WO2013094257A1 - Image pickup device - Google Patents

Image pickup device Download PDF

Info

Publication number
WO2013094257A1
WO2013094257A1 PCT/JP2012/073510 JP2012073510W WO2013094257A1 WO 2013094257 A1 WO2013094257 A1 WO 2013094257A1 JP 2012073510 W JP2012073510 W JP 2012073510W WO 2013094257 A1 WO2013094257 A1 WO 2013094257A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
imaging
lens
acquisition unit
Prior art date
Application number
PCT/JP2012/073510
Other languages
French (fr)
Japanese (ja)
Inventor
坂田 誠一郎
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2013094257A1 publication Critical patent/WO2013094257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the present invention relates to an imaging apparatus that corrects image blur in an imaging apparatus such as a digital camera.
  • Patent Document 1 there is a technology related to an image blur correction device that corrects image blur due to camera shake or the like (see Patent Document 1 and Patent Document 2).
  • Patent Document 1 discloses a technique for correcting image blur by a mechanical correction device that mechanically rotates an image sensor.
  • Patent Document 2 discloses a technique for correcting image blur by an electronic correction device using image processing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a low-cost imaging apparatus that is small in size, can respond immediately to image blurring.
  • An imaging apparatus is A lens, A main body for holding the lens; An image sensor that converts an image from the lens into an electrical signal; A rotational blur acquisition unit that acquires rotational blur around the optical axis of the lens; A drive unit for moving the image sensor; A posture acquisition unit for acquiring the posture of the main body; An image processing unit that rotates an image captured by the image sensor; A controller that drives the drive unit according to the rotational shake acquired by the rotational shake acquisition unit, and rotates the image in the image processing unit according to the posture of the main body acquired by the posture acquisition unit; Is provided.
  • An image rotation correction coefficient acquisition unit that acquires an image rotation correction coefficient by which the image processing unit rotates an image according to the posture of the main body acquired by the posture acquisition unit; Is provided.
  • the imaging device It has an operation unit that instructs the start of imaging
  • the controller is At the start of imaging by the operation unit,
  • the image rotation correction coefficient acquisition unit acquires an image rotation correction coefficient at the start of imaging,
  • the drive unit is driven to correct the state at the start of imaging,
  • the image processing unit rotates the image according to the image rotation correction coefficient at the start of the imaging.
  • the controller is The rotation processing of the image by the image processing unit is executed every first predetermined time, Drive of the drive unit according to the rotational shake acquired by the rotational shake acquisition unit is executed every second predetermined time shorter than the first predetermined time.
  • the image pickup apparatus is small in size, can respond immediately to image blurring, and can reduce costs.
  • Is a diagram showing a state of the digital camera of the image recording start time t t 0. It is a figure which shows the image after mechanical correction
  • FIG. 1 is a front perspective view showing a digital camera according to an embodiment of the present invention.
  • FIG. 2 is a rear perspective view showing the digital camera according to the embodiment of the present invention.
  • the width direction of the digital camera 1 is the X-axis direction
  • the height direction is the Y-axis direction
  • the depth direction is the Z-axis direction.
  • a digital camera 1 includes a camera body (housing) 2 formed in a substantially rectangular parallelepiped shape, a lens 3 as an optical system, a shutter button 4 as an operation unit, power Button 5, gyro sensor 6 as a rotation blur acquisition unit, acceleration sensor 7 as an attitude acquisition unit (see FIG. 1 above), menu button 8, cross button 9, OK / FUNC button 10, zoom button 11, and mode
  • a display unit 13 see FIG. 2 above
  • the shutter button 4 is an operation button for instructing recording of a still image or a moving image (continuous still image) captured by the lens 3.
  • the power button 5 is an operation button for turning on / off the power of the digital camera 1.
  • the gyro sensor 6 is a sensor that measures each rotational angular velocity with the three axes as the central axis.
  • the acceleration sensor 7 is a sensor that measures each acceleration in the three-axis directions.
  • the menu button 8 is an operation button for displaying a menu screen for various settings of the digital camera 1 on the display unit 13.
  • the cross button 9 is an operation button for selecting a desired menu item by moving the position of the cursor on the menu screen displayed on the display unit 13 or the like.
  • the OK / FUNC button 10 is an operation button for confirming a menu item selected using the cross button 9 as a selection item.
  • the zoom button 11 is an operation button for instructing to change the focal length by moving the lens 3 to the wide side or the tele side.
  • the mode dial 12 is an operation dial for setting an operation mode of the digital camera 1 such as a moving image shooting mode or a still image shooting mode.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the digital camera 1 according to the present embodiment.
  • the digital camera 1 shown in FIG. 3 includes a lens 3 that is an imaging optical system, an imaging device 21, an AFE 22, a buffer memory 23, a display processing unit 24, a display unit 13, a built-in memory 25a, and an external memory 25b. 25, a compression / expansion unit 26, an interface 27, a sound collection unit 28, an operation unit 29, a CPU 30, a mechanical correction unit 40, an electronic correction unit 50, and the like.
  • the mechanical correction unit 40 is a drive unit including the sub CPU 42 including the gyro sensor 6, the gyro signal processing unit 41, the mechanical correction amount determination unit 42a, and the mechanical correction control unit 42b, the X-axis actuator 43x, and the Y-axis actuator 43y.
  • the actuator 43 is provided.
  • the electronic correction unit 50 includes an acceleration sensor 7, an acceleration signal processing unit 51, an image rotation correction coefficient acquisition unit 52, and an image processing unit 53.
  • the digital camera 1 forms an image from the lens 3 that is an image pickup optical system on the light receiving surface of the image pickup element 21, thereby picking up an object and sequentially acquiring image data (image signal).
  • the image sensor 21 outputs an image obtained by photoelectrically converting the subject image formed by the lens 3 to an AFE (Analog Front End) 22.
  • the image sensor 21 is an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the AFE 22 reduces the noise component of the analog electric signal output from the image pickup device 21 and stabilizes the signal level, reduces the noise component of the analog electric signal, stabilizes the signal level, etc.
  • the signal is converted into a digital electrical signal by an AD converter.
  • the converted digital electric signal is output to the bus 20 as image data.
  • the buffer memory 23 acquires the image data output from the AFE 22 to the bus 20 and temporarily stores it.
  • the buffer memory 23 is a storage device such as a DRAM (Dynamic Random Access Memory).
  • the display processing unit 24 generates a video signal that can be displayed by the display unit 13 when displaying the image data on the display unit 13 based on the image data subjected to the image processing by the image processing unit 53. Output to.
  • the display unit 13 displays a video corresponding to the video signal output by the display processing unit 24.
  • the display unit 13 is a display device such as a liquid crystal monitor.
  • the storage unit 25 stores image data.
  • the image data here is image data that has been subjected to image processing by the image processing unit 53 and compression processing by the compression / decompression unit 26.
  • the storage unit 25 includes an internal memory 25a and an external memory 25b.
  • the built-in memory 25a is a memory built in the digital camera 1 in advance.
  • the external memory 25b is a memory card such as an xD-Picture Card (registered trademark) that is detachably attached to the digital camera 1.
  • the built-in memory 25a also stores a control program for controlling the camera.
  • the compression / decompression unit 26 performs compression processing when the image data subjected to the image processing by the image processing unit 53 is stored in the internal memory 25a or the external memory 25b, or the image stored in the internal memory 25a or the external memory 25b. When data is read out, decompression processing is performed.
  • the compression processing and decompression processing here are processing by JPEG (Joint-Photographic Experts Group) system, MPEG (Moving Picture Experts Group) system, or the like.
  • the interface 27 is, for example, a USB (Universal Serial Bus) for connecting the digital camera 1 to an external device using a wired communication standard, or an IrDA (Infrared) for connecting the digital camera 1 to an external device using a wireless communication standard. Data Association).
  • USB Universal Serial Bus
  • IrDA Infrared
  • the sound collection unit 28 is a device such as a microphone that collects sound.
  • the audio signal obtained by the sound collecting unit 28 is transmitted to the CPU 30.
  • the operation unit 29 includes the shutter button 4, the power button 5 shown in FIG. 1, the menu button 8, the cross button 9, the OK / FUNC button 10, the zoom button 11, the mode dial 12, etc. shown in FIG.
  • the operation information related to the operation unit 29 is transmitted to the CPU 30.
  • the CPU 30 controls the overall operation of the digital camera 1 by reading and executing the control program stored in the built-in memory 25a.
  • the mechanical correction unit 40 includes a gyro sensor 6, a gyro signal processing unit 41, a sub CPU 42, and an actuator 43.
  • the gyro sensor 6 is a sensor that measures angular velocities around three axes and detects movements such as camera shake of the camera body 2.
  • the gyro sensor 6 detects information related to camera shake such as the amount of camera shake and transmits the information to the gyro signal processing unit 41.
  • the gyro signal processing unit 41 performs filtering processing and amplification processing on the measurement information of the gyro sensor 6 and transmits the result to the sub CPU 42.
  • the sub CPU 42 includes a mechanical correction amount determination unit 42a and a mechanical correction control unit 42b.
  • the mechanical correction amount determination unit 42 a determines the mechanical correction amount from the signal received from the gyro signal processing unit 41.
  • the mechanical correction control unit 42b controls the actuator 43 based on the correction amount determined by the mechanical correction amount determination unit 42a.
  • the actuator 43 is made of, for example, a voice coil motor (VCM), and includes an X-axis actuator 43x that moves the image sensor 21 in the X-axis direction and a Y-axis actuator 43y that moves the image sensor 21 in the Y-axis direction. It is also possible to rotate the image sensor 21 by operating both the X-axis actuator 43x and the Y-axis actuator 43y.
  • VCM voice coil motor
  • the electronic correction unit 50 includes an acceleration sensor 7, an acceleration signal processing unit 51, an image rotation correction coefficient acquisition unit 52, and an image processing unit 53.
  • the acceleration sensor 7 is a sensor that detects the attitude of the camera body 2 with reference to absolute horizontal by measuring acceleration in three axis directions.
  • the acceleration sensor 7 detects information related to the posture of the camera body 2 and transmits it to the acceleration signal processing unit 51.
  • the acceleration signal processing unit 51 obtains the rotation angle with respect to the absolute horizontal from the measurement information of the acceleration sensor 7 and transmits it to the image rotation correction coefficient acquisition unit 52.
  • the image rotation correction coefficient acquisition unit 52 obtains a rotation matrix used when the image is rotationally corrected.
  • the image processing unit 53 normally performs correction processing such as gamma correction and white balance correction, and enlargement / reduction processing (increasing / decreasing the number of pixels) for image data stored in the buffer memory 23, the built-in memory 25a, or the external memory 25b.
  • correction processing such as gamma correction and white balance correction
  • enlargement / reduction processing increasing / decreasing the number of pixels
  • Various image processing such as resizing processing is performed.
  • the image processing unit 53 displays the image data on the display unit 13 based on the image data stored in the buffer memory 23, the built-in memory 25a, or the external memory 25b, the image data stored in the buffer memory 23 is stored in the built-in memory.
  • the image data is stored in 25a or the external memory 25b, the above-described image processing is performed as preprocessing.
  • the image processing unit 53 of the present embodiment has a function of rotating the image based on the rotation matrix obtained by the image rotation correction coefficient acquisition unit 52. Thereafter, the image edge is cut off based on a preset cut-out amount and transmitted to the display processing unit 24.
  • FIG. 4 is a view showing an image blur correction control flowchart of the digital camera 1 according to the present embodiment.
  • FIG. 5 is a flowchart of a subroutine rotation correction coefficient acquisition process.
  • FIG. 6 is a flowchart of the mechanical correction process of the subroutine.
  • FIG. 7 is a flowchart of the electronic correction process of the subroutine.
  • FIG. 8 is a figure which shows each rotation angle with respect to elapsed time.
  • FIG. 9 to FIG. 14 are diagrams showing states of the digital camera 1 or images at respective timings.
  • FIG. 10 is a diagram illustrating a state of an image after mechanical correction.
  • FIG. 11 is a diagram illustrating image rotation processing.
  • FIG. 12 is a diagram illustrating image cut-out processing.
  • FIG. 13 is a diagram illustrating an image after electronic correction.
  • the digital camera 1 according to the present embodiment will be described by taking as an example a case where the digital camera 1 rotates like the main body rotation angle shown in FIG. Further, it is assumed that the mechanical correction rotation angle is corrected as shown in FIG. 8B and the electronic correction rotation angle is corrected as shown in FIG. 8C according to the main body rotation angle. This movement assumes, for example, a state of moving image shooting during walking.
  • step 1 the gyro signal processing unit 41 and the actuator 43 are initially set in step 1. (ST1). By initializing, the image sensor 21 is returned to the initial position.
  • step 2 it is determined whether or not an instruction to start image recording is given (ST2).
  • the start of image recording is determined, for example, by operating the operation unit 29 such as a moving image shooting start button, a recording button, or a shutter button.
  • step 2 If the start of image recording is not instructed in step 2, the process returns to step 2.
  • step 4 a rotation correction coefficient acquisition processing subroutine is executed (ST4).
  • the acceleration sensor 7 measures the acceleration of the main body 2 of the digital camera 1 (ST41).
  • the acceleration signal processing unit 51 performs signal processing on the signal measured by the acceleration sensor 7 (ST42).
  • the acceleration signal processing unit 51 obtains the rotation angle ⁇ I [deg] of the main body 2 around the optical axis with respect to the absolute horizontal shown in FIG. 9 from the measurement value of the acceleration sensor 7.
  • step 43 an image rotation matrix is obtained by the rotation correction coefficient acquisition unit 52 based on the rotation angle ⁇ I [deg] of the main body 2 (ST43).
  • the image rotation matrix is expressed as the following expression (1), where the coordinates of pixel data before correction are (X i , Y i ) and the coordinates of pixel data after correction are (X o , Y o ). .
  • step 5 a subroutine of mechanical correction processing is executed in step 5 (ST5).
  • the angle ⁇ M [deg] that the digital camera 1 has moved from the start state is measured, the rotation target of the image sensor 21 is acquired, and the actuator 43 according to the rotation target.
  • step 51 the gyro sensor 6 measures the angular velocity with respect to the optical axis of the main body 2 of the digital camera 1 (ST51).
  • step 52 the signal measured by the gyro sensor 6 is processed by the gyro signal processing unit 41 (ST52).
  • step 53 the mechanical correction amount determination unit 42a acquires the target rotation angle of the image sensor 21 (ST53).
  • the target rotation angle of the image sensor 21 is an angle ⁇ M [deg] measured every second predetermined time b as shown in FIG. 8B.
  • step 54 the mechanical correction control unit 42b drives the actuator 6 so as to rotate the imaging device 21 until the rotation target angle ⁇ M [deg] determined by the mechanical correction amount determination unit 42a is reached ( ST54).
  • the image sensor 21 captures an image after mechanical correction, as shown in FIG.
  • the first predetermined time a may be determined as appropriate.
  • the interval between t 0 and t 1 is divided into nine equal parts for each second predetermined time b, but the second predetermined time b may be determined as appropriate.
  • step 7 the frame is imaged by acquiring the image data from the AFE 22 via the bus 20 to the buffer memory 23 (ST7). Subsequently, in step 8, the frame is developed (ST8).
  • development here refers to performing processing for generating a video signal that can be displayed by the display unit 13.
  • step 9 an electronic correction processing subroutine is executed (ST9).
  • step 91 the image is obtained by the equation (1) of the image rotation matrix acquired in the rotation correction coefficient acquisition process in step 43.
  • the rotation process is performed (ST91).
  • the image on the image sensor 21 is processed into the image state at t 0 when the start instruction is given by the mechanical correction process. Accordingly, as shown in FIG. 8 (c), it may be rotated by a predetermined angle theta I.
  • the image after the rotation processing is an absolute horizontal image in which a horizontal line in the image, that is, a line orthogonal to gravity, and an actual horizontal line, that is, a line orthogonal to gravity are parallel to each other. Become.
  • step 92 based on the preset cutout amount, as shown in FIG. 12, an image edge cutout process is executed (ST92).
  • the image after the cut-off process is an absolute horizontal rectangular image by cutting off an obliquely inclined portion.
  • step 11 it is determined whether or not the end of image recording is instructed (ST11).
  • step 11 If the end of image recording is instructed in step 11, the control is ended. An image at the end of the control is shown in FIG.
  • step 11 the process returns to step 5 to execute mechanical correction processing.
  • step 6 the determination in step 6 is for determining whether or not only from t 0 is the first predetermined time a It becomes.
  • the sub CPU 42 repeatedly executes the mechanical correction process during the elapsed time t 0 to t 1 to process the image on the image sensor 21 into the image state at t 0 when the start instruction is given.
  • the image rotation process in the electronic correction process may be rotated by a certain angle ⁇ I because the image on the image sensor 21 is processed into the image state at t 0 when the start instruction is given by the mechanical correction process.
  • the imaging apparatus includes the lens 3, the main body 2 that holds the lens 3, the imaging element 21 that converts an image from the lens into an electrical signal, and rotational blurring around the optical axis of the lens 3.
  • the gyro sensor 6 to be acquired the actuator 43 that moves the image sensor 21, the acceleration sensor 7 that acquires the attitude of the main body 2, the image processing unit 53 that rotates the image captured by the image sensor 21, and the gyro sensor 6
  • the CPU 30 drives the actuator 43 in accordance with the acquired rotation blur and rotates the image in the image processing unit 53 in accordance with the attitude of the main body 2 acquired by the acceleration sensor 7. This makes it possible to reduce costs. Therefore, it is possible to effectively use the space in the main body 2, and it is also possible to deal with fine camera shake during imaging.
  • an image rotation correction coefficient acquisition unit 52 that acquires an image rotation correction coefficient for the image processing unit 53 to rotate the image according to the posture of the main body 2 acquired by the acceleration sensor 7; , The rotation processing in the image processing unit 53 can be performed quickly.
  • the imaging apparatus includes an operation unit 29 that instructs to start imaging.
  • the CPU 30 first starts imaging by the image rotation correction coefficient acquisition unit 52.
  • the actuator 43 is driven in accordance with the rotational shake acquired by the gyro sensor 6 to correct the state at the start of imaging, and then the image rotation correction coefficient at the start of imaging is obtained.
  • the image processing unit 53 rotates the image. Therefore, the actuator 43 only needs to be corrected by the amount moved from the state at the start of imaging, and a small one can be used, so the degree of freedom of space in the main body is increased.
  • the CPU 30 causes the image processing unit 53 to perform the image rotation process at each first predetermined time a, and the actuator 43 is driven in response to the rotation blur acquired by the gyro sensor 6 shorter than the first predetermined time a. Since it is executed every second predetermined time b, it is not necessary to have any further processing capacity.
  • the image pickup apparatus is small in size, can respond immediately to image blurring, and can reduce costs.

