WO2013094317A1 - Supporting structure, loading and packaging device, supporting base plate, and packaging method - Google Patents

Supporting structure, loading and packaging device, supporting base plate, and packaging method Download PDF

Info

Publication number
WO2013094317A1
WO2013094317A1 PCT/JP2012/078116 JP2012078116W WO2013094317A1 WO 2013094317 A1 WO2013094317 A1 WO 2013094317A1 JP 2012078116 W JP2012078116 W JP 2012078116W WO 2013094317 A1 WO2013094317 A1 WO 2013094317A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
support
substrate
support structure
Prior art date
Application number
PCT/JP2012/078116
Other languages
French (fr)
Japanese (ja)
Inventor
和洋 水尾
内藤 克幸
悠二 増田
純希 星出
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011280514A external-priority patent/JP2013131648A/en
Priority claimed from JP2011282172A external-priority patent/JP5756007B2/en
Priority claimed from JP2011282167A external-priority patent/JP5901961B2/en
Priority claimed from JP2012036507A external-priority patent/JP5868211B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280070316.7A priority Critical patent/CN104125920A/en
Priority to US14/368,128 priority patent/US20140367305A1/en
Publication of WO2013094317A1 publication Critical patent/WO2013094317A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/053Corner, edge or end protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D57/00Internal frames or supports for flexible articles, e.g. stiffeners; Separators for articles packaged in stacks or groups, e.g. for preventing adhesion of sticky articles
    • B65D57/002Separators for articles packaged in stacks or groups, e.g. stacked or nested
    • B65D57/003Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles
    • B65D57/004Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles the articles being substantially flat panels, e.g. wooden planks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/38Details or accessories
    • B65D19/44Elements or devices for locating articles on platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/053Corner, edge or end protectors
    • B65D81/055Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors
    • B65D81/056Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors the surfaces being generally perpendicular to each other, e.g. three-sided corner protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets

Definitions

  • the present invention relates to a support structure for mounting a corner portion of a solar cell module to support the solar cell module in a horizontal state, a stacking packing tool for packing the solar cell module, and a solar cell module by mounting the support structure.
  • the present invention relates to a support substrate that supports the solar cell module in a horizontal state and a method for packing a solar cell module.
  • Patent Document 1 a support structure for stacking and packing solar cell modules in a horizontal state, an insertion system (for example, see Patent Document 1), and a loading packing tool (for example, see Patent Document 2) are known.
  • Patent Document 1 discloses an insertion system including a molded product member formed so that a supporting deformable material on which a corner portion of a photovoltaic module is placed protrudes inward.
  • the molded product member has a tenon (projection) on the upper side and a void on the lower side.
  • four molded product members each support the four corners of one photovoltaic module.
  • the tenon of the molded product member is inserted into a void of the molded product member disposed above the molded product member. That is, in this insertion system, the adjacent molded member is joined by the tenon-cavity structure of the molded product member, so that the molded product members are stacked in the vertical direction.
  • a power module is supported.
  • Patent Document 2 discloses a gantry, a plurality of corner support members that are stacked in the vertical direction at four corners of the gantry, a lower support member that supports the corner support member on the gantry, and a rectangular panel material (solar cell).
  • a packaging device having a side wall body that surrounds a stack of modules and a lid body is disclosed.
  • the corner support member includes an orthogonal wall that abuts against a corner portion of the panel material, and a load receiving portion that extends horizontally from the orthogonal wall and on which the corner portion of the panel material is placed.
  • the orthogonal wall has an inner fitting groove on the inner side and an outer fitting piece on the outer side, and the inner fitting groove of the orthogonal wall has an outward direction of the orthogonal wall of the corner support member arranged above the groove.
  • the fitting piece is fitted. That is, the corner support members adjacent in the vertical direction are stacked by fitting the inner fitting groove and the outward fitting piece.
  • angular part of a panel material is mounted in the load receiving part of the laminated
  • the present invention was devised to solve such problems, and an object of the present invention is to provide a solar cell module support structure, a loading packaging tool, and a packaging method capable of safely transporting the solar cell module. It is in.
  • a support structure is a support structure that supports the solar cell module in a horizontal state by placing corner portions of the solar cell module, and is a base that is stacked in the vertical direction.
  • a support part that supports a corner part of the solar cell module that is formed so as to protrude laterally from the inner side surface of the base part, and one support that is formed on the upper end surface of the base part and that is adjacent vertically
  • An engaging convex portion that engages with the structure, and an engaging concave portion that is formed on the lower end surface of the base portion and that engages with the engaging convex portion of the other support structure that is adjacent vertically.
  • the engaging recess is characterized in that the outer side surface of the base portion is open.
  • the engagement state can be directly confirmed by visual observation by making the engagement concave portion a structure in which the outer side surface side of the base portion is opened.
  • the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated.
  • the packing method of the present invention is characterized in that the solar cell modules are stacked in a horizontal state and packed using the support structures having the above-described configurations.
  • the engagement when the support structure is engaged up and down, the engagement can be performed while directly confirming the engagement state visually, so that the packaging work is facilitated.
  • the stacking packing tool of the present invention is a stacking packing tool that stacks and packs solar cell modules in a vertical direction in a horizontal state, and is erected on the substrate unit and the upper surface of the substrate unit.
  • the solar cell module is held by being fitted from the lateral direction to the support structure that respectively supports the corners of the solar cell modules stacked horizontally and the edge of the solar cell modules stacked horizontally.
  • a buffer member is a stacking packing tool that stacks and packs solar cell modules in a vertical direction in a horizontal state, and is erected on the substrate unit and the upper surface of the substrate unit.
  • the solar cell module is held by being fitted from the lateral direction to the support structure that respectively supports the corners of the solar cell modules stacked horizontally and the edge of the solar cell modules stacked horizontally.
  • a buffer member is a buffer member.
  • the buffer member is fitted from the lateral direction to the edge portion of the horizontally stacked solar cell modules, and the solar cell module can be fixed by the buffer members from both sides. This prevents the solar cell modules stacked in a horizontal state due to vibration during transportation, etc. from being bent, prevents contact or collision between solar cell modules adjacent in the vertical direction, and further solar cells due to vibration during transportation. The horizontal movement of the module can be suppressed.
  • the loading and packing method of the present invention is characterized by stacking and packing the solar cell modules in a horizontal state using the loading and packing tools having the above-described configurations.
  • the present invention it is possible to fix the posture of the solar cell modules stacked in the vertical direction with a sufficient gap between the solar cell modules with the buffer members attached to both edges thereof.
  • Such packaging can prevent contact or collision between the solar cell modules stacked in the vertical direction by vibration during transportation, and can suppress horizontal movement.
  • the support substrate of the present invention is a support substrate that supports the solar cell module in a horizontal state by placing a support structure that supports the corners of the solar cell module,
  • the upper surface of the support substrate is formed with a fitting convex portion into which a fitting concave portion formed on the lower surface of the support structure is fitted.
  • the support structure placed on the support substrate is formed on the upper surface of the support substrate by forming the fitting convex portion into which the fitting recess formed on the lower surface of the support structure is fitted. Can be prevented. That is, it is possible to prevent the lateral displacement of the solar cell module with respect to the support substrate.
  • the packaging method of the present invention is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support substrate having the above-described configuration and the support structure.
  • the lowermost support structure can be fitted and fixed to the engagement convex portion of the support substrate, so that the solar cell module can be stably packed in multiple stages without lateral displacement.
  • the stacking packing tool of the present invention is a stacking packing tool that stacks and packs solar cell modules in a horizontal state, and is disposed on the substrate unit and the upper surface of the substrate unit, A support structure for mounting the corner of the battery module to support the solar cell module in a horizontal state; and a spacer member disposed between the substrate and the support structure. It is characterized by.
  • the spacer member by arranging the spacer member between the substrate portion and the support structure, a sufficient gap is provided between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure. Can be opened. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
  • the packing method of the present invention is characterized in that the solar cell modules are stacked and packed in a multi-stage in a horizontal state using the stacked packing tools having the above-described configurations.
  • the solar cell modules can be stacked and packed in multiple stages with a sufficient gap between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure.
  • Such packaging can prevent the lower surface of the solar cell module from contacting or colliding with the upper surface of the substrate portion even if the lowermost solar cell module bends due to vibration during transportation or the like.
  • the engagement state can be directly confirmed visually by making the engagement recess have a structure in which the outer side surface side of the base portion is opened.
  • the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated. Therefore, the packing operation of the solar cell module is facilitated by using the support structure of the present invention.
  • the solar cell modules stacked in a horizontal state due to vibration or the like during transportation do not bend, prevent contact or collision with the solar cell modules adjacent in the vertical direction, and further during transportation. It is possible to suppress the horizontal movement of the solar cell module due to the vibrations.
  • the mounting convex portions are formed on the four corners of the upper surface of the support substrate so that the fitting concave portions formed on the lower surface of the support structure are fitted on the support substrate. It is possible to prevent the lateral shift of the support structure, that is, the lateral shift of the solar cell module with respect to the support substrate.
  • the spacer member is disposed between the substrate portion and the support structure, so that it is sufficient between the substrate portion upper surface and the lower surface of the solar cell module supported by the lowermost support structure. Can make clear gaps. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is the perspective view which looked at the support structure from diagonally upward. It is the perspective view which looked at the support structure from diagonally downward. It is the perspective view seen from diagonally upward which shows the other structural example of a support structure. It is the perspective view seen from diagonally downward which shows the other structural example of a support structure. It is explanatory drawing which shows a mode that the engagement recessed part of the support structure arrange
  • FIG. 1 It is explanatory drawing which shows the procedure which stacks
  • FIG. 2 It is explanatory drawing which shows the procedure which stacks
  • FIG. 2 It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is a perspective view of a buffer member. It is CC sectional view taken on the line of FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is the perspective view which showed the state before carrying out the final packing of the solar cell module using the loading packaging tool which concerns on Embodiment 2.
  • FIG. It is CC sectional drawing of the loading packaging tool shown in FIG.
  • FIG. 26 is a cross-sectional view taken along the line BB of the stacked packing tool using the spacer member in the stacked packing tool illustrated in FIG. 25.
  • FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25.
  • FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25.
  • FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25.
  • FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is a perspective view which shows the state which stacked
  • FIG. 44 is a sectional view taken along line BB in FIG. 43. It is CC sectional drawing of FIG. It is a perspective view of a support substrate. It is the perspective view which looked at the receiving member from the upper side. It is the perspective view which looked at the receiving member from the downward side (bottom face side).
  • FIG. 47B is a DD cross-sectional view of FIG. 47A. It is explanatory drawing which shows the procedure which stacks
  • FIG. 44 is a sectional view taken along line BB in FIG. 43. It is CC sectional drawing of FIG. It is a perspective view of a support substrate. It is the perspective view which looked at the receiving member from the upper side. It is the perspective view which looked at the receiving member from the downward side (bottom face side).
  • FIG. 47B is a DD cross-sectional view of FIG. 47A. It is explanatory drawing which shows the procedure which stacks
  • FIG. 54 is a cross-sectional view taken along the line EE of FIG. 53.
  • FIG. 59 is a sectional view taken along line BB in FIG. 58 (however, the upper part is not shown).
  • FIG. 1 It is a disassembled perspective view of the loading packaging tool A shown in FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. It is explanatory drawing which shows the procedure which stacks
  • FIG. 66 is a sectional view taken along the line CC in FIG. 66 (however, the upper part is not shown). It is explanatory drawing which shows the procedure which stacks
  • FIG. It is a perspective view of the spacer member concerning other composition examples 1. It is a perspective view of the spacer member concerning other examples of composition 2.
  • FIG. 1 is a perspective view showing a state before final packing of a solar cell module using the support structure 1 according to the embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG.
  • the support structure 2 shown in FIG. 1 and FIG. 2 is a component of a stacked packing tool for stacking and packing solar cell modules in a horizontal state, and the stacked packing tool is roughly divided into a rectangular substrate portion. (Hereinafter also referred to as a pallet) 1 and a support structure that is arranged at each of the four corners of the upper surface of the substrate unit 1 and supports the solar cell module 100 in a horizontal state by placing the corners 100a of the solar cell module 100. And a body 2.
  • the support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state.
  • Four support structures 2 are attached to the upper surface of the pallet 1.
  • the four support structures 2 are positioned with respect to the pallet 1.
  • the four support structures 2 support the four corners (corner portions) 100a of the rectangular solar cell module 100, respectively.
  • a plurality of (eight in the example of FIG. 1) support structures 2 are stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1.
  • One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 1, eight solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
  • the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • the solar cell module 100 supported by the support structure 2 is frameless.
  • the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
  • FIG. 3A is a perspective view of the support structure 2 as viewed obliquely from above
  • FIG. 3B is a perspective view of the support structure 2 as viewed from obliquely below.
  • the support structure 2 is a structure that receives the corner portion 100a of the solar cell module 100 from below, and a base portion 23 that is bent in an L shape in plan view, and an inner wall surface (inner side surface) 23c of the base portion 23. And a quadrangular receiving portion (supporting portion) 28 extending in a direction perpendicular to the wall surface from the lower end portion.
  • the receiving portion 28 is formed so as to receive the corner portion 100a of the solar cell module 100 from below, and the overall shape of the support structure 2 is formed in a substantially L-shaped longitudinal section.
  • the lower surface of the receiving portion 28 is flush with the lower end surface 23 b of the base portion 23.
  • the lower surface of the support structure 2 is constituted by the lower surface of the receiving portion 28 and the lower end surface 23b of the base portion 23, when the support structure 2 is placed on the pallet 1, Since the support structure 2 comes into contact with the pallet 1 both at the lower surface and the lower end surface 23b of the base portion 23, the support structure 2 can be placed on the pallet 1 in a more stable state.
  • a fitting recess 29 for fitting with the fitting protrusion 1 a formed on the upper surface of the pallet 1 is formed on the lower surface of the receiving portion 28.
  • the fitting convex portion 1 a is formed on the upper surface of the pallet 1, and the fitting concave portion 29 is formed on the lower surface of the receiving portion 28 of the supporting structure 2, thereby placing the supporting structure 2 on the pallet 1.
  • the lateral displacement of the support structure 2 can be prevented by this fitting structure.
  • the base portion 23 is configured to be stacked in the vertical direction Z. For this reason, the engaging convex portion 25 and the engaging portion 25 are engaged with the upper end surface 23a and the lower end surface 23b of the base portion 23 so as to be sequentially fitted and engaged with the base portion 23 of another support structure 2 arranged adjacent to each other in the vertical direction.
  • Recesses 26 are respectively provided. Two engaging convex portions 25 are provided on each upper end surface 23a of each piece of the base portion 23, and two engaging concave portions 26 are provided on each lower end surface 23b of each piece of the base portion 23. A total of two are provided. However, the number of formation of the engaging convex part 25 and the engaging concave part 26 is not limited to this.
  • each piece of the base portion 23 for a total of four engagement protrusions 26, A total of four pieces may be provided, two on the lower end surface 23b of each piece of the base portion 23.
  • the engaging recess 26 has a structure in which the outer wall surface (outer side surface) 23d side of the base portion 23 is opened.
  • the engagement recess 26 has a structure in which the outer wall surface 23d side of the base portion 23 is opened, so that the engagement state between the support structures 2 arranged adjacent to each other in the vertical direction can be directly confirmed visually. it can.
  • the outer wall surface (outer side surface) 25 a of the engaging convex portion 25 is formed flush with the outer wall surface 23 d of the base body portion 23.
  • the outer wall surface 25a of the engagement convex portion 25 is formed flush with the outer wall surface 23d of the base portion 23, so that the engagement convex portion 25 of the lower support structure 2 is disposed on the upper side.
  • the outer wall surface 25a of the engaging convex portion 25 of the lower supporting structure 2 is the outer wall surface 23d of the base portion 23 of the upper supporting structure 2. And become the same. Therefore, it can be easily confirmed that the lower support structure 2 and the upper support structure 2 are reliably engaged by visually confirming that they are flush.
  • the support structure 2 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • the fitting convex portion 1a is formed by cutting the pallet 1 itself or by forming a piece of wood, and bonding the piece of wood onto the pallet 1 and firmly fixing it with screws, nails or the like. do it.
  • the fitting convex portion may be formed by burring processing in which a hole is formed by burring and then processed so as to push up the periphery of the hole.
  • the substrate unit 1 has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13, and there is a gap between the upper substrate 11 and the lower substrate 12. A hole through which a binding band 7 described later is passed, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like.
  • the corner portion 100a of the solar cell module 100 includes the upper surface of the receiving portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100 and the support structure disposed on the upper stage thereof. It is configured to be sandwiched between the lower surface of the two receiving portions 28. Thereby, it is possible to prevent the individual solar cell modules 100 from flapping up and down (vertical direction Z).
  • the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100 b along the longitudinal direction of the stacked solar cell modules 100, and is caused by vibration during transportation.
  • a shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
  • the buffer member 5 is formed in a U shape when viewed from the side. As shown in FIG. 12, the buffer member 5 is fitted to the edge portion 100 b of each solar cell module 100, so that the upper and lower buffer members are arranged. 5 is arranged without a gap.
  • the buffer member 5 is formed with a concave groove portion 53 penetrating vertically on the outer side surface through which a binding band 7 which is a binding member described later is passed.
  • the substrate member 1 (more specifically, the upper substrate 11) is passed through the concave groove portion 53 of the buffer member 5 to the uppermost solar cell module 100. Is wound around the binding band 7 and bound together.
  • a top plate 6 made of, for example, cardboard is formed on the upper surface of the uppermost solar cell module 100 as a buffer so as to be wider than the width of the solar cell module 100.
  • the top plate 6 has a bent portion 61 that bends along a straight line L that connects the outer wall surfaces of the support structure 2 disposed at the corner portions 100a on both sides of the edge portion 100b along the longitudinal direction of the solar cell module 100. ing.
  • the bending part 61 of the both sides of the longitudinal direction of the top plate 6 is bend
  • the binding band 7 is routed from the substrate portion 1 (more specifically, the upper substrate 11) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. And unite them together.
  • the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package.
  • a film-like sheet such as a wrap
  • the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
  • the support structure according to Embodiment 1 is a support structure that places the corners of the solar cell module and supports the solar cell module in a horizontal state, and is stacked in the vertical direction.
  • a feature is that an outer side surface of the base portion is opened.
  • the engagement state can be directly confirmed by visual observation by making the engagement concave portion a structure in which the outer side surface side of the base portion is opened.
  • the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated.
  • the outer side surface of the engaging convex portion may be formed to be flush with the outer side surface of the base portion.
  • the outer side surface of the engaging convex portion is formed flush with the outer side surface of the base portion so as to be arranged on the upper side of the engaging convex portion of the lower support structure.
  • the outer side surface of the engagement convex portion of the lower support structure is flush with the outer side surface of the base portion of the upper support structure. Therefore, it can be easily confirmed that the lower support structure and the upper support structure are reliably engaged by visually confirming that they are flush.
  • the base portion is formed in an L shape in plan view so that one base piece and the other base piece are orthogonal to each other, and the engaging convex portion and the engaging concave portion are
  • the structure may be formed on each base piece. In this way, by forming the base portion in an L shape, the corner portion of the solar cell module can be supported from two directions of the horizontal direction and the vertical direction, and a shift in the horizontal direction and the vertical direction is prevented. can do.
  • a plurality of engaging convex portions and engaging concave portions may be provided on each base piece.
  • the base portion is placed on the substrate portion that supports the solar cell modules stacked in a horizontal state, and the lower surface of the support portion is fitted on the upper surface of the substrate portion. It is good also as a structure in which the fitting recessed part fitted to a convex part was formed. According to such a structure, when mounting a support structure on a board
  • the packaging method according to the first embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support structures having the above-described configurations.
  • the support structure when the support structure is engaged up and down, it can be engaged while directly confirming the engagement state by visual observation, so that the packaging work is facilitated.
  • FIG. 25 is a perspective view showing a state before final packing of the solar cell module using the stacked packing tool A according to the embodiment of the present invention. With reference to FIG. 25, the outline of the loading packaging tool A before final packing is demonstrated.
  • the stacking packing tool A shown in FIG. 25 is a stacking packing tool for stacking and packing solar cell modules in a horizontal state.
  • the stacking packing tool A stands at four locations on the rectangular substrate portion 1 and the upper surface of the substrate portion 1.
  • a pair of opposing support structures 2 that respectively support the corner portions 100a (hereinafter also referred to as corner portions) of the solar cell modules 100 installed and horizontally stacked, and the solar cell modules 100 stacked horizontally.
  • a buffer member 5 that holds the solar cell module 100 by being fitted to the edge portion 100b from the lateral direction.
  • the buffer member 5 is fitted to the pair of opposing edge portions 100b of the solar cell module 100 from the lateral direction, so that the edge portion 100b of the solar cell module 100 is fixed from both sides by the pair of buffer members 5. can do.
  • This prevents the solar cell modules 100 stacked in a horizontal state from being bent due to vibration during transportation, prevents contact or collision with the solar cell modules 100 adjacent in the vertical direction, and further due to vibration during transportation.
  • the horizontal movement of the solar cell module 100 can be suppressed.
  • the substrate unit 1 (hereinafter also referred to as a pallet) has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13. Is a hole through which a bundling member 7 (hereinafter also referred to as a bundling band), which will be described later, passes, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like. Further, at the four corners of the upper surface of the upper substrate 11, fitting protrusions 1a are formed as shown in FIG.
  • the support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state.
  • Four support structures 2 are attached to the upper surface of the upper substrate 11 (hereinafter also referred to as the upper surface of the pallet).
  • the four support structures 2 are fitted and positioned on the fitting projections 1 a on the pallet 1.
  • the four support structures 2 each support four corners 100a (corner portions) of the rectangular solar cell module 100.
  • a plurality of (9 in the example of FIG. 25) support structures 2 are further stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1.
  • One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 25, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
  • the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • the solar cell module 100 supported by the support structure 2 is frameless.
  • the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
  • FIG. 16A is a perspective view of the support structure 2 as viewed obliquely from above
  • FIG. 16B is a perspective view of the support structure 2 as viewed from obliquely below.
  • the support structure 2 is a structure that receives the corner portion 100a of the solar cell module 100 from below, and the base portion 23 that is bent in an L shape in plan view, and the wall surface from the lower end portion of the inner wall surface of the base portion 23. And a rectangular receiving portion 28 (supporting portion) extending in a direction perpendicular to the vertical direction.
  • the receiving portion 28 is formed so as to receive the corner portion 100a of the solar cell module 100 from below, and the overall shape of the support structure 2 is formed in a substantially L-shaped longitudinal section.
  • a fitting recess 29 for fitting with the fitting protrusion 1 a formed on the upper surface of the pallet 1 is formed on the lower surface of the receiving portion 28.
  • the fitting convex portion 1 a is formed on the upper surface of the pallet 1, and the fitting concave portion 29 is formed on the lower surface of the receiving portion 28 of the supporting structure 2, thereby placing the supporting structure 2 on the pallet 1.
  • the lateral displacement of the support structure 2 can be prevented by this fitting structure.
  • the base portion 23 is configured to be stacked in the vertical direction Z. For this reason, the engaging convex portion 25 and the engaging portion 25 are engaged with the upper end surface 23a and the lower end surface 23b of the base portion 23 so as to be sequentially fitted and engaged with the base portion 23 of another support structure 2 arranged adjacent to each other in the vertical direction.
  • Recesses 26 are respectively provided. Two engaging convex portions 25 are provided on each upper end surface 23a of each piece of the base portion 23, and two engaging concave portions 26 are provided on each lower end surface 23b of each piece of the base portion 23. A total of two are provided. However, the number of formation of the engaging convex part 25 and the engaging concave part 26 is not limited to this.
  • two engagement convex portions 25 are provided on the upper end surface 23 a of each piece of the base portion 23, for a total of four, and the engagement concave portions 26 are also provided on the base portion 23. It is good also as a structure which provided two in total at the lower end surface 23b of one piece. With such an engagement structure, the support structure 2 can be stacked in multiple stages while preventing lateral displacement.
  • the support structure 2 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • the support structure 2 in Embodiment 2 the support structure 2 shown in FIGS. 3A and 3B or the support structure 2 shown in FIGS. 4A and 4B may be used.
  • FIG. 18 is a perspective view of the buffer member 5 as viewed obliquely from above.
  • the shock-absorbing member 5 has a U-shape when viewed from the side, and includes an opening 54 (opening groove) formed in a U-shape.
  • the opening 54 (opening groove) is formed to be fitted to the edge 100b of the solar cell module 100.
  • the upper surface 55 and the lower surface 56 of the buffer member 5 are flat. Thereby, the some buffer member 5 can be stacked
  • a concave groove 53 is vertically formed through the side surface (outer surface) opposite to the opening 54.
  • the later-described binding band 7 (binding member) can be passed through the concave groove portion 53 on the outer surface of the buffer member 5, and the lateral displacement of the buffer member 5 after binding can be prevented.
  • the concave groove portion 53 may not be formed.
  • the buffer member 5 having such a shape is made of, for example, foamed plastic or foamed urethane.
  • FIG. 19 is a perspective view of another buffer member 5 as viewed obliquely from above.
  • the buffer member 5 includes a plurality of openings 54 (opening grooves) at regular intervals in the vertical direction. Each opening 54 is formed so as to be fitted to the edge 100b of the solar cell module 100. In the illustrated example, two openings 54 are provided. As a result, a plurality of stacked solar cell modules 100 can be held by one buffer member 5. Further, since the number of the buffer members 5 to be bonded and used is smaller than that of the buffer member 5 in which one opening 54 is formed, the number of times of bonding between the buffer members 5 can be reduced. The strength can be improved.
  • FIG. 20 is a perspective view of still another buffer member 5 as viewed from obliquely above.
  • the buffer member 5 has a tapered surface that guides the edge 100b of the solar cell module 100 at the opening tip 57 of the opening 54 (opening groove) of the buffer member 5 shown in FIG. Thereby, the solar cell module can be efficiently guided to the opening 54 by the tapered surface provided at the opening tip 57 of the opening 54.
  • the fitting concave portions 29 formed on the lower surface of the receiving portion 28 of the support structure 2 in the first step are respectively provided on the four fitting convex portions 1 a of the substrate portion 1.
  • the first-stage support structure 2 is disposed by fitting into the fitting convex portion 1a formed on the upper surface of the first stage.
  • the four corners 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2.
  • the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2.
  • the corners 100 a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 23 and 24 a predetermined number of times, a predetermined number of solar cell modules 100 are stacked in multiple stages on the pallet 1.
  • the buffer members 5 are fitted together from the lateral direction of the solar cell module 100 to hold the solar cell module (see FIG. 25).
  • FIG. 26 is a cross-sectional view taken along the line CC of FIG.
  • the number of openings 54 equal to the number of the solar cell modules 100 in advance.
  • the necessary number of buffer members 5 are prepared, and these buffer members 5 are divided into two parts and stacked so that the number of openings 54 is the same as the number of solar cell modules 100.
  • the adjacent upper surface and lower surface of the buffer member 5 stacked up and down are bonded using an adhesive or an adhesive tape, and in this state, the solar cell module 100 is stacked and integrally formed from the lateral direction.
  • the buffer members 5 are fitted together to hold the opposite edge portions 100b of the solar cell module 100 from both sides.
  • the solar cell module 100 can be efficiently guided to the opening 54 by the tapered surface provided at the opening tip 57 of the opening 54 of the buffer member 5.
  • the buffer members 5 that are integrally formed by stacking in the vertical direction from the lateral direction of the solar cell module 100 are fitted together, and then the binding band 7 (binding member) is passed through the concave groove portion 53 on the outer surface of the buffer member 5 and the substrate.
  • the part 1 (more specifically, the upper substrate 11) to the uppermost solar cell module 100 is wound around the binding band 7 and bound together.
  • the shape of the lowermost buffer member 5 a is different from the shape of the other buffer members 5, and has a shape that contacts the upper surface of the pallet 1.
  • the spacer member 3 has a cubic shape as shown in FIGS. 28A and 28B, and the lower surface placed on the pallet 1 has fitting convex portions formed at the four corners of the upper surface of the pallet 1.
  • a fitting concave portion 31 to be fitted to 1a is formed, and a fitting convex portion 32 for fitting and fixing the support structure 2 is formed on the upper surface.
  • FIG. 29 shows a cross-sectional view of the solar cell module 100, the support structure 2, and the spacer member 3.
  • the lowermost buffer member 5 a is different from the other buffer members 5 arranged on the upper stage in that the thickness T ⁇ b> 1 on the lower side of the opening 54 is different from that of the other buffer members 5. It is thicker than the thickness T2 on the lower side of the opening 54.
  • both the upper surface of the pallet 1 and the lower surface of the lowermost solar cell module 100 are in contact with the buffer member 5a, and the solar cell module Since 100 is fitted with the buffer member 5a, contact or collision between the lowermost solar cell module 100 and the upper surface of the pallet 1 can be prevented.
  • FIG. 30 is a cross-sectional view of the solar cell module 100 and the buffer member 5.
  • the shape of the uppermost buffer member 5b is such that the height from the upper surface of the pallet 1 to the upper surface of the uppermost buffer member 5b is equal to the height from the upper surface of the pallet 1 to the upper surface of the uppermost support structure 2. Is designed. That is, the height T11 (see FIG. 30) from the upper surface of the uppermost solar cell module to the upper surface 55 of the uppermost buffer member 5 is the upper surface of the uppermost support structure 2 from the upper surface of the uppermost solar cell module. Since it is equal to the height T11 up to (that is, the height to the engagement convex portion 25 (see FIG. 29)), the shape of the uppermost buffer member 5b is different from the shapes of the other buffer members 5.
  • the shape of the uppermost buffer member 5b and the shape of the other buffer members 5 may be the same, and in this case, the engagement protrusion of the support structure 2 from the upper surface of the solar cell module 100 of each step.
  • the height T11 to the portion 25 (see FIG. 29) and the height S (see FIG. 30) of the upper surface of the buffer member 5 from the upper surface of the solar cell module 100 at each stage are equal.
  • the height from the upper surface of the pallet 1 to the upper surface of the uppermost buffer member 5b is equal to the height from the upper surface of the pallet 1 to the upper surface of the uppermost support structure 2, so that the upper surface of the buffer member 5b and the support structure Even if a top plate 6 described later is placed on the upper surface of the body 2, the top plate 6 can be kept horizontal.
  • the buffer member 5 may be stacked by vertically stacking the buffer member 5 having one opening 54 (opening groove) (see FIG. 30), or by stacking the buffer member 5 provided with a plurality of openings 54. It does not matter (see FIG. 31). Moreover, you may pile up combining the buffer member 5 provided with the one opening part 54, and the buffer member 5 provided with the some opening part 54 (refer FIG. 32). Moreover, you may use a different kind of buffer member 5 in the both edges of the solar cell module 100 (refer FIG. 33).
  • a desired number of solar cell modules can be stacked and held in the vertical direction in a horizontal state by the buffer member.
  • a top plate 6 made of, for example, cardboard is formed as a buffer so as to have a width wider than the width of the solar cell module 100.
  • the top plate 6 is bent along a straight line L that connects the outer wall surfaces of the support structure 2 stacked in the vertical direction and disposed at the corner portions 100a on both sides of the edge portion 100b along the longitudinal direction of the solar cell module 100.
  • a bent portion 61 is provided. In a state where the top plate 6 is arranged on the upper surface of the uppermost solar cell module 100, straight lines connecting the outer wall surfaces of the support structure 2 with the bent portions 61 on both sides in the longitudinal direction of the top plate 6 as shown in FIG. Bend down along L.
  • the binding band 7 is routed from the substrate portion 1 (more specifically, the upper substrate 11) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. And unite them together.
  • the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package.
  • a film-like sheet such as a wrap
  • the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
  • FIG. 36 shows another configuration example of the top plate 6.
  • the top plate 6 is a straight line that connects the outer wall surfaces of the support structure 2 (that is, the outer wall surfaces of the base member 23) disposed at the corner portions 100 a on both sides of the edge portion 100 b along the longitudinal direction of the solar cell module 100.
  • a bent portion 61 that is bent along L is provided, and a pair of cuts 62 are formed in the bent portion 61 with a width interval facing the buffer member 5.
  • the bent portion 61 of the top plate 6 in which the notches are formed in this way is bent downward along a straight line L connecting the outer wall surfaces of the support structure 2 as shown in FIG.
  • the bent portion 61 a between the notches 62 can be bent downward along the outer edge portion 100 b of the buffer member 5, and the bent portions 61 on both sides of the bent portion 61 of the support structure 2. It can be bent along a straight line L connecting the outer wall surfaces. That is, even when the outer edge portion 100b of the buffer member 5 protrudes outward from the straight line L connecting the outer wall surfaces of the support structure 2, the straight line L connecting the outer wall surfaces of the support structure 2 and the buffer member The bent portions 61a and 61b of the top plate 6 can be individually brought into close contact with each other along the five edge portions 100b and bent.
  • the stacking packaging device is a stacking packaging device that stacks and packs solar cell modules in the vertical direction in a horizontal state, and is erected on the substrate unit and the upper surface of the substrate unit.
  • a support structure that respectively supports the corners of the horizontally stacked solar cell modules, and a buffer member that holds the solar cell modules by being fitted from the lateral direction to the edges of the horizontally stacked solar cell modules; It is characterized by having.
  • the buffer member is fitted from the lateral direction to the edge portion of the solar cell modules stacked horizontally, and the solar cell module can be fixed by the buffer member from both sides. This prevents the solar cell modules stacked in a horizontal state due to vibration during transportation, etc. from being bent, prevents contact or collision between solar cell modules adjacent in the vertical direction, and further solar cells due to vibration during transportation. The horizontal movement of the module can be suppressed.
  • an opening groove portion that fits with the edge portion of the solar cell module may be formed on the inner surface of the buffer member that faces the edge portion of the solar cell module.
  • the edge of the solar cell module and the opening groove can be fitted to fix the solar cell module in a horizontal state, and the solar cell module can be held by the buffer member.
  • a plurality of opening groove portions may be provided at regular intervals in the vertical direction of the inner surface of the buffer member.
  • the edge of the solar cell module is fitted into each of the plurality of opening grooves formed in the buffer member, the plurality of solar cell modules are held by one buffer member. Can do. Further, since the number of the buffer members to be bonded and used is smaller than that of the buffer member having one opening, the number of times of bonding between the buffer members can be reduced, and the strength of the buffer member is improved. be able to.
  • a tapered surface that guides the edge of the solar cell module may be formed at the opening tip of the opening groove.
  • the solar cell module can be efficiently guided to the opening groove by the tapered surface provided at the opening tip of the opening groove.
  • a configuration may be adopted in which a concave groove portion for allowing the bundling member to pass is formed on the outer surface of the buffer member.
  • a plurality of buffer members may be stacked in the vertical direction and bonded to the buffer members adjacent in the vertical direction.
  • a desired number of solar cell modules are stacked in the vertical direction and packaged by combining a buffer member having one open groove and a buffer member having a plurality of open grooves. Can do.
  • the lowermost cushioning member may be configured to contact the upper surface of the substrate unit.
  • the height from the upper surface of the substrate unit to the upper surface of the uppermost buffer member may be the same as the height from the upper surface of the substrate unit to the uppermost surface of the support structure.
  • the top plate can maintain a horizontal state even if the top plate is placed on the upper surface of the buffer member and the upper surface of the support structure, the height from the upper surface of the substrate unit to the upper surface of the uppermost buffer member, Since the height to the uppermost upper surface is equal, the top plate can maintain a horizontal state.
  • the top plate disposed on the uppermost solar cell module stacked in the vertical direction, and the binding member that winds from the substrate portion to the top plate and binds them together is good also as composition provided further.
  • the binding member can be wound from the substrate portion to the top plate to be bundled together, and the solar cell modules stacked in the vertical direction can be packed.
  • the stacking and packing method according to the second embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packed using the stacking packing tool having the above-described configurations.
  • the solar cell modules stacked in the vertical direction can be fixed with the cushioning members attached to both edges of the solar cell modules with sufficient gaps.
  • Such packaging can prevent contact or collision between the solar cell modules stacked in the vertical direction by vibration during transportation, and can suppress horizontal movement.
  • FIG. 38 is a perspective view showing a state in which solar cell modules are stacked in multiple stages using the support substrate 1 according to the embodiment of the present invention
  • FIG. 39 is a cross-sectional view taken along line AA in FIG.
  • the support substrate 1 shown in FIGS. 38 and 39 is a constituent member of a stacking packing device that stacks and packs solar cell modules in a horizontal state.
  • the stacking packing device is roughly classified into a rectangular support substrate ( Hereinafter, it is also referred to as a pallet.) 1 and a support structure that is arranged at each of the four corners of the upper surface of the support substrate 1 and supports the solar cell module 100 in a horizontal state by placing the corners 100a of the solar cell module 100. 2.
  • the support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state.
  • Four support structures 2 are attached to the upper surface of the pallet 1.
  • the four support structures 2 are positioned with respect to the pallet 1.
  • the four support structures 2 support the four corners (corner portions) 100a of the rectangular solar cell module 100, respectively.
  • a plurality of (10 in the example of FIG. 38) support structures 2 are stacked in the vertical direction Z on the four support structures 2 arranged on the upper surface of the pallet 1.
  • One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 38, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
  • the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is packed and transported while being wound around the pallet 1.
  • a binding band 7 such as a PP (polypropylene) band as a binding member. It is packed and transported while being wound around the pallet 1.
  • the solar cell module 100 supported by the support structure 2 is frameless.
  • the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
  • the support structure 2 shown in FIGS. 16A, 16B, 17A, 17B, 3A, 3B, 4A, and 4B can be used.
  • the fitting convex part 82 is formed in the upper surface of the pallet 1, and the fitting concave part 29 of the support structure 2 is fitted to the fitting convex part 82. Thereby, when the support structure 2 is mounted on the pallet 1, the lateral displacement of the support structure 2 can be prevented by these fitting structures.
  • FIG. 40 is a plan view of the support substrate 1
  • FIG. 41 is a front view of the support substrate 1 viewed from the longitudinal direction
  • FIG. 42 is a side view of the support substrate 1 viewed from the lateral direction
  • FIG. 44 is an enlarged plan view showing a corner portion of FIG. 1
  • FIG. 44 is a sectional view taken along line BB in FIG. 43
  • FIG. 45 is a sectional view taken along line CC in FIG.
  • FIG. 46 is a perspective view of the support substrate 1.
  • the support substrate 1 of the present embodiment is an iron substrate.
  • the support substrate 1 has a rectangular frame structure, and includes two long side frames 101 opposed to the long side edge 100b of the solar cell module 100, and the short side of the solar cell module 100. Two short side frames 102 opposed to the edge portion 100c are provided, and fitting recesses 29 formed on the lower surface of the support structure 2 are fitted to both end portions 101a of the long side frame 101. A receiving member 8 in which a fitting projection 82 is formed is provided. Thus, weight reduction can be achieved by making the support substrate 1 have a frame structure. In addition, the mounting position of the receiving member 8 can be adjusted by configuring the receiving member 8 as a separate member from the long side frame body 101.
  • the long-side frame 101 has a long corrugated plate 111 having a groove 111a having a rectangular cross section along the longitudinal direction (in FIG. 44, the direction perpendicular to the paper surface). It arrange
  • the support legs 112 and the auxiliary legs 113 are arranged at both ends of the long side frame body 101, and at regular intervals along the longitudinal direction (left and right direction in FIG. 41) therebetween. Two more are arranged.
  • the two support legs 112 and the auxiliary legs 113 at the center are provided to reinforce the strength of the upper and lower corrugated plates 111.
  • auxiliary frame 114 having a flat cross section is provided at the longitudinal edge of the upper corrugated sheet 111 over the entire length in the longitudinal direction.
  • the short side frame 102 is a frame having the same configuration as the auxiliary frame 114, and the end of the short side frame 102 is a corrugated plate on the upper side of the long side frame 101. It is configured to be placed on the end portion of 111 and to be in contact with the side surface of the end portion of the auxiliary frame 114.
  • two short side frames 102 are arranged in parallel at predetermined intervals along the longitudinal direction between the short side frames 102 arranged at both ends of the long side frame 101. ing. The two short side frames 102 are provided to further reinforce the strength of the support substrate 1.
  • the long-side frame body 101 and the short-side frame body 102 having such a structure are integrally assembled by appropriately welding the butted portions.
  • the receiving member 8 is placed on the upper corrugated plate 111 at the abutting portion between the auxiliary frame body 114 and the short side frame body 102.
  • FIG. 47A is a perspective view of the receiving member 8 as viewed from the upper side
  • FIG. 47B is a perspective view of the receiving member 8 as viewed from the lower side (bottom side)
  • FIG. 48 is a DD cross-sectional view of FIG. 47A.
  • the receiving member 8 includes a main body portion 81 that is formed in a substantially cubic shape (formed in a square shape in plan view) as a whole, and a fitting convex portion 82 having a square shape in plan view is formed on the upper surface of the main body portion 81. ing.
  • the fitting convex part 82 is formed in the inclined surface 82a in which the outer peripheral surface of the upper part gradually expands from the upper part side toward the upper surface side of the main body part 81.
  • the fitting convex portion 82 has a lower outer peripheral surface formed on a vertical surface 82b continuous with the inclined surface 82a. By forming the lower outer peripheral surface on the vertical surface 82b, it is possible to prevent the lateral displacement of the fitting recess 29 of the support structure 2 fitted to the fitting convex portion 82, that is, the lateral displacement of the support structure 2.
  • a rib piece 83 is formed on the peripheral edge of the upper surface of the main body 81 so as to surround the fitting convex portion 82.
  • the rib piece 83 excludes the corner portion of the support substrate 1 from the peripheral edge portion of the upper surface of the main body portion 81 (that is, is in contact with the auxiliary frame body 114 and the short side frame body 102). It is formed on the edge of the other two sides (excluding the edge that is present).
  • the receiving member 8 of the present embodiment has a double slip prevention function by providing the fitting convex portion 82 and the rib piece 83.
  • the height of the rib piece 83 is slightly lower than the height of the fitting convex portion 82.
  • the height of the fitting convex portion 82 is 11 mm, and the height of the rib piece is 8 mm.
  • the height of the rib piece 83 is slightly lower than the height of the fitting projection 82 because the lower surface of the support structure 2 is ribbed when the support structure 2 is installed on the support substrate 1. This is to avoid interference with the piece 83. That is, when the support structure 2 is horizontally lowered and installed on the support substrate 1, the lower surface of the support structure 2 and the rib piece 83 may interfere if the target position of the placement position is shifted from the corner position toward the center. There is sex.
  • the fitting concave portion of the support structure 2 is caused before the interference between the lower surface of the support structure 2 and the rib piece 83 occurs. Since the installation position is corrected by the fitting of 29 and the fitting convex portion 82, the structure does not cause interference.
  • an engaging portion 86 is provided on the bottom surface 85 of the main body 81 so as to protrude toward the end of the long side frame 101.
  • the engaging portion 86 includes a support rod 86a that extends horizontally from the lower end edge of one side surface 81a of the main body portion 81, and an engagement piece 86b that is bent downward from the distal end portion of the support rod 86a. Has been.
  • the support rod 86 a formed to protrude from the bottom surface 85 of the main body portion 81 fits into the groove portion 111 a of the upper corrugated plate 111, and the tip portion
  • the engaging piece 86b is provided so as to engage with an end edge portion (an end edge portion of the bottom surface) of the groove portion 111a of the upper corrugated plate 111. In this way, by engaging the engagement piece 86b with the end edge portion of the groove portion 111a of the upper corrugated plate 111, the receiving member 8 attached to the long side frame body 101 becomes the other side of the long side frame body 101. Can be prevented from shifting to the end side.
  • the receiving member 8 is formed with a through hole 88 penetrating from the upper surface to the lower surface of the main body portion 81.
  • the through hole 88 is formed with a large diameter on the upper side and a small diameter on the lower side, and a stepped portion 88a between the large diameter and the small diameter at the center of the hole receives the head of the screw member 90 inserted from the large diameter side. Has become a department.
  • the receiving portion 8 is inserted into the through hole 88 that is a screw insertion hole from the large diameter side and screwed into the bottom surface of the groove portion 111 a of the corrugated plate 111. It is fixed to the upper corrugated plate 111.
  • the receiving member 8 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
  • the gap between the upper corrugated sheet 111 and the lower corrugated sheet 111 is a hole through which the binding band 7 described later passes, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like.
  • the fitting protrusions 82 of the receiving member 8 arranged at the four corners of the support substrate 1 are respectively formed on the lower surface of the support portion 28 of the support structure 2 that is the first step.
  • the fitted recesses 29 are fitted, and the first-stage support structure 2 is arranged at the four corners of the support substrate 1.
  • the four corner portions 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2.
  • the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2.
  • the corners 100a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 51 and 52 a predetermined number of times, as shown in FIG. 38, a predetermined number of solar cell modules 100 are stacked in multiple stages on the support substrate 1.
  • the corner portion 100a of the solar cell module 100 includes the upper surface of the support portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100 and the support structure disposed on the upper surface thereof. It is configured to be sandwiched between the lower surfaces of the two support portions 28. Thereby, it is possible to prevent the individual solar cell modules 100 from flapping up and down (vertical direction Z).
  • the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100b along the longitudinal direction of the stacked solar cell modules 100, and is also caused by vibration during transportation.
  • a shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
  • the buffer member 5 as shown in FIG. 11 can be used.
  • the upper and lower buffer members 5 are fitted into the end portions 100 b of the solar cell modules 100. Are arranged without gaps.
  • the solar cell module of the uppermost stage is passed from the support substrate 1 (more specifically, the upper corrugated sheet 111) so as to pass through the groove 53 of the buffer member 5. Up to 100 are wound around the binding band 7 and bound together.
  • a top plate 6 made of, for example, corrugated cardboard, having a width wider than the width of the solar cell module 100 is disposed as a buffer.
  • the top plate 6 has bent portions 61 that bend along a straight line L that connects the outer wall surfaces of the support structure 2 disposed at the four corners of the support substrate 1.
  • the binding band 7 is routed from the support substrate 1 (more specifically, the upper corrugated plate 111) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. In this way, they are united together.
  • the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package.
  • a film-like sheet such as a wrap
  • the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
  • the support substrate according to the third embodiment is a support substrate that supports the solar cell module in a horizontal state by placing the support structure that supports the corners of the solar cell module.
  • the upper surface of the substrate is formed with a fitting convex portion into which a fitting concave portion formed on the lower surface of the support structure is fitted.
  • the support structure body mounted on the support substrate is formed in the upper surface of a support substrate by forming the fitting convex part by which the fitting recessed part formed in the lower surface of a support structure is fitted. Can be prevented. That is, it is possible to prevent the lateral displacement of the solar cell module with respect to the support substrate.
  • the fitting convex portion may have a configuration in which the upper outer peripheral surface is formed on an inclined surface that gradually expands from the upper side toward the upper surface side of the support substrate. According to this configuration, by forming the upper outer peripheral surface as an inclined surface, the fitting recess formed on the lower surface of the support structure can be easily fitted, and workability is improved.
  • the fitting convex portion may have a configuration in which a lower outer peripheral surface is formed on a vertical surface continuous from an inclined surface. According to this configuration, by forming the outer peripheral surface of the lower portion as a vertical surface, it is possible to prevent the lateral displacement of the fitting concave portion of the support structure fitted to the fitting convex portion, that is, the lateral displacement of the support structure.
  • the said support substrate it is good also as a structure which the rib piece which contact
  • the outer peripheral part of the support structure is formed in the planar view square shape, and a rib piece opposes two sides of the corner
  • the rib piece is formed by excluding the portion facing the two sides of the corner portion of the support substrate in the periphery of the fitting convex portion, and thus the support structure fitted and arranged at the corner portion of the support substrate. The effect of preventing the lateral displacement of the body, particularly the effect of preventing the displacement toward the center of the support substrate can be enhanced.
  • the support substrate has a rectangular frame structure, the two long side frames facing the edge of the long side of the solar cell module, and the short of the solar cell module. It is good also as a structure provided with two short side frame bodies which oppose the edge part of a side side, and the receiving member in which the fitting convex part was formed in the both ends of the long side frame body.
  • the support substrate can be reduced in weight by using a frame structure.
  • the mounting position of the receiving member can be adjusted in advance by configuring the receiving member as a member separate from the long side frame.
  • the receiving member may include a main body portion formed in a square shape in plan view, and the fitting convex portion may be formed at the center of the upper surface of the main body portion.
  • the rib piece may be formed on the peripheral edge of the upper surface of the main body.
  • the main body portion may include an engaging portion that protrudes toward the end of the long side frame, and the engaging portion may be engaged with the end of the long side frame.
  • the receiving member attached to the long side frame is displaced toward the other end of the long side frame. Can be prevented.
  • the packaging method according to the third embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support substrate and the support structure having the above-described configurations.
  • the solar cell module can be stably packed in multiple stages without lateral displacement.
  • FIG. 59 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 59 is an exploded perspective view of the loading packaging tool A shown in FIG. 58.
  • or FIG. 60 the outline of the loading packaging tool A before final packing is demonstrated.
  • 58 and 59 is a stacking packing tool that stacks and packs solar cell modules in a horizontal state, and is roughly divided into a rectangular substrate portion 1 and an upper surface of the substrate portion 1.
  • a support structure 2 that is disposed at each of the four corners and supports the solar cell module 100 in a horizontal state by placing the corner portion 100a of the solar cell module 100, and a substrate portion 1 and a lowermost support structure 2 And a spacer member 3 disposed therebetween.
  • the spacer member 3 between the substrate unit 1 and the support structure 2, the upper surface of the substrate unit 1 and the lower surface of the solar cell module 100 supported by the lowermost support structure 2. A sufficient gap can be provided between them. Thereby, even if the lowermost solar cell module 100 bends due to vibration during transportation or the like, it is possible to prevent the lower surface of the solar cell module 100 from contacting or colliding with the upper surface of the substrate unit 1.
  • a substrate portion (hereinafter also referred to as a pallet) 1 has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13, and the upper substrate 11 and the lower substrate 12. Is a hole through which the binding band 7 described later passes, and a hole into which the fork of the forklift is inserted when loading into a transport container or the like.
  • the support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state.
  • Four support structures 2 are attached to the upper surface of the upper substrate 11 (hereinafter referred to as the upper surface of the pallet 1) via four spacer members 3.
  • the four spacer members 3 are positioned with respect to the pallet 1, and the four support structures 2 are positioned with respect to the spacer member 3.
  • Each of the four support structures 2 supports four corners (corner portions) 100 a of the rectangular solar cell module 100.
  • a plurality of (10 in the example of FIG. 58) support structures 2 are stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1 via the spacer members 3. Yes.
  • One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 58, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
  • the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
  • the solar cell module 100 supported by the support structure 2 is frameless.
  • the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
  • the spacer member 3 having the shape shown in FIGS. 28A and 28B can be used. That is, the spacer member 3 has a substantially cubic shape, and on the lower surface placed on the pallet 1, fitting protrusions 1 a formed at the four corners of the upper surface of the pallet 1 (see FIGS. 59 and 60). ) And a fitting convex part 32 for fitting and fixing the support structure 2 is formed on the upper surface.
  • the spacer member 3 is placed on the substrate part 1 by forming the fitting convex part 1 a on the upper surface of the substrate part 1 and forming the fitting concave part 31 on the lower surface of the spacer member 3, The lateral displacement of the spacer member 3 can be prevented by the fitting structure.
  • the spacer member 3 having such a shape may be formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer), for example. You may form with metal materials, such as iron and stainless steel.
  • a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer), for example.
  • metal materials such as iron and stainless steel.
  • the fitting convex portion 1a is formed by cutting the pallet 1 itself or by forming a piece of wood, and bonding the piece of wood onto the pallet 1 and firmly fixing it with screws, nails or the like. do it.
  • the fitting convex portion may be formed by burring processing in which a hole is formed by burring and then processed so as to push up the periphery of the hole.
  • the spacer member 3 may be directly fixed to the four corners of the pallet 1 with screws or the like instead of the fitting structure described above. In this case, it is not necessary to form the fitting convex part 1a on the upper surface of the pallet 1.
  • the support structure 2 shown in FIGS. 16A, 16B, 17A, 17B, 3A, 3B, 4A, and 4B can be used.
  • the support structure 2 is placed on the spacer member 3 by forming the fitting protrusion 32 on the upper surface of the spacer member 3 and forming the fitting recess 29 on the lower surface of the receiving portion 28 of the support structure 2.
  • the lateral displacement of the support structure 2 can be prevented by this fitting structure.
  • the fitting concave portions 31 of the spacer member 3 are fitted into the four fitting convex portions 1 a of the substrate portion 1, and the spacer members 3 are arranged at the four corners of the substrate portion 1. .
  • the fitting concave portion 29 formed on the lower surface of the receiving portion 28 of the support structure 2 in the first stage is changed to the fitting convex portion 32 formed on the upper surface of the spacer member 3.
  • the first-stage support structure 2 is arranged by fitting.
  • the four corners 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2.
  • FIG. 63 the four corners 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2.
  • the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2.
  • the corners 100 a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 64 and 65 a predetermined number of times, as shown in FIG. 58, a predetermined number of solar cell modules 100 are stacked in multiple stages on the substrate unit 1.
  • the corner portion 100a of the solar cell module 100 includes the upper surface of the receiving portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100, and the upper stage thereof. It is set as the structure clamped with the lower surface of the receiving part 28 of the support structure 2 arrange
  • the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100b along the longitudinal direction of the stacked solar cell modules 100, and is also caused by vibration during transportation.
  • a shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
  • the buffer member 5 as shown in FIG. 11 can be used.
  • the upper and lower buffer members 5 are fitted into the end portions 100b of the solar cell modules 100. Are arranged without gaps.
  • the lowermost buffer member 5 (5a) is disposed so as to be in contact with the upper surface 1b of the substrate unit 1 and there is no gap between the substrate unit 1 and the buffer member 5 (5a). That is, in the lowermost buffer member 5 a, the thickness of the lower side portion 52 is thicker than the thickness of the upper side portion 51 by the thickness of the spacer member 3. As described above, by increasing the thickness of the lowermost buffer member 5 a by the thickness of the spacer member 3, the lowermost buffer member 5 a can be stably placed on the substrate unit 1.
  • the substrate member 1 (more specifically, the upper substrate 11) is passed through the concave groove portion 53 of the buffer member 5 to the uppermost solar cell module 100. Is wound around the binding band 7 and bound together.
  • a top plate 6 made of, for example, corrugated cardboard is formed on the upper surface of the uppermost solar cell module 100 as a buffer, and is formed with a width wider than the width of the solar cell module 100. Binding is performed by a binding band 7 such as a polypropylene band. As this method, the above-described method described in FIGS. 34 and 35 or the above-described method described in FIGS. 36 and 37 can be used.
  • FIG. 69A is a perspective view showing another configuration example 1 of the spacer member 3.
  • the spacer member 3 according to another configuration example 1 has a frame shape arranged along the peripheral edge portion of the upper surface of the substrate portion 1, and the fitting convex portion 1 a of the substrate portion 1 is formed on the lower surface of each corner portion.
  • a fitting recess 31 (not shown in FIG. 69A) is formed so as to face the fitting recess, and a fitting projection in which the fitting recess 29 of the support structure 2 is fitted on the upper surface of each corner portion.
  • a portion 32 is formed.
  • FIG. 69B is a perspective view showing another configuration example 2 of the spacer member 3.
  • the spacer member 3 according to another configuration example 2 is a long member disposed along the edges of two opposite sides (two sides on the long side in FIG. 69B) of the peripheral portion of the upper surface of the substrate unit 1.
  • a fitting recess 31 (not shown in FIG. 69B) is formed on the lower surface of both end portions so as to face the fitting projection 1a of the substrate portion 1, and is formed on both end portions.
  • a fitting convex portion 32 into which the fitting concave portion 29 of the support structure 2 is fitted is formed on the upper surface.
  • Such a spacer member 3 may be arranged on two sides on the short side.
  • the spacer member 3 is described as a separate structure from the support structure 2, but the lowermost support structure 2 may also be used as the spacer member 3. That is, the solar cell module 100 is not placed on the lowermost support structure 2, and the solar cell module 100 is placed above the second level.
  • the support structure 2 that also serves as a spacer member may be directly fixed to the substrate portion 1 with screws, nails, or the like.
  • the lowermost solar cell module that is, the solar cell module supported by the second-stage support structure 2) 100 and the upper surface of the substrate unit 1 (more specifically, the upper substrate 11).
  • a sufficient gap is formed between the lower surface of the solar cell module 100 and the lower surface of the solar cell module 100 being in contact with or colliding with the upper surface of the substrate unit 1 even if the lowermost solar cell module 100 is bent due to vibration during transportation. Can be prevented.
  • the stacked packaging device is a stacked packaging device that stacks and packages the solar cell modules in a horizontal state, and is disposed on the substrate unit and the upper surface of the substrate unit. And a spacer member disposed between the substrate portion and the support structure.
  • the support structure supports the solar cell module in a horizontal state by mounting the corners of the solar cell module.
  • the spacer member is disposed between the substrate unit and the support structure, so that a sufficient gap is provided between the substrate unit upper surface and the lower surface of the solar cell module supported by the lowermost support structure. Can be opened. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
  • a fitting convex portion may be formed on the upper surface of the spacer member, and a fitting concave portion that may be fitted to the fitting convex portion may be formed on the lower surface of the support structure.
  • the fitting protrusion is formed on the upper surface of the spacer member and the fitting recess is formed on the lower surface of the support structure.
  • the combined structure can prevent the lateral displacement of the support structure.
  • the support structure is formed on the base portion stacked in the vertical direction, the support portion formed so as to protrude in the horizontal direction from the side surface of the base portion, and the upper end surface of the base portion. And an engagement convex portion configured to engage with one of the upper and lower adjacent support structures, and an engagement convex portion of the other support structure which is formed on the lower end surface of the base portion and is adjacent to the upper and lower sides. It is good also as a structure provided with the engagement recessed part engaged and the fitting recessed part being formed in the lower surface of a support part. According to this configuration, the support structures can be stacked in multiple stages while preventing lateral displacement.
  • a fitting convex portion may be formed on the upper surface of the substrate portion, and a fitting concave portion that fits the fitting convex portion may be formed on the lower surface of the spacer member.
  • the spacer member may be arranged on the upper surface of the substrate unit.
  • the spacer member can be reduced in size and the material cost can be reduced by adopting a configuration in which the spacer member is disposed on the upper surface of the substrate portion.
  • the lowermost support structure placed on the substrate portion as the spacer member, that is, to also serve as the spacer member.
  • the support structure it is not necessary to prepare the spacer member separately, so that the number of members as a stacked packing tool can be reduced.
  • the solar cell module is not placed on the lowermost support structure, and is only used as a spacer member.
  • the cushioning member that horizontally stacks and fits the edge of the solar cell module from the lateral direction to hold the solar cell module, and the stacked uppermost solar cell module are arranged.
  • a bundling member that winds from the substrate portion to the top plate and binds together, and the lowermost cushion member is formed with a thickness in the height direction that is thicker than the spacer member. It is good also as a structure.
  • the buffer member may be configured such that a concave groove portion through which the bundling member passes is formed on the outer surface.
  • the spacer member can be formed in a frame shape arranged along the peripheral edge portion of the upper surface of the substrate portion. By making the spacer member into a frame shape, it is easy to place the spacer member on the substrate portion while maintaining the overall strength.
  • the spacer member can be a long member disposed along two opposing edges of the peripheral edge of the upper surface of the substrate. By making the spacer member a long member, it is easy to place the spacer member on the substrate portion while maintaining the overall strength.
  • the packaging method according to the fourth embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged in a horizontal state by using the loading packaging tools having the above-described configurations.
  • the solar cell modules can be stacked and packed in multiple stages with a sufficient gap between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure.
  • Such packaging can prevent the lower surface of the solar cell module from contacting or colliding with the upper surface of the substrate portion even if the lowermost solar cell module bends due to vibration during transportation or the like.
  • a Loading packaging 1 Substrate (support substrate, pallet) DESCRIPTION OF SYMBOLS 1a Fitting convex part 2 Support structure 3 Spacer member 5 Buffer member 5a Lowermost buffer member 5b Uppermost buffer member 6 Top plate 7 Binding band (binding member) 8 Receiving member 11 Upper substrate 12 Lower substrate 13 Horizontal beam 23 Base 23a Upper end surface 23b Lower end surface 23c Inner wall surface (inner side surface) 23d outer wall surface (outer side surface) 25 engaging convex part 25a outer side wall surface (outer side surface) 26 engaging recess 28 receiving part (supporting part) 29 fitting recessed part 31 fitting recessed part 32 fitting convex part 51 upper side part 52 lower side part 53 concave groove part 61, 61a, 61b bent part 62 notch 81 main body part 82 fitting convex part 82a inclined surface 82b cylindrical surface 83 rib Piece 85 Bottom face 86 Engagement part 86a Support rod 86b Engagement piece 88 Through hole 90 Screw member 100 Solar cell module 100a Corner

Abstract

Supporting structures (2) support solar cell modules stacked in a horizontal position. Each of the supporting structures (2) is provided with a base section (23) which is stacked on top of each other in the vertical direction, a receiving section (28) which is formed so as to protrude in the lateral direction from the inner wall surface (23c) of the base section (23) and which supports a corner of each of the solar cell modules, an engagement protrusion (25) which is formed on the upper end surface of the base section (23) and which engages with one of the supporting structures (2) adjacent to the each of the supporting structures (2) in the vertical direction, and an engagement recess (26) which is formed in the lower end surface (23b) of the base section (23) and with which the engagement protrusion of the other supporting structure (2) adjacent to the each of the supporting structures (2) in the vertical direction engages. The engagement recess (26) is open on the outer wall surface (23d) side of the base section (23).

