WO2013094068A1 - インプリント装置及びデバイス製造方法 - Google Patents

インプリント装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2013094068A1
WO2013094068A1 PCT/JP2011/079911 JP2011079911W WO2013094068A1 WO 2013094068 A1 WO2013094068 A1 WO 2013094068A1 JP 2011079911 W JP2011079911 W JP 2011079911W WO 2013094068 A1 WO2013094068 A1 WO 2013094068A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
mold
relay optical
detection system
Prior art date
Application number
PCT/JP2011/079911
Other languages
English (en)
French (fr)
Other versions
WO2013094068A9 (ja
Inventor
普教 前田
聖也 三浦
和彦 三島
賢 箕田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2013550039A priority Critical patent/JP5901655B2/ja
Priority to KR1020147019462A priority patent/KR101679941B1/ko
Priority to PCT/JP2011/079911 priority patent/WO2013094068A1/ja
Priority to US13/716,428 priority patent/US9718234B2/en
Publication of WO2013094068A1 publication Critical patent/WO2013094068A1/ja
Publication of WO2013094068A9 publication Critical patent/WO2013094068A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to astigmatism correction of an optical system in an imprint apparatus that transfers a pattern formed on a mold to an imprint material on a substrate.
  • imprint resin a layer made of a photo-curing resin (hereinafter, imprint resin) is formed on a substrate (for example, a semiconductor wafer).
  • imprint resin a photo-curing resin
  • the imprint resin is brought into contact with a mold on which a desired fine uneven structure (pattern) is formed.
  • the imprint resin is cured by irradiating with ultraviolet rays while the imprint resin and the mold are in contact with each other. Thereby, the pattern formed on the mold can be transferred to the imprint resin.
  • a through-the-mold detection system (hereinafter referred to as a TTM detection system) capable of simultaneously detecting and aligning marks formed on the mold and the wafer is used.
  • a TTM detection system capable of simultaneously detecting and aligning marks formed on the mold and the wafer.
  • an illumination system for irradiating the resin layer with ultraviolet rays through the mold from the upper part of the mold is arranged on the upper part of the mold, and a TTM detection system is arranged so as to avoid the illumination system.
  • the TTM detection system had to be placed tilted with respect to the optical axis of the illumination system in order to avoid interference with the illumination system and illumination light flux.
  • the TTM detection system In order to align the wafer with a TTM detection system that is tilted with respect to the optical axis of the illumination system, the TTM detection system has a Littrow arrangement and detects signals by capturing light diffracted at a Littrow angle. It was.
  • NA numerical aperture of the TTM detection system cannot be sufficiently increased due to the arrangement restriction, so that the detected light amount is small and the alignment accuracy is lowered.
  • an object of the present invention is to increase the numerical aperture of the TTM detection system and improve the alignment accuracy between the substrate and the mold.
  • An imprint apparatus is an imprint apparatus that transfers a pattern to an imprint material supplied to a substrate using a mold on which a pattern is formed, and includes a light receiving element and a mark formed on the substrate And a mark formed on the mold, and a detection system for guiding light reflected from the mark formed on the substrate and the mark formed on the mold to the light receiving element, and through the mold
  • a relay optical system that forms an image of light reflected from the mark formed on the substrate and the mark formed on the mold between the mold and the detection system, and illumination light that cures the imprint material
  • the objective is to improve the alignment accuracy between the substrate and the mold by increasing the numerical aperture of the TTM detection system.
  • FIG. 1 is a view showing an imprint apparatus 100 including a relay optical system. Each axis is determined as shown in the figure, where the height direction of the imprint apparatus 100 is the Z direction and the surface on which the substrate (wafer W) is disposed is the XY plane.
  • the imprint apparatus 100 includes an illumination system 2 that irradiates ultraviolet rays 3 to cure an imprint resin, a mold holding unit (imprint head 4) that holds a mold (mold M), and a wafer W.
  • a substrate holding part (wafer stage 5) is provided.
  • the imprint apparatus 100 includes a supply unit 6 for supplying imprint resin to the substrate W, a TTM detection system 7 (through-the-mold detection system), and the control unit 1.
  • the TTM detection system 7 can align the mold M and the wafer W by detecting a mold alignment mark (not shown) formed on the mold M and a wafer alignment mark (not shown) formed on the wafer W.
  • the TTM detection system 7 irradiates the mold alignment mark and the wafer alignment mark with the measurement light 8 using a light source provided inside.
  • the measurement light 8 is mainly visible light or infrared light. Reflected light from the mold alignment mark and the wafer alignment mark passes through the TTM detection system 7 and is detected by a sensor 9 (light receiving element) for the TTM detection system.
  • a sensor 9 for detecting reflected light is composed of a photoelectric conversion element such as a CCD camera.
  • the relative positional relationship (X, Y, Z) between the mold M and the wafer W can be adjusted by adjusting the position and focus of the mold alignment mark and the wafer alignment mark.
  • the detection result of the TTM detection system 7 is output to the control unit 1, and the control unit 1 moves the imprint head 4 or the wafer stage 5 in the X and Y directions based on the detection result of the TTM detection system 7, so that the mold M or wafer
  • the position of W in the XY direction can be adjusted.
  • the illumination light source of the TTM detection system 7 it is desirable to use light having a broad wavelength except for the wavelength band of light (exposure light) used in the illumination system described later. That is, as the illumination light source of the TTM detection system 7, the wavelength of the non-exposure light that does not cure the imprint material supplied on the wafer alignment mark is desirable.
  • the pattern formed on the mold M is transferred by the imprint apparatus 100. An imprint operation for transferring a pattern will be described.
  • the imprint resin is supplied to the shot area where the pattern on the wafer W is to be transferred using the supply unit 6.
  • the wafer stage 5 moves so that the wafer W supplied with the imprint resin comes under the pattern portion formed on the mold M.
  • the pattern formed on the mold M and the imprint resin supplied to the wafer W are brought into contact with each other (a pressing process).
  • the imprint resin is hardened by irradiating the ultraviolet-ray 3 (curing light) from the illumination system 2 (curing process).
  • the imprint resin is cured, at least one of the imprint head 4 and the wafer stage 5 is moved to peel off the mold M and the imprint resin (mold release step). Then, the pattern formed on the mold M is transferred to the imprint resin.
  • the pattern can be transferred to all shots on the wafer W.
  • illumination light In the present embodiment, description will be made using ultraviolet rays as illumination light, but the wavelength of the illumination light can be appropriately determined according to the type of imprint resin supplied onto the substrate.
  • the TTM detection system 7 is arranged so as to avoid the illumination light beam of the illumination system 2 and the ultraviolet ray 3, and the numerical aperture (NA) of the TTM detection system 7 cannot be sufficiently increased. Since the TTM detection system 7 detects the alignment marks formed on the mold M and the wafer W at the same time, the TTM detection system 7 must be placed on the upper part of the mold M.
  • the numerical aperture (NA) is a value determined by the maximum angle ⁇ with respect to the optical axis of the TTM detection system among the rays incident on the TTM detection system 7.
  • the angle 10 in FIG. 1 indicates 2 ⁇ .
  • the NA of the TTM detection system 7 also depends on the size of the TTM detection system 7 itself. In the TTM detection system 7 arranged so as to avoid the illumination light flux of the illumination system 2 and the ultraviolet light 3, the TTM detection system 7 is It was not possible to increase the size, and the NA could not be increased. If the NA of the TTM detection system 7 cannot be made sufficiently large, the amount of light at the time of alignment becomes low, and the alignment accuracy decreases.
  • the relay optical system 11 is disposed on the upper part of the mold M.
  • a lens 12 and a beam splitter 13 optical element
  • the lens 12 can create a conjugate surface (wafer surface imaging surface 14) in which the wafer surface is imaged on the upper part of the mold M.
  • the relay optical system 11 has a function of forming an image on the wafer surface, and if the image is formed on the wafer surface, the magnification of the relay optical system 11 may be equal or an enlargement system.
  • the TTM detection system 7 is disposed above the relay optical system 11, and the measurement light 8 (uncured light) emitted from the TTM detection system 7 passes through the lens 12 and the beam splitter 13 in the relay optical system 11, The mold M and the wafer W are irradiated. Reflected light from the mold M and the wafer W passes through the TTM detection system 7 and is detected by the sensor 9 for the TTM detection system, and the mold M and the wafer W are aligned based on the detection signal.
  • the illumination system 2 only has to irradiate the imprint resin with the ultraviolet rays 3 after the mold M and the wafer W are pressed. It is desirable to irradiate the wafer 3 with the ultraviolet rays 3 irradiated from the illumination system 2 perpendicularly.
  • the illumination system 2 is arranged in a space with a sufficient margin in arrangement, avoiding crowding in the arrangement of the upper part of the mold M.
  • the ultraviolet rays 3 irradiated from the illumination system 2 are guided to the beam splitter 13 through the lens 15 for the illumination system, and then reflected by the beam splitter 13 and transmitted through the lens 12 in the relay optical system. Illuminate the imprint resin.
  • the beam splitter 13 is formed with a surface that transmits or reflects light having a specific wavelength. By arranging the beam splitter 13 in the relay optical system, both the TTM detection system 7 having a large NA and the illumination system 2 are arranged on the upper part of the mold M, and both the measurement light 8 and the illumination light from the illumination system 2 are arranged. Can enter perpendicularly to the wafer surface.
  • the optical path of the measurement light 8 and the optical path of the ultraviolet light 3 irradiated from the illumination system 2 are partially common, and the beam splitter 13 has a characteristic of transmitting the measurement light and reflecting the illumination light.
  • the relay optical system 11 is configured between the TTM detection system 7 and the mold M.
  • the relay optical system 11 is a telecentric optical system (the off-axis principal ray is parallel to the optical axis) that forms an image of the entire surface of the shot region with uncured light. Therefore, by changing the positions of the TTM detection system 7 and the sensor 9, it is possible to measure each point of a plurality of wafer alignment marks formed in the shot area.
  • the relay optical system 11 is a telecentric optical system, since the off-axis principal ray is parallel to the optical axis, the image height of the TTM detection system 7 can be easily changed.
  • FIG. 1 shows an example in which three points on the wafer W are imaged on the wafer surface imaging plane 14. By changing the positions of the TTM detection system 7 and the sensor 9, different alignment marks formed on the shot can be measured.
  • the refraction of the light beam in the beam splitter 13 is not shown, but actually, the beam other than the axial light beam of the relay optical system 11 incident perpendicularly to the beam splitter 13 is transmitted through the beam splitter 13. Shift slightly when you do.
  • the imprint apparatus 100 arranges the illumination system 2 and the TTM detection system 7 in the space above the mold M in terms of arrangement by arranging the relay optical system 11 including the beam splitter 13. Can do.
  • the TTM detection system 7 By arranging the TTM detection system 7 in a space with a sufficient margin, the TTM detection system 7 can be arranged even if it is enlarged, and the NA of the TTM detection system 7 can be increased.
  • the NA of the TTM detection system 7 By increasing the NA of the TTM detection system 7 that detects the alignment marks formed on the mold M and the wafer W, the amount of light incident on the TTM detection system increases, and the alignment accuracy can be improved.
