの残存量合計を400ppm以下とするのが良い。 When the insulating electric wire 1 is constructed by using the insulating layer 12 containing the organopolysiloxane, it is more preferable that the total residual amount of the small molecule cyclic siloxanes D4 to D10 is 400 ppm or less.

D9、D10の低分子環状シロキサンは、JCS(日本電線工業会)規格168号で定義された一般的なシリコーンゴム被覆絶縁電線の短期許容温度である300℃付近で蒸発しやすくなり、高温域での発煙特性に影響する。D9、D10の残存量も考慮し、D10の低分子環状シロキサンの残存量合計を200ppm以下とし、これに付随してD9の残存量も低下させることで、絶縁電線1の発煙温度をシリコーンゴム被覆絶縁電線の短期許容温度に近づけることができ、発煙特性をより一層向上させることができる。
望ましくは、D9、D10の低分子環状シロキサンの残存量の合計を300ppm以下とするのが好ましい。
The small molecule cyclic siloxanes of D9 and D10 tend to evaporate at around 300 ° C, which is the short-term allowable temperature of general silicone rubber-coated insulated wires defined by JCS (Japan Electric Wire Manufacturers Association) Standard No. 168, and in the high temperature range. Affects the smoke characteristics of. Considering the residual amount of D9 and D10, the total residual amount of the small molecule cyclic siloxane of D10 is set to 200 ppm or less, and the residual amount of D9 is also reduced accordingly, so that the smoke generation temperature of the insulated wire 1 is coated with silicone rubber. The short-term allowable temperature of the insulated wire can be approached, and the smoke generation characteristics can be further improved.
Desirably, the total residual amount of the small molecule cyclic siloxanes of D9 and D10 is preferably 300 ppm or less.

絶縁層12に残存するVOCの残存量を低減させる方法としては、以下の方法が挙げられる。 Examples of the method for reducing the residual amount of VOC remaining in the insulating layer 12 include the following methods.

(方法1)絶縁電線1を所定の温度、時間で加熱して、絶縁層12中のVOCを強制的に蒸発させる。 (Method 1) The insulated wire 1 is heated at a predetermined temperature and time to forcibly evaporate the VOC in the insulating layer 12.

(方法2)絶縁電線1を溶媒に浸漬させ、絶縁層12中のVOCを溶媒中に溶出させる。 (Method 2) The insulated wire 1 is immersed in a solvent, and the VOC in the insulating layer 12 is eluted in the solvent.

(方法3)低VOCタイプの絶縁材料を絶縁層12に用いる。 (Method 3) A low VOC type insulating material is used for the insulating layer 12.

(方法4)オルガノポリシロキサンを主とする材料と、低VOCタイプの絶縁材料とを混合して形成した材料を絶縁層12に用いる。 (Method 4) A material formed by mixing a material mainly composed of organopolysiloxane and a low VOC type insulating material is used for the insulating layer 12.

以上述べた方法の中では、方法1が最も好ましく使用することができる。方法1は絶縁材料の種類によらず使用できる方法であるとともに、工業的に取扱いが容易な加熱炉等の加熱手段を用いて行うことができる。 Of the methods described above, method 1 can be used most preferably. Method 1 is a method that can be used regardless of the type of insulating material, and can be performed by using a heating means such as a heating furnace that is industrially easy to handle.

また、本発明の絶縁電線1には、VOC以外にも温度上昇によって蒸発・飛散する性質を有する物質が含まれる場合が存在するため、発煙特性を向上させるためにはVOC以外の物質の残存量も低減するのが好ましい。 Further, since the insulated wire 1 of the present invention may contain a substance having a property of evaporating and scattering due to a temperature rise in addition to the VOC, the residual amount of the substance other than the VOC is required to improve the smoke generation characteristics. It is also preferable to reduce.

VOC以外に温度上昇によって蒸発・飛散する性質を有する物質としては、昇華性の物質が挙げられる。昇華性の物質は温度上昇に伴い、固体から直接気体に状態変化するため、蒸発・飛散しやすく、VOCと同様に目視可能な煙の原因となる。 Examples of substances other than VOCs that have the property of evaporating and scattering due to temperature rise include sublimable substances. Since the sublimable substance changes its state from a solid to a gas directly as the temperature rises, it easily evaporates and scatters, and causes visible smoke like VOC.

本発明のような絶縁電線1において、絶縁層12に含まれる可能性の高い昇華性の物質として、安息香酸(沸点:約249℃)とその誘導体が挙げられる。 Examples of the sublimable substance that is likely to be contained in the insulating layer 12 in the insulated wire 1 as in the present invention include benzoic acid (boiling point: about 249 ° C.) and its derivative.

安息香酸とその誘導体は、架橋速度に優れた過酸化物加硫を使用してシリコーンゴム製の絶縁層12を形成する際、反応開始剤として使用される有機過酸化物の分解生成物として発生し、絶縁層12に含有される。主な誘導体として2,4−ジクロロ安息香酸(沸点:約200℃)、4−メチル安息香酸(沸点:約274℃)が挙げられる。 Benzoic acid and its derivatives are generated as decomposition products of organic peroxides used as reaction initiators when forming an insulating layer 12 made of silicone rubber using peroxide vulcanization having an excellent cross-linking rate. It is contained in the insulating layer 12. Examples of the main derivative include 2,4-dichlorobenzoic acid (boiling point: about 200 ° C.) and 4-methylbenzoic acid (boiling point: about 274 ° C.).

安息香酸とその誘導体はVOCと同等の沸点を有しているとともに、沸点未満の温度で昇華を開始するため、発煙特性試験において発生する煙に含まれ、発煙特性を悪化させる方向に作用する。 Benzoic acid and its derivatives have a boiling point equivalent to that of VOCs, and start sublimation at a temperature lower than the boiling point. Therefore, they are contained in the smoke generated in the smoke characteristic test and act in a direction of deteriorating the smoke characteristic.

VOCと同様、絶縁層12に残存する昇華性物質を低減させることで、昇華性物質由来の発煙が低減するため、絶縁層12が本来有する耐熱性に応じた発煙特性を得ることができ、結果として絶縁電線1の発煙特性が向上する。 Similar to VOC, by reducing the sublimable substance remaining in the insulating layer 12, the smoke generated from the sublimated substance is reduced, so that the smoke emitting characteristics according to the heat resistance inherent in the insulating layer 12 can be obtained, and as a result. As a result, the smoke generation characteristics of the insulated wire 1 are improved.

通常、絶縁層12に残存する昇華性物質の残存量は、VOCの残存量と比較して少なく、絶縁層12に残存する沸点が150℃から360℃の範囲にあるVOCの残存量合計と、絶縁層12に残存する昇華性物質の残存量合計の和が1500ppm以下とすれば、良好な発煙特性を得ることができる。 Normally, the residual amount of the sublimable substance remaining in the insulating layer 12 is smaller than the residual amount of VOC, and the total residual amount of VOC having a boiling point remaining in the insulating layer 12 in the range of 150 ° C. to 360 ° C. When the sum of the total residual amounts of the sublimable substances remaining in the insulating layer 12 is 1500 ppm or less, good smoke emitting characteristics can be obtained.

さらに好ましくは、絶縁層12に残存する昇華性物質の残存量合計を300ppm以下とするのが好ましい。 More preferably, the total residual amount of the sublimating substance remaining in the insulating layer 12 is 300 ppm or less.

絶縁層12に残存する昇華性物質の残存量を低減させる方法としては、以下の方法が挙げられる。 Examples of the method for reducing the residual amount of the sublimable substance remaining in the insulating layer 12 include the following methods.

(方法1)絶縁電線1を所定の温度、時間で加熱して、絶縁層12中の昇華性物質を強制的に蒸発させる。 (Method 1) The insulating electric wire 1 is heated at a predetermined temperature and time to forcibly evaporate the sublimable substance in the insulating layer 12.

(方法2)絶縁電線1を溶媒に浸漬させ、絶縁層12中の昇華性物質を溶媒中に溶出させる。 (Method 2) The insulating electric wire 1 is immersed in a solvent, and the sublimable substance in the insulating layer 12 is eluted in the solvent.

(方法3)絶縁層12をシリコーンゴム製とする場合は、有機過酸化物を使用しない加硫方法(付加加硫など)を用いて、シリコーンゴム製の絶縁層12を形成する。 (Method 3) When the insulating layer 12 is made of silicone rubber, the insulating layer 12 made of silicone rubber is formed by using a vulcanization method (additional vulcanization or the like) that does not use an organic peroxide.

また、本発明において複数の絶縁層を有する態様について、添付図面を参照しながら説明する。図2〜5において、2〜5は本発明の絶縁電線、20は導体、22は絶縁層である。絶縁層22のうち、絶縁電線2〜5の内周側に位置する23は第1絶縁層、第1絶縁層23よりも外周側に位置する24は第2絶縁層である。なお、本発明の構成は図2〜5に限定されず、本発明の思想の範囲内において変更が可能である。図2〜5には、少なくとも2つの絶縁層22として、第1絶縁層23、第2絶縁層24を示したが、更に絶縁層を設けてもよい。
第1絶縁層23と第2絶縁層24のそれぞれは、各層内で均一な物性を有するものでも、肉厚方向及び/又は絶縁電線の長さ方向で物性が変化するものでも良い。
In addition, an embodiment having a plurality of insulating layers in the present invention will be described with reference to the accompanying drawings. In FIGS. 2 to 5, 2 to 5 are insulated wires of the present invention, 20 is a conductor, and 22 is an insulating layer. Of the insulating layers 22, 23 located on the inner peripheral side of the insulated wires 2 to 5 is the first insulating layer, and 24 located on the outer peripheral side of the first insulating layer 23 is the second insulating layer. The configuration of the present invention is not limited to FIGS. 2 to 5, and can be changed within the scope of the idea of the present invention. Although FIGS. 2 to 5 show the first insulating layer 23 and the second insulating layer 24 as at least two insulating layers 22, an insulating layer may be further provided.
Each of the first insulating layer 23 and the second insulating layer 24 may have uniform physical properties in each layer, or may have physical properties that change in the wall thickness direction and / or the length direction of the insulated wire.

本発明で特徴的なことは、絶縁電線2〜5が、導体20の周囲に、第1絶縁層23と第2絶縁層24を含む少なくとも2つの絶縁層22を被覆しており、第1絶縁層23と第2絶縁層24、さらに絶縁層を含む場合はそれらの絶縁層も加えた全ての絶縁層22に残存する、沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下となっていることである。つまり、第1絶縁層23に残存する沸点が150℃から360℃の範囲にあるVOCの残存量合計と、第2絶縁層24に残存する沸点が150℃から360℃の範囲にあるVOCの残存量合計と、さらに第3絶縁層、第4絶縁層を含む場合はそれらの絶縁層に残存する沸点が150℃から360℃の範囲にあるVOCのそれぞれの残存量合計との和が1500ppm以下となっていることである。 What is characteristic of the present invention is that the insulated wires 2 to 5 cover the conductor 20 with at least two insulating layers 22 including the first insulating layer 23 and the second insulating layer 24, and the first insulation is provided. Volatile organic compounds and quasi-volatile compounds having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the layer 23 and the second insulating layer 24, and in the case of including the insulating layer, all the insulating layers 22 including those insulating layers. The total residual amount of the sex organic compounds is 1500 ppm or less. That is, the total residual amount of VOCs having a boiling point remaining in the first insulating layer 23 in the range of 150 ° C. to 360 ° C. and the remaining VOCs having a boiling point remaining in the second insulating layer 24 in the range of 150 ° C. to 360 ° C. The sum of the total amount and the total residual amount of each VOC whose boiling point remains in the range of 150 ° C. to 360 ° C. when the third insulating layer and the fourth insulating layer are included is 1500 ppm or less. That is.

