WO2013094234A1 - Fan motor and fan motor manufacturing method - Google Patents

Fan motor and fan motor manufacturing method Download PDF

Info

Publication number
WO2013094234A1
WO2013094234A1 PCT/JP2012/061978 JP2012061978W WO2013094234A1 WO 2013094234 A1 WO2013094234 A1 WO 2013094234A1 JP 2012061978 W JP2012061978 W JP 2012061978W WO 2013094234 A1 WO2013094234 A1 WO 2013094234A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
auxiliary teeth
fan motor
auxiliary
pair
Prior art date
Application number
PCT/JP2012/061978
Other languages
French (fr)
Japanese (ja)
Inventor
森 剛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013550141A priority Critical patent/JP5746372B2/en
Publication of WO2013094234A1 publication Critical patent/WO2013094234A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/066Linear Motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a fan motor used for an air conditioner, for example, for simultaneously suppressing a plurality of cogging frequency components, and a method of manufacturing the fan motor.
  • a propeller fan in the fan unit in order to make the indoor unit thinner and smaller.
  • a propeller fan is provided with a boss portion having a rotation center and a blade portion having blades formed on the outer peripheral side from the boss portion.
  • wing part is provided in the boss
  • a magnet is annularly attached to the outer peripheral portion of the fan, and the outer surface of the magnet is sequentially arranged in the circumferential direction as N pole, S pole, N pole, etc.
  • a fan motor in which a plurality of fixed coils are arranged outside the magnet and an annular yoke is provided outside the coil (see, for example, Patent Document 1).
  • Such a fan motor can make the boss portion smaller than a fan motor provided with a boss portion. For this reason, since a ventilation path can be enlarged, a blade
  • the stator occupies a large area because the stator exists all around.
  • the stator is divided into a plurality of parts, but in such a configuration, there is a problem that cogging becomes large.
  • auxiliary teeth are provided at both ends of the stator (see, for example, Patent Document 2).
  • JP 61-52181 first page, FIG. 1
  • Japanese Patent Laying-Open No. 2004-166383 page 21, FIG. 16
  • the present invention has been made in order to solve the above-described problems, and it is possible to obtain a fan motor that is theoretically free of cogging and a method of manufacturing the fan motor by simultaneously suppressing a plurality of cogging frequency components. Objective.
  • a fan motor according to the present invention is provided at both ends of a blade, a rotor provided on the outer periphery of the blade, a tooth on the outer peripheral side of the rotor, and a tooth provided on the inner peripheral surface.
  • a fan motor comprising a motor including two or more stators having a provided auxiliary tooth and a polygonal housing arranged to cover the outer peripheral side of the stator and the rotor, and arranged at both ends in one stator
  • the distance between the auxiliary teeth is defined as the distance between the auxiliary teeth primary pair, and the distance between the primary teeth of each of the two stators is defined as the distance between the auxiliary teeth secondary pair.
  • n-order pairs (n is an integer of 1 or more)
  • the placement of auxiliary teeth in each of two or more stators is shifted to Theta shape with different, by a desired spacing for each auxiliary teeth n th pair, is to suppress the cogging 2 * n-order components.
  • the fan motor manufacturing method includes a blade portion, a rotor provided on the outer peripheral portion of the blade portion, a tooth disposed on the outer peripheral side of the rotor via a gap, and a tooth provided on the inner peripheral surface.
  • a method of manufacturing a fan motor comprising a motor including two or more stators having auxiliary teeth provided at both ends of a tooth, and a polygonal housing arranged to cover the outer peripheral side of the stator and the rotor, The distance between the auxiliary teeth arranged at both ends in one stator is defined as the interval between the auxiliary teeth primary pair, and the distance between each auxiliary teeth primary pair of the two stators is the interval between the auxiliary teeth secondary pair.
  • the desired interval is set for each auxiliary tooth n-order pair.
  • the auxiliary teeth are shifted and the shapes of the stators are made different so that each component of cogging is individually suppressed by the m-order pair of the auxiliary teeth. It is possible to obtain a fan motor that is theoretically free of cogging and a method of manufacturing the fan motor by simultaneously suppressing a plurality of frequency components of cogging.
  • Embodiment 1 of this invention It is a front view which shows the fan motor by Embodiment 1 of this invention. It is a front view which shows the stator of the fan motor by Embodiment 1 of this invention. It is a graph which shows cogging of the conventional fan motor. It is a front view which shows the positional relationship of two stators of the fan motor by Embodiment 1 of this invention. It is a stator positional relationship figure of the fan motor by Embodiment 1 of this invention. It is explanatory drawing of the shape of the stator core of the fan motor by Embodiment 3 of this invention. It is the front view and positional relationship figure which show the stator of the fan motor by Embodiment 4 of this invention.
  • FIG. 1 is a front view showing a fan motor according to Embodiment 1 of the present invention.
  • the fan motor according to the first embodiment has an axial fan structure, and includes a motor 40 including a blade portion 10, a rotor 20, and a stator 30, a housing 50, and the like.
  • the housing 50 shown in FIG. 1 has a substantially rectangular frame shape, and the blade portion 10 is provided inside.
  • the blade portion 10 includes a boss portion 11, a plurality of blades 12, and a ring 13.
  • the boss portion 11 is a rotation center of the blade portion 10, and a blade 12 is formed on the outer peripheral portion thereof.
  • a substantially annular ring 13 is formed on the outer periphery of the blade 12.
  • the blade portion 10 is integrally formed of a resin material, for example.
  • a rotating shaft and a bearing (not shown) into which the rotating shaft is inserted are disposed inside the boss portion 11.
  • the outer peripheral part of this bearing is hold
  • wing part 10 should just be a material which can ensure the rigidity which does not deform
  • the material forming the blade portion 10 may be a metal material or the like.
  • a rotor 20 is provided on the outer peripheral surface of the ring 13 of the blade portion 10.
  • the rotor 20 includes a magnet 21 and a rotor core 22.
  • the rotor core 22 has a substantially annular shape, and is provided on the outer peripheral surface of the ring 13.
  • the magnet 21 has a substantially annular shape and is provided on the outer peripheral surface of the rotor core 22.
  • the magnet 21 is a rubber magnet having a thickness of 1.5 mm and a residual magnetic flux density of 0.245 T, for example.
  • the magnet 21 has a flat plate shape, and the orientation of the magnet 21 is normal parallel magnetization and 32 poles.
  • the magnet 21 is wound around and adhered to the outer peripheral surface of the rotor core 22.
  • the axial width of the magnet 21 (the width in the rotational axis direction of the blade portion 10) is, for example, 10 mm, and is matched with the axial width of the stator.
  • the magnet 21 may be a rare earth sintered magnet, a plastic magnet, a ferrite magnet, or the like.
  • the method of fixing the magnet 21 to the rotor core 22 is not limited to the method of the first embodiment.
  • the magnet 21 may be formed in a substantially annular shape, and the rotor core 22 may be fitted on the inner peripheral surface of the magnet 21.
  • the magnet 21 may be divided into a plurality of segments, and these segments may be attached to the outer peripheral surface of the rotor core 22.
  • the circumferential width of each segment may be made smaller than the pole pitch, and a space may be provided between the segments.
  • the blade portion 10 when used while being rotated at a high speed, it may be fixed from the outside of the magnet 21 with a nonmagnetic material such as glass epoxy (glass fiber + epoxy resin).
  • the axial width of the magnet 21 may be made larger than the axial width of the stator to cause overhang. Thereby, the magnetic flux leakage from the axial direction edge part of a stator can be suppressed.
  • the rotor core 22 is obtained by laminating and bonding electromagnetic steel sheets and processing them into a ring shape.
  • a thick iron core and other magnetic materials can be adopted in addition to the electromagnetic steel sheet.
  • the orientation of the magnet 21 is the Hullback orientation, the magnetic path does not come to the inner side (blade part side), so the rotor core 22 may not be provided.
  • the rotor core 22 is a magnetic material, it is generally heavy. For this reason, the fan motor can be reduced in weight by not providing the rotor core 22. The rotor may be deformed due to insufficient rigidity of the rotor, and noise may be generated. In such a case, the rotor core 22 may be provided.
  • FIG. 2 is a front view showing the stator of the fan motor according to the first embodiment of the present invention.
  • the stator 30 according to the first embodiment includes a stator core 31, a U-phase tooth 32, a V-phase tooth 33, a W-phase tooth 34, an auxiliary tooth 35, and a fixing hole 36.
  • the stator core 31 has a substantially L shape.
  • the angle formed by both outer peripheral surfaces of the stator core 31 is substantially the same angle (approximately 90 °) as the corner of the housing 50 to which the stator is attached.
  • Teeth 32 to 34 are provided on the inner peripheral surface of the stator core 31 (the surface facing the blade portion 10). Since the motor according to the first embodiment is a three-phase motor, a U-phase tooth 32, a V-phase tooth 33, and a W-phase tooth 34 are provided on the inner peripheral surface of the stator core 31 as three teeth.
  • the stator 30 is formed by laminating electromagnetic steel sheets into the shape shown in FIGS. 1 and 2 by wire cutting or the like.
  • the stator 30 may be formed of a thick iron core or other magnetic material.
  • stators 30 are provided at two opposite corners of the housing 50. That is, the housing 50 is provided so as to cover the outer peripheral side of the motor 40 (the rotor 20 and the stator 30). When the stator 30 is attached to the corners of the housing 50, both outer peripheral surfaces of the stator core 31 are brought into contact with (in contact with) the corners of the housing 50 (more specifically, both side surfaces adjacent to the corners).
  • the back surface of the stator core 31 is brought into contact with (in contact with) the step portion 51 (see FIG. 1) of the housing 50.
  • the stator 30 is positioned at the corner of the housing 50.
  • a screw or the like (not shown) is inserted from the fixing hole 36 to fix the stator 30 to the corner of the housing 50.
