WO2007023663A1 - Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method - Google Patents

Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method Download PDF

Info

Publication number
WO2007023663A1
WO2007023663A1 PCT/JP2006/315517 JP2006315517W WO2007023663A1 WO 2007023663 A1 WO2007023663 A1 WO 2007023663A1 JP 2006315517 W JP2006315517 W JP 2006315517W WO 2007023663 A1 WO2007023663 A1 WO 2007023663A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blur
data
rotational
image data
Prior art date
Application number
PCT/JP2006/315517
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Hayashi
Naoto Yumiki
Hironori Honsho
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007023663A1 publication Critical patent/WO2007023663A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • Imaging apparatus image processing program, information recording medium recorded with the same, image processing apparatus, and image processing method
  • the present invention relates to an imaging device (particularly an imaging device capable of correcting rotational image blur), an image processing program, an information recording medium on which the image recording program is recorded, an image processing device, and an image processing method.
  • the image blur correction method is a method in which an image blur correction lens in an imaging optical system is perpendicular to the optical axis by a driving amount calculated based on an output of an angle sensor mounted on an imaging device.
  • image blur correction is performed by stabilizing the image forming position on the image sensor by driving in two directions (showing direction and pitching direction). According to this optical image blur correction method, it is possible to correct image blur in the laying direction and the pitching direction in real time during shooting.
  • Patent Document 1 discloses an image blur correction method based on image processing as an image blur correction method other than the optical image blur correction method.
  • Patent Document 1 Japanese Patent No. 3152750
  • the imaging apparatus may oscillate or vibrate in the rotational direction relative to the optical axis (hereinafter, the “rotational direction relative to the optical axis” may be simply referred to as “rotational direction”).
  • rotational direction may be simply referred to as “rotational direction”.
  • the inventors of the present invention have one of the causes of image blurring in the rotation direction even when image capturing is performed with an image capturing apparatus capable of correcting image blur in a direction perpendicular to the optical axis. It was found that the cause is rocking or vibration. That is, the present inventors have found that image blur in the rotational direction has occurred and have achieved the present invention. That is, the present invention is characterized in that it is configured to be able to correct image blur in the rotation direction.
  • a first imaging device includes an imaging optical system, an imaging element that captures an image formed by the imaging optical system, and outputs image data obtained by the imaging.
  • the image data is provided with a rotation image blur correction processing unit that performs rotation image blur correction processing that corrects rotation image blur caused by rotation of the imaging optical system around the optical axis at the time of imaging.
  • a second imaging device is an imaging device to which a lens barrel having an imaging optical system is attached and used.
  • the second imaging device captures an image formed by the imaging optical system, and An image sensor that outputs image data obtained by imaging, and a rotation that applies image blur correction processing to the image data to correct rotational image blur caused by the imaging optical system rotating around its optical axis during imaging And an image blur correction processing unit.
  • a third imaging apparatus includes an imaging optical system, an imaging element that images an image formed by the imaging optical system, and outputs image data obtained by the imaging, and an imaging optical system
  • a rotational angular velocity sensor that detects the rotational angular velocity around the optical axis
  • a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity, and image data and rotational image blur data
  • the imaging optical system rotates around its optical axis during imaging based on the recording unit to be recorded and the rotated image blur data recorded in association with the image data in the image data recorded in the recording unit.
  • a rotation image blur correction processing unit that performs a rotation image blur correction process for correcting a rotation image blur caused by the rotation.
  • a fourth imaging device is an imaging device that is used with a lens barrel provided with an imaging optical system, and the lens barrel is a rotation angle around the optical axis of the imaging optical system.
  • Speed A rotation angular velocity sensor that detects the degree of rotation, an image sensor that captures an image formed by the imaging optical system, and outputs the image data obtained by the imaging, and a rotation corresponding to the rotation angular velocity from the rotation angular velocity
  • An image processing unit that calculates image blur data, a recording unit that records image data and rotated image blur data in association with each other, and a rotation recorded in association with image data in the image data recorded in the recording unit.
  • a rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by the rotation of the imaging optical system around its optical axis based on the image blur data. It is characterized by having.
  • a fifth imaging device includes an imaging optical system, an imaging element that images an image formed by the imaging optical system, and outputs image data obtained by the imaging, and an imaging optical system
  • a rotational angular velocity sensor that detects the rotational angular velocity around the optical axis
  • a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity, and image data and rotational image blur data
  • an output unit for outputting to the outside.
  • a sixth imaging device is an imaging device to which a lens barrel provided with an imaging optical system is attached, and the lens barrel is a rotation angle around the optical axis of the imaging optical system.
  • a rotation angular velocity sensor that detects the speed
  • an image sensor that captures the image formed by the imaging optical system, and outputs the image data obtained by the imaging, and the rotation angular speed corresponding to the rotation angular speed
  • An arithmetic unit that calculates rotational image blur data, and an output unit that outputs the image data and the rotational image blur data in association with each other are provided.
  • the first image processing program according to the present invention is an image in which rotation image blur is reduced by performing a process of correcting rotation image blur caused by rotation of the imaging optical system at the time of shooting on the image data.
  • An image processing program for acquiring data the step of acquiring rotational blur amount data, which is an angular change amount for each cycle, obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each fixed cycle; Converting the image data into polar coordinates to form converted image data; calculating the image function by Fourier transforming the converted image data; and converting the rotational blur amount data into polar coordinates to convert the horizontal blur amount
  • a step that to calculate the transfer function, inverse Fourier varying function obtained image function divided by the conversion blur transfer function And a step of acquiring image data with reduced rotational image blurring.
  • the second image processing program performs processing for correcting rotational image blur caused by rotation of the imaging optical system at the time of photographing on the image data, and outputs image data with reduced rotational image blur.
  • An image processing program for obtaining image data and rotational blur data obtained by integrating the rotational angular velocity of the imaging optical system at regular intervals, and converting the rotational blur amount data, which is an angular change amount per cycle, into polar coordinates.
  • a step of obtaining a blur transfer function representing a frequency distribution of the calculated horizontal blur amount, a step of converting image data into polar coordinates to form transformed image data, and a Fourier transform of the transformed image data A step of calculating a function, a step of calculating a converted blur transfer function by performing a Fourier transform on the acquired blur transfer function, and a function of converting the image function Characterized in that the rotating image blurring and a step of acquiring the image data which is reduced by the inverse Fourier transform function obtained by dividing the record transfer function.
  • An information recording medium records the first or second image processing program according to the present invention.
  • the first image processing apparatus performs processing for correcting rotational image blur caused by rotation of the imaging optical system at the time of photographing on the image data to reduce the rotational image blur.
  • An image processing apparatus for acquiring data which acquires rotational shake amount data, which is an angular change amount for each period obtained by integrating the rotational angular velocity of the imaging optical system for each fixed period, and provides rotational shake amount data.
  • Is converted to polar coordinates to calculate a horizontal blur amount and a blur amount data conversion unit that creates a blur transfer function that represents the frequency distribution of the horizontal blur amount, obtains image data, converts the image data to polar coordinates,
  • An image function is calculated by forming converted image data and Fourier transforming the converted image data, obtaining a blur transfer function, and Fourier transforming the blur transfer function to obtain the converted blur transfer function.
  • a rotation image blur correction processing unit that obtains image data with reduced rotation image blur by performing inverse Fourier transform on the function obtained by dividing the image function by the converted blur transfer function.
  • the imaging optical system rotates during image capturing.
  • the transformed image data is transformed to form an image function by Fourier transforming the transformed image data, and the transformed blur transfer function is computed by Fourier transforming the blur transfer function, and the image function
  • a rotation image blur correction processing unit is provided for acquiring image data with reduced rotation image blur by performing inverse Fourier transform on a function obtained by dividing by the converted blur transfer function. And wherein the Rukoto.
  • the first image processing method is an image in which rotation image blur is reduced by performing a process of correcting rotation image blur caused by rotation of the imaging optical system at the time of shooting on the image data.
  • An image processing method for acquiring data the step of acquiring rotational shake amount data, which is an angular change amount for each cycle, obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each fixed cycle. Converting the image data into polar coordinates to form converted image data; calculating the image function by Fourier transforming the converted image data; A step of calculating a blur amount and generating a blur transfer function representing a frequency distribution of the horizontal blur amount, and a Fourier transform of the generated blur transfer function to convert the converted blur transfer function. And a step of obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the transformed blur transfer function. .
  • the image data in which the rotation image blur is reduced by performing a process for correcting the rotation image blur generated by the rotation of the imaging optical system at the time of photographing on the image data.
  • Image processing method for obtaining image data, and converting the rotation blur amount data which is the amount of angular change per cycle, obtained by integrating the image data and the rotation angular velocity of the imaging optical system at regular intervals Obtaining a blur transfer function representing the frequency distribution of the horizontal blur amount calculated by A step of calculating an image function by Fourier transforming the converted image data, a step of calculating a converted blur transfer function by Fourier transforming the acquired blur transfer function, and an image Obtaining image data with reduced rotational image blur by performing inverse Fourier transform on the function obtained by dividing the function by the transformed blur transfer function.
  • FIG. 1 is a block diagram showing a control system of DSC 1 in the first embodiment.
  • FIG. 2 is a top view and a rear view of DSC1.
  • FIG. 3 is an exploded perspective view for explaining a physical configuration around the second lens group L2 of the image blur correction unit 20.
  • FIG. 4 is a diagram schematically showing images before and after polar coordinate conversion.
  • FIG. 5 is a flowchart of a rotational image blur correction process in the first embodiment.
  • FIG. 6 is a block diagram showing a control system of DSC 81 in the second embodiment.
  • FIG. 7 is a block diagram showing a control system of DSC 82 in the third embodiment.
  • FIG. 8 is a schematic diagram showing a configuration of an image blur correction unit 20 in the third embodiment.
  • FIG. 9 is a configuration diagram of a PC 80 as an external arithmetic processing unit in the third embodiment.
  • FIG. 10 is a flowchart showing an image processing program recorded in a rotating image blur correction processing unit 60 of PC8O.
  • FIG. 11 is a block diagram showing a DSC control system according to a modification.
  • FIG. 12 is a configuration diagram of a PC 80 as an external arithmetic processing device in a modified example.
  • FIG. 13 is a flowchart showing an image processing program recorded in PC80.
  • DSC digital still camera
  • FIG. 1 is a block diagram showing a control system of DSC 1 according to the first embodiment.
  • FIG. 2 is a top view and a rear view of DSC1. Specifically, Fig. 2 (a) is a top view of DSC1. Figure 2 (b) is a rear view of DSC1.
  • FIG. 3 is an exploded perspective view for explaining a physical configuration around the second lens unit L2 of the image blur correction unit 20.
  • FIG. 3 is an exploded perspective view for explaining a physical configuration around the second lens unit L2 of the image blur correction unit 20.
  • FIG. 4 is a diagram schematically showing images before and after polar coordinate conversion.
  • FIG. 5 is a flowchart of the rotation image blur correction process in the first embodiment.
  • the DSC 1 includes a lens barrel 2 in which the imaging optical system L is housed, a calculation unit 3, an imaging device 4, an imaging device drive control unit 5, and an analog signal processing unit 6.
  • the display control unit 13, the display unit 14, and the shake amount data conversion unit 61 are provided.
  • the imaging optical system L includes three lens groups (a first lens group Ll, a second lens group L2, and a third lens group L3.
  • the first lens group L1 is mainly focused by being displaced in the optical axis AX direction.
  • the third lens group L3 is a lens group mainly for zooming by displacing in the optical axis AX direction, and the second lens group L2 is the pitching direction and the winging direction.
  • the imaging optical system L is configured by three lens groups, but the imaging optical system L has three functions. It is not always necessary to be constituted by a lens group, and may be constituted by two or one lens group, or three or more lens groups and another optical element such as a mirror or a prism.
  • the second lens unit L2 decenters the optical axis AX of the light incident on the image sensor 4 by displacing in the pitching direction and the skewing direction in a plane perpendicular to the optical axis AX. It has a function to keep the position on the image sensor 4 of the image formed by the imaging optical system L substantially constant. That is, the second lens unit L2 has a function of preventing the position of the image formed by the imaging optical system on the imaging element 4 from moving. In other words, the optical axis of the light incident on the imaging optical system L and the optical axis of the imaging optical system L are suppressed from shifting.
  • the image blur correction lens group L2 when mechanical vibration or shake by the photographer is applied to the DSC 1, the optical axis of light incident on the imaging optical system L from the subject is changed to that of the imaging optical system L. optical axis It fluctuates according to shaking and vibration. Therefore, the obtained image is blurred and blurred.
  • the DSC1 having the second lens unit L2 as an image blur correction lens the optical axis of the light incident on the imaging optical system L and the optical axis of the imaging optical system L are not affected even if vibration or oscillation is applied to the DSC1. Deviations and fluctuations in the relative positional relationship are suppressed. Therefore, a clear image with reduced image blurring in the winging direction and the pitching direction can be obtained.
  • the computing unit 3 can be configured by a microcomputer, for example.
  • Arithmetic unit 3 includes AZD conversion unit 18, digital signal processing unit 8, image sensor drive control unit 5, power switch 35, shutter operation unit 36, shooting Z playback switching operation unit 37, cross control key 38, MENU setting operation unit 39
  • the control unit is connected to the SET operation unit 40 and the like, and controls all the various control units of the DSC 1 based on signals input from these.
  • the shutter operation unit 36 transmits a timing signal to the calculation unit 3 according to the operation.
  • the computing unit 3 outputs an instruction signal to a shutter control unit (not shown) in accordance with the timing signal received from the shutter operation unit 36.
  • a shutter drive motor (not shown) is driven by the instruction signal, and a shutter (not shown) operates.
  • the image sensor 4 captures an image formed by the photographing optical system L, converts it into an electrical signal, and outputs it as image data.
  • An imaging element drive control unit 5 connected to the calculation unit 3 is connected to the imaging element 4.
  • the image sensor 4 is driven and controlled by the image sensor drive controller 5.
  • the imaging device 4 can be constituted by a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or the like.
  • the image data output from the image sensor 4 is sent from the analog signal processing unit 6 to the AZD conversion unit 7, the digital signal processing unit 8, the rotation image blur correction processing unit 60, the buffer memory 9, and the image compression unit 10. Sequential input 'processing.
  • the analog signal processing unit 6 performs analog signal processing (for example, gamma processing) on the image data output from the image sensor 4.
  • the AZD converter 7 digitizes image data that has been subjected to analog signal processing.
  • the digital signal processing unit 8 performs digital signal processing (for example, noise removal and contour enhancement) on the digitized image data based on the signal from the calculation unit 3.
  • the calculation unit 3 sends to the rotation image blur correction processing unit 60 a rotation blur that is a type of rotation image blur data. Output quantity data.
  • the rotation image blur correction processing unit 60 performs rotation image blur correction processing on the image data output from the digital signal processing unit 8 based on the rotation blur amount data.
  • the noffer memory 9 temporarily stores the image data that has undergone the rotation image blur correction process.
  • the buffer memory 9 can be constituted by, for example, a RAM (Random Access Memory).
  • the image data stored in the buffer memory 9 is sequentially input 'processed into the image compression unit 10 and the image recording unit 12.
  • the image data stored in the buffer memory 9 is output to the image compression unit 10 in response to a command from the image recording control unit 11 connected to the calculation unit 3.
  • the image compression unit 10 the image data is compressed at a predetermined ratio, and image data having a data size smaller than the original data is created.
  • the image compression unit 10 also generates reduced image data corresponding to the captured image used for thumbnail display or the like. Thereafter, the compressed image data and the reduced image data are input to the image recording unit 12.
  • Examples of the image data compression method include the JPEG (Joint Photographic Experts Group) method.
  • the image recording unit 12 Based on a command from the image recording control unit 11, the image recording unit 12 converts image data into predetermined data (for example, corresponding reduced image data) and information (for example, when an image is captured). Date / time, focal length information, shutter speed information, aperture value information, shooting mode information, etc.).
  • the image display control unit 13 is controlled by a control signal from the calculation unit 3.
  • the display unit 14 displays the image data recorded in the buffer memory 9 as a visible image.
  • the display unit 14 can display only image data.
  • information at the time of shooting for example, focal length information, shutter speed information, aperture value information, shooting mode information, In-focus state information etc.
  • DSC1 includes a housing la.
  • a lens barrel 2 including the imaging optical system L is disposed on the front surface of the housing la.
  • a power switch 35, shooting Z playback switching operation section 37, cross control key 38, MENU setting operation section 39, SET operation section 40, and display section 14 that also has LCD monitor power are arranged.
  • a shutter operation unit 36 and a zoom operation unit 57 are arranged on the upper surface of the housing la. The zoom operation unit 57 is arranged around the shutter operation unit 36 so as to be rotatable about the same axis as the shutter operation unit 36.
  • the power switch 35 is an operation member for turning the power of the DSC 1 on and off.
  • the shooting Z playback switching operation section 37 is for switching between shooting mode and playback mode. Specifically, switching between the shooting mode and the playback mode is performed by rotating a lever. In the shooting mode, when the zoom operation unit 57 is rotated to the right, the imaging optical system L is controlled by the calculation unit 3 to the desired side (zoomed in). Further, when it is turned to the left, it is controlled to the wide angle side (zoomed out) by the calculation unit 3.
  • the MENU setting operation unit 39 is for displaying various menus on the display unit 14.
  • the cross-shaped operation key 38 is used for selecting by pressing the upper, lower, left and right parts from various operation menus displayed on the display unit 14 by the operation of the MENU setting operation unit 39.
  • the calculation unit 3 issues an execution command.
  • the SET operation unit 40 is for returning the display of various operation menus to the state before display.
  • the image blur correction unit 20 includes a motion correction unit 15A, a motion detection unit 17A, and a signal processing unit 3A.
  • the motion correction unit 15A controls the movement of the optical axis AX of the imaging light.
  • the motion correction unit 15A includes a second lens group L2, a bowing drive control unit 15x, a pitching drive control unit 15y, and a position detection unit 16.
  • the second lens unit L2 is configured to be displaceable in the caming direction and the pitching direction in a plane perpendicular to the optical axis AX.
  • the second lens unit L2 is driven and controlled in a two-way winging direction (X direction) and a pitching direction (Y direction) perpendicular to the optical axis AX by the winging drive control unit 15x and the pitching drive control unit 15y.
  • X direction a two-way winging direction
  • Y direction a pitching direction perpendicular to the optical axis AX
  • the winging drive control unit 15x and the pitching drive control unit 15y By this drive control, the movement of the optical axis AX of the imaging optical system L is controlled.
  • the position detector 16 is a detecting means for detecting the displacement of the second lens group L2.
  • the position detection unit 16 includes a second drive control unit 15x and a pitching drive control unit 15y together with the second lens.
  • a feedback control loop for controlling the group L2 is formed.
  • the motion detection unit 17A includes a bowing angle sensor 17x, a pitching angle sensor 17y, and a mouth ring angle sensor (rotational angular velocity sensor) 17z (hereinafter referred to as "chowing angle sensor 17x, pitching angle sensor 17y, and The rolling angle sensor 17z ”may be referred to as“ angle sensors 17x, 17y, and 17z ”.
  • the angle sensors 17x, 17y, and 17z are sensors that detect the displacement of the DSC 1 itself including the imaging optical system L due to camera shake and other vibrations and swings.
  • the bowing angle sensor 17x detects the displacement of the imaging optical system L in the bowing direction.
  • the pitching angle sensor 17y detects the displacement of the imaging optical system L in the pitching direction.
  • the rolling angle sensor 17z detects the displacement of the imaging optical system L in the rolling direction (the rotation direction of the imaging optical system L with respect to the optical axis AX).
  • Each angle sensor 17x, 17y, 17z outputs either one of positive and negative angle signals (displacement signals) depending on the direction in which DSC1 moves, using the output when DSCl is stationary as a reference.
  • the angle signals output from the angle sensors 17x, 17y, and 17z are input to the signal processing unit 3A and processed in the signal processing unit 3A.
  • the signal processing unit 3A includes a calculation unit 3, AZD conversion units 18x, 18y, and 18z, and DZA conversion units 19x and 19y.
  • the displacement data signals output by the angle sensors 17x, 17y, and 17z are subjected to filter processing, amplifier processing, and the like, and then converted into digital signals by the AZD conversion units 18x, 18y, and 18z, respectively. Entered in 3.