  • the overlay accuracy between the mold and the wafer can be increased during pattern transfer of the mold, which can contribute to an improvement in device yield.
  • the beam splitter 13 transmits the measurement light 8 of the TTM detection system 7 and reflects the ultraviolet light 3 irradiated from the illumination system 2.
  • the characteristics of the beam splitter may be reversed. . That is, the beam splitter only needs to have a surface that transmits one of the illumination light and the measurement light 8 and reflects the other.
  • two prisms such as the beam splitter 13 of FIG. 1 and the beam splitter 16 of FIG. 2 may be bonded together, or a planar type such as a beam splitter 20 described later may be used. In either case, a surface that transmits or reflects light of a specific wavelength is formed.
  • FIG. 2 is a view showing an imprint apparatus 200 including a beam splitter 16 having a characteristic of reflecting the measurement light 8 of the TTM detection system 7 and transmitting the ultraviolet light 3 irradiated from the illumination system 2.
  • a beam splitter 16 having a characteristic of reflecting the measurement light 8 of the TTM detection system 7 and transmitting the ultraviolet light 3 irradiated from the illumination system 2.
  • the TTM detection system 7 and the illumination system 2 having a high NA capable of realizing high-precision alignment on the mold M.
  • the measurement light 8 emitted from the TTM detection system 7 is transmitted through the TTM detection system lens 17 and guided to the beam splitter 16, then reflected by the beam splitter 16, and transmitted through the lens 12 in the relay optical system 11. Then, the mold M and the wafer W are irradiated. Reflected light from the mold M and the wafer W passes through the TTM detection system 7 and is detected by the sensor 9 for the TTM detection system. The alignment of the mold M and the wafer W can be performed based on the detected signal.
  • a wafer surface imaging surface 14 on which the wafer surface is imaged is formed on the upper part of the mold M by the lens 12 and the TTM detection system lens 17 configured in the relay optical system 11.
  • the ultraviolet rays 3 irradiated from the illumination system 2 pass through the lens 12, the beam splitter 16, and the mold M provided in the relay optical system 11, and irradiate the imprint resin on the wafer W.
  • the imprint apparatus 100 of FIG. 1 and the imprint apparatus 200 of FIG. 2 the imprint apparatus provided with the beam splitter as the optical element for separating the light beam has been described, but the characteristics of the beam splitter are perfect reflection and perfect transmission. It is not necessary.
  • the beam splitter 16 may be a beam splitter that reflects 90% of the measurement light 8 from the TTM detection system 7 and transmits 10%, and transmits 90% of the illumination light from the illumination system 2 and reflects 10%.
  • the reflection / transmission ratio of the beam splitter is not 9: 1 but may be 8: 2 or 7: 3.
  • the TTM detection system 7 has been described as having a single system configuration for the sake of simplicity.
  • the TTM detection system 7 may have a plurality of systems. For example, by configuring two TTM detection systems 7, two different points on the same shot can be measured simultaneously, and alignment can be realized with high accuracy. For example, X measurement and Y measurement can be performed simultaneously, or the shot shape can be corrected by measuring two different points in the shot. If there are a plurality of systems, three systems or four systems may be used instead of two systems.
  • the beam splitter of the above-described imprint apparatus is arranged in the pupil space of the relay optical system 11 .
  • the beam splitter cannot be arranged in the pupil space. If the beam splitter is arranged not at the pupil space of the relay optical system 11 but at a position close to the object plane (image plane), aberration may occur. Aberration correction when the beam splitter is arranged at a position close to the mold M will be described.
  • FIG. 3 (A) shows a case where the parallel plate type beam splitter 20 is arranged in the pupil space.
  • the parallel plate type beam splitter 20 is disposed in the pupil space 21
  • all the on-axis rays pass through the beam splitter 20 in parallel, and all off-axis rays also pass in parallel. 20 is transmitted. At this time, astigmatism does not occur.
  • the beam splitter 20 may be arranged in a space in the convergent light beam. When the beam splitter 20 is disposed at a position close to the image plane 22, astigmatism and coma may occur.
  • FIG. 3B shows a state in which the parallel plate type beam splitter 20 is disposed in a telecentric space between the image plane 22 and the lens 23.
  • the generated astigmatism is the same between the on-axis light beam and the off-axis light beam.
  • FIG. 3B the case where the beam splitter 20 is disposed between the image plane 22 and the lens 23 has been described. However, the shorter the space is, the smaller the outer diameter of the lens 23 is. There is a case where a space for arranging 20 cannot be secured.
  • FIG. 3C shows a state in which the beam splitter 20 is disposed in a space (in the convergent light beam) where the light beam is converged between the lens 23 and the parallel plate 24.
  • the generated astigmatism is not only the on-axis and off-axis common components but also the astigmatism depending on the image height. appear.
  • FIG. 3 shows an example in which a plate-like optical member for correcting the aberration of the optical system is arranged and the aberration is reduced.
  • FIG. 4 is an enlarged view of the vicinity of the image plane 22 when the beam splitter 20 is arranged in the pupil space. The principle that astigmatism does not occur will be described in detail with reference to FIGS. 4 (A) and 4 (B).
  • FIG. 4 (A) is a diagram showing the imaging of on-axis rays (solid lines) and off-axis rays (dotted lines) on the ZY plane, where the direction parallel to the paper surface is the ZY plane.
  • FIG. 4B is a diagram showing the imaging of on-axis rays and off-axis rays on the ZX plane, where the direction parallel to the paper surface is the ZX plane.
  • 4A and 4B since the parallel plate type beam splitter 20 is arranged in the pupil space, all the axial rays are incident on the beam splitter 20 at the same angle. .
  • FIG. 4A since all the axial rays enter the beam splitter 20 at the same angle, they are shifted by the same amount on the parallel plate, and all the lights are combined into one point on the image plane 22. Image.
  • FIG. 5 is an enlarged view of the vicinity of the image plane 22 when the beam splitter 20 is disposed between the image plane 22 and the lens 23.
  • the principle of the occurrence of astigmatism and coma will be described in detail with reference to FIGS. 5 (A) and 5 (B).
  • FIG. 5 (A) is a diagram showing the imaging of on-axis rays (solid lines) and off-axis rays (dotted lines) on the ZY plane, where the direction parallel to the paper surface is the ZY plane.
  • FIG. 5B is a diagram showing the imaging of on-axis rays and off-axis rays on the ZX plane, where the direction parallel to the paper surface is the ZX plane.
  • 5A and 5B since the parallel plate type beam splitter 20 is disposed in the convergent light beam between the lens 23 and the image plane 22, all the light beams are parallel plate type. It is not incident on the beam splitter 20 at the same angle.
  • FIG. 5A it can be seen that the angles of the light rays incident on the beam splitter 20 are different.
  • FIG. 5A looking at the principal ray of the on-axis ray, in FIG. 5A, it is incident at an angle inclined by the inclination angle of the beam splitter 20, but in FIG. 5B, it is incident vertically. Since the angle of incidence on the beam splitter 20 is different between the ZX plane and the ZY plane in this way, the shift amount of the light beam is different, and in FIG. 5A and FIG. Has a shift amount in the Z direction.
  • the amount of deviation on the image plane 22 indicates an astigmatism amount 83 that is generated when the parallel plate type beam splitter 20 is arranged in the convergent light beam.
  • the distance between the lens 23 and the image plane 22 is a telecentric space, and the incident angle to the beam splitter 20 is the same for the on-axis rays and the off-axis rays. Also occurs off-axis.
  • the angle of incidence on the beam splitter 20 is different for each light ray, not all the light is focused on one point on the image plane 22 and has coma aberration. .
  • astigmatism and coma are generated by arranging the beam splitter 20 in the convergent light beam.
  • FIG. 6 is an enlarged view of the vicinity of the image plane 22 when the beam splitter 20 is disposed in the convergent light beam.
  • the principle of the occurrence of astigmatism and coma will be described in detail with reference to FIGS. 6A and 6C show the image on the ZY plane where the direction parallel to the paper surface is the ZY plane.
  • FIG. 6A shows a trace of an on-axis ray (solid line)
  • FIG. 6C shows a trace of an off-axis ray (dotted line).
  • FIG. 6B and FIG. 6D show the imaging on the ZX plane, where the direction parallel to the paper surface is the ZX plane.
  • FIG. 6B shows a trace of an on-axis ray (solid line)
  • FIG. 6D shows a trace of an off-axis ray (dotted line).
  • the parallel plate type beam splitter 20 is arranged in a convergent light beam. For this reason, not all light rays are incident on the beam splitter 20 at the same angle. 6A and 6B that the angle of the light beam incident on the beam splitter 20 is different. For example, looking at the principal ray of the on-axis ray, in FIG. 6A, it is incident at an angle inclined by the inclination angle of the beam splitter 20, but in FIG. 6B, it is incident vertically. . Since the angle of incidence on the parallel plate is different between the ZY plane and the ZX plane in this way, the shift amount of the light beam in the parallel plate type beam splitter 20 is different, and the light beam is different between FIGS. 6A and 6B. Each image plane 22 to be imaged has a shift amount in the Z direction.
  • the amount of deviation on the image plane 22 indicates the amount of astigmatism 84 generated when the parallel plate type beam splitter 20 is arranged in the convergent light beam.
  • the angle of incidence on the beam splitter 20 is different from the case of the on-axis rays in FIGS. 6 (A) and 6 (B).
  • an amount of astigmatism 85 different from the amount of astigmatism 84 generated on the axis is generated. Therefore, in the arrangement of the beam splitter 20 in FIG. 6, astigmatism depending on the image height is generated in addition to the astigmatism of the common component on and off the axis.
  • FIG. 7 is a view showing an imprint apparatus 300 including an astigmatism correction mechanism and a coma aberration correction mechanism.
  • the beam splitter 20 is arranged at a position close to the image plane.
  • the wafer surface (mold surface) will be described as an object surface
  • the wafer surface imaging surface 14 will be described as an image surface.
  • the ultraviolet light 3 irradiated from the illumination system 2 passes through the lens 30 for the illumination system, is reflected by the mirror 31 for bending the illumination system, and is guided to the parallel plate type beam splitter 20.
  • the light beam reflected by the parallel plate type beam splitter 20 passes through the lens 23 (object side lens) disposed on the mold side, passes through the mold M, and reaches the wafer W.
  • the measurement light 8 emitted from the TTM detection system 7 passes through a lens 26 (image side lens) arranged on the detection system side and parallel plates 27 and 28 used for coma aberration correction, and correction used for astigmatism correction. It reaches the optical system 25.
  • the light transmitted through the correction optical system 25 is transmitted through the parallel plate 24, the parallel plate beam splitter 20 and the lens 23 as a plate-like optical member used for astigmatism correction, and the mold M and the wafer W.
  • Illuminate. Reflected light from the mold M and the wafer W passes through the TTM detection system 7 and is detected by the sensor 9 for the TTM detection system, and the mold M and the wafer W are aligned based on the detection signal.
  • a relay optical system 29 is configured by lenses 26 and 23, parallel plates 27 and 28 for correcting coma aberration, a parallel plate 24 for correcting astigmatism, a correction optical system 25, and a parallel plate beam splitter 20. ing.
  • an imaging surface (wafer surface imaging surface 14) conjugate with the wafer surface is formed on the upper part of the mold M. It is known that when the plane parallel plate is tilted in the convergent light beam, astigmatism and coma occur as shown in FIGS. 5 (A) and 5 (B). In order to observe (image) the alignment mark through the relay optical system 29, it is necessary to correct astigmatism and coma generated by the parallel plate beam splitter 20.