  • stator 30 may be provided at one corner of the housing 50. Further, for example, the stator 30 may be provided at three corners of the housing 50. Further, for example, the stator 30 may be provided at all corners (four locations) of the housing 50.
  • the stator 30 is provided at the opposite corners of the housing 50.
  • the stator 30 By providing the stator 30 at the opposite corners of the housing 50, it is possible to suppress vibration when the blade 10 rotates, and to suppress noise generated when the blade 10 rotates. .
  • the fan motor 100 configured as described above, since the stator 30 is disposed at the corner of the housing 50, each side of the housing 50 can be brought close to the vicinity of the outer periphery of the rotor 20. Therefore, the fan motor 100 can be produced in the same size as a conventional fan in which a motor is arranged in the boss portion.
  • the motor 40 (the rotor 20 and the stator 30) is provided on the outer peripheral side of the blade portion 10, a large ventilation path can be secured, and the design freedom of the fan motor 100 can be improved.
  • the stator 30 exists only in a part on the outer peripheral side of the rotor 20. For this reason, when the blade
  • FIG. Cogging due to this end portion is an attractive force generated between the teeth (U-phase teeth 32, V-phase teeth 33, and W-phase teeth 34) provided on the end portion side of the stator 30 and the magnet 21 of the rotor 20. Caused by. Then, cogging (torque pulsation) caused by the end of the stator 30 becomes twice the number of magnetic pole pairs of the magnet 21 (2f component in terms of electrical angle) when the rotor 20 makes one rotation.
  • the distance between the auxiliary teeth 35 is (2m ⁇ 1) ⁇ / 2 (where m is a positive integer and ⁇ is the pole pitch of the magnetic poles of the magnet 21).
  • m is a positive integer
  • is the pole pitch of the magnetic poles of the magnet 21.
  • FIG. 3 is a graph showing the cogging of the conventional fan motor, and shows the relationship between the tip angle (electrical angle) of the auxiliary teeth 35 and the secondary, fourth, sixth and eighth order cogging. For this reason, the distance between the auxiliary teeth 35 suitable for suppressing cogging caused by the end of the stator 30 varies depending on the configuration of the motor 40.
  • the cogging secondary component is suppressed by the pair of auxiliary teeth 35 provided at both ends of each stator 30, and the quaternary component is suppressed by the pair of auxiliary teeth 35 (pair of stator 30).
  • the sixth component is suppressed by a pair of auxiliary teeth 35 (a pair of stators 30).
  • the interval between the auxiliary teeth 35 at both ends is ⁇ 1, and the interval from the center of the V-phase teeth 33 to the auxiliary teeth 35 among the three-phase teeth is ⁇ 1.
  • ⁇ 1 suppresses the cogging secondary component
  • ⁇ 1 magnetic pole pitch * h + magnetic pole pitch / 2 * m (H, m: integer) It is said.
  • FIG. 4 is a front view showing the positional relationship between the two stators of the fan motor according to Embodiment 1 of the present invention, and shows a pair of auxiliary teeth 35 (a pair of stators 30).
  • the distance ⁇ between the V-phase teeth 33a and 33b is determined by the slot combination, it is uniquely determined. Therefore, in order to adjust ⁇ 1 while maintaining ⁇ 1, ⁇ 1a which is the distance between the V-phase tooth 33a and the auxiliary tooth 35a at one end in the stator 30a, the V-phase tooth 33b and the auxiliary tooth 35b at one end in the stator 30b, .Phi.1b, which is the distance between the stators 30a and 30b, is different in shape because the auxiliary teeth are displaced.
  • the pair of auxiliary teeth 35 (the pair of stators 30) also has a spacing of magnetic pole pitch * h + magnetic pole pitch / 6 * m (h, m: integer). Configure. Eventually, the four stator cores all have different shapes as much as the auxiliary teeth are displaced.
  • the present invention is arranged such that the auxiliary teeth are shifted and the shape of each stator is different, so that the interval between the n-order pairs of auxiliary teeth (n is an integer of 1 or more) Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m (h, m: integer)
  • n is an integer of 1 or more
  • a pair of auxiliary teeth 35 provided at both ends of each stator 30 suppresses a cogging secondary component, and a pair of auxiliary teeth 35 (a pair of stators 30).
  • the fourth-order component can be suppressed, and the sixth-order component can be suppressed by the pair of auxiliary teeth 35 (the pair of stators 30).
  • FIG. 5 is a diagram showing the positional relationship between the stators of the fan motor according to the first embodiment of the present invention, and shows the positions of the auxiliary teeth of the four stators 30a to 30d. More specifically, the intervals from the common reference position to the auxiliary teeth 35 at one end of each of the stators 30a to 30d are indicated as ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
  • the configuration and arrangement of the stator are as follows.
  • the interval between the auxiliary tee spares on both sides of the first stator is arranged to suppress the n primary component of cogging.
  • the distance between the auxiliary teeth spares of the second stator is also arranged to suppress the cogging n primary component, but the positional relationship with the teeth between the two auxiliary teeth is different from that of the first stator.
  • the rotation-direction interval between the auxiliary tee spare of the first stator and the auxiliary tee spare of the second stator is arranged so as to suppress the cogging n secondary component (n2 ⁇ n1). Has been.
  • the auxiliary tee spare on both sides of one stator is a primary pair
  • the pair of auxiliary tee spares in two stators is 2
  • the pair of auxiliary tea spare pairs can be defined as the m-th order pair, and the interval between each pair can be arranged to suppress different cogging components.
  • each component of cogging can be individually suppressed by the m-order pair of auxiliary teeth, and a theoretically non-cogging fan motor can be achieved by simultaneously suppressing a plurality of cogging frequency components. Obtainable. That is, since n cogging frequency components can be suppressed by n pairs, total cogging can be significantly reduced.
  • interval (n: 1 or more integer) of auxiliary teeth n-order pair is Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m (h, m: integer)
  • the cogging 2 * n-order component can be suppressed by the n-order pair, and the low-order cogging component is suppressed by the low-order pair, so that the influence of the assembly tolerance on the suppression of the low-order cogging can be reduced.
  • the slot combination of the motor 40 (the rotor 20 and the stator 30) is not shown, but the slot combination of the motor 40 is not particularly limited.
  • the slot combination of the motor 40 may be 2: 3, 4: 3, 8: 9, or the like.
  • Embodiment 2 the space
  • interval of auxiliary teeth n-order pair is Magnetic pole pitch * h + magnetic pole pitch / 2 / (N ⁇ n) * m (H, m: integer, N: maximum pair order) Have the relationship.
  • ⁇ 1 is set to the magnetic pole pitch * h + the magnetic pole pitch / 6.
  • ⁇ 1 is the magnetic pole pitch * h + magnetic pole pitch / 4 * m (h, m: integer)
  • the pair of auxiliary teeth pair (stator pair pair) is the magnetic pole pitch * h +
  • the magnetic pole pitch is 2 * m (h, m: integer).
  • Other configurations are the same as those of the first embodiment.
  • the cogging 2 * n-order component can be suppressed by the (Nn) -order pair, and the high-order cogging component is suppressed by the low-order pair.
  • the influence of assembly tolerances on suppression can be reduced.
  • FIG. 6 is an explanatory diagram of the shape of the stator core of the fan motor according to the third embodiment of the present invention.
  • 6A and 6B show stator cores having the same ⁇ 1 defined in FIG. 2 but different ⁇ 1.
  • stator core 31 having one kind of auxiliary tee spare as shown in FIG. 6C is formed and used (the same shape in the axial direction) has been described.
  • the third embodiment two types of shapes shown in FIGS. 6A and 6B are used, and the upper half in the axial direction is the shape (a) and the lower half is the shape (b).
  • auxiliary tee spares having two different arrangements are installed in one core.
  • n cogging components when 2 ⁇ n stators are used, only n cogging components can be suppressed.
  • (n + 1) cogging components are suppressed by stacking two types of auxiliary teeth with different arrangements in the direction of the rotation axis in one stator 30. be able to. If the number of auxiliary tea spares arranged in the rotation axis direction is increased from two, the number of components that can be further suppressed can be increased.
  • the cogging frequency component to be suppressed can be increased by using a plurality of auxiliary tee spares arranged in the rotation axis direction and having different arrangements in one stator. The effect of assembly tolerances can be reduced.
  • Embodiment 4 The case where cogging of the fourth-order component is suppressed using the two stators 30 in the first embodiment has been described. On the other hand, in the fourth embodiment, a case will be described in which cogging of the fourth-order component is suppressed using three or more stators 30.
  • FIG. 7 is a front view and a positional relationship diagram showing the stator of the fan motor according to the fourth embodiment of the present invention.
  • FIG. 7A is a front view showing a fan motor according to the fourth embodiment.
  • the components and the like are the same as those of the first embodiment, but the number of stators is three and the housing shape is substantially triangular. There are some differences from the first embodiment.
  • FIG. 7B shows the definition of the auxiliary teeth spacing at both ends of the stator as in the first embodiment, and a description thereof will be omitted.
  • ⁇ 1 is different among the three stators, and ⁇ 1a in the stator 30a, ⁇ 1b in the stator 30b, and ⁇ 1c in the stator 30c are set to be the following equations, respectively.
  • ⁇ 1a magnetic pole pitch * h + magnetic pole pitch / 3 * m
  • ⁇ 1b magnetic pole pitch * h + magnetic pole pitch / 3 * 2 * m
  • FIG. 7 (c) is a stator position relationship diagram of the fan motor according to the fourth embodiment of the present invention.
  • the distance from the common reference position to the auxiliary teeth 35 at one end of each of the stators 30a to 30c is ⁇ 1, It is shown as ⁇ 2 and ⁇ 3.
  • the angles between the V-phase teeth are symmetric with respect to 120 °, but the auxiliary teeth are deviated, so that ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3.
  • such a configuration suppresses the cogging quaternary component in a group of three auxiliary tee spares.
  • the stator core manufacturing tolerance and assembly tolerance can be reduced as compared with the case of suppressing with two pairs as described in the first embodiment. It is possible to reduce the influence on the position shift of the auxiliary teeth.
  • stator combinations is not limited to three, and can be four or more.
  • an n-order group is configured by a plurality of auxiliary teeth of three or more, and n cogging frequency components are suppressed. Auxiliary teeth can be eliminated.

