WO2013094352A1 - ソーシャル・メデイアにおけるトレンドを検出する方法、コンピュータ・プログラム、コンピュータ。 - Google Patents
ソーシャル・メデイアにおけるトレンドを検出する方法、コンピュータ・プログラム、コンピュータ。 Download PDFInfo
- Publication number
- WO2013094352A1 WO2013094352A1 PCT/JP2012/079751 JP2012079751W WO2013094352A1 WO 2013094352 A1 WO2013094352 A1 WO 2013094352A1 JP 2012079751 W JP2012079751 W JP 2012079751W WO 2013094352 A1 WO2013094352 A1 WO 2013094352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- message
- user
- computer
- messages
- sent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004590 computer program Methods 0.000 title claims description 4
- 238000011156 evaluation Methods 0.000 claims abstract description 25
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 6
- 230000007480 spreading Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/52—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail for supporting social networking services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/335—Filtering based on additional data, e.g. user or group profiles
- G06F16/337—Profile generation, learning or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/21—Monitoring or handling of messages
- H04L51/234—Monitoring or handling of messages for tracking messages
Definitions
- the present invention relates to information processing technology, and more particularly to technology for detecting burst information in social media (information spreading at a different scale than usual) more accurately and earlier.
- burst information includes information (such as hoax, reputation, etc.) that is different from the fact, and in some cases can be a threat to business activities. Therefore, a technique for detecting the “burst” phenomenon with high accuracy and at an early stage is required.
- Patent Document 1 has a problem of “providing a technology that can extract reputation information from information published on the network and simultaneously extract information related to the information and present it to the user”.
- Data collection means 1 that receives data published from server devices on the network and stores them as collected data in the collected data storage means, and extracts character strings included in the collected data, based on the character strings
- a reputation information determination means for obtaining a determination result as to whether or not the collected data is reputation information, reputation information data determined as reputation information, an author of the reputation information data, or contents of the reputation information data, or stored.
- Related information data related to at least one of the name or network address of the server device and the file information of the reputation information data.
- Non-Patent Document 1 proposes a technique for detecting whether or not there is a burst by evaluating the degree of increase in the attention word.
- the present invention has been made in view of such problems, and one of its purposes is to take into account the characteristics of the person sending the information and the content of the information, so that the “burst” phenomenon can be accurately performed.
- the object is to provide a technique capable of early detection.
- Diffusibility varies depending on the influence of the sending user (information sent by a high-impact user is more likely to be re-sent).
- the possibility of spreading differs depending on the frequency of the user's re-transmission (the importance at the time of re-transmission differs between the user who just re-sends and the user who hardly re-sends).
- the possibility of recurrence varies depending on the specificity of the information (when information of contents different from usual is retransmitted, there is a high possibility that information is diffused), and the present invention was made. Is. Specifically, the following means are adopted.
- the present invention provides a method for selecting a specific message group from a plurality of messages transmitted by a plurality of users on social media by a computer.
- the message includes a message retransmitted by another user by citing a message transmitted by one user.
- the method includes a step of performing a primary evaluation on the possibility of further re-transmission of a message re-transmitted by the other user by quoting a message transmitted by the one user, and a result of the primary evaluation is determined in advance.
- the retransmitted message group based on the step of identifying the one user who has transmitted a message higher than a defined first threshold and the retransmitted message group by citing the message transmitted by the one user
- the possibility of further re-transmission can be calculated as an increasing function of the influence degree of the other user. More specifically, the degree of influence of the other users can be calculated as an increasing function of the number of users following the other users. Further, in the primary evaluation or the secondary evaluation step, the possibility of further re-transmission is calculated as a decreasing function of the degree that the other user re-transmits a message that quoted the message of the one user in the past. can do. More specifically, the degree of the re-transmission can be calculated as the number of times that the other user re-transmits a message that quotes the message of the one user during a certain past period.
- the possibility of further re-transmission is based on the contents of the message re-transmitted by the other user and the message transmitted by the other user in the past. It can be calculated as a decreasing function of similarity. More specifically, the similarity is calculated by character string matching a message retransmitted by the other user and a message transmitted by the other user in the past, or by sentence clustering. It can be calculated.