  • a parallel plate 24 used for correcting astigmatism is provided in the relay optical system 29.
  • the parallel flat plate 24 used for astigmatism correction is disposed obliquely with respect to the ZX plane and has a role of canceling on-axis astigmatism generated by the parallel plate type beam splitter 20. Off-axis astigmatism that cannot be corrected by the parallel plate 24 used for correcting astigmatism is corrected by decentering the correction optical system 25 in the Y direction and the X direction.
  • FIG. 8 is an enlarged view of the beam splitter 20 and the parallel plate 24 used for astigmatism correction.
  • FIG. 8A shows the YZ plane
  • FIG. 8B shows the XZ plane.
  • a state in which the astigmatism on the axis generated by the parallel plate beam splitter 20 is canceled by the parallel plate 24 is shown.
  • the parallel plate 24 is characterized in that it is rotated by 90 degrees while maintaining the same inclination as the parallel plate type beam splitter 20.
  • the plane perpendicular to the optical axis of the relay optical system is considered as a reference. Since the beam splitter 20 is inclined in the Y-axis direction with respect to the plane perpendicular to the optical axis, the inclination direction is set to the Y direction. Similarly, since the parallel plate 24 is inclined in the X-axis direction with respect to the plane perpendicular to the optical axis, the inclination direction is set to the X direction. As described above, the tilt directions of the beam splitter 20 and the parallel plate 24 are different from each other. Further, the parallel plate 24 preferably has the same thickness and shape as the parallel plate type beam splitter 20.
  • axial astigmatism is generated by the parallel plate beam splitter 20 with respect to the XZ plane of FIG. 6B.
  • the parallel plate 24 for correcting astigmatism on the XZ plane as shown in FIG. 8B, the same amount of astigmatism as in FIG. 6A occurs on the XZ plane.
  • FIGS. 8A and 8B it can be seen that axial astigmatism does not occur in the YZ plane and the XZ plane.
  • FIG. 9A is a diagram showing astigmatism 40 generated when a parallel plate is arranged in a convergent light beam as in the imprint apparatus 300 of FIG.
  • the horizontal axis represents the incident angle of the principal ray on the parallel plate
  • the vertical axis represents the amount of astigmatism.
  • the incident angle of the chief ray on the parallel plate differs for each image height, and the incident light enters the parallel plate at the center image height at an incident angle 43. That is, astigmatism 44 occurs even at the center image height. If a large astigmatism occurs in the center image height, the TTM detection system 7 cannot measure the X direction and the Y direction at the center image height at the same time.
  • the large astigmatism 44 at the center image height is a component generated because the parallel plate type beam splitter 20 is disposed obliquely with respect to the ZY plane.
  • the astigmatism at the center image height can be corrected by arranging the parallel plate 24 used for correcting astigmatism obliquely with respect to the ZX plane. .
  • the correction method is as described with reference to FIG.
  • FIG. 9B is a diagram showing astigmatism 41 for each image height (each incident angle) corrected by arranging the parallel plate 24 used for astigmatism correction obliquely with respect to the ZX plane. is there. It can be seen that the astigmatism 44 of the common angle-of-view component can be corrected at each image height generated in FIG. However, as can be seen by comparing FIG. 6A and FIG. 6C, the astigmatism amount 84 and the astigmatism amount 85 differ in magnitude when the angle of incidence on the parallel plate beam splitter is different. .
  • the relay optical system 29 is a telecentric optical system, it is possible to simultaneously measure each point on the wafer shot by arranging a plurality of TTM detection systems 7.
  • astigmatism other than the central image height is not corrected, so measurement at different image heights other than the central image height, which is a feature of the present invention, is performed. I can't do it.
  • a range of image heights that can be measured by the TTM detection system 7 is indicated by a measured image height range 45 in FIG.
  • the astigmatism amount 46 is generated at maximum within the measurement image height range 45 only by correcting the astigmatism by putting the parallel plate 24 obliquely with respect to the ZX plane. In order to simultaneously measure the X direction and the Y direction at all image heights in the measurement image height range 45, it is desirable to correct the astigmatism amount 46 as much as possible.
  • the correction optical system 25 is used to correct astigmatism.
  • the astigmatism amount 46 is corrected by decentering the correction optical system 25 in the Y direction and the X direction. By decentering the convex lens and the concave lens constituting the correction optical system 25 as a group, the astigmatism amount 46 for each image height that cannot be corrected by the parallel plate 24 can be corrected.
  • FIG. 9C is a view showing astigmatism 42 generated at each image height (each incident angle) corrected by decentering the correction optical system 25 in the Y direction and the X direction. Correction is performed so that astigmatism hardly occurs at all image heights in the measurement image height range 45 as in the case of the center image height (incident angle 43). Since astigmatism is corrected at all image heights in the measurement image height range 45, it is possible to simultaneously measure different points on the wafer shot by the plurality of TTM detection systems 7.
  • a method for correcting coma aberration of the relay optical system 29 will be described.
  • a coma aberration correcting parallel plate 27 (first coma correcting optical member) having the same shape as the parallel plate type beam splitter 20 and an astigmatism correcting parallel plate 24 having the same shape as the coma aberration correction.
  • Parallel plate 28 (second frame correction optical member) is disposed. The coma aberration of the relay optical system 29 is reduced by arranging the parallel plates 27 and 28.
  • the parallel plate 27 for correcting coma aberration is arranged so as to be rotationally symmetric with the beam splitter 20 with the X axis as the rotation axis, with the pupil space of the relay optical system 29 as the center, based on the ZY plane.
  • the coma aberration correcting parallel plate 28 is arranged so as to be rotationally symmetric with respect to the parallel plate 24 around the pupil space of the relay optical system 29 with the Y axis as the rotation axis on the ZX plane basis.
  • the coma aberration correcting parallel plates 27 and 28 are rotationally symmetric with respect to the center of the pupil space with respect to the parallel plate beam splitter 20 and the astigmatism correcting parallel plate 24. By disposing, the occurrence of coma aberration in the relay optical system 29 can be reduced.
  • FIG. 10 is a diagram showing the generation of coma aberration due to the eccentricity of the correction optical system 25 and the correction method thereof.
  • FIG. 10A is a diagram showing the state of the optical system before correcting astigmatism
  • FIG. 11A is a diagram showing the state of astigmatism and coma at this time.
  • astigmatism occurs for each image height.
  • the principal axis 50 of the lens 23 passes through the centers of the correction optical system 25 and the lens 26 and the optical system is rotationally symmetric with respect to the center of the pupil space of the relay optical system, the optical system of FIG. It can be seen that no coma occurs.
  • FIG. 10B shows a state in which the correction optical system 25 is decentered in the Y direction.
  • FIG. 11B shows the state of astigmatism and coma at this time.
  • FIG. 10C is a diagram showing a state in which the correction optical system 25 is decentered and at the same time the lens 26 is decentered.
  • FIG. 11C shows the state of astigmatism and coma at this time.
  • the main axis 53 of the lens 26 is decentered in the Y direction from the main axis 51 of the correction optical system 25 by the decentering amount 52, and is the same as the decentering amount that the main axis 51 of the correction optical system 25 is decentered from the main axis 50 of the lens 23.
  • the correction optical system 25 is decentered and the lens 26 is also decentered, whereby the occurrence of coma aberration in the relay optical system can be reduced (FIG. 11C).
  • FIG. 10 shows the lenses 26 and 23 and the correction optical system 25 in the relay optical system 29 for the sake of simplicity, but coma aberration can be corrected in the same manner even if there is a beam splitter or a parallel plate.
  • the lens 26 may be similarly decentered in the X direction even when the correction optical system 25 is decentered in the X direction.
  • the correction of coma aberration is shown when the relay optical system 29 has the same magnification.
  • the coma aberration can be corrected even when the relay optical system 29 has a magnification other than the same.
  • an imprint apparatus that is an optical system in which the relay optical system 29 has a magnification of 2 will be described.
  • Astigmatism correction of the relay optical system 29 having a magnification of 2 is performed using a parallel plate 24 for correcting astigmatism and the correction optical system 25 as in FIG.
  • the coma aberration correction of the relay optical system 29 with a magnification of 2 cannot be corrected by simply arranging the astigmatism correction parallel plate in rotational symmetry with respect to the center of the pupil space as described above.
  • a parallel plate having a thickness different from that of the parallel plate used in the relay optical system of the same magnification is used for the parallel plates 27 and 28 for correcting coma aberration.
  • the thickness of the parallel plate 27 for correcting coma aberration is twice that of the parallel plate-type beam splitter 20, and the thickness of the parallel plate 28 for correcting coma aberration is twice that of the parallel plate 24 for correcting astigmatism. It is.
  • Table 1 shows the relationship between the magnification of the relay optical system and the thickness and angle (inclination angle) of the object side (wafer side) parallel flat plates (20, 24) and the image side parallel flat plates (27, 28).
  • the magnification of the relay optical system is doubled, the thickness of the parallel plate on the image side is doubled on the object side.
  • the coma aberration can also be corrected by doubling the angle at which the parallel plates are arranged.
  • the parallel plate of the relay optical system of equal magnification is arranged at 30 degrees, coma can be corrected by arranging the angle at 60 degrees with the angle doubled.
  • magnification of the relay optical system is 2.
  • astigmatism and coma aberration can be similarly corrected for relay optical systems having other magnifications. What is necessary is just to set the thickness and angle of a parallel plate according to the magnification of a relay optical system.
  • the telecentric relay optical system is used.
  • the present invention can also be applied to a non-telecentric relay optical system.
  • the relay optical system is non-telecentric, on-axis astigmatism and off-axis astigmatism cannot be corrected simultaneously, but one of the astigmatism can be corrected.
  • the XY mark can be simultaneously measured on the axis, and if the astigmatism off the axis is corrected, the XY mark can be simultaneously measured off the axis.
  • the beam splitter 20 transmits the measurement light 8 of the TTM detection system 7 and reflects the ultraviolet light 3 irradiated from the illumination system 2.
  • the present invention is also applied to an imprint apparatus including a beam splitter 16 having a characteristic of reflecting the measurement light 8 of the TTM detection system 7 and transmitting the ultraviolet light 3 irradiated from the illumination system 2. I can do it.
  • the relative position between the mold and the wafer can be detected with high accuracy, and alignment with the underlying pattern can be performed with high accuracy when the mold is imprinted. Therefore, it can contribute to the improvement of device yield.
  • a method for manufacturing a device (semiconductor integrated circuit element, liquid crystal display element, etc.) as an article includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Furthermore, the manufacturing method may include a step of etching the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching.
  • the article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
  • ⁇ It is suitable for use in a microfabrication technology that transfers a fine structure formed in a mold to a non-working member such as an imprint resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lenses (AREA)