Abstract

This fan motor is equipped with: a blade section (10); a motor (40) that has a rotor (20) and multiple stators (30); and a polygonal housing (50). When the distance between auxiliary teeth (35) provided on either end within one stator (30) is defined as a first-order auxiliary teeth pair interval, the distance between the respective first-order auxiliary teeth pairs of two stators is defined as a second-order auxiliary teeth pair interval, and nth-order auxiliary teeth pair intervals (n is an integer equal to or greater than 1) are defined in the same manner, the positions of the respective auxiliary teeth of two or more stators are shifted from each other so as to form the respective stators into different shapes, and a desired interval is set for each nth-order auxiliary teeth pair, in order to minimize cogging 2 * nth-order components.

Description

ファンモータおよびファンモータの製造方法Fan motor and fan motor manufacturing method
 本発明は、例えば空気調和機に用いられ、コギングの複数の周波数成分を同時に抑えるためのファンモータおよびファンモータの製造方法に関するものである。 The present invention relates to a fan motor used for an air conditioner, for example, for simultaneously suppressing a plurality of cogging frequency components, and a method of manufacturing the fan motor.
 従来の空気調和機には、室内機を薄型化・小型化するために、ファンユニットにプロペラファンを用いた構成が提案されている。このようなプロペラファンは、回転中心となるボス部、およびボス部から外周側へ形成された羽根を有する羽根部が設けられている。そして、羽根部を回転させるモータは、ボス部に設けられている。つまり、モータは、アウターロータ型となっており、ロータ側(回転側)に羽根部が設けられている。 Conventional air conditioners have been proposed to use a propeller fan in the fan unit in order to make the indoor unit thinner and smaller. Such a propeller fan is provided with a boss portion having a rotation center and a blade portion having blades formed on the outer peripheral side from the boss portion. And the motor which rotates a blade | wing part is provided in the boss | hub part. That is, the motor is an outer rotor type, and a blade portion is provided on the rotor side (rotation side).
 このため、モータを大きくすると、モータの外側に配置される羽根の大きさが制限され、通風路を塞いでしまう。したがって、十分な風量を得ることができない、あるいは羽根部の設計自由度が少なく、ファン効率が低下してしまう等の問題点があった。また、通風路を確保するためにモータの大きさを小さくすると、モータ自体の効率が低下してしまうという問題点があった。 For this reason, when the motor is enlarged, the size of the blades arranged outside the motor is limited, and the ventilation path is blocked. Therefore, there is a problem that a sufficient air volume cannot be obtained, or that the degree of freedom in design of the blade portion is small and the fan efficiency is lowered. Further, if the size of the motor is reduced in order to secure the ventilation path, there is a problem that the efficiency of the motor itself is lowered.
 そこで、これらの問題点を解決するために、例えば、ファンの外周部に磁石を環状に取付けて、その磁石の外側面を周方向において順次N極、S極、N極・・・となし、この磁石の外側に複数個の固定コイルを配列するとともに、コイルの外側に環状のヨークを設けたファンモータが提案されている(例えば、特許文献1参照)。 Therefore, in order to solve these problems, for example, a magnet is annularly attached to the outer peripheral portion of the fan, and the outer surface of the magnet is sequentially arranged in the circumferential direction as N pole, S pole, N pole, etc., There has been proposed a fan motor in which a plurality of fixed coils are arranged outside the magnet and an annular yoke is provided outside the coil (see, for example, Patent Document 1).
 このようなファンモータは、ボス部にモータが備えられたものに比べて、ボス部を小さくすることができる。このため、通風路を大きくすることができることで、羽根を回転軸付近まで大きくすることができ、ファンモータの設計自由度が向上する。また、このようなファンモータは、ロータ半径を大きくできるため、大きなトルクを得ることができ、効率の向上が期待できる。 Such a fan motor can make the boss portion smaller than a fan motor provided with a boss portion. For this reason, since a ventilation path can be enlarged, a blade | wing can be enlarged to the rotating shaft vicinity, and the design freedom of a fan motor improves. In addition, since such a fan motor can increase the rotor radius, a large torque can be obtained and an improvement in efficiency can be expected.
 しかしながら、この例では、ステータが一周全てに存在するため、ステータの占有面積が大きくなる。これを解決するには、ステータを複数個に分けて配置することが考えられるが、このような構成においては、コギングが大きくなるという課題がある。そこで、増加したコギングを削減するために、ステータの両端に補助ティースを設ける方法がある(例えば、特許文献2参照)。 However, in this example, the stator occupies a large area because the stator exists all around. In order to solve this, it can be considered that the stator is divided into a plurality of parts, but in such a configuration, there is a problem that cogging becomes large. In order to reduce the increased cogging, there is a method in which auxiliary teeth are provided at both ends of the stator (see, for example, Patent Document 2).
特開昭61-52181号公報(第1頁、図1)JP 61-52181 (first page, FIG. 1) 特開2004-166483号公報(第21頁、図16)Japanese Patent Laying-Open No. 2004-166383 (page 21, FIG. 16)
 しかしながら、従来技術には、以下のような課題がある。
 特許文献2におけるこのような補助ティースの配置は、左右の補助ティースの間隔を調整することにより、コギングの周波数成分のうちのひとつを抑えることができる。しかしながら、同時に2つ以上の成分を抑えることは不可能である。コギングには、通常、複数成分が混合されており、それらを抑える補助ティース幅は異なるため、この方法によりコギング全体を減少させることはできても、ゼロにすることはできない。
However, the prior art has the following problems.
Such arrangement of the auxiliary teeth in Patent Document 2 can suppress one of the cogging frequency components by adjusting the interval between the left and right auxiliary teeth. However, it is impossible to suppress two or more components at the same time. In cogging, a plurality of components are usually mixed, and the auxiliary teeth width for suppressing them is different. Therefore, although the entire cogging can be reduced by this method, it cannot be reduced to zero.
 本発明は、前記のような課題を解決するためになされたものであり、コギングの複数の周波数成分を同時に抑えることにより、理論上、コギングのないファンモータおよびファンモータの製造方法を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and it is possible to obtain a fan motor that is theoretically free of cogging and a method of manufacturing the fan motor by simultaneously suppressing a plurality of cogging frequency components. Objective.
 本発明に係るファンモータは、羽根部と、羽根部の外周部に設けられたロータ、およびロータの外周側にギャップを介して配置され、内周面に設けられたティースおよびティースの両端に設けられた補助ティースを有する2個以上のステータを含むモータと、ステータおよびロータの外周側を覆うように配置された多角形状ハウジングとを備えたファンモータであって、1つのステータ内で両端に配置される補助ティース間の距離を補助ティース1次ペアの間隔と定義し、2個のステータのそれぞれの補助ティース1次ペア同士の距離を補助ティース2次ペアの間隔と定義し、同様にして補助ティースn次ペアの間隔(nは1以上の整数)を定義した際に、2個以上のステータのそれぞれにおける補助ティースの配置をずらしてそれぞれのステータ形状を異ならせ、補助ティースn次ペアごとに所望の間隔とすることで、コギング2*n次成分を抑制するものである。 A fan motor according to the present invention is provided at both ends of a blade, a rotor provided on the outer periphery of the blade, a tooth on the outer peripheral side of the rotor, and a tooth provided on the inner peripheral surface. A fan motor comprising a motor including two or more stators having a provided auxiliary tooth and a polygonal housing arranged to cover the outer peripheral side of the stator and the rotor, and arranged at both ends in one stator The distance between the auxiliary teeth is defined as the distance between the auxiliary teeth primary pair, and the distance between the primary teeth of each of the two stators is defined as the distance between the auxiliary teeth secondary pair. When defining the spacing of teeth n-order pairs (n is an integer of 1 or more), the placement of auxiliary teeth in each of two or more stators is shifted to Theta shape with different, by a desired spacing for each auxiliary teeth n th pair, is to suppress the cogging 2 * n-order components.
 また、本発明に係るファンモータの製造方法は、羽根部と、羽根部の外周部に設けられたロータ、およびロータの外周側にギャップを介して配置され、内周面に設けられたティースおよびティースの両端に設けられた補助ティースを有する2個以上のステータを含むモータと、ステータおよびロータの外周側を覆うように配置された多角形状ハウジングとを備えたファンモータの製造方法であって、1つのステータ内で両端に配置される補助ティース間の距離を補助ティース1次ペアの間隔と定義し、2個のステータのそれぞれの補助ティース1次ペア同士の距離を補助ティース2次ペアの間隔と定義し、同様にして補助ティースn次ペアの間隔(nは1以上の整数)を定義した際に、補助ティースn次ペアごとに所望の間隔とすることで、コギング2*n次成分を抑制するように、2個以上のステータのそれぞれにおける補助ティースの配置をずらしてそれぞれの形状が異なる2個以上のステータを形成するステップと、形成された2個以上のステータを、ロータの外周側にギャップを介するように、多角形状ハウジング内に配置するステップとを備えたものである。 The fan motor manufacturing method according to the present invention includes a blade portion, a rotor provided on the outer peripheral portion of the blade portion, a tooth disposed on the outer peripheral side of the rotor via a gap, and a tooth provided on the inner peripheral surface. A method of manufacturing a fan motor comprising a motor including two or more stators having auxiliary teeth provided at both ends of a tooth, and a polygonal housing arranged to cover the outer peripheral side of the stator and the rotor, The distance between the auxiliary teeth arranged at both ends in one stator is defined as the interval between the auxiliary teeth primary pair, and the distance between each auxiliary teeth primary pair of the two stators is the interval between the auxiliary teeth secondary pair. In the same way, when the interval of the auxiliary teeth n-order pair (n is an integer of 1 or more) is defined, the desired interval is set for each auxiliary tooth n-order pair. Forming two or more stators having different shapes by shifting the arrangement of auxiliary teeth in each of the two or more stators so as to suppress the cogging 2 * n order component; And a step of disposing the stator in a polygonal housing with a gap on the outer peripheral side of the rotor.
 本発明に係るファンモータおよびファンモータの製造方法によれば、補助ティースをずらして配置し、各ステータの形状を異ならせることで、補助ティースのm次ペアによりコギングの各成分を個別に抑制することができ、コギングの複数の周波数成分を同時に抑えることにより、理論上、コギングのないファンモータおよびファンモータの製造方法を得ることができる。 According to the fan motor and the method of manufacturing the fan motor according to the present invention, the auxiliary teeth are shifted and the shapes of the stators are made different so that each component of cogging is individually suppressed by the m-order pair of the auxiliary teeth. It is possible to obtain a fan motor that is theoretically free of cogging and a method of manufacturing the fan motor by simultaneously suppressing a plurality of frequency components of cogging.
本発明の実施の形態1によるファンモータを示す正面図である。It is a front view which shows the fan motor by Embodiment 1 of this invention. 本発明の実施の形態1によるファンモータのステータを示す正面図である。It is a front view which shows the stator of the fan motor by Embodiment 1 of this invention. 従来のファンモータのコギングを示すグラフである。It is a graph which shows cogging of the conventional fan motor. 本発明の実施の形態1によるファンモータの2つのステータの位置関係を示す正面図である。It is a front view which shows the positional relationship of two stators of the fan motor by Embodiment 1 of this invention. 本発明の実施の形態1によるファンモータのステータ位置関係図である。It is a stator positional relationship figure of the fan motor by Embodiment 1 of this invention. 本発明の実施の形態3によるファンモータのステータコアの形状の説明図である。It is explanatory drawing of the shape of the stator core of the fan motor by Embodiment 3 of this invention. 本発明の実施の形態4によるファンモータのステータを示す正面図および位置関係図である。It is the front view and positional relationship figure which show the stator of the fan motor by Embodiment 4 of this invention.