第1絶縁層23と第2絶縁層24のそれぞれに残存する、沸点が150℃から360℃の範囲にあるVOCの残存量の和を1500ppm以下とすることで、発煙特性試験において発生する煙の原因となるVOCの大半が除去されるため、発煙特性が向上する。 By setting the sum of the residual amounts of VOCs having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the first insulating layer 23 and the second insulating layer 24 to 1500 ppm or less, the smoke generated in the smoke generation characteristic test can be used. Since most of the causative VOCs are removed, the smoke emission characteristics are improved.

VOCの残存量の低下に伴って発煙特性が向上する傾向にあるため、より好ましくは、第1絶縁層23と第2絶縁層24のそれぞれに残存する、沸点が150℃から360℃の範囲にあるVOCの残存量の和を1000ppm以下とするのが良い。 Since the smoke emitting characteristics tend to improve as the residual amount of VOC decreases, the boiling point remaining in each of the first insulating layer 23 and the second insulating layer 24 tends to be in the range of 150 ° C. to 360 ° C. The sum of the residual amounts of a certain VOC should be 1000 ppm or less.

また、本発明においては、図3に示したように、第1絶縁層23と第2絶縁層24との間に、沸点が150℃から360℃の範囲にあるVOCに対して低透過性を示す、透過抑制層26を設けるのが好ましい。 Further, in the present invention, as shown in FIG. 3, low permeability is provided between the first insulating layer 23 and the second insulating layer 24 for VOCs having a boiling point in the range of 150 ° C. to 360 ° C. It is preferable to provide the permeation suppressing layer 26 as shown.

絶縁層が2層存在する絶縁電線2に対して上記の方法1や方法2を用いてVOCを低減させる場合、最外層である第2絶縁層24に含まれるVOCは低減されるものの、内側に位置する第1絶縁層23に含まれるVOCは、第2絶縁層24の存在が障害となって、十分に低減するのに時間を要する。 When the VOC is reduced by using the above method 1 or 2 for the insulated wire 2 having two insulating layers, the VOC contained in the second insulating layer 24, which is the outermost layer, is reduced, but inside. It takes time for the VOC contained in the located first insulating layer 23 to be sufficiently reduced due to the presence of the second insulating layer 24 as an obstacle.

第1絶縁層23に予めVOCの低減処理を施した後、第2絶縁層24を設けることで上記の課題には対応できるが、この場合、第2絶縁層24にVOCの低減処理を施す際に、第2絶縁層24から脱離したVOCの一部が第1絶縁層23に再吸着する現象が発生し、絶縁電線2に含まれるVOCの総量が大きく低減されない場合が存在する。 The above problem can be solved by providing the second insulating layer 24 after the first insulating layer 23 has been subjected to the VOC reduction treatment in advance. In this case, when the second insulating layer 24 is subjected to the VOC reduction treatment. In some cases, a part of the VOCs desorbed from the second insulating layer 24 is re-adsorbed to the first insulating layer 23, and the total amount of VOCs contained in the insulated wire 2 is not significantly reduced.

図3に示したように、第1絶縁層23と第2絶縁層24との間にVOCに対して低透過性を示す、透過抑制層26を設けることで、第2絶縁層24に含まれていたVOCが第1絶縁層23に再吸着される現象が抑制され、絶縁電線3に含まれるVOCの総量の低減に寄与する。 As shown in FIG. 3, the second insulating layer 24 is included by providing the permeation suppressing layer 26, which exhibits low permeability to VOC, between the first insulating layer 23 and the second insulating layer 24. The phenomenon that the VOCs have been re-adsorbed to the first insulating layer 23 is suppressed, which contributes to a reduction in the total amount of VOCs contained in the insulated wire 3.

透過抑制層26は、絶縁層に含まれるVOCに対して低透過性を有すると共に、VOCの吸着も極力抑えられた材料から選定され、各種の金属材料や、ポリエチレン、PET(ポリエチレンテレフタラート)、ふっ素などが好適に利用できる。
VOCの透過を抑制する観点では、気体に対する高いバリア性を有する結晶性の材料が特に好適であり、分子構造上、結晶質の領域が多く形成されやすいPETや、金属結晶を形成する金属材料が特に好ましく、金属材料の中では気体に対してバリア性を有する緻密な酸化被膜が形成される銅やアルミニウムが好適である。
The permeation suppressing layer 26 is selected from materials having low permeability to VOC contained in the insulating layer and suppressing VOC adsorption as much as possible, and various metal materials, polyethylene, PET (polyethylene terephthalate), and the like. Fluorine and the like can be preferably used.
From the viewpoint of suppressing the permeation of VOC, a crystalline material having a high barrier property to gas is particularly preferable, and PET in which a large number of crystalline regions are easily formed due to the molecular structure and a metal material for forming a metal crystal are used. Among the metal materials, copper and aluminum, which form a dense oxide film having a barrier property against gas, are particularly preferable.

透過抑制層26の設け方の一例として金属箔テープ、樹脂テープ、金属蒸着樹脂テープといったテープ状の部材を第1絶縁層23に巻き付けた態様が挙げられる。巻き付け方は、横巻きや縦添えなど、テープを巻き付ける態様の電線・ケーブル類で使用されている巻き付け方を適宜選択すれば良い。 As an example of how to provide the permeation suppressing layer 26, there is an embodiment in which a tape-shaped member such as a metal foil tape, a resin tape, or a metal-deposited resin tape is wound around the first insulating layer 23. As the winding method, the winding method used for electric wires / cables in which the tape is wound, such as horizontal winding or vertical attachment, may be appropriately selected.

テープ状の部材を第1絶縁層23に巻き付けて透過抑制層26を設ける場合は、1/6ラップ以上でラップするように巻き付けるのが好ましい。1/6ラップ以上で巻き付けることで、ラップ部における隙間の発生が抑制され、VOCに対する透過抑制機能が向上する。より好ましくは、1/4ラップ以上で巻き付けるのが好ましい。 When the tape-shaped member is wound around the first insulating layer 23 to provide the permeation suppressing layer 26, it is preferable to wind the tape-shaped member so as to wrap it with 1/6 wrap or more. By wrapping with 1/6 wrap or more, the generation of gaps in the wrap portion is suppressed, and the permeation suppressing function for VOC is improved. More preferably, it is wrapped with 1/4 wrap or more.

透過抑制層26としてテープ状の部材を使用する際は、VOCに対する低透過性を確保する観点から、充実材料で構成された部材を使用するのが好ましいが、VOCに対する低透過性を維持できる範囲においては、多孔質材料を使用しても良い。 When a tape-shaped member is used as the permeation suppressing layer 26, it is preferable to use a member made of a solid material from the viewpoint of ensuring low permeability to VOC, but a range in which low permeability to VOC can be maintained. In, a porous material may be used.

透過抑制層26としてテープ状の部材を使用する際は、部材の厚さは特に限定されない。VOCに対する低透過性を確保する観点では厚い方が好ましいが、材料選定によって低透過性が確保されている場合は薄くても構わず、絶縁電線3の外径を抑える観点では薄い方が好ましい。 When a tape-shaped member is used as the permeation suppressing layer 26, the thickness of the member is not particularly limited. A thick one is preferable from the viewpoint of ensuring low permeability to VOC, but a thin one may be used if low permeability is ensured by material selection, and a thin one is preferable from the viewpoint of suppressing the outer diameter of the insulated wire 3.

透過抑制層26として用いられる部材、態様は上述したものに限定されず、本発明の技術的思想の範囲内で、種々の部材、材料、態様を選定して使用することができる。
例えば、第1絶縁層23の外周に金属蒸着を設けるなど、VOCに対して低透過性を示すコーティング層を設けた態様や、後述する図5のシールド層28に存在する隙間をVOCに対して低透過性を示す材料で充填し、透過抑制層26とシールド層28を兼ねさせた態様が挙げられる。
The members and modes used as the permeation suppressing layer 26 are not limited to those described above, and various members, materials, and modes can be selected and used within the scope of the technical idea of the present invention.
For example, a mode in which a coating layer exhibiting low permeability to VOC is provided, such as providing metal vapor deposition on the outer periphery of the first insulating layer 23, or a gap existing in the shield layer 28 of FIG. 5, which will be described later, is provided with respect to VOC. An embodiment in which the permeation suppressing layer 26 and the shield layer 28 are combined by filling with a material exhibiting low permeability can be mentioned.

本発明は、自動車向けの高電圧電力ケーブル用途を意図したものであるが、本用途の絶縁電線には図4に示したようなシールド層28を有する態様のものも存在し、この態様の絶縁電線4は通常、第1絶縁層23と第2絶縁層24が存在する。
本発明は図4に示すようなシールド層28を有する絶縁電線4の発煙特性の向上に、特に好適に利用できる。
The present invention is intended for use in high-voltage power cables for automobiles, but some insulated wires for this purpose have a shield layer 28 as shown in FIG. 4, and insulation in this aspect is provided. The electric wire 4 usually has a first insulating layer 23 and a second insulating layer 24.
The present invention can be particularly suitably used for improving the smoke generation characteristics of the insulated wire 4 having the shield layer 28 as shown in FIG.

透過抑制層26とシールド層28を共に設けて本発明の絶縁電線5を構成する場合は、シールド層28と第2絶縁層24の間に透過抑制層26を設けた態様(図5)、あるいは第1絶縁層とシールド層との間に透過抑制層を設けた態様(図示割愛)を、適宜選択して使用することができる。 When the insulation wire 5 of the present invention is formed by providing both the transmission suppression layer 26 and the shield layer 28, the mode in which the transmission suppression layer 26 is provided between the shield layer 28 and the second insulation layer 24 (FIG. 5), or An embodiment in which a permeation suppressing layer is provided between the first insulating layer and the shield layer (not shown) can be appropriately selected and used.

また、本発明の絶縁電線2〜5は、第1絶縁層23、第2絶縁層24のうち、少なくとも一方を構成する材料がオルガノポリシロキサンを含有している際に、特に好適に利用できる。 Further, the insulated wires 2 to 5 of the present invention can be particularly preferably used when the material constituting at least one of the first insulating layer 23 and the second insulating layer 24 contains an organopolysiloxane.

オルガノポリシロキサンを含有する絶縁層を用いた絶縁電線2〜5において、第1絶縁層23と第2絶縁層24のそれぞれに残存する、沸点が150℃から360℃の範囲にあるVOCであるD4〜D10の低分子環状シロキサンの残存量の和を1500ppm以下とすることで、絶縁電線2〜5の発煙特性を向上させることができる。 D4, which is a VOC having a boiling point in the range of 150 ° C. to 360 ° C. remaining in each of the first insulating layer 23 and the second insulating layer 24 in the insulated wires 2 to 5 using the insulating layer containing the organopolysiloxane. By setting the sum of the residual amounts of the small molecule cyclic siloxanes of ~ D10 to 1500 ppm or less, the smoke generation characteristics of the insulated wires 2 to 5 can be improved.