- the message may be a message sampled under a predetermined condition from a message posted on the social media.
- the message may be a message sampled under a condition including a predetermined keyword among messages posted to the social media within a predetermined period.
- the social media may be a microblog.
- a computer that hosts the social media and a computer that selects the specific message group are connected via a network, and the host is responsive to the predetermined conditional request from the selecting computer. It may be configured to further include a step of receiving the message transmitted from the computer by the selecting computer. In addition, the method may further include a step of storing the received message in a storage unit of the selected computer.
- the “burst” phenomenon can be detected with high accuracy and earlyness by taking into account the characteristics of the person sending the information and the content of the information.
- FIG. 1 is a conceptual diagram illustrating a microblogging system as an example of social media.
- This system includes a microblog server 2 and a user terminal, which are connected to each other via the Internet 4 so as to communicate with each other.
- the user terminal any form of computer having a communication function can be adopted.
- a personal data assistant PDA, personal digital assistant
- on-vehicle computer netbook, etc. (not shown) can be employed. .
- FIG. 2 is a conceptual diagram for explaining the follow / follow relationship of a microblog.
- the microblog user can register in advance friends, acquaintances, and other users who have common interests and interests, and can automatically receive messages sent by them. Such registration is referred to as “follow”, and the follow relationship includes a relationship in which users follow each other and a relationship in which one user unilaterally follows another user.
- the arrow in FIG. 2 indicates that the user AAA and the user BBB are following each other, the user BBB is unilaterally following the user CCC, and the user CCC is unilaterally following the user AAA.
- FIG. 3 illustrates a smartphone 31 as a user terminal and its screen display as an example.
- a microblog application screen is displayed, and the application screen is divided into a home portion 311, a timeline portion 312, and an operation portion 313 from the top.
- the home portion displays a menu button and that the timeline portion 312 is the user AAA timeline.
- message portions 312a and 312b of the user AAA and a message portion 312c of the user BBB are displayed in order from the top.
- These message parts 312a to 3c are displayed in time series. That is, the uppermost remark part 312a corresponds to the latest message.
- FIG. 4 illustrates the data structure of data stored in the hard disk devices 20 and 21 in the microblog server 2.
- the transmission date and time (created_at) indicating the date and time when each message was transmitted
- the message ID (id) specifying each message
- the message is stored. It includes a user ID (user_id) that identifies the user who made the call and a text that is the content of the message. Note that the text can have a character limit (for example, 140 characters or less).
- the user relationship table FIG.
- FIG. 5 explains the types of messages to be transmitted.
- FIG. 5A illustrates a normal message.
- the user AAA sends a message to his / her timeline, and these messages are displayed on the timeline of the user AAA and the user following the user AAA (user BBB and user CCC in the example of FIG. 2). Is done.
- FIG. 5B illustrates the reply message.
- the reply message is a reply to a specific message and is displayed on the timeline of the user who follows him / herself.
- the user BBB is, as a reply to the user AAA of the message, "Hi, hello.” Originated the reply message, the reply message to another user BBB person, the user (FIG. 2, which are following the user BBB In the example, it is displayed on the timeline of the user AAA).
- FIG. 5C and FIG. 5D both illustrate the reprint message, and the user CCC's original message “Started microblogging” of the user AAA displayed on his timeline.
- a re-transmission message is shown as a re-transmission.
- the reprint message is displayed on the timeline of the user who is following the user CCC (user BBB in the example of FIG. 2).
- the name is displayed with the name of the user CCC to be transferred.
- FIG. 5E illustrates the quote message.
- User CCC quotes user AAA's original message “I started microblogging” as displayed on his timeline, and then enters his comment “Welcome!” Show. This quote message is displayed on the timeline of the user following the user CCC.
- FIG. 6 is a block diagram illustrating the hardware configuration of the personal computer 1.