 以下、本発明のファンモータおよびファンモータの製造方法の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of a fan motor and a fan motor manufacturing method of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1によるファンモータを示す正面図である。本実施の形態1におけるファンモータは、軸流ファン構造であり、羽根部10、ロータ20およびステータ30を備えたモータ40、およびハウジング50等から構成されている。
Embodiment 1 FIG.
FIG. 1 is a front view showing a fan motor according to Embodiment 1 of the present invention. The fan motor according to the first embodiment has an axial fan structure, and includes a motor 40 including a blade portion 10, a rotor 20, and a stator 30, a housing 50, and the like.
 図1に示したハウジング50は、略四角形の額縁形状をしており、内側に羽根部10が設けられている。また、羽根部10は、ボス部11、複数の羽根12、およびリング13を備えている。ボス部11は、羽根部10の回転中心となるものであり、その外周部には、羽根12が形成されている。また、羽根12の外周部には、略円環状のリング13が形成されている。 The housing 50 shown in FIG. 1 has a substantially rectangular frame shape, and the blade portion 10 is provided inside. In addition, the blade portion 10 includes a boss portion 11, a plurality of blades 12, and a ring 13. The boss portion 11 is a rotation center of the blade portion 10, and a blade 12 is formed on the outer peripheral portion thereof. A substantially annular ring 13 is formed on the outer periphery of the blade 12.
 羽根部10は、例えば、樹脂材料で一体成形される。また、ボス部11の内側には、回転シャフトおよびこの回転シャフトが挿入されたベアリング(図示せず)が配置されている。このベアリングの外周部は、例えば、ハウジング50に保持されている。 The blade portion 10 is integrally formed of a resin material, for example. A rotating shaft and a bearing (not shown) into which the rotating shaft is inserted are disposed inside the boss portion 11. The outer peripheral part of this bearing is hold | maintained at the housing 50, for example.
 なお、羽根部10を形成する材料は、樹脂材料に限らず、磁気吸引力(ロータ20とステータ30との間の磁気吸引力)や空気抵抗等により変形しない剛性を確保できる材料であればよい。例えば、羽根部10を形成する材料は、金属材料等であってもよい。 In addition, the material which forms the blade | wing part 10 should just be a material which can ensure the rigidity which does not deform | transform by not only a resin material but magnetic attraction (magnetic attraction between the rotor 20 and the stator 30), air resistance, etc. . For example, the material forming the blade portion 10 may be a metal material or the like.
 羽根部10のリング13の外周面には、ロータ20が設けられている。このロータ20は、磁石21およびロータコア22を備えている。ロータコア22は、略円環状をしており、リング13の外周面に設けられている。また、磁石21も、略円環状をしており、ロータコア22の外周面に設けられている。 A rotor 20 is provided on the outer peripheral surface of the ring 13 of the blade portion 10. The rotor 20 includes a magnet 21 and a rotor core 22. The rotor core 22 has a substantially annular shape, and is provided on the outer peripheral surface of the ring 13. In addition, the magnet 21 has a substantially annular shape and is provided on the outer peripheral surface of the rotor core 22.
 磁石21は、例えば、厚さ1.5mm、残留磁束密度0.245Tのラバー磁石である。また、この磁石21は、平板形状をしており、磁石21の配向は、通常のパラレル着磁で、32極着磁されている。そして、磁石21は、ロータコア22の外周面に巻き付けられ、接着されている。また、本実施の形態1では、磁石21の軸方向幅(羽根部10の回転軸方向の幅)を、例えば、10mmとし、ステータの軸方向幅と合わせている。 The magnet 21 is a rubber magnet having a thickness of 1.5 mm and a residual magnetic flux density of 0.245 T, for example. The magnet 21 has a flat plate shape, and the orientation of the magnet 21 is normal parallel magnetization and 32 poles. The magnet 21 is wound around and adhered to the outer peripheral surface of the rotor core 22. In the first embodiment, the axial width of the magnet 21 (the width in the rotational axis direction of the blade portion 10) is, for example, 10 mm, and is matched with the axial width of the stator.
 なお、磁石21の種類は、希土類焼結磁石、プラマグ磁石、フェライト磁石等を使用してもよい。また、磁石21のロータコア22への固定方法も、本実施の形態1の方法に限られるものではない。例えば、磁石21を略円環状に形成し、この磁石21の内周面にロータコア22をはめ込んでもよい。また、例えば、磁石21を複数のセグメントに分割し、これらセグメントをロータコア22の外周面に貼付等してもよい。 Note that the magnet 21 may be a rare earth sintered magnet, a plastic magnet, a ferrite magnet, or the like. Further, the method of fixing the magnet 21 to the rotor core 22 is not limited to the method of the first embodiment. For example, the magnet 21 may be formed in a substantially annular shape, and the rotor core 22 may be fitted on the inner peripheral surface of the magnet 21. Further, for example, the magnet 21 may be divided into a plurality of segments, and these segments may be attached to the outer peripheral surface of the rotor core 22.
 磁石21を複数のセグメントに分割する場合には、各セグメントの周方向幅を極ピッチより小さくし、セグメント間にスペースを設けてもよい。また、例えば、羽根部10を高速回転させて使用する場合には、磁石21の外側からガラエポ(ガラス繊維+エポキシ樹脂)等の非磁性材料で固定するとよい。また、例えば、磁石21の軸方向幅をステータの軸方向幅よりも大きくし、オーバーハングさせてもよい。これにより、ステータの軸方向側の端部からの磁束漏れを抑制できる。 When the magnet 21 is divided into a plurality of segments, the circumferential width of each segment may be made smaller than the pole pitch, and a space may be provided between the segments. Further, for example, when the blade portion 10 is used while being rotated at a high speed, it may be fixed from the outside of the magnet 21 with a nonmagnetic material such as glass epoxy (glass fiber + epoxy resin). Further, for example, the axial width of the magnet 21 may be made larger than the axial width of the stator to cause overhang. Thereby, the magnetic flux leakage from the axial direction edge part of a stator can be suppressed.
 ロータコア22は、電磁鋼板を積層接着し、リング状に加工したものである。ロータコア22の材質は、電磁鋼板の他、厚粉鉄心、その他磁性材料を採用することができる。なお、磁石21の配向をハルバック配向にした場合、磁路が内側(羽根部側)にこないため、ロータコア22を設けなくてもよい。 The rotor core 22 is obtained by laminating and bonding electromagnetic steel sheets and processing them into a ring shape. As the material of the rotor core 22, a thick iron core and other magnetic materials can be adopted in addition to the electromagnetic steel sheet. In addition, when the orientation of the magnet 21 is the Hullback orientation, the magnetic path does not come to the inner side (blade part side), so the rotor core 22 may not be provided.
 ロータコア22は、磁性体であるので、一般に重量が重い。このため、ロータコア22を設けないことにより、ファンモータの軽量化を図ることができる。なお、ロータの剛性不足によってロータが変形し、騒音が発生する場合がある。このような場合には、ロータコア22を設ければよい。 Since the rotor core 22 is a magnetic material, it is generally heavy. For this reason, the fan motor can be reduced in weight by not providing the rotor core 22. The rotor may be deformed due to insufficient rigidity of the rotor, and noise may be generated. In such a case, the rotor core 22 may be provided.
 図2は、本発明の実施の形態1によるファンモータのステータを示す正面図である。この図2に示すように、本実施の形態1におけるステータ30は、ステータコア31、U相ティース32、V相ティース33、W相ティース34、補助ティース35、および固定用穴36を備えている。 FIG. 2 is a front view showing the stator of the fan motor according to the first embodiment of the present invention. As shown in FIG. 2, the stator 30 according to the first embodiment includes a stator core 31, a U-phase tooth 32, a V-phase tooth 33, a W-phase tooth 34, an auxiliary tooth 35, and a fixing hole 36.
 ステータコア31は、略L型を有している。ステータコア31の両外周面がなす角度は、ステータが取り付けられるハウジング50の角部と略同一角度(略90°)となっている。このステータコア31の内周面(羽根部10と対向する面)には、ティース32~34が設けられている。本実施の形態1のモータは、3相モータのため、ステータコア31の内周面には、3つのティースとして、U相ティース32、V相ティース33、W相ティース34が設けられている。 The stator core 31 has a substantially L shape. The angle formed by both outer peripheral surfaces of the stator core 31 is substantially the same angle (approximately 90 °) as the corner of the housing 50 to which the stator is attached. Teeth 32 to 34 are provided on the inner peripheral surface of the stator core 31 (the surface facing the blade portion 10). Since the motor according to the first embodiment is a three-phase motor, a U-phase tooth 32, a V-phase tooth 33, and a W-phase tooth 34 are provided on the inner peripheral surface of the stator core 31 as three teeth.
 これらU相ティース32、V相ティース33およびW相ティース34は、コイル(図示せず)が巻き付けられている。また、ステータコア31の両端部には、内周面側に補助ティース35が設けられている。ステータ30は、ロータコア22と同様、電磁鋼板を積層したものをワイヤカット等により図1、図2に示す形状に加工している。なお、ステータ30は、厚粉鉄心やその他磁性材料で形成されてもよい。 These U-phase teeth 32, V-phase teeth 33, and W-phase teeth 34 are wound with coils (not shown). In addition, auxiliary teeth 35 are provided on both ends of the stator core 31 on the inner peripheral surface side. As with the rotor core 22, the stator 30 is formed by laminating electromagnetic steel sheets into the shape shown in FIGS. 1 and 2 by wire cutting or the like. The stator 30 may be formed of a thick iron core or other magnetic material.
 これらステータ30は、ハウジング50の対向する角部2箇所に設けられている。つまり、ハウジング50は、モータ40(ロータ20およびステータ30)の外周側を覆うように設けられている。ステータ30をハウジング50の角部に取り付ける際、ステータコア31の両外周面を、ハウジング50の角部(より詳しくは、角部と隣接する両側面部)に当接する(接しさせる)。 These stators 30 are provided at two opposite corners of the housing 50. That is, the housing 50 is provided so as to cover the outer peripheral side of the motor 40 (the rotor 20 and the stator 30). When the stator 30 is attached to the corners of the housing 50, both outer peripheral surfaces of the stator core 31 are brought into contact with (in contact with) the corners of the housing 50 (more specifically, both side surfaces adjacent to the corners).
 また、ステータコア31の裏面を、ハウジング50の段部51(図1参照)に当接する(接しさせる)。これにより、ステータ30は、ハウジング50の角部に位置決めされる。この状態で、固定用穴36からネジ等(図示せず)を挿入し、ステータ30をハウジング50の角部に固定する。 Also, the back surface of the stator core 31 is brought into contact with (in contact with) the step portion 51 (see FIG. 1) of the housing 50. Thereby, the stator 30 is positioned at the corner of the housing 50. In this state, a screw or the like (not shown) is inserted from the fixing hole 36 to fix the stator 30 to the corner of the housing 50.
 ステータ30がハウジング50の角部に固定された状態においては、U相ティース32、V相ティース33、W相ティース34および補助ティース35の先端部と、ロータ20の磁石21の外周面と、の間に一定のギャップが形成されている。 In a state where the stator 30 is fixed to the corner portion of the housing 50, the leading end portions of the U-phase teeth 32, the V-phase teeth 33, the W-phase teeth 34 and the auxiliary teeth 35 and the outer peripheral surface of the magnet 21 of the rotor 20 A certain gap is formed between them.
 なお、ステータ30が設けられる位置は、本実施の形態1で示す位置に限定されるものではない。例えば、ハウジング50の角部の1箇所にステータ30を設けてもよい。また、例えば、ハウジング50の角部3箇所にステータ30を設けてもよい。また、例えば、ハウジング50の全ての角部(4箇所)にステータ30を設けてもよい。 It should be noted that the position where the stator 30 is provided is not limited to the position shown in the first embodiment. For example, the stator 30 may be provided at one corner of the housing 50. Further, for example, the stator 30 may be provided at three corners of the housing 50. Further, for example, the stator 30 may be provided at all corners (four locations) of the housing 50.
 本実施の形態1では、ロータ20とステータ30との間に発生する磁気吸引力をバランスさせるため、ハウジング50の対向する角部にステータ30を設けている。ハウジング50の対向する角部にステータ30を設けることにより、羽根部10が回転した際に振動することを抑制することができ、羽根部10が回転した際に発生する騒音を抑制することができる。 In the first embodiment, in order to balance the magnetic attractive force generated between the rotor 20 and the stator 30, the stator 30 is provided at the opposite corners of the housing 50. By providing the stator 30 at the opposite corners of the housing 50, it is possible to suppress vibration when the blade 10 rotates, and to suppress noise generated when the blade 10 rotates. .