Abstract

 本発明はTTM検出系の開口数を上げて、基板と型のアライメント精度を向上させることを目的とする。 本発明のインプリント装置は、パターンが形成された型を用いて、基板に供給されたインプリント材に前記パターンを転写するインプリント装置であって、受光素子と、前記基板に形成されたマークと前記型に形成されたマークとに光を照射し、前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記受光素子に導く検出系と、前記型を介して前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記型と前記検出系との間で結像させるリレー光学系と、前記インプリント材を硬化させる照明光を照明する照明系と、前記照明系および前記検出系からの光のどちらか一方を透過させ、他方を反射する面を有する光学素子と、前記リレー光学系の収差を補正する板状の光学部材と、を備え、前記光学部材はリレー光学系内に配置され、前記光学部材の傾き方向と、前記光学素子の面の傾き方向とは、互いに異なることを特徴とする。

Description

インプリント装置及びデバイス製造方法
 本発明は、型に形成されたパターンを基板上のインプリント材に転写するインプリント装置における光学系の非点収差補正に関する。
 半導体デバイスの微細化要求が進み、従来のフォトリソグラフィ技術以外に、モールドに形成されたパターンと基板上に供給されたインプリント材とを接触させる(押印する)ことでパターンを形成するインプリント技術が注目を集めている。
 このインプリント技術の一例として、光インプリント方式について説明する。まず、基板(例えば半導体ウエハ)上に光硬化樹脂(以下、インプリント樹脂)からなる層を形成する。次にインプリント樹脂と所望の微細な凹凸構造(パターン)が形成されたモールドとを接触させる。次にインプリント樹脂とモールドを接触させたまま、紫外線を照射することでインプリント樹脂を硬化させる。これによりモールドに形成されたパターンをインプリント樹脂に転写することができる。
 インプリント装置では、モールドとインプリント樹脂とを接触させる前に、ショット毎にアライメントを行う。インプリント装置のアライメントではモールドとウエハに形成されたマークを同時に検出してアライメントできるスルー・ザ・モールド検出系(以下、TTM検出系)を使っていた。特許文献1には、モールドの上部からモールドを透過して紫外線を樹脂層に照射するための照明系がモールドの上部に配置されており、照明系を避けるようにTTM検出系が配置されているインプリント装置が記載されている。
特開2005-286062号公報
 TTM検出系は、照明系や照明光束との干渉を避けるために、照明系の光軸に対して傾けて配置せざるを得なかった。照明系の光軸に対して傾けて配置されたTTM検出系でウエハをアライメントする為に、TTM検出系はリトロー配置となっており、リトロー角で回折した光を取り込む事で信号を検出していた。しかし、リトロー配置されたTTM検出系では、配置上の制約からTTM検出系の開口数(以下、NA)も十分に上げることができない為、検出光量が少なくアライメント精度が低下してしまう。
 そこで、本発明はTTM検出系の開口数を上げて、基板と型のアライメント精度を向上させることを目的とする。
 本発明のインプリント装置は、パターンが形成された型を用いて、基板に供給されたインプリント材に前記パターンを転写するインプリント装置であって、受光素子と、前記基板に形成されたマークと前記型に形成されたマークとに光を照射し、前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記受光素子に導く検出系と、前記型を介して前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記型と前記検出系との間で結像させるリレー光学系と、前記インプリント材を硬化させる照明光を照明する照明系と、前記照明光および前記検出系からの光のどちらか一方を透過させ、他方を反射する面を有する光学素子と、前記リレー光学系の収差を補正する板状の光学部材と、を備え、前記光学部材はリレー光学系内に配置され、前記光学部材の傾き方向と、前記光学素子の面の傾き方向とは、互いに異なることを特徴とする。
 TTM検出系の開口数を上げて、基板と型のアライメント精度を向上させることを目的とする。
リレー光学系を有するインプリント装置を示す図である。 リレー光学系を有するインプリント装置を示す図である。 リレー光学系に平行平板型のビームスプリッタが配置され、収差が補正された光学系の状態を示す図である。 瞳空間に配置された平行平板の像面近傍の拡大図である。 収束光束中に配置された平行平板の像面近傍の拡大図である。 ビームスプリッタによって発生する非点収差を示す図である。 収差補正機構を備えたインプリント装置を示す図である。 平行平板によって非点収差の補正を示す図である。 入射角度に対する非点収差を示す図である。 補正光学系とレンズを用いたコマ収差の補正を示す図である。 補正光学系を偏心させたときの非点収差とコマ収差を示す図である。
 以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
 [第1実施形態]
 図1を用いてインプリント装置について説明する。図1はリレー光学系を備えるインプリント装置100を示した図である。インプリント装置100の高さ方向をZ方向、基板(ウエハW)が配置されている面をXY面として、図に示したように各軸を決める。
 インプリント装置100は図1に示すように、インプリント樹脂を硬化させるために紫外線3を照射する照明系2と、型(モールドM)を保持する型保持部(インプリントヘッド4)とウエハWを保持する基板保持部(ウエハステージ5)を備える。さらにインプリント装置100は、インプリント樹脂を基板Wに供給するための供給部6と、TTM検出系7(スルー・ザ・モールド検出系)と、制御部1を備える。
 TTM検出系7は、モールドMに形成されたモールドアライメントマーク(不図示)とウエハWに形成されたウエハアライメントマーク(不図示)とを検出することで、モールドMとウエハWを位置合わせできる。TTM検出系7は、内部に設けられた光源を用いて、モールドアライメントマークとウエハアライメントマークに計測光8を照射する。計測光8としては、主に可視光や赤外線などである。モールドアライメントマークとウエハアライメントマークからの反射光は、TTM検出系7を通りTTM検出系用のセンサ9(受光素子)で検出される。反射光を検出する為のセンサ9はCCDカメラなどの光電変換素子からなる。
 モールドアライメントマークとウエハアライメントマークの位置・フォーカスを合わせることで、モールドMとウエハWの相対位置関係(X、Y、Z)を合わせることができる。TTM検出系7の検出結果は制御部1に出力され、制御部1はTTM検出系7の検出結果に基づいてインプリントヘッド4もしくはウエハステージ5をXY方向に移動することで、モールドMもしくはウエハWのXY方向における位置を調整することができる。
 TTM検出系7によるモールドMとウエハWの位置計測では、ウエハアライメントマークの上部に供給されたインプリント樹脂あるいは形成された透明層の為、単色光では干渉縞が発生してしまう。そのため、アライメントに用いる信号に干渉縞の信号が加算された状態で検出され、検出精度が低下する恐れがある。従って、TTM検出系7の照明光源としては、後述する照明系で用いる光(露光光)の波長の帯域を除いて、広帯域の波長の光を使用するのが望ましい。つまり、TTM検出系7の照明光源としては、ウエハアライメントマークの上部に供給されたインプリント材が硬化しない非露光光の波長が望ましい。
 インプリント装置100でモールドMに形成されたパターンの転写が行われる。パターンの転写を行うインプリント操作について説明する。
 まず、供給部6を用いてウエハW上のパターンを転写したいショット領域にインプリント樹脂を供給する。インプリント樹脂が供給されたウエハWがモールドMに形成されたパターン部の下に来るように、ウエハステージ5が移動する。モールドMとウエハWの位置合わせをした後、モールドMに形成されたパターンとウエハWに供給されたインプリント樹脂とを接触させる(押型工程)。そして、モールドMとインプリント樹脂とが接触した状態で、照明系2から紫外線3(硬化光)を照射することでインプリント樹脂を硬化させる(硬化工程)。インプリント樹脂が硬化した後、インプリントヘッド4とウエハステージ5との少なくとも一方を移動させ、モールドMとインプリント樹脂とを引き剥がす(離型工程)。すると、モールドMに形成されたパターンがインプリント樹脂に転写される。ウエハW上に複数配置されたショット領域に対して、このようなインプリント操作を繰り返すことにより、ウエハW上の全てのショットにパターンを転写することができる。
 本実施形態では、照明光として紫外線を用いて説明するが、照明光の波長は基板上に供給されるインプリント樹脂の種類に応じて適宜決めることができる。
 従来のインプリント装置では、TTM検出系7が照明系2と紫外線3の照明光束を避けるように配置されており、TTM検出系7の開口数(NA)を十分に上げる事が出来なかった。TTM検出系7は、モールドMとウエハWとに形成されたアライメントマークを同時に検出する為、モールドMの上部に配置せざるを得ない。ここで、開口数(NA)はTTM検出系7に入射する光線のうち、TTM検出系の光軸に対する最大角θによって決まる値である。図1の角度10は2θを示している。
 TTM検出系7のNAは、TTM検出系7自体の大きさにも依存しており、照明系2と紫外線3の照明光束を避けるように配置されたTTM検出系7では、TTM検出系7を大型化する事ができず、NAを大きくする事が出来なかった。TTM検出系7のNAを十分に大きくする事が出来なければ、アライメント時の光量が低くなり、アライメント精度が低下する。