絶縁層22をシリコーンゴムと他の材料の混合物とする際、シリコーンゴムの混合割合が増加するほど、低分子環状シロキサンの残存量も増加し発煙特性が悪化する傾向にあるが、シリコーンゴムの混合割合が高いものであっても、第1絶縁層23、と第2絶縁層24のそれぞれに残存する沸点が150℃から360℃の範囲にある低分子環状シロキサンの残存量の和を1500ppm以下とすることで、発煙特性を向上させることができる。 When the insulating layer 22 is a mixture of silicone rubber and other materials, as the mixing ratio of silicone rubber increases, the residual amount of low molecular weight cyclic siloxane tends to increase and the smoking characteristics tend to deteriorate. Even if the ratio is high, the sum of the residual amounts of low molecular weight cyclic siloxanes having boiling points remaining in the first insulating layer 23 and the second insulating layer 24 in the range of 150 ° C. to 360 ° C. is 1500 ppm or less. By doing so, the smoke generation characteristics can be improved.

本来、低分子環状シロキサンが特に多く残存するシリコーンゴム単体で構成された絶縁層であっても、第1絶縁層23と第2絶縁層24のそれぞれに残存する沸点が150℃から360℃の範囲にある低分子環状シロキサンの残存量の和を1500ppm以下とすることで、発煙特性を向上させることができるため、絶縁層22がシリコーンゴム単体の場合には、特に効果が高くなる。 Originally, even in an insulating layer composed of a single silicone rubber in which a particularly large amount of low molecular weight cyclic siloxane remains, the boiling point remaining in each of the first insulating layer 23 and the second insulating layer 24 is in the range of 150 ° C. to 360 ° C. By setting the sum of the residual amounts of the low molecular weight cyclic siloxanes in the above to 1500 ppm or less, the smoke generation characteristics can be improved, so that the effect is particularly high when the insulating layer 22 is a single silicone rubber.

オルガノポリシロキサンを含有する絶縁層を用いて絶縁電線2〜5を構成する場合、絶縁層に残存するD4〜D6の低分子環状シロキサンの残存量合計を100ppm以下とするのが好ましい。 When the insulating wires 2 to 5 are formed by using the insulating layer containing the organopolysiloxane, the total residual amount of the small molecule cyclic siloxanes D4 to D6 remaining in the insulating layer is preferably 100 ppm or less.

D4〜D6の低分子環状シロキサンは揮発性有機化合物に属し、高沸点にも関わらず蒸気圧が大きいため、室温でも比較的揮発しやすい性質を有する。このような性質を有するD4〜D6の低分子環状シロキサンの残存量合計を100ppm以下とすることで発煙特性が改善される。 The small molecule cyclic siloxanes D4 to D6 belong to volatile organic compounds and have a high vapor pressure despite their high boiling points, so they have the property of being relatively volatile even at room temperature. By setting the total residual amount of the small molecule cyclic siloxanes D4 to D6 having such properties to 100 ppm or less, the smoke emitting characteristics are improved.

オルガノポリシロキサンを含有する絶縁層を用いて絶縁電線2〜5を構成する場合、D4〜D8の低分子環状シロキサンの残存量合計を500ppm以下とするのが実用的な範囲の設計を鑑みた場合に好適である。 When the insulating wires 2 to 5 are constructed by using the insulating layer containing the organopolysiloxane, the total residual amount of the small molecule cyclic siloxanes D4 to D8 should be 500 ppm or less in consideration of the design in a practical range. Suitable for.

D4〜D8の低分子環状シロキサンが、発煙特性試験において特に目視可能な煙となりやすいVOCであるため、これらのVOCの残存量を集中的に低下させることで、絶縁電線2〜5の発煙特性をより効果的に向上させることができる。 Since the small molecule cyclic siloxanes D4 to D8 are VOCs that are particularly liable to become visible smoke in the smoke emission characteristic test, the smoke emission characteristics of the insulated wires 2 to 5 can be improved by intensively reducing the residual amount of these VOCs. It can be improved more effectively.

オルガノポリシロキサンを含有する絶縁層を用いて絶縁電線2〜5を構成する場合、さらに好ましくは、D4〜D10の低分子環状シロキサンの残存量合計を1000ppm以下とするのが良い。 When the insulating wires 2 to 5 are constructed by using the insulating layer containing the organopolysiloxane, the total residual amount of the small molecule cyclic siloxanes D4 to D10 is preferably 1000 ppm or less.

D9、D10の低分子環状シロキサンは、JCS(日本電線工業会)規格168号で定義された一般的なシリコーンゴム被覆絶縁電線の短期許容温度である300℃付近で蒸発しやすくなり、高温域での発煙特性に影響する。D9、D10の残存量も考慮し、D4〜D10の低分子環状シロキサンの残存量合計を1000ppm以下とすることで、絶縁電線2〜5の発煙温度をシリコーンゴム被覆絶縁電線の短期許容温度に近づけることができ、発煙特性をより一層向上させることができる。 The small molecule cyclic siloxanes of D9 and D10 tend to evaporate at around 300 ° C, which is the short-term allowable temperature of general silicone rubber-coated insulated wires defined by JCS (Japan Electric Wire Manufacturers Association) Standard No. 168, and in the high temperature range. Affects the smoke characteristics of. Considering the residual amount of D9 and D10, by setting the total residual amount of small molecule cyclic siloxanes D4 to D10 to 1000 ppm or less, the smoke generation temperature of the insulated wires 2 to 5 is brought closer to the short-term allowable temperature of the silicone rubber-coated insulated wire. It is possible to further improve the smoke generation characteristics.

以上述べた、低分子環状シロキサンの好ましい残存量は、オルガノポリシロキサンを含有する絶縁層が1層のみである場合は、その絶縁層が好ましい残存量を満たしていれば良い。 When the insulating layer containing the organopolysiloxane is only one layer, the preferable residual amount of the small molecule cyclic siloxane described above may be such that the insulating layer satisfies the preferable residual amount.

オルガノポリシロキサンを含有する絶縁層が複数存在する場合は、それぞれの層に残存する低分子環状シロキサンの残存量合計の和、すなわち、絶縁電線全体に残存する低分子環状シロキサンの総量が好ましい残存量となっているのが好ましい。 When there are a plurality of insulating layers containing organopolysiloxane, the sum of the total residual amounts of the small molecule cyclic siloxanes remaining in each layer, that is, the total amount of the small molecule cyclic siloxanes remaining in the entire insulated wire is preferable. Is preferable.

また詳細は割愛するが、絶縁層が複数層ある場合(絶縁電線2〜5)においても、VOC以外の物質、例えば安息香酸とその誘導体である昇華性物質の残存量を低減する効果が見込まれる。 Although details are omitted, the effect of reducing the residual amount of substances other than VOC, for example, benzoic acid and its derivative sublimable substance, is expected even when there are a plurality of insulating layers (insulated wires 2 to 5). ..

以上述べた本発明の絶縁電線1〜5は、後述するように従来の絶縁電線と比較して高い発煙特性を有する。 The insulated wires 1 to 5 of the present invention described above have higher smoke emitting characteristics as compared with the conventional insulated wires, as will be described later.

以下、本発明の実施例を示す。 Hereinafter, examples of the present invention will be shown.

[実施例1]
図1に示すような単層の絶縁層12を有する絶縁電線1を作製した。
具体的には、まず、直径0.32mmの軟銅線を9本撚り合わせた子撚導体を準備し、この子撚導体を19本、同心撚り構造で撚り合わせ、断面積15mm相当、φ5.1の導体10を形成した。
次いで、押出成型機を用いて、導体10の外周に、絶縁層12となるシリコーンゴムを肉厚1.0mmで被覆したのち、熱処理を行ってシリコーンゴムを架橋させ、外径7.1mmの絶縁電線1を得た。
[Example 1]
An insulated wire 1 having a single-layer insulating layer 12 as shown in FIG. 1 was produced.
Specifically, first, a child-twisted conductor in which nine annealed copper wires having a diameter of 0.32 mm are twisted is prepared, and 19 of these child-twisted conductors are twisted in a concentric twisted structure, and the cross-sectional area is equivalent to 15 mm 2 and φ5. Conductor 10 of 1 was formed.
Next, using an extrusion molding machine, the outer periphery of the conductor 10 is coated with a silicone rubber to be an insulating layer 12 with a wall thickness of 1.0 mm, and then heat treatment is performed to crosslink the silicone rubber to insulate the conductor 10 with an outer diameter of 7.1 mm. Wire 1 was obtained.

次いで、絶縁電線1を長さ2000mmに切断し、90℃×11時間、150℃×11時間の順に加熱炉を用いて加熱し、絶縁層12中のVOCを蒸発させて実施例1の絶縁電線1−1を得た。後述する方法で絶縁層12に残存するVOCの量を測定したところ、D4〜D10の低分子環状ジメチルシロキサンの合計量は987ppm、うちD4〜D6の合計量が42ppm、D7、D8の合計量が324ppm、D9、D10の合計量が621ppmであった。 Next, the insulated wire 1 is cut to a length of 2000 mm and heated in the order of 90 ° C. × 11 hours and 150 ° C. × 11 hours using a heating furnace to evaporate the VOC in the insulating layer 12 to evaporate the insulated wire of Example 1. I got 1-1. When the amount of VOC remaining in the insulating layer 12 was measured by the method described later, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 987 ppm, of which the total amount of D4 to D6 was 42 ppm, and the total amount of D7 and D8 was 42 ppm. The total amount of 324 ppm, D9 and D10 was 621 ppm.

[実施例2]
実施例1と同じ絶縁電線1を長さ2000mmに切断し、室温にてアセトンに3時間浸漬させた後、室温で十分に乾燥させた後、実施例1と同じ条件で加熱し実施例2の絶縁電線1−2を得た。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が359ppm、うちD4〜D6の合計量が25ppm、D7、D8の合計量が138ppm、D9、D10の合計量が196ppmであった。
[Example 2]
The same insulated wire 1 as in Example 1 is cut to a length of 2000 mm, immersed in acetone at room temperature for 3 hours, sufficiently dried at room temperature, and then heated under the same conditions as in Example 1 to be used in Example 2. Insulated wire 1-2 was obtained. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 359 ppm, of which the total amount of D4 to D6 is 25 ppm, the total amount of D7 and D8 is 138 ppm, and the total amount of D9 and D10 is. It was 196 ppm.

[実施例3]
事前に90℃×5時間の加熱処理を行うことでVOCを低減したシリコーンゴムを用いて実施例1と同様の絶縁電線1を作成し、実施例2と同様のVOC低減処理を施し、実施例3の絶縁電線1−3を得た。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が198ppm、うちD4〜D6の合計量が31ppm、D7、D8の合計量が33ppm、D9、D10の合計量が134ppmであった。
[Example 3]
An insulated wire 1 similar to that of Example 1 was prepared using a silicone rubber having reduced VOC by heat treatment at 90 ° C. for 5 hours in advance, and the same VOC reduction treatment as that of Example 2 was performed. Insulated electric wires 1-3 of 3 were obtained. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 198 ppm, of which the total amount of D4 to D6 is 31 ppm, the total amount of D7 and D8 is 33 ppm, and the total amount of D9 and D10 is 33 ppm. It was 134 ppm.