 このように構成されたファンモータ100においては、ハウジング50の角部にステータ30を配置しているので、ハウジング50の各辺をロータ20の外周部近傍まで近づけることが可能となる。したがって、ボス部にモータを配置した従来のファンと同程度の大きさに、ファンモータ100を作成することが可能となる。 In the fan motor 100 configured as described above, since the stator 30 is disposed at the corner of the housing 50, each side of the housing 50 can be brought close to the vicinity of the outer periphery of the rotor 20. Therefore, the fan motor 100 can be produced in the same size as a conventional fan in which a motor is arranged in the boss portion.
 また、羽根部10の外周側にモータ40(ロータ20およびステータ30)を設けているので、通風路を大きく確保でき、ファンモータ100の設計自由度を向上させることができる。 Further, since the motor 40 (the rotor 20 and the stator 30) is provided on the outer peripheral side of the blade portion 10, a large ventilation path can be secured, and the design freedom of the fan motor 100 can be improved.
 ここで、本実施の形態1に係るファンモータ100は、ロータ20の外周側の一部のみにステータ30が存在することとなる。このため、羽根部10が回転する際、ステータ30の端部に起因するコギングの発生が懸念される。この端部に起因するコギングは、ステータ30の端部側に設けられたティース(U相ティース32、V相ティース33、およびW相ティース34)とロータ20の磁石21との間に生じる吸引力によって発生する。そして、ステータ30端部に起因するコギング(トルクの脈動)は、ロータ20が一回転する際、磁石21の磁極対数の2倍の数となる(電気角でいう2f成分)。 Here, in the fan motor 100 according to the first embodiment, the stator 30 exists only in a part on the outer peripheral side of the rotor 20. For this reason, when the blade | wing part 10 rotates, we are anxious about generation | occurrence | production of the cogging resulting from the edge part of the stator 30. FIG. Cogging due to this end portion is an attractive force generated between the teeth (U-phase teeth 32, V-phase teeth 33, and W-phase teeth 34) provided on the end portion side of the stator 30 and the magnet 21 of the rotor 20. Caused by. Then, cogging (torque pulsation) caused by the end of the stator 30 becomes twice the number of magnetic pole pairs of the magnet 21 (2f component in terms of electrical angle) when the rotor 20 makes one rotation.
 したがって、例えば、2個の補助ティース35を設ける場合には、補助ティース35間の距離を(2m-1)τ/2(ただし、mは正の整数、τは磁石21の磁極の極ピッチ)とすることで、ステータ30端部に起因するコギングを相殺して低減することができる。ただし、これは、磁極によるギャップ磁束の周方向分布が正弦波となる理想的な状態の場合であり、例えば、磁石21の着磁をハルバック配向としたような場合に限られる。 Therefore, for example, when two auxiliary teeth 35 are provided, the distance between the auxiliary teeth 35 is (2m−1) τ / 2 (where m is a positive integer and τ is the pole pitch of the magnetic poles of the magnet 21). By doing so, cogging caused by the end portion of the stator 30 can be offset and reduced. However, this is an ideal state where the circumferential distribution of the gap magnetic flux by the magnetic poles is a sine wave, and is limited to, for example, the case where the magnetization of the magnet 21 is in the Hullback orientation.
 つまり、磁石21の着磁をラジアル配向やパラレル配向等にした場合には、ギャップ磁束の分布に高調波成分が含まれる(電気角でいうところの2f成分のほか、4f成分等の高次の成分も重畳される)。図3は、従来のファンモータのコギングを示すグラフであり、補助ティース35の先端角度(電気角)と、2次、4次、6次、8次の各コギングとの関係を示している。このため、モータ40の構成によって、ステータ30端部に起因するコギングを抑制するために好適な補助ティース35間距離が異なってくる。 In other words, when the magnet 21 is magnetized in a radial orientation, a parallel orientation, or the like, a harmonic component is included in the distribution of the gap magnetic flux (in addition to the 2f component in terms of electrical angle, higher order components such as the 4f component). The components are also superimposed). FIG. 3 is a graph showing the cogging of the conventional fan motor, and shows the relationship between the tip angle (electrical angle) of the auxiliary teeth 35 and the secondary, fourth, sixth and eighth order cogging. For this reason, the distance between the auxiliary teeth 35 suitable for suppressing cogging caused by the end of the stator 30 varies depending on the configuration of the motor 40.
 そこで、本実施の形態1では、各ステータ30の両端に設けられた補助ティース35のペアでコギング2次成分を抑制し、補助ティース35のペアのペア(ステータ30のペア)で4次成分を抑制し、補助ティース35のペアのペアのペア(ステータ30のペアのペア)で6次成分を抑制する。 Therefore, in the first embodiment, the cogging secondary component is suppressed by the pair of auxiliary teeth 35 provided at both ends of each stator 30, and the quaternary component is suppressed by the pair of auxiliary teeth 35 (pair of stator 30). The sixth component is suppressed by a pair of auxiliary teeth 35 (a pair of stators 30).
 先の図2に示したステータコア31においては、両端の補助ティース35の間隔をθ1、3相ティースのうちV相ティース33の中心から補助ティース35までの間隔をφ1となるように構成している。ここで、θ1は、コギング2次成分を抑制するように、
  θ1=磁極ピッチ*h+磁極ピッチ/2*m
     (h、m:整数)
としている。
In the stator core 31 shown in FIG. 2, the interval between the auxiliary teeth 35 at both ends is θ1, and the interval from the center of the V-phase teeth 33 to the auxiliary teeth 35 among the three-phase teeth is φ1. . Here, θ1 suppresses the cogging secondary component,
θ1 = magnetic pole pitch * h + magnetic pole pitch / 2 * m
(H, m: integer)
It is said.
 図4は、本発明の実施の形態1によるファンモータの2つのステータの位置関係を示す正面図であり、補助ティース35のペアのペア(ステータ30のペア)を示すものである。各ステータ30a、30bの補助ティース間隔は、図2の場合と同じθ1としている。また、補助ティース35のペアの間隔ψ1(図4に示したように、一端の補助ティース35aと35bの間隔に相当)を
  ψ1=磁極ピッチ*h+磁極ピッチ/4*m
     (h、m:整数)
としている。
FIG. 4 is a front view showing the positional relationship between the two stators of the fan motor according to Embodiment 1 of the present invention, and shows a pair of auxiliary teeth 35 (a pair of stators 30). The auxiliary tooth interval between the stators 30a and 30b is set to the same θ1 as in FIG. Further, the interval ψ1 of the pair of auxiliary teeth 35 (corresponding to the interval between the auxiliary teeth 35a and 35b at one end as shown in FIG. 4) is ψ1 = magnetic pole pitch * h + magnetic pole pitch / 4 * m
(H, m: integer)
It is said.
 ただし、V相ティース33aと33bの間の距離αは、スロットコンビにより決まっているので一意に決まる。従って、θ1を維持したままψ1を調節するためには、ステータ30aにおけるV相ティース33aと一端の補助ティース35aとの間隔であるφ1aと、ステータ30bにおけるV相ティース33bと一端の補助ティース35bとの間隔であるφ1bは異なることになり、ステータ30aと30bは、補助ティースがずれて配置されている分だけ形状が異なる。 However, since the distance α between the V- phase teeth 33a and 33b is determined by the slot combination, it is uniquely determined. Therefore, in order to adjust ψ1 while maintaining θ1, φ1a which is the distance between the V-phase tooth 33a and the auxiliary tooth 35a at one end in the stator 30a, the V-phase tooth 33b and the auxiliary tooth 35b at one end in the stator 30b, .Phi.1b, which is the distance between the stators 30a and 30b, is different in shape because the auxiliary teeth are displaced.
 図示しないが、同様に、補助ティース35のペアのペアのペア(ステータ30のペアのペア)についても、その間隔を磁極ピッチ*h+磁極ピッチ/6*m(h、m:整数)となるように構成する。結局、4個のステータコアは、いずれも、補助ティースがずれて配置されている分だけ形状が異なることになる。 Although not shown in the drawing, similarly, the pair of auxiliary teeth 35 (the pair of stators 30) also has a spacing of magnetic pole pitch * h + magnetic pole pitch / 6 * m (h, m: integer). Configure. Eventually, the four stator cores all have different shapes as much as the auxiliary teeth are displaced.
 以上の関係を整理すると、本発明は、補助ティースをずらして配置し、各ステータの形状を異ならせることで、補助ティースn次ペアの間隔(n:1以上の整数)が、
  磁極ピッチ*h+磁極ピッチ/2/n*m(h、m:整数)
の関係を有していることを技術的特徴としている。
By arranging the above relationships, the present invention is arranged such that the auxiliary teeth are shifted and the shape of each stator is different, so that the interval between the n-order pairs of auxiliary teeth (n is an integer of 1 or more)
Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m (h, m: integer)
The technical feature is that
 換言すると、このような技術的特徴を有することで、各ステータ30の両端に設けられた補助ティース35のペアでコギング2次成分を抑制し、補助ティース35のペアのペア(ステータ30のペア)で4次成分を抑制し、補助ティース35のペアのペアのペア(ステータ30のペアのペア)で6次成分を抑制することができる。 In other words, by having such a technical feature, a pair of auxiliary teeth 35 provided at both ends of each stator 30 suppresses a cogging secondary component, and a pair of auxiliary teeth 35 (a pair of stators 30). Thus, the fourth-order component can be suppressed, and the sixth-order component can be suppressed by the pair of auxiliary teeth 35 (the pair of stators 30).
 図5は、本発明の実施の形態1によるファンモータのステータ位置関係図であり、4個のステータ30a~30dの各補助ティースの位置を示す図である。より具体的には、共通の基準位置から、各ステータ30a~30dの一端の補助ティース35までの間隔を、それぞれβ1、β2、β3、β4として示している。 FIG. 5 is a diagram showing the positional relationship between the stators of the fan motor according to the first embodiment of the present invention, and shows the positions of the auxiliary teeth of the four stators 30a to 30d. More specifically, the intervals from the common reference position to the auxiliary teeth 35 at one end of each of the stators 30a to 30d are indicated as β1, β2, β3, and β4, respectively.
 ここで、(β2-β1)=(β4-β3)は、補助ティース35のペアのペア(ステータ30のペア)の間隔に相当し、4次成分を抑制する上記角度のhが異なるものとなる。また、(β3-β1)=(β4-β2)は、補助ティース35のペアのペアのペア(ステータ30のペアのペア)の間隔に相当し、6次成分を抑制する角度のhが異なるものとなる。また、図5に示したステータ個数は、4個(=2^2)なので、ペアの余りは発生しない。 Here, (β2−β1) = (β4−β3) corresponds to the distance between the pair of auxiliary teeth 35 (the pair of stators 30), and the above-described angle h for suppressing the quaternary component is different. . Further, (β3-β1) = (β4-β2) corresponds to the distance between the pair of auxiliary teeth 35 (pair of the stator 30), and the angle h for suppressing the sixth component is different. It becomes. Further, since the number of stators shown in FIG. 5 is four (= 2 ^ 2), the remainder of the pair does not occur.
 以上のように、実施の形態1によれば、ステータの構成、配置を以下のようにしている。
・第1のステータの両側の補助ティースペアの間隔は、コギングのn1次成分を抑制する間隔に配置されている。
・第2のステータの補助ティースペアの間隔も、コギングn1次成分を抑制する間隔に配置されているが、2つの補助ティースの間にあるティースとの位置関係が、第1のステータとは異なるように、ずれて配置されており、第1のステータの補助ティースペアと、第2のステータの補助ティースペアの回転方向の間隔は、コギングn2次成分(n2≠n1)を抑制する間隔に配置されている。
As described above, according to the first embodiment, the configuration and arrangement of the stator are as follows.
The interval between the auxiliary tee spares on both sides of the first stator is arranged to suppress the n primary component of cogging.
The distance between the auxiliary teeth spares of the second stator is also arranged to suppress the cogging n primary component, but the positional relationship with the teeth between the two auxiliary teeth is different from that of the first stator. Thus, the rotation-direction interval between the auxiliary tee spare of the first stator and the auxiliary tee spare of the second stator is arranged so as to suppress the cogging n secondary component (n2 ≠ n1). Has been.
 このように、1つのステータにおける両側の補助ティースペアを1次ペア、2つのステータにおける補助ティースペアのペア(第1のステータの補助ティースペアと第2のステータの補助ティースペアのペア)を2次ペアとすると、同様に補助ティースペアのペアの・・・のペアをm次ペアと定義することができ、各々のペアの間隔を異なったコギング成分を抑制する配置にすることができる。 Thus, the auxiliary tee spare on both sides of one stator is a primary pair, and the pair of auxiliary tee spares in two stators (the pair of the auxiliary tee spare of the first stator and the auxiliary tee spare of the second stator) is 2 When the next pair is used, the pair of auxiliary tea spare pairs can be defined as the m-th order pair, and the interval between each pair can be arranged to suppress different cogging components.