  • the calculation unit 3 performs various processes such as filtering, integration processing, phase compensation, gain adjustment, and clip processing on the displacement data signal input via the AZD conversion units 18x, 18y, and 18z. By performing each of these processes, the calculation unit 3 drives the second lens unit L2 necessary for correcting the image blur in the chowing direction and the pitching direction based on the values input from the AZD conversion units 18x and 18y. Calculates the control amount and generates a control signal.
  • the generated control signal is converted into an analog signal by the DZA converters 19x and 19y.
  • the control signal converted into the analog signal is output to the keying drive control unit 15x and the pitching drive control unit 15y.
  • the sharing drive control unit 15x and the pitching drive control unit 15y drive the second lens unit L2 based on the input control signal. As a result, image blurring in the show direction and pitch direction is corrected.
  • the computing unit 3 computes rotational shake amount data around the optical axis AX sampled at a predetermined cycle based on the rotational angular velocity detected by the rolling angle sensor 17z.
  • the rotational angular velocity d ⁇ zZdt (where ⁇ z is an angle around the optical axis AX) converted into a digital signal is output from the AZD converter 18z.
  • the computing unit 3 integrates the output rotational angular velocity d ⁇ z / dt at a predetermined period to calculate rotational shake amount data (angle change amount) ⁇ z.
  • the rotational shake amount data ⁇ z calculated in this way is output to the shake amount data converter 61.
  • the second lens unit L2 as the image blur correcting lens unit is attached to the pitching holding frame 21.
  • the pitching holding frame 21 is provided with two pitching shafts 23a and 23b that are parallel to each other in the pitching direction (Y direction).
  • the pitching shafts 23a and 23b are attached to a winging holding frame 22 provided so as to face the pitching holding frame 21 so as to be slidable in the pitching direction (Y direction). That is, the pitching holding frame 21 is attached to the chaining holding frame 22 so as to be displaceable in the pitching direction (Y direction).
  • the fixed frame 25 is attached to the lens barrel 2 so that it cannot be displaced. Therefore, the pitching holding frame 21 to which the second lens unit L2 is attached is attached to the fixed frame 25 and the lens barrel 2 so as to be displaceable in both the chowing direction (X direction) and the pitching direction (Y direction). Yes.
  • the pitching holding frame 21 is provided with coils 24x and 24y!
  • the coils 24x and 24y are positioned between a cornering actuator 29x and a pitching actuator 29y each having a U-shaped cross section that is attached to the fixed frame 25 so as not to be displaced.
  • the cornering actuator 29x has a yoke 28x having a U-shaped cross section and a magnet 27x attached to the yoke 28x so as to face the coil 24x.
  • the pitching actuator 29y A yoke 28y having a U-shaped cross section and a magnet 27y attached to the yoke 28y so as to face the coil 24y.
  • a light emitting element 30 is fixed to the pitching holding frame 21.
  • a light receiving element 31 is attached to the fixed frame 25 so as to face the light emitting element 30.
  • the light receiving element 31 receives the projection light from the light emitting element 30 to detect the two-dimensional position map of the pitching holding frame 21 (second lens group L2).
  • the force that constitutes the sensor that detects the displacement of the second lens unit L2 by the pair of the light emitting element 30 and the light receiving element 31 For example, the displacement of the second lens unit L2 in the keying direction. It is possible to provide a separate sensor for detecting displacement and a sensor for detecting displacement in the pitching direction.
  • the coefficient ⁇ in (Equation 1) depends on the number of samples when the rotating image blur correction processing unit 60 performs polar coordinate conversion. For example, when the total number of pixels in the horizontal direction of the image 71 after polar coordinate conversion obtained as a result of performing polar coordinate conversion on the rotated image blurred image 70 (see FIG. 4) output from the digital signal processing unit 8 is S pixels, The coefficient oc is obtained from (Equation 2).
  • the amount of blur (displacement) A s after polar coordinate conversion obtained in time series is rearranged, and the amount of blur ⁇ s is equal! / And the quantity of data is counted.
  • the power at the position of A s is assumed.
  • the frequency distribution derived in this way is represented by the function Ms).
  • Ms) is the frequency distribution of the blur amount after polar coordinate conversion and is the blur transfer function.
  • the rotation image blur correction processing unit 60 outputs the digital image signal from the digital signal processing unit 8 as schematically shown in FIG.
  • the rotated image blur image 70 is subjected to polar coordinate conversion, and an image after polar coordinate conversion (converted image data) 71 is given. If the coordinate system of the rotated image blur image 70 is the X-y coordinate system, the coordinate system of the polar image transformed image 71 is the s-r coordinate system, and the total number of vertical pixels of the rotated image blur image 70 is Y pixels, Polar coordinate transformation is performed according to (Equation 3) and (Equation 4).
  • the number of pixels S in the horizontal direction of the image 71 after polar coordinate conversion is the outer perimeter length of the inscribed circle 72 in the rotated image blurred image 70. For this reason, it is possible to suppress degradation of resolution due to sampling in a range in which no image is missing in the horizontal direction of the image 71 after polar coordinate conversion.
  • the range without image loss means that the image is not lost in the horizontal direction of the image 71 after the polar coordinate conversion, and indicates the inside of the inscribed circle 72 of the rotated image blurred image 70.
  • the number R of vertical pixels of the image 71 after the polar coordinate conversion is the farthest central force in the rotated image blurred image and the distance to the position, that is, the diagonal length of the rotated image blurred image 70 is 1Z2.
  • the above conversion conditions are merely examples, and the present invention is not limited to them.
  • blur correction processing is performed on the image 71 after polar coordinate conversion.
  • the principle of the blur correction process will be described. Here, it is only necessary to consider blur in the horizontal direction, so it can be considered in one dimension. Assuming that the intensity distribution of the original image without blur is f (s) and the intensity distribution of the image 71 after polar coordinate conversion, which is the intensity distribution of the image including blur, is g (s), the image 71 after polar coordinate conversion is As shown in 5), it can be expressed by the convolution integral of f (s) and h (s).
  • Equation 6 is obtained by Fourier-transforming both sides of (Equation 5). If this is transformed, (Equation 7) is obtained.
  • an image after rotation image blur correction can be obtained.
  • the rotational image blur correction as described above is preferably performed after correcting the image blur in the chowing direction and the pitching direction.
  • the image blur in the caming direction and the pitching direction is mechanically corrected to obtain image data in which the image blur in the chowing direction and the pitching direction is suppressed, and the image data It is preferable to perform rotation image blur correction.
  • the rotational image blur correction as described above is performed. It is preferable. Doing so Thus, the rotational image blur can be effectively corrected.
  • the power switch 35 is set to the ON side, and then the photography Z playback switching operation unit 37 is switched to the photography mode. Thereby, DSC1 shifts to the shooting state.
  • the calculation unit 3 gives a command signal for canceling the generated camera shake or the like to the showing drive control unit 15x and the pitching drive control unit 15y.
  • a current corresponding to this command signal is supplied to each of the coils 24x and 24y of the pitching holding frame 21.
  • the pitching holding frame 21 is displaced in the chowing direction (X direction) and the pitching direction (Y direction) perpendicular to the optical axis AX from the coils 24x, 24y and magnets 27x, 27y, which are magnetized by supplying current.
  • the image data captured in this way is processed by an analog signal processing unit 6, an AZD conversion unit 7, and a digital signal processing unit 8, respectively, for analog signal processing such as gamma processing, conversion processing to a digital signal, noise removal, Digital signal processing such as edge enhancement is performed.
  • analog signal processing such as gamma processing, conversion processing to a digital signal, noise removal, Digital signal processing such as edge enhancement is performed.
  • the image data subjected to these processes is input to the rotation image blur correction processing unit 60.
  • the rotational shake amount data ⁇ z sampled at a predetermined cycle is input from the computing unit 3 to the shake amount data conversion unit 61 and is temporarily stored (Sl l).
  • the polar coordinate conversion of the above-described method is performed on the rotational shake amount data ⁇ z stored in the shake amount data converting unit 61 (S12).
  • the frequency distribution is counted with respect to the shake amount ⁇ s after polar coordinate conversion arranged in a time series obtained in this way, and a shake transfer function is created (S13).
  • the steps S11 to S13 are performed in the blur amount data conversion unit 61.
  • the rotational image blur correction processing unit 60 receives image data from the digital signal processing unit 8. (S21).
  • the image data input from the digital signal processing unit 8 is corrected for image blur in the chowing direction and the pitching direction by the image blur correction unit 20, and the image data output from the imaging element 4 is subjected to analog signal processing. Gamma processing and digital signal processing by part 6 etc. are applied.
  • polar coordinate conversion of the above-described method is performed on the input image data, and a polar coordinate converted image (converted image data) 71 is given (S22).
  • the given post-polar transformation image 71 is subjected to a Fourier transformation process to obtain an image function G (u) (S23).
  • a blur transfer function is input from the blur amount data converter 61 (S24).
  • the blur transfer function is also subjected to Fourier transform processing, and a converted blur transfer function H (u) is obtained (S25).
  • G (u) / H (u) is calculated (S26), and the result is subjected to inverse Fourier transform (S27).
  • S27 inverse Fourier transform
  • the blur amount data converting unit 61 is provided separately, and the blur amount data converting unit 61 creates the blur transfer function (S13).
  • the rotational image blur correction processing unit 60 can directly input rotational blur data and the rotational image blur correction processing unit 60 can create a blur transfer function!
  • the first embodiment has described the configuration example in which the rotational image blur correction is performed before the image captured by the image sensor 4 is recorded in the image recording unit 12 (that is, simultaneously with the photographing). .
  • the rotational image blur correction may be performed on the image recorded in the image recording unit 12. Further, it may be configured such that the user can select whether to perform rotation image blur correction simultaneously with photographing or to store the image in the image recording unit 12 and perform it at an arbitrary timing.
  • rotation image blur correction processing can be performed by an external device such as a PC.
  • DSC 82 An example of a preferred embodiment of the present invention will be described by taking DSC 82 as an example.
  • FIG. 6 is a block diagram showing a control system of DSC 81 in the second embodiment.
  • the DSC 81 according to the second embodiment differs from the DSC 1 according to the first embodiment in the timing at which the rotational image blur correction is performed and the configuration of the image blur correction unit 20. These two points will be explained in detail below.
  • FIG. 2 is referred to in common with the first embodiment, and components having substantially the same functions are described using the same reference numerals as in the first embodiment. Omitted.
  • the second lens unit L2 is driven and controlled to correct image blur in the pitching direction and the bowing direction.
  • the imaging element is used. 4 is controlled to correct image blur in the pitching direction and the winging direction.
  • the basic mechanism and control system of the image blur correction unit 20 is not described in detail because the object to be driven is changed from the lens to the image sensor 4 and the driving amount is not changed greatly (FIG. 3). reference).
  • the rotational image blur correction can be performed at an arbitrary timing.
  • the image transfer unit 12 stores a shake transfer function used in rotational image blur correction and various information such as captured image data and the date and time when the image was captured.
  • the blur transfer function created by the blur amount data converting unit 61 is not input to the rotating image blur correction processing unit 60 but is input to the notch memory 9.
  • the blur transfer function stored in the nother memory 9 is based on the command of the image recording control unit 11 and the image data compressed by the image compression unit 10 and the corresponding reduced image data and image are displayed. It is recorded in the image recording unit 12 in association with various information to be recorded, such as date and time, focal length information, shutter speed information, aperture value information, and shooting mode information at the time of shooting.
  • the image data and the blur transfer function stored in the image recording unit 12 are input to the rotating image blur correction processing unit 60.
  • the rotation image blur correction processing unit 60 performs the same rotation image blur processing as that described in detail in the first embodiment.
  • the image after the rotation image blur correction process is input again to the image recording unit 12 and stored in the image recording unit 12.
  • a relatively heavy calculation such as Fourier transform a plurality of times. For this reason, a fixed processing time is required for the rotational image blur correction processing. This means a decrease in response to the user (after shooting, the time required until the next shooting, etc.), which may not be accepted by the user.
  • the second embodiment employs a configuration in which a user can instruct the operation timing of rotational image blur correction, and image blur correction can be performed at a time other than shooting. Therefore, the response to the user's operation (such as shooting) is improved. In addition, the flexibility of selecting image correction when there is sufficient time becomes more flexible.
  • 1S is configured to perform image blur correction processing using a blur transfer function.
  • the rotational blur amount data recorded in the image recording unit 12 and the image data before the rotational image blur correction are read into the rotational image blur correction processing unit 60.
  • the sharing of processing between the blur amount data conversion unit 61 and the rotation image blur correction processing unit 60 is not limited to the configuration shown in the first and second embodiments.
  • the blur amount data converting unit 61 outputs the post-polarity-converted blur amount ⁇ s, which is data arranged in time series before being converted into the blur transfer function as the rotational blur amount data, and the blur amount ⁇ s and image data are correlated with each other and stored in the image recording unit 12, and the rotational image blur correction processing unit 60 converts the blur amount ⁇ s after polar coordinate conversion into a blur transfer function.
  • the rotation image blur correction process described in (1) may be performed.
  • the blur amount data conversion unit 61 is not provided, and the rotational blur amount data is stored in the image recording unit 12 in correlation with the image data, and the rotated image blur correction processing unit 60 stores the S 11 shown in FIG. ⁇ 13 and S21 ⁇ 27 may be executed.
  • FIG. 7 is a block diagram showing a control system of DSC 82 in the third embodiment.
  • the DSC 82 according to the third embodiment is different from the DSC 1 according to the first embodiment in that the rotational image blur correction is performed by an external device of the DSC 82 and the configuration of the image blur correction unit 20.
  • the entire imaging optical system L is driven to rotate around the center of gravity of the imaging optical system L.
  • the image blur correction unit 20 drives the imaging position on the imaging surface in the show direction and the pitch direction.
  • FIG. 8 is a schematic diagram showing a configuration of the image blur correction unit 20 according to the third embodiment. 8A is a front view and FIG. 8B is a side view. In FIG. 8, the imaging optical system L is drawn so as to include the imaging element 4.
  • the rotation shaft 47 is fixed to both side surfaces (X direction) of the imaging optical system L.
  • the rotating shaft 47 is rotatably attached to a bearing (not shown) provided on the winging frame 45.
  • the imaging optical system L is rotatable in the pitching direction and also serves as a pitching frame.
  • a rotating shaft 48 is fixed to the side frame 45 in the Y-direction side.
  • the rotating shaft 48 is rotatably attached to a bearing (not shown) provided on the fixed frame 46. That is, the winging frame 45 is freely rotatable in the winging direction.
  • an actuator (not shown) is provided in the Y direction between the imaging optical system L and the winging frame 45.
  • An actuator (not shown) is provided between the housing frame 45 and the fixed frame 46 in the X direction. Therefore, also in the third embodiment, it is possible to correct image blurring in the show direction and the pitch direction.
  • the DSC 82 does not have the rotation image blur correction processing unit 60.
  • the image data captured by the image sensor 4 and the blur transfer function are recorded in the image recording unit 12 in association with each other as in the second embodiment.
  • An output unit 83 is connected to the image recording unit 12, and image data and a blur transfer function are output from the output unit 83 in a form associated with each other.
  • the output unit 83 can be configured with a LAN cable connection terminal, a USB cable connection terminal, and the like.
  • the rotational image blur correction is performed in the PC 80 as follows.
  • FIG. 10 is a flowchart showing an image processing program recorded in the rotational image blur correction processing unit 60 of the PC 80.
  • the shake transfer function and image data associated with each other are acquired (S30). Then, as described in detail in the first embodiment, the acquired image data is subjected to polar coordinate conversion to generate a polar coordinate-converted image (converted image data) (S22) 0
  • the image after the polar coordinate conversion Is Fourier transformed to create an image function G (u) (S23).
  • the acquired blur transfer function is also subjected to Fourier transform processing, and a converted blur transfer function H (u) is created (S25).
  • F (u) is calculated from the created image function G (u) and the converted blur transfer function H (u) (S26).
  • image data with reduced rotational image blur correction is obtained by performing inverse Fourier transform on the calculated F (u) (S27).
  • Embodiment 3 a blur transfer function is created in the DSC 82, and the force output to the blur transfer function force PC80 as the rotated image blur data is correlated with the image data as the rotated image blur data. You can make it output! In this modification, the case where image data and rotational blur amount data correlated with each other are output to the PC 80 will be described in detail.
  • FIG. 11 is a block diagram showing a DSC control system according to this modification.
  • FIG. 12 is a configuration diagram of the PC 80 as an external arithmetic processing device in this modification.
  • FIG. 13 is a flowchart showing an image processing program recorded on the PC 80.
  • the DSC according to the present modification is different from the DSC 82 according to the third embodiment described above.
  • the difference is that the amount data converter 61 is not provided.
  • the rotational shake amount data output from the calculation unit 3 is temporarily stored in the buffer memory 9 together with the image data output from the digital signal processing unit 8. Thereafter, the image data and the rotational blur amount data are associated with each other and recorded in the image recording unit 12.
  • the image data and the rotational blur amount data recorded in association with each other are output from the output unit 83 to the PC 80 in a state of being associated with each other.
  • the PC 80 is provided with a shake amount data conversion unit 61 together with the rotation image blur correction processing unit 60, and here, correction processing of the rotation image blur is performed.
  • the obtained rotational shake amount data ⁇ z is subjected to polar coordinate conversion, and the horizontal direction shake amount As is calculated (S12). Then, the blur amount (displacement amount) A s after polar coordinate conversion obtained in time series is rearranged, the quantity of data with the same blur amount A s is counted, and the blur transfer function h (s) is created ( S13). The steps S12 and S13 are performed by the blur amount data conversion unit 61. Then, the blur transfer function is output from the blur amount data conversion unit 61 to the rotating image blur correction processing unit 60.
  • the acquired image data is subjected to polar coordinate conversion to generate a polar coordinate-converted image (converted image data) (S22).
  • the image function G (u) is created by performing the Rie transform (S23).
  • the blur amount data conversion unit 61 is also subjected to Fourier transform processing on the blur transfer function input to the rotating image blur correction processing unit 60, and a converted blur transfer function H (u) is created (S25). ).
  • F (u) is calculated from the created image function G (u) and the transformed blur transfer function H (u) (S26), and finally F (u) is subjected to inverse Fourier transform to obtain a rotated image blur.
  • Image data with reduced correction is formed (S27).
  • the lens barrel 2 in which the imaging optical system L is housed is formed as a body.
  • the image pickup apparatus image pickup apparatus with an image blur correction function
  • the imaging device according to the present invention may be of a so-called single-lens reflex type that is used with the lens barrel 2 attached thereto, for example.
  • the lens barrel 2 may be provided with the position detection unit 16, drive control units 15x and 15y, angle sensors 17x, 17y and 17z, and the like.
  • rotational image blur correction process described in the first to third embodiments is merely an example, and is not limited to the above process.
  • the image recording unit 12 is connected to the output unit 83, and the output unit is configured to output to the PC 80, which is an external device. May be constituted by a removable memory.
  • the data may be input to the PC 80 by removing the image recording unit 12 in which the image data and the blur transfer function are recorded from the DSC 1 and inserting the image recording unit 12 in the PC 80.
  • the DSC 82 according to the third embodiment does not have the rotation image blur correction processing unit 60, but has only the output unit 83.
  • the DSC 82 has both the rotation image blur correction processing unit 60 and the output unit 83.
  • the user can select whether the rotation image blur correction processing is performed by the rotation image blur correction processing unit 60, or whether the force is processed by outputting from the output unit 83 to the PC 80.
  • the image data after the rotation image blur correction and the various rotation image blur data are output in association with each other, and the PC 80 converts the image data after the rotation image blur correction again into the image data before the rotation image blur correction. Let's do it.
  • Embodiments 1 to 3 the force described by taking DSC as an example is not limited to this.
  • an imaging device such as a digital video camera (DVC) may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

A DSC (1) is equipped with an imaging optical system (L). The DSC comprises an imaging element (4) and a rotating image shake correction processor (60). The imaging element (4) captures an image formed through the imaging optical system (L) and outputs the image data obtained from the captured image. The rotating image shake correction processor (60) subjects the image data to a rotating image shake correction process for correcting an image shake caused by rotation around the optical axis of the imaging optical system (L).