 図1のインプリント装置100には、モールドMの上部にリレー光学系11を配置している。リレー光学系11内には、レンズ12とビームスプリッタ13(光学素子)を備えている。レンズ12は、モールドMの上部にウエハ面が結像されている共役面(ウエハ面結像面14)を作り出す事ができる。リレー光学系11はウエハ面を結像させる機能を有しており、ウエハ面を結像させればリレー光学系11の倍率は等倍であっても、拡大系であっても良い。
 TTM検出系7はリレー光学系11の上部に配置されており、TTM検出系7から照射された計測光8(非硬化光)はリレー光学系11内のレンズ12とビームスプリッタ13を透過し、モールドMとウエハWを照射する。モールドMとウエハWからの反射光はTTM検出系7を通りTTM検出系用のセンサ9で検出され、その検出信号をもとにモールドMとウエハWの位置合わせを行う。
 インプリント装置100では照明系2は、モールドMとウエハWの押型後にインプリント樹脂に紫外線3を照射すれば良いだけである。照明系2から照射された紫外線3はウエハWに対して垂直に照射する事が望ましい。照明系2は、TTM検出系7と同じく、モールドMの上部の配置上の混みあいを避けて、配置上余裕のあるスペースに配置されている。
 照明系2から照射された紫外線3は照明系用のレンズ15を通ってビームスプリッタ13まで導光された後、ビームスプリッタ13で反射しリレー光学系内のレンズ12を透過し、ウエハW上のインプリント樹脂を照明する。ビームスプリッタ13には特定の波長の光を透過又は反射させる面が形成されている。ビームスプリッタ13をリレー光学系に配置することで、モールドMの上部にNAの大きいTTM検出系7と照明系2との両方を配置し、計測光8と照明系2からの照明光との両方をウエハ面に対して垂直に入射できる。計測光8の光路と照明系2から照射される紫外線3の光路とは部分的に共通であり、ビームスプリッタ13は計測光を透過させ、照明光を反射する特性を有する。
 リレー光学系11はTTM検出系7とモールドMの間に構成されている。リレー光学系11は非硬化光でショット領域の全面を結像しているテレセントリック光学系(軸外主光線が光軸に平行)である。そのため、TTM検出系7とセンサ9との位置を変えることで、ショット領域に形成された複数のウエハアライメントマークの各点を計測する事が可能となる。リレー光学系11がテレセントリック光学系だと、軸外主光線が光軸に対して平行である為、TTM検出系7の像高の変更が容易になる。
 図1では、ウエハW上の3点がウエハ面結像面14に結像している例を示している。TTM検出系7とセンサ9との位置を変える事で、ショットに形成された異なるアライメントマークを計測できる。図1では簡単の為、ビームスプリッタ13内での光線の屈折を図示していないが、実際にはビームスプリッタ13に垂直に入射するリレー光学系11の軸上光線以外は、ビームスプリッタ13を透過する時にわずかながらシフトする。
 このように、インプリント装置100はビームスプリッタ13を備えたリレー光学系11を配置することで、モールドMの上部の配置上余裕のあるスペースに照明系2とTTM検出系7とを配置することができる。配置上余裕のあるスペースにTTM検出系7を配置する事により、TTM検出系7は大型化しても配置可能となり、TTM検出系7のNAを上げる事ができる。モールドMとウエハWに形成されたアライメントマークを検出するTTM検出系7のNAを上げる事で、TTM検出系に入射する光量が増え、アライメント精度を向上させることが出来る。また、モールドのパターン転写時にモールドとウエハとの重ね合わせ精度を上げる事ができ、デバイスの歩留まり向上に貢献できる。
 図1の説明では、ビームスプリッタ13がTTM検出系7の計測光8を透過し、照明系2から照射される紫外線3を反射する特性であるとしたが、このビームスプリッタの特性は逆でも良い。つまり、ビームスプリッタは、照明光および計測光8のどちらか一方を透過させ、他方を反射する面があればよい。ビームスプリッタとしては、図1のビームスプリッタ13や図2のビームスプリッタ16のようなプリズムを2つ貼り合わせた形状としても良いし、後述するビームスプリッタ20のような平面型を用いても良い。いずれの場合も、特定の波長の光を透過又は反射させる面が形成されている。
 図2は、TTM検出系7の計測光8を反射し、照明系2から照射される紫外線3を透過する特性を持ったビームスプリッタ16を備えたインプリント装置200を示した図である。図1と同じく、高い精度のアライメントを実現できるNAの高いTTM検出系7と照明系2をモールドM上に配置する事が可能となる。
 TTM検出系7から照射された計測光8は、TTM検出系用のレンズ17を透過しビームスプリッタ16まで導光された後、ビームスプリッタ16で反射し、リレー光学系11内のレンズ12を透過し、モールドMとウエハWを照射する。モールドMとウエハWからの反射光はTTM検出系7を通りTTM検出系用のセンサ9で検出される。検出された信号をもとにモールドMとウエハWの位置合わせを行うことが出来る。リレー光学系11内に構成されたレンズ12とTTM検出系用のレンズ17によって、ウエハ面が結像されているウエハ面結像面14がモールドMの上部に形成される。
 照明系2から照射された紫外線3はリレー光学系11内に備えられたレンズ12、ビームスプリッタ16、モールドMを透過し、ウエハW上のインプリント樹脂を照射する。
 図1のインプリント装置100や図2のインプリント装置200では、光束を分離する光学素子としてビームスプリッタを備えているインプリント装置について説明したが、このビームスプリッタの特性は完全反射や完全透過でなくても良い。例えば、ビームスプリッタ16はTTM検出系7からの計測光8を90%反射し10%は透過し、照明系2からの照明光を90%透過し10%反射する特性のビームスプリッタでも良い。もちろん、このビームスプリッタの反射と透過の比は、9:1ではなく、8:2でも7:3などでも良い。
 図1や図2のインプリント装置の説明では、簡単の為にTTM検出系7は1系統の構成で説明した。しかし、TTM検出系7は複数系統の構成でも良い。例えば、TTM検出系7が2系統構成される事により、同一ショットの異なる2点を同時に計測する事ができ、高い精度でアライメントを実現する事ができる。例えば、X計測とY計測を同時にする事もできるし、ショット内の異なる2点を計測する事で、ショット形状を補正する事もできる。複数系統であれば、2系統でなくて3系統でも4系統でも良い。
 TTM検出系7が1系統でも、ウエハステージ5やTTM検出系7を移動させる事で、アライメントマークの複数個所を計測する事ができる。しかし、装置を移動させる為、アライメント精度が低下する恐れがある。以下、ダイバイダイを用いたアライメントについて説明するが、アライメント方法はグローバルアライメント方法を用いても良い。
 上述のインプリント装置のビームスプリッタは、リレー光学系11の瞳空間に配置した場合について説明してきた。しかし、リレー光学系11の構成上、瞳空間にビームスプリッタを配置できない場合がある。ビームスプリッタがリレー光学系11の瞳空間ではなく、物体面(像面)に近い位置に配置される場合は収差が発生する恐れがある。ビームスプリッタをモールドMに近い位置に配置した時の収差補正について説明する。
 図3(A)は、平行平板型のビームスプリッタ20が瞳空間に配置されている場合を示している。平行平板型のビームスプリッタ20が、瞳空間21に配置されている場合には、軸上光線の全ての光は平行にビームスプリッタ20を透過し、軸外光線の全ての光も平行にビームスプリッタ20を透過する。この時、非点収差は発生しない。
 しかし現実的には、結像収差補正の為に瞳空間21の近傍には図3(B)のように非点収差を補正する為のレンズ群(補正光学系25)を構成する必要がある。その為に、ビームスプリッタ20は収束光束中である空間に配置する場合がある。ビームスプリッタ20を像面22に近い位置に配置する場合には非点収差とコマ収差が発生する恐れがある。
 図3(B)は、平行平板型のビームスプリッタ20が、像面22とレンズ23の間のテレセントリック空間に配置された状態を示している。図3(B)では、軸上光線と軸外光線とが同じ角度で入射している為、発生する非点収差は軸上光線と軸外光線とで同じになる。図3(B)では、像面22とレンズ23の間にビームスプリッタ20を配置した場合について説明したが、この空間は短ければ短いほどレンズ23の外径を小さくできる為、この空間にビームスプリッタ20を配置するスペースを確保できない事がある。
 図3(C)は、ビームスプリッタ20がレンズ23と平行平板24との間で光束が収束している空間(収束光束中)に配置された状態を示している。図3(C)では、軸上光線と軸外光線が同じ角度で入射していない為、発生する非点収差は軸上と軸外の共通成分だけでなく、像高依存の非点収差も発生する。
 図3(A)~(C)ではビームスプリッタ20で光線は曲げられるが、簡単の為、ビームスプリッタ20による光線の屈折と図3(B)の補正光学系25での屈折は省略して示している。図3はいずれも、光学系の収差を補正する板状の光学部材が配置され、収差が低減されているものを示している。
 図4はビームスプリッタ20を瞳空間に配置した時の像面22付近を拡大した図である。図4(A)及び図4(B)を用いて非点収差が発生しない原理を詳しく説明する。
 図4(A)は紙面平行方向がZY平面であり、ZY平面での軸上光線(実線)と軸外光線(点線)の結像を示した図である。図4(B)は紙面平行方向がZX平面であり、ZX平面での軸上光線と軸外光線の結像を示した図である。図4(A)及び図4(B)共に、平行平板型のビームスプリッタ20が瞳空間に配置されている為に、軸上光線の全ての光線がビームスプリッタ20に同じ角度で入射している。図4(A)では、軸上光線の全ての光線が同じ角度でビームスプリッタ20に入射するので、平行平板で同じ量だけシフトする事になり、像面22では全ての光が1点に結像する。