- the hardware configuration of the computer 1 includes a (low-speed and high-speed) bus 10, a CPU (arithmetic control device) 11 connected to the bus 10, a RAM (random access memory: storage device) 12, a ROM (read-only memory).
- a memory (storage device) 13, an HDD (hard disk drive: storage device) 14, a communication interface 15, and an input / output interface 16 are provided.
- a mouse 17 connected to the input / output interface 16, a flat panel display (display device) 18, a keyboard 19 and the like are provided.
- the computer 1 has been described as adopting a general personal computer architecture, for example, the CPU 11 and the HDD 14 can be multiplexed in order to obtain higher data processing capability and availability. In addition to the desktop type, various types of computer systems can be employed.
- the software configuration of the computer 1 includes an operating system (OS) that provides basic functions, application software that uses the functions of the OS, and driver software for input / output devices. These pieces of software are loaded onto the RAM 12 together with various data and executed by the CPU 11 or the like, and the computer 1 executes the processing shown in FIG. 7 as a whole.
- OS operating system
- driver software driver software for input / output devices.
- FIG. 7 is a flowchart for explaining processing executed by the computer 1.
- a condition is transmitted from the computer 1 to the microblog server 2 (S1).
- the condition may be, for example, specifying a period during which the message is transmitted, specifying a message including a specific keyword in the message, or specifying only a retransmitted message. These may be combined.
- the computer 1 receives data of a message group that meets the above conditions from the microblog server 2 (S2).
- S2 receives data of a message group that meets the above conditions from the microblog server 2 (S2).
- message group data see FIG. 4A
- user data associated with those messages see FIG. 4B
- FIG. 8 explains the formulation that is a precondition for calculating the possibility of re-transmission.
- the retransmitted message means the above-mentioned reprint message (FIGS. 5C and 5D) and the quote message (FIG. 5E). Since the reprint message and the quote message in the first mode shown in FIG.
- the information is referred to, for example, the message ID (see FIG. 4A).
- the message ID By setting a message ID indicating it, such as including the user ID of the former user si, the reprint message and the quote message of the first aspect can be specified.
- the reprint message of the second mode shown in FIG. 5D is not an official function prepared by the server 2 side, in order to specify this, the unique message displayed in the content of the reprint message of the second mode is shown.
- the reprint message and the information reference source user si in the second mode can be specified using the character string of “RT @”, for example.
- FIG. 9 illustrates a period Tp (T) that is earlier than the period T for evaluating the spread possibility in the period T.
- the information transmitted by the user si is retransmitted as the message mi in the period T
- the spread possibility burst m (mi) of the message mi is defined by the following equation.
- centrality (u, T) indicates the centrality of user u in period T.
- centrality (u, T) can be calculated using various existing centralities (such as proximity centrality) in G (T).
- degree centrality the number of other users following each user
- centrality (u, T) takes log e (#followers).
- ref (u ⁇ > s, T) indicates the degree to which the user u refers to the information transmitted by the user s in the period T.
- ref (u ⁇ > s, T) means whether or not the user u retransmits with reference to the user s in the period T, and takes [0, 1].
- sim (C, c) indicates the similarity between the content set C (uppercase) and the content c (lowercase). Specifically, sim (C, c) can be calculated using a cosine similarity or the like in the vector space model, and takes [0, 1]. That is, in a vector space model, a document is expressed as a multidimensional vector of words (such as nouns).
- the similarity between two documents can be calculated as the similarity between vectors.
- the cosine similarity is a cosine (cos ⁇ ) of an angle ⁇ formed by two document vectors.
- the cosine similarity is 1 when the two vectors match completely.
- an arbitrary function that increases in accordance with the degree of similarity can be set, and the numerical range does not have to be 0 to 1.
- C (u, T) represents a set of blog contents transmitted by the user u during the period T.
- ⁇ is a constant that determines the influence of ref.
- ⁇ 5.
- the spreading degree burst m (mi) of the message mi sent in the period T is obtained by the following equation.
- a similar message group is clustered based on a message set obtained by re-sending a message sent by the identified user (S5). That is, the user S b is detected and is transmitting burst information in the period T b.