Description

撮像装置、画像処理プログラム、それが記録された情報記録媒体、画像 処理装置、及び画像処理方法  Imaging apparatus, image processing program, information recording medium recorded with the same, image processing apparatus, and image processing method
技術分野  Technical field
[0001] 本発明は、撮像装置 (特に、回転像ブレの補正が可能な撮像装置)、画像処理プロ グラム、それが記録された情報記録媒体、画像処理装置、及び画像処理方法に関す る。  The present invention relates to an imaging device (particularly an imaging device capable of correcting rotational image blur), an image processing program, an information recording medium on which the image recording program is recorded, an image processing device, and an image processing method.
背景技術  Background art
[0002] 近年、像ブレ補正機能付きのデジタルカメラ(例えば、デジタルスチルカメラ、デジ タルビデオカメラ等)が巿場に投入され、普及してきている。現在主流となっている像 ブレ補正方式は光学的像ブレ補正方式である。具体的に、光学的像ブレ補正方式と は、撮像装置に搭載された角度センサの出力を基に算出された駆動量だけ撮像光 学系中の像ブレ補正レンズを光軸に対して垂直な 2つの方向(ョーイング方向及びピ ツチング方向)に駆動することにより撮像素子上の結像位置を安定化させることで像 ブレ補正を行う方式である。この光学的像ブレ補正方式によれば、撮影時において、 リアルタイムにョ一イング方向及びピッチング方向の像ブレを補正することができる。  [0002] In recent years, digital cameras with an image blur correction function (for example, digital still cameras, digital video cameras, etc.) have been introduced into the factory and are becoming popular. The image blur correction method that is currently mainstream is an optical image blur correction method. Specifically, the optical image blur correction method is a method in which an image blur correction lens in an imaging optical system is perpendicular to the optical axis by a driving amount calculated based on an output of an angle sensor mounted on an imaging device. In this method, image blur correction is performed by stabilizing the image forming position on the image sensor by driving in two directions (showing direction and pitching direction). According to this optical image blur correction method, it is possible to correct image blur in the laying direction and the pitching direction in real time during shooting.
[0003] また、特許文献 1には、光学的像ブレ補正方式以外の像ブレ補正方式として、画像 処理による像ブレ補正方式が開示されている。  [0003] Patent Document 1 discloses an image blur correction method based on image processing as an image blur correction method other than the optical image blur correction method.
特許文献 1:特許第 3152750号公報  Patent Document 1: Japanese Patent No. 3152750
発明の開示  Disclosure of the invention
[0004] —解決課題— [0004] —Solutions—
撮像装置の保持態様によっては、光軸に対する回転方向(以下、「光軸に対する回 転方向」のことを単に「回転方向」とすることがある。)の揺動や振動が撮像装置にカロ わる虞がある。し力しながら、上述の光学的像ブレ補正や画像処理による像ブレ補正 では、ョーイング方向及びピッチング方向の像ブレを補正することは可能であるもの の、光軸に対する回転方向の像ブレを補正することはできない。従って、像ブレが十 分に低減された鮮明な画像が得られな ヽと ヽぅ問題がある。 [0005] 本発明は係る点に鑑みてなされたものであり、その目的とするところは、回転方向の 像ブレが補正可能な撮像装置を提供することにある。 Depending on how the imaging apparatus is held, the imaging apparatus may oscillate or vibrate in the rotational direction relative to the optical axis (hereinafter, the “rotational direction relative to the optical axis” may be simply referred to as “rotational direction”). There is a fear. However, although the above-mentioned optical image blur correction and image blur correction by image processing can correct the image blur in the chowing direction and the pitching direction, the image blur in the rotation direction with respect to the optical axis is corrected. I can't do it. Therefore, there is a problem that a clear image with sufficiently reduced image blur cannot be obtained. The present invention has been made in view of the above points, and an object of the present invention is to provide an imaging apparatus capable of correcting image blur in the rotation direction.
[0006] 解決手段  [0006] Solution
本発明者等は、誠意研究の結果、光軸に対して垂直な方向の像ブレ補正が可能 な撮像装置で撮像した場合にも像ブレした画像が生じる原因のひとつが回転方向に 撮像装置が揺動又は振動することが原因であることを見出した。すなわち、回転方向 の像ブレが生じていることを見出し、本発明を成すに至った。すなわち、本発明は回 転方向の像ブレの補正が可能な構成にしたことを特徴とする。  As a result of sincerity research, the inventors of the present invention have one of the causes of image blurring in the rotation direction even when image capturing is performed with an image capturing apparatus capable of correcting image blur in a direction perpendicular to the optical axis. It was found that the cause is rocking or vibration. That is, the present inventors have found that image blur in the rotational direction has occurred and have achieved the present invention. That is, the present invention is characterized in that it is configured to be able to correct image blur in the rotation direction.
[0007] 具体的に、本発明に係る第 1の撮像装置は、撮像光学系と、撮像光学系により結 像される像を撮像し、その撮像により得られた画像データを出力する撮像素子と、画 像データに、撮像時において撮像光学系がその光軸まわりに回転したことにより生じ た回転像ブレを補正する回転像ブレ補正処理を施す回転像ブレ補正処理部とを備 えていることを特徴とする。  Specifically, a first imaging device according to the present invention includes an imaging optical system, an imaging element that captures an image formed by the imaging optical system, and outputs image data obtained by the imaging. The image data is provided with a rotation image blur correction processing unit that performs rotation image blur correction processing that corrects rotation image blur caused by rotation of the imaging optical system around the optical axis at the time of imaging. Features.
[0008] 本発明に係る第 2の撮像装置は、撮像光学系を備えたレンズ鏡筒が取り付けられ て使用される撮像装置であって、撮像光学系により結像される像を撮像し、その撮像 により得られた画像データを出力する撮像素子と、画像データに、撮像時において 撮像光学系がその光軸まわりに回転したことにより生じた回転像ブレを補正する回転 像ブレ補正処理を施す回転像ブレ補正処理部とを備えていることを特徴とする。  [0008] A second imaging device according to the present invention is an imaging device to which a lens barrel having an imaging optical system is attached and used. The second imaging device captures an image formed by the imaging optical system, and An image sensor that outputs image data obtained by imaging, and a rotation that applies image blur correction processing to the image data to correct rotational image blur caused by the imaging optical system rotating around its optical axis during imaging And an image blur correction processing unit.
[0009] 本発明に係る第 3の撮像装置は、撮像光学系と、撮像光学系により結像される像を 撮像し、その撮像により得られた画像データを出力する撮像素子と、撮像光学系の 光軸まわりの回転角速度を検出する回転角速度センサと、回転角速度から回転角速 度に対応した回転像ブレデータを演算する演算部と、画像データと回転像ブレデ一 タとを相互に関連づけて記録する記録部と、記録部に記録された画像データに、画 像データに関連づけて記録された回転像ブレデータに基づ 、て、撮像時にぉ 、て 撮像光学系がその光軸まわりに回転したことにより生じた回転像ブレを補正する回転 像ブレ補正処理を施す回転像ブレ補正処理部とを備えていることを特徴とする。  [0009] A third imaging apparatus according to the present invention includes an imaging optical system, an imaging element that images an image formed by the imaging optical system, and outputs image data obtained by the imaging, and an imaging optical system A rotational angular velocity sensor that detects the rotational angular velocity around the optical axis, a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity, and image data and rotational image blur data The imaging optical system rotates around its optical axis during imaging based on the recording unit to be recorded and the rotated image blur data recorded in association with the image data in the image data recorded in the recording unit. And a rotation image blur correction processing unit that performs a rotation image blur correction process for correcting a rotation image blur caused by the rotation.
[0010] 本発明に係る第 4の撮像装置は、撮像光学系を備えたレンズ鏡筒が取り付けられ て使用される撮像装置であって、レンズ鏡筒は撮像光学系の光軸まわりの回転角速 度を検出する回転角速度センサを備え、撮像光学系により結像される像を撮像し、そ の撮像により得られた画像データを出力する撮像素子と、回転角速度から回転角速 度に対応した回転像ブレデータを演算する演算部と、画像データと回転像ブレデ一 タとを相互に関連づけて記録する記録部と、記録部に記録された画像データに、画 像データに関連づけて記録された回転像ブレデータに基づ 、て、撮像時にぉ 、て 撮像光学系がその光軸まわりに回転したことにより生じた回転像ブレを補正する回転 像ブレ補正処理を施す回転像ブレ補正処理部とを備えていることを特徴とする。 [0010] A fourth imaging device according to the present invention is an imaging device that is used with a lens barrel provided with an imaging optical system, and the lens barrel is a rotation angle around the optical axis of the imaging optical system. Speed A rotation angular velocity sensor that detects the degree of rotation, an image sensor that captures an image formed by the imaging optical system, and outputs the image data obtained by the imaging, and a rotation corresponding to the rotation angular velocity from the rotation angular velocity An image processing unit that calculates image blur data, a recording unit that records image data and rotated image blur data in association with each other, and a rotation recorded in association with image data in the image data recorded in the recording unit. A rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by the rotation of the imaging optical system around its optical axis based on the image blur data. It is characterized by having.
[0011] 本発明に係る第 5の撮像装置は、撮像光学系と、撮像光学系により結像される像を 撮像し、その撮像により得られた画像データを出力する撮像素子と、撮像光学系の 光軸まわりの回転角速度を検出する回転角速度センサと、回転角速度から回転角速 度に対応した回転像ブレデータを演算する演算部と、画像データと回転像ブレデ一 タとを相互に関連づけて外部に出力する出力部とを備えていることを特徴とする。  [0011] A fifth imaging device according to the present invention includes an imaging optical system, an imaging element that images an image formed by the imaging optical system, and outputs image data obtained by the imaging, and an imaging optical system A rotational angular velocity sensor that detects the rotational angular velocity around the optical axis, a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity, and image data and rotational image blur data And an output unit for outputting to the outside.
[0012] 本発明に係る第 6の撮像装置は、撮像光学系を備えたレンズ鏡筒が取り付けられ て使用される撮像装置であって、レンズ鏡筒は撮像光学系の光軸まわりの回転角速 度を検出する回転角速度センサを備え、撮像光学系により結像される像を撮像し、そ の撮像により得られた画像データを出力する撮像素子と、回転角速度から回転角速 度に対応した回転像ブレデータを演算する演算部と、画像データと回転像ブレデ一 タとを相互に関連づけて外部に出力する出力部とを備えていることを特徴とする。  A sixth imaging device according to the present invention is an imaging device to which a lens barrel provided with an imaging optical system is attached, and the lens barrel is a rotation angle around the optical axis of the imaging optical system. A rotation angular velocity sensor that detects the speed, an image sensor that captures the image formed by the imaging optical system, and outputs the image data obtained by the imaging, and the rotation angular speed corresponding to the rotation angular speed An arithmetic unit that calculates rotational image blur data, and an output unit that outputs the image data and the rotational image blur data in association with each other are provided.
[0013] また、本発明に係る第 1の画像処理プログラムは、画像データに撮影時に撮像光学 系が回転することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減 された画像データを取得するための画像処理プログラムであって、画像データ及び 撮像光学系の回転角速度を一定の周期毎に積分して得られる周期毎の角度変化量 である回転ブレ量データを取得するステップと、画像データを極座標変換して被変換 画像データを形成するステップと、被変換画像データをフーリエ変換することにより画 像関数を算出するステップと、回転ブレ量データを極座標変換して水平方向ブレ量 を算出し、水平方向ブレ量の度数分布を表すブレ伝達関数を作成するステップと、 作成されたブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を算出す るステップと、画像関数を被変換ブレ伝達関数で割って得られる関数を逆フーリエ変 換することにより回転像ブレが低減された画像データを取得するステップとを備えて いることを特徴とする。 [0013] In addition, the first image processing program according to the present invention is an image in which rotation image blur is reduced by performing a process of correcting rotation image blur caused by rotation of the imaging optical system at the time of shooting on the image data. An image processing program for acquiring data, the step of acquiring rotational blur amount data, which is an angular change amount for each cycle, obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each fixed cycle; Converting the image data into polar coordinates to form converted image data; calculating the image function by Fourier transforming the converted image data; and converting the rotational blur amount data into polar coordinates to convert the horizontal blur amount To calculate a blur transfer function representing the frequency distribution of the horizontal blur amount, and to convert the generated blur transfer function by Fourier transforming the generated blur transfer function. A step that to calculate the transfer function, inverse Fourier varying function obtained image function divided by the conversion blur transfer function And a step of acquiring image data with reduced rotational image blurring.
[0014] 本発明に係る第 2の画像処理プログラムは、画像データに撮影時に撮像光学系が 回転することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減され た画像データを取得するための画像処理プログラムであって、画像データ及び撮像 光学系の回転角速度を一定の周期毎に積分して得られる周期毎の角度変化量であ る回転ブレ量データを極座標変換することにより算出された水平方向ブレ量の度数 分布を表すブレ伝達関数を取得するステップと、画像データを極座標変換して被変 換画像データを形成するステップと、被変換画像データをフーリエ変換することにより 画像関数を算出するステップと、取得されたブレ伝達関数をフーリエ変換することに より被変換ブレ伝達関数を算出するステップと、画像関数を被変換ブレ伝達関数で 割って得られる関数を逆フーリエ変換することにより回転像ブレが低減された画像デ ータを取得するステップとを備えていることを特徴とする。  [0014] The second image processing program according to the present invention performs processing for correcting rotational image blur caused by rotation of the imaging optical system at the time of photographing on the image data, and outputs image data with reduced rotational image blur. An image processing program for obtaining image data and rotational blur data obtained by integrating the rotational angular velocity of the imaging optical system at regular intervals, and converting the rotational blur amount data, which is an angular change amount per cycle, into polar coordinates. A step of obtaining a blur transfer function representing a frequency distribution of the calculated horizontal blur amount, a step of converting image data into polar coordinates to form transformed image data, and a Fourier transform of the transformed image data A step of calculating a function, a step of calculating a converted blur transfer function by performing a Fourier transform on the acquired blur transfer function, and a function of converting the image function Characterized in that the rotating image blurring and a step of acquiring the image data which is reduced by the inverse Fourier transform function obtained by dividing the record transfer function.
[0015] 本発明に係る情報記録媒体は、本発明に係る第 1又は第 2の画像処理プログラム が記録されたものである。  [0015] An information recording medium according to the present invention records the first or second image processing program according to the present invention.
[0016] また、本発明に係る第 1の画像処理装置は、画像データに撮影時に撮像光学系が 回転することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減され た画像データを取得するための画像処理装置であって、撮像光学系の回転角速度 を一定の周期毎に積分して得られる周期毎の角度変化量である回転ブレ量データを 取得し、回転ブレ量データを極座標変換して水平方向ブレ量を算出し、水平方向ブ レ量の度数分布を表すブレ伝達関数を作成するブレ量データ変換部と、画像データ を取得し、画像データを極座標変換して被変換画像データを形成し、被変換画像デ ータをフーリエ変換することにより画像関数を算出すると共に、ブレ伝達関数を取得 し、ブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を算出し、且つ 画像関数を被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換することに より回転像ブレが低減された画像データを取得する回転像ブレ補正処理部とを備え ていることを特徴とする。  [0016] In addition, the first image processing apparatus according to the present invention performs processing for correcting rotational image blur caused by rotation of the imaging optical system at the time of photographing on the image data to reduce the rotational image blur. An image processing apparatus for acquiring data, which acquires rotational shake amount data, which is an angular change amount for each period obtained by integrating the rotational angular velocity of the imaging optical system for each fixed period, and provides rotational shake amount data. Is converted to polar coordinates to calculate a horizontal blur amount, and a blur amount data conversion unit that creates a blur transfer function that represents the frequency distribution of the horizontal blur amount, obtains image data, converts the image data to polar coordinates, An image function is calculated by forming converted image data and Fourier transforming the converted image data, obtaining a blur transfer function, and Fourier transforming the blur transfer function to obtain the converted blur transfer function. A rotation image blur correction processing unit that obtains image data with reduced rotation image blur by performing inverse Fourier transform on the function obtained by dividing the image function by the converted blur transfer function. Features.
[0017] 本発明に係る第 2の画像処理装置は、画像データに撮影時に撮像光学系が回転 することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減された画 像データを取得するための画像処理装置であって、撮像光学系の回転角速度を一 定の周期毎に積分して得られる周期毎の角度変化量である回転ブレ量データを極 座標変換することにより算出される水平方向ブレ量の度数分布を表すブレ伝達関数 及び画像データを取得し、画像データを極座標変換して被変換画像データを形成し 、被変換画像データをフーリエ変換することにより画像関数を算出すると共に、ブレ 伝達関数をフーリエ変換することにより被変換ブレ伝達関数を算出し、且つ画像関数 を被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換することにより回転像 ブレが低減された画像データを取得する回転像ブレ補正処理部を備えて 、ることを 特徴とする。 [0017] In the second image processing apparatus according to the present invention, the imaging optical system rotates during image capturing. An image processing apparatus for obtaining image data with reduced rotational image blur by performing a process for correcting the rotational image blur caused by the rotation of the image pickup optical system, wherein the rotational angular velocity of the imaging optical system is set at a constant cycle. Obtain the blur transfer function and image data representing the frequency distribution of the horizontal blur amount, which is calculated by converting the rotational blur amount data, which is the amount of angular change per cycle obtained by integration, into polar coordinates, and convert the image data into polar coordinates. The transformed image data is transformed to form an image function by Fourier transforming the transformed image data, and the transformed blur transfer function is computed by Fourier transforming the blur transfer function, and the image function A rotation image blur correction processing unit is provided for acquiring image data with reduced rotation image blur by performing inverse Fourier transform on a function obtained by dividing by the converted blur transfer function. And wherein the Rukoto.
[0018] また、本発明に係る第 1の画像処理方法は、画像データに撮影時に撮像光学系が 回転することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減され た画像データを取得するための画像処理方法であって、画像データ及び撮像光学 系の回転角速度を一定の周期毎に積分して得られる周期毎の角度変化量である回 転ブレ量データを取得するステップと、画像データを極座標変換して被変換画像デ ータを形成するステップと、被変換画像データをフーリエ変換することにより画像関数 を算出するステップと、回転ブレ量データを極座標変換して水平方向ブレ量を算出し 、水平方向ブレ量の度数分布を表すブレ伝達関数を作成するステップと、作成され たブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を算出するステツ プと、画像関数を被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換する ことにより回転像ブレが低減された画像データを取得するステップとを備えていること を特徴とする。  [0018] Further, the first image processing method according to the present invention is an image in which rotation image blur is reduced by performing a process of correcting rotation image blur caused by rotation of the imaging optical system at the time of shooting on the image data. An image processing method for acquiring data, the step of acquiring rotational shake amount data, which is an angular change amount for each cycle, obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each fixed cycle. Converting the image data into polar coordinates to form converted image data; calculating the image function by Fourier transforming the converted image data; A step of calculating a blur amount and generating a blur transfer function representing a frequency distribution of the horizontal blur amount, and a Fourier transform of the generated blur transfer function to convert the converted blur transfer function. And a step of obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the transformed blur transfer function. .
[0019] 本発明に係る第 2の画像処理方法は、画像データに撮影時に撮像光学系が回転 することにより生じた回転像ブレを補正する処理を施して回転像ブレが低減された画 像データを取得するための画像処理方法であって、画像データ及び撮像光学系の 回転角速度を一定の周期毎に積分して得られる周期毎の角度変化量である回転ブ レ量データを極座標変換することにより算出された水平方向ブレ量の度数分布を表 すブレ伝達関数を取得するステップと、画像データを極座標変換して被変換画像デ ータを形成するステップと、被変換画像データをフーリエ変換することにより画像関数 を算出するステップと、取得されたブレ伝達関数をフーリエ変換することにより被変換 ブレ伝達関数を算出するステップと、画像関数を被変換ブレ伝達関数で割って得ら れる関数を逆フーリエ変換することにより回転像ブレが低減された画像データを取得 するステップとを備えて 、ることを特徴とする。 [0019] In the second image processing method according to the present invention, the image data in which the rotation image blur is reduced by performing a process for correcting the rotation image blur generated by the rotation of the imaging optical system at the time of photographing on the image data. Image processing method for obtaining image data, and converting the rotation blur amount data, which is the amount of angular change per cycle, obtained by integrating the image data and the rotation angular velocity of the imaging optical system at regular intervals Obtaining a blur transfer function representing the frequency distribution of the horizontal blur amount calculated by A step of calculating an image function by Fourier transforming the converted image data, a step of calculating a converted blur transfer function by Fourier transforming the acquired blur transfer function, and an image Obtaining image data with reduced rotational image blur by performing inverse Fourier transform on the function obtained by dividing the function by the transformed blur transfer function.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]実施の形態 1における DSC1の制御システムを示すブロック図である。  FIG. 1 is a block diagram showing a control system of DSC 1 in the first embodiment.