 このような構成を有することで、補助ティースのm次ペアによりコギングの各成分を個別に抑制することができ、コギングの複数の周波数成分を同時に抑えることにより、理論上、コギングのないファンモータを得ることができる。すなわち、n個のペアによってn個のコギング周波数成分を抑さえることができるため、総コギングを格段に低減することができる。 By having such a configuration, each component of cogging can be individually suppressed by the m-order pair of auxiliary teeth, and a theoretically non-cogging fan motor can be achieved by simultaneously suppressing a plurality of cogging frequency components. Obtainable. That is, since n cogging frequency components can be suppressed by n pairs, total cogging can be significantly reduced.
 さらに、補助ティースn次ペアの間隔(n:1以上の整数)が、
  磁極ピッチ*h+磁極ピッチ/2/n*m(h、m:整数)
の関係を有している。これにより、コギング2*n次成分をn次ペアで抑えることができ、次数の低いコギング成分を次数の低いペアで抑えるため、低次数コギング抑制への組み立て公差の影響を少なくすることができる。
Furthermore, the space | interval (n: 1 or more integer) of auxiliary teeth n-order pair is
Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m (h, m: integer)
Have the relationship. As a result, the cogging 2 * n-order component can be suppressed by the n-order pair, and the low-order cogging component is suppressed by the low-order pair, so that the influence of the assembly tolerance on the suppression of the low-order cogging can be reduced.
 さらに、ステータ個数を2の階乗個とすることにより、補助ティースペアの余りペアがなくなるため、補助ティースによるコギング増加をなくすことができる。 Furthermore, by setting the number of stators to a factorial of 2, there are no extra pairs of auxiliary tee spares, and therefore it is possible to eliminate an increase in cogging due to auxiliary teeth.
 なお、本実施の形態1では、モータ40(ロータ20およびステータ30)のスロットコンビネーションを示さなかったが、モータ40のスロットコンビネーションは、特に限定されるものではない。例えば、モータ40のスロットコンビネーションを、2:3、4:3、8:9等とすればよい。 In the first embodiment, the slot combination of the motor 40 (the rotor 20 and the stator 30) is not shown, but the slot combination of the motor 40 is not particularly limited. For example, the slot combination of the motor 40 may be 2: 3, 4: 3, 8: 9, or the like.
 実施の形態2.
 先の実施の形態1では、補助ティースn次ペアの間隔(n:1以上の整数)が、
  磁極ピッチ*h+磁極ピッチ/2/n*m(h、m:整数)
の関係を有する場合について説明した。これに対して、本実施の形態2では、補助ティースn次ペアの間隔が、
  磁極ピッチ*h+磁極ピッチ/2/(N-n)*m
  (h、m:整数、N:最大ペア次数)
の関係を有している。
Embodiment 2. FIG.
In previous Embodiment 1, the space | interval (n: 1 or more integer) of auxiliary teeth n-order pair is
Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m (h, m: integer)
The case of having the relationship has been described. On the other hand, in this Embodiment 2, the space | interval of auxiliary teeth n-order pair is
Magnetic pole pitch * h + magnetic pole pitch / 2 / (N−n) * m
(H, m: integer, N: maximum pair order)
Have the relationship.
 より具体的には、先の実施の形態1のように、4個のステータ30a~30dを設ける場合を例にすると、本実施の形態2の構成では、θ1を磁極ピッチ*h+磁極ピッチ/6*m(h、m:整数)、ψ1を磁極ピッチ*h+磁極ピッチ/4*m(h、m:整数)、補助ティースのペアのペアのペア(ステータペアのペア)の間隔を磁極ピッチ*h+磁極ピッチ/2*m(h、m:整数)とする。その他は、先の実施の形態1と同様の構成である。 More specifically, in the case of providing four stators 30a to 30d as in the first embodiment, in the configuration of the second embodiment, θ1 is set to the magnetic pole pitch * h + the magnetic pole pitch / 6. * M (h, m: integer), ψ1 is the magnetic pole pitch * h + magnetic pole pitch / 4 * m (h, m: integer), and the pair of auxiliary teeth pair (stator pair pair) is the magnetic pole pitch * h + The magnetic pole pitch is 2 * m (h, m: integer). Other configurations are the same as those of the first embodiment.
 このような構成にすることで、位置精度が必要な高次のコギングを組み立て公差の影響なく抑制することができる。 With this configuration, higher-order cogging that requires positional accuracy can be suppressed without the influence of assembly tolerances.
 以上のように、実施の形態2によれば、コギング2*n次成分を(N-n)次ペアで抑えることができ、高次のコギング成分を次数の低いペアで抑えるため、高次コギング抑制への組み立て公差の影響を少なくすることができる。 As described above, according to the second embodiment, the cogging 2 * n-order component can be suppressed by the (Nn) -order pair, and the high-order cogging component is suppressed by the low-order pair. The influence of assembly tolerances on suppression can be reduced.
 実施の形態3.
 本実施の形態3では、1つのステータコアに2種の異なる配置を有する補助ティースペアを設置する場合について説明する。図6は、本発明の実施の形態3によるファンモータのステータコアの形状の説明図である。図6(a)、(b)は、先の図2で定義されるθ1は同じであるが、φ1が異なるステータコアを示している。
Embodiment 3 FIG.
In the third embodiment, a case where auxiliary tee spares having two different arrangements are installed in one stator core will be described. FIG. 6 is an explanatory diagram of the shape of the stator core of the fan motor according to the third embodiment of the present invention. 6A and 6B show stator cores having the same θ1 defined in FIG. 2 but different φ1.
 先の実施の形態1では、図6(c)に示すような1種類の補助ティースペアを有するステータコア31を形成して使用する場合について説明した(軸方向に同一形状)。これに対して、本実施の形態3では、図6(a)と(b)の2種類の形状を用い、軸方向の上半分を形状(a)、下半分を形状(b)とすることで、図6(d)に示すように、1つのコアに2種の異なる配置を有する補助ティースペアを設置している。 In the first embodiment, the case where the stator core 31 having one kind of auxiliary tee spare as shown in FIG. 6C is formed and used (the same shape in the axial direction) has been described. On the other hand, in the third embodiment, two types of shapes shown in FIGS. 6A and 6B are used, and the upper half in the axial direction is the shape (a) and the lower half is the shape (b). Thus, as shown in FIG. 6D, auxiliary tee spares having two different arrangements are installed in one core.
 通常、2^n個のステータを用いる場合には、n個のコギング成分しか抑制できない。しかしながら、図6(d)に示すように、1つのステータ30内で、配置が異なる2種の補助ティースを回転軸方向に積層する構成とすることで、(n+1)個のコギング成分を抑制することができる。回転軸方向に配置される補助ティースペアの個数を2個から増やせば、さらに抑制できる成分数を増やすことができる。 Normally, when 2 ^ n stators are used, only n cogging components can be suppressed. However, as shown in FIG. 6D, (n + 1) cogging components are suppressed by stacking two types of auxiliary teeth with different arrangements in the direction of the rotation axis in one stator 30. be able to. If the number of auxiliary tea spares arranged in the rotation axis direction is increased from two, the number of components that can be further suppressed can be increased.
 以上のように、実施の形態3によれば、1つのステータ内で、回転軸方向に配置した、配置の異なる複数の補助ティースペアを用いることで、抑制するコギング周波数成分を増やすことができるとともに、組み立て公差の影響を少なくすることができる。 As described above, according to Embodiment 3, the cogging frequency component to be suppressed can be increased by using a plurality of auxiliary tee spares arranged in the rotation axis direction and having different arrangements in one stator. The effect of assembly tolerances can be reduced.
 実施の形態4.
 先の実施の形態1にお2個のステータ30を用いて4次成分のコギングを抑制する場合について説明した。これに対して、本実施の形態4では、3個以上のステータ30を用いて4次成分のコギングを抑制する場合について説明する。
Embodiment 4 FIG.
The case where cogging of the fourth-order component is suppressed using the two stators 30 in the first embodiment has been described. On the other hand, in the fourth embodiment, a case will be described in which cogging of the fourth-order component is suppressed using three or more stators 30.
 図7は、本発明の実施の形態4によるファンモータのステータを示す正面図および位置関係図である。図7(a)は、本実施の形態4におけるファンモータ示す正面図であり、構成要素などは、先の実施の形態1と同様であるが、ステータ個数が3個、ハウジング形状が略三角形であるところが先の実施の形態1とは異なっている。 FIG. 7 is a front view and a positional relationship diagram showing the stator of the fan motor according to the fourth embodiment of the present invention. FIG. 7A is a front view showing a fan motor according to the fourth embodiment. The components and the like are the same as those of the first embodiment, but the number of stators is three and the housing shape is substantially triangular. There are some differences from the first embodiment.
 また、図7(b)は、先の実施の形態1と同様に、ステータ両端の補助ティース間隔などの定義を示しており、説明は省略する。本実施の形態4における3個のステータ30a~30cにおいては、θ1は同じであり、コギング2次成分を抑制する間隔として
  θ1=磁極ピッチ*h+磁極ピッチ/2*m(h、m:整数)
と設定されている。
FIG. 7B shows the definition of the auxiliary teeth spacing at both ends of the stator as in the first embodiment, and a description thereof will be omitted. In the three stators 30a to 30c in the fourth embodiment, θ1 is the same, and the interval for suppressing the cogging secondary component is θ1 = magnetic pole pitch * h + magnetic pole pitch / 2 * m (h, m: integer)
Is set.
 また、φ1は、3個のステータで異なり、ステータ30aにおけるφ1a、ステータ30bにおけるφ1b、ステータ30cにおけるφ1cは、それぞれ下式となるように設定している。
  φ1a=磁極ピッチ*h+磁極ピッチ/3*m
  φ1b=磁極ピッチ*h+磁極ピッチ/3*2*m
  φ1c=磁極ピッチ*h+磁極ピッチ/3*3*m
     =磁極ピッチ*h+磁極ピッチ*m
      (h、m:整数)
Further, φ1 is different among the three stators, and φ1a in the stator 30a, φ1b in the stator 30b, and φ1c in the stator 30c are set to be the following equations, respectively.
φ1a = magnetic pole pitch * h + magnetic pole pitch / 3 * m
φ1b = magnetic pole pitch * h + magnetic pole pitch / 3 * 2 * m
φ1c = magnetic pole pitch * h + magnetic pole pitch / 3 * 3 * m
= Magnetic pole pitch * h + Magnetic pole pitch * m
(H, m: integer)
 図7(c)は、本発明の実施の形態4によるファンモータのステータ位置関係図であり、共通の基準位置から、各ステータ30a~30cの一端の補助ティース35までの間隔を、それぞれβ1、β2、β3として示している。本実施の形態4では、各V相ティース間角度は120°と対称であるが、それぞれの補助ティースはずれているため、β1≠β2≠β3となる。 FIG. 7 (c) is a stator position relationship diagram of the fan motor according to the fourth embodiment of the present invention. The distance from the common reference position to the auxiliary teeth 35 at one end of each of the stators 30a to 30c is β1, It is shown as β2 and β3. In the fourth embodiment, the angles between the V-phase teeth are symmetric with respect to 120 °, but the auxiliary teeth are deviated, so that β1 ≠ β2 ≠ β3.
 本実施の形態4では、このような構成により、補助ティースペア3個のグループで、コギング4次成分を抑制する。このように、3個の組み合わせとしてコギング4次成分を抑制する構成によれば、先の実施の形態1で説明したような2個ペアで抑制する場合よりも、ステータコアの作製公差、組み立て公差に起因する補助ティースの位置ずれに対する影響を少なくすることができる。 In the fourth embodiment, such a configuration suppresses the cogging quaternary component in a group of three auxiliary tee spares. As described above, according to the configuration in which the cogging quaternary component is suppressed as a combination of three, the stator core manufacturing tolerance and assembly tolerance can be reduced as compared with the case of suppressing with two pairs as described in the first embodiment. It is possible to reduce the influence on the position shift of the auxiliary teeth.
 なお、ステータの組み合わせ個数は3個には限定されず、4個以上とすることの可能である。また、先の実施の形態1で説明した補助ティースのペアのペアのペアと同様の考え方で、補助ティースのペアのグループのグループを構成することで、6次成分を抑制することが可能である。 Note that the number of stator combinations is not limited to three, and can be four or more. In addition, it is possible to suppress the sixth-order component by forming a group of auxiliary tooth pair groups in the same way as the pair of auxiliary tooth pairs described in the first embodiment. .
 以上のように、実施の形態4によれば、3個以上の複数個の補助ティースでn次グループを構成し、n個のコギング周波数成分を抑制するため、組み立て公差の影響が少なく、常に余り補助ティースをなくすことができる。 As described above, according to the fourth embodiment, an n-order group is configured by a plurality of auxiliary teeth of three or more, and n cogging frequency components are suppressed. Auxiliary teeth can be eliminated.