[比較例1]
VOCの低減処理を行っていないことを除いては、実施例1と同じ絶縁電線を、比較例1の絶縁電線1’−1とした。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が10098ppm、うちD4〜D6の合計量が7430ppm、D7、D8の合計量が1909ppm、D9、D10の合計量が759ppmであった。
[Comparative Example 1]
The same insulated wire as in Example 1 was used as the insulated wire 1'-1 of Comparative Example 1 except that the VOC reduction treatment was not performed. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 10098 ppm, of which the total amount of D4 to D6 is 7430 ppm, the total amount of D7 and D8 is 1909 ppm, and the total amount of D9 and D10 is 1909 ppm. It was 759 ppm.

[実施例4]
直径0.32mmの軟銅線を23本撚り合わせた子撚導体を準備し、この子撚導体を19本、同心撚り構造で撚り合わせ、断面積35mm相当、φ8.1の導体10を形成した。
次いで、押出成型機を用いて、導体10の外周に、絶縁層12となるシリコーンゴムを肉厚1.3mmで被覆したのち、熱処理を行ってシリコーンゴムを架橋させ、外径10.7mmの絶縁電線1を得た。
[Example 4]
A child-twisted conductor obtained by twisting 23 annealed copper wires having a diameter of 0.32 mm was prepared, and 19 of these child-twisted conductors were twisted in a concentric twisted structure to form a conductor 10 having a cross-sectional area of 35 mm 2 and a diameter of 8.1. ..
Next, using an extrusion molding machine, the outer periphery of the conductor 10 is coated with a silicone rubber to be an insulating layer 12 with a wall thickness of 1.3 mm, and then heat treatment is performed to crosslink the silicone rubber to insulate the conductor 10 with an outer diameter of 10.7 mm. Wire 1 was obtained.

次いで、絶縁電線1を実施例1と同じ条件で加熱し、絶縁層12中のVOCを蒸発させて実施例4の絶縁電線1−4を得た。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が951ppm、うちD4〜D6の合計量が19ppm、D7、D8の合計量が318ppm、D9、D10の合計量が614ppmであり、実施例1と同等の残存量である。 Next, the insulated wire 1 was heated under the same conditions as in Example 1 to evaporate the VOC in the insulating layer 12 to obtain the insulated wires 1-4 of Example 4. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 951 ppm, of which the total amount of D4 to D6 is 19 ppm, the total amount of D7 and D8 is 318 ppm, and the total amount of D9 and D10 is 318 ppm. It is 614 ppm, which is the same residual amount as in Example 1.

[実施例5]
実施例4と同じ絶縁電線1を実施例2と同じ条件でアセトン浸漬、加熱し、実施例5の絶縁電線1−5を得た。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が361ppm、うちD4〜D6の合計量が30ppm、D7、D8の合計量が94ppm、D9、D10の合計量が237ppmであり、実施例2と同等の残存量である。
[Example 5]
The same insulated wire 1 as in Example 4 was immersed in acetone and heated under the same conditions as in Example 2 to obtain an insulated wire 1-5 of Example 5. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 361 ppm, of which the total amount of D4 to D6 is 30 ppm, the total amount of D7 and D8 is 94 ppm, and the total amount of D9 and D10 is 94 ppm. It is 237 ppm, which is the same residual amount as in Example 2.

[実施例6]
事前に90℃×5時間の加熱処理を行うことでVOCを低減したシリコーンゴムを用いて実施例4と同様の絶縁電線1を作成し、実施例3と同様のVOC低減処理を施し、実施例6の絶縁電線1−6を得た。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が201ppm、うちD4〜D6の合計量が35ppm、D7、D8の合計量が31ppm、D9、D10の合計量が135ppmであり、実施例3と同等の残存量である。
[Example 6]
An insulated wire 1 similar to that of Example 4 was prepared using silicone rubber having reduced VOC by heat treatment at 90 ° C. for 5 hours in advance, and the same VOC reduction treatment as that of Example 3 was performed. Insulated wire 1-6 of 6 was obtained. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 201 ppm, of which the total amount of D4 to D6 is 35 ppm, the total amount of D7 and D8 is 31 ppm, and the total amount of D9 and D10 is 31 ppm. It is 135 ppm, which is the same residual amount as in Example 3.

[比較例2]
VOCの低減処理を行っていないことを除いては、実施例3と同じ絶縁電線を、比較例2の絶縁電線1’−2とした。絶縁層12に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量が10142ppm、うちD4〜D6の合計量が7563ppm、D7、D8の合計量が1843ppm、D9、D10の合計量が736ppmであり、比較例1と同等の残存量である。
[Comparative Example 2]
The same insulated wire as in Example 3 was used as the insulated wire 1'-2 of Comparative Example 2 except that the VOC reduction treatment was not performed. As for the VOC remaining in the insulating layer 12, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 10142 ppm, of which the total amount of D4 to D6 is 7563 ppm, the total amount of D7 and D8 is 1843 ppm, and the total amount of D9 and D10 is. It is 736 ppm, which is the same residual amount as in Comparative Example 1.

[VOC残存量測定方法]
各実施例、比較例の絶縁電線の絶縁層12に残存するVOC(低分子環状シロキサン)の量は、アセトン抽出によるガスクロマトグラフ法によって測定した。具体的な方法は以下に示す。
[VOC residual amount measuring method]
The amount of VOC (small molecule cyclic siloxane) remaining in the insulating layer 12 of the insulated wire of each Example and Comparative Example was measured by a gas chromatograph method by extracting acetone. The specific method is shown below.

絶縁電線から採取した絶縁層12を細断した後、10mlのサンプル瓶に0.5mg量り取る。 After shredding the insulating layer 12 collected from the insulated wire, weigh 0.5 mg into a 10 ml sample bottle.

細断した絶縁層12が浸漬するように、サンプル瓶にアセトン5mlを入れ、超音波処理を30分間行ってアセトンへVOCを溶出させた。 5 ml of acetone was placed in a sample bottle so that the shredded insulating layer 12 was immersed, and ultrasonic treatment was performed for 30 minutes to elute VOC into the acetone.

VOCが溶出したアセトンを1μl採取し、ガスクロマトグラフへ導入して加熱し、予め濃度既知の標準サンプルを用いて作成しておいた検量線と比較して、D4〜D10の低分子環状シロキサンの量を測定した。
ガスクロマトグラフィーの加熱条件は、40℃を1分保持 → 昇温速度10℃/分で80℃まで加熱 → 昇温速度20℃/分で120℃まで加熱 → 昇温速度7℃/分で310℃まで加熱し、10分間保持した。
1 μl of VOC-eluted acetone was collected, introduced into a gas chromatograph, heated, and compared with a calibration curve prepared using a standard sample having a known concentration in advance, and the amount of small molecule cyclic siloxanes of D4 to D10. Was measured.
The heating conditions for gas chromatography are to hold 40 ° C for 1 minute → heat up to 80 ° C at a heating rate of 10 ° C / min → heat up to 120 ° C at a heating rate of 20 ° C / min → 310 at a heating rate of 7 ° C / min. It was heated to ° C. and held for 10 minutes.

[昇華性物質残存量測定方法]
実施例4、比較例2の絶縁電線に対しては、絶縁層12に残存する昇華性物質(安息香酸とその誘導体)の量を加熱脱着式のガスクロマトグラフ法によって測定した。具体的な方法は以下に示す。
[Method for measuring residual sublimable substance]
For the insulated wires of Example 4 and Comparative Example 2, the amount of sublimable substances (benzoic acid and its derivatives) remaining in the insulating layer 12 was measured by a heat-removable gas chromatograph method. The specific method is shown below.

絶縁電線から絶縁層12を採取し、加熱脱着装置の試料管に15mg量り取る。 The insulating layer 12 is collected from the insulated wire and weighed 15 mg into the sample tube of the heat desorption device.

表1に示した条件で加熱脱着装置を作動させ、試料からガスを発生させる。 The heat desorption device is operated under the conditions shown in Table 1 to generate gas from the sample.

Figure 2020032143
Figure 2020032143

発生したガスをガスクロマトグラフへ導入し、予め濃度既知の標準サンプルを用いて作成しておいた検量線と比較して、安息香酸とその誘導体の量を測定した。
ガスクロマトグラフィーの加熱条件は、40℃を7分保持 → 昇温速度10℃/分で120℃まで加熱 → 昇温速度20℃/分で270℃まで加熱し、30分保持した。
The generated gas was introduced into a gas chromatograph, and the amounts of benzoic acid and its derivatives were measured by comparing with a calibration curve prepared in advance using a standard sample having a known concentration.
The heating conditions for gas chromatography were as follows: 40 ° C. was maintained for 7 minutes → heated to 120 ° C. at a heating rate of 10 ° C./min → heated to 270 ° C. at a heating rate of 20 ° C./min and maintained for 30 minutes.

[発煙特性試験]
自動車規格JASO D609を参考にして発煙特性の確認を行った。本来は様々な温度における電流値と発煙開始時間の関係を整理したものが発煙特性として扱われるが、本願においては、室温で絶縁電線1に電流を流し、段階的に電流値を上昇させて発煙が発生した際における絶縁電線1の温度と電流値の大小を、発煙特性の指標として用いた。
具体的な試験方法は以下の通りである。
[Smoke characteristic test]
The smoke emission characteristics were confirmed with reference to the automobile standard JASO D609. Originally, the relationship between the current value at various temperatures and the smoke emission start time is treated as the smoke emission characteristic, but in the present application, the current is passed through the insulated wire 1 at room temperature, and the current value is gradually increased to emit smoke. The magnitude of the temperature and the current value of the insulated wire 1 at the time of occurrence of the above was used as an index of the smoke emission characteristic.
The specific test method is as follows.

(1.試料の準備)
絶縁電線1を長さ1000mmに切断し、両端の絶縁層12を長さ20mm除去したものを試料とした。
試料の中心から左側50mmの位置に、熱電対による絶縁層12の表面温度測定部、試料の中心から右側50mmの位置に、熱電対による導体温度測定部を設けた。
(1. Preparation of sample)
A sample was obtained by cutting the insulated wire 1 to a length of 1000 mm and removing the insulating layers 12 at both ends by a length of 20 mm.
A thermocouple-based surface temperature measuring section of the insulating layer 12 was provided 50 mm to the left of the center of the sample, and a thermocouple-based conductor temperature measuring section was provided 50 mm to the right of the center of the sample.

(2.測定環境)
室温(27±5℃)で測定した。
(2. Measurement environment)
It was measured at room temperature (27 ± 5 ° C.).