Description

支持構造体、積載梱包具、支持基板及び梱包方法SUPPORT STRUCTURE, LOADING PACKAGE, SUPPORT BOARD AND PACKING METHOD
 本発明は、太陽電池モジュールの角部を載置して太陽電池モジュールを水平な状態で支持する支持構造体、太陽電池モジュールを梱包する積載梱包具、支持構造体を載置して太陽電池モジュールを水平な状態で支持する支持基板、及び太陽電池モジュールの梱包方法に関する。 The present invention relates to a support structure for mounting a corner portion of a solar cell module to support the solar cell module in a horizontal state, a stacking packing tool for packing the solar cell module, and a solar cell module by mounting the support structure. The present invention relates to a support substrate that supports the solar cell module in a horizontal state and a method for packing a solar cell module.
 従来、太陽電池モジュールを水平な状態で積み重ねて梱包する支持構造体、差込みシステム(例えば、特許文献1参照)及び積載梱包具(例えば、特許文献2参照)が知られている。 Conventionally, a support structure for stacking and packing solar cell modules in a horizontal state, an insertion system (for example, see Patent Document 1), and a loading packing tool (for example, see Patent Document 2) are known.
 特許文献1には、光起電力モジュールの角部が載置される支持異形材が内側に突出するように形成された成形品部材を備えた差込みシステムが開示されている。成形品部材には、上側にほぞ(突部)が形成され、下側に空所が形成されている。この差込みシステムでは、4個の成形品部材が、それぞれ1枚の光起電力モジュールの4つの角部を支持している。また、成形品部材のほぞは、その成形品部材の上方に配置される成形品部材の空所に差し込まれている。すなわち、この差込みシステムでは、成形品部材のほぞ-空所構造により、隣接する成形品部材が結合されることによって、成形品部材が垂直方向に積み重ねられており、積み重ねられる成形品部材により光起電力モジュールが支持されている。 Patent Document 1 discloses an insertion system including a molded product member formed so that a supporting deformable material on which a corner portion of a photovoltaic module is placed protrudes inward. The molded product member has a tenon (projection) on the upper side and a void on the lower side. In this insertion system, four molded product members each support the four corners of one photovoltaic module. Further, the tenon of the molded product member is inserted into a void of the molded product member disposed above the molded product member. That is, in this insertion system, the adjacent molded member is joined by the tenon-cavity structure of the molded product member, so that the molded product members are stacked in the vertical direction. A power module is supported.
 また、特許文献2には、架台と、架台の四隅に上下方向に積層される複数のコーナー支持部材と、このコーナー支持部材を架台上で支持する下部支持部材と、矩形のパネル材(太陽電池モジュール)の積層体を包囲する側壁体と、蓋体と、を有する梱包装置が開示されている。コーナー支持部材は、パネル材の角部に当接する直交壁と、この直交壁から水平に延出しパネル材の角部が載置される荷重受け部と、を有する。直交壁には、その内側に内側嵌合溝、外側に外向き嵌合片とを有し、直交壁の内側嵌合溝には、その上方に配置されるコーナー支持部材の直交壁の外向き嵌合片が嵌合される。すなわち、内側嵌合溝と外向き嵌合片が嵌合することにより、上下方向に隣接するコーナー支持部材が積層される。 Patent Document 2 discloses a gantry, a plurality of corner support members that are stacked in the vertical direction at four corners of the gantry, a lower support member that supports the corner support member on the gantry, and a rectangular panel material (solar cell). A packaging device having a side wall body that surrounds a stack of modules and a lid body is disclosed. The corner support member includes an orthogonal wall that abuts against a corner portion of the panel material, and a load receiving portion that extends horizontally from the orthogonal wall and on which the corner portion of the panel material is placed. The orthogonal wall has an inner fitting groove on the inner side and an outer fitting piece on the outer side, and the inner fitting groove of the orthogonal wall has an outward direction of the orthogonal wall of the corner support member arranged above the groove. The fitting piece is fitted. That is, the corner support members adjacent in the vertical direction are stacked by fitting the inner fitting groove and the outward fitting piece.
 これにより、積層されたコーナー支持部材の荷重受け部にパネル材の角部が載置され、コーナー支持部材が上下方向に積層されることにより、矩形のパネル材(太陽電池モジュール)を水平な状態で積み重ねて梱包することができる。 Thereby, the corner | angular part of a panel material is mounted in the load receiving part of the laminated | stacked corner support member, and a rectangular panel material (solar cell module) is horizontal by a corner support member being laminated | stacked up and down. Can be stacked and packed.
特開2006-32978号公報JP 2006-32978 A 特開2011-178449号公報JP 2011-178449 A
 しかしながら、上記従来の構成では、太陽電池モジュールを積み重ねて梱包した積載梱包具を運搬する際に、運搬時の振動等によって太陽電池モジュールがずれたり破損したりする等の問題があった。 However, in the above-described conventional configuration, there is a problem that the solar cell module is displaced or damaged due to vibration or the like during transportation when the stacked packaging tool in which the solar cell modules are stacked and packed is transported.
 本発明はかかる問題点を解決すべく創案されたもので、その目的は、太陽電池モジュールを安全に運搬することができる太陽電池モジュールの支持構造体、積載梱包具、および梱包方法を提供することにある。 The present invention was devised to solve such problems, and an object of the present invention is to provide a solar cell module support structure, a loading packaging tool, and a packaging method capable of safely transporting the solar cell module. It is in.
 上記課題を解決するため、本発明の支持構造体は、太陽電池モジュールの角部を載置して前記太陽電池モジュールを水平な状態で支持する支持構造体であって、上下方向に積み重ねられる基体部と、前記基体部の内側の側面から横方向に突出して形成された前記太陽電池モジュールの角部を支持する支持部と、前記基体部の上端面に形成され、上下に隣接する一方の支持構造体と係合する係合凸部と、前記基体部の下端面に形成され、上下に隣接する他方の支持構造体の前記係合凸部が係合される係合凹部とを備え、前記係合凹部は、前記基体部の外側の側面側が開放されていることを特徴としている。 In order to solve the above problems, a support structure according to the present invention is a support structure that supports the solar cell module in a horizontal state by placing corner portions of the solar cell module, and is a base that is stacked in the vertical direction. Part, a support part that supports a corner part of the solar cell module that is formed so as to protrude laterally from the inner side surface of the base part, and one support that is formed on the upper end surface of the base part and that is adjacent vertically An engaging convex portion that engages with the structure, and an engaging concave portion that is formed on the lower end surface of the base portion and that engages with the engaging convex portion of the other support structure that is adjacent vertically. The engaging recess is characterized in that the outer side surface of the base portion is open.
 このように、係合凹部を、基体部の外側の側面側を開放した構造とすることで、係合状態を目視により直接確認することができる。また、上方向からだけではなく、横方向や斜め上方向からでも嵌め合わせて係合できるため、係合作業が容易となる。 In this way, the engagement state can be directly confirmed by visual observation by making the engagement concave portion a structure in which the outer side surface side of the base portion is opened. In addition, since the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated.
 また、本発明の梱包方法は、上記各構成の支持構造体を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴としている。 Further, the packing method of the present invention is characterized in that the solar cell modules are stacked in a horizontal state and packed using the support structures having the above-described configurations.
 本発明の梱包方法によれば、支持構造体を上下に係合する際、係合状態を目視により直接確認しながら係合できるので、梱包作業が容易となる。 According to the packing method of the present invention, when the support structure is engaged up and down, the engagement can be performed while directly confirming the engagement state visually, so that the packaging work is facilitated.
 また、上記課題を解決するため、本発明の積載梱包具は、太陽電池モジュールを水平な状態で上下方向に積み重ねて梱包する積載梱包具であって、基板部と、前記基板部上面に立設され、水平に積み重ねられた前記太陽電池モジュールの角部をそれぞれ支持する支持構造体と、水平に積み重ねられた前記太陽電池モジュールの縁部に、横方向から嵌め合わせて前記太陽電池モジュールを保持する緩衝部材と、を備えていることを特徴としている。 Further, in order to solve the above-mentioned problems, the stacking packing tool of the present invention is a stacking packing tool that stacks and packs solar cell modules in a vertical direction in a horizontal state, and is erected on the substrate unit and the upper surface of the substrate unit. The solar cell module is held by being fitted from the lateral direction to the support structure that respectively supports the corners of the solar cell modules stacked horizontally and the edge of the solar cell modules stacked horizontally. And a buffer member.
 本発明によれば、水平に積み重ねられた太陽電池モジュールの縁部に横方向から緩衝部材が嵌め合わされており、太陽電池モジュールを両側から緩衝部材によって固定することができる。これにより、運搬時の振動等によって水平な状態で積み重ねられた太陽電池モジュールが撓むことがなく、上下方向に隣接する太陽電池モジュール同士の接触若しくは衝突を防ぎ、さらに運搬時の振動による太陽電池モジュールの水平方向の動きを抑えることができる。 According to the present invention, the buffer member is fitted from the lateral direction to the edge portion of the horizontally stacked solar cell modules, and the solar cell module can be fixed by the buffer members from both sides. This prevents the solar cell modules stacked in a horizontal state due to vibration during transportation, etc. from being bent, prevents contact or collision between solar cell modules adjacent in the vertical direction, and further solar cells due to vibration during transportation. The horizontal movement of the module can be suppressed.
 また、本発明の積載梱包方法は、上記各構成の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴とする。 Moreover, the loading and packing method of the present invention is characterized by stacking and packing the solar cell modules in a horizontal state using the loading and packing tools having the above-described configurations.
 本発明によれば、上下方向に積み重ねられた太陽電池モジュール同士を十分な隙間をあけて、その両縁に取り付けられた緩衝部材によってその姿勢を固定することができる。このような梱包により運搬時の振動によって上下方向に積み重ねられた太陽電池モジュール同士の接触若しくは衝突を防止することができ、水平方向の動きを抑えることができる。 According to the present invention, it is possible to fix the posture of the solar cell modules stacked in the vertical direction with a sufficient gap between the solar cell modules with the buffer members attached to both edges thereof. Such packaging can prevent contact or collision between the solar cell modules stacked in the vertical direction by vibration during transportation, and can suppress horizontal movement.
 また、上記課題を解決するため、本発明の支持基板は、太陽電池モジュールの角部を支持する支持構造体を載置して前記太陽電池モジュールを水平な状態で支持する支持基板であって、前記支持基板の上面には、前記支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部が形成されていることを特徴としている。 In order to solve the above problems, the support substrate of the present invention is a support substrate that supports the solar cell module in a horizontal state by placing a support structure that supports the corners of the solar cell module, The upper surface of the support substrate is formed with a fitting convex portion into which a fitting concave portion formed on the lower surface of the support structure is fitted.
 本発明によれば、支持基板の上面に、支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部を形成することで、支持基板上に載置された支持構造体の横ずれを防止することができる。すなわち、支持基板に対する太陽電池モジュールの横ずれを防止することが可能となる。 According to the present invention, the support structure placed on the support substrate is formed on the upper surface of the support substrate by forming the fitting convex portion into which the fitting recess formed on the lower surface of the support structure is fitted. Can be prevented. That is, it is possible to prevent the lateral displacement of the solar cell module with respect to the support substrate.
 また、本発明の梱包方法は、上記各構成の支持基板と前記支持構造体とを用いて太陽電池モジュールを水平な状態で積み重ねて梱包することを特徴としている。 Further, the packaging method of the present invention is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support substrate having the above-described configuration and the support structure.
 本発明の梱包方法によれば、支持基板の係合凸部に最下段の支持構造体を嵌合固定できるので、太陽電池モジュールを横ずれなく安定して多段に梱包することができる。 According to the packing method of the present invention, the lowermost support structure can be fitted and fixed to the engagement convex portion of the support substrate, so that the solar cell module can be stably packed in multiple stages without lateral displacement.
 また、上記課題を解決するため、本発明の積載梱包具は、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具であって、基板部と、前記基板部上面に配置され、前記太陽電池モジュールの角部を載置して前記太陽電池モジュールを水平な状態で支持する支持構造体と、前記基板部と前記支持構造体との間に配置されるスペーサ部材と、を備えていることを特徴としている。 Further, in order to solve the above-described problems, the stacking packing tool of the present invention is a stacking packing tool that stacks and packs solar cell modules in a horizontal state, and is disposed on the substrate unit and the upper surface of the substrate unit, A support structure for mounting the corner of the battery module to support the solar cell module in a horizontal state; and a spacer member disposed between the substrate and the support structure. It is characterized by.
 本発明によれば、基板部と支持構造体との間にスペーサ部材を配置することで、基板部上面と最下段の支持構造体に支持された太陽電池モジュールの下面との間に十分な隙間をあけることができる。これにより、運搬時の振動等によって最下段の太陽電池モジュールが撓んでも、太陽電池モジュールの下面が基板部の上面に接触若しくは衝突することを防止することができる。 According to the present invention, by arranging the spacer member between the substrate portion and the support structure, a sufficient gap is provided between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure. Can be opened. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
 また、本発明の梱包方法は、上記各構成の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴としている。 Further, the packing method of the present invention is characterized in that the solar cell modules are stacked and packed in a multi-stage in a horizontal state using the stacked packing tools having the above-described configurations.
 本発明によれば、基板部上面と最下段の支持構造体に支持された太陽電池モジュールの下面との間に十分な隙間をあけて太陽電池モジュールを多段に積み重ねて梱包することができる。このような梱包により、運搬時の振動等によって最下段の太陽電池モジュールが撓んでも、太陽電池モジュールの下面が基板部の上面に接触若しくは衝突することを防止することができる。 According to the present invention, the solar cell modules can be stacked and packed in multiple stages with a sufficient gap between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure. Such packaging can prevent the lower surface of the solar cell module from contacting or colliding with the upper surface of the substrate portion even if the lowermost solar cell module bends due to vibration during transportation or the like.
 本発明によれば、係合凹部を、基体部の外側の側面側を開放した構造とすることで、係合状態を目視により直接確認することができる。また、上方向からだけではなく、横方向や斜め上方向からでも嵌め合わせて係合できるため、係合作業が容易となる。従って、本発明の支持構造体を用いることで太陽電池モジュールの梱包作業も容易となる。 According to the present invention, the engagement state can be directly confirmed visually by making the engagement recess have a structure in which the outer side surface side of the base portion is opened. In addition, since the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated. Therefore, the packing operation of the solar cell module is facilitated by using the support structure of the present invention.
 また、本発明によれば、運搬時の振動等によって水平な状態で積み重ねられた太陽電池モジュールが撓むことがなく、上下方向に隣接する太陽電池モジュールとの接触若しくは衝突を防ぎ、さらに運搬時の振動による太陽電池モジュールの水平方向の動きを抑えることができる。 Further, according to the present invention, the solar cell modules stacked in a horizontal state due to vibration or the like during transportation do not bend, prevent contact or collision with the solar cell modules adjacent in the vertical direction, and further during transportation. It is possible to suppress the horizontal movement of the solar cell module due to the vibrations.
 また、本発明によれば、支持基板の上面の4隅に、支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部を形成することで、支持基板上に載置された支持構造体の横ずれを防止、すなわち、支持基板に対する太陽電池モジュールの横ずれを防止することができる。 Further, according to the present invention, the mounting convex portions are formed on the four corners of the upper surface of the support substrate so that the fitting concave portions formed on the lower surface of the support structure are fitted on the support substrate. It is possible to prevent the lateral shift of the support structure, that is, the lateral shift of the solar cell module with respect to the support substrate.
 また、本発明によれば、基板部と支持構造体との間にスペーサ部材を配置することで、基板部上面と最下段の支持構造体に支持された太陽電池モジュールの下面との間に十分な隙間をあけることができる。これにより、運搬時の振動等によって最下段の太陽電池モジュールが撓んでも、太陽電池モジュールの下面が基板部の上面に接触若しくは衝突することを防止することができる。 Further, according to the present invention, the spacer member is disposed between the substrate portion and the support structure, so that it is sufficient between the substrate portion upper surface and the lower surface of the solar cell module supported by the lowermost support structure. Can make clear gaps. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
本発明の実施の形態1に係る支持構造体を用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図である。It is the perspective view which showed the state before final packing of a solar cell module using the support structure which concerns on Embodiment 1 of this invention. 図1のB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 支持構造体を斜め上方からみた斜視図である。It is the perspective view which looked at the support structure from diagonally upward. 支持構造体を斜め下方からみた斜視図である。It is the perspective view which looked at the support structure from diagonally downward. 支持構造体の他の構成例を示す斜め上方からみた斜視図である。It is the perspective view seen from diagonally upward which shows the other structural example of a support structure. 支持構造体の他の構成例を示す斜め下方からみた斜視図である。It is the perspective view seen from diagonally downward which shows the other structural example of a support structure. 下側の支持構造体の係合凸部に上側に配置される支持構造体の係合凹部を係合する様子を示す説明図である。It is explanatory drawing which shows a mode that the engagement recessed part of the support structure arrange | positioned at the upper side is engaged with the engagement convex part of a lower support structure. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 緩衝部材の斜視図である。It is a perspective view of a buffer member. 図10のC-C線断面図である。It is CC sectional view taken on the line of FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 実施の形態1に係る支持構造体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the support structure which concerns on Embodiment 1. FIG. 支持構造体を斜め上方から見た斜視図である。It is the perspective view which looked at the support structure from diagonally upward. 支持構造体を斜め下方から見た斜視図である。It is the perspective view which looked at the support structure from diagonally downward. 支持構造体の他の構成例を示す斜め上方からみた斜視図である。It is the perspective view seen from diagonally upward which shows the other structural example of a support structure. 支持構造体の他の構成例を示す斜め下方からみた斜視図である。It is the perspective view seen from diagonally downward which shows the other structural example of a support structure. 緩衝部材を斜め上方から見た斜視図である。It is the perspective view which looked at the buffer member from diagonally upward. 他の緩衝部材を斜め上方から見た斜視図である。It is the perspective view which looked at the other buffer member from diagonally upward. さらに他の緩衝部材を斜め上方から見た斜視図である。Furthermore, it is the perspective view which looked at the other buffer member from diagonally upward. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2に係る積載梱包具を用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図である。It is the perspective view which showed the state before carrying out the final packing of the solar cell module using the loading packaging tool which concerns on Embodiment 2. FIG. 図25に示した積載梱包具のC-C断面図である。It is CC sectional drawing of the loading packaging tool shown in FIG. 実施の形態2の他の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multistage using the other loading packing tool of Embodiment 2. FIG. スペーサ部材を斜め上方から見た斜視図である。It is the perspective view which looked at the spacer member from diagonally upward. スペーサ部材を斜め下方から見た斜視図である。It is the perspective view which looked at the spacer member from diagonally downward. 図25に示した積載梱包具において、スペーサ部材を用いた積載梱包具のB-B断面図である。FIG. 26 is a cross-sectional view taken along the line BB of the stacked packing tool using the spacer member in the stacked packing tool illustrated in FIG. 25. 図25に示した積載梱包具において、さらに他の緩衝部材を用いた積載梱包具のC-C断面図である。FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25. 図25に示した積載梱包具において、さらに他の緩衝部材を用いた積載梱包具のC-C断面図である。FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25. 図25に示した積載梱包具において、さらに他の緩衝部材を用いた積載梱包具のC-C断面図である。FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25. 図25に示した積載梱包具において、さらに他の緩衝部材を用いた積載梱包具のC-C断面図である。FIG. 26 is a cross-sectional view taken along the line CC of the stacked packing device using another buffer member in the stacked packing device shown in FIG. 25. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 実施の形態2の積載梱包具を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the loading packaging tool of Embodiment 2. FIG. 本発明の実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねた状態を示す斜視図である。It is a perspective view which shows the state which stacked | stacked the solar cell module in multiple stages using the support substrate which concerns on Embodiment 3 of this invention. 図38のA-A断面図である。It is AA sectional drawing of FIG. 支持基板の平面図である。It is a top view of a support substrate. 支持基板を長手方向から見た正面図である。It is the front view which looked at the support substrate from the longitudinal direction. 支持基板を短手方向から見た側面図である。It is the side view which looked at the support substrate from the transversal direction. 支持基板の角部を拡大して示す平面図である。It is a top view which expands and shows the corner | angular part of a support substrate. 図43のB-B断面図である。FIG. 44 is a sectional view taken along line BB in FIG. 43. 図43のC-C断面図である。It is CC sectional drawing of FIG. 支持基板の斜視図である。It is a perspective view of a support substrate. 受け部材を上方側から見た斜視図である。It is the perspective view which looked at the receiving member from the upper side. 受け部材を下方側(底面側)から見た斜視図である。It is the perspective view which looked at the receiving member from the downward side (bottom face side). 図47AのD-D断面図である。FIG. 47B is a DD cross-sectional view of FIG. 47A. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 図53のE-E断面図である。FIG. 54 is a cross-sectional view taken along the line EE of FIG. 53. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 実施の形態3に係る支持基板を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple steps using the support substrate which concerns on Embodiment 3. FIG. 本発明の実施の形態4に係る積載梱包具Aを用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図である。It is the perspective view which showed the state before carrying out final packing of the solar cell module using the loading packaging tool A which concerns on Embodiment 4 of this invention. 図58のB-B断面図(ただし、上部は図示省略)である。FIG. 59 is a sectional view taken along line BB in FIG. 58 (however, the upper part is not shown). 図58に示す積載梱包具Aの分解斜視図である。It is a disassembled perspective view of the loading packaging tool A shown in FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 図66のC-C断面図(ただし、上部は図示省略)である。66 is a sectional view taken along the line CC in FIG. 66 (however, the upper part is not shown). 実施の形態4の積載梱包具体を用いて太陽電池モジュールを多段に積み重ねて梱包していく手順を示す説明図である。It is explanatory drawing which shows the procedure which stacks | stacks and packs a solar cell module in multiple stages using the specific packaging packaging of Embodiment 4. FIG. 他の構成例1に係るスペーサ部材の斜視図である。It is a perspective view of the spacer member concerning other composition examples 1. 他の構成例2に係るスペーサ部材の斜視図である。It is a perspective view of the spacer member concerning other examples of composition 2.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔実施の形態1〕
 図1は、本発明の実施の形態に係る支持構造体1を用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図、図2は、図1のB-B断面図である。
[Embodiment 1]
FIG. 1 is a perspective view showing a state before final packing of a solar cell module using the support structure 1 according to the embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line BB of FIG.
 図1及び図2に示す支持構造体2は、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具の一構成部材であって、積載梱包具は、大別すると、矩形状の基板部(以下、パレットともいう。)1と、基板部1の上面の4隅にそれぞれ配置され、太陽電池モジュール100の角部100aを載置して太陽電池モジュール100を水平な状態で支持する支持構造体2と、を備えて構成されている。 The support structure 2 shown in FIG. 1 and FIG. 2 is a component of a stacked packing tool for stacking and packing solar cell modules in a horizontal state, and the stacked packing tool is roughly divided into a rectangular substrate portion. (Hereinafter also referred to as a pallet) 1 and a support structure that is arranged at each of the four corners of the upper surface of the substrate unit 1 and supports the solar cell module 100 in a horizontal state by placing the corners 100a of the solar cell module 100. And a body 2.
 支持構造体2は、太陽電池モジュール100を水平な状態で積み重ねて梱包するように構成されている。支持構造体2は、パレット1の上面に、4個取り付けられている。この4個の支持構造体2は、パレット1に対して位置決めされている。4個の支持構造体2は、それぞれ矩形状の太陽電池モジュール100の4つの角部(コーナー部)100aを支持している。 The support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state. Four support structures 2 are attached to the upper surface of the pallet 1. The four support structures 2 are positioned with respect to the pallet 1. The four support structures 2 support the four corners (corner portions) 100a of the rectangular solar cell module 100, respectively.
 また、パレット1の上面に取り付けられた4個の支持構造体2には、垂直方向Zに複数(図1の例では、8個)の支持構造体2が積み重ねられている。そして、各段の4個の支持構造体2により、1枚の太陽電池モジュール100が支持されている。すなわち、図1の例では、パレット1上に、8枚の太陽電池モジュール100が水平な状態で積み重ねられている。 Further, a plurality of (eight in the example of FIG. 1) support structures 2 are stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1. One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 1, eight solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
 なお、パレット1上に積み重ねられた太陽電池モジュール100は、後述する天板6により最上段の太陽電池モジュール100の上面が覆われ、結束部材である例えばPP(ポリプロピレン)バンド等の結束バンド7によりパレット1に巻き付けられた状態で運搬される。 In addition, the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
 また、支持構造体2により支持される太陽電池モジュール100は、フレームレスである。すなわち、支持構造体2によりフレームレスの太陽電池モジュール100を多段に積載して梱包することができる。 Moreover, the solar cell module 100 supported by the support structure 2 is frameless. In other words, the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
 図3Aは、支持構造体2を斜め上方からみた斜視図、図3Bは、支持構造体2を斜め下方からみた斜視図である。 FIG. 3A is a perspective view of the support structure 2 as viewed obliquely from above, and FIG. 3B is a perspective view of the support structure 2 as viewed from obliquely below.
 支持構造体2は、太陽電池モジュール100のコーナー部100aを下から受け止める構造であり、平面視L字状に屈曲形成された基体部23と、この基体部23の内側壁面(内側の側面)23cの下端部から該壁面に直交する方向に延設された四角形状の受け部(支持部)28とを備えている。 The support structure 2 is a structure that receives the corner portion 100a of the solar cell module 100 from below, and a base portion 23 that is bent in an L shape in plan view, and an inner wall surface (inner side surface) 23c of the base portion 23. And a quadrangular receiving portion (supporting portion) 28 extending in a direction perpendicular to the wall surface from the lower end portion.
 受け部28は、太陽電池モジュール100のコーナー部100aを下から受けるように形成されており、支持構造体2全体の形状としては、縦断面略L字状に形成されている。 The receiving portion 28 is formed so as to receive the corner portion 100a of the solar cell module 100 from below, and the overall shape of the support structure 2 is formed in a substantially L-shaped longitudinal section.
 受け部28の下面は、基体部23の下端面23bと面一となっている。このように、受け部28の下面及び基体部23の下端面23bにより支持構造体2の下面が構成されていると、パレット1上に支持構造体2を載置したときに、受け部28の下面と基体部23の下端面23bとの両方で支持構造体2がパレット1と接触するため、パレット1上に支持構造体2をより安定した状態で載置することができる。 The lower surface of the receiving portion 28 is flush with the lower end surface 23 b of the base portion 23. As described above, when the lower surface of the support structure 2 is constituted by the lower surface of the receiving portion 28 and the lower end surface 23b of the base portion 23, when the support structure 2 is placed on the pallet 1, Since the support structure 2 comes into contact with the pallet 1 both at the lower surface and the lower end surface 23b of the base portion 23, the support structure 2 can be placed on the pallet 1 in a more stable state.
 受け部28の下面には、パレット1の上面に形成された嵌合凸部1aと嵌合するための嵌合凹部29が形成されている。 A fitting recess 29 for fitting with the fitting protrusion 1 a formed on the upper surface of the pallet 1 is formed on the lower surface of the receiving portion 28.
 このように、パレット1の上面に嵌合凸部1aを形成し、支持構造体2の受け部28の下面に嵌合凹部29を形成することで、パレット1上に支持構造体2を載置したとき、この嵌合構造によって支持構造体2の横ずれを防止することができる。 In this manner, the fitting convex portion 1 a is formed on the upper surface of the pallet 1, and the fitting concave portion 29 is formed on the lower surface of the receiving portion 28 of the supporting structure 2, thereby placing the supporting structure 2 on the pallet 1. When this is done, the lateral displacement of the support structure 2 can be prevented by this fitting structure.
 基体部23は、垂直方向Zに積み重ねられるように構成されている。そのため、基体部23の上端面23a及び下端面23bには、上下に隣接配置される別の支持構造体2の基体部23と順次嵌め合わせて係合するための係合凸部25及び係合凹部26がそれぞれ設けられている。係合凸部25は、基体部23の各片の上端面23aに1個ずつ、計2個設けられており、係合凹部26は、基体部23の各片の下端面23bに1個ずつ、計2個設けられている。ただし、係合凸部25及び係合凹部26の形成数はこれに限定されるものではない。 The base portion 23 is configured to be stacked in the vertical direction Z. For this reason, the engaging convex portion 25 and the engaging portion 25 are engaged with the upper end surface 23a and the lower end surface 23b of the base portion 23 so as to be sequentially fitted and engaged with the base portion 23 of another support structure 2 arranged adjacent to each other in the vertical direction. Recesses 26 are respectively provided. Two engaging convex portions 25 are provided on each upper end surface 23a of each piece of the base portion 23, and two engaging concave portions 26 are provided on each lower end surface 23b of each piece of the base portion 23. A total of two are provided. However, the number of formation of the engaging convex part 25 and the engaging concave part 26 is not limited to this.
 例えば、図4A及び図4Bに他の構成例を示すように、係合凸部25を、基体部23の各片の上端面23aに2個ずつ、計4個設け、係合凹部26も、基体部23の各片の下端面23bに2個ずつ、計4個設けた構成としてもよい。この他にも、例えば基体部23の上端面23a及び下端面23bにそれぞれL字状に1個ずつ、計2個設けた構成とすることも考えられる。このような係合構造により、支持構造体2を、横ずれを防止しつつ多段に積み重ねていくことができる。 For example, as shown in FIG. 4A and FIG. 4B, four engagement protrusions 25 are provided on the upper end surface 23 a of each piece of the base portion 23, for a total of four engagement protrusions 26, A total of four pieces may be provided, two on the lower end surface 23b of each piece of the base portion 23. In addition to this, for example, a configuration in which two L-shaped one in total are provided on the upper end surface 23a and the lower end surface 23b of the base portion 23, respectively. With such an engagement structure, the support structure 2 can be stacked in multiple stages while preventing lateral displacement.
 ここで、本実施の形態では、係合凹部26は、基体部23の外側壁面(外側の側面)23d側が開放された構造となっている。このように、係合凹部26を、基体部23の外側壁面23d側を開放した構造とすることで、上下に隣接配置される支持構造体2同士の係合状態を目視により直接確認することができる。 Here, in the present embodiment, the engaging recess 26 has a structure in which the outer wall surface (outer side surface) 23d side of the base portion 23 is opened. As described above, the engagement recess 26 has a structure in which the outer wall surface 23d side of the base portion 23 is opened, so that the engagement state between the support structures 2 arranged adjacent to each other in the vertical direction can be directly confirmed visually. it can.
 また、図5に示すように、下側の支持構造体2の係合凸部25に、上側に配置される支持構造体2の係合凹部26を係合させるとき、上方向d1からだけではなく、横方向d3や、斜め上方向d2からでも、係合凸部25に係合凹部26を嵌め合わせて係合できるため、係合作業が容易となる。 Further, as shown in FIG. 5, when engaging the engaging concave portion 26 of the supporting structure 2 disposed on the upper side with the engaging convex portion 25 of the lower supporting structure 2, only from the upper direction d1. In addition, since the engaging concave portion 26 can be fitted and engaged with the engaging convex portion 25 even from the lateral direction d3 or the diagonally upward direction d2, the engaging operation is facilitated.
 また、係合凸部25の外側壁面(外側の側面)25aは、基体部23の外側壁面23dと連続するように面一に形成されている。このように、係合凸部25の外側壁面25aを、基体部23の外側壁面23dと面一に形成することで、下側の支持構造体2の係合凸部25に、上側に配置される支持構造体2の係合凹部26を係合させたとき、下側の支持構造体2の係合凸部25の外側壁面25aが、上側の支持構造体2の基体部23の外側壁面23dと面一となる。従って、面一であることを目視により確認することで、下側の支持構造体2と上側の支持構造体2とが確実に係合されていることを容易に確認することができる。 Further, the outer wall surface (outer side surface) 25 a of the engaging convex portion 25 is formed flush with the outer wall surface 23 d of the base body portion 23. In this way, the outer wall surface 25a of the engagement convex portion 25 is formed flush with the outer wall surface 23d of the base portion 23, so that the engagement convex portion 25 of the lower support structure 2 is disposed on the upper side. When the engaging concave portion 26 of the supporting structure 2 is engaged, the outer wall surface 25a of the engaging convex portion 25 of the lower supporting structure 2 is the outer wall surface 23d of the base portion 23 of the upper supporting structure 2. And become the same. Therefore, it can be easily confirmed that the lower support structure 2 and the upper support structure 2 are reliably engaged by visually confirming that they are flush.
 このような形状の支持構造体2は、例えばPP(ポリプロピレン)やABS(アクリロニトリル・ブタジエン・スチレン共重合体)等の樹脂による射出成形によって形成されている。 The support structure 2 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
 また、パレット1が木製である場合、嵌合凸部1aはパレット1自体の削り出し、または木片などで形成し、その木片をパレット1上に接着し、かつ、ねじや釘等によって強固に固定すればよい。また、パレット1が鉄製である場合には、バーリング加工によって、穴を開けた後、その穴の周囲を上方を押し上げるように加工するバーリング加工によって嵌合凸部を形成してもよい。 When the pallet 1 is made of wood, the fitting convex portion 1a is formed by cutting the pallet 1 itself or by forming a piece of wood, and bonding the piece of wood onto the pallet 1 and firmly fixing it with screws, nails or the like. do it. In addition, when the pallet 1 is made of iron, the fitting convex portion may be formed by burring processing in which a hole is formed by burring and then processed so as to push up the periphery of the hole.
 また、基板部1は、上側基板11と下側基板12とが複数本の横桟13によって支持された2層構造となっており、この上側基板11と下側基板12との間の隙間が、後述する結束バンド7を通す穴、及び輸送コンテナ等への積み込み時にフォークリフトのフォークが差し込まれる穴となっている。 The substrate unit 1 has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13, and there is a gap between the upper substrate 11 and the lower substrate 12. A hole through which a binding band 7 described later is passed, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like.
 次に、上記構成の支持構造体2を用いて太陽電池モジュール100を多段に積み重ねて梱包する梱包方法について、図6ないし図15を参照して説明する。なお、以下の梱包方法は、例えば自動機などにより行われる。 Next, a packing method for stacking and packing the solar cell modules 100 in multiple stages using the support structure 2 having the above configuration will be described with reference to FIGS. The following packing method is performed by, for example, an automatic machine.
 まず、図6に示すように、基板部1の4箇所の嵌合凸部1aにそれぞれ1段目となる支持構造体2の受け部28の下面に形成された嵌合凹部29を嵌合して、1段目の支持構造体2を基板部1の4隅に配置する。次に、図7に示すように、1段目の各支持構造体2に1段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。次に、図8に示すように、1段目の各支持構造体2の係合凸部25に2段目となる支持構造体2の係合凹部26をそれぞれ嵌め合わせて係合する。次に、図9に示すように、2段目の各支持構造体2に2段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。以後、図8及び図9に示す手順を所定回数繰り返すことにより、図1に示すように、基板部1上に所定枚数の太陽電池モジュール100を多段に積載する。 First, as shown in FIG. 6, fitting recesses 29 formed on the lower surface of the receiving portion 28 of the support structure 2 in the first stage are fitted into the four fitting projections 1 a of the substrate portion 1. Thus, the first-stage support structures 2 are arranged at the four corners of the substrate unit 1. Next, as shown in FIG. 7, the four corner portions 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2. Next, as shown in FIG. 8, the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2. Next, as shown in FIG. 9, the corners 100 a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 8 and 9 a predetermined number of times, as shown in FIG. 1, a predetermined number of solar cell modules 100 are stacked in multiple stages on the substrate unit 1.