- M (s, T) ⁇ m i
- t i ⁇ T, s i s ⁇
- the information sent by user s is re-sent in period T.
- One is a method by string matching.
- a message group having the possibility equal to or greater than the second threshold is output (S7). That is, if burst M (M j ) is greater than or equal to a certain threshold (second threshold), it is detected as burst information.
- the invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements.
- the invention is implemented in software, including but not limited to firmware, resident software, microcode, parsing picocode, and the like.
- the present invention can also take the form of a computer program or computer-readable medium comprising program code for use by or in connection with a computer or any instruction execution system.
- a computer-readable medium is any apparatus that can contain, store, communicate, propagate, or transmit a program for use by or in connection with any instruction execution system, apparatus, or device. It can be.
- the syntax analysis control module described above constitutes an instruction execution system or “computer” in this sense.
- the medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
- Examples of computer readable media include semiconductor or solid state memory, magnetic tape, removable computer diskette, random access memory (RAM), read-only memory (ROM), rigid magnetic disk. And optical discs. Current examples of optical disks include compact disk read only memory (CD-ROM: compact disk read only memory), compact disk read / write (CD-R / W) memory, DVD Is included.
- a data processing system suitable for storing and / or executing program code may include at least one processor coupled directly or indirectly to memory elements through a system bus. This memory element contains at least some of the local memory used in the actual execution of the program code, the bulk storage, and the number of times it must be read from the bulk storage during execution.
- the program code can include a cache memory that provides temporary storage.
- I / O devices can be coupled to the system either directly or via an intermediary I / O controller.
- a network adapter to the system so that the data processing system can be connected to other data processing systems or remote printers or storage devices via an intermediary private or public network.
- Modems, cable modems, and Ethernet cards are just a few of the currently available network adapters.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、本発明は多くの異なる態様で実施することが可能であり、実施の形態の記載内容に限定して解釈されるべきものではない。また、実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須とは限らないことに留意されたい。実施の形態の説明の全体を通じて(特段の断りのない限り)同じ要素には同じ番号を付している。
11…CPU(演算制御装置)
12…RAM(ランダム・アクセス・メモリ:記憶装置)
13…ROM(リード・オンリ・メモリ:記憶装置)
14…HDD(ハード・ディスク・ドライブ:記憶装置)
15…通信インタフェース
16…入出力インタフェース
17…マウス
18…フラット・パネル・ディスプレイ(表示装置)
2…マイクロブログ・サーバ
20、21…ハード・ディスク・ドライブ
31…スマートフォン
32…タブレット
33…(ノート型)パーソナル・コンピュータ
Claims (16)
- コンピュータにより、ソーシャル・メディアにおいて、複数のユーザが発信する複数のメッセージの中から、特定のメッセージ群を選択する方法であり
前記メッセージには、一のユーザが発信したメッセージを引用して他のユーザが再発信するメッセージを含み、
前記方法は、
前記一のユーザが発信したメッセージを引用して前記他のユーザが再発信するメッセージについて、更に再発信される可能性を一次評価するステップと、
前記一次評価の結果が予め定められた第一閾値よりも高いメッセージを発信した前記一のユーザを特定するステップと、
前記一のユーザが発信したメッセージを引用して再発信したメッセージ群に基づいて、前記再発信したメッセージ群に類似するメッセージ群を特定するステップと、