(3.電流印加と発煙温度の記録)
絶縁電線1の両端に設けた絶縁層12の除去部に、定電圧・定電流直流電源装置を接続し、導体断面積に応じて設定された所定の初期電流を通電し、導体温度が一定になるまで放置する。
導体温度が一定になった後、電流値を5分毎に10A上昇させる。電流値の上昇に伴って導体温度と絶縁層表面温度も上昇し、絶縁層12からの発煙が確認された際の導体温度を発煙温度として記録した。
各実施例、比較例の結果を表2に示す。
(3. Current application and smoke temperature recording)
A constant voltage / constant current DC power supply device is connected to the removal portions of the insulating layer 12 provided at both ends of the insulated wire 1, and a predetermined initial current set according to the cross-sectional area of the conductor is energized to keep the conductor temperature constant. Leave it until it becomes.
After the conductor temperature becomes constant, the current value is increased by 10 A every 5 minutes. As the current value increased, the conductor temperature and the surface temperature of the insulating layer also increased, and the conductor temperature when smoke emission from the insulating layer 12 was confirmed was recorded as the smoke emission temperature.
Table 2 shows the results of each example and comparative example.

Figure 2020032143
Figure 2020032143

表2中の「<5」は検出限界以下であったことを示し、残存量の合計値には含まれていない。 “<5” in Table 2 indicates that it was below the detection limit and is not included in the total residual amount.

VOCの低減処理を行っていない比較例1の絶縁電線1’−1は、220A、210℃で発煙したのに対し、VOCの低減処理を行い、VOCの残存量合計が1500ppm以下で、特にD4〜D6の残存量合計が100ppm以下、D7、D8の残存量合計が500ppm以下となっている実施例1の絶縁電線1−1は、250A、260℃で発煙し、VOCの低減による発煙特性の向上が確認できた。 The insulated wire 1'-1 of Comparative Example 1 in which the VOC reduction treatment was not performed emitted smoke at 220A and 210 ° C., whereas the VOC reduction treatment was performed and the total residual amount of VOC was 1500 ppm or less, especially D4. The insulated wire 1-1 of Example 1 in which the total residual amount of D6 is 100 ppm or less and the total residual amount of D7 and D8 is 500 ppm or less emits smoke at 250 A and 260 ° C. Improvement was confirmed.

VOCの低減処理工程を追加し、D9、D10の残存量合計を300ppm以下にした実施例2の絶縁電線1−2は、270A、300℃で発煙し、さらなる発煙特性の向上が確認できた。 The insulated wire 1-2 of Example 2 in which the total residual amount of D9 and D10 was reduced to 300 ppm or less by adding a VOC reduction treatment step smoked at 270 A and 300 ° C., and further improvement in smoke emitting characteristics was confirmed.

VOCの低減処理工程をさらに追加し、D4〜D10の残存量合計を200ppm程度にした実施例3の絶縁電線1−3は、270A、300℃で発煙し、実施例2と同等の発煙特性であった。
以上の結果から、D9、D10の残存量合計を300ppm以下とするように低分子環状シロキサンを低減すれば、必要十分な発煙特性が得られると言える。
The insulated wire 1-3 of Example 3 in which the total residual amount of D4 to D10 was about 200 ppm by further adding a VOC reduction treatment step emits smoke at 270 A and 300 ° C., and has the same smoke emission characteristics as in Example 2. there were.
From the above results, it can be said that necessary and sufficient smoke emitting characteristics can be obtained by reducing the small molecule cyclic siloxane so that the total residual amount of D9 and D10 is 300 ppm or less.

VOCの低減処理を行っておらず、導体断面積が比較例1の絶縁電線1’−1よりも大きい比較例2の絶縁電線1’−2は、380A、200℃で発煙した。
導体断面積が比較例1よりも増加しているため、同一の電流を印加した際の温度上昇が比較例1よりも緩やかになり、その結果、発煙に至るまでの通電可能な電流値が増加したと考えられる。
The insulated wire 1'-2 of Comparative Example 2, which had not been subjected to the VOC reduction treatment and had a conductor cross-sectional area larger than that of the insulated wire 1'-1 of Comparative Example 1, smoked at 380 A and 200 ° C.
Since the conductor cross-sectional area is larger than that of Comparative Example 1, the temperature rise when the same current is applied is slower than that of Comparative Example 1, and as a result, the current value that can be energized until smoke is increased. It is probable that it was done.

一方、比較例2の絶縁電線1’−2の発煙特性は、比較例1の絶縁電線1’−1よりも悪化するという結果になった。
一般的な絶縁電線では、導体10の断面積の増加に伴い、絶縁層12に必要とされる肉厚が増加する。
また、絶縁層12の肉厚を同一に設計した場合でも、導体10の断面積の増加に伴って絶縁層12の外径も太くなるため、絶縁層12の量は増加する。比較例2の絶縁電線1’−2の場合、比較例1の絶縁電線1’−1と比べて単位長さ当たりの絶縁層12の量は約2倍となっている。
On the other hand, the smoke emitting characteristics of the insulated wire 1'-2 of Comparative Example 2 were worse than those of the insulated wire 1'-1 of Comparative Example 1.
In a general insulated wire, the wall thickness required for the insulating layer 12 increases as the cross-sectional area of the conductor 10 increases.
Further, even when the wall thickness of the insulating layer 12 is designed to be the same, the amount of the insulating layer 12 increases because the outer diameter of the insulating layer 12 also increases as the cross-sectional area of the conductor 10 increases. In the case of the insulated wire 1'-2 of Comparative Example 2, the amount of the insulating layer 12 per unit length is about twice that of the insulated wire 1'-1 of Comparative Example 1.

発煙が目視で確認された際の導体温度を発煙温度としているため、試料に残存するVOCの絶対量が多いほど、発煙が目視しやすく、発煙特性試験に不利となる傾向がある。絶縁層12の単位重量あたりに残存するVOCの量は同じであっても、絶縁層12に残存するVOCの絶対量は絶縁層12の量に比例するため、比較例2の絶縁電線1’−2に残存するVOCの絶対量は、比較例1の絶縁電線1’−1の残存量の2倍程度になっていると考えられる。その結果、比較例2の絶縁電線1’−2は、測定上、低温で発煙が始まったものと考えられる Since the conductor temperature when smoke is visually confirmed is used as the smoke temperature, the larger the absolute amount of VOC remaining in the sample, the easier it is to visually check the smoke, which tends to be disadvantageous for the smoke characteristic test. Even if the amount of VOC remaining per unit weight of the insulating layer 12 is the same, the absolute amount of VOC remaining in the insulating layer 12 is proportional to the amount of the insulating layer 12, so that the insulated wire 1'-of Comparative Example 2 It is considered that the absolute amount of VOC remaining in 2 is about twice the remaining amount of the insulated wire 1'-1 of Comparative Example 1. As a result, it is considered that the insulated wire 1'-2 of Comparative Example 2 started to emit smoke at a low temperature in terms of measurement.

比較例2の絶縁電線1’−2に対してVOCの低減処理を行うことでVOCの残存量合計を1500ppm以下、特にD4〜D6の残存量合計を100ppm以下、D7、D8の残存量合計を500ppm以下にした態様と言える実施例4の絶縁電線1−4は、440A、250℃で発煙し、VOCの低減による発煙特性の向上が確認できた。 By performing the VOC reduction treatment on the insulated wire 1'-2 of Comparative Example 2, the total residual amount of VOC is 1500 ppm or less, particularly the total residual amount of D4 to D6 is 100 ppm or less, and the total residual amount of D7 and D8 is reduced. The insulated wires 1-4 of Example 4, which can be said to have a mode of 500 ppm or less, emit smoke at 440 A and 250 ° C., and it was confirmed that the smoke emission characteristics are improved by reducing VOC.

加えて、実施例4の絶縁電線1−4に残存する安息香酸とその誘導体の量は、比較例2の絶縁電線1’−2と比較して大きく低減し、D4〜D10の残存量合計との和は1500ppm以下となっている。また、安息香酸とその誘導体の残存量合計が、300ppm以下となっている。実施例4の絶縁電線1−4は、VOCの低減処理の際に昇華性物質である安息香酸とその誘導体も低減され、発煙特性の向上の一助になっていると考えられる。 In addition, the amount of benzoic acid and its derivative remaining in the insulated wires 1-4 of Example 4 is significantly reduced as compared with the insulated wires 1'-2 of Comparative Example 2, and is combined with the total remaining amount of D4 to D10. The sum of is 1500 ppm or less. The total residual amount of benzoic acid and its derivatives is 300 ppm or less. It is considered that the insulated wires 1-4 of the fourth embodiment also reduce the sublimating substance benzoic acid and its derivatives during the VOC reduction treatment, which helps to improve the smoke emitting characteristics.

VOCの低減処理工程を追加し、D9、D10の残存量合計を300ppm以下にした実施例5の絶縁電線1−5は、520A、300℃で発煙し、さらなる発煙特性の向上が確認できた。 The insulated wire 1-5 of Example 5 in which the total residual amount of D9 and D10 was reduced to 300 ppm or less by adding a VOC reduction treatment step smoked at 520 A and 300 ° C., and further improvement in smoke emitting characteristics was confirmed.

さらにVOCの低減処理工程を追加し、D4〜D10の残存量を200ppm程度にした実施例6の絶縁電線1−6は、520A、300℃で発煙し、実施例5の絶縁電線1−5と同等の発煙特性であった。
以上の結果から、導体10の断面積の増加に伴う絶縁層12の量の増加があっても、D9、D10の残存量を300ppm以下とするように低分子環状シロキサンを低減すれば、必要十分な発煙特性が得られると言える。
Further, a VOC reduction treatment step was added, and the residual amount of D4 to D10 was set to about 200 ppm. The insulated wire 1-6 of Example 6 emitted smoke at 520 A and 300 ° C. It had the same smoking characteristics.
From the above results, even if the amount of the insulating layer 12 increases as the cross-sectional area of the conductor 10 increases, it is necessary and sufficient to reduce the small molecule cyclic siloxane so that the residual amount of D9 and D10 is 300 ppm or less. It can be said that excellent smoking characteristics can be obtained.

導体10の断面積の違いによる、発煙に至るまでの通電可能な電流値の差は存在するものの、実施例2の絶縁電線1−2と実施例5の絶縁電線1−5の発煙温度は同等であった。
実施例5の絶縁電線1−5が、実施例2の絶縁電線1−2と比較して絶縁層12の量の増加にも関わらず発煙温度が同等であったことから、D9、D10の残存量合計を300ppm以下とすることで、VOCが空気中へ揮発して飛散した際に発煙として目視できる濃度に至らず、絶縁電線1が本来有するVOCの残存量に依存しない発煙温度が得られたと考えられる。
Although there is a difference in the current value that can be energized until smoke is generated due to the difference in the cross-sectional area of the conductor 10, the smoke generation temperature of the insulated wire 1-2 of Example 2 and the insulated wire 1-5 of Example 5 are the same. Met.
Since the insulated wires 1-5 of Example 5 had the same smoke generation temperature as the insulated wires 1-2 of Example 2 despite the increase in the amount of the insulating layer 12, D9 and D10 remained. By setting the total amount to 300 ppm or less, the concentration that can be visually recognized as smoke when VOCs are volatilized and scattered in the air is not reached, and the smoke generation temperature that does not depend on the residual amount of VOCs originally possessed by the insulated wire 1 is obtained. Conceivable.