[図 2]DSC1の上面図及び背面図である。  FIG. 2 is a top view and a rear view of DSC1.
[図 3]像ブレ補正部 20の第 2レンズ群 L2周辺の物理的構成を説明するための分解 斜視図である。  FIG. 3 is an exploded perspective view for explaining a physical configuration around the second lens group L2 of the image blur correction unit 20. FIG.
[図 4]極座標変換前後の画像を模式的に示した図である。  FIG. 4 is a diagram schematically showing images before and after polar coordinate conversion.
[図 5]実施の形態 1における回転像ブレ補正処理のフローチャートである。  FIG. 5 is a flowchart of a rotational image blur correction process in the first embodiment.
[図 6]実施の形態 2における DSC81の制御システムを示すブロック図である。  FIG. 6 is a block diagram showing a control system of DSC 81 in the second embodiment.
[図 7]実施の形態 3における DSC82の制御システムを示すブロック図である。  FIG. 7 is a block diagram showing a control system of DSC 82 in the third embodiment.
[図 8]実施の形態 3における像ブレ補正部 20の構成を示す模式図である。  FIG. 8 is a schematic diagram showing a configuration of an image blur correction unit 20 in the third embodiment.
[図 9]実施の形態 3における外部演算処理装置としての PC80の構成図である。  FIG. 9 is a configuration diagram of a PC 80 as an external arithmetic processing unit in the third embodiment.
[図 10]PC8Oの回転像ブレ補正処理部 60に記録された画像処理プログラムを表すフ ローチャートである。  FIG. 10 is a flowchart showing an image processing program recorded in a rotating image blur correction processing unit 60 of PC8O.
[図 11]変形例に係る DSCの制御システムを示すブロック図である。 FIG. 11 is a block diagram showing a DSC control system according to a modification.
[図 12]変形例における外部演算処理装置としての PC80の構成図である。  FIG. 12 is a configuration diagram of a PC 80 as an external arithmetic processing device in a modified example.
[図 13]PC80に記録された画像処理プログラムを表すフローチャートである。  FIG. 13 is a flowchart showing an image processing program recorded in PC80.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022] (実施の形態 1) [0022] (Embodiment 1)
本実施の形態 1では、本発明を実施したデジタルスチルカメラ(以下、「DSC」とす ることがある。) 1を例に挙げて本発明の好ましい実施の形態の一例について詳細に 説明する。  In the first embodiment, an example of a preferred embodiment of the present invention will be described in detail by taking a digital still camera (hereinafter sometimes referred to as “DSC”) 1 in which the present invention is implemented as an example.
[0023] 図 1は実施の形態 1に係る DSC1の制御システムを示すブロック図である。 [0024] 図 2は DSC1の上面図及び背面図である。詳細には、図 2 (a)は DSC1の上面図で ある。図 2 (b)は DSC1の背面図である。 FIG. 1 is a block diagram showing a control system of DSC 1 according to the first embodiment. FIG. 2 is a top view and a rear view of DSC1. Specifically, Fig. 2 (a) is a top view of DSC1. Figure 2 (b) is a rear view of DSC1.
[0025] 図 3は像ブレ補正部 20の第 2レンズ群 L2周辺の物理的構成を説明するための分 解斜視図である。 FIG. 3 is an exploded perspective view for explaining a physical configuration around the second lens unit L2 of the image blur correction unit 20. FIG.
[0026] 図 4は極座標変換前後の画像を模式的に示した図である。  FIG. 4 is a diagram schematically showing images before and after polar coordinate conversion.
[0027] 図 5は実施の形態 1における回転像ブレ補正処理のフローチャートである。 FIG. 5 is a flowchart of the rotation image blur correction process in the first embodiment.
[0028] 図 1に示すように、 DSC1は、撮像光学系 Lが収納されたレンズ鏡筒 2と、演算部 3と 、撮像素子 4と、撮像素子駆動制御部 5と、アナログ信号処理部 6と、 AZD変換部 7 と、デジタル信号処理部 8と、回転像ブレ補正処理部 60と、バッファメモリ 9と、画像圧 縮部 10と、画像記録制御部 11と、画像記録部 12と、画像表示制御部 13と、表示部 14と、ブレ量データ変換部 61とを備えている。 As shown in FIG. 1, the DSC 1 includes a lens barrel 2 in which the imaging optical system L is housed, a calculation unit 3, an imaging device 4, an imaging device drive control unit 5, and an analog signal processing unit 6. An AZD conversion unit 7, a digital signal processing unit 8, a rotational image blur correction processing unit 60, a buffer memory 9, an image compression unit 10, an image recording control unit 11, an image recording unit 12, and an image The display control unit 13, the display unit 14, and the shake amount data conversion unit 61 are provided.
[0029] 撮像光学系 Lは 3つのレンズ群(第 1レンズ群 Ll、第 2レンズ群 L2及び第 3レンズ群 L3を含む。第 1レンズ群 L1は光軸 AX方向に変位することにより主としてフォーカシ ングを行うためのレンズ群である。第 3レンズ群 L3は光軸 AX方向に変位することによ り主としてズーミングを行うためのレンズ群である。第 2レンズ群 L2は、ピッチング方向 及びョーイング方向の像ブレを補正する像ブレ補正レンズ群としての機能を有する。 尚、ここでは、撮像光学系 Lが 3つのレンズ群により構成されている例について説明 するが、撮像光学系 Lは、 3つのレンズ群により構成されている必要性は必ずしもなく 、 2枚又は 1枚のレンズ群、若しくは 3枚以上のレンズ群及びミラーやプリズム等の他 の光学素子によって構成されて 、てもよ 、。 The imaging optical system L includes three lens groups (a first lens group Ll, a second lens group L2, and a third lens group L3. The first lens group L1 is mainly focused by being displaced in the optical axis AX direction. The third lens group L3 is a lens group mainly for zooming by displacing in the optical axis AX direction, and the second lens group L2 is the pitching direction and the winging direction. In this example, the imaging optical system L is configured by three lens groups, but the imaging optical system L has three functions. It is not always necessary to be constituted by a lens group, and may be constituted by two or one lens group, or three or more lens groups and another optical element such as a mirror or a prism.
[0030] 具体的に、第 2レンズ群 L2は光軸 AXに垂直な面内をピッチング方向及びョーイン グ方向に変位することにより、撮像素子 4に入射する光の光軸 AXを偏心させて、撮 像光学系 Lにより結像される像の撮像素子 4上の位置を略一定に保持する機能を有 する。すなわち、第 2レンズ群 L2は撮像光学系により結像される像の撮像素子 4上の 位置が動かないようにする機能を有する。言い換えれば、撮像光学系 Lに入射する 光の光軸と撮像光学系 Lの光軸とがずれることを抑制する機能を有する。 [0030] Specifically, the second lens unit L2 decenters the optical axis AX of the light incident on the image sensor 4 by displacing in the pitching direction and the skewing direction in a plane perpendicular to the optical axis AX. It has a function to keep the position on the image sensor 4 of the image formed by the imaging optical system L substantially constant. That is, the second lens unit L2 has a function of preventing the position of the image formed by the imaging optical system on the imaging element 4 from moving. In other words, the optical axis of the light incident on the imaging optical system L and the optical axis of the imaging optical system L are suppressed from shifting.
[0031] 像ブレ補正レンズ群 L2がな 、場合、機械的な振動や撮影者による揺れ等が DSC 1に加わると、被写体から撮像光学系 Lに入射する光の光軸が撮像光学系 Lの光軸 からずれ、揺れや振動に合わせて変動する。したがって、得られる画像は不鮮明な ぶれた画像となる。一方、像ブレ補正レンズとしての第 2レンズ群 L2を有する DSC1 では、振動や揺動が DSC1に加わっても撮像光学系 Lに入射する光の光軸と撮像光 学系 Lの光軸とのずれや相対位置関係の変動が抑制される。従って、ョーイング方 向及びピッチング方向の像ブレが低減された鮮明な画像が得られる。 [0031] In the case where the image blur correction lens group L2 is not provided, when mechanical vibration or shake by the photographer is applied to the DSC 1, the optical axis of light incident on the imaging optical system L from the subject is changed to that of the imaging optical system L. optical axis It fluctuates according to shaking and vibration. Therefore, the obtained image is blurred and blurred. On the other hand, in the DSC1 having the second lens unit L2 as an image blur correction lens, the optical axis of the light incident on the imaging optical system L and the optical axis of the imaging optical system L are not affected even if vibration or oscillation is applied to the DSC1. Deviations and fluctuations in the relative positional relationship are suppressed. Therefore, a clear image with reduced image blurring in the winging direction and the pitching direction can be obtained.
[0032] 演算部 3は、例えば、マイクロコンピュータにより構成することができる。演算部 3は、 AZD変換部 18、デジタル信号処理部 8、撮像素子駆動制御部 5、電源スィッチ 35、 シャッター操作部 36、撮影 Z再生切換操作部 37、十字操作キー 38、 MENU設定 操作部 39、 SET操作部 40等に接続されており、これらから入力される信号に基づい て DSC1の各種の制御部全体を制御する。  The computing unit 3 can be configured by a microcomputer, for example. Arithmetic unit 3 includes AZD conversion unit 18, digital signal processing unit 8, image sensor drive control unit 5, power switch 35, shutter operation unit 36, shooting Z playback switching operation unit 37, cross control key 38, MENU setting operation unit 39 The control unit is connected to the SET operation unit 40 and the like, and controls all the various control units of the DSC 1 based on signals input from these.
[0033] シャッター操作部 36は操作に応じて演算部 3にタイミング信号を送信する。演算部 3は、シャッター操作部 36から受信するタイミング信号に応じて、シャッター制御部( 図示せず)に指示信号を出力する。その指示信号によりシャッター駆動モータ(図示 せず)が駆動され、シャッター(図示せず)が動作する。  The shutter operation unit 36 transmits a timing signal to the calculation unit 3 according to the operation. The computing unit 3 outputs an instruction signal to a shutter control unit (not shown) in accordance with the timing signal received from the shutter operation unit 36. A shutter drive motor (not shown) is driven by the instruction signal, and a shutter (not shown) operates.
[0034] 撮像素子 4は撮影光学系 Lにより結像される像を撮像すると共に、電気的な信号に 変換し、画像データとして出力する。撮像素子 4には、演算部 3に接続された撮像素 子駆動制御部 5が接続されている。撮像素子 4はこの撮像素子駆動制御部 5により駆 動制御される。尚、撮像素子 4は電荷結合素子 (CCD)や補型金属酸化膜半導体( CMOS)等により構成することができる。  The image sensor 4 captures an image formed by the photographing optical system L, converts it into an electrical signal, and outputs it as image data. An imaging element drive control unit 5 connected to the calculation unit 3 is connected to the imaging element 4. The image sensor 4 is driven and controlled by the image sensor drive controller 5. The imaging device 4 can be constituted by a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or the like.
[0035] 撮像素子 4から出力された画像データは、アナログ信号処理部 6から、 AZD変換 部 7、デジタル信号処理部 8、回転像ブレ補正処理部 60、バッファメモリ 9、画像圧縮 部 10へと、順次入力'処理される。  The image data output from the image sensor 4 is sent from the analog signal processing unit 6 to the AZD conversion unit 7, the digital signal processing unit 8, the rotation image blur correction processing unit 60, the buffer memory 9, and the image compression unit 10. Sequential input 'processing.
[0036] アナログ信号処理部 6は、撮像素子 4から出力される画像データにアナログ信号処 理 (例えば、ガンマ処理等)を施す。 AZD変換部 7は、アナログ信号処理が施された 画像データをデジタル化する。デジタル信号処理部 8は、演算部 3からの信号に基づ いて、デジタル化された画像データにデジタル信号処理 (例えば、ノイズ除去や輪郭 強調等)を施す。  The analog signal processing unit 6 performs analog signal processing (for example, gamma processing) on the image data output from the image sensor 4. The AZD converter 7 digitizes image data that has been subjected to analog signal processing. The digital signal processing unit 8 performs digital signal processing (for example, noise removal and contour enhancement) on the digitized image data based on the signal from the calculation unit 3.
[0037] 演算部 3は回転像ブレ補正処理部 60に回転像ブレデータの一種である回転ブレ 量データを出力する。回転像ブレ補正処理部 60は、その回転ブレ量データを基に、 デジタル信号処理部 8より出力された画像データに対して回転像ブレ補正処理を施 す。 [0037] The calculation unit 3 sends to the rotation image blur correction processing unit 60 a rotation blur that is a type of rotation image blur data. Output quantity data. The rotation image blur correction processing unit 60 performs rotation image blur correction processing on the image data output from the digital signal processing unit 8 based on the rotation blur amount data.
[0038] ノッファメモリ 9は回転像ブレ補正処理が施された画像データを一時記憶する。尚、 バッファメモリ 9は、例えば、 RAM (Random Access Memory)により構成するこ とがでさる。  [0038] The noffer memory 9 temporarily stores the image data that has undergone the rotation image blur correction process. The buffer memory 9 can be constituted by, for example, a RAM (Random Access Memory).
[0039] バッファメモリ 9に記憶された画像データは、画像圧縮部 10、画像記録部 12へと、 順次入力'処理される。  The image data stored in the buffer memory 9 is sequentially input 'processed into the image compression unit 10 and the image recording unit 12.
[0040] バッファメモリ 9に記憶された画像データは、演算部 3に接続された画像記録制御 部 11の指令により、画像圧縮部 10に出力される。画像圧縮部 10において、画像デ ータは所定の比率で圧縮され、基のデータよりも小さなデータサイズの画像データが 作成される。また同時に、画像圧縮部 10はサムネイル表示等に用いられる撮影画像 に対応する縮小画像データについても生成する。その後、圧縮された画像データお よび縮小画像データは、画像記録部 12に入力される。尚、画像データの圧縮方法と しては、例えば、 JPEG (Joint Photographic Experts Group)方式等が挙げら れる。  The image data stored in the buffer memory 9 is output to the image compression unit 10 in response to a command from the image recording control unit 11 connected to the calculation unit 3. In the image compression unit 10, the image data is compressed at a predetermined ratio, and image data having a data size smaller than the original data is created. At the same time, the image compression unit 10 also generates reduced image data corresponding to the captured image used for thumbnail display or the like. Thereafter, the compressed image data and the reduced image data are input to the image recording unit 12. Examples of the image data compression method include the JPEG (Joint Photographic Experts Group) method.
[0041] 画像記録部 12は、画像記録制御部 11の指令に基づ 、て、画像データを所定のデ ータ (例えば、対応する縮小画像データ等)及び情報 (例えば、画像を撮影した際の 日時、焦点距離情報、シャッタースピード情報、絞り値情報、撮影モード情報等)と関 連づけて記録する。  [0041] Based on a command from the image recording control unit 11, the image recording unit 12 converts image data into predetermined data (for example, corresponding reduced image data) and information (for example, when an image is captured). Date / time, focal length information, shutter speed information, aperture value information, shooting mode information, etc.).
[0042] 画像表示制御部 13は、演算部 3からの制御信号により制御される。この画像表示 制御部 13の指令により、表示部 14は画像記録部 12ある ヽはバッファメモリ 9に記録 された画像データを可視画像として表示する。尚、表示部 14は、画像データのみを 表示することもできるし、また、画像データに加えて、撮影時の情報 (例えば、焦点距 離情報、シャッタースピード情報、絞り値情報、撮影モード情報、合焦状態情報など) 等を同時に表示することもできる。  The image display control unit 13 is controlled by a control signal from the calculation unit 3. In response to a command from the image display control unit 13, the display unit 14 displays the image data recorded in the buffer memory 9 as a visible image. The display unit 14 can display only image data. In addition to image data, information at the time of shooting (for example, focal length information, shutter speed information, aperture value information, shooting mode information, In-focus state information etc.) can also be displayed at the same time.
[0043] 次に、実施の形態 1における DSC1の物理的構成について、図 2を参照しながら説 明する。 [0044] DSC1は筐体 laを備えている。筐体 laの前面には撮像光学系 Lを含むレンズ鏡筒 2が配置されている。 DSC1の背面には、電源スィッチ 35と、撮影 Z再生切換操作部 37と、十字操作キー 38と、 MENU設定操作部 39と、 SET操作部 40と、液晶モニタ 力もなる表示部 14とが配置されている。筐体 laの上面には、シャッター操作部 36と、 ズーム操作部 57とが配置されている。ズーム操作部 57は、シャッター操作部 36と同 軸に回動可能となるように、シャッター操作部 36の周囲に配置されている。電源スィ ツチ 35は、 DSC1の電源の ONZOFFを行う操作部材である。撮影 Z再生切換操 作部 37は、撮影モードと再生モードの切換えを行うためのものである。具体的に、撮 影モードと再生モードとの切り替えはレバーを回動させることにより行われる。撮影モ ードにおいて、ズーム操作部 57を右方向へ回動させると撮像光学系 Lは演算部 3に より望縁側へ制御される (ズームインされる)。また、左方向へ回動させると演算部 3に より広角側へ制御される (ズームアウトされる)。 MENU設定操作部 39は、表示部 14 に各種メニューを表示させるためのものである。十字操作キー 38は、 MENU設定操 作部 39の操作により表示部 14に表示された各種操作メニューから、上下左右の部 位を押圧して選択するためのものである。十字操作キー 38により各種操作メニューが 選択されると、演算部 3は実行指令を出す。 SET操作部 40は、各種操作メニューの 表示を表示前の状態に戻すためのものである。 Next, the physical configuration of DSC 1 in Embodiment 1 will be described with reference to FIG. [0044] DSC1 includes a housing la. A lens barrel 2 including the imaging optical system L is disposed on the front surface of the housing la. On the back of the DSC1, a power switch 35, shooting Z playback switching operation section 37, cross control key 38, MENU setting operation section 39, SET operation section 40, and display section 14 that also has LCD monitor power are arranged. ing. A shutter operation unit 36 and a zoom operation unit 57 are arranged on the upper surface of the housing la. The zoom operation unit 57 is arranged around the shutter operation unit 36 so as to be rotatable about the same axis as the shutter operation unit 36. The power switch 35 is an operation member for turning the power of the DSC 1 on and off. The shooting Z playback switching operation section 37 is for switching between shooting mode and playback mode. Specifically, switching between the shooting mode and the playback mode is performed by rotating a lever. In the shooting mode, when the zoom operation unit 57 is rotated to the right, the imaging optical system L is controlled by the calculation unit 3 to the desired side (zoomed in). Further, when it is turned to the left, it is controlled to the wide angle side (zoomed out) by the calculation unit 3. The MENU setting operation unit 39 is for displaying various menus on the display unit 14. The cross-shaped operation key 38 is used for selecting by pressing the upper, lower, left and right parts from various operation menus displayed on the display unit 14 by the operation of the MENU setting operation unit 39. When various operation menus are selected by the cross operation key 38, the calculation unit 3 issues an execution command. The SET operation unit 40 is for returning the display of various operation menus to the state before display.
[0045] 次に、図 1を参照して像ブレ補正部 20の制御システムについて説明する。  Next, a control system of the image blur correction unit 20 will be described with reference to FIG.
[0046] 像ブレ補正部 20は、動き補正部 15Aと、動き検出部 17Aと、信号処理部 3Aとを備 えている。動き補正部 15Aは撮像光の光軸 AXの動きを制御する。具体的に、動き補 正部 15Aは、第 2レンズ群 L2と、ョーイング駆動制御部 15xと、ピッチング駆動制御 部 15yと、位置検出部 16とを含む。第 2レンズ群 L2は光軸 AXに垂直な面内のョーィ ング方向及びピッチング方向に変位可能に構成されている。そして、第 2レンズ群 L2 は、ョーイング駆動制御部 15xおよびピッチング駆動制御部 15yにより、光軸 AXに 直交する 2方向ョーイング方向(X方向)およびピッチング方向(Y方向)に駆動制御さ れる。この駆動制御により撮像光学系 Lの光軸 AXの動きが制御される。  The image blur correction unit 20 includes a motion correction unit 15A, a motion detection unit 17A, and a signal processing unit 3A. The motion correction unit 15A controls the movement of the optical axis AX of the imaging light. Specifically, the motion correction unit 15A includes a second lens group L2, a bowing drive control unit 15x, a pitching drive control unit 15y, and a position detection unit 16. The second lens unit L2 is configured to be displaceable in the caming direction and the pitching direction in a plane perpendicular to the optical axis AX. The second lens unit L2 is driven and controlled in a two-way winging direction (X direction) and a pitching direction (Y direction) perpendicular to the optical axis AX by the winging drive control unit 15x and the pitching drive control unit 15y. By this drive control, the movement of the optical axis AX of the imaging optical system L is controlled.