前記類似するメッセージ群が、更に再発信される可能性を二次評価するステップと、
前記二次評価の結果が予め定められた第二閾値よりも高いメッセージ群を選択するステップと
を備える方法。 - 前記一次評価又は二次評価するステップにおいて、前記更に再発信される可能性は、前記他のユーザの影響度の増加関数として演算される請求項1に記載の方法。
- 前記他のユーザの影響度は、前記他のユーザをフォローするユーザの数の増加関数として演算される請求項2に記載の方法。
- 前記一次評価又は二次評価するステップにおいて、前記更に再発信される可能性は、前記他のユーザが過去に前記一のユーザのメッセージを引用したメッセージを再発信した度合いの減少関数として演算される請求項1に記載の方法。
- 前記再発信した度合いは、前記他のユーザが過去の一定期間に前記一のユーザのメッセージを引用したメッセージを再発信した回数として演算される請求項4に記載の方法。
- 前記一次評価又は二次評価するステップにおいて、前記更に再発信される可能性は、前記他のユーザが再発信したメッセージと前記他のユーザがそれよりも過去に発信したメッセージとの内容の類似度の減少関数として演算される請求項1に記載の方法。
- 前記類似度は、前記他のユーザが再発信したメッセージと前記他のユーザがそれよりも過去に発信したメッセージとを文字列マッチングすることにより演算される請求項6に記載の方法。
- 前記類似度は、前記他のユーザが再発信したメッセージと前記他のユーザがそれよりも過去に発信したメッセージとを文章クラスタリングすることにより演算される請求項6に記載の方法。
- 前記メッセージは、前記ソーシャル・メディアに投稿されたメッセージから所定の条件の下にサンプリングされたメッセージである請求項1に記載の方法。
- 前記メッセージは、前記ソーシャル・メディアに所定の期間内に投稿されたメッセージのうち、所定のキーワードを含む条件の下にサンプリングされたメッセージである請求項1に記載の方法。
- 前記ソーシャル・メディアをホストするコンピュータと、前記特定のメッセージ群を選択するコンピュータとがネットワークを介して接続され、
前記選択するコンピュータからの前記所定の条件付き要求に応答して、前記ホストするコンピュータから送信される前記メッセージを前記選択するコンピュータが受信するステップを更に備える請求項10に記載の方法。 - 前記受信した前記メッセージを、前記選択するコンピュータの記憶手段に記憶するステップを更に備える請求項11に記載の方法。
- 前記ソーシャル・メディアがマイクロブログである請求項1に記載の方法。
- コンピュータに実行されることで、請求項1乃至13のいずれかに記載の方法のすべてのステップを前記コンピュータに実行させるコンピュータ・プログラム。
- ソーシャル・メディアにおいて、複数のユーザが発信する複数のメッセージの中から、特定のメッセージ群を選択するコンピュータであり
前記メッセージには、一のユーザが発信したメッセージを引用して他のユーザが再発信するメッセージを含み、
前記コンピュータの記憶手段には、前記複数のメッセージが記憶されており、
前記コンピュータの演算制御手段が、
前記一のユーザが発信したメッセージを引用して前記他のユーザが再発信するメッセージについて、更に再発信される可能性を一次評価し、
前記一次評価の結果が予め定められた第一閾値よりも高いメッセージを発信した前記一のユーザを特定し、
前記一のユーザが発信したメッセージを引用して再発信したメッセージ群に基づいて、前記再発信したメッセージ群に類似するメッセージ群を特定し、
前記類似するメッセージ群が、更に再発信される可能性を二次評価し、
前記二次評価の結果が予め定められた第二閾値よりも高いメッセージ群を選択する
コンピュータ。 - 前記記憶手段に記憶される前記複数のメッセージは、前記ソーシャル・メディアに投稿されるメッセージからサンプリングされたメッセージである請求項15に記載のコンピュータ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280062968.6A CN104011718B (zh) | 2011-12-19 | 2012-11-16 | 用于选择识别的消息组的方法、计算机可读介质和计算机 |
GB1409114.4A GB2511235A (en) | 2011-12-19 | 2012-11-16 | Method, computer program, and computer for detecting trends in social medium |
US14/363,323 US9705837B2 (en) | 2011-12-19 | 2012-11-16 | Method, computer program and computer for detecting trends in social media |
JP2013550184A JP5602958B2 (ja) | 2011-12-19 | 2012-11-16 | ソーシャル・メデイアにおけるトレンドを検出する方法、コンピュータ・プログラム、コンピュータ。 |
DE112012005344.3T DE112012005344T5 (de) | 2011-12-19 | 2012-11-16 | Verfahren, Computerprogramm und Computer zum Erkennen von Trends in sozialen Medien |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011276973 | 2011-12-19 | ||
JP2011-276973 | 2011-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013094352A1 true WO2013094352A1 (ja) | 2013-06-27 |
Family
ID=48668251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079751 WO2013094352A1 (ja) | 2011-12-19 | 2012-11-16 | ソーシャル・メデイアにおけるトレンドを検出する方法、コンピュータ・プログラム、コンピュータ。 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9705837B2 (ja) |
JP (1) | JP5602958B2 (ja) |
CN (1) | CN104011718B (ja) |
DE (1) | DE112012005344T5 (ja) |
GB (1) | GB2511235A (ja) |
WO (1) | WO2013094352A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160034426A1 (en) * | 2014-08-01 | 2016-02-04 | Raytheon Bbn Technologies Corp. | Creating Cohesive Documents From Social Media Messages |