比較例1と実施例1〜3を比較すると、約24〜43%の発煙特性の向上が確認された。これは導体10の断面積を増加させることなく、絶縁電線1の発熱に対する安全性を向上させることが可能であることを意味しており、本発明によって信頼性の高い絶縁電線1を提供可能になったと言える。 Comparing Comparative Example 1 and Examples 1 to 3, it was confirmed that the smoke emission characteristics were improved by about 24-43%. This means that it is possible to improve the safety of the insulated wire 1 against heat generation without increasing the cross-sectional area of the conductor 10, and the present invention makes it possible to provide the highly reliable insulated wire 1. It can be said that it has become.

また、実施例1は比較例2よりも高い発煙温度を有することから、発煙特性に基づく安全性を低下させることなく導体10の断面積を減少させたという見方もでき、本発明によって絶縁電線1の発煙特性と細径化の両立が可能になったとも言える。 Further, since Example 1 has a higher smoking temperature than Comparative Example 2, it can be considered that the cross-sectional area of the conductor 10 is reduced without lowering the safety based on the smoking characteristics. According to the present invention, the insulated wire 1 It can be said that it has become possible to achieve both the smoke generation characteristics and the reduction in diameter.

本発明の絶縁電線1は用途や使用箇所に応じ、導体10の構成や断面積、絶縁層12の肉厚や外径が種々変更されて提供される。 The insulated wire 1 of the present invention is provided with various changes in the configuration and cross-sectional area of the conductor 10, the wall thickness and the outer diameter of the insulating layer 12, depending on the intended use and the place of use.

以下に、2つの絶縁層23、24を有する本発明の実施例を示す。 An embodiment of the present invention having two insulating layers 23 and 24 is shown below.

[実施例7]
直径0.32mmの軟銅線を19本撚り合わせた子撚導体を準備し、この子撚導体を53本、同心撚り構造で撚り合わせ、断面積95mm相当、φ14の導体20を形成した。
次いで、押出成型機を用いて、導体20の外周に、第1絶縁層23となるシリコーンゴムを肉厚1.2mmで被覆したのち、熱処理を行ってシリコーンゴムを架橋させ、外径16.4mmの第1絶縁層23を得た。
[Example 7]
A child-twisted conductor obtained by twisting 19 annealed copper wires having a diameter of 0.32 mm was prepared, and 53 of these child-twisted conductors were twisted in a concentric twisted structure to form a conductor 20 having a cross-sectional area of 95 mm 2 and a diameter of 14 φ14.
Next, using an extrusion molding machine, the outer periphery of the conductor 20 is coated with silicone rubber to be the first insulating layer 23 with a wall thickness of 1.2 mm, and then heat treatment is performed to crosslink the silicone rubber to have an outer diameter of 16.4 mm. The first insulating layer 23 of the above was obtained.

導体20を第1絶縁層23で被覆したものを、室温にてアセトンに3時間浸漬させ、室温で十分に乾燥させた後、90℃×11時間、150℃×11時間の順に加熱炉を用いて加熱し、第1絶縁層23中のVOCを蒸発させた。 The conductor 20 coated with the first insulating layer 23 is immersed in acetone at room temperature for 3 hours, sufficiently dried at room temperature, and then a heating furnace is used in the order of 90 ° C. × 11 hours and 150 ° C. × 11 hours. The VOC in the first insulating layer 23 was evaporated.

次に、第1絶縁層23の外周にシールド層28を設ける。シールド層28は、編組構造であり、シールド素線には、外径0.2mmの錫メッキ軟銅線を使用した。 Next, the shield layer 28 is provided on the outer periphery of the first insulating layer 23. The shield layer 28 has a braided structure, and a tin-plated annealed copper wire having an outer diameter of 0.2 mm is used as the shield wire.

次いで、シールド層28の外周にアルミニウム蒸着PETテープを巻き、透過抑制層26とした。 Next, an aluminum-deposited PET tape was wrapped around the outer periphery of the shield layer 28 to form a permeation suppression layer 26.

続いて、押出成型機を用いて、透過抑制層26の外周に、第2絶縁層24となるシリコーンゴムを肉厚1.5mmで被覆したのち、熱処理を行ってシリコーンゴムを架橋させて第2絶縁層24とすることで、絶縁電線5の態様とした。絶縁電線5の外径は最終的に20mmとなった。 Subsequently, using an extrusion molding machine, the outer periphery of the permeation suppression layer 26 is coated with silicone rubber to be the second insulating layer 24 with a wall thickness of 1.5 mm, and then heat treatment is performed to crosslink the silicone rubber to the second. By forming the insulating layer 24, the aspect of the insulated wire 5 is adopted. The outer diameter of the insulated wire 5 was finally 20 mm.

最後に、第2絶縁層24まで設けられた絶縁電線5に対して、第1絶縁層23と同様のVOC低減処理を施し、第2絶縁層24中のVOCを低減させ、図5に示す本発明の絶縁電線5が完成した。 Finally, the insulated wire 5 provided up to the second insulating layer 24 is subjected to the same VOC reduction treatment as the first insulating layer 23 to reduce the VOC in the second insulating layer 24, and the present invention shown in FIG. The insulated wire 5 of the present invention has been completed.

後述する方法で第1絶縁層23に残存するVOCの量を測定したところ、D4〜D10の低分子環状ジメチルシロキサンの合計量は316ppm、うちD4〜D8の合計量が124ppm、D4〜D6の合計量は39ppmであった。 When the amount of VOC remaining in the first insulating layer 23 was measured by the method described later, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 316 ppm, of which the total amount of D4 to D8 was 124 ppm and the total amount of D4 to D6. The amount was 39 ppm.

同様に第2絶縁層24に残存するVOCの量を測定したところ、D4〜D10の低分子環状ジメチルシロキサンの合計量は402ppm、うちD4〜D8の合計量が166ppm、D4〜D6の合計量は47ppmであった。 Similarly, when the amount of VOC remaining in the second insulating layer 24 was measured, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 402 ppm, of which the total amount of D4 to D8 was 166 ppm and the total amount of D4 to D6 was. It was 47 ppm.

すなわち、絶縁電線5に残存するVOCの総量は、D4〜D10の低分子環状ジメチルシロキサンの合計量は718ppm、うちD4〜D8の合計量が290ppm、D4〜D6の合計量は86ppmであった。 That is, as for the total amount of VOCs remaining on the insulated wire 5, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 718 ppm, of which the total amount of D4 to D8 was 290 ppm and the total amount of D4 to D6 was 86 ppm.

[参考実施例]
実施例7の絶縁電線5において、第2絶縁層24に対するVOC低減処理を割愛したものを、参考実施例の絶縁電線とした。
参考実施例の絶縁電線の第2絶縁層24に残存するVOCの量を測定したところ、D4〜D10の低分子環状ジメチルシロキサンの合計量は2185ppm、うちD4〜D8の合計量が1420ppm、D4〜D6の合計量は347ppmであった。
[Reference Example]
In the insulated wire 5 of the seventh embodiment, the one obtained by omitting the VOC reduction treatment for the second insulating layer 24 was used as the insulated wire of the reference embodiment.
When the amount of VOC remaining in the second insulating layer 24 of the insulated wire of the reference example was measured, the total amount of small molecule cyclic dimethylsiloxanes of D4 to D10 was 2185 ppm, of which the total amount of D4 to D8 was 1420 ppm, and D4 to D4. The total amount of D6 was 347 ppm.

[比較例3]
透過抑制層26を設けていないことを除いては、実施例7と同じ材料、工程で作成した絶縁電線を、比較例3の絶縁電線とした。
比較例3の絶縁電線の第1絶縁層23に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は1403ppm、うちD4〜D8の合計量が847ppm、D4〜D6の合計量は221ppmであり、第2絶縁層24に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は1300ppm、うちD4〜D8の合計量が715ppm、D4〜D6の合計量は211ppmであった。
[Comparative Example 3]
The insulated wire produced by the same material and process as in Example 7 was used as the insulated wire of Comparative Example 3 except that the permeation suppressing layer 26 was not provided.
As for the VOC remaining in the first insulating layer 23 of the insulated wire of Comparative Example 3, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 1403 ppm, of which the total amount of D4 to D8 was 847 ppm and the total amount of D4 to D6 was The VOC remaining in the second insulating layer 24 was 221 ppm, and the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 1300 ppm, of which the total amount of D4 to D8 was 715 ppm and the total amount of D4 to D6 was 211 ppm. rice field.

[参考比較例]
比較例3の絶縁電線において、第2絶縁層24に対するVOC低減処理を割愛したものを、参考比較例の絶縁電線とした。
参考比較例の絶縁電線の第1絶縁層23に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は2277ppm、うちD4〜D8の合計量が1561ppm、D4〜D6の合計量は499ppmであり、第2絶縁層24に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は2434ppm、うちD4〜D8の合計量が1660ppm、D4〜D6の合計量は507ppmであった。
[Reference comparison example]
In the insulated wire of Comparative Example 3, the one in which the VOC reduction treatment for the second insulating layer 24 was omitted was used as the insulated wire of the reference comparative example.
As for the VOC remaining in the first insulating layer 23 of the insulated wire of the reference comparative example, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 2277 ppm, of which the total amount of D4 to D8 is 1561 ppm and the total amount of D4 to D6 is. The VOC remaining in the second insulating layer 24 was 499 ppm, and the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 was 2434 ppm, of which the total amount of D4 to D8 was 1660 ppm and the total amount of D4 to D6 was 507 ppm. rice field.

[参考例1]
実施例7の絶縁電線5において、第1絶縁層23のVOC低減処理までで工程を終えたものを、参考例1の絶縁電線とした。
参考例1の絶縁電線の第1絶縁層23に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は359ppm、うちD4〜D8の合計量が163ppm、D4〜D6の合計量は25ppmであった。
[Reference example 1]
In the insulated wire 5 of Example 7, the insulated wire 5 of Reference Example 1 was obtained by completing the process up to the VOC reduction treatment of the first insulating layer 23.
As for the VOC remaining in the first insulating layer 23 of the insulated wire of Reference Example 1, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 359 ppm, of which the total amount of D4 to D8 is 163 ppm and the total amount of D4 to D6 is. It was 25 ppm.

[参考例2]
実施例7の絶縁電線5において、第1絶縁層23の形成までで工程を終えたもの、すなわち、参考例1からVOC低減処理を割愛したものを、参考例2の絶縁電線とした。
参考例2の絶縁電線の第1絶縁層23に残存するVOCは、D4〜D10の低分子環状ジメチルシロキサンの合計量は2616ppm、うちD4〜D8の合計量が1732ppm、D4〜D6の合計量は244ppmであった。
[Reference example 2]
In the insulated wire 5 of Example 7, the one in which the process was completed up to the formation of the first insulating layer 23, that is, the one in which the VOC reduction treatment was omitted from Reference Example 1 was designated as the insulated wire of Reference Example 2.
As for the VOC remaining in the first insulating layer 23 of the insulated wire of Reference Example 2, the total amount of small molecule cyclic dimethylsiloxanes D4 to D10 is 2616 ppm, of which the total amount of D4 to D8 is 1732 ppm and the total amount of D4 to D6 is. It was 244 ppm.