Claims (7)

  1.  羽根部と、
     前記羽根部の外周部に設けられたロータ、および該ロータの外周側にギャップを介して配置され、内周面に設けられたティースおよび該ティースの両端に設けられた補助ティースを有する2個以上のステータを含むモータと、
     前記ステータおよび前記ロータの外周側を覆うように配置された多角形状ハウジングと
     を備えたファンモータであって、
     1つのステータ内で両端に配置される前記補助ティース間の距離を補助ティース1次ペアの間隔と定義し、2個のステータのそれぞれの補助ティース1次ペア同士の距離を補助ティース2次ペアの間隔と定義し、同様にして補助ティースn次ペアの間隔(nは1以上の整数)を定義した際に、前記2個以上のステータのそれぞれにおける補助ティースの配置をずらしてそれぞれのステータ形状を異ならせ、前記補助ティースn次ペアごとに所望の間隔とすることで、コギング2*n次成分を抑制する
     ことを特徴とするファンモータ。
    The wings,
    Two or more having a rotor provided on the outer peripheral portion of the blade portion, a tooth provided on the outer peripheral side of the rotor via a gap, and an auxiliary tooth provided on both ends of the tooth. A motor including a stator of
    A fan motor including a polygonal housing arranged to cover the outer periphery of the stator and the rotor,
    The distance between the auxiliary teeth arranged at both ends in one stator is defined as the interval between the auxiliary teeth primary pair, and the distance between the auxiliary teeth primary pair of the two stators is defined as the distance between the auxiliary teeth secondary pair. In the same manner, when the interval of the n-th order pair of auxiliary teeth (n is an integer of 1 or more) is defined, the arrangement of the auxiliary teeth in each of the two or more stators is shifted to change the shape of each stator. The fan motor is characterized in that the cogging 2 * n-order component is suppressed by setting a desired interval for each auxiliary tooth n-order pair.
  2.  請求項1に記載のファンモータにおいて、
     前記補助ティースn次ペアの間隔が、
      磁極ピッチ*h+磁極ピッチ/2/n*m
      (h、m:整数)
    であることを特徴とするファンモータ。
    The fan motor according to claim 1,
    The interval between the auxiliary teeth n-order pair is
    Magnetic pole pitch * h + magnetic pole pitch / 2 / n * m
    (H, m: integer)
    The fan motor characterized by being.
  3.  請求項1に記載のファンモータにおいて、
     前記補助ティースn次ペアの間隔が、
      磁極ピッチ*h+磁極ピッチ/2/(N-n)*m
      (h、m:整数、N:最大ペア次数)
    であることを特徴とするファンモータ。
    The fan motor according to claim 1,
    The interval between the auxiliary teeth n-order pair is
    Magnetic pole pitch * h + magnetic pole pitch / 2 / (N−n) * m
    (H, m: integer, N: maximum pair order)
    The fan motor characterized by being.
  4.  請求項1ないし3のいずれか1項に記載のファンモータにおいて、
     1つのステータ内において、配置の異なる補助ティースを回転軸方向に複数個有する
     ことを特徴とするファンモータ。
    The fan motor according to any one of claims 1 to 3,
    A fan motor comprising a plurality of auxiliary teeth having different arrangements in a rotation axis direction in one stator.
  5.  請求項1ないし4のいずれか1項に記載のファンモータにおいて、
     前記ステータの個数が2の階乗個である
     ことを特徴とするファンモータ。
    The fan motor according to any one of claims 1 to 4,
    The fan motor, wherein the number of stators is a factorial of 2.
  6.  羽根部と、
     前記羽根部の外周部に設けられたロータ、および該ロータの外周側にギャップを介して配置され、内周面に設けられたティース及び該ティースの両端に設けられた補助ティースを有する2個以上のステータを含むモータと、
     前記ステータおよび前記ロータの外周側を覆うように配置された多角形状ハウジングと
     を備えたファンモータであって、
     1つのステータ内で両端に配置される前記補助ティース間の距離を補助ティース1次グループの間隔と定義し、3個のステータのそれぞれの補助ティース1次グループ同士の距離を補助ティース2次グループの間隔と定義し、同様にして補助ティースn次グループの間隔(nは1以上の整数)を定義した際に、前記3個以上のステータのそれぞれにおける補助ティースの配置をずらしてそれぞれのステータ形状を異ならせ、前記補助ティースn次グループごとに所望の間隔とすることで、コギング2*n次成分を抑制する
     ことを特徴とするファンモータ。
    The wings,
    Two or more rotors provided on the outer peripheral portion of the blade portion, and two or more teeth disposed on the outer peripheral side of the rotor via a gap and provided on the inner peripheral surface and auxiliary teeth provided on both ends of the teeth A motor including a stator of
    A fan motor including a polygonal housing arranged to cover the outer periphery of the stator and the rotor,
    The distance between the auxiliary teeth arranged at both ends in one stator is defined as the distance between the auxiliary teeth primary group, and the distance between the auxiliary teeth primary groups of the three stators is the distance between the auxiliary teeth secondary group. In the same manner, when the interval of the n-th group of auxiliary teeth (n is an integer of 1 or more) is defined, the arrangement of the auxiliary teeth in each of the three or more stators is shifted to change the shape of each stator. The fan motor is characterized in that the cogging 2 * n-order component is suppressed by setting a desired interval for each n-th group of auxiliary teeth.
  7.  羽根部と、
     前記羽根部の外周部に設けられたロータ、および該ロータの外周側にギャップを介して配置され、内周面に設けられたティースおよび該ティースの両端に設けられた補助ティースを有する2個以上のステータを含むモータと、
     前記ステータおよび前記ロータの外周側を覆うように配置された多角形状ハウジングと
     を備えたファンモータの製造方法であって、
     1つのステータ内で両端に配置される前記補助ティース間の距離を補助ティース1次ペアの間隔と定義し、2個のステータのそれぞれの補助ティース1次ペア同士の距離を補助ティース2次ペアの間隔と定義し、同様にして補助ティースn次ペアの間隔(nは1以上の整数)を定義した際に、前記補助ティースn次ペアごとに所望の間隔とすることで、コギング2*n次成分を抑制するように、
      前記2個以上のステータのそれぞれにおける補助ティースの配置をずらしてそれぞれの形状が異なる前記2個以上のステータを形成するステップと、
      形成された前記2個以上のステータを、前記ロータの外周側に前記ギャップを介するように、前記多角形状ハウジング内に配置するステップと
     を備えたことを特徴とするファンモータの製造方法。
    The wings,
    Two or more having a rotor provided on the outer peripheral portion of the blade portion, a tooth provided on the outer peripheral side of the rotor via a gap, and an auxiliary tooth provided on both ends of the tooth. A motor including a stator of
    A fan motor manufacturing method comprising: a polygonal housing arranged so as to cover an outer peripheral side of the stator and the rotor,
    The distance between the auxiliary teeth arranged at both ends in one stator is defined as the interval between the auxiliary teeth primary pair, and the distance between the auxiliary teeth primary pair of the two stators is defined as the distance between the auxiliary teeth secondary pair. In the same manner, when the interval of the auxiliary tooth n-order pair (n is an integer of 1 or more) is defined in the same manner, a desired interval is set for each of the auxiliary tooth n-order pairs, so that the cogging 2 * n-order To suppress the ingredients,
    Shifting the arrangement of auxiliary teeth in each of the two or more stators to form the two or more stators having different shapes;
    And disposing the two or more formed stators in the polygonal housing so as to have the gap on the outer peripheral side of the rotor. A method of manufacturing a fan motor, comprising:
PCT/JP2012/061978 2011-12-19 2012-05-10 Fan motor and fan motor manufacturing method WO2013094234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550141A JP5746372B2 (en) 2011-12-19 2012-05-10 Fan motor and fan motor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277452 2011-12-19
JP2011277452 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094234A1 true WO2013094234A1 (en) 2013-06-27