 なお、実施の形態では、太陽電池モジュール100のコーナー部100aは、当該太陽電池モジュール100のコーナー部100aを支持する支持構造体2の受け部28の上面と、その上段に配置された支持構造体2の受け部28の下面とで挟持する構成としている。これにより、個々の太陽電池モジュール100が上下(垂直方向Z)にばたつくのを防止することができる。 In the embodiment, the corner portion 100a of the solar cell module 100 includes the upper surface of the receiving portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100 and the support structure disposed on the upper stage thereof. It is configured to be sandwiched between the lower surface of the two receiving portions 28. Thereby, it is possible to prevent the individual solar cell modules 100 from flapping up and down (vertical direction Z).
 この後、図10に示すように、積み重ねられた太陽電池モジュール100の長手方向に沿う両縁部100bの中央部に、太陽電池モジュール100の上下の撓みを防止するとともに、輸送時の振動等による上下のばたつきを防止するための緩衝部材5を嵌合して配置する。 Thereafter, as shown in FIG. 10, the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100 b along the longitudinal direction of the stacked solar cell modules 100, and is caused by vibration during transportation. A shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
 緩衝部材5は、図11に示すように、側面視コ字状に形成されており、図12に示すように、各太陽電池モジュール100の縁部100bに嵌合することで、上下の緩衝部材5が隙間無く配置されるようになっている。 As shown in FIG. 11, the buffer member 5 is formed in a U shape when viewed from the side. As shown in FIG. 12, the buffer member 5 is fitted to the edge portion 100 b of each solar cell module 100, so that the upper and lower buffer members are arranged. 5 is arranged without a gap.
 また、緩衝部材5には、外側面に後述する結束部材である結束バンド7を通す凹溝部53が上下に貫通して形成されている。 Further, the buffer member 5 is formed with a concave groove portion 53 penetrating vertically on the outer side surface through which a binding band 7 which is a binding member described later is passed.
 そのため、図13に示すように、まずこの状態において、緩衝部材5の凹溝部53に通すようにして、基板部1(より具体的には、上側基板11)から最上段の太陽電池モジュール100までを結束バンド7で架け回し、一体に結束する。 Therefore, as shown in FIG. 13, first, in this state, the substrate member 1 (more specifically, the upper substrate 11) is passed through the concave groove portion 53 of the buffer member 5 to the uppermost solar cell module 100. Is wound around the binding band 7 and bound together.
 このように、緩衝部材5の外側面に結束バンド7を通す凹溝部53を形成することで、結束後の緩衝部材5が横方向にずれるのを防止することができる。 Thus, by forming the concave groove portion 53 through which the binding band 7 is passed on the outer side surface of the buffer member 5, it is possible to prevent the buffer member 5 after binding from shifting in the lateral direction.
 次に、図14に示すように、最上段の太陽電池モジュール100の上面に、緩衝用として、太陽電池モジュール100の幅よりも広い幅に形成された例えば段ボールからなる天板6を配置する。 Next, as shown in FIG. 14, a top plate 6 made of, for example, cardboard is formed on the upper surface of the uppermost solar cell module 100 as a buffer so as to be wider than the width of the solar cell module 100.
 天板6は、太陽電池モジュール100の長手方向に沿う縁部100bの両側のコーナー部100aに配置されている支持構造体2の外側壁面同士を結ぶ直線Lに沿って折り曲げる折り曲げ部61を有している。 The top plate 6 has a bent portion 61 that bends along a straight line L that connects the outer wall surfaces of the support structure 2 disposed at the corner portions 100a on both sides of the edge portion 100b along the longitudinal direction of the solar cell module 100. ing.
 そして、図15に示すように、天板6の長手方向の両側の折り曲げ部61を支持構造体2の外側壁面同士を結ぶ直線Lに沿って下方に折り曲げる。 And as shown in FIG. 15, the bending part 61 of the both sides of the longitudinal direction of the top plate 6 is bend | folded below along the straight line L which connects the outer side wall surfaces of the support structure 2. As shown in FIG.
 そして、この状態で、長手方向の両端から約1/3程度のところの2箇所を、基板部1(より具体的には、上側基板11)から天板6まで結束バンド7を架け回すようにして一体に結束する。 Then, in this state, the binding band 7 is routed from the substrate portion 1 (more specifically, the upper substrate 11) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. And unite them together.
 この後、図示は省略しているが、全体をフィルム状のシート(ラップ等)で包み込んで太陽電池モジュール梱包体を作製する。そして、このように作製した太陽電池モジュール梱包体をフォークリフトによって輸送コンテナ内に積み込んで、目的地まで輸送することになる。 After this, although not shown in the drawing, the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package. And the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
 以上のように、本実施の形態1に係る支持構造体は、太陽電池モジュールの角部を載置して太陽電池モジュールを水平な状態で支持する支持構造体であって、上下方向に積み重ねられる基体部と、基体部の内側の側面から横方向に突出して形成された太陽電池モジュールの角部を支持する支持部と、基体部の上端面に形成され、上下に隣接する一方の支持構造体と係合する係合凸部と、基体部の下端面に形成され、上下に隣接する他方の支持構造体の係合凸部が係合される係合凹部とを備え、係合凹部は、基体部の外側の側面側が開放されていることを特徴としている。 As described above, the support structure according to Embodiment 1 is a support structure that places the corners of the solar cell module and supports the solar cell module in a horizontal state, and is stacked in the vertical direction. A base part, a support part that supports a corner part of the solar cell module that is formed to project laterally from the inner side surface of the base part, and one support structure that is formed on the upper end surface of the base part and that is adjacent vertically And an engaging concave portion formed on the lower end surface of the base portion and engaged with the engaging convex portion of the other supporting structure adjacent to the upper and lower sides. A feature is that an outer side surface of the base portion is opened.
 このように、係合凹部を、基体部の外側の側面側を開放した構造とすることで、係合状態を目視により直接確認することができる。また、上方向からだけではなく、横方向や斜め上方向からでも嵌め合わせて係合できるため、係合作業が容易となる。 In this way, the engagement state can be directly confirmed by visual observation by making the engagement concave portion a structure in which the outer side surface side of the base portion is opened. In addition, since the engagement can be performed not only from the upper direction but also from the lateral direction and the diagonally upward direction, the engaging operation is facilitated.
 また、上記支持構造体によれば、係合凸部の外側の側面は、基体部の外側の側面と連続するように面一に形成された構成としてもよい。 Further, according to the above support structure, the outer side surface of the engaging convex portion may be formed to be flush with the outer side surface of the base portion.
 このように、係合凸部の外側の側面を、基体部の外側の側面と連続するように面一に形成することで、下側の支持構造体の係合凸部に上側に配置される支持構造体の係合凹部を係合させたとき、下側の支持構造体の係合凸部の外側の側面が、上側の支持構造体の基体部の外側の側面と面一となる。従って、面一であることを目視により確認することで、下側の支持構造体と上側の支持構造体とが確実に係合されていることを容易に確認することができる。 In this manner, the outer side surface of the engaging convex portion is formed flush with the outer side surface of the base portion so as to be arranged on the upper side of the engaging convex portion of the lower support structure. When the engagement concave portion of the support structure is engaged, the outer side surface of the engagement convex portion of the lower support structure is flush with the outer side surface of the base portion of the upper support structure. Therefore, it can be easily confirmed that the lower support structure and the upper support structure are reliably engaged by visually confirming that they are flush.
 また、上記支持構造体によれば、基体部は、一方の基体片と他方の基体片とが直交するように設けられた平面視L字状に形成され、係合凸部及び係合凹部は、各基体片にそれぞれ形成された構成としてもよい。このように、基体部をL字状に形成することで、太陽電池モジュールの角部を横方向と縦方向の2方向から支持することができ、横方向と縦方向の2方向のずれを防止することができる。 Further, according to the support structure, the base portion is formed in an L shape in plan view so that one base piece and the other base piece are orthogonal to each other, and the engaging convex portion and the engaging concave portion are The structure may be formed on each base piece. In this way, by forming the base portion in an L shape, the corner portion of the solar cell module can be supported from two directions of the horizontal direction and the vertical direction, and a shift in the horizontal direction and the vertical direction is prevented. can do.
 また、上記支持構造体によれば、係合凸部及び係合凹部は、各基体片にそれぞれ複数個設けられた構成としてもよい。このように、係合凸部及び係合凹部を各基体片に複数個設けることで、係合した際、係合状態が安定し、ずれやがたつきを抑えることができる。 Further, according to the above support structure, a plurality of engaging convex portions and engaging concave portions may be provided on each base piece. Thus, by providing a plurality of engaging convex portions and engaging concave portions on each base piece, when engaged, the engaged state is stabilized, and deviation and rattling can be suppressed.
 また、上記支持構造体によれば、基体部は、太陽電池モジュールを水平状態で積み重ねて支持する基板部上に載置され、支持部の下面には、基板部の上面に形成された嵌合凸部と嵌合する嵌合凹部が形成された構成としてもよい。このような構成によれば、支持構造体を基板部上に載置する際、嵌合構造によって支持構造体を基板部上の所定位置に確実に載置固定でき、横ずれを防止できる。従って、支持構造体を基板部上に載置後、この支持構造体の支持部に載置された太陽電池モジュールの角部が支持部から外れることはない。 Further, according to the support structure, the base portion is placed on the substrate portion that supports the solar cell modules stacked in a horizontal state, and the lower surface of the support portion is fitted on the upper surface of the substrate portion. It is good also as a structure in which the fitting recessed part fitted to a convex part was formed. According to such a structure, when mounting a support structure on a board | substrate part, a support structure can be reliably mounted and fixed to the predetermined position on a board | substrate part by a fitting structure, and a lateral shift can be prevented. Therefore, after the support structure is placed on the substrate portion, the corner portion of the solar cell module placed on the support portion of the support structure is not detached from the support portion.
 また、本実施の形態1に係る梱包方法は、上記各構成の支持構造体を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴としている。 Further, the packaging method according to the first embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support structures having the above-described configurations.
 この梱包方法によれば、支持構造体を上下に係合する際、係合状態を目視により直接確認しながら係合できるので、梱包作業が容易となる。 According to this packing method, when the support structure is engaged up and down, it can be engaged while directly confirming the engagement state by visual observation, so that the packaging work is facilitated.
 〔実施の形態2〕
 図25は、本発明の実施の形態に係る積載梱包具Aを用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図である。図25を参照して、最終梱包前の積載梱包具Aの概略について説明する。
[Embodiment 2]
FIG. 25 is a perspective view showing a state before final packing of the solar cell module using the stacked packing tool A according to the embodiment of the present invention. With reference to FIG. 25, the outline of the loading packaging tool A before final packing is demonstrated.
 図25に示す積載梱包具Aは、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具であって、大別すると、矩形状の基板部1と、基板部1上面の4箇所に立設され、水平に積み重ねられた太陽電池モジュール100の角部100a(以下、コーナー部ともいう。)をそれぞれ支持する支持構造体2と、水平に積み重ねられた太陽電池モジュール100の対向する一組の縁部100bに、それぞれ横方向から嵌め合わせて太陽電池モジュール100を保持する緩衝部材5と、を備えて構成されている。 The stacking packing tool A shown in FIG. 25 is a stacking packing tool for stacking and packing solar cell modules in a horizontal state. When roughly classified, the stacking packing tool A stands at four locations on the rectangular substrate portion 1 and the upper surface of the substrate portion 1. A pair of opposing support structures 2 that respectively support the corner portions 100a (hereinafter also referred to as corner portions) of the solar cell modules 100 installed and horizontally stacked, and the solar cell modules 100 stacked horizontally. A buffer member 5 that holds the solar cell module 100 by being fitted to the edge portion 100b from the lateral direction.
 このように、太陽電池モジュール100の対向する一組の縁部100bに横方向から緩衝部材5が嵌め合わされることで、一組の緩衝部材5によって太陽電池モジュール100の縁部100bを両側から固定することができる。これにより、運搬時の振動等によって水平な状態で積み重ねられた太陽電池モジュール100が撓むことがなく、上下方向に隣接する太陽電池モジュール100との接触若しくは衝突を防ぎ、さらに運搬時の振動による太陽電池モジュール100の水平方向の動きを抑えることができる。 Thus, the buffer member 5 is fitted to the pair of opposing edge portions 100b of the solar cell module 100 from the lateral direction, so that the edge portion 100b of the solar cell module 100 is fixed from both sides by the pair of buffer members 5. can do. This prevents the solar cell modules 100 stacked in a horizontal state from being bent due to vibration during transportation, prevents contact or collision with the solar cell modules 100 adjacent in the vertical direction, and further due to vibration during transportation. The horizontal movement of the solar cell module 100 can be suppressed.
 基板部1(以下、パレットともいう。)は、上側基板11と下側基板12とが複数本の横桟13によって支持された2層構造となっており、この上側基板11と下側基板12との間の隙間が、後述する結束部材7(以下、結束バンドともいう。)を通す穴、及び輸送コンテナ等への積み込み時にフォークリフトのフォークが差し込まれる穴となっている。また、上側基板11の上面の四隅には、後述する図21に示すように嵌合凸部1aが形成されている。 The substrate unit 1 (hereinafter also referred to as a pallet) has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13. Is a hole through which a bundling member 7 (hereinafter also referred to as a bundling band), which will be described later, passes, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like. Further, at the four corners of the upper surface of the upper substrate 11, fitting protrusions 1a are formed as shown in FIG.
 支持構造体2は、太陽電池モジュール100を水平な状態で積み重ねて梱包するように構成されている。支持構造体2は、上側基板11の上面(以下、パレットの上面ともいう。)に、4個取り付けられている。この4個の支持構造体2は、パレット1上の嵌合凸部1aに嵌合されて位置決めされている。4個の支持構造体2は、それぞれ、矩形状の太陽電池モジュール100の4つの角部100a(コーナー部)を支持している。 The support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state. Four support structures 2 are attached to the upper surface of the upper substrate 11 (hereinafter also referred to as the upper surface of the pallet). The four support structures 2 are fitted and positioned on the fitting projections 1 a on the pallet 1. The four support structures 2 each support four corners 100a (corner portions) of the rectangular solar cell module 100.
 また、パレット1の上面に取り付けられた4個の支持構造体2には、垂直方向Zに複数(図25の例では、9個)の支持構造体2がさらに積み重ねられている。そして、各段の4個の支持構造体2により、1枚の太陽電池モジュール100が支持されている。すなわち、図25の例では、パレット1上に、10枚の太陽電池モジュール100が水平な状態で積み重ねられている。 Further, a plurality of (9 in the example of FIG. 25) support structures 2 are further stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1. One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 25, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
 なお、パレット1上に積み重ねられた太陽電池モジュール100は、後述する天板6により最上段の太陽電池モジュール100の上面が覆われ、結束部材である例えばPP(ポリプロピレン)バンド等の結束バンド7によりパレット1に巻き付けられた状態で運搬される。 In addition, the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
 また、支持構造体2により支持される太陽電池モジュール100は、フレームレスである。すなわち、支持構造体2によりフレームレスの太陽電池モジュール100を多段に積載して梱包することができる。 Moreover, the solar cell module 100 supported by the support structure 2 is frameless. In other words, the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
 図16Aは、支持構造体2を斜め上方からみた斜視図、図16Bは、支持構造体2を斜め下方からみた斜視図である。 FIG. 16A is a perspective view of the support structure 2 as viewed obliquely from above, and FIG. 16B is a perspective view of the support structure 2 as viewed from obliquely below.
 支持構造体2は、太陽電池モジュール100のコーナー部100aを下から受け止める構造であり、平面視L字状に屈曲形成された基体部23と、この基体部23の内側壁面の下端部から該壁面に直交する方向に延設された四角形状の受け部28(支持部)とを備えている。 The support structure 2 is a structure that receives the corner portion 100a of the solar cell module 100 from below, and the base portion 23 that is bent in an L shape in plan view, and the wall surface from the lower end portion of the inner wall surface of the base portion 23. And a rectangular receiving portion 28 (supporting portion) extending in a direction perpendicular to the vertical direction.
 受け部28は、太陽電池モジュール100のコーナー部100aを下から受けるように形成されており、支持構造体2全体の形状としては、縦断面略L字状に形成されている。 The receiving portion 28 is formed so as to receive the corner portion 100a of the solar cell module 100 from below, and the overall shape of the support structure 2 is formed in a substantially L-shaped longitudinal section.
 受け部28の下面には、パレット1の上面に形成された嵌合凸部1aと嵌合するための嵌合凹部29が形成されている。 A fitting recess 29 for fitting with the fitting protrusion 1 a formed on the upper surface of the pallet 1 is formed on the lower surface of the receiving portion 28.
 このように、パレット1の上面に嵌合凸部1aを形成し、支持構造体2の受け部28の下面に嵌合凹部29を形成することで、パレット1上に支持構造体2を載置したとき、この嵌合構造によって支持構造体2の横ずれを防止することができる。 In this manner, the fitting convex portion 1 a is formed on the upper surface of the pallet 1, and the fitting concave portion 29 is formed on the lower surface of the receiving portion 28 of the supporting structure 2, thereby placing the supporting structure 2 on the pallet 1. When this is done, the lateral displacement of the support structure 2 can be prevented by this fitting structure.
 基体部23は、垂直方向Zに積み重ねられるように構成されている。そのため、基体部23の上端面23a及び下端面23bには、上下に隣接配置される別の支持構造体2の基体部23と順次嵌め合わせて係合するための係合凸部25及び係合凹部26がそれぞれ設けられている。係合凸部25は、基体部23の各片の上端面23aに1個ずつ、計2個設けられており、係合凹部26は、基体部23の各片の下端面23bに1個ずつ、計2個設けられている。ただし、係合凸部25及び係合凹部26の形成数はこれに限定されるものではない。 The base portion 23 is configured to be stacked in the vertical direction Z. For this reason, the engaging convex portion 25 and the engaging portion 25 are engaged with the upper end surface 23a and the lower end surface 23b of the base portion 23 so as to be sequentially fitted and engaged with the base portion 23 of another support structure 2 arranged adjacent to each other in the vertical direction. Recesses 26 are respectively provided. Two engaging convex portions 25 are provided on each upper end surface 23a of each piece of the base portion 23, and two engaging concave portions 26 are provided on each lower end surface 23b of each piece of the base portion 23. A total of two are provided. However, the number of formation of the engaging convex part 25 and the engaging concave part 26 is not limited to this.
 例えば、図17A及び図17Bに示すように、係合凸部25を、基体部23の各片の上端面23aに2個ずつ、計4個設け、係合凹部26も、基体部23の各片の下端面23bに2個ずつ、計4個設けた構成としてもよい。このような係合構造により、支持構造体2を、横ずれを防止しつつ多段に積み重ねていくことができる。 For example, as shown in FIGS. 17A and 17B, two engagement convex portions 25 are provided on the upper end surface 23 a of each piece of the base portion 23, for a total of four, and the engagement concave portions 26 are also provided on the base portion 23. It is good also as a structure which provided two in total at the lower end surface 23b of one piece. With such an engagement structure, the support structure 2 can be stacked in multiple stages while preventing lateral displacement.
 このような形状の支持構造体2は、例えばPP(ポリプロピレン)やABS(アクリロニトリル・ブタジエン・スチレン共重合体)等の樹脂による射出成形によって形成されている。 The support structure 2 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
 また、本実施の形態2における支持構造体2は、図3Aおよび図3Bに示される支持構造体2、若しくは、図4Aおよび図4Bに示される支持構造体2を使用してもよい。 Further, as the support structure 2 in Embodiment 2, the support structure 2 shown in FIGS. 3A and 3B or the support structure 2 shown in FIGS. 4A and 4B may be used.
 図18は、緩衝部材5を斜め上方から見た斜視図である。 FIG. 18 is a perspective view of the buffer member 5 as viewed obliquely from above.
 緩衝部材5は、側面視コ字状であり、コ字状に形成された開口部54(開口溝部)を備えている。この開口部54(開口溝部)は、太陽電池モジュール100の縁部100bと嵌合されるように形成されている。また、緩衝部材5の上面55及び下面56は平坦である。これにより、複数の緩衝部材5を上下方向に積み重ねることができ、緩衝部材5の上面と別の緩衝部材5の下面とを接着剤や接着テープ等を用いて接着することができる。また、開口部54とは反対側の側面(外側面)に凹溝部53が上下に貫通して形成されている。これにより、緩衝部材5の外側面に、後述する結束バンド7(結束部材)を凹溝部53に通すことができ、結束後の緩衝部材5の横ずれを防止することができる。なお、凹溝部53の形成によって結束バンド7を通すことが好ましいが、凹溝部53の形成がされていなくても構わない。 The shock-absorbing member 5 has a U-shape when viewed from the side, and includes an opening 54 (opening groove) formed in a U-shape. The opening 54 (opening groove) is formed to be fitted to the edge 100b of the solar cell module 100. Further, the upper surface 55 and the lower surface 56 of the buffer member 5 are flat. Thereby, the some buffer member 5 can be stacked | piled up and down, and the upper surface of the buffer member 5 and the lower surface of another buffer member 5 can be adhere | attached using an adhesive agent, an adhesive tape, etc. Further, a concave groove 53 is vertically formed through the side surface (outer surface) opposite to the opening 54. Thereby, the later-described binding band 7 (binding member) can be passed through the concave groove portion 53 on the outer surface of the buffer member 5, and the lateral displacement of the buffer member 5 after binding can be prevented. In addition, although it is preferable to pass the binding band 7 by forming the concave groove portion 53, the concave groove portion 53 may not be formed.
 このような形状の緩衝部材5は、例えば発泡プラスチックや発泡ウレタンによって形成されている。 The buffer member 5 having such a shape is made of, for example, foamed plastic or foamed urethane.
 図19は、他の緩衝部材5を斜め上方から見た斜視図である。 FIG. 19 is a perspective view of another buffer member 5 as viewed obliquely from above.
 この緩衝部材5は、開口部54(開口溝部)を上下方向に一定間隔を存して複数備えている。各開口部54はそれぞれ、太陽電池モジュール100の縁部100bと嵌合されるように形成されており、図示例では2個の開口部54が設けられている。これにより、積み重ねられた複数の太陽電池モジュール100を1個の緩衝部材5によって保持することができる。また、1個の開口部54が形成された緩衝部材5に比べて緩衝部材5同士を接着して使用する個数が少ないため、緩衝部材5同士の接着回数を減らすことができ、緩衝部材5の強度の向上を図ることができる。 The buffer member 5 includes a plurality of openings 54 (opening grooves) at regular intervals in the vertical direction. Each opening 54 is formed so as to be fitted to the edge 100b of the solar cell module 100. In the illustrated example, two openings 54 are provided. As a result, a plurality of stacked solar cell modules 100 can be held by one buffer member 5. Further, since the number of the buffer members 5 to be bonded and used is smaller than that of the buffer member 5 in which one opening 54 is formed, the number of times of bonding between the buffer members 5 can be reduced. The strength can be improved.
 図20は、さらに他の緩衝部材5を斜め上方から見た斜視図である。 FIG. 20 is a perspective view of still another buffer member 5 as viewed from obliquely above.
 この緩衝部材5は、図18に示した緩衝部材5の開口部54(開口溝部)の開口先端部57に、太陽電池モジュール100の縁部100bをガイドするテーパー面が形成されている。これにより、開口部54の開口先端部57に設けられたテーパー面によって、効率よく開口部54に太陽電池モジュールをガイドすることができる。 The buffer member 5 has a tapered surface that guides the edge 100b of the solar cell module 100 at the opening tip 57 of the opening 54 (opening groove) of the buffer member 5 shown in FIG. Thereby, the solar cell module can be efficiently guided to the opening 54 by the tapered surface provided at the opening tip 57 of the opening 54.
 次に、上記構成の積載梱包具Aを用いて太陽電池モジュール100を多段に積み重ねて梱包する梱包方法について、図21ないし図33を参照して説明する。なお、以下の梱包方法は、例えば自動機などにより行われる。 Next, a packing method for stacking and packing the solar cell modules 100 in multiple stages using the stacked packing tool A having the above configuration will be described with reference to FIGS. The following packing method is performed by, for example, an automatic machine.
 まず、図21に示すように、基板部1の4箇所の嵌合凸部1aにそれぞれ1段目となる支持構造体2の受け部28の下面に形成された嵌合凹部29を、パレット1の上面に形成された嵌合凸部1aに嵌合して、1段目の支持構造体2を配置する。 First, as shown in FIG. 21, the fitting concave portions 29 formed on the lower surface of the receiving portion 28 of the support structure 2 in the first step are respectively provided on the four fitting convex portions 1 a of the substrate portion 1. The first-stage support structure 2 is disposed by fitting into the fitting convex portion 1a formed on the upper surface of the first stage.
 次に、図22に示すように、1段目の各支持構造体2に1段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。次に、図23に示すように、1段目の各支持構造体2の係合凸部25に2段目となる支持構造体2の係合凹部26をそれぞれ嵌め合わせて係合する。次に、図24に示すように、2段目の各支持構造体2に2段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。以後、図23及び図24に示す手順を所定回数繰り返すことにより、パレット1上に所定枚数の太陽電池モジュール100を多段に積載する。 Next, as shown in FIG. 22, the four corners 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2. Next, as shown in FIG. 23, the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2. Next, as shown in FIG. 24, the corners 100 a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 23 and 24 a predetermined number of times, a predetermined number of solar cell modules 100 are stacked in multiple stages on the pallet 1.
 その後、積み重ねられた太陽電池モジュール100の長手方向に沿う両縁部100bの中央部に、太陽電池モジュール100の上下の撓みを防止するとともに、輸送時の振動等による上下のばたつきを防止するために太陽電池モジュール100の横方向からそれぞれ緩衝部材5を嵌め合わせて太陽電池モジュールを保持する(図25参照)。 After that, in order to prevent vertical deflection of the solar cell module 100 at the center of both edge portions 100b along the longitudinal direction of the stacked solar cell modules 100, and to prevent vertical fluttering due to vibration during transportation, etc. The buffer members 5 are fitted together from the lateral direction of the solar cell module 100 to hold the solar cell module (see FIG. 25).
 図26は、図25のC-C断面図である。上下方向に水平な状態で積み上げられた全ての太陽電池モジュール100の対向する縁部100bに横方向から緩衝部材5を嵌め合わせるため、予め、太陽電池モジュール100の個数と同数の開口部54の個数となるように、必要な個数の緩衝部材5を用意し、これら緩衝部材5を開口部54の個数が太陽電池モジュール100の個数と同数となるように2つに分けてそれぞれ積み重ねる。そして、上下に積み重ねられた緩衝部材5の隣接する上面と下面とを接着剤又は接着テープ等を用いて接着し、この状態で、太陽電池モジュール100の横方向から、積み重ねて一体に形成された緩衝部材5をそれぞれ嵌め合わせて、太陽電池モジュール100の対向する縁部100bを両側から保持する。 FIG. 26 is a cross-sectional view taken along the line CC of FIG. In order to fit the buffer members 5 from the lateral direction to the opposing edge portions 100b of all the solar cell modules 100 stacked in a horizontal state in the vertical direction, the number of openings 54 equal to the number of the solar cell modules 100 in advance. Thus, the necessary number of buffer members 5 are prepared, and these buffer members 5 are divided into two parts and stacked so that the number of openings 54 is the same as the number of solar cell modules 100. And the adjacent upper surface and lower surface of the buffer member 5 stacked up and down are bonded using an adhesive or an adhesive tape, and in this state, the solar cell module 100 is stacked and integrally formed from the lateral direction. The buffer members 5 are fitted together to hold the opposite edge portions 100b of the solar cell module 100 from both sides.
 このとき、緩衝部材5の開口部54の開口先端部57に設けられたテーパー面によって、効率よく開口部54に太陽電池モジュール100をガイドすることができる。 At this time, the solar cell module 100 can be efficiently guided to the opening 54 by the tapered surface provided at the opening tip 57 of the opening 54 of the buffer member 5.
 太陽電池モジュール100の横方向から、上下方向に積み重ねて一体形成された緩衝部材5をそれぞれ嵌め合わせた後、緩衝部材5の外側面の凹溝部53に結束バンド7(結束部材)を通すと共に基板部1(より具体的には、上側基板11)から最上段の太陽電池モジュール100までを結束バンド7で巻き回し、一体に結束する。 The buffer members 5 that are integrally formed by stacking in the vertical direction from the lateral direction of the solar cell module 100 are fitted together, and then the binding band 7 (binding member) is passed through the concave groove portion 53 on the outer surface of the buffer member 5 and the substrate. The part 1 (more specifically, the upper substrate 11) to the uppermost solar cell module 100 is wound around the binding band 7 and bound together.
 このように、緩衝部材5の外側面に結束バンド7(結束部材)を通す凹溝部53を形成することで、結束後の緩衝部材の横ずれを防止することができる。 As described above, by forming the concave groove portion 53 through which the binding band 7 (binding member) is passed on the outer surface of the buffer member 5, it is possible to prevent lateral displacement of the buffer member after binding.
 なお、最下段の緩衝部材5aの形状は他の緩衝部材5の形状と異なり、パレット1の上面と当接する形状とする。 Note that the shape of the lowermost buffer member 5 a is different from the shape of the other buffer members 5, and has a shape that contacts the upper surface of the pallet 1.
 例えば、上記説明したパレット1の4箇所の嵌合凸部1aに支持構造体2を載置せずにスペーサ部材3を載置した場合(図27参照)の積載梱包具Aについて説明する。尚、スペーサ部材3を用いた積載梱包具Aの構成については、後述する実施の形態4においてさらに詳細に説明する。ここでスペーサ部材3は、図28A及び図28Bに示すように立方体形状をしており、パレット1上に載置される下面には、パレット1の上面の4隅に形成された嵌合凸部1aに嵌合される嵌合凹部31が形成され、上面には、支持構造体2を嵌合固定するための嵌合凸部32が形成されている。 For example, a description will be given of the stacking packing tool A when the spacer member 3 is mounted on the four fitting protrusions 1a of the pallet 1 described above without mounting the support structure 2 (see FIG. 27). In addition, the structure of the stacking packaging tool A using the spacer member 3 will be described in more detail in a fourth embodiment described later. Here, the spacer member 3 has a cubic shape as shown in FIGS. 28A and 28B, and the lower surface placed on the pallet 1 has fitting convex portions formed at the four corners of the upper surface of the pallet 1. A fitting concave portion 31 to be fitted to 1a is formed, and a fitting convex portion 32 for fitting and fixing the support structure 2 is formed on the upper surface.
 このスペーサ部材3を、パレット1の4箇所の嵌合凸部1aにそれぞれ配置した後に、4隅のスペーサ部材3の上に支持構造体2を積み上げ、4隅の支持構造体2によって太陽電池モジュール100のコーナー部100aを載せるようにして載置し、以後、支持構造体2の積み上げ及び太陽電池モジュールの載置を所定回数繰り返すことにより、パレット1上に所定枚数の太陽電池モジュール100を多段に積載する。このとき、最下段の太陽電池モジュール100とパレット1上面との間は、パレット1上面にスペーサ部材3が取り付けられているため、図29に示すように、上下方向に隣接する太陽電池モジュール100同士の間隔よりも、最下段の太陽電池モジュール100とパレット1上面の間の間隔が広くなっている。なお、図29は、太陽電池モジュール100、支持構造体2及びスペーサ部材3の断面図を示している。 After the spacer members 3 are arranged on the four fitting protrusions 1a of the pallet 1, the support structures 2 are stacked on the spacer members 3 at the four corners, and the solar cell module is formed by the support structures 2 at the four corners. 100 corner portions 100a are placed so as to be placed thereon, and thereafter, the stacking of the support structure 2 and the placement of the solar cell modules are repeated a predetermined number of times, whereby a predetermined number of solar cell modules 100 are placed on the pallet 1 in multiple stages. To load. At this time, since the spacer member 3 is attached to the upper surface of the pallet 1 between the lowermost solar cell module 100 and the upper surface of the pallet 1, as shown in FIG. The distance between the lowermost solar cell module 100 and the upper surface of the pallet 1 is wider than the distance between. FIG. 29 shows a cross-sectional view of the solar cell module 100, the support structure 2, and the spacer member 3.
 これにより、図30に示すように、最下段の緩衝部材5aについては、その上段に配置されている他の緩衝部材5と異なり、開口部54より下部側の厚みT1が他の緩衝部材5の開口部54より下部側の厚みT2より厚くなっている。これにより、パレット1の上面と当接する形状とする緩衝部材5を嵌め込むことで、パレット1上面と最下段の太陽電池モジュール100の下面とは共に緩衝部材5aと当接し、且つ、太陽電池モジュール100は緩衝部材5aと嵌合するため、最下段の太陽電池モジュール100とパレット1上面との接触若しくは衝突を防ぐことができる。なお、図30は、太陽電池モジュール100及び緩衝部材5の断面図である。 Thus, as shown in FIG. 30, the lowermost buffer member 5 a is different from the other buffer members 5 arranged on the upper stage in that the thickness T <b> 1 on the lower side of the opening 54 is different from that of the other buffer members 5. It is thicker than the thickness T2 on the lower side of the opening 54. Thus, by fitting the buffer member 5 having a shape that comes into contact with the upper surface of the pallet 1, both the upper surface of the pallet 1 and the lower surface of the lowermost solar cell module 100 are in contact with the buffer member 5a, and the solar cell module Since 100 is fitted with the buffer member 5a, contact or collision between the lowermost solar cell module 100 and the upper surface of the pallet 1 can be prevented. FIG. 30 is a cross-sectional view of the solar cell module 100 and the buffer member 5.
 また、パレット1上面から最上段の緩衝部材5bの上面までの高さが、パレット1上面から最上段の支持構造体2の上面までの高さと等しくなるように、最上段の緩衝部材5bの形状が設計されている。すなわち、最上段の太陽電池モジュールの上面から最上段の緩衝部材5の上面55までの高さT11(図30参照)は、最上段の太陽電池モジュールの上面から最上段の支持構造体2の上面(すなわち、係合凸部25までの高さ(図29参照))までの高さT11と等しいため、最上段の緩衝部材5bの形状は、他の緩衝部材5の形状と異なっている。 In addition, the shape of the uppermost buffer member 5b is such that the height from the upper surface of the pallet 1 to the upper surface of the uppermost buffer member 5b is equal to the height from the upper surface of the pallet 1 to the upper surface of the uppermost support structure 2. Is designed. That is, the height T11 (see FIG. 30) from the upper surface of the uppermost solar cell module to the upper surface 55 of the uppermost buffer member 5 is the upper surface of the uppermost support structure 2 from the upper surface of the uppermost solar cell module. Since it is equal to the height T11 up to (that is, the height to the engagement convex portion 25 (see FIG. 29)), the shape of the uppermost buffer member 5b is different from the shapes of the other buffer members 5.
 なお、最上段の緩衝部材5bの形状と、他の緩衝部材5の形状が同じ形状であってもよく、この場合は、各段の太陽電池モジュール100の上面から支持構造体2の係合凸部25までの高さT11(図29参照)と、各段の太陽電池モジュール100の上面から緩衝部材5の上面の高さS(図30参照)とが等しい高さとなる。 Note that the shape of the uppermost buffer member 5b and the shape of the other buffer members 5 may be the same, and in this case, the engagement protrusion of the support structure 2 from the upper surface of the solar cell module 100 of each step. The height T11 to the portion 25 (see FIG. 29) and the height S (see FIG. 30) of the upper surface of the buffer member 5 from the upper surface of the solar cell module 100 at each stage are equal.
 これにより、パレット1上面から最上段の緩衝部材5bの上面までの高さと、パレット1上面から最上段の支持構造体2の上面までの高さが等しくなるため、緩衝部材5bの上面及び支持構造体2の上面に後述する天板6を置いても、その天板6は水平を維持することができる。 Accordingly, the height from the upper surface of the pallet 1 to the upper surface of the uppermost buffer member 5b is equal to the height from the upper surface of the pallet 1 to the upper surface of the uppermost support structure 2, so that the upper surface of the buffer member 5b and the support structure Even if a top plate 6 described later is placed on the upper surface of the body 2, the top plate 6 can be kept horizontal.
 ここで、緩衝部材5の積み上げの一例を図30から図33までに示す。緩衝部材5の積み上げは、1個の開口部54(開口溝部)を備える緩衝部材5を上下方向に積み上げてもよく(図30参照)、複数の開口部54を設けた緩衝部材5を積み上げても構わない(図31参照)。また、1個の開口部54を備える緩衝部材5と複数の開口部54を備える緩衝部材5とを組み合わせて積み上げても構わない(図32参照)。また、太陽電池モジュール100の両縁において、異なる種類の緩衝部材5を用いても構わない(図33参照)。 Here, an example of stacking of the buffer members 5 is shown in FIGS. The buffer member 5 may be stacked by vertically stacking the buffer member 5 having one opening 54 (opening groove) (see FIG. 30), or by stacking the buffer member 5 provided with a plurality of openings 54. It does not matter (see FIG. 31). Moreover, you may pile up combining the buffer member 5 provided with the one opening part 54, and the buffer member 5 provided with the some opening part 54 (refer FIG. 32). Moreover, you may use a different kind of buffer member 5 in the both edges of the solar cell module 100 (refer FIG. 33).
 これにより、緩衝部材により所望の枚数の太陽電池モジュールを水平な状態で上下方向に積み重ねて保持することができる。 Thus, a desired number of solar cell modules can be stacked and held in the vertical direction in a horizontal state by the buffer member.
 次に、図34に示すように、最上段の太陽電池モジュール100の上面に、緩衝用として、太陽電池モジュール100の幅よりも広い幅に形成された例えば段ボールからなる天板6を配置する。 Next, as shown in FIG. 34, on the upper surface of the uppermost solar cell module 100, a top plate 6 made of, for example, cardboard is formed as a buffer so as to have a width wider than the width of the solar cell module 100.