[VOC残存量測定方法]
各実施例、比較例、参考例の絶縁電線の絶縁層22(第1絶縁層23、もしくは第2絶縁層24)に残存するVOC(低分子環状シロキサン)の量は、アセトン抽出によるガスクロマトグラフ法によってD3〜D10の低分子環状ジメチルシロキサンの量を測定した。具体的な方法は上記実施例1〜6、比較例1、2の測定方法と同様である。
[VOC residual amount measuring method]
The amount of VOC (small molecule cyclic siloxane) remaining in the insulating layer 22 (first insulating layer 23 or second insulating layer 24) of the insulated wires of each Example, Comparative Example, and Reference Example is determined by gas chromatography by extracting acetone. The amount of small molecule cyclic dimethylsiloxane of D3 to D10 was measured by. The specific method is the same as the measurement methods of Examples 1 to 6 and Comparative Examples 1 and 2.

[発煙特性試験]
自動車規格JASO D609を参考にして発煙特性の確認を行った。本来は様々な温度における電流値と発煙開始時間の関係を整理したものが発煙特性として扱われるが、本願においては、室温で絶縁電線5に一定値の電流を流し、発煙が発生した際における絶縁電線5の導体温度の大小を、発煙特性の指標として用いた。具体的な試験方法は以下の通りである。
[Smoke characteristic test]
The smoke emission characteristics were confirmed with reference to the automobile standard JASO D609. Originally, the relationship between the current value at various temperatures and the smoke emission start time is treated as the smoke emission characteristic, but in the present application, a constant value current is passed through the insulated wire 5 at room temperature to insulate when smoke is generated. The magnitude of the conductor temperature of the electric wire 5 was used as an index of the smoke emission characteristic. The specific test method is as follows.

(1.試料の準備)
絶縁電線5を長さ1000mmに切断し、両端の絶縁層22を長さ20mm除去したものを試料とした。
試料の中心に熱電対による導体温度測定部を設けた。
(1. Preparation of sample)
An insulated wire 5 was cut to a length of 1000 mm, and the insulating layers 22 at both ends were removed by a length of 20 mm as a sample.
A conductor temperature measuring unit using a thermocouple was provided in the center of the sample.

(2.測定環境)
室温(27±5℃)で測定した。
(2. Measurement environment)
It was measured at room temperature (27 ± 5 ° C.).

(3.電流印加と発煙温度の記録)
絶縁電線5の両端に設けた絶縁層22の除去部に、定電圧・定電流直流電源装置を接続し、900Aの電流を流した。絶縁層22からの発煙が確認された際の導体温度を発煙温度として記録した。
各実施例、比較例、参考例の結果を表3に示す。
(3. Current application and smoke temperature recording)
A constant voltage / constant current DC power supply device was connected to the removing portions of the insulating layer 22 provided at both ends of the insulated wire 5, and a current of 900 A was passed. The conductor temperature when smoke emission from the insulating layer 22 was confirmed was recorded as the smoke emission temperature.
Table 3 shows the results of each example, comparative example, and reference example.

Figure 2020032143
Figure 2020032143

表3中の「<5」は検出限界以下であったことを示し、残存量の合計値には含まれていない。 “<5” in Table 3 indicates that it was below the detection limit and is not included in the total residual amount.

実施例7の絶縁電線5の第1絶縁層23、第2絶縁層24に残存するVOCは、共に参考例1と同程度であり、発煙温度も、VOCの低減処理が施された絶縁層22を1層有する絶縁電線である参考例1と同等以上の結果となった。
なお、実施例7の絶縁電線5は280℃の時点では発煙が確認されず、これ以上温度を上げると短期許容温度である300℃に接近して絶縁層自体の熱分解による発煙が発生し、VOC由来の発煙と明確に区別ができなかったため、発煙温度を280℃以上とした。
The VOCs remaining in the first insulating layer 23 and the second insulating layer 24 of the insulated wire 5 of Example 7 are both about the same as those in Reference Example 1, and the smoke generation temperature is also the insulating layer 22 subjected to the VOC reduction treatment. The result was equal to or higher than that of Reference Example 1, which is an insulated wire having one layer.
No smoke was confirmed in the insulated wire 5 of Example 7 at 280 ° C., and if the temperature was raised further, the temperature approached 300 ° C., which is the short-term allowable temperature, and smoke was generated due to thermal decomposition of the insulating layer itself. Since it was not possible to clearly distinguish it from VOC-derived smoke, the smoke temperature was set to 280 ° C or higher.

また、参考実施例と実施例7のVOC残存量を比較すると、第2絶縁層24に対するVOCの低減処理の前後において、第1絶縁層23に残存するVOCの量に変化が無く、第2絶縁層24に残存するVOCの量のみ減少している。この結果から、透過抑制層26の存在によって、第2絶縁層24に対するVOCの低減処理時に、第2絶縁層24から脱離したVOCの一部が第1絶縁層23に再吸着する現象が抑制され、絶縁電線に含まれるVOCの総量の低減に寄与していることが確認できた。 Further, when the VOC residual amount of Reference Example and Example 7 is compared, there is no change in the amount of VOC remaining in the first insulating layer 23 before and after the VOC reduction treatment for the second insulating layer 24, and the second insulation Only the amount of VOCs remaining in layer 24 is reduced. From this result, the presence of the permeation suppressing layer 26 suppresses the phenomenon that a part of the VOC desorbed from the second insulating layer 24 is re-adsorbed to the first insulating layer 23 during the VOC reduction treatment for the second insulating layer 24. It was confirmed that this contributed to the reduction of the total amount of VOC contained in the insulated wire.

一方、比較例3の絶縁電線の第1絶縁層23、第2絶縁層24に残存するVOCは、共に1000ppmを越えており、第1絶縁層23、第2絶縁層24のそれぞれに残存するVOCは参考例2よりも少ないものの、第1絶縁層23と第2絶縁層24に残存するVOCの総量は参考例2と同程度である。発煙温度も220℃と、VOCの低減処理が施されていない絶縁層22を1層有する絶縁電線である参考例2と大差が無かった。 On the other hand, the VOCs remaining in the first insulating layer 23 and the second insulating layer 24 of the insulated wire of Comparative Example 3 both exceed 1000 ppm, and the VOCs remaining in the first insulating layer 23 and the second insulating layer 24, respectively. Is less than that of Reference Example 2, but the total amount of VOCs remaining in the first insulating layer 23 and the second insulating layer 24 is about the same as that of Reference Example 2. The smoke generation temperature was 220 ° C., which was not much different from that of Reference Example 2, which is an insulated wire having one insulating layer 22 not subjected to VOC reduction treatment.

また、参考比較例の結果を見ると、予め第1絶縁層23に対してVOCの低減処理を施しているのにも関わらず、第2絶縁層24を設けた段階で、第1絶縁層23に残存するVOCの量が第2絶縁層24と同程度になっている。
このことから、参考比較例の絶縁電線は第1絶縁層23と第2絶縁層24との間に透過抑制層26が無いため、第2絶縁層24の被覆〜架橋の過程において、第2絶縁層24から脱離したVOCが第1絶縁層23に移行してしまい、第1絶縁層23に残存するVOCの量が増加してしまったと考えられる。
Further, looking at the results of the reference comparative example, although the first insulating layer 23 has been subjected to the VOC reduction treatment in advance, the first insulating layer 23 is at the stage where the second insulating layer 24 is provided. The amount of VOC remaining in the second insulating layer 24 is about the same as that of the second insulating layer 24.
From this, since the insulated wire of the reference comparative example does not have the permeation suppressing layer 26 between the first insulating layer 23 and the second insulating layer 24, the second insulation is performed in the process of coating the second insulating layer 24 to cross-linking. It is considered that the VOCs desorbed from the layer 24 have migrated to the first insulating layer 23, and the amount of VOCs remaining in the first insulating layer 23 has increased.

参考比較例と比較例3のVOC残存量を比較すると、参考比較例の絶縁電線に対するVOCの低減処理によって、比較例の絶縁電線のVOCの残存量が低下したことは確認できるが、発煙特性の改善には大きく寄与しない程度の低下である。
このことから、参考比較例の絶縁電線は第1絶縁層23と第2絶縁層24との間に透過抑制層26が無いため、比較例の絶縁電線とするために第2絶縁層24にVOCの低減処理を施す際に、第2絶縁層24から脱離したVOCの一部が第1絶縁層23に再吸着する現象が発生し、絶縁電線に含まれるVOCの総量の低減効果が限定的になってしまったと考えられる。
Comparing the VOC residual amount of the reference comparative example and the comparative example 3, it can be confirmed that the VOC residual amount of the insulated wire of the comparative example was reduced by the VOC reduction treatment for the insulated wire of the reference comparative example, but the smoke generation characteristics It is a decrease that does not contribute significantly to improvement.
From this, since the insulated wire of the reference comparative example does not have the permeation suppressing layer 26 between the first insulating layer 23 and the second insulating layer 24, the VOC is applied to the second insulating layer 24 in order to use the insulated wire of the comparative example. When the reduction treatment is performed, a phenomenon occurs in which a part of the VOC desorbed from the second insulating layer 24 is re-adsorbed to the first insulating layer 23, and the effect of reducing the total amount of VOC contained in the insulated wire is limited. It is thought that it has become.

本発明の絶縁電線は用途や使用箇所に応じ、導体20の構成や断面積、第1絶縁層23、第2絶縁層24の肉厚や外径、及び透過抑制層26、シールド層28の態様が種々変更されて提供される。 The insulated wire of the present invention has the configuration and cross-sectional area of the conductor 20, the wall thickness and outer diameter of the first insulating layer 23 and the second insulating layer 24, and the aspects of the permeation suppressing layer 26 and the shield layer 28, depending on the application and the place of use. Is provided in various modifications.

本出願は、2018年8月9日に出願された日本国特許出願特願2018−150855号、及び、2018年12月28日に出願された日本国特許出願特許2018−247461号に基づく。本明細書中に日本国特許出願特願2018−150855号、及び、日本国特許出願特願2018−247461号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2018-150855 filed on August 9, 2018 and Japanese Patent Application Patent No. 2018-247461 filed on December 28, 2018. The specification, claims, and the entire drawings of Japanese Patent Application Japanese Patent Application No. 2018-150855 and Japanese Patent Application No. 2018-247461 shall be incorporated into this specification as a reference.

以上の例は、本発明の一例に過ぎず、本発明の思想の範囲内であれば、種々の変更および応用が可能であり、適宜変更されて供されることは言うまでもない。
本発明は特に、自動車・電気電子機器等に使用される、高電圧電力ケーブルに好適なものであるが、利用用途はこれらに限定されるものでなく、発煙特性が要求される場面においては、低電圧のケーブル、絶縁電線などに本発明を適用しても良い。
It goes without saying that the above examples are merely examples of the present invention, and various modifications and applications are possible within the scope of the idea of the present invention, and are appropriately modified and provided.
The present invention is particularly suitable for high-voltage power cables used in automobiles, electric and electronic devices, etc., but the intended use is not limited to these, and in situations where smoke generation characteristics are required. The present invention may be applied to low voltage cables, insulated wires, and the like.