Abstract

An image pickup device comprises: a lens (3); a main body (2) that holds the lens (3); an image pickup element (21) that converts an image from the lens (3) to an electrical signal; a rotational shaking acquisition section (6) that acquires the rotational shaking about the optic axis of the lens (3); a drive section (43) that moves the image pickup element (21); an attitude acquisition section (7) that acquires the attitude of the main body (2); an image processing section (54) that performs rotational processing of the image that was picked up by the image pickup element (21); and a control section (30) that drives the drive section (43) in accordance with the rotational shaking acquired by the rotational shaking acquisition section (6) and performs rotational processing of the image by an image processing section (53) in accordance with the attitude of the main body (2) acquired by the attitude acquisition section (7).

Description

撮像装置Imaging device
 本発明は、デジタルカメラ等の撮像装置において、像のブレを補正する撮像装置に関するものである。 The present invention relates to an imaging apparatus that corrects image blur in an imaging apparatus such as a digital camera.
 従来、手ブレ等による像ブレの補正をする像ブレ補正装置に関する技術がある(特許文献1及び特許文献2参照)。 Conventionally, there is a technology related to an image blur correction device that corrects image blur due to camera shake or the like (see Patent Document 1 and Patent Document 2).
 特許文献1には、撮像素子を機械的に回転させる機械式補正装置により、像ブレを補正する技術が開示されている。 Patent Document 1 discloses a technique for correcting image blur by a mechanical correction device that mechanically rotates an image sensor.
 また、特許文献2には、画像処理による電子式補正装置により、像ブレを補正する技術が開示されている。 Patent Document 2 discloses a technique for correcting image blur by an electronic correction device using image processing.
特開2009-244492号公報JP 2009-244492 A 特開2000-224461号公報JP 2000-224461 A
 上記特開2009-244492号公報に記載の機械式の補正装置によって像ブレを補正する場合、撮像素子を移動させる部材を配置するために撮像素子近傍の空間を確保する必要がある。歩行時の回転ブレ等の大きな像ブレを補正する場合、撮像素子の移動する範囲が大きくなるので、撮像素子を移動させる部材も大きくなり、確保する空間も大きくなる。 When correcting the image blur using the mechanical correction device described in the above Japanese Patent Application Laid-Open No. 2009-244492, it is necessary to secure a space in the vicinity of the image sensor in order to arrange a member that moves the image sensor. When correcting a large image blur such as a rotation blur at the time of walking, the range in which the image sensor moves is increased, so that a member for moving the image sensor is increased and a space to be secured is also increased.
 また、上記特開2000-224461号公報に記載の電子式の補正装置によって像ブレを補正する場合、複雑な演算処理が必要となる。複雑な演算処理を行うには、長い演算処理時間、もしくは演算処理能力の高いCPU等が必要となる。演算処理時間が長いと、補正装置は、像ブレに即時に対応できない。また、演算処理能力の高いCPUを使用すると、補正装置は、コストが高くなってしまう。また、電子式の補正装置は、デジタル信号で対応するので、撮像中の細かいブレに対応することが困難であった。 In addition, when the image blur is corrected by the electronic correction device described in Japanese Patent Laid-Open No. 2000-224461, complicated calculation processing is required. In order to perform complicated arithmetic processing, a long arithmetic processing time or a CPU with high arithmetic processing capability is required. If the calculation processing time is long, the correction device cannot immediately cope with image blur. In addition, if a CPU having a high processing capacity is used, the correction device becomes expensive. Further, since the electronic correction device responds with a digital signal, it is difficult to cope with fine blurring during imaging.
 本願発明は、上記のような問題点に鑑み、小型で、像ブレに即時に対応でき、低コストな撮像装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a low-cost imaging apparatus that is small in size, can respond immediately to image blurring.
 本発明の一実施形態である撮像装置は、
 レンズと、
 前記レンズを保持する本体と、
 前記レンズからの像を電気信号に変換する撮像素子と、
 前記レンズの光軸回りの回転ブレを取得する回転ブレ取得部と、
 前記撮像素子を移動させる駆動部と、
 前記本体の姿勢を取得する姿勢取得部と、
 前記撮像素子の撮像した画像を回転処理する画像処理部と、
 前記回転ブレ取得部の取得した回転ブレに応じて前記駆動部を駆動させ、前記姿勢取得部の取得した前記本体の姿勢に応じて前記画像処理部で画像を回転処理させる制御部と、
を備える。
An imaging apparatus according to an embodiment of the present invention is
A lens,
A main body for holding the lens;
An image sensor that converts an image from the lens into an electrical signal;
A rotational blur acquisition unit that acquires rotational blur around the optical axis of the lens;
A drive unit for moving the image sensor;
A posture acquisition unit for acquiring the posture of the main body;
An image processing unit that rotates an image captured by the image sensor;
A controller that drives the drive unit according to the rotational shake acquired by the rotational shake acquisition unit, and rotates the image in the image processing unit according to the posture of the main body acquired by the posture acquisition unit;
Is provided.
 本発明の一実施形態である撮像装置では、
 前記姿勢取得部の取得した前記本体の姿勢に応じて、前記画像処理部が画像を回転処理する画像回転補正係数を取得する画像回転補正係数取得部と、
を備える。
In the imaging device according to an embodiment of the present invention,
An image rotation correction coefficient acquisition unit that acquires an image rotation correction coefficient by which the image processing unit rotates an image according to the posture of the main body acquired by the posture acquisition unit;
Is provided.
 本発明の一実施形態である撮像装置では、
 撮像開始を指示する操作部を備え、
 前記制御部は、
  前記操作部による撮像開始時に、
  前記画像回転補正係数取得部によって撮像開始時の画像回転補正係数を取得させ、
  前記回転ブレ取得部の取得した回転ブレに応じて前記駆動部を駆動させて撮像開始時の状態に補正し、
  前記撮像開始時の画像回転補正係数に応じて前記画像処理部に画像を回転処理させる。
In the imaging device according to an embodiment of the present invention,
It has an operation unit that instructs the start of imaging,
The controller is
At the start of imaging by the operation unit,
The image rotation correction coefficient acquisition unit acquires an image rotation correction coefficient at the start of imaging,
According to the rotational shake acquired by the rotational shake acquisition unit, the drive unit is driven to correct the state at the start of imaging,
The image processing unit rotates the image according to the image rotation correction coefficient at the start of the imaging.
 本発明の一実施形態である撮像装置では、
 前記制御部は、
  前記画像処理部による画像の回転処理を第1の所定時間毎に実行させ、
  前記回転ブレ取得部の取得した回転ブレに応じた前記駆動部の駆動を前記第1の所定時間より短い第2の所定時間毎に実行させる。
In the imaging device according to an embodiment of the present invention,
The controller is
The rotation processing of the image by the image processing unit is executed every first predetermined time,
Drive of the drive unit according to the rotational shake acquired by the rotational shake acquisition unit is executed every second predetermined time shorter than the first predetermined time.
 この態様に係る撮像装置によれば、小型で、像ブレに即時に対応でき、コストを低くすることが可能となる。 The image pickup apparatus according to this aspect is small in size, can respond immediately to image blurring, and can reduce costs.
本発明の一実施形態のデジタルカメラを示す前方斜視図である。It is a front perspective view showing a digital camera of one embodiment of the present invention. 本発明の一実施形態のデジタルカメラを示す後方斜視図である。It is a back perspective view showing a digital camera of one embodiment of the present invention. 本発明の一実施形態のデジタルカメラの主要部の内部回路の構成ブロック図である。It is a block diagram of the internal circuit of the main part of the digital camera of one embodiment of the present invention. 本実施形態に係るデジタルカメラ1の像ブレ補正制御フローチャートを示す図である。It is a figure which shows the image blurring correction control flowchart of the digital camera 1 which concerns on this embodiment. サブルーチンの回転補正係数取得処理のフローチャートを示す図である。It is a figure which shows the flowchart of the rotation correction coefficient acquisition process of a subroutine. サブルーチンの機械式補正処理のフローチャートを示す図である。It is a figure which shows the flowchart of the mechanical correction process of a subroutine. サブルーチンの電子式補正処理のフローチャートを示す図である。It is a figure which shows the flowchart of the electronic correction | amendment process of a subroutine. 経過時間に対する各回転角を示す図である。It is a figure which shows each rotation angle with respect to elapsed time. 画像記録開始時t=t0のデジタルカメラの状態を示す図である。Is a diagram showing a state of the digital camera of the image recording start time t = t 0. 機械式補正後の画像を示す図である。It is a figure which shows the image after mechanical correction | amendment. 画像の回転処理を示す図である。It is a figure which shows the rotation process of an image. 画像の切り落とし処理を示す図である。It is a figure which shows the cutting-out process of an image. 電子式補正後の画像を示す図である。It is a figure which shows the image after electronic correction | amendment. t=t1の時のデジタルカメラの状態を示す図である。is a diagram showing a state of the digital camera when the t = t 1. t=t2の時のデジタルカメラの状態を示す図である。is a diagram showing a state of the digital camera when the t = t 2.