 天板6は、太陽電池モジュール100の長手方向に沿う縁部100bの両側のコーナー部100aに配置されている上下方向に積み上げられた支持構造体2の外側壁面同士を結ぶ直線Lに沿って折り曲げる折り曲げ部61を有している。最上段の太陽電池モジュール100の上面に天板6を配置した状態で、図35に示すように、天板6の長手方向の両側の折り曲げ部61を支持構造体2の外側壁面同士を結ぶ直線Lに沿って下方に折り曲げる。 The top plate 6 is bent along a straight line L that connects the outer wall surfaces of the support structure 2 stacked in the vertical direction and disposed at the corner portions 100a on both sides of the edge portion 100b along the longitudinal direction of the solar cell module 100. A bent portion 61 is provided. In a state where the top plate 6 is arranged on the upper surface of the uppermost solar cell module 100, straight lines connecting the outer wall surfaces of the support structure 2 with the bent portions 61 on both sides in the longitudinal direction of the top plate 6 as shown in FIG. Bend down along L.
 そして、この状態で、長手方向の両端から約1/3程度のところの2箇所を、基板部1(より具体的には、上側基板11)から天板6まで結束バンド7を架け回すようにして一体に結束する。 Then, in this state, the binding band 7 is routed from the substrate portion 1 (more specifically, the upper substrate 11) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. And unite them together.
 この後、図示は省略しているが、全体をフィルム状のシート(ラップ等)で包み込んで太陽電池モジュール梱包体を作製する。そして、このように作製した太陽電池モジュール梱包体をフォークリフトによって輸送コンテナ内に積み込んで、目的地まで輸送することになる。 After this, although not shown in the drawing, the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package. And the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
 (天板6の他の構成例の説明)
 図36は、天板6の他の構成例を示している。
(Description of other configuration examples of the top plate 6)
FIG. 36 shows another configuration example of the top plate 6.
 この天板6は、太陽電池モジュール100の長手方向に沿う縁部100bの両側のコーナー部100aに配置されている支持構造体2の外側壁面(すなわち、基体部23の外側壁面)同士を結ぶ直線Lに沿って折り曲げる折り曲げ部61を有し、この折り曲げ部61に、緩衝部材5に対峙する幅の間隔を存して一対の切り込み62が形成されている。 The top plate 6 is a straight line that connects the outer wall surfaces of the support structure 2 (that is, the outer wall surfaces of the base member 23) disposed at the corner portions 100 a on both sides of the edge portion 100 b along the longitudinal direction of the solar cell module 100. A bent portion 61 that is bent along L is provided, and a pair of cuts 62 are formed in the bent portion 61 with a width interval facing the buffer member 5.
 このように切り込みが形成された天板6の折り曲げ部61を、図37に示すように、支持構造体2の外側壁面同士を結ぶ直線Lに沿って下方に折り曲げる。 The bent portion 61 of the top plate 6 in which the notches are formed in this way is bent downward along a straight line L connecting the outer wall surfaces of the support structure 2 as shown in FIG.
 このとき、図37に示すように、切り込み62間の折り曲げ部61aは、緩衝部材5の外側縁部100bに沿って下方に折り曲げることができ、その両側の折り曲げ部61は、支持構造体2の外側壁面同士を結ぶ直線Lに沿って折り曲げることができる。すなわち、緩衝部材5の外側縁部100bが支持構造体2の外側壁面同士を結ぶ直線Lから外側にはみ出している場合であっても、支持構造体2の外側壁面同士を結ぶ直線L及び緩衝部材5の縁部100bに沿って天板6の各折り曲げ部61a,61bをそれぞれ個別に密着させて折り曲げることができる。 At this time, as shown in FIG. 37, the bent portion 61 a between the notches 62 can be bent downward along the outer edge portion 100 b of the buffer member 5, and the bent portions 61 on both sides of the bent portion 61 of the support structure 2. It can be bent along a straight line L connecting the outer wall surfaces. That is, even when the outer edge portion 100b of the buffer member 5 protrudes outward from the straight line L connecting the outer wall surfaces of the support structure 2, the straight line L connecting the outer wall surfaces of the support structure 2 and the buffer member The bent portions 61a and 61b of the top plate 6 can be individually brought into close contact with each other along the five edge portions 100b and bent.
 以上のように、本実施の形態2に係る積載梱包具は、太陽電池モジュールを水平な状態で上下方向に積み重ねて梱包する積載梱包具であって、基板部と、基板部上面に立設され、水平に積み重ねられた太陽電池モジュールの角部をそれぞれ支持する支持構造体と、水平に積み重ねられた太陽電池モジュールの縁部に、横方向から嵌め合わせて太陽電池モジュールを保持する緩衝部材と、を備えていることを特徴としている。 As described above, the stacking packaging device according to the second embodiment is a stacking packaging device that stacks and packs solar cell modules in the vertical direction in a horizontal state, and is erected on the substrate unit and the upper surface of the substrate unit. A support structure that respectively supports the corners of the horizontally stacked solar cell modules, and a buffer member that holds the solar cell modules by being fitted from the lateral direction to the edges of the horizontally stacked solar cell modules; It is characterized by having.
 上記構成によれば、水平に積み重ねられた太陽電池モジュールの縁部に横方向から緩衝部材が嵌め合わされており、太陽電池モジュールを両側から緩衝部材によって固定することができる。これにより、運搬時の振動等によって水平な状態で積み重ねられた太陽電池モジュールが撓むことがなく、上下方向に隣接する太陽電池モジュール同士の接触若しくは衝突を防ぎ、さらに運搬時の振動による太陽電池モジュールの水平方向の動きを抑えることができる。 According to the above configuration, the buffer member is fitted from the lateral direction to the edge portion of the solar cell modules stacked horizontally, and the solar cell module can be fixed by the buffer member from both sides. This prevents the solar cell modules stacked in a horizontal state due to vibration during transportation, etc. from being bent, prevents contact or collision between solar cell modules adjacent in the vertical direction, and further solar cells due to vibration during transportation. The horizontal movement of the module can be suppressed.
 また、上記積載梱包具によれば、太陽電池モジュールの縁部に対向する緩衝部材の内側面には、太陽電池モジュールの縁部と嵌合する開口溝部が形成された構成としてもよい。 Further, according to the above-described loading and packing tool, an opening groove portion that fits with the edge portion of the solar cell module may be formed on the inner surface of the buffer member that faces the edge portion of the solar cell module.
 このような構成とすれば、太陽電池モジュールの縁部と開口溝部とが嵌合して太陽電池モジュールを水平な状態で固定することができ、緩衝部材によって太陽電池モジュールを保持することができる。 With such a configuration, the edge of the solar cell module and the opening groove can be fitted to fix the solar cell module in a horizontal state, and the solar cell module can be held by the buffer member.
 また、上記積載梱包具によれば、開口溝部は、緩衝部材の内側面の上下方向に一定間隔を存して複数設けられた構成としてもよい。 In addition, according to the above-described stacking packaging tool, a plurality of opening groove portions may be provided at regular intervals in the vertical direction of the inner surface of the buffer member.
 このような構成とすれば、緩衝部材に形成された複数の開口溝部のそれぞれに、太陽電池モジュールの縁部が嵌合されるため、1個の緩衝部材によって複数の太陽電池モジュールを保持することができる。また、1個の開口部が形成された緩衝部材に比べて緩衝部材同士を接着して使用する個数が少ないため、緩衝部材同士の接着回数を減らすことができ、緩衝部材の強度の向上を図ることができる。 With such a configuration, since the edge of the solar cell module is fitted into each of the plurality of opening grooves formed in the buffer member, the plurality of solar cell modules are held by one buffer member. Can do. Further, since the number of the buffer members to be bonded and used is smaller than that of the buffer member having one opening, the number of times of bonding between the buffer members can be reduced, and the strength of the buffer member is improved. be able to.
 また、上記積載梱包具によれば、開口溝部の開口先端部には、太陽電池モジュールの縁部をガイドするテーパー面が形成された構成としてもよい。 Further, according to the above-described loading and packing tool, a tapered surface that guides the edge of the solar cell module may be formed at the opening tip of the opening groove.
 このような構成とすれば、開口溝部の開口先端に設けられたテーパー面によって、効率よく開口溝部に太陽電池モジュールをガイドすることができる。 With such a configuration, the solar cell module can be efficiently guided to the opening groove by the tapered surface provided at the opening tip of the opening groove.
 また、上記積載梱包具によれば、緩衝部材の外側面には、結束部材を通すための凹溝部が形成された構成としてもよい。 In addition, according to the above-described stacking packaging tool, a configuration may be adopted in which a concave groove portion for allowing the bundling member to pass is formed on the outer surface of the buffer member.
 このような構成とすれば、緩衝部材の外側面に結束部材を通す凹溝部を形成することで、結束後の緩衝部材の横ずれを防止することができる。 With such a configuration, it is possible to prevent the lateral displacement of the buffer member after binding by forming the concave groove portion through which the binding member is passed on the outer surface of the buffer member.
 また、上記積載梱包具によれば、緩衝部材は、上下方向に複数積み重ねられ、上下に隣接する緩衝部材と接着された構成としてもよい。 Further, according to the above-described loading and packing tool, a plurality of buffer members may be stacked in the vertical direction and bonded to the buffer members adjacent in the vertical direction.
 このような構成とすれば、1つの開口溝部を有する緩衝部材と複数の開口溝部を有する緩衝部材とを組み合わせて、所望の枚数の太陽電池モジュールを水平な状態で上下方向に積み重ねて梱包することができる。 With such a configuration, a desired number of solar cell modules are stacked in the vertical direction and packaged by combining a buffer member having one open groove and a buffer member having a plurality of open grooves. Can do.
 また、上記積載梱包具によれば、最下段の緩衝部材は、基板部上面と当接した構成としてもよい。 Further, according to the above-described stacking packaging tool, the lowermost cushioning member may be configured to contact the upper surface of the substrate unit.
 このような構成とすれば、基板部上面は最下段の緩衝部材と当接し、最下段の太陽電池モジュールは最下段の緩衝部材と嵌合しているため、基板部上面と最下段の太陽電池モジュールとの接触若しくは衝突を緩衝部材によって防ぐことができる。 With such a configuration, since the upper surface of the substrate unit is in contact with the lowermost buffer member, and the lowermost solar cell module is fitted with the lowermost buffer member, the upper surface of the substrate unit and the lowermost solar cell Contact or collision with the module can be prevented by the buffer member.
 また、上記積載梱包具によれば、基板部上面から最上段の緩衝部材の上面までの高さは、基板部上面から支持構造体の最上段の上面までの高さと等しい構成としてもよい。 Further, according to the above-described loading and packing tool, the height from the upper surface of the substrate unit to the upper surface of the uppermost buffer member may be the same as the height from the upper surface of the substrate unit to the uppermost surface of the support structure.
 このような構成とすれば、緩衝部材の上面及び支持構造体の上面に天板を置いても、基板部上面から最上段の緩衝部材の上面までの高さと、基板部上面から支持構造体の最上段の上面までの高さが等しいため、その天板は水平状態を維持することができる。 With such a configuration, even if the top plate is placed on the upper surface of the buffer member and the upper surface of the support structure, the height from the upper surface of the substrate unit to the upper surface of the uppermost buffer member, Since the height to the uppermost upper surface is equal, the top plate can maintain a horizontal state.
 また、上記積載梱包具によれば、上下方向に積み重ねられた最上段の太陽電池モジュール上に配置される天板と、基板部から天板までを巻き回して一体に結束する結束部材と、をさらに備えた構成としてもよい。 Further, according to the above-described loading and packing tool, the top plate disposed on the uppermost solar cell module stacked in the vertical direction, and the binding member that winds from the substrate portion to the top plate and binds them together. It is good also as composition provided further.
 このような構成とすれば、結束部材により、基板部から天板までを巻き回して一体として結束することができ、上下方向に積み重ねられた太陽電池モジュールを梱包することができる。 With such a configuration, the binding member can be wound from the substrate portion to the top plate to be bundled together, and the solar cell modules stacked in the vertical direction can be packed.
 また、本実施の形態2に係る積載梱包方法は、上記各構成の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴とする。 Further, the stacking and packing method according to the second embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packed using the stacking packing tool having the above-described configurations.
 上記構成によれば、上下方向に積み重ねられた太陽電池モジュール同士を十分な隙間をあけて、その両縁に取り付けられた緩衝部材によってその姿勢を固定することができる。このような梱包により運搬時の振動によって上下方向に積み重ねられた太陽電池モジュール同士の接触若しくは衝突を防止することができ、水平方向の動きを抑えることができる。 According to the above configuration, the solar cell modules stacked in the vertical direction can be fixed with the cushioning members attached to both edges of the solar cell modules with sufficient gaps. Such packaging can prevent contact or collision between the solar cell modules stacked in the vertical direction by vibration during transportation, and can suppress horizontal movement.
 〔実施の形態3〕
 図38は、本発明の実施の形態に係る支持基板1を用いて太陽電池モジュールを多段に積み重ねた状態を示す斜視図、図39は、図38のA-A断面図である。
[Embodiment 3]
FIG. 38 is a perspective view showing a state in which solar cell modules are stacked in multiple stages using the support substrate 1 according to the embodiment of the present invention, and FIG. 39 is a cross-sectional view taken along line AA in FIG.
 図38及び図39に示す支持基板1は、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具の一構成部材であって、積載梱包具は、大別すると、矩形状の支持基板(以下、パレットともいう。)1と、支持基板1の上面の4隅にそれぞれ配置され、太陽電池モジュール100の角部100aを載置して太陽電池モジュール100を水平な状態で支持する支持構造体2と、を備えて構成されている。 The support substrate 1 shown in FIGS. 38 and 39 is a constituent member of a stacking packing device that stacks and packs solar cell modules in a horizontal state. The stacking packing device is roughly classified into a rectangular support substrate ( Hereinafter, it is also referred to as a pallet.) 1 and a support structure that is arranged at each of the four corners of the upper surface of the support substrate 1 and supports the solar cell module 100 in a horizontal state by placing the corners 100a of the solar cell module 100. 2.
 支持構造体2は、太陽電池モジュール100を水平な状態で積み重ねて梱包するように構成されている。支持構造体2は、パレット1の上面に、4個取り付けられている。この4個の支持構造体2は、パレット1に対して位置決めされている。4個の支持構造体2は、それぞれ矩形状の太陽電池モジュール100の4つの角部(コーナー部)100aを支持している。 The support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state. Four support structures 2 are attached to the upper surface of the pallet 1. The four support structures 2 are positioned with respect to the pallet 1. The four support structures 2 support the four corners (corner portions) 100a of the rectangular solar cell module 100, respectively.
 また、パレット1の上面に配置された4個の支持構造体2には、垂直方向Zに複数(図38の例では、10個)の支持構造体2が積み重ねられている。そして、各段の4個の支持構造体2により、1枚の太陽電池モジュール100が支持されている。すなわち、図38の例では、パレット1上に、10枚の太陽電池モジュール100が水平な状態で積み重ねられている。 Further, a plurality of (10 in the example of FIG. 38) support structures 2 are stacked in the vertical direction Z on the four support structures 2 arranged on the upper surface of the pallet 1. One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 38, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
 なお、パレット1上に積み重ねられた太陽電池モジュール100は、後述する天板6により最上段の太陽電池モジュール100の上面が覆われ、結束部材である例えばPP(ポリプロピレン)バンド等の結束バンド7によりパレット1に巻き付けられた状態で梱包され、運搬される。 In addition, the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is packed and transported while being wound around the pallet 1.
 また、支持構造体2により支持される太陽電池モジュール100は、フレームレスである。すなわち、支持構造体2によりフレームレスの太陽電池モジュール100を多段に積載して梱包することができる。 Moreover, the solar cell module 100 supported by the support structure 2 is frameless. In other words, the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
 本実施の形態3では、支持構造体2は、図16A、図16B、図17A、図17B、図3A、図3B、図4Aおよび図4B等で示した支持構造体2を用いることができる。 In the third embodiment, the support structure 2 shown in FIGS. 16A, 16B, 17A, 17B, 3A, 3B, 4A, and 4B can be used.
 パレット1の上面に嵌合凸部82を形成し、支持構造体2の嵌合凹部29を嵌合凸部82に嵌合させる。これにより、パレット1上に支持構造体2を載置したとき、これらの嵌合構造によって支持構造体2の横ずれを防止することができる。 The fitting convex part 82 is formed in the upper surface of the pallet 1, and the fitting concave part 29 of the support structure 2 is fitted to the fitting convex part 82. Thereby, when the support structure 2 is mounted on the pallet 1, the lateral displacement of the support structure 2 can be prevented by these fitting structures.
 図40は、支持基板1の平面図、図41は、支持基板1を長手方向から見た正面図、図42は、支持基板1を短手方向から見た側面図、図43は、支持基板1の角部を拡大して示す平面図、図44は、図43のB-B断面図、図45は、図43のC-C断面図である。また、図46は、支持基板1の斜視図である。 40 is a plan view of the support substrate 1, FIG. 41 is a front view of the support substrate 1 viewed from the longitudinal direction, FIG. 42 is a side view of the support substrate 1 viewed from the lateral direction, and FIG. 44 is an enlarged plan view showing a corner portion of FIG. 1, FIG. 44 is a sectional view taken along line BB in FIG. 43, and FIG. 45 is a sectional view taken along line CC in FIG. FIG. 46 is a perspective view of the support substrate 1.
 本実施の形態の支持基板1は鉄製のものを例示している。 The support substrate 1 of the present embodiment is an iron substrate.
 この支持基板1は、長方形状の枠構造であって、太陽電池モジュール100の長辺側の縁部100bに対向する2本の長辺側枠体101と、太陽電池モジュール100の短辺側の縁部100cに対向する2本の短辺側枠体102とを備え、長辺側枠体101の両端部101aに、支持構造体2の下面に形成された嵌合凹部29が嵌合される嵌合凸部82が形成された受け部材8が設けられている。このように、支持基板1を枠構造とすることで軽量化を図ることができる。また、受け部材8を長辺側枠体101と別部材で構成することで、受け部材8の取り付け位置を調整することが可能となる。 The support substrate 1 has a rectangular frame structure, and includes two long side frames 101 opposed to the long side edge 100b of the solar cell module 100, and the short side of the solar cell module 100. Two short side frames 102 opposed to the edge portion 100c are provided, and fitting recesses 29 formed on the lower surface of the support structure 2 are fitted to both end portions 101a of the long side frame 101. A receiving member 8 in which a fitting projection 82 is formed is provided. Thus, weight reduction can be achieved by making the support substrate 1 have a frame structure. In addition, the mounting position of the receiving member 8 can be adjusted by configuring the receiving member 8 as a separate member from the long side frame body 101.
 長辺側枠体101は、図44に示すように、長手方向(図44では紙面に垂直方向)に沿って断面矩形状の溝部111aを有する長尺状の波板111を上下に対向させて配置し、その上下間を、板状部材である一対の支持脚112によって支持した構成となっている。また、支持脚112自体の強度を補強するため、対向する支持脚112間に補助脚113が設けられている。補助脚113は、上端縁が上側の波板111の溝部111aの底面と当接し、下端縁が下側の波板111の溝部111aの底面(図44では、上下が逆であるため上面となっている。)と当接するように配置されている。すなわち、支持脚112と補助脚とは、横断面で見たとき四角形状となっている。 As shown in FIG. 44, the long-side frame 101 has a long corrugated plate 111 having a groove 111a having a rectangular cross section along the longitudinal direction (in FIG. 44, the direction perpendicular to the paper surface). It arrange | positions and becomes the structure supported by the pair of support leg 112 which is a plate-shaped member between the upper and lower sides. Further, in order to reinforce the strength of the support legs 112 themselves, auxiliary legs 113 are provided between the opposite support legs 112. The auxiliary leg 113 is in contact with the bottom surface of the groove portion 111a of the upper corrugated plate 111 at the upper end edge, and the bottom surface is the upper surface because the bottom surface of the groove portion 111a of the lower corrugated plate 111 is upside down in FIG. It is arranged so that it abuts. That is, the support leg 112 and the auxiliary leg have a quadrangular shape when viewed in cross section.
 このような支持脚112及び補助脚113は、図41に示すように、長辺側枠体101の両端部に配置され、その間に、長手方向(図41では左右方向)に沿って等間隔でさらに2個が配置されている。中央部の2個の支持脚112及び補助脚113は、上下の波板111の強度を補強するために設けられている。 As shown in FIG. 41, the support legs 112 and the auxiliary legs 113 are arranged at both ends of the long side frame body 101, and at regular intervals along the longitudinal direction (left and right direction in FIG. 41) therebetween. Two more are arranged. The two support legs 112 and the auxiliary legs 113 at the center are provided to reinforce the strength of the upper and lower corrugated plates 111.
 また、上側の波板111の長手方向の縁部には、断面が扁平な四角形状の補助枠体114が長手方向の全長に渡って設けられている。 Also, a rectangular auxiliary frame 114 having a flat cross section is provided at the longitudinal edge of the upper corrugated sheet 111 over the entire length in the longitudinal direction.
 一方、短辺側枠体102は、上記補助枠体114と同様の構成の枠体となっており、この短辺側枠体102の端部が、長辺側枠体101の上側の波板111の端部上に載置されるとともに、補助枠体114の端部側面に当接させて配置された構成となっている。 On the other hand, the short side frame 102 is a frame having the same configuration as the auxiliary frame 114, and the end of the short side frame 102 is a corrugated plate on the upper side of the long side frame 101. It is configured to be placed on the end portion of 111 and to be in contact with the side surface of the end portion of the auxiliary frame 114.
 また、長辺側枠体101の両端部に配置された短辺側枠体102の間には、長手方向に沿って所定の間隔でさらに2個の短辺側枠体102が平行に配置されている。この2個の短辺側枠体102は、支持基板1の強度をさらに補強するために設けられている。 Further, two short side frames 102 are arranged in parallel at predetermined intervals along the longitudinal direction between the short side frames 102 arranged at both ends of the long side frame 101. ing. The two short side frames 102 are provided to further reinforce the strength of the support substrate 1.
 このような構造の長辺側枠体101と短辺側枠体102とは、その突き合わせ部を適宜溶接等して一体に組み付けている。 The long-side frame body 101 and the short-side frame body 102 having such a structure are integrally assembled by appropriately welding the butted portions.
 受け部材8は、補助枠体114と短辺側枠体102との突き合わせ部において、上側の波板111上に載置されている。 The receiving member 8 is placed on the upper corrugated plate 111 at the abutting portion between the auxiliary frame body 114 and the short side frame body 102.
 図47Aは、受け部材8を上方側から見た斜視図、図47Bは受け部材8を下方側(底面側)から見た斜視図、図48は、図47AのD-D断面図である。 47A is a perspective view of the receiving member 8 as viewed from the upper side, FIG. 47B is a perspective view of the receiving member 8 as viewed from the lower side (bottom side), and FIG. 48 is a DD cross-sectional view of FIG. 47A.
 受け部材8は、全体が略立方体形状に形成(平面視四角形状に形成)された本体部81を備えており、この本体部81の上面に平面視四角形状の嵌合凸部82が形成されている。 The receiving member 8 includes a main body portion 81 that is formed in a substantially cubic shape (formed in a square shape in plan view) as a whole, and a fitting convex portion 82 having a square shape in plan view is formed on the upper surface of the main body portion 81. ing.
 嵌合凸部82は、上部の外周面が上部側から本体部81の上面側に向かって漸次拡開する傾斜面82aに形成されている。上部の外周面を傾斜面82aに形成することで、支持構造体2の下面に形成された嵌合凹部29が嵌合し易くなり、作業性が向上する。 The fitting convex part 82 is formed in the inclined surface 82a in which the outer peripheral surface of the upper part gradually expands from the upper part side toward the upper surface side of the main body part 81. By forming the upper outer peripheral surface on the inclined surface 82a, the fitting recess 29 formed on the lower surface of the support structure 2 can be easily fitted, and workability is improved.
 また、嵌合凸部82は、下部の外周面が、傾斜面82aに連続する垂直面82bに形成されている。下部の外周面を垂直面82bに形成することで、嵌合凸部82に嵌合された支持構造体2の嵌合凹部29の横ずれ、すなわち支持構造体2の横ずれを防止することができる。 Further, the fitting convex portion 82 has a lower outer peripheral surface formed on a vertical surface 82b continuous with the inclined surface 82a. By forming the lower outer peripheral surface on the vertical surface 82b, it is possible to prevent the lateral displacement of the fitting recess 29 of the support structure 2 fitted to the fitting convex portion 82, that is, the lateral displacement of the support structure 2.
 また、本体部81の上面の周縁部には、嵌合凸部82を囲むようにして、リブ片83が形成されている。このリブ片83は、本実施の形態では、本体部81の上面の周縁部のうち、支持基板1の角部を除いた(すなわち、補助枠体114と短辺側枠体102とに接している縁部を除いた)他の2辺の縁部に形成されている。このリブ片83は、支持構造体2の嵌合凹部29を嵌合凸部82に嵌合させて載置したとき、支持構造体2の外周部(より具体的には、支持部28の側面部)に当接するように設けられている。 Moreover, a rib piece 83 is formed on the peripheral edge of the upper surface of the main body 81 so as to surround the fitting convex portion 82. In the present embodiment, the rib piece 83 excludes the corner portion of the support substrate 1 from the peripheral edge portion of the upper surface of the main body portion 81 (that is, is in contact with the auxiliary frame body 114 and the short side frame body 102). It is formed on the edge of the other two sides (excluding the edge that is present). When the rib piece 83 is placed with the fitting concave portion 29 of the support structure 2 fitted to the fitting convex portion 82, the rib piece 83 is placed on the outer peripheral portion of the support structure 2 (more specifically, the side surface of the support portion 28). Part).
 リブ片83をこのように形成することで、支持基板1の角部に嵌合配置された支持構造体2の横ずれ防止効果、特に支持基板1の中心方向へのずれ防止効果を高めることができる。すなわち、本実施の形態の受け部材8は、嵌合凸部82とリブ片83とを設けることで、二重の滑り防止機能を持たせている。 By forming the rib pieces 83 in this way, it is possible to enhance the lateral displacement prevention effect of the support structure 2 fitted and arranged at the corner of the support substrate 1, particularly the displacement prevention effect in the center direction of the support substrate 1. . That is, the receiving member 8 of the present embodiment has a double slip prevention function by providing the fitting convex portion 82 and the rib piece 83.
 また、リブ片83の高さは、嵌合凸部82の高さより若干低くしている。例えば、嵌合凸部82の高さを11mm、リブ片の高さを8mmとしている。このように、リブ片83の高さを嵌合凸部82の高さより若干低くしているのは、支持構造体2を支持基板1上に設置する際に、支持構造体2の下面がリブ片83と干渉する事を避けるためである。すなわち、支持構造体2を水平に下ろして支持基板1に設置する場合、置き位置の狙い位置がコーナー位置から中心に向かってズレると、支持構造体2の下面とリブ片83とが干渉する可能性がある。しかし、リブ片83の高さを嵌合凸部82の高さよりも低くしておけば、支持構造体2の下面とリブ片83との干渉が生じる前に、支持構造体2の嵌合凹部29と嵌合凸部82との嵌め合わせにより設置位置が補正されるため、干渉が発生しない構造となっている。 Further, the height of the rib piece 83 is slightly lower than the height of the fitting convex portion 82. For example, the height of the fitting convex portion 82 is 11 mm, and the height of the rib piece is 8 mm. As described above, the height of the rib piece 83 is slightly lower than the height of the fitting projection 82 because the lower surface of the support structure 2 is ribbed when the support structure 2 is installed on the support substrate 1. This is to avoid interference with the piece 83. That is, when the support structure 2 is horizontally lowered and installed on the support substrate 1, the lower surface of the support structure 2 and the rib piece 83 may interfere if the target position of the placement position is shifted from the corner position toward the center. There is sex. However, if the height of the rib piece 83 is set lower than the height of the fitting convex portion 82, the fitting concave portion of the support structure 2 is caused before the interference between the lower surface of the support structure 2 and the rib piece 83 occurs. Since the installation position is corrected by the fitting of 29 and the fitting convex portion 82, the structure does not cause interference.
 また、本体部81の底面85には、長辺側枠体101の端部側に突出するように係合部86が設けられている。この係合部86は、本体部81の一側面81aの下端縁から水平方向に延設された支持杆86aと、この支持杆86aの先端部から下方に屈曲させた係合片86bとで構成されている。受け部材8は、上側の波板111の端部上に載置したとき、本体部81の底面85に突出形成された支持杆86aが上側の波板111の溝部111aに嵌まり込み、先端部の係合片86bが上側の波板111の溝部111aの端縁部(底面の端縁部)に係合するように設けられている。このように、係合片86bを上側の波板111の溝部111aの端縁部に係合させることで、長辺側枠体101に取り付けられた受け部材8が長辺側枠体101の他方の端部側にずれることを防止することができる。 Further, an engaging portion 86 is provided on the bottom surface 85 of the main body 81 so as to protrude toward the end of the long side frame 101. The engaging portion 86 includes a support rod 86a that extends horizontally from the lower end edge of one side surface 81a of the main body portion 81, and an engagement piece 86b that is bent downward from the distal end portion of the support rod 86a. Has been. When the receiving member 8 is placed on the end portion of the upper corrugated plate 111, the support rod 86 a formed to protrude from the bottom surface 85 of the main body portion 81 fits into the groove portion 111 a of the upper corrugated plate 111, and the tip portion The engaging piece 86b is provided so as to engage with an end edge portion (an end edge portion of the bottom surface) of the groove portion 111a of the upper corrugated plate 111. In this way, by engaging the engagement piece 86b with the end edge portion of the groove portion 111a of the upper corrugated plate 111, the receiving member 8 attached to the long side frame body 101 becomes the other side of the long side frame body 101. Can be prevented from shifting to the end side.
 また、受け部材8には、本体部81の上面から下面にかけて貫通する貫通穴88が形成されている。この貫通穴88は、上部側が大径、下部側が小径に形成されており、穴中央部における大径と小径との段差部88aが、大径側から挿通したねじ部材90の頭部を受け止める受け止め部となっている。 Further, the receiving member 8 is formed with a through hole 88 penetrating from the upper surface to the lower surface of the main body portion 81. The through hole 88 is formed with a large diameter on the upper side and a small diameter on the lower side, and a stepped portion 88a between the large diameter and the small diameter at the center of the hole receives the head of the screw member 90 inserted from the large diameter side. Has become a department.
 すなわち、受け止め部8は、図44及び図45に示すように、ねじ挿通穴である貫通穴88に大径側からねじ部材90を挿通し、波板111の溝部111aの底面にねじ込むことで、上側の波板111に固定されている。 That is, as shown in FIGS. 44 and 45, the receiving portion 8 is inserted into the through hole 88 that is a screw insertion hole from the large diameter side and screwed into the bottom surface of the groove portion 111 a of the corrugated plate 111. It is fixed to the upper corrugated plate 111.
 このような形状の受け部材8は、例えばPP(ポリプロピレン)やABS(アクリロニトリル・ブタジエン・スチレン共重合体)等の樹脂による射出成形によって形成されている。 The receiving member 8 having such a shape is formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
 なお、上側の波板111と下側の波板111との間の隙間が、後述する結束バンド7を通す穴、及び輸送コンテナ等への積み込み時にフォークリフトのフォークが差し込まれる穴となっている。 Note that the gap between the upper corrugated sheet 111 and the lower corrugated sheet 111 is a hole through which the binding band 7 described later passes, and a hole into which a fork of a forklift is inserted when loading into a transport container or the like.
 以上が、本発明の実施の形態である支持基板1の説明である。 The above is description of the support substrate 1 which is embodiment of this invention.
 次に、上記構成の支持基板1を用いて太陽電池モジュール100を多段に積み重ねて梱包する梱包方法について、図49ないし図57を参照して説明する。なお、以下の梱包方法は、例えば自動機などにより行われる。 Next, a packing method for stacking and packing the solar cell modules 100 in multiple stages using the support substrate 1 having the above configuration will be described with reference to FIGS. 49 to 57. The following packing method is performed by, for example, an automatic machine.
 まず、図49に示すように、支持基板1の角部4箇所に配置された受け部材8の嵌合凸部82にそれぞれ1段目となる支持構造体2の支持部28の下面に形成された嵌合凹部29を嵌合して、1段目の支持構造体2を支持基板1の4隅に配置する。次に、図50に示すように、1段目の各支持構造体2に1段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。次に、図51に示すように、1段目の各支持構造体2の係合凸部25に2段目となる支持構造体2の係合凹部26をそれぞれ嵌め合わせて係合する。次に、図52に示すように、2段目の各支持構造体2に2段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。以後、図51及び図52に示す手順を所定回数繰り返すことにより、図38に示すように、支持基板1上に所定枚数の太陽電池モジュール100を多段に積載する。 First, as shown in FIG. 49, the fitting protrusions 82 of the receiving member 8 arranged at the four corners of the support substrate 1 are respectively formed on the lower surface of the support portion 28 of the support structure 2 that is the first step. The fitted recesses 29 are fitted, and the first-stage support structure 2 is arranged at the four corners of the support substrate 1. Next, as shown in FIG. 50, the four corner portions 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2. Next, as shown in FIG. 51, the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2. Next, as shown in FIG. 52, the corners 100a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 51 and 52 a predetermined number of times, as shown in FIG. 38, a predetermined number of solar cell modules 100 are stacked in multiple stages on the support substrate 1.
 なお、実施の形態では、太陽電池モジュール100のコーナー部100aは、当該太陽電池モジュール100のコーナー部100aを支持する支持構造体2の支持部28の上面と、その上段に配置された支持構造体2の支持部28の下面とで挟持する構成としている。これにより、個々の太陽電池モジュール100が上下(垂直方向Z)にばたつくのを防止することができる。 In the embodiment, the corner portion 100a of the solar cell module 100 includes the upper surface of the support portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100 and the support structure disposed on the upper surface thereof. It is configured to be sandwiched between the lower surfaces of the two support portions 28. Thereby, it is possible to prevent the individual solar cell modules 100 from flapping up and down (vertical direction Z).
 この後、図53に示すように、積み重ねられた太陽電池モジュール100の長手方向に沿う両縁部100bの中央部に、太陽電池モジュール100の上下の撓みを防止するとともに、輸送時の振動等による上下のばたつきを防止するための緩衝部材5を嵌合して配置する。 Thereafter, as shown in FIG. 53, the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100b along the longitudinal direction of the stacked solar cell modules 100, and is also caused by vibration during transportation. A shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
 緩衝部材5は、例えば、図11に示すような緩衝部材5を用いることができ、図54に示すように、各太陽電池モジュール100の端部100bに嵌合することで、上下の緩衝部材5が隙間無く配置されるようになっている。 As the buffer member 5, for example, the buffer member 5 as shown in FIG. 11 can be used. As shown in FIG. 54, the upper and lower buffer members 5 are fitted into the end portions 100 b of the solar cell modules 100. Are arranged without gaps.
 そのため、図55に示すように、まずこの状態において、緩衝部材5の凹溝部53に通すようにして、支持基板1(より具体的には、上側の波板111)から最上段の太陽電池モジュール100までを結束バンド7で架け回し、一体に結束する。 Therefore, as shown in FIG. 55, first, in this state, the solar cell module of the uppermost stage is passed from the support substrate 1 (more specifically, the upper corrugated sheet 111) so as to pass through the groove 53 of the buffer member 5. Up to 100 are wound around the binding band 7 and bound together.
 次に、図56に示すように、最上段の太陽電池モジュール100の上面に、緩衝用として、太陽電池モジュール100の幅よりも広い幅に形成された例えば段ボールからなる天板6を配置する。 Next, as shown in FIG. 56, on the upper surface of the uppermost solar cell module 100, a top plate 6 made of, for example, corrugated cardboard, having a width wider than the width of the solar cell module 100 is disposed as a buffer.
 天板6は、支持基板1の4隅に配置されている支持構造体2の外側壁面同士を結ぶ直線Lに沿って折り曲げる折り曲げ部61を有している。 The top plate 6 has bent portions 61 that bend along a straight line L that connects the outer wall surfaces of the support structure 2 disposed at the four corners of the support substrate 1.
 そして、図57に示すように、天板6の長手方向の両側の折り曲げ部61を、この直線Lに沿って下方に折り曲げる。 Then, as shown in FIG. 57, the bent portions 61 on both sides in the longitudinal direction of the top plate 6 are bent downward along the straight line L.
 そして、この状態で、長手方向の両端から約1/3程度のところの2箇所を、支持基板1(より具体的には、上側の波板111)から天板6まで結束バンド7を架け回すようにして一体に結束する。 In this state, the binding band 7 is routed from the support substrate 1 (more specifically, the upper corrugated plate 111) to the top plate 6 at two places about 1/3 from both ends in the longitudinal direction. In this way, they are united together.
 この後、図示は省略しているが、全体をフィルム状のシート(ラップ等)で包み込んで太陽電池モジュール梱包体を作製する。そして、このように作製した太陽電池モジュール梱包体をフォークリフトによって輸送コンテナ内に積み込んで、目的地まで輸送することになる。 After this, although not shown in the drawing, the whole is wrapped in a film-like sheet (such as a wrap) to produce a solar cell module package. And the solar cell module package produced in this way is loaded into a transport container by a forklift and transported to a destination.
 以上のように、本実施の形態3に係る支持基板は、太陽電池モジュールの角部を支持する支持構造体を載置して太陽電池モジュールを水平な状態で支持する支持基板であって、支持基板の上面には、支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部が形成されていることを特徴としている。 As described above, the support substrate according to the third embodiment is a support substrate that supports the solar cell module in a horizontal state by placing the support structure that supports the corners of the solar cell module. The upper surface of the substrate is formed with a fitting convex portion into which a fitting concave portion formed on the lower surface of the support structure is fitted.