1、2、3、4、5 絶縁電線
10、20 導体
12、22 絶縁層
23 第1絶縁層
24 第2絶縁層
26 透過抑制層
28 シールド層
1, 2, 3, 4, 5 Insulated wires 10, 20 Conductors 12, 22 Insulated layer 23 First insulating layer 24 Second insulating layer 26 Permeation suppression layer 28 Shield layer

Claims (20)

導体の周囲に絶縁層を被覆した絶縁電線であって、該絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下であることを特徴とする絶縁電線。 An insulated wire in which an insulating layer is coated around a conductor, and the total residual amount of volatile organic compounds and quasi-volatile organic compounds having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the insulating layer is 1500 ppm or less. An insulated wire characterized by being. 該絶縁層が、オルガノポリシロキサンを含有することを特徴とする、請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein the insulating layer contains an organopolysiloxane. 該沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物が、D4〜D10の低分子環状シロキサンであることを特徴とする、請求項2に記載の絶縁電線。 The insulated wire according to claim 2, wherein the volatile organic compound and the quasi-volatile organic compound having a boiling point in the range of 150 ° C. to 360 ° C. are low molecular weight cyclic siloxanes of D4 to D10. 該絶縁層に残存するD4〜D6の低分子環状シロキサンのうち、少なくとも1つの残存量が1000ppm以下であることを特徴とする、請求項3に記載の絶縁電線。 The insulated wire according to claim 3, wherein at least one of the small molecule cyclic siloxanes D4 to D6 remaining in the insulating layer has a residual amount of 1000 ppm or less. 該絶縁層に残存するD4〜D8の低分子環状シロキサンの残存量合計が、500ppm以下であることを特徴とする、請求項3または4に記載の絶縁電線。 The insulated wire according to claim 3 or 4, wherein the total residual amount of the small molecule cyclic siloxanes D4 to D8 remaining in the insulating layer is 500 ppm or less. 該絶縁層に残存するD4〜D10の低分子環状シロキサンの残存量合計が、400ppm以下であることを特徴とする、請求項3〜5のいずれか一項に記載の絶縁電線。 The insulated wire according to any one of claims 3 to 5, wherein the total residual amount of the small molecule cyclic siloxanes D4 to D10 remaining in the insulating layer is 400 ppm or less. 該絶縁層に残存するD6の低分子環状シロキサンの残存量が100ppm以下であることを特徴とする、請求項3〜6の何れか一項に記載の絶縁電線。 The insulated wire according to any one of claims 3 to 6, wherein the residual amount of the small molecule cyclic siloxane of D6 remaining in the insulating layer is 100 ppm or less. 該絶縁層に残存するD8の低分子環状シロキサンの残存量が300ppm以下であることを特徴とする、請求項3〜7の何れか一項に記載の絶縁電線。 The insulated wire according to any one of claims 3 to 7, wherein the residual amount of the small molecule cyclic siloxane of D8 remaining in the insulating layer is 300 ppm or less. 該絶縁層に残存するD10の低分子環状シロキサンの残存量が、200ppm以下であることを特徴とする、請求項3〜8の何れか一項に記載の絶縁電線。 The insulated wire according to any one of claims 3 to 8, wherein the residual amount of the small molecule cyclic siloxane of D10 remaining in the insulating layer is 200 ppm or less. 該絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計と、該絶縁層に残存する昇華性物質の残存量合計の和が、1500ppm以下であることを特徴とする絶縁層に残存する、請求項1〜9の何れか一項に記載の絶縁電線。 The sum of the total residual amount of volatile organic compounds and quasi-volatile organic compounds having a boiling point in the range of 150 ° C. to 360 ° C. remaining in the insulating layer and the total residual amount of sublimable substances remaining in the insulating layer is The insulated wire according to any one of claims 1 to 9, which remains in the insulating layer having an amount of 1500 ppm or less. 該絶縁層に残存する該昇華性物質の残存量合計が、300ppm以下であることを特徴とする、請求項10に記載の絶縁電線。 The insulated wire according to claim 10, wherein the total residual amount of the sublimable substance remaining in the insulating layer is 300 ppm or less. 該昇華性物質は、安息香酸、または安息香酸の誘導体であることを特徴とする、請求項10または11に記載の絶縁電線。 The insulated wire according to claim 10 or 11, wherein the sublimable substance is benzoic acid or a derivative of benzoic acid. 導体の周囲に、第1絶縁層と第2絶縁層を含む少なくとも2つの絶縁層を被覆した絶縁電線であって、
全ての該絶縁層に残存する沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物の残存量合計が、1500ppm以下であることを特徴とする絶縁電線。
An insulated wire in which at least two insulating layers including a first insulating layer and a second insulating layer are coated around a conductor.
An insulated wire having a boiling point remaining in all the insulating layers in the range of 150 ° C. to 360 ° C. and a total residual amount of volatile organic compounds and quasi-volatile organic compounds of 1500 ppm or less.
該第1絶縁層と該第2絶縁層との間に、該沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物に対して低透過性を示す、透過抑制層が設けられていることを特徴とする、請求項13に記載の絶縁電線。 A permeation-suppressing layer between the first insulating layer and the second insulating layer, which exhibits low permeability to volatile organic compounds and quasi-volatile organic compounds having a boiling point in the range of 150 ° C. to 360 ° C. The insulated electric wire according to claim 13, wherein the insulated wire is provided. 該第1絶縁層と該第2絶縁層との間に、シールド層が設けられていることを特徴とする、請求項13または14に記載の絶縁電線。 The insulated wire according to claim 13 or 14, wherein a shield layer is provided between the first insulating layer and the second insulating layer. 該第1絶縁層と該第2絶縁層の少なくとも一方が、オルガノポリシロキサンを含有することを特徴とする、請求項13〜15の何れか一項に記載の絶縁電線。 The insulated wire according to any one of claims 13 to 15, wherein at least one of the first insulating layer and the second insulating layer contains an organopolysiloxane. 該沸点が150℃から360℃の範囲にある揮発性有機化合物と準揮発性有機化合物が、D4〜D10の低分子環状シロキサンであることを特徴とする、請求項16に記載の絶縁電線。 The insulated wire according to claim 16, wherein the volatile organic compound and the quasi-volatile organic compound having a boiling point in the range of 150 ° C. to 360 ° C. are low molecular weight cyclic siloxanes of D4 to D10. 該オルガノポリシロキサンを含有する該絶縁層に残存するD4〜D6の低分子環状シロキサンの残存量合計が100ppm以下であることを特徴とする、請求項17に記載の絶縁電線。 The insulated wire according to claim 17, wherein the total residual amount of the small molecule cyclic siloxanes D4 to D6 remaining in the insulating layer containing the organopolysiloxane is 100 ppm or less. 該オルガノポリシロキサンを含有する該絶縁層に残存するD4〜D8の低分子環状シロキサンの残存量合計が、500ppm以下であることを特徴とする、請求項17または18に記載の絶縁電線。 The insulated wire according to claim 17 or 18, wherein the total residual amount of the small molecule cyclic siloxanes D4 to D8 remaining in the insulating layer containing the organopolysiloxane is 500 ppm or less. 該オルガノポリシロキサンを含有する該絶縁層に残存するD4〜D10の低分子環状シロキサンの残存量合計が、1000ppm以下であることを特徴とする、請求項17〜19のいずれか一項に記載の絶縁電線。 The method according to any one of claims 17 to 19, wherein the total residual amount of the small molecule cyclic siloxanes D4 to D10 remaining in the insulating layer containing the organopolysiloxane is 1000 ppm or less. Insulated wire.
JP2020535857A 2018-08-09 2019-08-07 Insulated wire Pending JPWO2020032143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024012208A JP2024032896A (en) 2018-08-09 2024-01-30 How to improve the smoking temperature of insulated wires

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018150855 2018-08-09
JP2018150855 2018-08-09
JP2018247461 2018-12-28
JP2018247461 2018-12-28
PCT/JP2019/031257 WO2020032143A1 (en) 2018-08-09 2019-08-07 Insulated electric wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024012208A Division JP2024032896A (en) 2018-08-09 2024-01-30 How to improve the smoking temperature of insulated wires

Publications (1)

Publication Number Publication Date
JPWO2020032143A1 true JPWO2020032143A1 (en) 2021-08-12

Family

ID=69414882

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020535857A Pending JPWO2020032143A1 (en) 2018-08-09 2019-08-07 Insulated wire
JP2024012208A Pending JP2024032896A (en) 2018-08-09 2024-01-30 How to improve the smoking temperature of insulated wires

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024012208A Pending JP2024032896A (en) 2018-08-09 2024-01-30 How to improve the smoking temperature of insulated wires

Country Status (4)

Country Link
JP (2) JPWO2020032143A1 (en)
CN (1) CN112384996B (en)
DE (1) DE112019004001T5 (en)
WO (1) WO2020032143A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300887B2 (en) * 2019-05-16 2023-06-30 株式会社クラベ Insulated wire and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8491997B2 (en) * 2006-06-22 2013-07-23 Sabic Innovative Plastics Ip B.V. Conductive wire comprising a polysiloxane/polyimide copolymer blend
DE202011110267U1 (en) * 2011-11-22 2013-03-26 Evonik Degussa Gmbh Composition of olefinically functionalized siloxane oligomers based on alkoxysilanes
JP5712121B2 (en) * 2011-12-21 2015-05-07 株式会社フジクラ Silicone rubber composition, molded product and electric wire
JP5750420B2 (en) * 2012-09-25 2015-07-22 株式会社フジクラ Silicone rubber composition, molded product and electric wire

Also Published As

Publication number Publication date
CN112384996B (en) 2023-02-17
JP2024032896A (en) 2024-03-12
CN112384996A (en) 2021-02-19
DE112019004001T5 (en) 2021-05-06
WO2020032143A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP2024032896A (en) How to improve the smoking temperature of insulated wires
EP0108491B1 (en) Electric wire with flame retarded cladding
JP6621168B2 (en) Power transmission cable using non-halogen flame retardant resin composition
JP2013129734A (en) Polyvinyl chloride resin composition, and electric wire and cable using the same
JP2013214487A (en) Multilayer insulated cable
SG177231A1 (en) Vinyl chloride resin composition and insulated electronic wire using the same
JP2014102952A (en) Non-halogen multilayer insulation wire
JP2013023518A (en) Chloroprene rubber composition and cable
WO2020204013A1 (en) Insulating tape for coating connection part of power cable, method for forming insulating coating on exterior surface of connection part of power cable, and power cable
JP2017531899A (en) Electrical device comprising a cross-linked layer
JP2014218617A (en) Resin composition and dc cable
JP2018014159A (en) Insulated wire
EP3048616A1 (en) Halogen-free, flame-retardant insulating electrical wire and flame-retardant insulating tube
KR20170012862A (en) Halogen free flame-retardant crosslinked polyolefin insulation wire
JP2004285275A (en) Polyvinyl chloride resin composition, insulated wire, cable and those manufacturing method
GB2170646A (en) Flame retardant cable
JP2007005137A (en) Cable and its manufacturing method
JP2927058B2 (en) Heat-resistant flame-retardant insulated wire and method of manufacturing the same
AU568802B2 (en) Flame retardant wire with high insulation resistance
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JP7359033B2 (en) insulated wire
JP3818627B2 (en) Non-halogen flame retardant cable
JP2016100147A (en) Power transmission cable
JP2016170994A (en) Power transmission cable
JP6521362B2 (en) Power transmission cable

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240209