[0047] 位置検出部 16は、第 2レンズ群 L2の変位を検出する検出手段である。位置検出部 16は、ョーイング駆動制御部 15xおよびピッチング駆動制御部 15yとともに、第 2レン ズ群 L2を制御するための帰還制御ループを形成している。 [0047] The position detector 16 is a detecting means for detecting the displacement of the second lens group L2. The position detection unit 16 includes a second drive control unit 15x and a pitching drive control unit 15y together with the second lens. A feedback control loop for controlling the group L2 is formed.
[0048] 動き検出部 17Aは、ョーイング角度センサ 17xと、ピッチング角度センサ 17yと、口 一リング角度センサ(回転角速度センサ) 17zとを含む(以下、「ョーイング角度センサ 17x、ピッチング角度センサ 17y、及びローリング角度センサ 17z」を「角度センサ 17 x、 17y及び 17z」とすることがある。)。角度センサ 17x、 17y及び 17zは、手ブレおよ びその他の振動や揺動による撮像光学系 Lを含む DSC1自体の変位を検出するセ ンサである。具体的に、ョーイング角度センサ 17xはョーイング方向における撮像光 学系 Lの変位を検出する。ピッチング角度センサ 17yはピッチング方向における撮像 光学系 Lの変位を検出する。ローリング角度センサ 17zはローリング方向(撮像光学 系 Lの光軸 AXに対する回転方向)における撮像光学系 Lの変位を検出する。  [0048] The motion detection unit 17A includes a bowing angle sensor 17x, a pitching angle sensor 17y, and a mouth ring angle sensor (rotational angular velocity sensor) 17z (hereinafter referred to as "chowing angle sensor 17x, pitching angle sensor 17y, and The rolling angle sensor 17z ”may be referred to as“ angle sensors 17x, 17y, and 17z ”. The angle sensors 17x, 17y, and 17z are sensors that detect the displacement of the DSC 1 itself including the imaging optical system L due to camera shake and other vibrations and swings. Specifically, the bowing angle sensor 17x detects the displacement of the imaging optical system L in the bowing direction. The pitching angle sensor 17y detects the displacement of the imaging optical system L in the pitching direction. The rolling angle sensor 17z detects the displacement of the imaging optical system L in the rolling direction (the rotation direction of the imaging optical system L with respect to the optical axis AX).
[0049] 各角度センサ 17x、 17y、 17zは、 DSClが静止している状態における出力を基準 とし、 DSC1の動く方向によって正負いずれか一方の角度信号 (変位信号)を出力す る。各角度センサ 17x、 17y、 17zから出力された角度信号は、信号処理部 3Aに入 力され、信号処理部 3Aにおいて処理される。  [0049] Each angle sensor 17x, 17y, 17z outputs either one of positive and negative angle signals (displacement signals) depending on the direction in which DSC1 moves, using the output when DSCl is stationary as a reference. The angle signals output from the angle sensors 17x, 17y, and 17z are input to the signal processing unit 3A and processed in the signal processing unit 3A.
[0050] 信号処理部 3Aは、演算部 3と、 AZD変換部 18x、 18y、 18zと、 DZA変換部 19x 、 19yとを含む。  [0050] The signal processing unit 3A includes a calculation unit 3, AZD conversion units 18x, 18y, and 18z, and DZA conversion units 19x and 19y.
[0051] 角度センサ 17x、 17y、 17zにより出力された変位データ信号は、フィルタ処理、ァ ンプ処理等が施された後、それぞれ AZD変換部 18x、 18y、 18zでデジタル信号に 変換され、演算部 3に入力される。演算部 3は、 AZD変換部 18x、 18y、 18zを介し て入力された変位データ信号に対して、フィルタリング、積分処理、位相補償、ゲイン 調整、クリップ処理等の各処理を施す。これらの各処理を施すことにより、演算部 3は 、 AZD変換部 18x、 18yから入力された値を基に、ョーイング方向及びピッチング方 向の像ブレの補正に必要な第 2レンズ群 L2の駆動制御量を演算し、制御信号を生 成する。生成された制御信号は DZA変換部 19x、 19yによりアナログ信号に変換さ れる。アナログ信号に変換された制御信号がョーイング駆動制御部 15xおよびピッチ ング駆動制御部 15yに対して出力される。ョーイング駆動制御部 15xおよびピッチン グ駆動制御部 15yは、入力された制御信号に基づき、第 2レンズ群 L2を駆動する。こ れにより、ョーイング方向及びピッチング方向の像ブレが補正される。 [0052] また、演算部 3は、ローリング角度センサ 17zにより検出された回転角速度を基に、 所定の周期でサンプリングした光軸 AX周りの回転ブレ量データを演算する。具体的 には、デジタル信号化された回転角速度 d Θ zZdt (但し、 Θ z :光軸 AXまわりの角度 )が AZD変換部 18zから出力される。演算部 3は、出力された回転角速度 d Θ z/dt を所定の周期で積分し、回転ブレ量データ (角度変化量) Δ Θ zを算出する。このよう に算出された回転ブレ量データ Δ Θ zはブレ量データ変換部 61へと出力される。 [0051] The displacement data signals output by the angle sensors 17x, 17y, and 17z are subjected to filter processing, amplifier processing, and the like, and then converted into digital signals by the AZD conversion units 18x, 18y, and 18z, respectively. Entered in 3. The calculation unit 3 performs various processes such as filtering, integration processing, phase compensation, gain adjustment, and clip processing on the displacement data signal input via the AZD conversion units 18x, 18y, and 18z. By performing each of these processes, the calculation unit 3 drives the second lens unit L2 necessary for correcting the image blur in the chowing direction and the pitching direction based on the values input from the AZD conversion units 18x and 18y. Calculates the control amount and generates a control signal. The generated control signal is converted into an analog signal by the DZA converters 19x and 19y. The control signal converted into the analog signal is output to the keying drive control unit 15x and the pitching drive control unit 15y. The sharing drive control unit 15x and the pitching drive control unit 15y drive the second lens unit L2 based on the input control signal. As a result, image blurring in the show direction and pitch direction is corrected. [0052] Further, the computing unit 3 computes rotational shake amount data around the optical axis AX sampled at a predetermined cycle based on the rotational angular velocity detected by the rolling angle sensor 17z. Specifically, the rotational angular velocity d Θ zZdt (where Θ z is an angle around the optical axis AX) converted into a digital signal is output from the AZD converter 18z. The computing unit 3 integrates the output rotational angular velocity d Θ z / dt at a predetermined period to calculate rotational shake amount data (angle change amount) ΔΘ z. The rotational shake amount data ΔΘz calculated in this way is output to the shake amount data converter 61.
[0053] 次に、本実施の形態おける像ブレ補正部 20の第 2レンズ群 L2周辺の物理的構成 について、図 3を参照しながら詳細に説明する。像ブレ補正レンズ群としての第 2レン ズ群 L2はピッチング保持枠 21に取り付けられている。ピッチング保持枠 21には、対 をなす,ピッチング方向(Y方向)に相互に並行な 2本のピッチングシャフト 23a及び 2 3bが設けられている。ピッチングシャフト 23a及び 23bは、ピッチング保持枠 21に対 向するように設けられたョーイング保持枠 22に、ピッチング方向(Y方向)に摺動可能 に取り付けられている。すなわち、ピッチング保持枠 21はョーイング保持枠 22に対し てピッチング方向(Y方向)に変位可能に取り付けられている。  Next, the physical configuration around the second lens group L2 of the image blur correction unit 20 in the present embodiment will be described in detail with reference to FIG. The second lens unit L2 as the image blur correcting lens unit is attached to the pitching holding frame 21. The pitching holding frame 21 is provided with two pitching shafts 23a and 23b that are parallel to each other in the pitching direction (Y direction). The pitching shafts 23a and 23b are attached to a winging holding frame 22 provided so as to face the pitching holding frame 21 so as to be slidable in the pitching direction (Y direction). That is, the pitching holding frame 21 is attached to the chaining holding frame 22 so as to be displaceable in the pitching direction (Y direction).
[0054] ョーイング保持枠 22には、ョーイング方向(X方向)に相互に並行に延びる 2本のョ 一イングシャフト 26a及び 26bが設けられている。ョーイングシャフト 26a、 26bは、ョ 一イング保持枠 22に対向するように設けられた固定枠 25に、ョーイング方向(X方向 )に摺動可能に取り付けられている。すなわち、ョーイング保持枠 22は固定枠 25に 対してョーイング方向(X方向)に変位可能に取り付けられている。  [0054] The caming holding frame 22 is provided with two shafts 26a and 26b extending in parallel with each other in the caming direction (X direction). The shafting shafts 26a and 26b are attached to a fixed frame 25 provided so as to be opposed to the housing holding frame 22 so as to be slidable in the chaining direction (X direction). That is, the caming holding frame 22 is attached to the fixed frame 25 so as to be displaceable in the caming direction (X direction).
[0055] 一方、固定枠 25はレンズ鏡筒 2に対して変位不能に取り付けられている。従って、 第 2レンズ群 L2が取り付けられたピッチング保持枠 21は固定枠 25及びレンズ鏡筒 2 に対して、ョーイング方向(X方向)及びピッチング方向(Y方向)の双方に変位可能 に取り付けられている。  On the other hand, the fixed frame 25 is attached to the lens barrel 2 so that it cannot be displaced. Therefore, the pitching holding frame 21 to which the second lens unit L2 is attached is attached to the fixed frame 25 and the lens barrel 2 so as to be displaceable in both the chowing direction (X direction) and the pitching direction (Y direction). Yes.
[0056] ピッチング保持枠 21には、コイル 24x及び 24yが設けられて!/、る。コイル 24x、 24y は、それぞれ固定枠 25に変位不能に取り付けられた断面 U字状のョーイングァクチ ユエータ 29x及びピッチングァクチユエータ 29yの間に位置している。ョーイングァク チユエータ 29xは、断面 U字状のヨーク 28xと、ヨーク 28xにコイル 24xと対畤するよう に取り付けられたマグネット 27xとを有する。一方、ピッチングァクチユエータ 29yは、 断面 U字状のヨーク 28yと、ヨーク 28yにコイル 24yと対畤するように取り付けられた マグネット 27yとを有する。 [0056] The pitching holding frame 21 is provided with coils 24x and 24y! The coils 24x and 24y are positioned between a cornering actuator 29x and a pitching actuator 29y each having a U-shaped cross section that is attached to the fixed frame 25 so as not to be displaced. The cornering actuator 29x has a yoke 28x having a U-shaped cross section and a magnet 27x attached to the yoke 28x so as to face the coil 24x. On the other hand, the pitching actuator 29y A yoke 28y having a U-shaped cross section and a magnet 27y attached to the yoke 28y so as to face the coil 24y.
[0057] ピッチング保持枠 21には発光素子 30が固定されている。一方、固定枠 25には、発 光素子 30と対向するように受光素子 31が取り付けられている。受光素子 31は発光 素子 30の投射光を受光することによりピッチング保持枠 21 (第 2レンズ群 L2)の二次 元の位置座表を検出する。尚、本実施の形態 1では、第 2レンズ群 L2の変位を検出 するセンサを一組の発光素子 30と受光素子 31とにより構成している力 例えば、第 2 レンズ群 L2のョーイング方向の変位を検出するセンサと、ピッチング方向の変位を検 出するセンサとを別個に設けてもょ 、。  A light emitting element 30 is fixed to the pitching holding frame 21. On the other hand, a light receiving element 31 is attached to the fixed frame 25 so as to face the light emitting element 30. The light receiving element 31 receives the projection light from the light emitting element 30 to detect the two-dimensional position map of the pitching holding frame 21 (second lens group L2). In the first embodiment, the force that constitutes the sensor that detects the displacement of the second lens unit L2 by the pair of the light emitting element 30 and the light receiving element 31. For example, the displacement of the second lens unit L2 in the keying direction. It is possible to provide a separate sensor for detecting displacement and a sensor for detecting displacement in the pitching direction.
[0058] 次に、回転像ブレ補正処理部 60、ブレ量データ変換部 61で実施する画像処理に よる回転ブレ補正方法について詳細に説明する。  Next, a rotational blur correction method by image processing performed by the rotational image blur correction processing unit 60 and the blur amount data conversion unit 61 will be described in detail.
[0059] まず、ブレ量データ変換部 61における処理について説明する。ブレ量データ変換 部 61では、演算部 3から出力された回転ブレ量データ Δ Θ zからブレ伝達関数が作 成される。具体的に、まず回転ブレ量データ Δ Θ zを極座標変換して得られる水平方 向ブレ量 (変位量) A sが算出される。この処理は下記 (式 1)に従って行われる。 A s = a - A 0 z (式 1)  First, the processing in the blur amount data conversion unit 61 will be described. In the shake amount data conversion unit 61, a shake transfer function is created from the rotational shake amount data ΔΘz output from the calculation unit 3. Specifically, first, a horizontal blur amount (displacement amount) A s obtained by performing polar coordinate conversion on the rotational blur amount data ΔΘz is calculated. This process is performed according to (Equation 1) below. A s = a-A 0 z (Equation 1)
ここで、(式 1)中の係数 αは回転像ブレ補正処理部 60にて極座標変換する際のサ ンプリング数に依存する。例えば、デジタル信号処理部 8から出力された回転像ブレ 画像 70 (図 4参照)に対して極座標変換を行った結果得られる極座標変換後画像 71 の水平方向総画素数を S画素とした場合、係数 ocは (式 2)から得られる。  Here, the coefficient α in (Equation 1) depends on the number of samples when the rotating image blur correction processing unit 60 performs polar coordinate conversion. For example, when the total number of pixels in the horizontal direction of the image 71 after polar coordinate conversion obtained as a result of performing polar coordinate conversion on the rotated image blurred image 70 (see FIG. 4) output from the digital signal processing unit 8 is S pixels, The coefficient oc is obtained from (Equation 2).
α = ^/ {2 π ) (式 2)  α = ^ / (2 π) (Equation 2)
次に、時系列的に得られる極座標変換後のブレ量 (変位量) A sが並び換えられ、 ブレ量 Δ sの等し!/、データの数量がカウントされる。その結果ブレ量 Δ sの等 、デー タが h個のデータがあった場合は、 A sの位置の度数力 とされる。このようにして導き 出される度数分布を関数 Ms)で表す。尚、 Ms)は極座標変換後ブレ量の頻度分布 であり、ブレ伝達関数となる。  Next, the amount of blur (displacement) A s after polar coordinate conversion obtained in time series is rearranged, and the amount of blur Δs is equal! / And the quantity of data is counted. As a result, if there are h pieces of data, such as the blur amount Δ s, the power at the position of A s is assumed. The frequency distribution derived in this way is represented by the function Ms). Ms) is the frequency distribution of the blur amount after polar coordinate conversion and is the blur transfer function.
[0060] 次に、回転像ブレ補正処理部 60における処理について説明する。回転像ブレ補 正処理部 60では、図 4に模式的に示すように、デジタル信号処理部 8から出力され た回転像ブレ画像 70に対して極座標変換が行われ、極座標変換後画像 (被変換画 像データ) 71が与えられる。回転像ブレ画像 70の座標系を X— y座標系、極座標変 換後画像 71の座標系を s— r座標系、また回転像ブレ画像 70の垂直方向総画素数 を Y画素とした場合、極座標変換は (式 3)、(式 4)に従って行われる。 Next, the processing in the rotational image blur correction processing unit 60 will be described. The rotation image blur correction processing unit 60 outputs the digital image signal from the digital signal processing unit 8 as schematically shown in FIG. The rotated image blur image 70 is subjected to polar coordinate conversion, and an image after polar coordinate conversion (converted image data) 71 is given. If the coordinate system of the rotated image blur image 70 is the X-y coordinate system, the coordinate system of the polar image transformed image 71 is the s-r coordinate system, and the total number of vertical pixels of the rotated image blur image 70 is Y pixels, Polar coordinate transformation is performed according to (Equation 3) and (Equation 4).
s= (Y/2) -Tan_1 (y/x) (式 3) s = (Y / 2) -Tan _1 (y / x) (Equation 3)
/ 2 2ヽ 0. 5  / 2 2 ヽ 0.5
r= (X +y ) (式 4)  r = (X + y) (Formula 4)
極座標変換後画像 71の水平方向画素数 Sは回転像ブレ画像 70内の内接円 72の 外周長となる。このため、極座標変換後画像 71の水平方向における画像の欠落の 無い範囲におけるサンプリングによる解像度の劣化を抑制することができる。ここで画 像の欠落の無い範囲とは、極座標変換後画像 71の水平方向に画像の欠落が生じな いという意味で、回転像ブレ画像 70の内接円 72の内部を指す。また、極座標変換後 画像 71の垂直方向画素数 Rは回転像ブレ画像内の中心力も最も遠 、位置までの距 離、即ち回転像ブレ画像 70の対角線長の 1Z2となる。尚、以上の変換条件は一例 であってこれに限定されるわけではない。  The number of pixels S in the horizontal direction of the image 71 after polar coordinate conversion is the outer perimeter length of the inscribed circle 72 in the rotated image blurred image 70. For this reason, it is possible to suppress degradation of resolution due to sampling in a range in which no image is missing in the horizontal direction of the image 71 after polar coordinate conversion. Here, the range without image loss means that the image is not lost in the horizontal direction of the image 71 after the polar coordinate conversion, and indicates the inside of the inscribed circle 72 of the rotated image blurred image 70. Further, the number R of vertical pixels of the image 71 after the polar coordinate conversion is the farthest central force in the rotated image blurred image and the distance to the position, that is, the diagonal length of the rotated image blurred image 70 is 1Z2. The above conversion conditions are merely examples, and the present invention is not limited to them.
[0061] 次に極座標変換後画像 71に対してブレ補正処理が行われる。 Next, blur correction processing is performed on the image 71 after polar coordinate conversion.
[0062] まずブレ補正処理の原理について説明する。ここでは水平方向のみのブレを考え ればよいので 1次元で考えることができる。ブレのない元の像の強度分布を f (s)、ブ レを含んだ像の強度分布である極座標変換後画像 71の強度分布を g (s)とすると、 極座標変換後画像 71は (式 5)のように、 f (s)と h (s)のコンボリューシヨン積分で表す ことができる。 First, the principle of the blur correction process will be described. Here, it is only necessary to consider blur in the horizontal direction, so it can be considered in one dimension. Assuming that the intensity distribution of the original image without blur is f (s) and the intensity distribution of the image 71 after polar coordinate conversion, which is the intensity distribution of the image including blur, is g (s), the image 71 after polar coordinate conversion is As shown in 5), it can be expressed by the convolution integral of f (s) and h (s).
[0063] [数 1] (式 5)[0063] [Equation 1] (Equation 5)
Figure imgf000015_0001
Figure imgf000015_0001
(式 5)の両辺をフーリエ変換することにより(式 6)が得られる。これを変形すると (式 7)が得られる。 (Equation 6) is obtained by Fourier-transforming both sides of (Equation 5). If this is transformed, (Equation 7) is obtained.
G (u) =F (u) -H (u) (式 6)  G (u) = F (u) -H (u) (Equation 6)
F (u) =G (u) /H (u) (式 7)  F (u) = G (u) / H (u) (Equation 7)
但し、 G (u) :g (s)のフーリエ変換、 However, G (u): Fourier transform of g (s),
F (u): f (s)のフーリエ変換、  F (u): Fourier transform of f (s),
H (u) :h (s)のフーリエ変換、  H (u): Fourier transform of h (s),
である。  It is.
[0065] このようにして得られる F (u)を逆フーリエ変換すると、ブレのな!/、画像が復元できる  [0065] When F (u) obtained in this way is subjected to inverse Fourier transform, blurring! /, The image can be restored.