 上記構成によれば、支持基板の上面に、支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部を形成することで、支持基板上に載置された支持構造体の横ずれを防止することができる。すなわち、支持基板に対する太陽電池モジュールの横ずれを防止することが可能となる。 According to the said structure, the support structure body mounted on the support substrate is formed in the upper surface of a support substrate by forming the fitting convex part by which the fitting recessed part formed in the lower surface of a support structure is fitted. Can be prevented. That is, it is possible to prevent the lateral displacement of the solar cell module with respect to the support substrate.
 また、上記支持基板によれば、嵌合凸部は、上部の外周面が上部側から支持基板の上面側に向かって漸次拡開する傾斜面に形成された構成としてもよい。この構成によると、上部の外周面を傾斜面に形成することで、支持構造体の下面に形成された嵌合凹部が嵌合し易くなり、作業性が向上する。 Further, according to the support substrate, the fitting convex portion may have a configuration in which the upper outer peripheral surface is formed on an inclined surface that gradually expands from the upper side toward the upper surface side of the support substrate. According to this configuration, by forming the upper outer peripheral surface as an inclined surface, the fitting recess formed on the lower surface of the support structure can be easily fitted, and workability is improved.
 また、上記支持基板によれば、嵌合凸部は、下部の外周面が傾斜面から連続する垂直面に形成された構成としてもよい。この構成によると、下部の外周面を垂直面に形成することで、嵌合凸部に嵌合された支持構造体の嵌合凹部の横ずれ、すなわち支持構造体の横ずれを防止することができる。 Further, according to the support substrate, the fitting convex portion may have a configuration in which a lower outer peripheral surface is formed on a vertical surface continuous from an inclined surface. According to this configuration, by forming the outer peripheral surface of the lower portion as a vertical surface, it is possible to prevent the lateral displacement of the fitting concave portion of the support structure fitted to the fitting convex portion, that is, the lateral displacement of the support structure.
 また、上記支持基板によれば、支持基板の上面の嵌合凸部の周囲に、支持構造体の外周部に当接して横方向へのずれを防止するリブ片が形成された構成としてもよい。この構成によれば、支持基板の角部に嵌合配置された支持基板の横ずれ防止効果をさらに高めることができる。 Moreover, according to the said support substrate, it is good also as a structure which the rib piece which contact | abuts to the outer peripheral part of a support structure and prevents a shift | offset | difference to a horizontal direction was formed around the fitting convex part of the upper surface of a support substrate. . According to this configuration, it is possible to further enhance the effect of preventing the lateral displacement of the support substrate fitted and arranged at the corner of the support substrate.
 また、上記支持基板によれば、支持構造体の外周部が平面視四角形状に形成されており、リブ片は、嵌合凸部の周囲のうち、支持基板の角部の2辺に対向する部分を除いて形成された構成としてもよい。このように、リブ片を、嵌合凸部の周囲のうち、支持基板の角部の2辺に対向する部分を除いて形成することで、支持基板の角部に嵌合配置された支持構造体の横ずれ防止効果、特に支持基板の中心方向へのずれ防止効果を高めることができる。 Moreover, according to the said support substrate, the outer peripheral part of the support structure is formed in the planar view square shape, and a rib piece opposes two sides of the corner | angular part of a support substrate among the circumference | surroundings of a fitting convex part. It is good also as a structure formed except a part. As described above, the rib piece is formed by excluding the portion facing the two sides of the corner portion of the support substrate in the periphery of the fitting convex portion, and thus the support structure fitted and arranged at the corner portion of the support substrate. The effect of preventing the lateral displacement of the body, particularly the effect of preventing the displacement toward the center of the support substrate can be enhanced.
 また、上記支持基板によれば、支持基板は、長方形状の枠構造であって、太陽電池モジュールの長辺側の縁部に対向する2本の長辺側枠体と、太陽電池モジュールの短辺側の縁部に対向する2本の短辺側枠体とを備え、長辺側枠体の両端部に、嵌合凸部が形成された受け部材が設けられた構成としてもよい。 Further, according to the support substrate, the support substrate has a rectangular frame structure, the two long side frames facing the edge of the long side of the solar cell module, and the short of the solar cell module. It is good also as a structure provided with two short side frame bodies which oppose the edge part of a side side, and the receiving member in which the fitting convex part was formed in the both ends of the long side frame body.
 この構成によると、支持基板を枠構造とすることで軽量化を図ることができる。また、受け部材を長辺側枠体と別部材で構成することで、受け部材の取り付け位置を事前に調整することができる。 According to this configuration, the support substrate can be reduced in weight by using a frame structure. Moreover, the mounting position of the receiving member can be adjusted in advance by configuring the receiving member as a member separate from the long side frame.
 また、上記支持基板によれば、受け部材は、平面視四角形状に形成された本体部を備え、嵌合凸部は、本体部の上面中央部に形成された構成としてもよい。 Further, according to the support substrate, the receiving member may include a main body portion formed in a square shape in plan view, and the fitting convex portion may be formed at the center of the upper surface of the main body portion.
 また、上記支持基板によれば、リブ片は、本体部の上面周縁部に形成された構成としてもよい。また、本体部には、長辺側枠体の端部側に突出した係合部を備えており、係合部が長辺側枠体の端部に係合される構成としてもよい。 Further, according to the support substrate, the rib piece may be formed on the peripheral edge of the upper surface of the main body. Further, the main body portion may include an engaging portion that protrudes toward the end of the long side frame, and the engaging portion may be engaged with the end of the long side frame.
 この構成によると、係合部を長辺側枠体の端部に係合させることで、長辺側枠体に取り付けられた受け部材が長辺側枠体の他方の端部側にずれることを防止することができる。 According to this configuration, by engaging the engaging portion with the end of the long side frame, the receiving member attached to the long side frame is displaced toward the other end of the long side frame. Can be prevented.
 また、本実施の形態3に係る梱包方法は、上記各構成の支持基板と支持構造体とを用いて太陽電池モジュールを水平な状態で積み重ねて梱包することを特徴としている。 Further, the packaging method according to the third embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged using the support substrate and the support structure having the above-described configurations.
 上記構成によれば、支持基板の係合凸部に最下段の支持構造体を嵌合固定できるので、太陽電池モジュールを横ずれなく安定して多段に梱包することができる。 According to the above configuration, since the lowermost support structure can be fitted and fixed to the engagement convex portion of the support substrate, the solar cell module can be stably packed in multiple stages without lateral displacement.
 〔実施の形態4〕
 図58は、本発明の実施の形態に係る積載梱包具Aを用いて太陽電池モジュールを最終梱包する前の状態を示した斜視図、図59は、図58のB-B断面図、図60は、図58に示す積載梱包具Aの分解斜視図である。図58ないし図60を参照して、最終梱包前の積載梱包具Aの概略について説明する。
[Embodiment 4]
58 is a perspective view showing a state before the final packing of the solar cell module using the stacking packaging tool A according to the embodiment of the present invention, FIG. 59 is a cross-sectional view taken along the line BB of FIG. FIG. 59 is an exploded perspective view of the loading packaging tool A shown in FIG. 58. With reference to FIG. 58 thru | or FIG. 60, the outline of the loading packaging tool A before final packing is demonstrated.
 図58及び図59に示す積載梱包具Aは、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具であって、大別すると、矩形状の基板部1と、基板部1の上面の4隅にそれぞれ配置され、太陽電池モジュール100の角部100aを載置して太陽電池モジュール100を水平な状態で支持する支持構造体2と、基板部1と最下段の支持構造体2との間に配置されるスペーサ部材3と、を備えて構成されている。 58 and 59 is a stacking packing tool that stacks and packs solar cell modules in a horizontal state, and is roughly divided into a rectangular substrate portion 1 and an upper surface of the substrate portion 1. A support structure 2 that is disposed at each of the four corners and supports the solar cell module 100 in a horizontal state by placing the corner portion 100a of the solar cell module 100, and a substrate portion 1 and a lowermost support structure 2 And a spacer member 3 disposed therebetween.
 このように、基板部1と支持構造体2との間にスペーサ部材3を配置することで、基板部1の上面と最下段の支持構造体2に支持された太陽電池モジュール100の下面との間に十分な隙間をあけることができる。これにより、運搬時の振動等によって最下段の太陽電池モジュール100が撓んでも、太陽電池モジュール100の下面が基板部1の上面に接触若しくは衝突することを防止することができる。 Thus, by arranging the spacer member 3 between the substrate unit 1 and the support structure 2, the upper surface of the substrate unit 1 and the lower surface of the solar cell module 100 supported by the lowermost support structure 2. A sufficient gap can be provided between them. Thereby, even if the lowermost solar cell module 100 bends due to vibration during transportation or the like, it is possible to prevent the lower surface of the solar cell module 100 from contacting or colliding with the upper surface of the substrate unit 1.
 基板部(以下、パレットともいう。)1は、上側基板11と下側基板12とが複数本の横桟13によって支持された2層構造となっており、この上側基板11と下側基板12との間の隙間が、後述する結束バンド7を通す穴、及び輸送コンテナ等への積み込み時にフォークリフトのフォークが差し込まれる穴となっている。 A substrate portion (hereinafter also referred to as a pallet) 1 has a two-layer structure in which an upper substrate 11 and a lower substrate 12 are supported by a plurality of horizontal rails 13, and the upper substrate 11 and the lower substrate 12. Is a hole through which the binding band 7 described later passes, and a hole into which the fork of the forklift is inserted when loading into a transport container or the like.
 支持構造体2は、太陽電池モジュール100を水平な状態で積み重ねて梱包するように構成されている。支持構造体2は、上側基板11の上面(以下、パレット1の上面という。)に、4個のスペーサ部材3を介して4個取り付けられている。この4個のスペーサ部材3は、パレット1に対して位置決めされており、4個の支持構造体2は、スペーサ部材3に対して位置決めされている。4個の支持構造体2は、それぞれ、矩形状の太陽電池モジュール100の4つの角部(コーナー部)100aを支持している。 The support structure 2 is configured so that the solar cell modules 100 are stacked and packed in a horizontal state. Four support structures 2 are attached to the upper surface of the upper substrate 11 (hereinafter referred to as the upper surface of the pallet 1) via four spacer members 3. The four spacer members 3 are positioned with respect to the pallet 1, and the four support structures 2 are positioned with respect to the spacer member 3. Each of the four support structures 2 supports four corners (corner portions) 100 a of the rectangular solar cell module 100.
 また、パレット1の上面にスペーサ部材3を介して取り付けられた4個の支持構造体2には、垂直方向Zに複数(図58の例では、10個)の支持構造体2が積み重ねられている。そして、各段の4個の支持構造体2により、1枚の太陽電池モジュール100が支持されている。すなわち、図58の例では、パレット1上に、10枚の太陽電池モジュール100が水平な状態で積み重ねられている。 A plurality of (10 in the example of FIG. 58) support structures 2 are stacked in the vertical direction Z on the four support structures 2 attached to the upper surface of the pallet 1 via the spacer members 3. Yes. One solar cell module 100 is supported by the four support structures 2 at each stage. That is, in the example of FIG. 58, ten solar cell modules 100 are stacked on the pallet 1 in a horizontal state.
 なお、パレット1上に積み重ねられた太陽電池モジュール100は、後述する天板6により最上段の太陽電池モジュール100の上面が覆われ、結束部材である例えばPP(ポリプロピレン)バンド等の結束バンド7によりパレット1に巻き付けられた状態で運搬される。 In addition, the solar cell module 100 stacked on the pallet 1 is covered with a top plate 6 to be described later and the upper surface of the uppermost solar cell module 100 is covered with a binding band 7 such as a PP (polypropylene) band as a binding member. It is transported while being wound around the pallet 1.
 また、支持構造体2により支持される太陽電池モジュール100は、フレームレスである。すなわち、支持構造体2によりフレームレスの太陽電池モジュール100を多段に積載して梱包することができる。 Moreover, the solar cell module 100 supported by the support structure 2 is frameless. In other words, the frameless solar cell modules 100 can be stacked and packed by the support structure 2 in multiple stages.
 スペーサ部材3としては、図28A及び図28Bで示した形状のスペーサ部材3を用いることができる。すなわち、スペーサ部材3は、略立方体形状をしており、パレット1上に載置される下面には、パレット1の上面の4隅に形成された嵌合凸部1a(図59及び図60参照)に嵌合される嵌合凹部31が形成され、上面には、支持構造体2を嵌合固定するための嵌合凸部32が形成されている。このように、基板部1の上面に嵌合凸部1aを形成し、スペーサ部材3の下面に嵌合凹部31を形成することで、基板部1上にスペーサ部材3を載置したとき、この嵌合構造によってスペーサ部材3の横ずれを防止することができる。 As the spacer member 3, the spacer member 3 having the shape shown in FIGS. 28A and 28B can be used. That is, the spacer member 3 has a substantially cubic shape, and on the lower surface placed on the pallet 1, fitting protrusions 1 a formed at the four corners of the upper surface of the pallet 1 (see FIGS. 59 and 60). ) And a fitting convex part 32 for fitting and fixing the support structure 2 is formed on the upper surface. Thus, when the spacer member 3 is placed on the substrate part 1 by forming the fitting convex part 1 a on the upper surface of the substrate part 1 and forming the fitting concave part 31 on the lower surface of the spacer member 3, The lateral displacement of the spacer member 3 can be prevented by the fitting structure.
 このような形状のスペーサ部材3は、例えばPP(ポリプロピレン)やABS(アクリロニトリル・ブタジエン・スチレン共重合体)等の樹脂による射出成形によって形成されていてもよいが、強度を重視するのであれば、鉄やステンレス等の金属材料で形成されていてもよい。 The spacer member 3 having such a shape may be formed by injection molding using a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer), for example. You may form with metal materials, such as iron and stainless steel.
 また、パレット1が木製である場合、嵌合凸部1aはパレット1自体の削り出し、または木片などで形成し、その木片をパレット1上に接着し、かつ、ねじや釘等によって強固に固定すればよい。また、パレット1が鉄製である場合には、バーリング加工によって、穴を開けた後、その穴の周囲を上方を押し上げるように加工するバーリング加工によって嵌合凸部を形成してもよい。 When the pallet 1 is made of wood, the fitting convex portion 1a is formed by cutting the pallet 1 itself or by forming a piece of wood, and bonding the piece of wood onto the pallet 1 and firmly fixing it with screws, nails or the like. do it. In addition, when the pallet 1 is made of iron, the fitting convex portion may be formed by burring processing in which a hole is formed by burring and then processed so as to push up the periphery of the hole.
 ただし、スペーサ部材3は、上記の嵌合構造ではなく、パレット1の4隅にネジ等によって直接固定されていてもよい。この場合には、パレット1の上面に嵌合凸部1aを形成する必要はない。 However, the spacer member 3 may be directly fixed to the four corners of the pallet 1 with screws or the like instead of the fitting structure described above. In this case, it is not necessary to form the fitting convex part 1a on the upper surface of the pallet 1.
 本実施の形態4では、支持構造体2は、図16A、図16B、図17A、図17B、図3A、図3B、図4Aおよび図4B等で示した支持構造体2を用いることができる。スペーサ部材3の上面に嵌合凸部32を形成し、支持構造体2の受け部28の下面に嵌合凹部29を形成することで、スペーサ部材3上に支持構造体2を載置したとき、この嵌合構造によって支持構造体2の横ずれを防止することができる。 In the fourth embodiment, the support structure 2 shown in FIGS. 16A, 16B, 17A, 17B, 3A, 3B, 4A, and 4B can be used. When the support structure 2 is placed on the spacer member 3 by forming the fitting protrusion 32 on the upper surface of the spacer member 3 and forming the fitting recess 29 on the lower surface of the receiving portion 28 of the support structure 2. The lateral displacement of the support structure 2 can be prevented by this fitting structure.
 次に、上記構成の積載梱包具Aを用いて太陽電池モジュール100を多段に積み重ねて梱包する梱包方法について、図61ないし図68を参照して説明する。なお、以下の梱包方法は、例えば自動機などにより行われる。 Next, a packing method for stacking and packing the solar cell modules 100 in multiple stages using the stacking packing tool A having the above configuration will be described with reference to FIGS. The following packing method is performed by, for example, an automatic machine.
 まず、図61に示すように、基板部1の4箇所の嵌合凸部1aにそれぞれスペーサ部材3の嵌合凹部31を嵌合して、スペーサ部材3を基板部1の4隅に配置する。次に、図62に示すように、1段目となる支持構造体2の受け部28の下面に形成された嵌合凹部29を、スペーサ部材3の上面に形成された嵌合凸部32に嵌合して、1段目の支持構造体2を配置する。次に、図63に示すように、1段目の各支持構造体2に1段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。次に、図64に示すように、1段目の各支持構造体2の係合凸部25に2段目となる支持構造体2の係合凹部26をそれぞれ嵌め合わせて係合する。次に、図65に示すように、2段目の各支持構造体2に2段目の太陽電池モジュール100の4隅のコーナー部100aを載せるようにして載置する。以後、図64及び図65に示す手順を所定回数繰り返すことにより、図58に示すように、基板部1上に所定枚数の太陽電池モジュール100を多段に積載する。 First, as shown in FIG. 61, the fitting concave portions 31 of the spacer member 3 are fitted into the four fitting convex portions 1 a of the substrate portion 1, and the spacer members 3 are arranged at the four corners of the substrate portion 1. . Next, as shown in FIG. 62, the fitting concave portion 29 formed on the lower surface of the receiving portion 28 of the support structure 2 in the first stage is changed to the fitting convex portion 32 formed on the upper surface of the spacer member 3. The first-stage support structure 2 is arranged by fitting. Next, as shown in FIG. 63, the four corners 100 a of the first-stage solar cell module 100 are placed on the first-stage support structures 2. Next, as shown in FIG. 64, the engagement concave portions 26 of the second-stage support structure 2 are fitted and engaged with the engagement convex portions 25 of the first-stage support structure 2. Next, as shown in FIG. 65, the corners 100 a at the four corners of the second-stage solar cell module 100 are placed on the second-stage support structures 2. Thereafter, by repeating the procedure shown in FIGS. 64 and 65 a predetermined number of times, as shown in FIG. 58, a predetermined number of solar cell modules 100 are stacked in multiple stages on the substrate unit 1.
 なお、実施の形態では、太陽電池モジュール100のコーナー部100aは、図59に示すように、当該太陽電池モジュール100のコーナー部100aを支持する支持構造体2の受け部28の上面と、その上段に配置された支持構造体2の受け部28の下面とで挟持する構成としている。これにより、個々の太陽電池モジュール100が上下(垂直方向Z)にばたつくのを防止することができる。 In the embodiment, as shown in FIG. 59, the corner portion 100a of the solar cell module 100 includes the upper surface of the receiving portion 28 of the support structure 2 that supports the corner portion 100a of the solar cell module 100, and the upper stage thereof. It is set as the structure clamped with the lower surface of the receiving part 28 of the support structure 2 arrange | positioned in this. Thereby, it is possible to prevent the individual solar cell modules 100 from flapping up and down (vertical direction Z).
 この後、図66に示すように、積み重ねられた太陽電池モジュール100の長手方向に沿う両縁部100bの中央部に、太陽電池モジュール100の上下の撓みを防止するとともに、輸送時の振動等による上下のばたつきを防止するための緩衝部材5を嵌合して配置する。 Thereafter, as shown in FIG. 66, the solar cell module 100 is prevented from bending up and down at the center of both edge portions 100b along the longitudinal direction of the stacked solar cell modules 100, and is also caused by vibration during transportation. A shock-absorbing member 5 for preventing vertical flapping is fitted and arranged.
 緩衝部材5は、例えば、図11に示すような緩衝部材5を用いることができ、図67に示すように、各太陽電池モジュール100の端部100bに嵌合することで、上下の緩衝部材5が隙間無く配置されるようになっている。また、最下段の緩衝部材5(5a)は、基板部1の上面1bに接触して、基板部1との間に隙間がないように配置される。すなわち、最下段の緩衝部材5aは、上側辺部51の厚みに比べて下側辺部52の厚みが、スペーサ部材3の厚み分だけ厚くなっている。このように、最下段の緩衝部材5aの厚みをスペーサ部材3の厚み分だけ厚くすることで、最下段の緩衝部材5aを安定して基板部1上に載置することができる。 As the buffer member 5, for example, the buffer member 5 as shown in FIG. 11 can be used. As shown in FIG. 67, the upper and lower buffer members 5 are fitted into the end portions 100b of the solar cell modules 100. Are arranged without gaps. In addition, the lowermost buffer member 5 (5a) is disposed so as to be in contact with the upper surface 1b of the substrate unit 1 and there is no gap between the substrate unit 1 and the buffer member 5 (5a). That is, in the lowermost buffer member 5 a, the thickness of the lower side portion 52 is thicker than the thickness of the upper side portion 51 by the thickness of the spacer member 3. As described above, by increasing the thickness of the lowermost buffer member 5 a by the thickness of the spacer member 3, the lowermost buffer member 5 a can be stably placed on the substrate unit 1.
 そのため、図68に示すように、まずこの状態において、緩衝部材5の凹溝部53に通すようにして、基板部1(より具体的には、上側基板11)から最上段の太陽電池モジュール100までを結束バンド7で架け回し、一体に結束する。 Therefore, as shown in FIG. 68, first, in this state, the substrate member 1 (more specifically, the upper substrate 11) is passed through the concave groove portion 53 of the buffer member 5 to the uppermost solar cell module 100. Is wound around the binding band 7 and bound together.
 最後に、最上段の太陽電池モジュール100の上面に、緩衝用として、太陽電池モジュール100の幅よりも広い幅に形成された例えば段ボールからなる天板6を配置し、結束部材である例えばPP(ポリプロピレン)バンド等の結束バンド7により結束する。この方法は、図34及び図35で説明した上述の方法、もしくは図36及び図37で説明した上述の方法を用いることができる。 Finally, a top plate 6 made of, for example, corrugated cardboard is formed on the upper surface of the uppermost solar cell module 100 as a buffer, and is formed with a width wider than the width of the solar cell module 100. Binding is performed by a binding band 7 such as a polypropylene band. As this method, the above-described method described in FIGS. 34 and 35 or the above-described method described in FIGS. 36 and 37 can be used.
 (スペーサ部材3の他の構成例の説明)
 図69Aは、スペーサ部材3の他の構成例1を示す斜視図である。
(Description of other configuration examples of the spacer member 3)
FIG. 69A is a perspective view showing another configuration example 1 of the spacer member 3.
 他の構成例1に係るスペーサ部材3は、基板部1の上面の周縁部に沿って配置される枠体形状となっており、各コーナー部の下面に、基板部1の嵌合凸部1aに対向して嵌合凹31(ただし、図69Aでは図示が省略されている。)が形成され、各コーナー部の上面に、支持構造体2の嵌合凹部29が嵌合される嵌合凸部32が形成されている。このように、スペーサ部材3を枠体形状とすることで、基板部1周辺の強度を補強するとともに、基板部1上へのスペーサ部材3の配置作業が容易となる。 The spacer member 3 according to another configuration example 1 has a frame shape arranged along the peripheral edge portion of the upper surface of the substrate portion 1, and the fitting convex portion 1 a of the substrate portion 1 is formed on the lower surface of each corner portion. A fitting recess 31 (not shown in FIG. 69A) is formed so as to face the fitting recess, and a fitting projection in which the fitting recess 29 of the support structure 2 is fitted on the upper surface of each corner portion. A portion 32 is formed. Thus, by making the spacer member 3 into a frame shape, the strength of the periphery of the substrate portion 1 is reinforced, and the arrangement work of the spacer member 3 on the substrate portion 1 is facilitated.
 図69Bは、スペーサ部材3の他の構成例2を示す斜視図である。 FIG. 69B is a perspective view showing another configuration example 2 of the spacer member 3.
 他の構成例2に係るスペーサ部材3は、基板部1の上面の周縁部のうち対向する2辺(図69Bでは長辺側の2辺)の縁部に沿って配置された長尺状の部材となっており、両端部の下面に、基板部1の嵌合凸部1aに対向して嵌合凹部31(ただし、図69Bでは図示が省略されている。)が形成され、両端部の上面に、支持構造体2の嵌合凹部29が嵌合される嵌合凸部32が形成されている。なお、このようなスペーサ部材3は、短辺側の2辺に配置される構成であってもよい。このように、スペーサ部材3を長尺状の部材とすることで、基板部1周辺の強度を補強するとともに、基板部1上へのスペーサ部材3の配置作業が容易となる。 The spacer member 3 according to another configuration example 2 is a long member disposed along the edges of two opposite sides (two sides on the long side in FIG. 69B) of the peripheral portion of the upper surface of the substrate unit 1. A fitting recess 31 (not shown in FIG. 69B) is formed on the lower surface of both end portions so as to face the fitting projection 1a of the substrate portion 1, and is formed on both end portions. A fitting convex portion 32 into which the fitting concave portion 29 of the support structure 2 is fitted is formed on the upper surface. Such a spacer member 3 may be arranged on two sides on the short side. Thus, by making the spacer member 3 an elongated member, the strength of the periphery of the substrate portion 1 is reinforced, and the arrangement work of the spacer member 3 on the substrate portion 1 is facilitated.
 なお、上記実施の形態では、スペーサ部材3を支持構造体2とは別構成として説明しているが、最下段の支持構造体2をスペーサ部材3として兼用してもよい。すなわち、最下段の支持構造体2には太陽電池モジュール100を載せず、2段目より上に太陽電池モジュール100を載置する構成とする。この場合、スペーサ部材を兼用する支持構造体2は、基板部1にネジや釘等で直接固定されていてもよい。 In the above embodiment, the spacer member 3 is described as a separate structure from the support structure 2, but the lowermost support structure 2 may also be used as the spacer member 3. That is, the solar cell module 100 is not placed on the lowermost support structure 2, and the solar cell module 100 is placed above the second level. In this case, the support structure 2 that also serves as a spacer member may be directly fixed to the substrate portion 1 with screws, nails, or the like.
 これにより、最下段の太陽電池モジュール(すなわち、2段目の支持構造体2によって支持されている太陽電池モジュール)100の下面と、基板部1の上面(より具体的には、上側基板11の上面)との間に十分な隙間ができるので、運搬時の振動等によって最下段の太陽電池モジュール100が撓んでも、太陽電池モジュール100の下面が基板部1の上面に接触若しくは衝突することを防止することができる。 As a result, the lowermost solar cell module (that is, the solar cell module supported by the second-stage support structure 2) 100 and the upper surface of the substrate unit 1 (more specifically, the upper substrate 11). A sufficient gap is formed between the lower surface of the solar cell module 100 and the lower surface of the solar cell module 100 being in contact with or colliding with the upper surface of the substrate unit 1 even if the lowermost solar cell module 100 is bent due to vibration during transportation. Can be prevented.
 以上のように、本実施の形態4に係る積載梱包具は、太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具であって、基板部と、基板部上面に配置され、太陽電池モジュールの角部を載置して太陽電池モジュールを水平な状態で支持する支持構造体と、基板部と支持構造体との間に配置されるスペーサ部材と、を備えていることを特徴としている。 As described above, the stacked packaging device according to the fourth embodiment is a stacked packaging device that stacks and packages the solar cell modules in a horizontal state, and is disposed on the substrate unit and the upper surface of the substrate unit. And a spacer member disposed between the substrate portion and the support structure. The support structure supports the solar cell module in a horizontal state by mounting the corners of the solar cell module.
 上記構成によれば、基板部と支持構造体との間にスペーサ部材を配置することで、基板部上面と最下段の支持構造体に支持された太陽電池モジュールの下面との間に十分な隙間をあけることができる。これにより、運搬時の振動等によって最下段の太陽電池モジュールが撓んでも、太陽電池モジュールの下面が基板部の上面に接触若しくは衝突することを防止することができる。 According to the above configuration, the spacer member is disposed between the substrate unit and the support structure, so that a sufficient gap is provided between the substrate unit upper surface and the lower surface of the solar cell module supported by the lowermost support structure. Can be opened. Thereby, even if the lowermost solar cell module is bent due to vibration or the like during transportation, the lower surface of the solar cell module can be prevented from contacting or colliding with the upper surface of the substrate portion.
 また、上記積載梱包具によれば、スペーサ部材の上面に嵌合凸部が形成され、支持構造体の下面に嵌合凸部に嵌合される嵌合凹部が形成された構成としてもよい。 Further, according to the above-described stacking packaging tool, a fitting convex portion may be formed on the upper surface of the spacer member, and a fitting concave portion that may be fitted to the fitting convex portion may be formed on the lower surface of the support structure.
 このような構成とすれば、スペーサ部材の上面に嵌合凸部を形成し、支持構造体の下面に嵌合凹部を形成することで、スペーサ部材上に支持構造体を載置したとき、嵌合構造によって支持構造体の横ずれを防止することができる。 With such a configuration, when the support structure is placed on the spacer member, the fitting protrusion is formed on the upper surface of the spacer member and the fitting recess is formed on the lower surface of the support structure. The combined structure can prevent the lateral displacement of the support structure.
 また、上記積載梱包具によれば、支持構造体は、垂直方向に積み重ねられる基体部と、基体部の側面から水平方向に突出するように形成された支持部と、基体部の上端面に形成され、上下に隣接する一方の支持構造体と係合するように構成された係合凸部と、基体部の下端面に形成され、上下に隣接する他方の支持構造体の係合凸部が係合される係合凹部とを備え、支持部の下面に嵌合凹部が形成された構成としてもよい。この構成によれば、支持構造体を、横ずれを防止しつつ多段に積み重ねていくことが可能となる。 Further, according to the above-described loading and packing tool, the support structure is formed on the base portion stacked in the vertical direction, the support portion formed so as to protrude in the horizontal direction from the side surface of the base portion, and the upper end surface of the base portion. And an engagement convex portion configured to engage with one of the upper and lower adjacent support structures, and an engagement convex portion of the other support structure which is formed on the lower end surface of the base portion and is adjacent to the upper and lower sides. It is good also as a structure provided with the engagement recessed part engaged and the fitting recessed part being formed in the lower surface of a support part. According to this configuration, the support structures can be stacked in multiple stages while preventing lateral displacement.
 また、上記積載梱包具によれば、基板部上面に嵌合凸部が形成され、スペーサ部材の下面に嵌合凸部と嵌合する嵌合凹部が形成された構成としてもよい。このように、基板部の上面に嵌合凸部を形成し、スペーサ部材の下面に嵌合凹部を形成することで、基板部上にスペーサ部材を載置したとき、嵌合構造によってスペーサ部材の横ずれを防止する。 Further, according to the above-described stacking and packing tool, a fitting convex portion may be formed on the upper surface of the substrate portion, and a fitting concave portion that fits the fitting convex portion may be formed on the lower surface of the spacer member. In this way, by forming the fitting convex part on the upper surface of the substrate part and forming the fitting concave part on the lower surface of the spacer member, when the spacer member is placed on the substrate part, Prevent side slip.
 また、上記積載梱包具によれば、スペーサ部材は、基板部上面に配置された構成としてもよい。 Further, according to the above-described stacking packaging tool, the spacer member may be arranged on the upper surface of the substrate unit.
 このような構成とすれば、スペーサ部材を基板部上面に配置する構成とすることで、スペーサ部材を小型化でき、材料コストも低減することができる。 With such a configuration, the spacer member can be reduced in size and the material cost can be reduced by adopting a configuration in which the spacer member is disposed on the upper surface of the substrate portion.
 また、上記積載梱包具によれば、スペーサ部材として、基板部上に載置された最下段の支持構造体を用いること、すなわち兼用することが可能である。スペーサ部材として支持構造体を用いることで、スペーサ部材を別途作製する必要がないことから、積載梱包具としての部材点数を減らすことができる。この場合、最下段の支持構造体には太陽電池モジュールを載置せず、あくまでスペーサ部材として使用する。 In addition, according to the above-described stacking and packing tool, it is possible to use the lowermost support structure placed on the substrate portion as the spacer member, that is, to also serve as the spacer member. By using the support structure as the spacer member, it is not necessary to prepare the spacer member separately, so that the number of members as a stacked packing tool can be reduced. In this case, the solar cell module is not placed on the lowermost support structure, and is only used as a spacer member.
 また、上記積載梱包具によれば、水平に積み重ねられ太陽電池モジュールの縁部に横方向から嵌め合わせて太陽電池モジュールを保持する緩衝部材と、積み重ねられた最上段の太陽電池モジュール上に配置される天板と、基板部から天板までを巻き回して一体に結束する結束部材と、をさらに備え、最下段の緩衝部材は、高さ方向の厚みが前記スペーサ部材の厚み分だけ厚く形成された構成としてもよい。最下段の緩衝部材の厚みをスペーサ部材の厚み分だけ厚くすることで、最下段の緩衝部材を安定して基板部上に載置可能とする。 In addition, according to the above-described loading and packing tool, the cushioning member that horizontally stacks and fits the edge of the solar cell module from the lateral direction to hold the solar cell module, and the stacked uppermost solar cell module are arranged. And a bundling member that winds from the substrate portion to the top plate and binds together, and the lowermost cushion member is formed with a thickness in the height direction that is thicker than the spacer member. It is good also as a structure. By increasing the thickness of the lowermost buffer member by the thickness of the spacer member, the lowermost buffer member can be stably placed on the substrate portion.
 また、上記積載梱包具によれば、緩衝部材には、外側面に結束部材を通す凹溝部が形成された構成としてもよい。緩衝部材の外側面に結束部材を通す凹溝部を形成することで、結束後の緩衝部材の横ずれを防止する。 In addition, according to the above-described stacking packaging tool, the buffer member may be configured such that a concave groove portion through which the bundling member passes is formed on the outer surface. By forming a concave groove portion through which the bundling member is passed on the outer surface of the buffer member, lateral displacement of the buffer member after bundling is prevented.
 また、上記積載梱包具によれば、スペーサ部材は、基板部上面の周縁部に沿って配置される枠体形状とすることもできる。スペーサ部材を枠体形状とすることで、全体の強度を保持しつつ、基板部上へのスペーサ部材の配置作業が容易となる。 In addition, according to the above-described stacking packaging tool, the spacer member can be formed in a frame shape arranged along the peripheral edge portion of the upper surface of the substrate portion. By making the spacer member into a frame shape, it is easy to place the spacer member on the substrate portion while maintaining the overall strength.
 また、上記積載梱包具によれば、スペーサ部材は、基板部上面の周縁部のうち対向する2辺の縁部に沿って配置される長尺状の部材とすることもできる。スペーサ部材を長尺状の部材とすることで、全体の強度を保持しつつ、基板部上へのスペーサ部材の配置作業が容易となる。 In addition, according to the above-described stacking packaging tool, the spacer member can be a long member disposed along two opposing edges of the peripheral edge of the upper surface of the substrate. By making the spacer member a long member, it is easy to place the spacer member on the substrate portion while maintaining the overall strength.
 また、本実施の形態4に係る梱包方法は、上記各構成の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴としている。 Also, the packaging method according to the fourth embodiment is characterized in that the solar cell modules are stacked in a horizontal state and packaged in a horizontal state by using the loading packaging tools having the above-described configurations.
 上記構成によれば、基板部上面と最下段の支持構造体に支持された太陽電池モジュールの下面との間に十分な隙間をあけて太陽電池モジュールを多段に積み重ねて梱包することができる。このような梱包により、運搬時の振動等によって最下段の太陽電池モジュールが撓んでも、太陽電池モジュールの下面が基板部の上面に接触若しくは衝突することを防止することができる。 According to the above configuration, the solar cell modules can be stacked and packed in multiple stages with a sufficient gap between the upper surface of the substrate portion and the lower surface of the solar cell module supported by the lowermost support structure. Such packaging can prevent the lower surface of the solar cell module from contacting or colliding with the upper surface of the substrate portion even if the lowermost solar cell module bends due to vibration during transportation or the like.
 なお、今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 It should be noted that the embodiment disclosed this time is an example in all respects and does not serve as a basis for limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Moreover, all the changes within the meaning and range equivalent to a claim are included.
 A 積載梱包具
 1 基板部(支持基板、パレット)
 1a 嵌合凸部
 2 支持構造体
 3 スペーサ部材
 5 緩衝部材
 5a 最下段の緩衝部材
 5b 最上段の緩衝部材
 6 天板
 7 結束バンド(結束部材)
 8 受け部材
 11 上側基板
 12 下側基板
 13 横桟
 23 基体部
 23a 上端面
 23b 下端面
 23c 内側壁面(内側の側面)
 23d 外側壁面(外側の側面)
 25 係合凸部
 25a 外側壁面(外側の側面)
 26 係合凹部
 28 受け部(支持部)
 29 嵌合凹部
 31 嵌合凹部
 32 嵌合凸部
 51 上側辺部
 52 下側辺部
 53 凹溝部
 61,61a,61b 折り曲げ部
 62 切り込み
 81 本体部
 82 嵌合凸部
 82a 傾斜面
 82b 円筒面
 83 リブ片
 85 底面
 86 係合部
 86a 支持杆
 86b 係合片
 88 貫通穴
 90 ねじ部材
 100 太陽電池モジュール
 100a コーナー部
 100b 縁部
 101 長辺側枠体
 102 短辺側枠体
 111 波板
 111a 溝部
 112 支持脚
 113 補助脚
 114 補助枠体
A Loading packaging 1 Substrate (support substrate, pallet)
DESCRIPTION OF SYMBOLS 1a Fitting convex part 2 Support structure 3 Spacer member 5 Buffer member 5a Lowermost buffer member 5b Uppermost buffer member 6 Top plate 7 Binding band (binding member)
8 Receiving member 11 Upper substrate 12 Lower substrate 13 Horizontal beam 23 Base 23a Upper end surface 23b Lower end surface 23c Inner wall surface (inner side surface)
23d outer wall surface (outer side surface)
25 engaging convex part 25a outer side wall surface (outer side surface)
26 engaging recess 28 receiving part (supporting part)
29 fitting recessed part 31 fitting recessed part 32 fitting convex part 51 upper side part 52 lower side part 53 concave groove part 61, 61a, 61b bent part 62 notch 81 main body part 82 fitting convex part 82a inclined surface 82b cylindrical surface 83 rib Piece 85 Bottom face 86 Engagement part 86a Support rod 86b Engagement piece 88 Through hole 90 Screw member 100 Solar cell module 100a Corner part 100b Edge part 101 Long side frame body 102 Short side frame body 111 Corrugated plate 111a Groove part 112 Support leg 113 Auxiliary leg 114 Auxiliary frame

Claims (38)

  1.  太陽電池モジュールの角部を載置して前記太陽電池モジュールを水平な状態で支持する支持構造体であって、
     上下方向に積み重ねられる基体部と、
     前記基体部の内側の側面から横方向に突出して形成された前記太陽電池モジュールの角部を支持する支持部と、
     前記基体部の上端面に形成され、上下に隣接する一方の支持構造体と係合する係合凸部と、
     前記基体部の下端面に形成され、上下に隣接する他方の支持構造体の前記係合凸部が係合される係合凹部とを備え、
     前記係合凹部は、前記基体部の外側の側面側が開放されていることを特徴とする支持構造体。
    A support structure for supporting the solar cell module in a horizontal state by placing corner portions of the solar cell module,
    Base parts stacked in the vertical direction;
    A support portion for supporting a corner portion of the solar cell module formed to protrude laterally from the inner side surface of the base portion;
    An engagement convex portion that is formed on the upper end surface of the base portion and engages with one of the upper and lower support structures;
    An engagement recess formed on the lower end surface of the base portion and engaged with the engagement projection of the other support structure adjacent vertically.
    The support structure according to claim 1, wherein the engaging recess has an open side surface on the outer side of the base portion.
  2.  請求項1に記載の支持構造体であって、
     前記係合凸部の外側の側面は、前記基体部の前記外側の側面と連続するように面一に形成されていることを特徴とする支持構造体。
    The support structure according to claim 1,
    The support structure according to claim 1, wherein an outer side surface of the engaging convex portion is formed flush with the outer side surface of the base portion.
  3.  請求項1または請求項2に記載の支持構造体であって、
     前記基体部は、一方の基体片と他方の基体片とが直交するように設けられた平面視L字状に形成され、
     前記係合凸部及び前記係合凹部は、前記各基体片にそれぞれ形成されていることを特徴とする支持構造体。
    A support structure according to claim 1 or claim 2,
    The base portion is formed in an L shape in plan view provided so that one base piece and the other base piece are orthogonal to each other,
    The support structure according to claim 1, wherein the engagement protrusion and the engagement recess are formed in each of the base pieces.
  4.  請求項3に記載の支持構造体であって、
     前記係合凸部及び前記係合凹部は、前記各基体片にそれぞれ複数個設けられていることを特徴とする支持構造体。
    A support structure according to claim 3,
    A plurality of the engaging convex portions and the engaging concave portions are provided on each base piece, respectively.
  5.  請求項1から請求項4までのいずれか1項に記載の支持構造体であって、
     前記基体部は、前記太陽電池モジュールを水平状態で積み重ねて支持する基板部上に載置され、前記支持部の下面には、前記基板部の上面に形成された嵌合凸部と嵌合する嵌合凹部が形成されていることを特徴とする支持構造体。
    A support structure according to any one of claims 1 to 4, wherein
    The base portion is placed on a substrate portion that stacks and supports the solar cell module in a horizontal state, and is fitted on a lower surface of the support portion with a fitting convex portion formed on the upper surface of the substrate portion. A support structure having a fitting recess.
  6.  請求項5に記載の支持構造体を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴とする梱包方法。 A packing method comprising stacking and packing a plurality of solar cell modules in a horizontal state using the support structure according to claim 5.
  7.  太陽電池モジュールを水平な状態で上下方向に積み重ねて梱包する積載梱包具であって、
     基板部と、
     前記基板部上面に立設され、水平に積み重ねられた前記太陽電池モジュールの角部をそれぞれ支持する支持構造体と、
     水平に積み重ねられた前記太陽電池モジュールの縁部に、横方向から嵌め合わせて前記太陽電池モジュールを保持する緩衝部材と、
     を備えていることを特徴とする積載梱包具。
    A stacking packing tool for stacking and packing solar cell modules in a vertical state in a vertical state,
    A substrate section;
    A support structure that is erected on the upper surface of the substrate unit and supports corners of the solar cell modules that are stacked horizontally;
    A buffer member that fits from the lateral direction to the edge of the solar cell module stacked horizontally and holds the solar cell module;
    A loading packing tool characterized by comprising:
  8.  請求項7に記載の積載梱包具であって、
     前記太陽電池モジュールの縁部に対向する前記緩衝部材の内側面には、前記太陽電池モジュールの縁部と嵌合する開口溝部が形成されていることを特徴とする積載梱包具。
    It is a loading packing tool according to claim 7,
    A loading and packing tool, wherein an opening groove portion that fits with the edge portion of the solar cell module is formed on an inner surface of the buffer member facing the edge portion of the solar cell module.
  9.  請求項8に記載の積載梱包具であって、
     前記開口溝部は、前記緩衝部材の前記内側面の前記上下方向に一定間隔を存して複数設けられていることを特徴とする積載梱包具。
    It is the loading packing tool of Claim 8, Comprising:
    A plurality of the opening groove portions are provided at regular intervals in the vertical direction of the inner surface of the buffer member.
  10.  請求項8又は9に記載の積載梱包具であって、
     前記開口溝部の開口先端部には、前記太陽電池モジュールの縁部をガイドするテーパー面が形成されていることを特徴とする積載梱包具。
    It is a loading packing tool according to claim 8 or 9,
    A stacked packing tool, wherein a tapered surface for guiding an edge of the solar cell module is formed at an opening tip of the opening groove.
  11.  請求項7から10までのいずれか1項に記載の積載梱包具であって、
     前記緩衝部材の外側面には、結束部材を通すための凹溝部が形成されていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 7-10,
    A stacking packing tool, wherein a concave groove for allowing the binding member to pass therethrough is formed on the outer surface of the buffer member.
  12.  請求項7から11までのいずれか1項に記載の積載梱包具であって、
     前記緩衝部材は、前記上下方向に複数積み重ねられ、上下に隣接する前記緩衝部材と接着されていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 7-11,
    A plurality of the buffer members are stacked in the vertical direction, and are bonded to the buffer members adjacent to each other in the vertical direction.
  13.  請求項7から12までのいずれか1項に記載の積載梱包具であって、
     最下段の前記緩衝部材は、前記基板部上面と当接していることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 7-12,
    The stacking packing tool, wherein the lowermost buffer member is in contact with the upper surface of the substrate portion.
  14.  請求項7から13までのいずれか1項に記載の積載梱包具であって、
     前記基板部上面から最上段の前記緩衝部材の上面までの高さは、前記基板部上面から前記支持構造体の最上段の上面までの高さと等しいことを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 7-13,
    A stacking packing tool, wherein a height from the upper surface of the substrate portion to an upper surface of the uppermost buffer member is equal to a height from the upper surface of the substrate portion to the uppermost surface of the support structure.
  15.  請求項7から14までのいずれか1項に記載の積載梱包具であって、
     前記上下方向に積み重ねられた最上段の前記太陽電池モジュール上に配置される天板と、
     前記基板部から前記天板までを巻き回して一体に結束する結束部材と、をさらに備えていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 7-14,
    A top plate disposed on the uppermost solar cell module stacked in the vertical direction;
    And a bundling member that winds from the substrate portion to the top plate to bind them together.
  16.  請求項7から15までのいずれか1項に記載の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴とする積載梱包方法。 A stacking and packing method comprising stacking and packing a plurality of solar cell modules in a horizontal state using the stacking and packaging tool according to any one of claims 7 to 15.
  17.  太陽電池モジュールの角部を支持する支持構造体を載置して前記太陽電池モジュールを水平な状態で支持する支持基板であって、
     前記支持基板の上面には、前記支持構造体の下面に形成された嵌合凹部が嵌合される嵌合凸部が形成されていることを特徴とする支持基板。
    A support substrate for supporting the solar cell module in a horizontal state by placing a support structure that supports the corners of the solar cell module,
    The support substrate is characterized in that a fitting convex portion into which a fitting concave portion formed on the lower surface of the support structure is fitted is formed on the upper surface of the support substrate.
  18.  請求項17に記載の支持基板であって、
     前記嵌合凸部は、上部の外周面が上部側から支持基板の上面側に向かって漸次拡開する傾斜面に形成されていることを特徴とする支持基板。
    The support substrate according to claim 17,
    The support protrusion is characterized in that the fitting convex portion is formed on an inclined surface in which an upper outer peripheral surface gradually expands from the upper side toward the upper surface side of the support substrate.
  19.  請求項18に記載の支持基板であって、
     前記嵌合凸部は、下部の外周面が前記傾斜面から連続する垂直面に形成されていることを特徴とする支持基板。
    The support substrate according to claim 18, wherein
    The supporting projection board is characterized in that the fitting convex part is formed in a vertical surface whose outer peripheral surface is continuous from the inclined surface.
  20.  請求項17から請求項19までのいずれか1項に記載の支持基板であって、
     前記支持基板の上面の前記嵌合凸部の周囲に、前記支持構造体の外周部に当接して横方向へのずれを防止するリブ片が形成されていることを特徴とする支持基板。
    A support substrate according to any one of claims 17 to 19, wherein
    A support substrate, wherein a rib piece is formed around the fitting convex portion on the upper surface of the support substrate so as to abut against the outer peripheral portion of the support structure to prevent lateral displacement.
  21.  請求項20に記載の支持基板であって、
     前記支持構造体の外周部が平面視四角形状に形成されており、
     前記リブ片は、前記嵌合凸部の周囲のうち、前記支持基板の角部の2辺に対向する部分を除いて形成されていることを特徴とする支持基板。
    The support substrate according to claim 20, wherein
    The outer periphery of the support structure is formed in a square shape in plan view,
    The said rib piece is formed except the part which opposes two sides of the corner | angular part of the said support substrate among the circumference | surroundings of the said fitting convex part.
  22.  請求項17から請求項21までのいずれか1項に記載の支持基板であって、
     前記支持基板は、長方形状の枠構造であって、前記太陽電池モジュールの長辺側の縁部に対向する2本の長辺側枠体と、前記太陽電池モジュールの短辺側の縁部に対向する2本の短辺側枠体とを備え、
     前記長辺側枠体の両端部に、前記嵌合凸部が形成された受け部材が設けられていることを特徴とする支持基板。
    A support substrate according to any one of claims 17 to 21, comprising:
    The support substrate has a rectangular frame structure, and has two long side frames facing the long side edge of the solar cell module and a short side edge of the solar cell module. Two opposing short side frames,
    A support substrate, characterized in that receiving members on which the fitting convex portions are formed are provided at both ends of the long side frame.
  23.  請求項22に記載の支持基板であって、
     前記受け部材は、平面視四角形状に形成された本体部を備え、前記嵌合凸部は、前記本体部の上面中央部に形成されていることを特徴とする支持基板。
    The support substrate according to claim 22, wherein
    The support member includes a main body portion formed in a square shape in plan view, and the fitting convex portion is formed at a central portion of the upper surface of the main body portion.
  24.  請求項23に記載の支持基板であって、
     前記リブ片は、前記本体部の上面周縁部に形成されていることを特徴とする支持基板。
    The support substrate according to claim 23, wherein
    The support substrate according to claim 1, wherein the rib pieces are formed on a peripheral edge of the upper surface of the main body.
  25.  請求項23または請求項24に記載の支持基板であって、
     前記本体部には、前記長辺側枠体の前記端部側に突出した係合部を備えており、前記係合部が前記長辺側枠体の端部に係合されていることを特徴とする支持基板。
    A support substrate according to claim 23 or claim 24,
    The main body portion includes an engaging portion that protrudes toward the end of the long side frame, and the engaging portion is engaged with an end of the long side frame. Support substrate characterized.
  26.  請求項17から請求項25までのいずれか1項に記載の支持基板と前記支持構造体とを用いて太陽電池モジュールを水平な状態で積み重ねて梱包することを特徴とする梱包方法。 A packing method comprising stacking and packing solar cell modules in a horizontal state using the support substrate according to any one of claims 17 to 25 and the support structure.
  27.  太陽電池モジュールを水平な状態で積み重ねて梱包する積載梱包具であって、
     基板部と、
     前記基板部上面に配置され、前記太陽電池モジュールの角部を載置して前記太陽電池モジュールを水平な状態で支持する支持部材と、
     前記基板部と前記支持部材との間に配置されるスペーサ部材と、を備えていることを特徴とする積載梱包具。
    A stacking packing tool for stacking and packing solar cell modules in a horizontal state,
    A substrate section;
    A support member that is disposed on the upper surface of the substrate unit and supports the solar cell module in a horizontal state by placing corner portions of the solar cell module;
    And a spacer member disposed between the substrate portion and the support member.
  28.  請求項27に記載の積載梱包具であって、
     前記スペーサ部材の上面に嵌合凸部が形成され、前記支持部材の下面に前記嵌合凸部に嵌合される嵌合凹部が形成されていることを特徴とする積載梱包具。
    The load packing device according to claim 27,
    A stacking packaging tool, wherein a fitting convex part is formed on the upper surface of the spacer member, and a fitting concave part fitted to the fitting convex part is formed on the lower surface of the support member.
  29.  請求項27または請求項28に記載の積載梱包具であって、
     前記支持部材は、垂直方向に積み重ねられる基体部と、
     前記基体部の側面から水平方向に突出するように形成された支持部と、
     前記基体部の上端面に形成され、上下に隣接する一方の支持部材と係合するように構成された係合凸部と、
     前記基体部の下端面に形成され、上下に隣接する他方の支持部材の前記係合凸部が係合される係合凹部とを備え、
     前記支持部の下面に前記嵌合凹部が形成されていることを特徴とする積載梱包具。
    The load packing device according to claim 27 or claim 28,
    The support member includes a base portion stacked in a vertical direction;
    A support portion formed so as to protrude in a horizontal direction from a side surface of the base portion;
    An engagement convex portion formed on the upper end surface of the base portion and configured to engage with one of the support members adjacent vertically.
    An engagement recess formed on the lower end surface of the base portion and engaged with the engagement projection of the other support member adjacent vertically.
    The stacking packaging tool, wherein the fitting recess is formed on a lower surface of the support portion.
  30.  請求項27から請求項29までのいずれか1項に記載の積載梱包具であって、
     前記基板部上面に嵌合凸部が形成され、前記スペーサ部材の下面に前記嵌合凸部と嵌合する嵌合凹部が形成されていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 27-29,
    A stacking packing tool, wherein a fitting convex part is formed on the upper surface of the substrate part, and a fitting concave part fitting with the fitting convex part is formed on the lower surface of the spacer member.
  31.  請求項27から請求項30までのいずれか1項に記載の積載梱包具であって、
     前記スペーサ部材は、前記基板部上面に配置されていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 27-30,
    The said packing member is arrange | positioned on the said board | substrate part upper surface, The loading packaging tool characterized by the above-mentioned.
  32.  請求項31に記載の積載梱包具であって、
     前記スペーサ部材として、前記基板部上に載置された最下段の前記支持部材を用いることを特徴とする積載梱包具。
    The loading and packing tool according to claim 31,
    A stacking packing tool using the lowermost support member placed on the substrate portion as the spacer member.
  33.  請求項27から請求項32までのいずれか1項に記載の積載梱包具であって、
     水平に積み重ねられ前記太陽電池モジュールの縁部に横方向から嵌め合わせて前記太陽電池モジュールを保持する緩衝部材と、
     積み重ねられた最上段の前記太陽電池モジュール上に配置される天板と、
     前記基板部から前記天板までを巻き回して一体に結束する結束部材と、をさらに備え、
     最下段の前記緩衝部材は、高さ方向の厚みが前記スペーサ部材の厚み分だけ厚く形成されていることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 27-32,
    A buffer member that is stacked horizontally and fits from the lateral direction to the edge of the solar cell module to hold the solar cell module;
    A top plate placed on the topmost stacked solar cell modules;
    A bundling member that winds from the substrate portion to the top plate and binds together, and further comprises
    The lowermost stage buffer member is formed so that the thickness in the height direction is increased by the thickness of the spacer member.
  34.  請求項33に記載の積載梱包具であって、
     前記緩衝部材には、外側面に前記結束部材を通す凹溝部が形成されていることを特徴とする積載梱包具。
    A loading and packing tool according to claim 33,
    The buffering member is provided with a groove portion through which the bundling member is formed on the outer surface.
  35.  請求項27から請求項30までのいずれか1項に記載の積載梱包具であって、
     前記スペーサ部材は、前記基板部上面の周縁部に沿って配置される枠体形状であることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 27-30,
    The said packing member is a frame shape arrange | positioned along the peripheral part of the said board | substrate part upper surface, The loading packaging tool characterized by the above-mentioned.
  36.  請求項27から請求項30までのいずれか1項に記載の積載梱包具であって、
     前記スペーサ部材は、前記基板部上面の周縁部のうち対向する2辺の縁部に沿って配置される長尺状の部材であることを特徴とする積載梱包具。
    It is a loading packing tool given in any 1 paragraph of Claims 27-30,
    The said packing member is an elongate member arrange | positioned along the edge part of 2 sides which oppose among the peripheral parts of the said board | substrate part upper surface, The stacking packing tool characterized by the above-mentioned.
  37.  請求項35または請求項36に記載の積載梱包具であって、
     水平に積み重ねられ前記太陽電池モジュールの縁部に横方向から嵌め合わせて前記太陽電池モジュールを保持する緩衝部材と、
     積み重ねられた最上段の前記太陽電池モジュール上に配置される天板と、
     前記基板部から前記天板までを巻き回して一体に結束する結束部材と、をさらに備え、
     前記緩衝部材には、外側面に前記結束部材を通す凹溝部が形成されていることを特徴とする積載梱包具。
    The load packing device according to claim 35 or claim 36,
    A buffer member that is stacked horizontally and fits from the lateral direction to the edge of the solar cell module to hold the solar cell module;
    A top plate placed on the topmost stacked solar cell modules;
    A bundling member that winds from the substrate portion to the top plate and binds together, and further comprises
    The buffering member is provided with a groove portion through which the bundling member is formed on the outer surface.
  38.  請求項27から請求項37までのいずれか1項に記載の積載梱包具を用いて太陽電池モジュールを水平な状態で多段に積み重ねて梱包することを特徴とする梱包方法。 A packing method comprising stacking and packing a plurality of solar cell modules in a horizontal state using the stacked packing tool according to any one of claims 27 to 37.
PCT/JP2012/078116 2011-12-21 2012-10-31 Supporting structure, loading and packaging device, supporting base plate, and packaging method WO2013094317A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280070316.7A CN104125920A (en) 2011-12-21 2012-10-31 Supporting structures, loading and packaging device, supporting base plate, and packaging method
US14/368,128 US20140367305A1 (en) 2011-12-21 2012-10-31 Supporting structure, loading and packing device, supporting base plate, and packing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011280514A JP2013131648A (en) 2011-12-21 2011-12-21 Loading packaging tool and packaging method
JP2011-280514 2011-12-21
JP2011282172A JP5756007B2 (en) 2011-12-22 2011-12-22 Support substrate and packing method
JP2011282167A JP5901961B2 (en) 2011-12-22 2011-12-22 Support structure and packing method
JP2011-282172 2011-12-22
JP2011-282167 2011-12-22
JP2012-036507 2012-02-22
JP2012036507A JP5868211B2 (en) 2012-02-22 2012-02-22 Loading packing device and packing method

Publications (1)

Publication Number Publication Date
WO2013094317A1 true WO2013094317A1 (en) 2013-06-27

Family

ID=48668218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078116 WO2013094317A1 (en) 2011-12-21 2012-10-31 Supporting structure, loading and packaging device, supporting base plate, and packaging method

Country Status (3)

Country Link
US (1) US20140367305A1 (en)
CN (1) CN104125920A (en)
WO (1) WO2013094317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149400A1 (en) * 2014-04-03 2015-10-08 深圳市华星光电技术有限公司 Split-body packaging structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8584338B2 (en) 2010-05-24 2013-11-19 Chevron U.S.A. Inc. Solar module array pre-assembly method
US20140076383A1 (en) * 2010-05-24 2014-03-20 Chevron U.S.A. Inc. Solar module array pre-assembly method and apparatus
WO2012073482A1 (en) * 2010-11-29 2012-06-07 キョーラク株式会社 Rectangular thin panel conveyance unit
JP6072915B2 (en) * 2013-07-25 2017-02-01 三菱電機株式会社 Solar cell module package and solar cell module packaging method
JP5904174B2 (en) * 2013-08-22 2016-04-13 Smk株式会社 Touch panel support structure
USD840248S1 (en) * 2015-06-25 2019-02-12 Sergiu Vrabie Picture frame packaging
US9669985B1 (en) * 2015-11-13 2017-06-06 Solarcity Corporation Photovoltaic module stackable corner protector
US20180208385A1 (en) * 2017-01-20 2018-07-26 Lincoln Global, Inc. Vertical shipment dunnage
US11077986B2 (en) * 2018-02-28 2021-08-03 Shop Vac Corporation Corner support assembly
IT201800003334A1 (en) * 2018-03-07 2019-09-07 System Ceramics S P A Method and plant for the realization of packaging
US11223318B2 (en) 2018-03-30 2022-01-11 Sunpower Corporation Integrated external connectors
CN110861838A (en) * 2018-08-28 2020-03-06 鸿富锦精密工业(深圳)有限公司 Buffering packing device
CN111232430B (en) * 2018-11-28 2023-09-19 Agc株式会社 Packaged body and packaged body
EP3748670B1 (en) * 2019-06-04 2024-04-17 Infineon Technologies AG Transport system
CN113345338B (en) * 2021-06-11 2022-09-27 广州林电智能科技有限公司 LED background plate
CN115289792A (en) * 2022-05-18 2022-11-04 安徽信诺家具有限公司 Panel drying device of cladding door plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329175A (en) * 1993-05-20 1994-11-29 Mitsubishi Denki Shomei Kk Assembly of cushioning material for packing
JP2006021800A (en) * 2004-07-08 2006-01-26 Sanko Co Ltd Plate-like article packing tool
DE102008012774A1 (en) * 2008-06-26 2009-12-31 Eckpack Service Gmbh & Co. Kg Holding system for horizontal or vertical stacking and/or transporting of framed photovoltaic or solar thermal flat modules utilized in automobile industry, has wall equipped with teeth row for engagement with molded parts, at closing unit
JP2010058798A (en) * 2008-09-02 2010-03-18 Mitsubishi Electric Corp Corner pad
JP2010109090A (en) * 2008-10-29 2010-05-13 Kyocera Corp Solar battery module support body
JP2011105373A (en) * 2009-11-20 2011-06-02 Sekisui Plastics Co Ltd Packing material for component with rubber member on its peripheral edge part, packing body using the same, and packing method
JP2011178450A (en) * 2010-03-02 2011-09-15 Takigen Mfg Co Ltd Corner supporting member for packing panel
JP2012218777A (en) * 2011-04-08 2012-11-12 Sanko Co Ltd Protective member for work and transfer unit of work

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738564A (en) * 1954-12-15 1956-03-20 Edward J Guinane Ceramic tile stackers
JPS5138609Y2 (en) * 1972-01-28 1976-09-21
FR2548632A1 (en) * 1983-07-06 1985-01-11 Ulrych Adam SPACER FOR PRODUCING LOTS OF FRAGILE OBJECTS SUBSTANTIALLY PLANS AND LOTS OF OBJECTS MADE WITH SUCH SPACERS
US5042665A (en) * 1990-08-06 1991-08-27 Shippers Paper Products Company Packaging frame
IL121840A (en) * 1997-09-25 1999-06-20 Eyal Moshe System and method for packing and transporting sheet materials
CA2325760A1 (en) * 2000-11-10 2002-05-10 Polyform A.G.P. Inc. Extensible corner packing protector
CN201016049Y (en) * 2007-01-04 2008-02-06 山汰科技企业有限公司 Substrate carrier
JP2008273603A (en) * 2007-05-02 2008-11-13 Ikoma Shoji Kk Plate material carrier
WO2010060469A1 (en) * 2008-11-26 2010-06-03 Agc Flat Glass Europe Sa Container for transporting and/or storing sheets of a rigid material
US8752703B2 (en) * 2009-03-18 2014-06-17 Third Dimension, Inc. Packaging system and method
US8328020B2 (en) * 2010-03-10 2012-12-11 Eckpack Service Gmbh & Co. Kg Holding system for horizontally or vertically stacking framed photovoltaic or solar thermal flat modules
AU2010100594A4 (en) * 2010-06-10 2010-07-08 Silex Solar Pty Ltd A packing module
JP5924471B2 (en) * 2010-09-30 2016-05-25 キョーラク株式会社 Module used for stacking thin panel and method for stacking thin panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329175A (en) * 1993-05-20 1994-11-29 Mitsubishi Denki Shomei Kk Assembly of cushioning material for packing
JP2006021800A (en) * 2004-07-08 2006-01-26 Sanko Co Ltd Plate-like article packing tool
DE102008012774A1 (en) * 2008-06-26 2009-12-31 Eckpack Service Gmbh & Co. Kg Holding system for horizontal or vertical stacking and/or transporting of framed photovoltaic or solar thermal flat modules utilized in automobile industry, has wall equipped with teeth row for engagement with molded parts, at closing unit
JP2010058798A (en) * 2008-09-02 2010-03-18 Mitsubishi Electric Corp Corner pad
JP2010109090A (en) * 2008-10-29 2010-05-13 Kyocera Corp Solar battery module support body
JP2011105373A (en) * 2009-11-20 2011-06-02 Sekisui Plastics Co Ltd Packing material for component with rubber member on its peripheral edge part, packing body using the same, and packing method
JP2011178450A (en) * 2010-03-02 2011-09-15 Takigen Mfg Co Ltd Corner supporting member for packing panel
JP2012218777A (en) * 2011-04-08 2012-11-12 Sanko Co Ltd Protective member for work and transfer unit of work

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149400A1 (en) * 2014-04-03 2015-10-08 深圳市华星光电技术有限公司 Split-body packaging structure

Also Published As

Publication number Publication date
CN104125920A (en) 2014-10-29
US20140367305A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2013094317A1 (en) Supporting structure, loading and packaging device, supporting base plate, and packaging method
EP2008947B1 (en) System for holding plate-shaped member, device for packaging plate-shaped member, and method for holding plate-shaped member
JP6028937B2 (en) Transport unit for rectangular thin panel
JP2017519699A (en) Transport assembly box
WO2012153598A1 (en) Packaging structure, packaging method, and conveying method
JP5868211B2 (en) Loading packing device and packing method
WO2013118808A1 (en) Metallic pallet
JP5901961B2 (en) Support structure and packing method
JP5340840B2 (en) Container for transporting plate-shaped body
WO2012147532A1 (en) Packaging structure and packaging method
JP2013154928A (en) Solar cell module loading device and solar cell module loading unit
KR101218731B1 (en) A support frame for roll transport container panel and the roll transport container using the same
JP5756007B2 (en) Support substrate and packing method
JP5063796B1 (en) Packing structure and packing method
JP2013131648A (en) Loading packaging tool and packaging method
JP2011051643A (en) Packing material for solar battery panel
JP2011105373A (en) Packing material for component with rubber member on its peripheral edge part, packing body using the same, and packing method
JP2018083641A (en) Packaging structure and space member of solar cell module
JP5401983B2 (en) Assembled container
JP3198007U (en) Packing material and package
JP2011207490A (en) Workpiece package body
JP3197236U (en) Packing material
JP2010089812A (en) Packing material for rolled material
JP5317626B2 (en) Packing body used to pack multiple thin plate parts in parallel in a standing position
JP2012210950A (en) Packing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14368128

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12860337

Country of ref document: EP

Kind code of ref document: A1