US11269943B2 (en) * | 2018-07-26 | 2022-03-08 | JANZZ Ltd | Semantic matching system and method |
WO2020061578A1 (en) * | 2018-09-21 | 2020-03-26 | Arizona Board Of Regents On Behalf Of Arizona State University | Method and apparatus for collecting, detecting and visualizing fake news |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10143712A1 (de) | 2001-08-30 | 2003-04-10 | Europroteome Ag | Verfahren, Computersystem und Computerprogrammprodukt zur Datenauswertung |
JP4012850B2 (ja) * | 2003-02-17 | 2007-11-21 | 日本電信電話株式会社 | アイテムフィルタリング方法及び装置、アイテム決定方法及び装置、アイテム情報提供装置、コンピュータプログラム及び記録媒体 |
JP3992640B2 (ja) | 2003-04-15 | 2007-10-17 | 電気化学工業株式会社 | 金属ベース回路基板の製造方法 |
JP5008024B2 (ja) | 2006-12-28 | 2012-08-22 | 独立行政法人情報通信研究機構 | 風評情報抽出装置及び風評情報抽出方法 |
US20120290551A9 (en) * | 2009-12-01 | 2012-11-15 | Rishab Aiyer Ghosh | System And Method For Identifying Trending Targets Based On Citations |
US8595234B2 (en) * | 2010-05-17 | 2013-11-26 | Wal-Mart Stores, Inc. | Processing data feeds |
US20120042020A1 (en) | 2010-08-16 | 2012-02-16 | Yahoo! Inc. | Micro-blog message filtering |
US8473437B2 (en) * | 2010-12-17 | 2013-06-25 | Microsoft Corporation | Information propagation probability for a social network |
US9031888B2 (en) * | 2011-08-10 | 2015-05-12 | International Business Machines Corporation | Predicting influence in social networks |
US8725858B1 (en) * | 2011-08-31 | 2014-05-13 | Google Inc. | Method and system for selecting content based on a user's viral score |
US20140129331A1 (en) * | 2012-11-06 | 2014-05-08 | Bottlenose, Inc. | System and method for predicting momentum of activities of a targeted audience for automatically optimizing placement of promotional items or content in a network environment |
-
2012
- 2012-11-16 GB GB1409114.4A patent/GB2511235A/en not_active Withdrawn
- 2012-11-16 US US14/363,323 patent/US9705837B2/en active Active
- 2012-11-16 CN CN201280062968.6A patent/CN104011718B/zh not_active Expired - Fee Related
- 2012-11-16 DE DE112012005344.3T patent/DE112012005344T5/de not_active Withdrawn
- 2012-11-16 WO PCT/JP2012/079751 patent/WO2013094352A1/ja active Application Filing
- 2012-11-16 JP JP2013550184A patent/JP5602958B2/ja not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
KIYOTAKA GOTO ET AL.: "''A Proposal of a Method for Searching ''Curators'' Based on Activities on Social Medias''", FIT2010 DAI 9 KAI FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, SEPARATE VOL.4, SADOKU TSUKI RONBUN - IPPAN RONBUN NETWORK SECURITY UBIQUITOUS MOBILE COMPUTING KYOIKU ? JINBUN KAGAKU JOHO SYSTEM, vol. 4, 20 August 2010 (2010-08-20), pages 271 - 272 * |
TAUHID R. ZAMAN ET AL.: "Predicting Information Spreading in Twitter", 31 December 2010 (2010-12-31), pages 1 - 4, Retrieved from the Internet <URL:http://research.microsoft. com/pubs/141866/nips10_twitter_final.pdf> [retrieved on 20121204] * |
YUSUKE OTA ET AL.: "Twitter ni Okeru Retweet Keiro no Kasaneawase ni yoru User Hakken Shien", FIT2011 DAI 10 KAI FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, SEPARATE VOL.4, SADOKU TSUKI RONBUN - IPPAN RONBUN NETWORK SECURITY UBIQUITOUS MOBILE COMPUTING KYOIKU - JINBUN KAGAKU JOHO SYSTEM, vol. 4, 22 August 2011 (2011-08-22), pages 73 - 76 * |
Also Published As
Publication number | Publication date |