 図4(B)では、軸上光線の全ての光線が同じ角度かつ垂直に入射する為に、ビームスプリッタ20で光線のシフトは起こらないが、像面22では図4(A)と同じZ位置に全ての光が1点に結像する事になる。このようにZX平面もZY平面も全ての光が同じZ位置に結像する為、平行平板型のビームスプリッタ20を瞳空間に配置した場合では、軸上では非点収差は発生しない事が分かる。また軸外についても同様の原理で非点収差は発生しない。また図4(A)・(B)共に、全ての光線が像面で1点に結像する為に、コマ収差が発生しない事も分かる。
 図5はビームスプリッタ20を像面22とレンズ23との間に配置した時の像面22付近を拡大した図である。図5(A)及び図5(B)を用いて非点収差とコマ収差が発生する原理を詳しく説明する。
 図5(A)は紙面平行方向がZY平面であり、ZY平面での軸上光線(実線)と軸外光線(点線)の結像を示した図である。図5(B)は紙面平行方向がZX平面であり、ZX平面での軸上光線と軸外光線の結像を示した図である。図5(A)及び図5(B)共に、平行平板型のビームスプリッタ20がレンズ23と像面22との間の収束光束中に配置されている為に、全ての光線が平行平板型のビームスプリッタ20に同じ角度で入射していない。
 図5(A)と図5(B)とを比較すると、ビームスプリッタ20に入射する光線の角度が異なっている事が分かる。まずは軸上光線の主光線について見てみると、図5(A)ではビームスプリッタ20の傾き角度分だけ傾いた角度で入射しているが、図5(B)では垂直に入射している。このようにビームスプリッタ20に入射する角度がZX平面とZY平面で異なる為に光線のシフト量が異なり、図5(A)と図5(B)とでは光線が結像するそれぞれの像面22がZ方向にズレ量を持つようになる。
 図5(A)と図5(B)での像面22におけるズレ量は、平行平板型のビームスプリッタ20が収束光束中に配置される事により発生する非点収差量83を示す。軸外光線については、レンズ23と像面22の間がテレセントリック空間となっており、ビームスプリッタ20に入射する角度が軸上光線と軸外光線では同じ為、軸上と同じ非点収差量83が軸外でも発生する。また図5(A)から分かるように、ビームスプリッタ20に入射する角度が光線ごとに異なる為に、像面22では全ての光が1点に結像せずに、コマ収差を持つようになる。このように、収束光束中にビームスプリッタ20を配置する事で、非点収差とコマ収差が発生する。
 図6はビームスプリッタ20を収束光束中に配置した時の像面22付近を拡大した図である。図6(A)~(D)を用いて非点収差とコマ収差が発生する原理を詳しく説明する。図6(A)及び図6(C)は紙面平行方向がZY平面でありZY平面での結像を示している。図6(A)は軸上光線(実線)、図6(C)は軸外光線(点線)のトレースを示した図である。図6(B)及び図6(D)は紙面平行方向がZX平面であり、ZX平面での結像を示している。図6(B)は軸上光線(実線)、図6(D)は軸外光線(点線)のトレースを示した図である。
 図6では、平行平板型のビームスプリッタ20は収束光束中に配置されている。そのため、全ての光線がビームスプリッタ20に同じ角度で入射していない。また図6(A)と図6(B)とでは、ビームスプリッタ20に入射する光線の角度が異なっている事が分かる。例えば、軸上光線の主光線について見てみると、図6(A)ではビームスプリッタ20の傾き角度分だけ傾いた角度で入射しているが、図6(B)では垂直に入射している。このように平行平板に入射する角度がZY平面とZX平面で異なる為に平行平板型のビームスプリッタ20での光線のシフト量が異なり、図6(A)と図6(B)とでは光線が結像するそれぞれの像面22がZ方向にズレ量を持つようになる。
 図6(A)と図6(B)での像面22におけるズレ量は、平行平板型のビームスプリッタ20が収束光束中に配置されることにより発生する非点収差量84を示す。軸外光線については、図6(C)と図6(D)から分かるように、ビームスプリッタ20に入射する角度が図6(A)と図6(B)の軸上光線の場合と異なっており、軸上で発生していた非点収差量84とは異なる量の非点収差量85が発生する。よって図6のビームスプリッタ20の配置では、軸上・軸外で共通成分の非点収差以外に、像高依存の非点収差も発生する事になる。また図6(A)から分かるように、平行平板に入射する角度が光線ごとに異なる為に、像面では全ての光が1点に結像せずに、コマ収差を持つようになる。このように、収束光束中に平行平板型のビームスプリッタ20を配置する事で、非点収差とコマ収差が発生する。
 図7は、非点収差補正機構とコマ収差補正機構を備えたインプリント装置300を示した図である。図7ではビームスプリッタ20が像面に近い位置に配置されている。ここでは、ウエハ面(モールド面)を物体面とし、ウエハ面結像面14を像面として説明する。
 照明系2から照射された紫外線3は照明系用のレンズ30を通って照明系折り曲げ用のミラー31で反射され、平行平板型のビームスプリッタ20に導光される。平行平板型のビームスプリッタ20で反射した光線は、型側に配置されたレンズ23(物体側レンズ)を透過し、モールドMを透過し、ウエハW上に到達する。
 TTM検出系7から照射された計測光8は、検出系側に配置されたレンズ26(像側レンズ)とコマ収差補正に用いる平行平板27、28を透過して、非点収差補正に用いる補正光学系25に到達する。補正光学系25を透過した光は、非点収差補正に用いる板状の光学部材としての平行平板24と、平行平板型のビームスプリッタ20と、レンズ23とを透過して、モールドMとウエハWを照明する。モールドMとウエハWからの反射光はTTM検出系7を通りTTM検出系用のセンサ9で検出され、その検出信号をもとにモールドMとウエハWの位置合わせを行う。
 図7では、レンズ26、23とコマ収差補正用の平行平板27、28と非点収差補正用の平行平板24と補正光学系25と平行平板型のビームスプリッタ20でリレー光学系29が構成されている。
 リレー光学系29によって、ウエハ面と共役な結像面(ウエハ面結像面14)がモールドMの上部に形成される。収束光束中に平行平面板を傾けて構成すると、図5(A)および図5(B)で示したように非点収差やコマ収差が発生する事が知られている。リレー光学系29を通してアライメントマークを観察(撮像)する為には、平行平板型のビームスプリッタ20で発生した非点収差とコマ収差を補正する必要がある。
 平行平板型のビームスプリッタ20で発生する非点収差を補正する為に、非点収差補正に用いる平行平板24がリレー光学系29内に構成されている。非点収差補正に用いる平行平板24は、ZX平面に対して斜めに配置されており、平行平板型のビームスプリッタ20で発生する軸上の非点収差を打ち消す役割を備えている。非点収差補正に用いる平行平板24で補正しきれない、軸外の非点収差については補正光学系25をY方向およびX方向に偏心させる事で補正する。
 図8および図9を用いて平行平板24と補正光学系25とによる、非点収差の補正手法について説明する。前述の図6(A)~(D)の説明により、平行平板への入射角度の違いにより像高依存の非点収差が発生する事が分かった。
 図8はビームスプリッタ20と非点収差補正に用いる平行平板24とを拡大した図である。図8(A)はYZ平面を示し、図8(B)はXZ平面を示している。平行平板24により、平行平板型のビームスプリッタ20で発生する軸上の非点収差が打ち消される状態を示している。ここで、平行平板24は、平行平板型のビームスプリッタ20と同じ傾きを保ったまま、90度回転して配置されていることに特徴がある。
 ここでは、リレー光学系の光軸に対して垂直な面を基準に考える。ビームスプリッタ20は光軸に垂直な面に対してY軸の方向に傾いているので、傾き方向はY方向とする。同様に、平行平板24は光軸に垂直な面に対してX軸の方向に傾いているので、傾き方向はX方向とする。このようにビームスプリッタ20と平行平板24の傾き方向は互いに異なる。また、平行平板24は平行平板型のビームスプリッタ20と同じ厚み・形状であることが望ましい。
 図6(A)のYZ平面では、平行平板型のビームスプリッタ20によって図6(B)のXZ平面に対して軸上の非点収差が発生している。図8(B)のようにXZ平面に非点収差補正用の平行平板24を配置する事によって、図6(A)と同量の非点収差がXZ平面でも発生する。図8(A)及び(B)に示すように、YZ平面とXZ平面で軸上の非点収差が発生しなくなっている事が分かる。
 図9(A)は図7のインプリント装置300のような、収束光束中に平行平板を配置した時に発生する非点収差40を示した図である。図9はいずれも横軸は平行平板への主光線の入射角度を示し、縦軸は非点収差量を示している。平行平板への主光線の入射角度は像高毎に異なっており、中心像高での平行平板へは入射角度43で入射する。つまり中心像高であっても非点収差44が発生している事になる。中心像高に大きな非点収差が発生していると、TTM検出系7は中心像高でX方向とY方向を同時に計測する事ができない。この中心像高(入射角度43)での大きな非点収差44は、平行平板型のビームスプリッタ20がZY平面に対して斜めに配置されている為に生じる成分である。
 そこで、この大きな非点収差44を補正する為に、非点収差補正に用いる平行平板24をZX平面に対して斜めに配置する事で、中心像高での非点収差を補正する事ができる。補正の方法は上述の図8を用いて説明した通りである。
 図9(B)は、非点収差補正に用いる平行平板24をZX平面に対して斜めに配置する事で補正された、像高毎(入射角度毎)の非点収差41を示した図である。図9(A)で生じていた各像高で画角共通成分の非点収差44を補正する事ができていることが分かる。しかし、図6(A)と図6(C)を比較すると分かるように、平行平板型のビームスプリッタに入射する角度が異なると、非点収差量84と非点収差量85の大きさは異なる。