[0066] 具体的には、まず極座標変換後画像 71に対してフーリエ変換処理を行 ヽ、画像関 数 G (u)を得る。次にブレ量データ変換部 61より得られるブレ伝達関数 Ms)に対して フーリエ変換を行 、、被変換ブレ伝達関数 H (u)を得る。次に G (u) ZH (u)の演算 を行った後、その結果に対して逆フーリエ変換を行う。 [0066] Specifically, first, Fourier transform processing is performed on the image 71 after the polar coordinate transformation to obtain an image function G (u). Next, a Fourier transform is performed on the blur transfer function Ms) obtained from the blur amount data converting unit 61 to obtain a converted blur transfer function H (u). Next, after calculating G (u) ZH (u), the result is inverse Fourier transformed.
[0067] 以上の処理により水平方向のブレ補正が施された画像が得られる。しかしこの時点 ではまだ s— r座標系(極座標系)の画像なので次に元の X— y座標系に戻す処理が 行われる。この処理は(式 8)、(式 9)に従って行われる。 [0067] An image subjected to horizontal blur correction is obtained by the above processing. However, since the image is still in the s-r coordinate system (polar coordinate system) at this point, the process to restore the original XY coordinate system is performed next. This process is performed according to (Equation 8) and (Equation 9).
x=X/2+r-Cos (s/R) (式 8)  x = X / 2 + r-Cos (s / R) (Equation 8)
y=Y/2+r- Sin (s/R) (式 9)  y = Y / 2 + r- Sin (s / R) (Equation 9)
但し、  However,
X:回転像ブレ画像 70の水平方向総画素数、  X: Total number of pixels in the horizontal direction of the rotated image blur image 70,
Y:回転像ブレ画像 70の垂直方向総画素数、  Y: total number of pixels in the vertical direction of the rotated image blur image 70
R:回転像ブレ画像 70の対角線長の 1Z2、  R: Diagonal length 1Z2 of rotating image blur image 70,
である。  It is.
[0068] 以上の処理により回転像ブレ補正後の画像を得ることができる。尚、上記のような回 転像ブレ補正は、ョーイング方向及びピッチング方向の像ブレが補正された後に行う ことが好ましい。具体的には、本実施形態のように、機械的にョーイング方向及びピッ チング方向の像ブレを補正して、ョーイング方向及びピッチング方向の像ブレが抑制 された画像データを取得し、その画像データに回転像ブレ補正をするようにすること が好ましい。また、例えば、画像処理によりョーイング方向及びピッチング方向の像ブ レを補正する場合は、ョーイング方向及びピッチング方向の像ブレを補正する画像 処理を施した後に、上記のような回転像ブレ補正を行うことが好ましい。そうすること によって、効果的に回転像ブレを補正することができる。 [0068] Through the above processing, an image after rotation image blur correction can be obtained. Note that the rotational image blur correction as described above is preferably performed after correcting the image blur in the chowing direction and the pitching direction. Specifically, as in the present embodiment, the image blur in the caming direction and the pitching direction is mechanically corrected to obtain image data in which the image blur in the chowing direction and the pitching direction is suppressed, and the image data It is preferable to perform rotation image blur correction. Also, for example, when correcting the image blur in the chowing direction and the pitching direction by image processing, after performing image processing for correcting the image blur in the chowing direction and the pitching direction, the rotational image blur correction as described above is performed. It is preferable. Doing so Thus, the rotational image blur can be effectively corrected.
[0069] 次に、 DSC1の動作について、図 1を参照しながら説明する。  Next, the operation of DSC 1 will be described with reference to FIG.
[0070] 撮影者が撮影する際には、まず電源スィッチ 35を ON側とした後、撮影 Z再生切換 操作部 37を撮影モードに切換える。これにより、 DSC1は撮影状態へ移行する。  [0070] When the photographer takes a picture, first, the power switch 35 is set to the ON side, and then the photography Z playback switching operation unit 37 is switched to the photography mode. Thereby, DSC1 shifts to the shooting state.
[0071] 撮影状態へ移行すると、 DSC1に加わる手ブレゃ振動、揺動は、角度センサ 17x、 17y、 17zにより検知される。演算部 3は、ョーイング駆動制御部 15xおよびピッチン グ駆動制御部 15yに対し、発生した手ブレ等を打ち消すための指令信号を与える。 この指令信号に応じた電流がピッチング保持枠 21のコイル 24x、 24yのそれぞれに 供給される。ピッチング保持枠 21は、電流が供給されることにより帯磁したコイル 24x 、 24yとマグネット 27x、 27yと〖こより、光軸 AXと直角なョーイング方向(X方向)及び ピッチング方向(Y方向)に変位される。このため、撮像光学系 Lを介して撮像素子 4 に入射する画像のョーイング方向及びピッチング方向の像ブレが補正される。従って 、ピッチング方向及びョーイング方向の像ブレが補正された画像を得ることが可能と なる。尚、ピッチング保持枠 21の変位検出は、センサを構成する発光素子 30と受光 素子 31とにより高精度に行われる。  [0071] When shifting to the photographing state, camera shake vibration and swinging applied to the DSC 1 are detected by the angle sensors 17x, 17y, and 17z. The calculation unit 3 gives a command signal for canceling the generated camera shake or the like to the showing drive control unit 15x and the pitching drive control unit 15y. A current corresponding to this command signal is supplied to each of the coils 24x and 24y of the pitching holding frame 21. The pitching holding frame 21 is displaced in the chowing direction (X direction) and the pitching direction (Y direction) perpendicular to the optical axis AX from the coils 24x, 24y and magnets 27x, 27y, which are magnetized by supplying current. The For this reason, image blurring in the show direction and pitching direction of the image incident on the image sensor 4 via the imaging optical system L is corrected. Accordingly, it is possible to obtain an image in which image blurring in the pitching direction and the winging direction is corrected. The displacement detection of the pitching holding frame 21 is performed with high accuracy by the light emitting element 30 and the light receiving element 31 constituting the sensor.
[0072] こうして撮像された画像データは、アナログ信号処理部 6、 AZD変換部 7、デジタ ル信号処理部 8において、それぞれガンマ処理等のアナログ信号処理、デジタル信 号への変換処理、ノイズ除去や輪郭強調等のデジタル信号処理が施される。それら 処理が施された画像データは回転像ブレ補正処理部 60に入力される。  [0072] The image data captured in this way is processed by an analog signal processing unit 6, an AZD conversion unit 7, and a digital signal processing unit 8, respectively, for analog signal processing such as gamma processing, conversion processing to a digital signal, noise removal, Digital signal processing such as edge enhancement is performed. The image data subjected to these processes is input to the rotation image blur correction processing unit 60.
[0073] 次に回転像ブレ補正処理部 60及びブレ量データ変換部 61の動作について図 5を 参照しながら説明する。  Next, operations of the rotating image blur correction processing unit 60 and the blur amount data converting unit 61 will be described with reference to FIG.
[0074] まず、ブレ量データ変換部 61に演算部 3より所定の周期でサンプリングされた回転 ブレ量データ Δ Θ zが入力され、一端記憶される(Sl l)。次に、ブレ量データ変換部 61内に記憶された回転ブレ量データ Δ Θ zに対して前述の方法の極座標変換が施 される(S 12)。こうして得られる時系列に並んだ極座標変換後ブレ量 Δ sに対して頻 度分布のカウントが行われ、ブレ伝達関数が作成される(S 13)。以上、 S11〜S13の 工程がブレ量データ変換部 61にお 、て行われる。  First, the rotational shake amount data ΔΘz sampled at a predetermined cycle is input from the computing unit 3 to the shake amount data conversion unit 61 and is temporarily stored (Sl l). Next, the polar coordinate conversion of the above-described method is performed on the rotational shake amount data ΔΘz stored in the shake amount data converting unit 61 (S12). The frequency distribution is counted with respect to the shake amount Δ s after polar coordinate conversion arranged in a time series obtained in this way, and a shake transfer function is created (S13). As described above, the steps S11 to S13 are performed in the blur amount data conversion unit 61.
[0075] 一方、回転像ブレ補正処理部 60にはデジタル信号処理部 8から画像データが入 力される(S21)。尚、デジタル信号処理部 8から入力される画像データは像ブレ補正 部 20によりョーイング方向及びピッチング方向の像ブレが補正されており、且つ、撮 像素子 4から出力された画像データにアナログ信号処理部 6等によるガンマ処理や デジタル信号処理等が施されたものである。 On the other hand, the rotational image blur correction processing unit 60 receives image data from the digital signal processing unit 8. (S21). The image data input from the digital signal processing unit 8 is corrected for image blur in the chowing direction and the pitching direction by the image blur correction unit 20, and the image data output from the imaging element 4 is subjected to analog signal processing. Gamma processing and digital signal processing by part 6 etc. are applied.
[0076] 次に、入力された画像データに対して前述の方法の極座標変換が施され、極座標 変換後画像 (被変換画像データ) 71が与えられる (S22)。与えられた極座標変換後 画像 71に対してフーリエ変換処理が施され、画像関数 G (u)が得られる (S23)。また ブレ量データ変換部 61よりブレ伝達関数が入力される(S24)。このブレ伝達関数に 対してもフーリエ変換処理が施され、被変換ブレ伝達関数 H (u)が得られる (S25)。 次に G (u) /H (u)が算出され (S26)、その結果に対して逆フーリエ変換が施される (S27)。その結果、回転像ブレも補正され、像ブレが補正された良好な画像が得ら れる。 Next, polar coordinate conversion of the above-described method is performed on the input image data, and a polar coordinate converted image (converted image data) 71 is given (S22). The given post-polar transformation image 71 is subjected to a Fourier transformation process to obtain an image function G (u) (S23). Also, a blur transfer function is input from the blur amount data converter 61 (S24). The blur transfer function is also subjected to Fourier transform processing, and a converted blur transfer function H (u) is obtained (S25). Next, G (u) / H (u) is calculated (S26), and the result is subjected to inverse Fourier transform (S27). As a result, rotational image blur is also corrected, and a good image with corrected image blur is obtained.
[0077] 尚、本実施の形態では、別途ブレ量データ変換部 61を設け、ブレ量データ変換部 61にお 、てブレ伝達関数の作成 (S13)を行う構成として 、るが、ブレ量データ変換 部 61を設けず、回転像ブレ補正処理部 60に回転ブレ量データを直接入力し、回転 像ブレ補正処理部 60にお 、てブレ伝達関数の作成する構成としてもよ!、。  In the present embodiment, the blur amount data converting unit 61 is provided separately, and the blur amount data converting unit 61 creates the blur transfer function (S13). Instead of providing the conversion unit 61, the rotational image blur correction processing unit 60 can directly input rotational blur data and the rotational image blur correction processing unit 60 can create a blur transfer function!
[0078] 以上、実施の形態 1では、撮像素子 4により撮像された画像が画像記録部 12に記 録される前に (すなわち、撮影と同時に)回転像ブレ補正が行われる構成例について 説明した。しかし、回転像ブレ補正は、ー且画像記録部 12に記録された画像に対し て行われるものであってもよい。また、ユーザが、回転像ブレ補正を撮影と同時に行う 力 又はー且画像記録部 12に記憶させ、任意のタイミングで行うかを選択できるよう に構成されていてもよい。  As described above, the first embodiment has described the configuration example in which the rotational image blur correction is performed before the image captured by the image sensor 4 is recorded in the image recording unit 12 (that is, simultaneously with the photographing). . However, the rotational image blur correction may be performed on the image recorded in the image recording unit 12. Further, it may be configured such that the user can select whether to perform rotation image blur correction simultaneously with photographing or to store the image in the image recording unit 12 and perform it at an arbitrary timing.
[0079] 下記実施の形態 2では、画像記録部 12に記録された画像に対して回転像ブレ補 正が行われる DSC81を例に挙げて本発明の好ましい実施の形態の一例について 説明する。  [0079] In the following second embodiment, an example of a preferred embodiment of the present invention will be described by taking as an example a DSC 81 in which rotational image blur correction is performed on an image recorded in the image recording unit 12.
[0080] また、下記実施の形態 3では、 PC等の外部機器で回転像ブレ補正処理が可能な [0080] Further, in Embodiment 3 below, rotation image blur correction processing can be performed by an external device such as a PC.
DSC82を例に挙げて本発明の好ましい実施の形態の一例について説明する。 An example of a preferred embodiment of the present invention will be described by taking DSC 82 as an example.
[0081] (実施の形態 2) 図 6は本実施の形態 2における DSC81の制御システムを示すブロック図である。 [0081] (Embodiment 2) FIG. 6 is a block diagram showing a control system of DSC 81 in the second embodiment.
[0082] 本実施の形態 2に係る DSC81は、回転像ブレ補正が行われるタイミングと、像ブレ 補正部 20の構成とにおいて、実施の形態 1に係る DSC1と異なる。以下、この 2点に ついて詳細に説明する。尚、本実施の形態 2の説明において、図 2は実施の形態 1と 共通で参照し、実質的に同じ機能を有する構成要素を実施の形態 1と共通の参照符 号で説明し、説明を省略する。 The DSC 81 according to the second embodiment differs from the DSC 1 according to the first embodiment in the timing at which the rotational image blur correction is performed and the configuration of the image blur correction unit 20. These two points will be explained in detail below. In the description of the second embodiment, FIG. 2 is referred to in common with the first embodiment, and components having substantially the same functions are described using the same reference numerals as in the first embodiment. Omitted.
[0083] まず像ブレ補正部 20の構成の相違点にっ 、て説明する。 First, differences in the configuration of the image blur correction unit 20 will be described.
[0084] 上記実施の形態 1に係る DSC1では、第 2レンズ群 L2を駆動制御してピッチング方 向及びョーイング方向の像ブレを補正していたのに対し、本実施の形態 2では、撮像 素子 4を駆動制御してピッチング方向及びョーイング方向の像ブレの補正が行われ る。像ブレ補正部 20の基本的な機構及び制御システムは、駆動する対象がレンズか ら撮像素子 4に代わり、駆動量が変わるのみで大きくは変わらないことから詳細な説 明は省略する(図 3参照)。  In the DSC 1 according to the first embodiment, the second lens unit L2 is driven and controlled to correct image blur in the pitching direction and the bowing direction. In the second embodiment, the imaging element is used. 4 is controlled to correct image blur in the pitching direction and the winging direction. The basic mechanism and control system of the image blur correction unit 20 is not described in detail because the object to be driven is changed from the lens to the image sensor 4 and the driving amount is not changed greatly (FIG. 3). reference).
[0085] 次に、本実施の形態 2に係る、ブレ伝達関数の保存について説明する。  Next, storage of the blur transfer function according to the second embodiment will be described.
[0086] 実施の形態 2では任意のタイミングで回転像ブレ補正が行える構成となって 、る。  In the second embodiment, the rotational image blur correction can be performed at an arbitrary timing.
具体的に、回転像ブレ補正で使用するブレ伝達関数と、撮像された画像データや画 像を撮影した際の日時などの諸情報とが画像記録部 12に保存される。  Specifically, the image transfer unit 12 stores a shake transfer function used in rotational image blur correction and various information such as captured image data and the date and time when the image was captured.
[0087] ブレ量データ変換部 61で作成したブレ伝達関数は、回転像ブレ補正処理部 60に 入力されずに、ノ ッファメモリ 9に入力される。ノ ッファメモリ 9にー且記憶されたブレ 伝達関数は画像記録制御部 11の指令に基づ!ヽて、画像圧縮部 10で圧縮処理を施 された画像データや、対応する縮小画像データ、画像を撮影した際の日時や焦点距 離情報、シャッタースピード情報、絞り値情報、撮影モード情報といった記録すべき 諸情報と関連付けて画像記録部 12に記録される。  The blur transfer function created by the blur amount data converting unit 61 is not input to the rotating image blur correction processing unit 60 but is input to the notch memory 9. The blur transfer function stored in the nother memory 9 is based on the command of the image recording control unit 11 and the image data compressed by the image compression unit 10 and the corresponding reduced image data and image are displayed. It is recorded in the image recording unit 12 in association with various information to be recorded, such as date and time, focal length information, shutter speed information, aperture value information, and shooting mode information at the time of shooting.
[0088] ユーザが所定の動作を行うと、画像記録部 12に保存された画像データ及びブレ伝 達関数が回転像ブレ補正処理部 60に入力される。そして、回転像ブレ補正処理部 6 0において、実施の形態 1で詳細に説明した処理と同様の回転像ブレ処理が行われ る。回転像ブレ補正処理後の画像は、再度画像記録部 12に入力され、画像記録部 12に記憶される。 [0089] 一般的に、回転像ブレ補正処理を行うためには、フーリエ変換のような比較的計算 負荷の重い演算を複数回繰り返して行う必要がある。このため、回転像ブレ補正処 理には一定の処理時間が必要となる。このことはユーザに対するレスポンス (撮影後 、次回撮影までに要する時間等)の低下を意味し、ユーザに受け入れられない可能 性もある。それに対して、本実施の形態 2では回転像ブレ補正の動作タイミングをュ 一ザが指示できる構成が採用されており、撮影とは別の時に像ブレ補正が可能であ る。従って、ユーザの動作 (撮影等)に対するレスポンスが向上する。また、時間に余 裕がある時を選んで像ブレの補正を行うという融通が利くようになる。 When the user performs a predetermined operation, the image data and the blur transfer function stored in the image recording unit 12 are input to the rotating image blur correction processing unit 60. Then, the rotation image blur correction processing unit 60 performs the same rotation image blur processing as that described in detail in the first embodiment. The image after the rotation image blur correction process is input again to the image recording unit 12 and stored in the image recording unit 12. In general, in order to perform the rotation image blur correction process, it is necessary to repeat a relatively heavy calculation such as Fourier transform a plurality of times. For this reason, a fixed processing time is required for the rotational image blur correction processing. This means a decrease in response to the user (after shooting, the time required until the next shooting, etc.), which may not be accepted by the user. On the other hand, the second embodiment employs a configuration in which a user can instruct the operation timing of rotational image blur correction, and image blur correction can be performed at a time other than shooting. Therefore, the response to the user's operation (such as shooting) is improved. In addition, the flexibility of selecting image correction when there is sufficient time becomes more flexible.
[0090] 尚、実施の形態 1、 2では、ブレ伝達関数を用いて像ブレ補正処理を行う構成とした 1S これに限定されるわけではない。画像記録部 12に記録された回転ブレ量データ と回転像ブレ補正前の画像データを回転像ブレ補正処理部 60に読み込み、回転像 ブレ補正が可能であればよぐ回転ブレ量データの形式及びブレ量データ変換部 61 と回転像ブレ補正処理部 60との処理の分担は実施の形態 1、 2に示した構成に限定 されるものではない。  In the first and second embodiments, 1S is configured to perform image blur correction processing using a blur transfer function. However, the present invention is not limited to this. The rotational blur amount data recorded in the image recording unit 12 and the image data before the rotational image blur correction are read into the rotational image blur correction processing unit 60. The sharing of processing between the blur amount data conversion unit 61 and the rotation image blur correction processing unit 60 is not limited to the configuration shown in the first and second embodiments.
[0091] 例えば、ブレ量データ変換部 61に、回転ブレ量データとしてブレ伝達関数に変換 される前の時系列に並んだデータである極座標変換後ブレ量 Δ sを出力させ、その ブレ量 Δ sと画像データとを相互に関連づけて画像記録部 12に保存し、回転像ブレ 補正処理部 60で極座標変換後ブレ量 Δ sのブレ伝達関数への変換を行うと共に、上 記実施の形態 1で説明した回転像ブレ補正処理を行う構成としてもよい。  [0091] For example, the blur amount data converting unit 61 outputs the post-polarity-converted blur amount Δs, which is data arranged in time series before being converted into the blur transfer function as the rotational blur amount data, and the blur amount Δ s and image data are correlated with each other and stored in the image recording unit 12, and the rotational image blur correction processing unit 60 converts the blur amount Δ s after polar coordinate conversion into a blur transfer function. The rotation image blur correction process described in (1) may be performed.
[0092] また、ブレ量データ変換部 61を設けず、回転ブレ量データを画像データと相互に 関連づけて画像記録部 12に保存し、回転像ブレ補正処理部 60に、図 5に示す S 11 〜13及び S21〜27を実行させる構成としてもよい。  Further, the blur amount data conversion unit 61 is not provided, and the rotational blur amount data is stored in the image recording unit 12 in correlation with the image data, and the rotated image blur correction processing unit 60 stores the S 11 shown in FIG. ~ 13 and S21 ~ 27 may be executed.
[0093] (実施の形態 3)  [0093] (Embodiment 3)
図 7は実施の形態 3における DSC82の制御システムを示すブロック図である。  FIG. 7 is a block diagram showing a control system of DSC 82 in the third embodiment.