---|---|
DE112012005344T5 (de) | 2014-08-28 |
CN104011718A (zh) | 2014-08-27 |
US20150067078A1 (en) | 2015-03-05 |
GB2511235A (en) | 2014-08-27 |
JP5602958B2 (ja) | 2014-10-08 |
US9705837B2 (en) | 2017-07-11 |
GB201409114D0 (en) | 2014-07-09 |
JPWO2013094352A1 (ja) | 2015-04-27 |
CN104011718B (zh) | 2018-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10275448B2 (en) | Automatic question generation and answering based on monitored messaging sessions | |
US20200357081A1 (en) | Social media based recommendation information providing apparatus and method | |
US10511496B2 (en) | Method, system and computer program product for interception, quarantine and moderation of internal communications of uncontrolled systems | |
US9438689B2 (en) | Method and system to determine a member profile associated with a reference in a publication | |
US8838599B2 (en) | Efficient lexical trending topic detection over streams of data using a modified sequitur algorithm | |
US7827165B2 (en) | Providing a social network aware input dictionary | |
US20130159848A1 (en) | Dynamic Personal Dictionaries for Enhanced Collaboration | |
US10733572B2 (en) | Data protection using alerts to delay transmission | |
US20130191451A1 (en) | Presence-based Synchronization | |
JP5961320B2 (ja) | ソーシャル・メデイアにおけるユーザの分類方法、コンピュータ・プログラム及びコンピュータ | |
US9935793B2 (en) | Generating a live chat session in response to selection of a contextual shortcut | |
RU2595533C2 (ru) | Система отображения почтовых вложений на странице веб-почты | |
JP5893050B2 (ja) | ソーシャル・メデイアにおけるコミュニティを検出する方法、コンピュータ・プログラム、コンピュータ | |
US20100114938A1 (en) | Search results for a topic that include a list of messaging users that have previously searched on that topic | |
US20200336501A1 (en) | Sensitive data detection in communication data | |
CN107657029A (zh) | 被遗忘的附件的检测方法及装置 | |
US10937033B1 (en) | Pre-moderation service that automatically detects non-compliant content on a website store page | |
US10862838B1 (en) | Detecting whether a message is addressed to an intended recipient | |
JP5602958B2 (ja) | ソーシャル・メデイアにおけるトレンドを検出する方法、コンピュータ・プログラム、コンピュータ。 | |
US20140081624A1 (en) | Methods, Systems, and Program Products for Navigating Tagging Contexts | |
WO2018076616A1 (zh) | 信息交互方法、服务器、客户端、存储介质及设备 | |
US9830397B2 (en) | Method and computer-based system for processing a search query from a user associated with an electronic device | |
US9438545B2 (en) | Message-based collaboration | |
US20160323227A1 (en) | Method and system for providing a user with an indication of an unread e-mail count on a client device | |
JP2011243078A (ja) | 記事管理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12859597 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013550184 Country of ref document: JP Kind code of ref document: A Ref document number: 1409114 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20121116 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1409114.4 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012005344 Country of ref document: DE Ref document number: 1120120053443 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14363323 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12859597 Country of ref document: EP Kind code of ref document: A1 |