 本実施形態では、リレー光学系29はテレセントリック光学系な為、複数のTTM検出系7を配置する事で、ウエハショットの各点を同時に計測する事が可能となる。しかし、図9(B)の状態では、中心像高(入射角度43)以外での非点収差が補正されていない為、本発明の特徴である中心像高以外の異なる像高での計測を行う事ができない。TTM検出系7が計測できる像高の範囲を図9(B)の計測像高レンジ45で示す。平行平板24をZX平面に対して斜めに入れて非点収差を補正しただけでは、計測像高レンジ45内で最大で非点収差量46が生じる事が分かる。計測像高レンジ45内の全ての像高でX方向とY方向を同時に計測するには、非点収差量46をできるだけ補正することが望まれる。
 そこで、非点収差を補正するために補正光学系25を用いる。補正光学系25をY方向およびX方向に偏心させる事で、非点収差量46を補正する。補正光学系25を構成する凸レンズと凹レンズを群として偏心させる事で、平行平板24では補正しきれない、像高毎の非点収差量46を補正する事が可能となる。
 図9(C)は補正光学系25をY方向およびX方向に偏心させる事で補正された、各像高毎(入射角度毎)に発生する非点収差42を示した図である。計測像高レンジ45内の全ての像高において、中心像高(入射角度43)のように非点収差がほとんど発生しないように補正する。計測像高レンジ45内の全ての像高で非点収差が補正されている事から、複数のTTM検出系7でウエハショットの異なる点を同時に計測する事が可能となる。
 次に、リレー光学系29のコマ収差を補正する手法について説明する。本実施形態では、平行平板型のビームスプリッタ20と同形状のコマ収差補正用の平行平板27(第1コマ補正光学部材)と、非点収差補正用の平行平板24と同形状のコマ収差補正用の平行平板28(第2コマ補正光学部材)とを配置する。平行平板27、28を配置することでリレー光学系29のコマ収差を低減する。
 コマ収差補正用の平行平板27はZY平面基準で、リレー光学系29の瞳空間を中心とし、X軸を回転軸としてビームスプリッタ20と回転対称になるように配置されている。またコマ収差補正用の平行平板28はZX平面基準で、リレー光学系29の瞳空間を中心とし、Y軸を回転軸として平行平板24と回転対称になるように配置されている。このように、平行平板型のビームスプリッタ20と非点収差補正用の平行平板24とに対して、コマ収差補正用の平行平板27、28を瞳空間の中心に対して回転対称になるように配置する事で、リレー光学系29でのコマ収差の発生を低減する事ができる。
 一方、上述までの説明で、リレー光学系29の非点収差は計測像高全てに対して補正する為に、補正光学系25をY方向およびX方向に偏心させる必要があった。しかし、補正光学系25を偏心させると、リレー光学系29の瞳空間の中心に対して回転対称でなくなるため、コマ収差が発生すると言う問題がある。リレー光学系にコマ収差が発生すると、TTM検出系がアライメント計測する際の誤差成分となり、計測精度が低下する恐れがある。そこで、本実施形態では補正光学系25を偏心させる時に、リレー光学系を構成するレンズを偏心させる事で、コマ収差の影響を低減させる。
 図10は、補正光学系25の偏心によるコマ収差の発生とその補正手法について示した図である。図10(A)は、非点収差を補正する前の光学系の状態を示した図であり、図11(A)はこのときの非点収差とコマ収差の状態を示した図である。図11(A)を見ると像高毎に非点収差が発生していることが分かる。しかし、レンズ23の主軸50は補正光学系25、レンズ26の中心を通っており、リレー光学系の瞳空間の中心に対して光学系が回転対称である為、図10(A)の光学系ではコマ収差は発生しないことがわかる。
 図10(A)で発生している非点収差を補正する為に、補正光学系25はY方向およびX方向に偏心させる必要がある。図10(B)では、補正光学系25をY方向に偏心させた状態を示した図を示している。図11(B)はこのときの非点収差とコマ収差の状態を示した図である。補正光学系25を偏心させることで、図11(A)で発生していた像高毎の非点収差を補正することができる。しかし、補正光学系25を偏心させた為に、補正光学系25の主軸51と、レンズ23、26の主軸50が一致しなくなっている事が分かる。補正光学系25の主軸51はレンズ23の主軸50に対して偏心量52だけ偏心している。図10(B)の光学系は瞳空間の中心に対して回転対称ではない為に、コマ収差が発生する。
 図10(C)は、補正光学系25を偏心させると同時に、レンズ26を偏心させた状態を示した図である。図11(C)はこのときの非点収差とコマ収差の状態を示した図である。レンズ26の主軸53は補正光学系25の主軸51から偏心量52だけY方向に偏心しており、補正光学系25の主軸51がレンズ23の主軸50から偏心している偏心量と同じである。図10(C)のように、補正光学系25を偏心させると同時にレンズ26も偏心させる事で、リレー光学系のコマ収差の発生を低減させることが出来る(図11(C))。
 図10では簡単の為に、リレー光学系29内のレンズ26、23と補正光学系25とを図示したが、ビームスプリッタや平行平板があっても同じようにコマ収差を補正できる。また、ここではY方向に偏心させた例を示したが、X方向に補正光学系25を偏心させた場合でも同様にレンズ26をX方向に偏心させればよい。
 上述の説明では、リレー光学系29が等倍の場合についてコマ収差の補正を示しているが、リレー光学系29が等倍以外の場合であってもコマ収差を補正する事ができる。ここでは、リレー光学系29の倍率が2倍の光学系であるインプリント装置について説明する。倍率が2倍のリレー光学系29の非点収差補正については、図7と同様に非点収差補正用の平行平板24と補正光学系25を用いる。倍率が2倍のリレー光学系29のコマ収差補正については、上述のように非点収差補正用の平行平板を瞳空間の中心に対して回転対称に配置するだけでは補正する事はできない。
 そこで、コマ収差補正用の平行平板27、28には、等倍のリレー光学系で用いた平行平板とは厚みの異なる平行平板が用いられる。ここでは、コマ収差補正用の平行平板27の厚みは平行平板型のビームスプリッタ20の2倍であり、コマ収差補正用の平行平板28の厚みは非点収差補正用の平行平板24の2倍である。
 表1にリレー光学系の倍率と物体側(ウエハ側)平行平板(20、24)と像側の平行平板(27、28)の厚みと角度(傾斜角度)の関係を示す。リレー光学系の倍率が2倍になると、像側の平行平板の厚みを物体側の2倍とする。また、平行平板を配置する角度を2倍とする事でも、コマ収差を補正する事ができる。等倍のリレー光学系の平行平板を30度で配置した場合は、角度を2倍として60度で配置することでコマ収差を補正することができる。なお、倍率が2倍のリレー光学系も、補正光学系25を偏心させる際に発生するコマ収差は、等倍の時と同様にレンズ23、26を偏心させる事で補正する事が可能である。この時のレンズの偏心量は、等倍の時と違って補正光学系25とは同じにはならない。
Figure JPOXMLDOC01-appb-T000001
 またここでは、リレー光学系の倍率が2倍の場合について説明したが、他の倍率のリレー光学系に対しても同様に非点収差とコマ収差とを補正することができる。リレー光学系の倍率に応じて平行平板の厚みや角度を設定すればよい。
 また上述の説明では、テレセントリックなリレー光学系を用いて説明したが、本発明は非テレセントリックなリレー光学系にも適用する事ができる。リレー光学系が非テレセントリックな場合には、軸上の非点収差と軸外の非点収差を同時に補正する事はできないが、どちらか一方の非点収差を補正する事はできる。例えば、軸上の非点収差を補正すると、軸上でXYマークを同時計測する事が可能となり、軸外の非点収差を補正すると、軸外でXYマークを同時計測する事が可能となるメリットがある。
 また上述の説明では、ビームスプリッタ20がTTM検出系7の計測光8を透過し、照明系2から照射される紫外線3を反射する特性であるとした。しかし、図2のように、TTM検出系7の計測光8を反射し、照明系2から照射される紫外線3を透過する特性を持ったビームスプリッタ16を備えたインプリント装置でも本発明を適用する事ができる。
 このように非点収差を補正する光学系を備えたインプリント装置では、リレー光学系のコマ収差と非点収差を補正することができる。本発明を用いたインプリント装置では、モールドとウエハの相対位置を高い精度で検出する事ができ、モールドの押印時に下地のパターンと高い精度で位置合わせをする事ができる。そのため、デバイスの歩留まり向上に貢献できる。
 (デバイス製造方法)
 物品としてのデバイス(半導体集積回路素子、液晶表示素子等)の製造方法は、上述したインプリント装置を用いて基板(ウエハ、ガラスプレート、フィルム状基板)にパターンを形成する工程を含む。さらに、該製造方法は、パターンを形成された基板をエッチングする工程を含みうる。なお、パターンドメディア(記録媒体)や光学素子などの他の物品を製造する場合には、該製造方法は、エッチングの代わりに、パターンを形成された基板を加工する他の処理を含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも一つにおいて有利である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 モールドに形成された微細な構造を、インプリント樹脂等の非加工部材に転写する微細加工技術に用いるのに適している。
300 インプリント装置
20 ビームスプリッタ(平行平板型)
24 平行平板(非点収差補正)
25 補正光学系
27・28 平行平板(コマ収差補正)
29 リレー光学系