Family

ID=48668143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061978 WO2013094234A1 (en) 2011-12-19 2012-05-10 Fan motor and fan motor manufacturing method

Country Status (2)

Country Link
JP (1) JP5746372B2 (en)
WO (1) WO2013094234A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014141A (en) * 1996-06-26 1998-01-16 Minebea Co Ltd Dynamo-electric machine
JP2003250235A (en) * 2002-02-22 2003-09-05 Matsushita Electric Ind Co Ltd Single-phase capacitor drive motor and method of manufacturing the same
JP2008199801A (en) * 2007-02-14 2008-08-28 Hitachi Industrial Equipment Systems Co Ltd Fan system
WO2011042975A1 (en) * 2009-10-08 2011-04-14 三菱電機株式会社 Fan motor and air conditioner with same
WO2011092863A1 (en) * 2010-02-01 2011-08-04 三菱電機株式会社 Blower and air conditioning device equipped with the blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014141A (en) * 1996-06-26 1998-01-16 Minebea Co Ltd Dynamo-electric machine
JP2003250235A (en) * 2002-02-22 2003-09-05 Matsushita Electric Ind Co Ltd Single-phase capacitor drive motor and method of manufacturing the same
JP2008199801A (en) * 2007-02-14 2008-08-28 Hitachi Industrial Equipment Systems Co Ltd Fan system
WO2011042975A1 (en) * 2009-10-08 2011-04-14 三菱電機株式会社 Fan motor and air conditioner with same
WO2011092863A1 (en) * 2010-02-01 2011-08-04 三菱電機株式会社 Blower and air conditioning device equipped with the blower

Also Published As

Publication number Publication date
JP5746372B2 (en) 2015-07-08
JPWO2013094234A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6667084B2 (en) Surface magnet type motor
JP4586717B2 (en) motor
JP6161707B2 (en) Synchronous motor
JP2007014110A (en) Rotary electric machine
JP2010098929A (en) Double gap motor
JP5423738B2 (en) Rotating electric machine
JP5703168B2 (en) motor
JP5609689B2 (en) Rotating electric machine
WO2011042975A1 (en) Fan motor and air conditioner with same
JP5656719B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
US9419480B2 (en) Rotor arrangement and electromechanical transducer having non-parallel permanent magnets
JP6280761B2 (en) Stator core and permanent magnet motor
JP5267751B1 (en) Rotating electric machine
TW202143604A (en) Frame structure of motor and method for manufacturing frame and armature of motor
JP2013034325A (en) Rotary electric machine
JP2007336624A (en) Multi-phase claw tooth type permanent magnet motor
JP2013229958A (en) Synchronous motor
JP5662737B2 (en) Hybrid stepping motor
JP5471653B2 (en) Permanent magnet type electric motor
JP5746372B2 (en) Fan motor and fan motor manufacturing method
WO2018180344A1 (en) Stator for electric motor, and electric motor
JPWO2018180345A1 (en) Stator for electric motor and electric motor
JP2015027175A (en) Rotating electrical machine and method of manufacturing rotating electrical machine
WO2021145136A1 (en) Axial gap motor
JP2019013114A (en) Brushless motor and blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859212

Country of ref document: EP

Kind code of ref document: A1