[0094] 本実施の形態 3に係る DSC82は、回転像ブレ補正が DSC82の外部装置で行わ れる点と、像ブレ補正部 20の構成とにおいて、実施の形態 1に係る DSC1と異なる。 以下、この 2点について詳細に説明する。尚、本実施の形態 2の説明において、図 2 は実施の形態 1と共通で参照し、実質的に同じ機能を有する構成要素を実施の形態 1と共通の参照符号で説明し、説明を省略する。 The DSC 82 according to the third embodiment is different from the DSC 1 according to the first embodiment in that the rotational image blur correction is performed by an external device of the DSC 82 and the configuration of the image blur correction unit 20. These two points will be explained in detail below. In the description of the second embodiment, FIG. 2 is referred to in common with the first embodiment, and components having substantially the same functions are referred to in the second embodiment. The same reference numerals as those in FIG.
[0095] 図 7に示すように、実施の形態 3では、撮像光学系 L全体が撮像光学系 Lの重心ま わりに回動駆動される構成となっている。このため、像ブレ補正部 20で撮像面上の 結像位置がョーイング方向及びピッチング方向に駆動される。  As shown in FIG. 7, in the third embodiment, the entire imaging optical system L is driven to rotate around the center of gravity of the imaging optical system L. For this reason, the image blur correction unit 20 drives the imaging position on the imaging surface in the show direction and the pitch direction.
[0096] 図 8は実施の形態 3における像ブレ補正部 20の構成を示す模式図である。図 8の( a)は正面図、(b)は側面図である。尚、図 8において、撮像光学系 Lは撮像素子 4を 含むように描画されている。  FIG. 8 is a schematic diagram showing a configuration of the image blur correction unit 20 according to the third embodiment. 8A is a front view and FIG. 8B is a side view. In FIG. 8, the imaging optical system L is drawn so as to include the imaging element 4.
[0097] 本実施の形態 3では、撮像光学系 Lの両側面 (X方向)に回転軸 47が固定されてい る。この回転軸 47が、ョーイング枠 45に設けられた図示しない軸受けに回動自在に 取り付けられている。つまり撮像光学系 Lはピッチング方向に回動自在であり、ピッチ ング枠を兼ねて 、る。またョ一イング枠 45には Y方向の側面に回転軸 48が固定され ている。この回転軸 48が、固定枠 46に設けられた図示しない軸受けに回動自在に 取り付けられている。つまりョーイング枠 45はョーイング方向に回動自在である。また 、撮像光学系 Lとョーイング枠 45の間には Y方向にァクチユエータ(図示せず)が設 けられて 、る。ョ一イング枠 45と固定枠 46の間には X方向にァクチユエータ (図示せ ず)が設けられている。従って、本実施の形態 3においても、ョーイング方向及びピッ チング方向の像ブレを補正することができる。  In Embodiment 3, the rotation shaft 47 is fixed to both side surfaces (X direction) of the imaging optical system L. The rotating shaft 47 is rotatably attached to a bearing (not shown) provided on the winging frame 45. In other words, the imaging optical system L is rotatable in the pitching direction and also serves as a pitching frame. A rotating shaft 48 is fixed to the side frame 45 in the Y-direction side. The rotating shaft 48 is rotatably attached to a bearing (not shown) provided on the fixed frame 46. That is, the winging frame 45 is freely rotatable in the winging direction. In addition, an actuator (not shown) is provided in the Y direction between the imaging optical system L and the winging frame 45. An actuator (not shown) is provided between the housing frame 45 and the fixed frame 46 in the X direction. Therefore, also in the third embodiment, it is possible to correct image blurring in the show direction and the pitch direction.
[0098] 次に、本実施の形態 3における回転像ブレ補正について説明する。  Next, rotational image blur correction in the third embodiment will be described.
[0099] 本実施の形態 3に係る DSC82は回転像ブレ補正処理部 60を有さない。撮像素子 4により撮像された画像データと、ブレ伝達関数は、実施の形態 2の場合と同様に、 関連づけられて画像記録部 12に記録される。画像記録部 12には出力部 83が接続 されており、その出力部 83から、画像データとブレ伝達関数とが相互に関連づけられ た形態で出力される。尚、出力部 83は LANケーブル接続端子、 USBケーブル接続 端子等により構成することができる。  The DSC 82 according to the third embodiment does not have the rotation image blur correction processing unit 60. The image data captured by the image sensor 4 and the blur transfer function are recorded in the image recording unit 12 in association with each other as in the second embodiment. An output unit 83 is connected to the image recording unit 12, and image data and a blur transfer function are output from the output unit 83 in a form associated with each other. The output unit 83 can be configured with a LAN cable connection terminal, a USB cable connection terminal, and the like.
[0100] このため、図 9に示すように、回転像ブレ補正処理部 60を有する PC80に画像デー タとブレ伝達関数とを関連づけた形態で入力することができる。そして、 PC80のハー ドディスク又は、 PCに読み取り可能な情報記録媒体 (光ディスク等)に記録された回 転像ブレ補正処理を実行するための画像処理プログラムを起動し、上述の回転像ブ レ補正処理を実行することにより回転像ブレが補正された画像を得ることができる。 Therefore, as shown in FIG. 9, it is possible to input the image data and the shake transfer function in a form associated with each other to the PC 80 having the rotating image shake correction processing unit 60. Then, an image processing program for executing rotational image blur correction processing recorded on the hard disk of PC80 or an information recording medium (optical disk or the like) readable by the PC is started, and the above-mentioned rotational image block is executed. By executing the correction process, an image in which the rotational image blur is corrected can be obtained.
[0101] 具体的には、 PC80において下記の如く回転像ブレ補正が行われる。  Specifically, the rotational image blur correction is performed in the PC 80 as follows.
[0102] 図 10は PC80の回転像ブレ補正処理部 60に記録された画像処理プログラムを表 すフローチャートである。 FIG. 10 is a flowchart showing an image processing program recorded in the rotational image blur correction processing unit 60 of the PC 80.
[0103] まず相互に関連づけられたブレ伝達関数と画像データとが取得される(S30)。そし て、実施の形態 1において詳細に説明したように、取得された画像データが極座標 変換されて極座標変換後画像 (被変換画像データ)が作成される (S22) 0その極座 標変換後画像がフーリエ変換されて画像関数 G (u)が作成される (S23)。また、取得 されたブレ伝達関数に対してもフーリエ変換処理が施され、被変換ブレ伝達関数 H ( u)が作成される(S25)。そして、作成された画像関数 G (u)及び被変換ブレ伝達関 数 H (u)より F (u)が算出される(S26)。最後に、算出された F (u)を逆フーリエ変換 することにより回転像ブレ補正が低減された画像データが得られる(S27)。 First, the shake transfer function and image data associated with each other are acquired (S30). Then, as described in detail in the first embodiment, the acquired image data is subjected to polar coordinate conversion to generate a polar coordinate-converted image (converted image data) (S22) 0 The image after the polar coordinate conversion Is Fourier transformed to create an image function G (u) (S23). Further, the acquired blur transfer function is also subjected to Fourier transform processing, and a converted blur transfer function H (u) is created (S25). Then, F (u) is calculated from the created image function G (u) and the converted blur transfer function H (u) (S26). Finally, image data with reduced rotational image blur correction is obtained by performing inverse Fourier transform on the calculated F (u) (S27).
[0104] このような構成とすることにより、非常に処理能力の高い PC80でもって像ブレ補正 処理を行うことができる。このため、回転像ブレの補正処理を高速に比較的短時間の 間に実施することが可能となる。  With such a configuration, it is possible to perform image blur correction processing with the PC 80 having a very high processing capability. For this reason, it is possible to perform the rotational image blur correction process at high speed in a relatively short time.
[0105] 以上、実施の形態 1〜3において説明したように、回転ブレ量データを演算する演 算部 3を設けることにより、例えば撮像装置内で、又は撮像装置から画像データを PC 等に出力した後に、撮像された画像の回転像ブレを補正することが可能となる。  As described above in Embodiments 1 to 3, by providing the calculation unit 3 that calculates rotational blur amount data, for example, image data is output from the imaging device or from the imaging device to a PC or the like. After that, it is possible to correct the rotational image blur of the captured image.
[0106] (変形例)  [0106] (Modification)
上記実施の形態 3では、 DSC82内でブレ伝達関数の作成され、回転像ブレデータ としてそのブレ伝達関数力PC80に出力される力 回転像ブレデータとして回転ブレ 量データを画像データと相互に関連付けて出力するようにしてもよ!、。本変形例では 、相互に関連づけられた画像データと回転ブレ量データとが PC80に出力される場 合について詳細に説明する。  In Embodiment 3 above, a blur transfer function is created in the DSC 82, and the force output to the blur transfer function force PC80 as the rotated image blur data is correlated with the image data as the rotated image blur data. You can make it output! In this modification, the case where image data and rotational blur amount data correlated with each other are output to the PC 80 will be described in detail.
[0107] 図 11は本変形例に係る DSCの制御システムを示すブロック図である。 FIG. 11 is a block diagram showing a DSC control system according to this modification.
[0108] 図 12は本変形例における外部演算処理装置としての PC80の構成図である。 FIG. 12 is a configuration diagram of the PC 80 as an external arithmetic processing device in this modification.
[0109] 図 13は PC80に記録された画像処理プログラムを表すフローチャートである。 FIG. 13 is a flowchart showing an image processing program recorded on the PC 80.
[0110] 図 11に示すように、本変形例に係る DSCは上記実施の形態 3に係る DSC82とブ レ量データ変換部 61を有さない点で異なる。本変形例では、演算部 3から出力され た回転ブレ量データがデジタル信号処理部 8から出力される画像データと共にバッフ ァメモリ 9に一次記憶される。その後、画像データと回転ブレ量データとが相互に関連 づけられて画像記録部 12に記録される。そして、本変形例に係る DSCでは、相互に 関連づけて記録された画像データと回転ブレ量データとが相互に関連づけられた状 態で出力部 83より PC80に対して出力されるようになって 、る。 [0110] As shown in FIG. 11, the DSC according to the present modification is different from the DSC 82 according to the third embodiment described above. The difference is that the amount data converter 61 is not provided. In this modification, the rotational shake amount data output from the calculation unit 3 is temporarily stored in the buffer memory 9 together with the image data output from the digital signal processing unit 8. Thereafter, the image data and the rotational blur amount data are associated with each other and recorded in the image recording unit 12. In the DSC according to this modification, the image data and the rotational blur amount data recorded in association with each other are output from the output unit 83 to the PC 80 in a state of being associated with each other. The
[0111] 一方、 PC80には、回転像ブレ補正処理部 60と共に、ブレ量データ変換部 61が設 けられており、ここで、回転像ブレの補正処理が行われる。 On the other hand, the PC 80 is provided with a shake amount data conversion unit 61 together with the rotation image blur correction processing unit 60, and here, correction processing of the rotation image blur is performed.
[0112] 具体的に、図 13に示すように、まず、相互に関連づけられた回転ブレ量データ Δ Specifically, as shown in FIG. 13, first, the rotational shake amount data Δ
Θ z及び画像データが取得される(S40)。ここで、実施の形態 1において説明したよう に、取得された回転ブレ量データ Δ Θ zは極座標変換され、水平方向ブレ量 A sが算 出される(S12)。そして、時系列的に得られる極座標変換後のブレ量 (変位量) A s が並び換えられ、ブレ量 A sの等しいデータの数量がカウントされ、ブレ伝達関数 h(s )が作成される(S13)。尚、この S12及び S13はブレ量データ変換部 61にて行われ る。そして、ブレ伝達関数がブレ量データ変換部 61から回転像ブレ補正処理部 60に 対して出力される。  Θz and image data are acquired (S40). Here, as described in the first embodiment, the obtained rotational shake amount data ΔΘz is subjected to polar coordinate conversion, and the horizontal direction shake amount As is calculated (S12). Then, the blur amount (displacement amount) A s after polar coordinate conversion obtained in time series is rearranged, the quantity of data with the same blur amount A s is counted, and the blur transfer function h (s) is created ( S13). The steps S12 and S13 are performed by the blur amount data conversion unit 61. Then, the blur transfer function is output from the blur amount data conversion unit 61 to the rotating image blur correction processing unit 60.
[0113] 一方、取得された画像データは、図 13に示されるように、極座標変換されて極座標 変換後画像 (被変換画像データ)が作成される (S22) 0その極座標変換後画像がフ 一リエ変換されて画像関数 G (u)が作成される(S23)。また、ブレ量データ変換部 61 力も回転像ブレ補正処理部 60に入力されたブレ伝達関数に対してもフーリエ変換処 理が施され、被変換ブレ伝達関数 H (u)が作成される(S25)。そして、作成された画 像関数 G (u)及び被変換ブレ伝達関数 H (u)より F (u)が算出され (S26)、最後に F ( u)を逆フーリエ変換することにより回転像ブレ補正が低減された画像データが形成さ れる(S27)。 On the other hand, as shown in FIG. 13, the acquired image data is subjected to polar coordinate conversion to generate a polar coordinate-converted image (converted image data) (S22). 0 The image function G (u) is created by performing the Rie transform (S23). Further, the blur amount data conversion unit 61 is also subjected to Fourier transform processing on the blur transfer function input to the rotating image blur correction processing unit 60, and a converted blur transfer function H (u) is created (S25). ). Then, F (u) is calculated from the created image function G (u) and the transformed blur transfer function H (u) (S26), and finally F (u) is subjected to inverse Fourier transform to obtain a rotated image blur. Image data with reduced correction is formed (S27).
[0114] このように、ブレ伝達関数の作成を PC80で行うようにすることによって、 DSCの演 算処理負担をさらに低減することができる。  [0114] As described above, by creating the blur transfer function on the PC 80, it is possible to further reduce the calculation processing load of the DSC.
[0115] (その他の実施の形態) [0115] (Other embodiments)
上記実施の形態 1〜3では、撮像光学系 Lが収納されたレンズ鏡筒 2がー体形成さ れた撮像装置 (像ブレ補正機能付き撮像装置)を例に挙げて説明した。しかし、本発 明に係る撮像装置は、例えば、レンズ鏡筒 2が取り付けられて使用される所謂一眼レ フタイプのものであってもよい。その場合に、位置検出部 16、駆動制御部 15x及び 1 5y、角度センサ 17x、 17y及び 17z等をレンズ鏡筒 2に設ける構成としてもよい。 In Embodiments 1 to 3 above, the lens barrel 2 in which the imaging optical system L is housed is formed as a body. The image pickup apparatus (image pickup apparatus with an image blur correction function) is described as an example. However, the imaging device according to the present invention may be of a so-called single-lens reflex type that is used with the lens barrel 2 attached thereto, for example. In this case, the lens barrel 2 may be provided with the position detection unit 16, drive control units 15x and 15y, angle sensors 17x, 17y and 17z, and the like.
[0116] また、実施の形態 1〜3で示した回転像ブレ補正処理は単なる一例であり、上記処 理に限定されるものではない。  [0116] Further, the rotational image blur correction process described in the first to third embodiments is merely an example, and is not limited to the above process.
[0117] 上記実施の形態 3では、画像記録部 12は出力部 83に接続されており、その出力 部から外部機器である PC80に出力される構成となっているが、例えば、画像記録部 12が脱着可能なリムーバルメモリにより構成されていてもよい。その場合、画像デー タ及びブレ伝達関数等が記録された画像記録部 12を DSC1から取り外し、 PC80に 画像記録部 12を装入することにより、 PC80にデータを入力してもよい。  [0117] In the third embodiment, the image recording unit 12 is connected to the output unit 83, and the output unit is configured to output to the PC 80, which is an external device. May be constituted by a removable memory. In that case, the data may be input to the PC 80 by removing the image recording unit 12 in which the image data and the blur transfer function are recorded from the DSC 1 and inserting the image recording unit 12 in the PC 80.
[0118] 上記実施の形態 3に係る DSC82は、回転像ブレ補正処理部 60を有さず、出力部 83のみを有する力 例えば、回転像ブレ補正処理部 60と出力部 83との双方を有し、 回転像ブレ補正処理部 60により回転像ブレ補正処理を行うか、それとも出力部 83か ら PC80に出力して力も処理を行うかをユーザが選択可能な構成としてもよい。この 場合、回転像ブレ補正後の画像データと各種回転像ブレデータとが相互に関連づけ られて出力され、 PC80にて回転像ブレ補正後の画像データを再度回転像ブレ補正 前の画像データに変換できるようにしてもょ 、。  [0118] The DSC 82 according to the third embodiment does not have the rotation image blur correction processing unit 60, but has only the output unit 83. For example, the DSC 82 has both the rotation image blur correction processing unit 60 and the output unit 83. The user can select whether the rotation image blur correction processing is performed by the rotation image blur correction processing unit 60, or whether the force is processed by outputting from the output unit 83 to the PC 80. In this case, the image data after the rotation image blur correction and the various rotation image blur data are output in association with each other, and the PC 80 converts the image data after the rotation image blur correction again into the image data before the rotation image blur correction. Let's do it.
[0119] 上記実施の形態 1〜3では、 DSCを例に挙げて説明した力 これに限定されるもの ではなぐ例えば、デジタルビデオカメラ(DVC)等の撮像装置等であってもよい。 産業上の利用可能性  [0119] In Embodiments 1 to 3, the force described by taking DSC as an example is not limited to this. For example, an imaging device such as a digital video camera (DVC) may be used. Industrial applicability
[0120] 以上説明したように、本発明に係る撮像装置によれば、回転方向の像ブレが補正さ れた画像が得られるため、デジタルスチルカメラ(DSC)、デジタルビデオカメラ(DV C)等の撮像装置等として有用である。 [0120] As described above, according to the imaging apparatus of the present invention, since an image in which the image blur in the rotation direction is corrected is obtained, a digital still camera (DSC), a digital video camera (DV C), etc. It is useful as an imaging device of

Claims

請求の範囲 The scope of the claims
[1] 撮像光学系と、  [1] Imaging optics,
上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、  An image sensor that captures an image formed by the imaging optical system and outputs image data obtained by the imaging;
上記画像データに、上記撮像時において上記撮像光学系がその光軸まわりに回 転したことにより生じた回転像ブレを補正する回転像ブレ補正処理を施す回転像ブ レ補正処理部と、  A rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by the imaging optical system rotating around the optical axis at the time of imaging, on the image data;
を備えた撮像装置。  An imaging apparatus comprising:
[2] 請求項 1に記載された撮像装置において、  [2] In the imaging device according to claim 1,
上記撮像光学系の光軸まわりの回転角速度を検出する回転角速度センサと、該回 転角速度力 該回転角速度に対応した回転像ブレデータを演算する演算部とをさら に備え、  A rotation angular velocity sensor that detects a rotation angular velocity around the optical axis of the imaging optical system; and a rotation angular velocity force and a calculation unit that calculates rotation image blur data corresponding to the rotation angular velocity.
上記回転像ブレ補正処理部は、上記回転像ブレデータに基づ 、て回転像ブレ補 正処理を施すものである撮像装置。  The image pickup apparatus, wherein the rotation image blur correction processing unit performs rotation image blur correction processing based on the rotation image blur data.
[3] 撮像光学系を備えたレンズ鏡筒が取り付けられて使用される撮像装置であって、 上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、 [3] An imaging apparatus to which a lens barrel equipped with an imaging optical system is attached and used, taking an image formed by the imaging optical system, and outputting image data obtained by the imaging An image sensor;
上記画像データに、上記撮像時において上記撮像光学系がその光軸まわりに回 転したことにより生じた回転像ブレを補正する回転像ブレ補正処理を施す回転像ブ レ補正処理部と、  A rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by the imaging optical system rotating around the optical axis at the time of imaging, on the image data;
を備えた撮像装置。  An imaging apparatus comprising:
[4] 請求項 3に記載された撮像装置において、 [4] In the imaging device according to claim 3,
上記レンズ鏡筒は上記撮像光学系の光軸まわりの回転角速度を検出する回転角 速度センサをさらに備え、  The lens barrel further includes a rotation angular velocity sensor that detects a rotation angular velocity around the optical axis of the imaging optical system,
上記回転角速度から該回転角速度に対応した回転像ブレデータを演算する演算 部をさらに備え、  A calculation unit that calculates rotation image blur data corresponding to the rotation angular velocity from the rotation angular velocity;
上記回転像ブレ補正処理部は、上記回転像ブレデータに基づ 、て回転像ブレ補 正処理を施すものである撮像装置。 The image pickup apparatus, wherein the rotation image blur correction processing unit performs rotation image blur correction processing based on the rotation image blur data.