Claims (10)

  1.  パターンが形成された型を用いて、基板に供給されたインプリント材に前記パターンを転写するインプリント装置であって、
     受光素子と、
     前記基板に形成されたマークと前記型に形成されたマークとに光を照射し、前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記受光素子に導く検出系と、
     前記型を介して前記基板に形成されたマークと前記型に形成されたマークとから反射した光を前記型と前記検出系との間で結像させるリレー光学系と、
     前記インプリント材を硬化させる照明光を照明する照明系と、
     前記照明光および前記検出系からの光のどちらか一方を透過させ、他方を反射する面を有する光学素子と、
     前記リレー光学系の収差を補正する板状の光学部材と、を備え、
     前記光学部材はリレー光学系内に配置され、前記光学部材の傾き方向と、前記光学素子の面の傾き方向とは、互いに異なることを特徴とするインプリント装置。
  2.  前記光学部材の傾き方向は、前記光学素子の面の傾き方向が前記リレー光学系の光軸を軸として90度回転した方向であることを特徴とする請求項1に記載のインプリント装置。
  3.  前記光学部材と前記光学素子とは厚さが等しい平行平板であることを特徴とする請求項1又は2のいずれか一項に記載のインプリント装置。
  4.  前記リレー光学系は、前記リレー光学系の非点収差を補正する補正光学系を有し、
     前記補正光学系が前記リレー光学系の光軸に対して偏心することを特徴とする請求項1~3のいずれか一項に記載のインプリント装置。
  5.  前記リレー光学系は、前記リレー光学系の型側に配置された物体側レンズと、検出系側に配置された像側レンズとを有し、
     前記補正光学系が偏心した場合、
     前記補正光学系に対する前記物体側レンズの偏心量と、前記補正光学系に対する前記像側レンズの偏心量が等しく、
     前記補正光学系に対する前記物体側レンズの偏心の方向が、前記補正光学系に対する前記像側レンズの偏心の方向に対して逆になるように、前記物体側レンズと前記像側レンズの少なくとも一方を偏心させることを特徴とする請求項4に記載のインプリント装置。
  6.  前記リレー光学系は、
     前記リレー光学系の瞳空間を中心として前記光学素子に対して回転対称に配置された第1コマ補正光学部材と、
     前記リレー光学系の瞳空間を中心として前記光学部材に対して回転対称に配置された第2コマ補正光学部材と、を有することを特徴とする請求項1~5のいずれか一項に記載のインプリント装置。
  7.  前記光学素子と前記第1コマ補正光学部材とは厚さが等しい平行平板であり、前記光学部材と前記第2コマ補正光学部材とは厚さが等しい平行平板であることを特徴とする請求項6に記載のインプリント装置。
  8.  前記第1コマ補正光学部材および前記第2コマ補正光学部材は平行平板であり、前記リレー光学系の倍率によって、前記第1コマ補正光学部材と前記第2コマ補正光学部材の厚さ又は傾斜角度が決まることを特徴とする請求項6に記載のインプリント装置。
  9.  前記リレー光学系は前記基板のショット領域を結像しているテレセントリック光学系であることを特徴とする請求項1~8のいずれか一項に記載のインプリント装置。
  10.  請求項1~9のいずれか一項に記載のインプリント装置を用いてパターンを基板に形成する工程と、
     前記工程で前記パターンが形成された基板を加工する工程と、
    を含むことを特徴とするデバイス製造方法。
PCT/JP2011/079911 2011-12-22 2011-12-22 インプリント装置及びデバイス製造方法 WO2013094068A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013550039A JP5901655B2 (ja) 2011-12-22 2011-12-22 インプリント装置及びデバイス製造方法
KR1020147019462A KR101679941B1 (ko) 2011-12-22 2011-12-22 임프린트 장치 및 디바이스 제조 방법
PCT/JP2011/079911 WO2013094068A1 (ja) 2011-12-22 2011-12-22 インプリント装置及びデバイス製造方法
US13/716,428 US9718234B2 (en) 2011-12-22 2012-12-17 Imprint lithography apparatus and device manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079911 WO2013094068A1 (ja) 2011-12-22 2011-12-22 インプリント装置及びデバイス製造方法

Publications (2)

Publication Number Publication Date
WO2013094068A1 true WO2013094068A1 (ja) 2013-06-27
WO2013094068A9 WO2013094068A9 (ja) 2013-08-15

Family

ID=48653742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079911 WO2013094068A1 (ja) 2011-12-22 2011-12-22 インプリント装置及びデバイス製造方法

Country Status (4)

Country Link
US (1) US9718234B2 (ja)
JP (1) JP5901655B2 (ja)
KR (1) KR101679941B1 (ja)
WO (1) WO2013094068A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057622A1 (ja) * 2022-09-16 2024-03-21 株式会社Screenホールディングス 光学装置、露光装置および露光方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497849B2 (ja) * 2014-04-15 2019-04-10 キヤノン株式会社 インプリント装置、および物品の製造方法
CN114488487A (zh) * 2022-02-17 2022-05-13 安徽国芯智能装备有限公司 一种用于光刻机的对准镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248417A (ja) * 1998-03-06 1999-09-17 Nikon Corp 観察装置
JP2011003616A (ja) * 2009-06-16 2011-01-06 Canon Inc インプリント装置及び物品の製造方法
JP2011103448A (ja) * 2009-09-29 2011-05-26 Asml Netherlands Bv インプリントリソグラフィ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014943A (ko) * 2001-06-29 2004-02-18 코닌클리케 필립스 일렉트로닉스 엔.브이. 광학주사장치
JP4481698B2 (ja) 2004-03-29 2010-06-16 キヤノン株式会社 加工装置
JP4795300B2 (ja) * 2006-04-18 2011-10-19 キヤノン株式会社 位置合わせ方法、インプリント方法、位置合わせ装置、インプリント装置、及び位置計測方法
NL2003871A (en) * 2009-02-04 2010-08-05 Asml Netherlands Bv Imprint lithography.
JP5539011B2 (ja) * 2010-05-14 2014-07-02 キヤノン株式会社 インプリント装置、検出装置、位置合わせ装置、及び物品の製造方法
JP5637931B2 (ja) * 2011-05-17 2014-12-10 キヤノン株式会社 インプリント装置、インプリント方法およびデバイス製造方法
JP5800977B2 (ja) * 2014-10-23 2015-10-28 キヤノン株式会社 インプリント装置、インプリント方法およびデバイス製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248417A (ja) * 1998-03-06 1999-09-17 Nikon Corp 観察装置
JP2011003616A (ja) * 2009-06-16 2011-01-06 Canon Inc インプリント装置及び物品の製造方法
JP2011103448A (ja) * 2009-09-29 2011-05-26 Asml Netherlands Bv インプリントリソグラフィ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057622A1 (ja) * 2022-09-16 2024-03-21 株式会社Screenホールディングス 光学装置、露光装置および露光方法

Also Published As

Publication number Publication date
US20130161868A1 (en) 2013-06-27
JP5901655B2 (ja) 2016-04-13
WO2013094068A9 (ja) 2013-08-15
KR20140104485A (ko) 2014-08-28
KR101679941B1 (ko) 2016-11-25
JPWO2013094068A1 (ja) 2015-04-27
US9718234B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US9283720B2 (en) Position detection apparatus, imprint apparatus, and position detection method
TWI654706B (zh) 壓印裝置,壓印方法及裝置製造方法
US7528966B2 (en) Position detection apparatus and exposure apparatus
US10732523B2 (en) Detection device, imprint apparatus, method of manufacturing article, illumination optical system, and detection method
JP6207671B1 (ja) パターン形成装置、基板配置方法及び物品の製造方法
JP6097704B2 (ja) インプリント装置、インプリント方法及び物品の製造方法
JP6150490B2 (ja) 検出装置、露光装置、それを用いたデバイスの製造方法
KR101573572B1 (ko) 임프린트 장치, 물품 제조 방법 및 패턴 전사 방법
JP2018098456A (ja) 位置合わせ装置、位置合わせ方法、リソグラフィ装置、および物品製造方法
KR101716933B1 (ko) 임프린트 장치 및 물품을 제조하는 방법
JP6366261B2 (ja) リソグラフィ装置及び物品の製造方法
US10747116B2 (en) Pattern forming apparatus and article manufacturing method
JP5901655B2 (ja) インプリント装置及びデバイス製造方法
JP2017092294A (ja) インプリント装置、型、および物品の製造方法
JP2017215617A (ja) 基板保持装置
JP6039770B2 (ja) インプリント装置およびデバイス製造方法
JP6226525B2 (ja) 露光装置、露光方法、それらを用いたデバイスの製造方法
TW202411769A (zh) 檢測裝置、微影蝕刻設備及物品製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019462

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11878179

Country of ref document: EP

Kind code of ref document: A1