 以下、本発明の一実施形態について説明する。なお、以下の説明においては、本発明を、動画撮影機能を備えた撮像装置としてのデジタルカメラ(図1参照)に適用した場合を例に説明する。 Hereinafter, an embodiment of the present invention will be described. In the following description, the case where the present invention is applied to a digital camera (see FIG. 1) as an imaging apparatus having a moving image shooting function will be described as an example.
 図1は、本発明の一実施形態のデジタルカメラを示す前方斜視図である。図2は、本発明の一実施形態のデジタルカメラを示す後方斜視図である。なお、図1に示すように、デジタルカメラ1の幅方向をX軸方向、高さ方向をY軸方向、奥行き方向をZ軸方向とする。 FIG. 1 is a front perspective view showing a digital camera according to an embodiment of the present invention. FIG. 2 is a rear perspective view showing the digital camera according to the embodiment of the present invention. As shown in FIG. 1, the width direction of the digital camera 1 is the X-axis direction, the height direction is the Y-axis direction, and the depth direction is the Z-axis direction.
 図1及び図2に示すように、本実施形態に係るデジタルカメラ1は、略直方体状に形成されたカメラ本体(筺体)2、光学系としてのレンズ3、操作部としてのシャッターボタン4、パワーボタン5、回転ブレ取得部としてのジャイロセンサ6、姿勢取得部としての加速度センサ7(以上、図1参照)、メニューボタン8、十字ボタン9、OK/FUNCボタン10、ズームボタン11、及び、モードダイヤル12、液晶モニター等の表示部13(以上、図2参照)を有する一般的なデジタルカメラ1の装置構成である。 As shown in FIGS. 1 and 2, a digital camera 1 according to this embodiment includes a camera body (housing) 2 formed in a substantially rectangular parallelepiped shape, a lens 3 as an optical system, a shutter button 4 as an operation unit, power Button 5, gyro sensor 6 as a rotation blur acquisition unit, acceleration sensor 7 as an attitude acquisition unit (see FIG. 1 above), menu button 8, cross button 9, OK / FUNC button 10, zoom button 11, and mode This is a device configuration of a general digital camera 1 having a display unit 13 (see FIG. 2 above) such as a dial 12 and a liquid crystal monitor.
 シャッターボタン4は、レンズ3により撮像される静止画または動画(連続する静止画)の記録を指示するための操作ボタンである。パワーボタン5は、このデジタルカメラ1の電源をオンオフするための操作ボタンである。ジャイロセンサ6は、3軸を中心軸とするそれぞれの回転角速度を計測するセンサである。加速度センサ7は、3軸方向のそれぞれの加速度を計測するセンサである。 The shutter button 4 is an operation button for instructing recording of a still image or a moving image (continuous still image) captured by the lens 3. The power button 5 is an operation button for turning on / off the power of the digital camera 1. The gyro sensor 6 is a sensor that measures each rotational angular velocity with the three axes as the central axis. The acceleration sensor 7 is a sensor that measures each acceleration in the three-axis directions.
 メニューボタン8は、このデジタルカメラ1の各種設定のためのメニュー画面を表示部13に表示させるための操作ボタンである。十字ボタン9は、表示部13に表示されたメニュー画面上のカーソルの位置を移動させる等により所望のメニュー項目を選択させるための操作ボタンである。OK/FUNCボタン10は、十字ボタン9を用いて選択したメニュー項目を選択項目として確定させるための操作ボタンである。ズームボタン11は、レンズ3をワイド側又はテレ側に移動させることで焦点距離の変更を指示するための操作ボタンである。モードダイヤル12は、例えば動画撮影モードや静止画撮影モード等のデジタルカメラ1の動作モードを設定するための操作ダイヤルである。 The menu button 8 is an operation button for displaying a menu screen for various settings of the digital camera 1 on the display unit 13. The cross button 9 is an operation button for selecting a desired menu item by moving the position of the cursor on the menu screen displayed on the display unit 13 or the like. The OK / FUNC button 10 is an operation button for confirming a menu item selected using the cross button 9 as a selection item. The zoom button 11 is an operation button for instructing to change the focal length by moving the lens 3 to the wide side or the tele side. The mode dial 12 is an operation dial for setting an operation mode of the digital camera 1 such as a moving image shooting mode or a still image shooting mode.
 図3は、本実施形態に係るデジタルカメラ1のハードウェア構成例を示す図である。 FIG. 3 is a diagram illustrating a hardware configuration example of the digital camera 1 according to the present embodiment.
 図3に示すデジタルカメラ1は、撮像光学系であるレンズ3、撮像素子21、AFE22、バッファメモリ23、表示処理部24、表示部13、内蔵メモリ25aと外部メモリ25bとから構成される記憶部25、圧縮伸張部26、インターフェース27、集音部28、操作部29、CPU30、機械式補正部40、電子式補正部50等を有する構成である。 The digital camera 1 shown in FIG. 3 includes a lens 3 that is an imaging optical system, an imaging device 21, an AFE 22, a buffer memory 23, a display processing unit 24, a display unit 13, a built-in memory 25a, and an external memory 25b. 25, a compression / expansion unit 26, an interface 27, a sound collection unit 28, an operation unit 29, a CPU 30, a mechanical correction unit 40, an electronic correction unit 50, and the like.
 機械式補正部40は、ジャイロセンサ6、ジャイロ信号処理部41、機械式補正量決定部42a及び機械式補正制御部42bからなるサブCPU42、X軸アクチュエータ43x、Y軸アクチュエータ43yからなる駆動部としてのアクチュエータ43を有する。また、電子式補正部50は、加速度センサ7、加速度信号処理部51、画像回転補正係数取得部52、画像処理部53を有する。 The mechanical correction unit 40 is a drive unit including the sub CPU 42 including the gyro sensor 6, the gyro signal processing unit 41, the mechanical correction amount determination unit 42a, and the mechanical correction control unit 42b, the X-axis actuator 43x, and the Y-axis actuator 43y. The actuator 43 is provided. The electronic correction unit 50 includes an acceleration sensor 7, an acceleration signal processing unit 51, an image rotation correction coefficient acquisition unit 52, and an image processing unit 53.
 以下、各構成要素について順不同に説明する。 Hereinafter, each component will be described in random order.
 デジタルカメラ1は、撮像光学系であるレンズ3からの像を、撮像素子21の受光面に結像させることで、被写体を撮像して画像データ(画像信号)を順次取得する。撮像素子21は、レンズ3により結像された被写体像を光電変換して得られる画像をAFE(Analog Front End)22に出力する。 The digital camera 1 forms an image from the lens 3 that is an image pickup optical system on the light receiving surface of the image pickup element 21, thereby picking up an object and sequentially acquiring image data (image signal). The image sensor 21 outputs an image obtained by photoelectrically converting the subject image formed by the lens 3 to an AFE (Analog Front End) 22.
 撮像素子21は、例えばCCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサである。 The image sensor 21 is an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 AFE22は、撮像素子21から出力されたアナログ電気信号のノイズ成分を低減させると共に信号レベルを安定化させて、アナログ電気信号のノイズ成分の低減や信号レベルの安定化等を行った後、アナログ電気信号をA-Dコンバータでデジタル電気信号に変換する。変換後のデジタル電気信号は画像データとしてバス20に出力される。 The AFE 22 reduces the noise component of the analog electric signal output from the image pickup device 21 and stabilizes the signal level, reduces the noise component of the analog electric signal, stabilizes the signal level, etc. The signal is converted into a digital electrical signal by an AD converter. The converted digital electric signal is output to the bus 20 as image data.
 バッファメモリ23は、AFE22からバス20に出力された画像データを取得して一時的に記憶する。このバッファメモリ23は、例えばDRAM(Dynamic Random Access Memory)等の記憶装置である。 The buffer memory 23 acquires the image data output from the AFE 22 to the bus 20 and temporarily stores it. The buffer memory 23 is a storage device such as a DRAM (Dynamic Random Access Memory).
 表示処理部24は、画像処理部53により画像処理が施された画像データを基に表示部13に画像データを表示するときに、表示部13が表示可能な映像信号を生成して表示部13に出力する。表示部13は、表示処理部24により出力された映像信号に応じた映像を表示する。この表示部13は、例えば液晶モニター等の表示装置である。 The display processing unit 24 generates a video signal that can be displayed by the display unit 13 when displaying the image data on the display unit 13 based on the image data subjected to the image processing by the image processing unit 53. Output to. The display unit 13 displays a video corresponding to the video signal output by the display processing unit 24. The display unit 13 is a display device such as a liquid crystal monitor.
 記憶部25は、画像データを記憶する。ここでいう画像データとは、画像処理部53により画像処理が施され且つ圧縮伸張部26によって圧縮処理が施された画像データである。この記憶部25は、内蔵メモリ25aや外部メモリ25bにより構成される。内蔵メモリ25aは、デジタルカメラ1に予め内蔵されているメモリである。外部メモリ25bは、デジタルカメラ1に着脱自在の例えばxD-ピクチャーカード(登録商標)等のメモリカードである。また、内蔵メモリ25aには、このカメラを制御するための制御プログラム等も格納されている。 The storage unit 25 stores image data. The image data here is image data that has been subjected to image processing by the image processing unit 53 and compression processing by the compression / decompression unit 26. The storage unit 25 includes an internal memory 25a and an external memory 25b. The built-in memory 25a is a memory built in the digital camera 1 in advance. The external memory 25b is a memory card such as an xD-Picture Card (registered trademark) that is detachably attached to the digital camera 1. The built-in memory 25a also stores a control program for controlling the camera.
 圧縮伸張部26は、画像処理部53により画像処理が施された画像データを内蔵メモリ25aや外部メモリ25bに記憶させるときに圧縮処理を施したり、内蔵メモリ25aや外部メモリ25bに記憶された画像データを読み出すときに伸張処理を施したりする。ここでいう圧縮処理や伸張処理とは、JPEG(Joint Photographic Experts Group)方式やMPEG(Moving Picture Experts Group)方式等による処理である。 The compression / decompression unit 26 performs compression processing when the image data subjected to the image processing by the image processing unit 53 is stored in the internal memory 25a or the external memory 25b, or the image stored in the internal memory 25a or the external memory 25b. When data is read out, decompression processing is performed. The compression processing and decompression processing here are processing by JPEG (Joint-Photographic Experts Group) system, MPEG (Moving Picture Experts Group) system, or the like.
 インターフェース27は、デジタルカメラ1が外部機器と有線通信規格で接続するための、例えばUSB(Universal Serial Bus)、又は、デジタルカメラ1が外部機器と無線通信規格で接続するための、例えばIrDA(Infrared Data Association)である。 The interface 27 is, for example, a USB (Universal Serial Bus) for connecting the digital camera 1 to an external device using a wired communication standard, or an IrDA (Infrared) for connecting the digital camera 1 to an external device using a wireless communication standard. Data Association).
 集音部28は、音声を集音するマイクロフォン等の装置である。この集音部28によって得られた音声信号はCPU30に送信される。 The sound collection unit 28 is a device such as a microphone that collects sound. The audio signal obtained by the sound collecting unit 28 is transmitted to the CPU 30.
 操作部29は、図1に示したシャッターボタン4、パワーボタン5、図2に示したメニューボタン8、十字ボタン9、OK/FUNCボタン10、ズームボタン11、モードダイヤル12等である。これら操作部29に係る操作情報はCPU30に送信される。 The operation unit 29 includes the shutter button 4, the power button 5 shown in FIG. 1, the menu button 8, the cross button 9, the OK / FUNC button 10, the zoom button 11, the mode dial 12, etc. shown in FIG. The operation information related to the operation unit 29 is transmitted to the CPU 30.
 CPU30は、内蔵メモリ25aに格納されている制御プログラムを読み出して実行することで、デジタルカメラ1の全体の動作を制御する。 The CPU 30 controls the overall operation of the digital camera 1 by reading and executing the control program stored in the built-in memory 25a.
 機械式補正部40は、ジャイロセンサ6、ジャイロ信号処理部41、サブCPU42、及びアクチュエータ43を有する。 The mechanical correction unit 40 includes a gyro sensor 6, a gyro signal processing unit 41, a sub CPU 42, and an actuator 43.
 ジャイロセンサ6は、3軸回りの角速度を測定して、カメラ本体2の手振れ等の動きを検出するセンサである。ジャイロセンサ6は、手振れ量等の手振れに関する情報を検出してジャイロ信号処理部41に送信する。ジャイロ信号処理部41は、ジャイロセンサ6の測定情報にフィルタ処理や増幅処理を施してサブCPU42に送信する。 The gyro sensor 6 is a sensor that measures angular velocities around three axes and detects movements such as camera shake of the camera body 2. The gyro sensor 6 detects information related to camera shake such as the amount of camera shake and transmits the information to the gyro signal processing unit 41. The gyro signal processing unit 41 performs filtering processing and amplification processing on the measurement information of the gyro sensor 6 and transmits the result to the sub CPU 42.
 サブCPU42は、機械式補正量決定部42aと、機械式補正制御部42bと、を有する。機械式補正量決定部42aは、ジャイロ信号処理部41から受信した信号から機械式補正量を決定する。機械式補正制御部42bは、機械式補正量決定部42aが決定した補正量に基づき、アクチュエータ43を制御する。 The sub CPU 42 includes a mechanical correction amount determination unit 42a and a mechanical correction control unit 42b. The mechanical correction amount determination unit 42 a determines the mechanical correction amount from the signal received from the gyro signal processing unit 41. The mechanical correction control unit 42b controls the actuator 43 based on the correction amount determined by the mechanical correction amount determination unit 42a.
 アクチュエータ43は、例えばボイスコイルモータ(VCM)からなり、撮像素子21をX軸方向に移動させるX軸アクチュエータ43xと、撮像素子21をY軸方向に移動させるY軸アクチュエータ43yと、を有する。X軸アクチュエータ43xとY軸アクチュエータ43yの両方を作動させることで、撮像素子21を回転移動させることも可能である。 The actuator 43 is made of, for example, a voice coil motor (VCM), and includes an X-axis actuator 43x that moves the image sensor 21 in the X-axis direction and a Y-axis actuator 43y that moves the image sensor 21 in the Y-axis direction. It is also possible to rotate the image sensor 21 by operating both the X-axis actuator 43x and the Y-axis actuator 43y.
 電子式補正部50は、加速度センサ7と、加速度信号処理部51と、画像回転補正係数取得部52と、画像処理部53と、を有する。 The electronic correction unit 50 includes an acceleration sensor 7, an acceleration signal processing unit 51, an image rotation correction coefficient acquisition unit 52, and an image processing unit 53.
 加速度センサ7は、3軸方向の加速度を測定して、絶対水平を基準とするカメラ本体2の姿勢を検出するセンサである。加速度センサ7は、カメラ本体2の姿勢に関する情報を検出して加速度信号処理部51に送信する。加速度信号処理部51は、加速度センサ7の測定情報から絶対水平に対する回転角度を求めて、画像回転補正係数取得部52に送信する。 The acceleration sensor 7 is a sensor that detects the attitude of the camera body 2 with reference to absolute horizontal by measuring acceleration in three axis directions. The acceleration sensor 7 detects information related to the posture of the camera body 2 and transmits it to the acceleration signal processing unit 51. The acceleration signal processing unit 51 obtains the rotation angle with respect to the absolute horizontal from the measurement information of the acceleration sensor 7 and transmits it to the image rotation correction coefficient acquisition unit 52.
 画像回転補正係数取得部52は、画像を回転補正する際に用いる回転行列を求める。 The image rotation correction coefficient acquisition unit 52 obtains a rotation matrix used when the image is rotationally corrected.
 画像処理部53は、通常、バッファメモリ23、内蔵メモリ25a又は外部メモリ25bに記憶された画像データに対して、ガンマ補正やホワイトバランス補正等の補正処理や画素数を増減させる拡大・縮小処理(リサイズ処理)等の各種の画像処理を施す。この画像処理部53は、バッファメモリ23、内蔵メモリ25a又は外部メモリ25bに記憶された画像データに基づいて表示部13に画像データを表示するとき、バッファメモリ23に記憶された画像データを内蔵メモリ25aや外部メモリ25bに記憶させるときに、その前処理として上記の画像処理を施す。 The image processing unit 53 normally performs correction processing such as gamma correction and white balance correction, and enlargement / reduction processing (increasing / decreasing the number of pixels) for image data stored in the buffer memory 23, the built-in memory 25a, or the external memory 25b. Various image processing such as resizing processing is performed. When the image processing unit 53 displays the image data on the display unit 13 based on the image data stored in the buffer memory 23, the built-in memory 25a, or the external memory 25b, the image data stored in the buffer memory 23 is stored in the built-in memory. When the image data is stored in 25a or the external memory 25b, the above-described image processing is performed as preprocessing.
 また、本実施形態の画像処理部53は、画像回転補正係数取得部52の求めた回転行列に基づき、画像を回転処理する機能を有する。その後、予め設定された切り出し量に基づいて画像端を切り落とし、表示処理部24に送信する。 Further, the image processing unit 53 of the present embodiment has a function of rotating the image based on the rotation matrix obtained by the image rotation correction coefficient acquisition unit 52. Thereafter, the image edge is cut off based on a preset cut-out amount and transmitted to the display processing unit 24.
 次に、図3に示した各構成要素による像ブレ補正制御について説明する。 Next, image blur correction control by each component shown in FIG. 3 will be described.
 図4は、本実施形態に係るデジタルカメラ1の像ブレ補正制御フローチャートを示す図である。図5は、サブルーチンの回転補正係数取得処理のフローチャートを示す図である。図6は、サブルーチンの機械式補正処理のフローチャートを示す図である。図7は、サブルーチンの電子式補正処理のフローチャートを示す図である。また、図8は、経過時間に対する各回転角を示す図である。 FIG. 4 is a view showing an image blur correction control flowchart of the digital camera 1 according to the present embodiment. FIG. 5 is a flowchart of a subroutine rotation correction coefficient acquisition process. FIG. 6 is a flowchart of the mechanical correction process of the subroutine. FIG. 7 is a flowchart of the electronic correction process of the subroutine. Moreover, FIG. 8 is a figure which shows each rotation angle with respect to elapsed time.
 さらに、図9~図14は、それぞれのタイミングでのデジタルカメラ1又は画像の状態を示す図である。図9は、画像記録開始時t=t0のデジタルカメラの状態を示す図である。図10は、機械式補正後の画像の状態を示す図である。図11は、画像の回転処理を示す図である。図12は、画像の切り落とし処理を示す図である。図13は、電子式補正後の画像を示す図である。 Further, FIG. 9 to FIG. 14 are diagrams showing states of the digital camera 1 or images at respective timings. FIG. 9 is a diagram illustrating a state of the digital camera at the time of image recording start t = t 0 . FIG. 10 is a diagram illustrating a state of an image after mechanical correction. FIG. 11 is a diagram illustrating image rotation processing. FIG. 12 is a diagram illustrating image cut-out processing. FIG. 13 is a diagram illustrating an image after electronic correction.
 本実施形態に係るデジタルカメラ1は、図8(a)に示した本体回転角のように回転した場合を一例に挙げて説明する。また、本体回転角に応じて、機械式補正回転角は、図8(b)のように補正され、電子式補正回転角は、図8(c)のように補正されるものとする。この動きは、例えば、歩行時の動画撮影の様な状態を想定している。 The digital camera 1 according to the present embodiment will be described by taking as an example a case where the digital camera 1 rotates like the main body rotation angle shown in FIG. Further, it is assumed that the mechanical correction rotation angle is corrected as shown in FIG. 8B and the electronic correction rotation angle is corrected as shown in FIG. 8C according to the main body rotation angle. This movement assumes, for example, a state of moving image shooting during walking.
 本実施形態に係るデジタルカメラ1の手ぶれ補正制御は、図4に示すように、まず、パワーボタン5が押され、電源が入る等すると、ステップ1で、ジャイロ信号処理部41及びアクチュエータ43を初期化する(ST1)。初期化をすることで、撮像素子21を初期位置に戻す。 In the camera shake correction control of the digital camera 1 according to this embodiment, as shown in FIG. 4, first, when the power button 5 is pressed and the power is turned on, the gyro signal processing unit 41 and the actuator 43 are initially set in step 1. (ST1). By initializing, the image sensor 21 is returned to the initial position.
 次に、ステップ2で、画像記録の開始を指示されたか否かを判断する(ST2)。画像記録の開始は、例えば、動画撮影開始ボタン、録画ボタン又はシャッターボタン等の操作部29の操作によって判断する。 Next, in step 2, it is determined whether or not an instruction to start image recording is given (ST2). The start of image recording is determined, for example, by operating the operation unit 29 such as a moving image shooting start button, a recording button, or a shutter button.
 ステップ2において、画像記録の開始を指示されていない場合、ステップ2に戻る。 ステップ2において、画像記録の開始を指示された場合、ステップ3で、カウンタを初期値n=0とする(ST3)。 If the start of image recording is not instructed in step 2, the process returns to step 2. When it is instructed to start image recording in step 2, the counter is set to an initial value n = 0 in step 3 (ST3).
 次に、ステップ4で、回転補正係数取得処理のサブルーチンを実行する(ST4)。 Next, in step 4, a rotation correction coefficient acquisition processing subroutine is executed (ST4).
 図5に示すように、回転補正係数取得処理は、まず、ステップ41で、加速度センサ7でデジタルカメラ1の本体2の加速度を計測する(ST41)。 As shown in FIG. 5, in the rotation correction coefficient acquisition process, first, in step 41, the acceleration sensor 7 measures the acceleration of the main body 2 of the digital camera 1 (ST41).
 続いて、ステップ42で、加速度センサ7の計測した信号を加速度信号処理部51で信号処理する(ST42)。加速度信号処理部51では、加速度センサ7の計測値から図9に示した絶対水平に対する光軸回りの本体2の回転角度θI[deg]を求める。 Subsequently, in step 42, the acceleration signal processing unit 51 performs signal processing on the signal measured by the acceleration sensor 7 (ST42). The acceleration signal processing unit 51 obtains the rotation angle θ I [deg] of the main body 2 around the optical axis with respect to the absolute horizontal shown in FIG. 9 from the measurement value of the acceleration sensor 7.
 次に、ステップ43で、本体2の回転角度θI[deg]に基づいて、回転補正係数取得部52によって、画像回転行列を求める(ST43)。画像回転行列は、補正前の画素データの座標を(Xi,Yi)、補正後の画素データの座標を(Xo,Yo)として、以下の式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
Next, in step 43, an image rotation matrix is obtained by the rotation correction coefficient acquisition unit 52 based on the rotation angle θ I [deg] of the main body 2 (ST43). The image rotation matrix is expressed as the following expression (1), where the coordinates of pixel data before correction are (X i , Y i ) and the coordinates of pixel data after correction are (X o , Y o ). .
Figure JPOXMLDOC01-appb-M000001
 次に、メインルーチンに戻り、ステップ5で、機械式補正処理のサブルーチンを実行する(ST5)。 Next, returning to the main routine, a subroutine of mechanical correction processing is executed in step 5 (ST5).
 図8に示したように、画像記録の開始指示の時をt=t0とする。また、t=t0の時のデジタルカメラ1の状態を、図9に示すように、角度θI[deg]傾斜した開始状態とする。機械式補正処理では、画像記録の開始後、デジタルカメラ1が開始状態から移動した角度θM[deg]を計測して、撮像素子21の回転目標を取得し、その回転目標に応じてアクチュエータ43を駆動することで、撮像素子21上の画像を、図10に示すように開始指示の時t=t0の画像状態に処理するものである。 As shown in FIG. 8, it is assumed that the time for instructing the start of image recording is t = t 0 . Further, the state of the digital camera 1 when t = t 0 is set to a start state inclined by an angle θ I [deg] as shown in FIG. In the mechanical correction process, after the image recording is started, the angle θ M [deg] that the digital camera 1 has moved from the start state is measured, the rotation target of the image sensor 21 is acquired, and the actuator 43 according to the rotation target. , The image on the image sensor 21 is processed into an image state of t = t 0 at the start instruction as shown in FIG.
 図6に示すように、機械式補正処理は、まず、ステップ51で、ジャイロセンサ6によりデジタルカメラ1の本体2の光軸に対する角速度を計測する(ST51)。 As shown in FIG. 6, in the mechanical correction process, first, in step 51, the gyro sensor 6 measures the angular velocity with respect to the optical axis of the main body 2 of the digital camera 1 (ST51).
 続いて、ステップ52で、ジャイロセンサ6の計測した信号をジャイロ信号処理部41で信号処理する(ST52)。 Subsequently, in step 52, the signal measured by the gyro sensor 6 is processed by the gyro signal processing unit 41 (ST52).
 次に、ステップ53で、機械式補正量決定部42aで、撮像素子21の回転目標角を取得する(ST53)。撮像素子21の回転目標角は、図8(b)に示すように、第2の所定時間b毎に計測される角度θM[deg]となる。 Next, in step 53, the mechanical correction amount determination unit 42a acquires the target rotation angle of the image sensor 21 (ST53). The target rotation angle of the image sensor 21 is an angle θ M [deg] measured every second predetermined time b as shown in FIG. 8B.
 次に、ステップ54で、撮像素子21を機械式補正量決定部42aが決定した回転目標角θM[deg]となるまで回転させるように、機械式補正制御部42bがアクチュエータ6を駆動させる(ST54)。その結果、撮像素子21は、図10に示すように、機械式補正後の画像を撮像する。 Next, in step 54, the mechanical correction control unit 42b drives the actuator 6 so as to rotate the imaging device 21 until the rotation target angle θ M [deg] determined by the mechanical correction amount determination unit 42a is reached ( ST54). As a result, the image sensor 21 captures an image after mechanical correction, as shown in FIG.
 次に、メインルーチンに戻り、ステップ6で、時間tが初期値t0であるか否か、又は、tn=t(n-1)+aを満たしているか否かを判断する(ST6)。 Next, returning to the main routine, in step 6, it is determined whether or not the time t is the initial value t 0 or whether or not t n = t (n−1) + a is satisfied (ST6).
 ステップ6において、最初、ステップ3でカウンタ値n=0としたので、t=t0となり、ステップ7へ進む。その後は、第1の所定時間aが過ぎる毎にステップ7へ進む。第1の所定時間aは、適宜決めればよい。 In step 6, the counter value n is initially set to 0 in step 3, so that t = t 0 and the process proceeds to step 7. Thereafter, the process proceeds to step 7 every time the first predetermined time a has passed. The first predetermined time a may be determined as appropriate.
 ステップ6において、tn=t(n-1)+aを満たしていない場合、ステップ5に戻り、機械式補正処理を実行する。すなわち、図8(b)における経過時間t0~t1の間、機械式補正処理を繰り返し実行し、撮像素子21上の画像を開始指示の時t0の画像状態に処理する。なお、図8(b)では、第2の所定時間b毎にt0~t1の間を9等分しているが、第2の所定時間bは、適宜決めればよい。 In step 6, when t n = t (n-1) + a is not satisfied, the process returns to step 5 to execute mechanical correction processing. That is, the mechanical correction process is repeatedly executed during the elapsed time t 0 to t 1 in FIG. 8B, and the image on the image sensor 21 is processed into the image state at the time t 0 when the start instruction is given. In FIG. 8B, the interval between t 0 and t 1 is divided into nine equal parts for each second predetermined time b, but the second predetermined time b may be determined as appropriate.
 ステップ6において、第1の所定時間aが経過し、経過時間がt1=t0+aとなった場合、ステップ7に進む。 In step 6, when the first predetermined time a has elapsed and the elapsed time becomes t 1 = t 0 + a, the process proceeds to step 7.
 ステップ7では、AFE22からバス20を経由しバッファメモリ23に画像データを取得することで、フレームを撮像する(ST7)。続いて、ステップ8で、フレームを現像する(ST8)。ここでいう、現像とは、表示部13が表示可能な映像信号を生成する処理を行うことである。 In step 7, the frame is imaged by acquiring the image data from the AFE 22 via the bus 20 to the buffer memory 23 (ST7). Subsequently, in step 8, the frame is developed (ST8). The term “development” here refers to performing processing for generating a video signal that can be displayed by the display unit 13.
 次に、ステップ9で、電子式補正処理のサブルーチンを実行する(ST9)。 Next, in step 9, an electronic correction processing subroutine is executed (ST9).
 図7に示すように、電子式補正処理は、まず、ステップ91で、ステップ43における回転補正係数取得処理において取得した画像回転行列の式(1)によって、図11に示されるように、画像を回転処理する(ST91)。 As shown in FIG. 7, in the electronic correction process, first, in step 91, as shown in FIG. 11, the image is obtained by the equation (1) of the image rotation matrix acquired in the rotation correction coefficient acquisition process in step 43. The rotation process is performed (ST91).
 電子式補正処理における画像の回転処理は、機械式補正処理によって撮像素子21上の画像が開始指示の時t0の画像状態に処理されている。したがって、図8(c)に示すように、一定角度θIだけ回転させればよい。回転処理後の画像は、図11の実線で示されるように、画像内の水平線、すなわち重力に直交する線と、実際の水平線、すなわち重力に直交する線とが平行となる絶対水平の画像となる。 In the image rotation process in the electronic correction process, the image on the image sensor 21 is processed into the image state at t 0 when the start instruction is given by the mechanical correction process. Accordingly, as shown in FIG. 8 (c), it may be rotated by a predetermined angle theta I. As shown by the solid line in FIG. 11, the image after the rotation processing is an absolute horizontal image in which a horizontal line in the image, that is, a line orthogonal to gravity, and an actual horizontal line, that is, a line orthogonal to gravity are parallel to each other. Become.
 次に、ステップ92で、予め設定された切り出し量に基づいて、図12に示されるように、画像端の切り落とし処理を実行する(ST92)。切り落とし処理後の画像は、図12の実線で示されるように、斜めに傾斜した部分を切り落として、絶対水平の長方形の画像となる。 Next, in step 92, based on the preset cutout amount, as shown in FIG. 12, an image edge cutout process is executed (ST92). As shown by the solid line in FIG. 12, the image after the cut-off process is an absolute horizontal rectangular image by cutting off an obliquely inclined portion.
 次に、メインルーチンに戻り、ステップ10で、カウンタ値をn=n+1とする(ST10)。 Next, returning to the main routine, at step 10, the counter value is set to n = n + 1 (ST10).
 次に、ステップ11で、画像記録の終了を指示されたか否かを判断する(ST11)。 Next, in step 11, it is determined whether or not the end of image recording is instructed (ST11).
 ステップ11において、画像記録の終了を指示された場合、制御を終了する。制御終了時の画像は、図13に示される。 If the end of image recording is instructed in step 11, the control is ended. An image at the end of the control is shown in FIG.
 ステップ11において、画像記録の終了を指示されていない場合、ステップ5に戻り、機械式補正処理を実行する。例えば、初めてステップ11からステップ5に戻った場合、ステップ10において、カウンタ値を1つ増やしているので、ステップ6での判断は、t0から第1の所定時間aが過ぎたか否かの判断となる。なお、サブCPU42は、経過時間t0~t1の間、機械式補正処理を繰り返し実行し、撮像素子21上の画像を開始指示の時t0の画像状態に処理する。 If the end of image recording is not instructed in step 11, the process returns to step 5 to execute mechanical correction processing. For example, when returning from the first step 11 to step 5, in step 10, since the counter value is incremented by 1, the determination in step 6 is for determining whether or not only from t 0 is the first predetermined time a It becomes. The sub CPU 42 repeatedly executes the mechanical correction process during the elapsed time t 0 to t 1 to process the image on the image sensor 21 into the image state at t 0 when the start instruction is given.
 その後、ステップ11からステップ5に戻るごとに、ステップ6では、t2=t1+a、t3=t2+aと順に判断される。したがって、第1の所定時間a毎に電子式補正処理が実行されることになる。したがって、サブCPU42は、経過時間tn-1~tnの間、機械式補正処理を繰り返し実行し、撮像素子21上の画像を開始指示の時t0の画像状態に処理する。 Thereafter, every time the process returns from step 11 to step 5, in step 6, t 2 = t 1 + a and t 3 = t 2 + a are determined in order. Therefore, the electronic correction process is executed every first predetermined time a. Therefore, the sub CPU 42 repeatedly executes the mechanical correction process during the elapsed time t n−1 to t n to process the image on the image sensor 21 into the image state at t 0 when the start instruction is given.
 電子式補正処理における画像の回転処理は、機械式補正処理によって撮像素子21上の画像が開始指示の時t0の画像状態に処理されているので、一定角度θIだけ回転させればよい。 The image rotation process in the electronic correction process may be rotated by a certain angle θ I because the image on the image sensor 21 is processed into the image state at t 0 when the start instruction is given by the mechanical correction process.
 図14は、t=t1の時のデジタルカメラ1の状態を示す図である。また、図15は、t=t2の時のデジタルカメラ1の状態を示す図である。 FIG. 14 is a diagram illustrating a state of the digital camera 1 when t = t 1 . FIG. 15 is a diagram illustrating a state of the digital camera 1 when t = t 2 .
 例えば、図14に示すように、t=t1の時に、t=t0の時とは逆方向にデジタルカメラ1が像ブレしたとしても、機械式補正処理によって撮像素子21上の画像は、図10に示すように補正される。同様に、t=t2の時に、t=t1の時とは逆方向にデジタルカメラ1が像ブレしたとしても、機械式補正処理によって撮像素子21上の画像は、図10に示すように補正される。そして、機械式補正処理によって撮像素子21上の画像が開始指示の時t0の画像状態に処理されているので、電子式補正処理における画像の回転処理は、回転補正係数取得処理で求めた画像回転行列に基づき、一定角度θIだけ回転させればよい。 For example, as shown in FIG. 14, when t = t 1 , even if the digital camera 1 blurs in the opposite direction to that at t = t 0 , the image on the image sensor 21 is obtained by mechanical correction processing. Correction is performed as shown in FIG. Similarly, when t = t 2 , even if the digital camera 1 blurs the image in the direction opposite to that when t = t 1 , the image on the image sensor 21 by mechanical correction processing is as shown in FIG. It is corrected. Then, since the image on the image sensor 21 is processed into the image state at t 0 when the start instruction is given by the mechanical correction process, the image rotation process in the electronic correction process is the image obtained by the rotation correction coefficient acquisition process. Based on the rotation matrix, it may be rotated by a certain angle θ I.
 このように、一実施形態の撮像装置は、レンズ3と、レンズ3を保持する本体2と、レンズからの像を電気信号に変換する撮像素子21と、レンズ3の光軸回りの回転ブレを取得するジャイロセンサ6と、撮像素子21を移動させるアクチュエータ43と、本体2の姿勢を取得する加速度センサ7と、撮像素子21の撮像した画像を回転処理する画像処理部53と、ジャイロセンサ6の取得した回転ブレに応じてアクチュエータ43を駆動させ、加速度センサ7の取得した本体2の姿勢に応じて画像処理部53で画像を回転処理させるCPU30と、を備えるので、小型で、像ブレに即時に対応でき、コストを低くすることが可能となる。したがって、本体2内のスペースを有効活用することが可能となると共に、撮像中の細かい手ブレに対応することも可能となる。 As described above, the imaging apparatus according to the embodiment includes the lens 3, the main body 2 that holds the lens 3, the imaging element 21 that converts an image from the lens into an electrical signal, and rotational blurring around the optical axis of the lens 3. The gyro sensor 6 to be acquired, the actuator 43 that moves the image sensor 21, the acceleration sensor 7 that acquires the attitude of the main body 2, the image processing unit 53 that rotates the image captured by the image sensor 21, and the gyro sensor 6 The CPU 30 drives the actuator 43 in accordance with the acquired rotation blur and rotates the image in the image processing unit 53 in accordance with the attitude of the main body 2 acquired by the acceleration sensor 7. This makes it possible to reduce costs. Therefore, it is possible to effectively use the space in the main body 2, and it is also possible to deal with fine camera shake during imaging.
 また、一実施形態の撮像装置では、加速度センサ7の取得した本体2の姿勢に応じて画像処理部53が画像を回転処理するための画像回転補正係数を取得する画像回転補正係数取得部52と、を備えるので、画像処理部53での回転処理を迅速に行うことが可能となる。 In the imaging apparatus according to the embodiment, an image rotation correction coefficient acquisition unit 52 that acquires an image rotation correction coefficient for the image processing unit 53 to rotate the image according to the posture of the main body 2 acquired by the acceleration sensor 7; , The rotation processing in the image processing unit 53 can be performed quickly.
 また、一実施形態の撮像装置は、撮像の開始を指示する操作部29を備え、CPU30は、操作部29が撮像の開始を指示した後、まず、画像回転補正係数取得部52によって撮像開始時の画像回転補正係数を取得させ、続いて、ジャイロセンサ6の取得した回転ブレに応じてアクチュエータ43を駆動させて撮像開始時の状態に補正し、次に、撮像開始時の画像回転補正係数に応じて画像処理部53に画像を回転処理させる。したがって、アクチュエータ43は、撮像開始時の状態から移動した分だけ補正すればよく、小型のものを使用できるので、本体内のスペースの自由度が大きくなる。また、画像処理部53での画像の回転処理をする際に、画像回転補正係数を取得する必要がなく、予め取得した撮像開始時の画像回転補正係数を撮像終了まで常に使用すればよいので、高い演算処理能力を必要とせず、演算処理時間を短くすることが可能となる。 In addition, the imaging apparatus according to an embodiment includes an operation unit 29 that instructs to start imaging. After the operation unit 29 instructs to start imaging, the CPU 30 first starts imaging by the image rotation correction coefficient acquisition unit 52. Then, the actuator 43 is driven in accordance with the rotational shake acquired by the gyro sensor 6 to correct the state at the start of imaging, and then the image rotation correction coefficient at the start of imaging is obtained. In response, the image processing unit 53 rotates the image. Therefore, the actuator 43 only needs to be corrected by the amount moved from the state at the start of imaging, and a small one can be used, so the degree of freedom of space in the main body is increased. In addition, when performing image rotation processing in the image processing unit 53, it is not necessary to acquire an image rotation correction coefficient, and it is sufficient to always use the image rotation correction coefficient acquired in advance at the start of imaging until the end of imaging. It is possible to shorten the calculation processing time without requiring high calculation processing capability.
 また、CPU30は、画像処理部53による画像の回転処理を第1の所定時間a毎に実行させ、ジャイロセンサ6の取得した回転ブレに応じたアクチュエータ43の駆動を第1の所定時間aより短い第2の所定時間b毎に実行させるので、さらに演算処理能力を必要としないで済む。 Further, the CPU 30 causes the image processing unit 53 to perform the image rotation process at each first predetermined time a, and the actuator 43 is driven in response to the rotation blur acquired by the gyro sensor 6 shorter than the first predetermined time a. Since it is executed every second predetermined time b, it is not necessary to have any further processing capacity.
 なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えても、本発明の範囲を超えないことは理解できよう。従って、本発明の例示的な実施形態は、権利請求された発明に対して、一般性を失わせることなく、また、何ら限定をすることもなく、述べられたものである。 Note that the present invention is not limited to this embodiment. That is, in the description of the embodiments, many specific details are included for illustration, but those skilled in the art can add various variations and modifications to these details without departing from the scope of the present invention. It will be understood that this is not exceeded. Accordingly, the exemplary embodiments of the present invention have been described without loss of generality or limitation to the claimed invention.
 この態様に係る撮像装置によれば、小型で、像ブレに即時に対応でき、コストを低くすることが可能となる。 The image pickup apparatus according to this aspect is small in size, can respond immediately to image blurring, and can reduce costs.

Claims (4)

  1.  レンズと、
     前記レンズを保持する本体と、
     前記レンズからの像を電気信号に変換する撮像素子と、
     前記レンズの光軸回りの回転ブレを取得する回転ブレ取得部と、
     前記撮像素子を移動させる駆動部と、
     前記本体の姿勢を取得する姿勢取得部と、
     前記撮像素子の撮像した画像を回転処理する画像処理部と、
     前記回転ブレ取得部の取得した回転ブレに応じて前記駆動部を駆動させ、前記姿勢取得部の取得した前記本体の姿勢に応じて前記画像処理部で画像を回転処理させる制御部と、
    を備える
    ことを特徴とする撮像装置。
    A lens,
    A main body for holding the lens;
    An image sensor that converts an image from the lens into an electrical signal;
    A rotational blur acquisition unit that acquires rotational blur around the optical axis of the lens;
    A drive unit for moving the image sensor;
    A posture acquisition unit for acquiring the posture of the main body;
    An image processing unit that rotates an image captured by the image sensor;
    A controller that drives the drive unit according to the rotational shake acquired by the rotational shake acquisition unit, and rotates the image in the image processing unit according to the posture of the main body acquired by the posture acquisition unit;
    An imaging apparatus comprising:
  2.  前記姿勢取得部の取得した前記本体の姿勢に応じて、前記画像処理部が画像を回転処理する画像回転補正係数を取得する画像回転補正係数取得部と、
    を備える
    ことを特徴とする請求項1に記載の撮像装置。
    An image rotation correction coefficient acquisition unit that acquires an image rotation correction coefficient by which the image processing unit rotates an image according to the posture of the main body acquired by the posture acquisition unit;
    The imaging apparatus according to claim 1, further comprising:
  3.  撮像開始を指示する操作部を備え、
     前記制御部は、
      前記操作部による撮像開始時に、
      前記画像回転補正係数取得部によって撮像開始時の画像回転補正係数を取得させ、
      前記回転ブレ取得部の取得した回転ブレに応じて前記駆動部を駆動させて撮像開始時の状態に補正し、
      前記撮像開始時の画像回転補正係数に応じて前記画像処理部に画像を回転処理させる
    ことを特徴とする請求項2に記載の撮像装置。
    It has an operation unit that instructs the start of imaging,
    The controller is
    At the start of imaging by the operation unit,
    The image rotation correction coefficient acquisition unit acquires an image rotation correction coefficient at the start of imaging,
    According to the rotational shake acquired by the rotational shake acquisition unit, the drive unit is driven to correct the state at the start of imaging,
    The imaging apparatus according to claim 2, wherein the image processing unit rotates an image according to an image rotation correction coefficient at the start of the imaging.
  4.  前記制御部は、
      前記画像処理部による画像の回転処理を第1の所定時間毎に実行させ、
      前記回転ブレ取得部の取得した回転ブレに応じた前記駆動部の駆動を前記第1の所定時間より短い第2の所定時間毎に実行させる
    ことを特徴とする請求項3に記載の撮像装置。
    The controller is
    The rotation processing of the image by the image processing unit is executed every first predetermined time,
    The imaging apparatus according to claim 3, wherein the driving unit is driven at a second predetermined time shorter than the first predetermined time according to the rotational shake acquired by the rotational shake acquiring unit.
PCT/JP2012/073510 2011-12-19 2012-09-13 Image pickup device WO2013094257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276871A JP2013127541A (en) 2011-12-19 2011-12-19 Imaging device
JP2011-276871 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094257A1 true WO2013094257A1 (en) 2013-06-27

Family

ID=48668164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073510 WO2013094257A1 (en) 2011-12-19 2012-09-13 Image pickup device

Country Status (2)

Country Link
JP (1) JP2013127541A (en)
WO (1) WO2013094257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655401B2 (en) * 2016-01-21 2020-02-26 オリンパス株式会社 Imaging device and image blur correction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011105A1 (en) * 2007-07-13 2009-01-22 Panasonic Corporation Imaging device
WO2009072264A1 (en) * 2007-12-03 2009-06-11 Panasonic Corporation Image processing device, photographing device, reproducing device, integrated circuit, and image processing method
JP2009246580A (en) * 2008-03-31 2009-10-22 Seiko Epson Corp Imaging apparatus, control method of imaging apparatus, and, control program for imaging apparatus
JP2010004370A (en) * 2008-06-20 2010-01-07 Sony Corp Imaging device and image blurring correction method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011105A1 (en) * 2007-07-13 2009-01-22 Panasonic Corporation Imaging device
WO2009072264A1 (en) * 2007-12-03 2009-06-11 Panasonic Corporation Image processing device, photographing device, reproducing device, integrated circuit, and image processing method
JP2009246580A (en) * 2008-03-31 2009-10-22 Seiko Epson Corp Imaging apparatus, control method of imaging apparatus, and, control program for imaging apparatus
JP2010004370A (en) * 2008-06-20 2010-01-07 Sony Corp Imaging device and image blurring correction method, and program

Also Published As

Publication number Publication date
JP2013127541A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6927382B2 (en) Imaging systems, methods, programs, video display devices and image processing devices.
JP6960238B2 (en) Image stabilization device and its control method, program, storage medium
US9013585B2 (en) Image capture device
JP4818987B2 (en) Imaging apparatus, display method, and program
WO2014141522A1 (en) Image assessment device, capturing device, 3d measuring device, image assessment method, and program
JP2010062952A (en) Imaging device, image processing device, method for processing image, program, and recording medium
JP2017046301A (en) Imaging apparatus
CN111480176B (en) Image processing apparatus, image processing system, image processing method, and recording medium
JP2011040898A (en) Imaging reproducing device and program
JP2009033566A (en) Camera with self-imaging function, and self-imaging method
JP2006005877A (en) Digital still camera, mobile phone with digital still camera packaged therein, and camera-shake prevention method for digital still camera
JP6332212B2 (en) Posture estimation apparatus, posture estimation method, and program
WO2013094257A1 (en) Image pickup device
JP2020096349A (en) Image processing device, imaging device, moving image reproduction system, method, and program
JP4893330B2 (en) Imaging device
JP2021005831A (en) Imaging system, image processing apparatus, imaging apparatus, and program
JP7206797B2 (en) Imaging device, information processing device, correction value calculation method and program
JP2015095670A (en) Imaging apparatus, control method thereof and control program
WO2007023663A1 (en) Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method
WO2021014598A1 (en) Imaging device, imaging system, image processing device, imaging method, image processing method, and program
CN113473027B (en) Image processing method, electronic device, and storage medium
JP5548965B2 (en) IMAGING DEVICE, PHOTOGRAPHING POSITION SPECIFICATION METHOD, AND PROGRAM
CN104704804A (en) Imaging Apparatus And Detecting Apparatus
JP2008048152A (en) Moving picture processing apparatus, moving picture photographing apparatus and moving picture photographing program
CN111213370B (en) Moving object, focus control method, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860639

Country of ref document: EP

Kind code of ref document: A1