[5] 撮像光学系と、 [5] Imaging optics,
上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、  An image sensor that captures an image formed by the imaging optical system and outputs image data obtained by the imaging;
上記撮像光学系の光軸まわりの回転角速度を検出する回転角速度センサと、 上記回転角速度から該回転角速度に対応した回転像ブレデータを演算する演算 部と、  A rotational angular velocity sensor that detects a rotational angular velocity around the optical axis of the imaging optical system; a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity;
上記画像データと上記回転像ブレデータとを相互に関連づけて記録する記録部と 上記記録部に記録された画像データに、当該画像データに関連づけて記録された 回転像ブレデータに基づ 、て、上記撮像時にお 、て上記撮像光学系がその光軸ま わりに回転したことにより生じた回転像ブレを補正する回転像ブレ補正処理を施す回 転像ブレ補正処理部と、  Based on the rotating image blur data recorded in association with the image data, the recording unit that records the image data and the rotated image blur data in association with each other, and the image data recorded in the recording unit, A rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by rotating the imaging optical system around its optical axis during the imaging;
を備えた撮像装置。  An imaging apparatus comprising:
[6] 撮像光学系を備えたレンズ鏡筒が取り付けられて使用される撮像装置であって、 上記レンズ鏡筒は上記撮像光学系の光軸まわりの回転角速度を検出する回転角 速度センサを備え、  [6] An imaging apparatus to which a lens barrel having an imaging optical system is attached and used, wherein the lens barrel includes a rotational angular velocity sensor that detects a rotational angular velocity around the optical axis of the imaging optical system. ,
上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、  An image sensor that captures an image formed by the imaging optical system and outputs image data obtained by the imaging;
上記回転角速度から該回転角速度に対応した回転像ブレデータを演算する演算 部と、  A calculation unit that calculates rotation image blur data corresponding to the rotation angular velocity from the rotation angular velocity;
上記画像データと上記回転像ブレデータとを相互に関連づけて記録する記録部と 上記記録部に記録された画像データに、当該画像データに関連づけて記録された 回転像ブレデータに基づ 、て、上記撮像時にお 、て上記撮像光学系がその光軸ま わりに回転したことにより生じた回転像ブレを補正する回転像ブレ補正処理を施す回 転像ブレ補正処理部と、  Based on the rotating image blur data recorded in association with the image data, the recording unit that records the image data and the rotated image blur data in association with each other, and the image data recorded in the recording unit, A rotation image blur correction processing unit that performs a rotation image blur correction process that corrects a rotation image blur caused by rotating the imaging optical system around its optical axis during the imaging;
を備えた撮像装置。  An imaging apparatus comprising:
[7] 撮像光学系と、 上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、 [7] Imaging optics, An image sensor that captures an image formed by the imaging optical system and outputs image data obtained by the imaging;
上記撮像光学系の光軸まわりの回転角速度を検出する回転角速度センサと、 上記回転角速度から該回転角速度に対応した回転像ブレデータを演算する演算 部と、  A rotational angular velocity sensor that detects a rotational angular velocity around the optical axis of the imaging optical system; a computing unit that computes rotational image blur data corresponding to the rotational angular velocity from the rotational angular velocity;
上記画像データと上記回転像ブレデータとを相互に関連づけて外部に出力する出 力部と、  An output unit that outputs the image data and the rotated image blur data in association with each other;
を備えた撮像装置。  An imaging apparatus comprising:
[8] 撮像光学系を備えたレンズ鏡筒が取り付けられて使用される撮像装置であって、 上記レンズ鏡筒は上記撮像光学系の光軸まわりの回転角速度を検出する回転角 速度センサを備え、  [8] An imaging apparatus to which a lens barrel having an imaging optical system is attached and used, wherein the lens barrel includes a rotational angular velocity sensor that detects a rotational angular velocity around the optical axis of the imaging optical system. ,
上記撮像光学系により結像される像を撮像し、該撮像により得られた画像データを 出力する撮像素子と、  An image sensor that captures an image formed by the imaging optical system and outputs image data obtained by the imaging;
上記回転角速度から該回転角速度に対応した回転像ブレデータを演算する演算 部と、  A calculation unit that calculates rotation image blur data corresponding to the rotation angular velocity from the rotation angular velocity;
上記画像データと上記回転像ブレデータとを相互に関連づけて外部に出力する出 力部と、  An output unit that outputs the image data and the rotated image blur data in association with each other;
を備えた撮像装置。  An imaging apparatus comprising:
[9] 請求項 7又は 8に記載された撮像装置にぉ 、て、 [9] In the imaging device according to claim 7 or 8,
上記画像データと上記回転像ブレデータとを相互に関連づけて記録する記録部を さらに備え、上記出力部は、該記録部に相互に関連づけて記録された上記画像デ ータ及び上記回転像ブレデータを外部に出力するものである撮像装置。  The image processing apparatus further includes a recording unit that records the image data and the rotated image blur data in association with each other, and the output unit records the image data and the rotated image blur data recorded in association with the recording unit. An image pickup apparatus that outputs the image to the outside.
[10] 請求項 2及び 4乃至 8のいずれか一項に記載された撮像装置において、 [10] The imaging device according to any one of claims 2 and 4 to 8,
上記回転像ブレデータは、上記回転角速度を一定の周期毎に積分して得られる周 期毎の角度変化量である回転ブレ量データ、又は該回転ブレ量データを極座標変 換して算出される水平方向ブレ量の度数分布を表すブレ伝達関数である撮像装置。  The rotational image blur data is calculated by converting the rotational blur amount data, which is an angular change amount for each period obtained by integrating the rotational angular velocities at regular intervals, or by converting the rotational blur amount data into polar coordinates. An imaging apparatus that is a blur transfer function representing a frequency distribution of a horizontal blur amount.
[11] 請求項 1、 5又は 7に記載された撮像装置において、 [11] In the imaging device according to claim 1, 5 or 7,
上記撮像光学系はレンズ群を備え、 上記レンズ群及び z又は上記撮像素子を上記撮像光学系の光軸にそれぞれ垂直 な第 1の方向及び第 2の方向に駆動して上記撮像光学系により結像される像の上記 撮像素子上の位置を略一定に保持する駆動部をさらに備えた撮像装置。 The imaging optical system includes a lens group, The lens group and z or the image pickup device are driven in a first direction and a second direction perpendicular to the optical axis of the image pickup optical system, respectively, and an image formed by the image pickup optical system on the image pickup device. An imaging apparatus further comprising a drive unit that holds the position substantially constant.
[12] 請求項 3、 6又は 8に記載された撮像装置において、 [12] In the imaging device according to claim 3, 6 or 8,
上記撮像素子を上記撮像光学系の光軸にそれぞれ垂直な第 1の方向及び第 2の 方向に駆動して上記撮像光学系により結像される像の上記撮像素子上の位置を略 一定に保持する駆動部をさらに備えた撮像装置。  The image sensor is driven in a first direction and a second direction perpendicular to the optical axis of the image pickup optical system, respectively, and the position on the image sensor of the image formed by the image pickup optical system is held substantially constant. An imaging apparatus further comprising a driving unit.
[13] 請求項 3、 6又は 8に記載された撮像装置において、 [13] The imaging device according to claim 3, 6 or 8,
上記撮像光学系はレンズ群を備え、  The imaging optical system includes a lens group,
上記レンズ鏡筒は、上記レンズ群を上記撮像光学系の光軸にそれぞれ垂直な第 1 の方向及び第 2の方向に駆動して上記撮像光学系により結像される像の上記撮像 素子上の位置を略一定に保持する駆動部をさらに備えた撮像装置。  The lens barrel drives the lens group in a first direction and a second direction perpendicular to the optical axis of the imaging optical system, respectively, and an image formed by the imaging optical system on the imaging element. An imaging apparatus further comprising a drive unit that holds the position substantially constant.
[14] 請求項 11乃至 13のいずれか一項に記載された撮像装置において、 [14] The imaging device according to any one of claims 11 to 13,
上記撮像光学系の光軸に垂直な第 1の方向の変位を検出する第 1のセンサと、 上記撮像光学系の光軸及び上記第 1の方向の双方に垂直な第 2の方向の変位を 検出する第 2のセンサと、  A first sensor for detecting a displacement in a first direction perpendicular to the optical axis of the imaging optical system; and a displacement in a second direction perpendicular to both the optical axis of the imaging optical system and the first direction. A second sensor to detect;
をさらに備え、  Further comprising
上記駆動部は、上記第 1のセンサ及び上記第 2のセンサにより検出された上記撮像 光学系の変位に基づいて上記レンズ群及び Z又は上記撮像素子を駆動するもので ある撮像装置。  The image pickup apparatus, wherein the drive unit drives the lens group and Z or the image pickup element based on a displacement of the image pickup optical system detected by the first sensor and the second sensor.
[15] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理プ ログラムであって、  [15] An image processing program for obtaining image data in which rotational image blur is reduced by performing processing for correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記画像データ及び上記撮像光学系の回転角速度を一定の周期毎に積分して得 られる周期毎の角度変化量である回転ブレ量データを取得するステップと、  Obtaining rotational shake amount data that is an angular change amount for each period obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each constant period;
上記画像データを極座標変換して被変換画像データを形成するステップと、 上記被変換画像データをフーリエ変換することにより画像関数を算出するステップ と、 上記回転ブレ量データを極座標変換して水平方向ブレ量を算出し、該水平方向ブ レ量の度数分布を表すブレ伝達関数を作成するステップと、 Converting the image data into polar coordinates to form converted image data; calculating an image function by Fourier transforming the converted image data; and Converting the rotational blur data into polar coordinates to calculate a horizontal blur amount, and creating a blur transfer function representing a frequency distribution of the horizontal blur amount;
上記作成されたブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を 算出するステップと、  Calculating a converted blur transfer function by performing a Fourier transform on the created blur transfer function;
上記画像関数を上記被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換 することにより回転像ブレが低減された画像データを取得するステップと、 を備えた画像処理プログラム。  An image processing program comprising: obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the converted blur transfer function.
[16] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理プ ログラムであって、  [16] An image processing program for obtaining image data in which rotational image blur is reduced by performing processing for correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記画像データ及び上記撮像光学系の回転角速度を一定の周期毎に積分して得 られる周期毎の角度変化量である回転ブレ量データを極座標変換することにより算 出された水平方向ブレ量の度数分布を表すブレ伝達関数を取得するステップと、 上記画像データを極座標変換して被変換画像データを形成するステップと、 上記被変換画像データをフーリエ変換することにより画像関数を算出するステップ と、  Frequency of horizontal blur calculated by polar coordinate conversion of rotational blur data, which is the angular variation per period obtained by integrating the image data and the rotational angular velocity of the imaging optical system at regular intervals. Obtaining a blur transfer function representing a distribution; converting the image data into polar coordinates to form converted image data; calculating an image function by Fourier transforming the converted image data;
上記取得されたブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を 算出するステップと、  Calculating a transformed blur transfer function by performing a Fourier transform on the acquired blur transfer function;
上記画像関数を上記被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換 することにより回転像ブレが低減された画像データを取得するステップと、 を備えた画像処理プログラム。  An image processing program comprising: obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the converted blur transfer function.
[17] 請求項 15又は 16に記載された画像処理プログラムを記録した情報記録媒体。 [17] An information recording medium on which the image processing program according to claim 15 or 16 is recorded.
[18] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理装 置であって、 [18] An image processing apparatus for obtaining image data in which rotational image blur is reduced by performing a process of correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記撮像光学系の回転角速度を一定の周期毎に積分して得られる周期毎の角度 変化量である回転ブレ量データを取得し、該回転ブレ量データを極座標変換して水 平方向ブレ量を算出し、該水平方向ブレ量の度数分布を表すブレ伝達関数を作成 するブレ量データ変換部と、 Rotational shake amount data, which is an angular change amount per period obtained by integrating the rotational angular velocity of the imaging optical system every fixed period, is acquired, and the rotational shake amount data is converted into polar coordinates to obtain the horizontal direction shake amount. Calculate and create a blur transfer function that represents the frequency distribution of the horizontal blur amount A blur amount data conversion unit,
上記画像データを取得し、該画像データを極座標変換して被変換画像データを形 成し、該被変換画像データをフーリエ変換することにより画像関数を算出すると共に 、上記ブレ伝達関数を取得し、該ブレ伝達関数をフーリエ変換することにより被変換 ブレ伝達関数を算出し、且つ上記画像関数を該被変換ブレ伝達関数で割って得ら れる関数を逆フーリエ変換することにより回転像ブレが低減された画像データを取得 する回転像ブレ補正処理部と、  The image data is acquired, the image data is polar-coordinated to form converted image data, an image function is calculated by Fourier transforming the converted image data, and the blur transfer function is acquired, The converted image blur transfer function is calculated by performing a Fourier transform on the blur transfer function, and the rotation image blur is reduced by performing an inverse Fourier transform on the function obtained by dividing the image function by the converted blur transfer function. Rotating image blur correction processing unit for acquiring the acquired image data,
を備えた画像処理装置。  An image processing apparatus.
[19] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理装 置であって、  [19] An image processing apparatus for obtaining image data in which rotational image blur is reduced by performing processing for correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記撮像光学系の回転角速度を一定の周期毎に積分して得られる周期毎の角度 変化量である回転ブレ量データを極座標変換することにより算出される水平方向ブレ 量の度数分布を表すブレ伝達関数及び上記画像データを取得し、該画像データを 極座標変換して被変換画像データを形成し、該被変換画像データをフーリエ変換す ることにより画像関数を算出すると共に、上記ブレ伝達関数をフーリエ変換することに より被変換ブレ伝達関数を算出し、且つ上記画像関数を該被変換ブレ伝達関数で 割って得られる関数を逆フーリエ変換することにより回転像ブレが低減された画像デ ータを取得する回転像ブレ補正処理部を備えた画像処理装置。  Shake transmission that represents the frequency distribution of the horizontal shake amount calculated by polar-coordinates the rotational shake amount data, which is the angle change amount per cycle, obtained by integrating the rotational angular velocity of the imaging optical system at fixed intervals. The function and the image data are obtained, the image data is subjected to polar coordinate conversion to form converted image data, and the image function is calculated by performing Fourier transform on the converted image data, and the blur transfer function is converted to Fourier The converted blur transfer function is calculated by conversion, and the image data obtained by dividing the image function by the converted blur transfer function is subjected to inverse Fourier transform to obtain image data with reduced rotational image blur. An image processing apparatus including a rotation image blur correction processing unit to be acquired.
[20] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理方 法であって、 [20] An image processing method for obtaining image data in which rotational image blur is reduced by performing a process of correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記画像データ及び上記撮像光学系の回転角速度を一定の周期毎に積分して得 られる周期毎の角度変化量である回転ブレ量データを取得するステップと、  Obtaining rotational shake amount data that is an angular change amount for each period obtained by integrating the image data and the rotational angular velocity of the imaging optical system for each constant period;
上記画像データを極座標変換して被変換画像データを形成するステップと、 上記被変換画像データをフーリエ変換することにより画像関数を算出するステップ と、  Converting the image data into polar coordinates to form converted image data; calculating an image function by Fourier transforming the converted image data; and
上記回転ブレ量データを極座標変換して水平方向ブレ量を算出し、該水平方向ブ レ量の度数分布を表すブレ伝達関数を作成するステップと、 The rotational blur data is converted into polar coordinates to calculate the horizontal blur amount, and the horizontal blur is calculated. Creating a blur transfer function representing the frequency distribution of the amount of power;
上記作成されたブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を 算出するステップと、  Calculating a converted blur transfer function by performing a Fourier transform on the created blur transfer function;
上記画像関数を上記被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換 することにより回転像ブレが低減された画像データを取得するステップと、 を備えた画像処理方法。  An image processing method comprising: obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the converted blur transfer function.
[21] 画像データに撮影時に撮像光学系が回転することにより生じた回転像ブレを補正 する処理を施して回転像ブレが低減された画像データを取得するための画像処理方 法であって、  [21] An image processing method for obtaining image data in which rotational image blur is reduced by performing a process of correcting rotational image blur caused by rotation of an imaging optical system during photographing on image data,
上記画像データ及び上記撮像光学系の回転角速度を一定の周期毎に積分して得 られる周期毎の角度変化量である回転ブレ量データを極座標変換することにより算 出された水平方向ブレ量の度数分布を表すブレ伝達関数を取得するステップと、 上記画像データを極座標変換して被変換画像データを形成するステップと、 上記被変換画像データをフーリエ変換することにより画像関数を算出するステップ と、  Frequency of horizontal blur calculated by polar coordinate conversion of rotational blur data, which is the angular variation per period obtained by integrating the image data and the rotational angular velocity of the imaging optical system at regular intervals. Obtaining a blur transfer function representing a distribution; converting the image data into polar coordinates to form converted image data; calculating an image function by Fourier transforming the converted image data;
上記取得されたブレ伝達関数をフーリエ変換することにより被変換ブレ伝達関数を 算出するステップと、  Calculating a transformed blur transfer function by performing a Fourier transform on the acquired blur transfer function;
上記画像関数を上記被変換ブレ伝達関数で割って得られる関数を逆フーリエ変換 することにより回転像ブレが低減された画像データを取得するステップと、 を備えた画像処理方法。  An image processing method comprising: obtaining image data with reduced rotational image blur by performing inverse Fourier transform on a function obtained by dividing the image function by the converted blur transfer function.
PCT/JP2006/315517 2005-08-22 2006-08-04 Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method WO2007023663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-240267 2005-08-22
JP2005240267 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007023663A1 true WO2007023663A1 (en) 2007-03-01

Family

ID=37771414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315517 WO2007023663A1 (en) 2005-08-22 2006-08-04 Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method

Country Status (1)

Country Link
WO (1) WO2007023663A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227807A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Image stabilizer
WO2010021249A1 (en) * 2008-08-21 2010-02-25 Canon Kabushiki Kaisha Image processing apparatus and image processing method
CN113452898A (en) * 2020-03-26 2021-09-28 华为技术有限公司 Photographing method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064921A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Imaging device, product package, and semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064921A1 (en) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. Imaging device, product package, and semiconductor integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227807A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Image stabilizer
WO2010021249A1 (en) * 2008-08-21 2010-02-25 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP2010050745A (en) * 2008-08-21 2010-03-04 Canon Inc Device and method for processing image
US8605159B2 (en) 2008-08-21 2013-12-10 Canon Kabushiki Kaisha Image processing apparatus and image processing method with blur correction based on exposure information and angle of rotation
CN113452898A (en) * 2020-03-26 2021-09-28 华为技术有限公司 Photographing method and device

Similar Documents

Publication Publication Date Title
JP4441565B2 (en) Imaging device
JP5111088B2 (en) Imaging apparatus and image reproduction apparatus
JP5073807B2 (en) Imaging device
JP6071545B2 (en) IMAGING DEVICE, IMAGE PROCESSING DEVICE AND ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
CN106911889B (en) Image blur correction apparatus and tilt correction apparatus, and control methods thereof
TWI321018B (en)
JP2018189730A (en) Image tremor correction device and control method for the same, program therefor, and storage medium
JP4981565B2 (en) Display control apparatus, imaging apparatus, and printing apparatus
JP2014126861A (en) Imaging device and control method of the same, program and storage medium
JP2006135782A (en) Imaging apparatus, display controller and display device
JP2012114809A (en) Imaging apparatus and electronic apparatus
JP5047355B2 (en) Display control apparatus, imaging apparatus, and printing apparatus
JP2018156036A (en) Imaging device
JP5143172B2 (en) Imaging apparatus and image reproduction apparatus
JP2002027312A (en) Image pickup device
JP2007221711A (en) Sensor unit, and electronic device
WO2007023663A1 (en) Imaging device, image processing program, information recording medium containing the image processing program, image processing apparatus, and image processing method
JP2021033015A (en) Image blur correction device and control method thereof, program, and storage medium
JP2015095670A (en) Imaging apparatus, control method thereof and control program
JP2014050081A (en) Electronic camera
JP2000069353A (en) Camera-shake detector and camera-shake correction device
JP6833381B2 (en) Imaging equipment, control methods, programs, and storage media
JP6312519B2 (en) Imaging device, control method thereof, and program
JP5386604B2 (en) Display control apparatus, imaging apparatus, and printing apparatus
CN104704804A (en) Imaging Apparatus And Detecting Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP