WO2013094046A1 - Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program - Google Patents

Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program Download PDF

Info

Publication number
WO2013094046A1
WO2013094046A1 PCT/JP2011/079735 JP2011079735W WO2013094046A1 WO 2013094046 A1 WO2013094046 A1 WO 2013094046A1 JP 2011079735 W JP2011079735 W JP 2011079735W WO 2013094046 A1 WO2013094046 A1 WO 2013094046A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculating
travel route
energy consumption
speed
planned travel
Prior art date
Application number
PCT/JP2011/079735
Other languages
French (fr)
Japanese (ja)
Inventor
千尋 川端
和俊 北野
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/079735 priority Critical patent/WO2013094046A1/en
Priority to JP2013550020A priority patent/JP5687363B2/en
Publication of WO2013094046A1 publication Critical patent/WO2013094046A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an energy consumption prediction apparatus, an energy consumption prediction method, and an energy consumption prediction program for supplying power to a motor of a vehicle to drive the vehicle.
  • the use of the present invention is not limited to the above-described consumption energy prediction apparatus, consumption energy prediction method, and consumption energy prediction program.
  • an electric vehicle that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
  • the efficiency of the motor provided in the vehicle is not taken into consideration, and the efficiency varies from motor to motor. It is considered that there is a problem that the battery runs out because it is different from the estimation after traveling.
  • the energy consumption predicting apparatus is an energy consumption predicting apparatus that predicts energy consumed when a vehicle travels on a planned travel route to a destination.
  • a planned travel route calculating means for calculating the planned travel route corresponding to the destination, a speed calculating means for calculating speed information indicating a speed on the planned travel route for a plurality of conditions, and speeds for the plurality of conditions
  • a driving resistance value calculating unit that calculates a driving resistance value based on the speed information
  • a driving force calculating unit that calculates a driving force of the vehicle based on the driving resistance value
  • a torque calculation means for calculating torque information indicating the torque of the planned travel route, and an efficiency map acquisition for obtaining an efficiency map of the drive means for driving the vehicle.
  • Energy consumption calculating means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route, and the energy consumption calculated for each of the speed information of the plurality of conditions.
  • Selecting means for selecting the largest consumed energy as the consumed energy in the scheduled travel route.
  • the energy consumption prediction method is a consumption energy prediction method of a consumption energy prediction device for predicting consumption energy consumed when a vehicle travels on a planned travel route to a destination.
  • the speed calculation step for calculating speed information indicating the speed in the planned travel route for a plurality of conditions, and the speed information for the plurality of conditions A travel resistance value calculating step of calculating a travel resistance value based on the speed information; a driving force calculation step of calculating a driving force of the vehicle based on the travel resistance value; and A torque calculation step of calculating torque information indicating torque, an efficiency map acquisition step of acquiring an efficiency map of a driving means for driving the vehicle, Based on the speed information, the torque information, and the efficiency map on the planned travel route, among the consumed energy calculated step for calculating the consumed energy and the consumed energy calculated for each of the speed information of the plurality of conditions, And a selection step of selecting large energy consumption as energy consumption in the planned travel route.
  • An energy consumption prediction program is an energy consumption prediction program applied to an energy consumption prediction apparatus for predicting energy consumption consumed when a vehicle travels on a planned travel route to a destination, and is a computer.
  • a planned travel route calculating means for calculating the planned travel route corresponding to the destination, a speed calculating means for calculating speed information indicating speed on the planned travel route for a plurality of conditions, and a speed for the plurality of conditions
  • a driving resistance value calculating unit that calculates a driving resistance value based on the speed information
  • a driving force calculating unit that calculates a driving force of the vehicle based on the driving resistance value
  • Torque calculating means for calculating torque information indicating the torque of the planned travel route, and an efficiency map of the driving means for driving the vehicle.
  • Efficiency map acquisition means for acquiring a power consumption
  • energy consumption calculation means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route, speed information of the plurality of conditions It functions as a selection means for selecting the largest consumed energy among the consumed energy calculated for each as the consumed energy in the planned travel route.
  • FIG. 1 is a block diagram illustrating a configuration of the energy consumption prediction apparatus according to the embodiment.
  • FIG. 2 is a flowchart illustrating the processing contents of the energy consumption prediction apparatus according to the embodiment.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the energy consumption prediction apparatus.
  • FIG. 4 is a diagram for explaining the outline of speed prediction.
  • FIG. 5 is a chart showing speed changes in a certain section.
  • FIG. 6A is a diagram for explaining speed calculation for each condition.
  • FIG. 6B is a flowchart of the speed calculation process for each condition.
  • FIG. 7A is a flowchart illustrating the detailed contents of speed prediction.
  • FIG. 7-2 is a chart illustrating an example of speed prediction.
  • FIG. 8 is a chart showing an example of position calculation calculated based on speed prediction.
  • FIG. 9 is a chart showing a gradient calculation example calculated based on the position change.
  • FIG. 10 is a diagram illustrating a configuration example of the driving force observer.
  • FIG. 11 is a chart showing a motor efficiency map.
  • FIG. 12 is a chart showing the energy consumption after calculation.
  • FIG. 1 is a block diagram illustrating a configuration of the energy consumption prediction apparatus according to the embodiment.
  • the energy consumption prediction apparatus 100 predicts energy consumption consumed when a vehicle travels on a planned travel route to a destination.
  • the energy consumption prediction apparatus 100 includes a planned travel route calculation unit 101, a speed calculation unit 102, a travel resistance value calculation unit 103, a driving force calculation unit 104, a torque calculation unit 105, an efficiency map acquisition unit 106, A consumption energy calculation unit 107, a gradient acquisition unit 108 that acquires gradient information indicating a gradient in the planned travel route, a condition setting unit 109, and a selection unit 110 are provided.
  • the planned travel route calculation unit 101 calculates the planned travel route to the destination based on the input of the destination of the vehicle.
  • the speed calculation unit 102 calculates speed information indicating the speed on the planned travel route.
  • the running resistance value calculation unit 103 calculates a running resistance value based on the speed information.
  • the driving force calculation unit 104 calculates the driving force of the vehicle based on the running resistance value.
  • the torque calculation unit 105 calculates torque information indicating the torque of the planned travel route based on the driving force.
  • the efficiency map acquisition unit 106 acquires a driving means for driving the vehicle, that is, an efficiency map of the motor.
  • the efficiency map is a map for obtaining the efficiency of the motor from the torque and the speed, and has a characteristic specific to the motor of the vehicle.
  • the energy consumption calculation unit 107 calculates energy consumption based on speed information, torque information, and an efficiency map on the planned travel route.
  • the running resistance value calculation unit 103 can calculate the running resistance value based on the speed information calculated by the speed calculation unit 102 and the gradient information acquired by the gradient acquisition unit 108.
  • the condition setting unit 109 causes the speed calculation unit 102 to calculate speed information indicating the speed on the planned travel route for a plurality of conditions.
  • the multiple conditions are conditions for calculating different values of energy consumption due to differences in the driving state of the vehicle.In the example shown in the figure, the speed change state of the vehicle is the same even for the same planned driving route. Different conditions, for example, a case where each signal on the planned travel route passes without stopping (non-stop) and a case where each signal stops (stop) are different conditions. This condition is set in the condition setting unit 109 in advance.
  • the running resistance, driving force, and torque calculated by the speed calculating unit 102, the running resistance value calculating unit 103, the driving force calculating unit 104, and the torque calculating unit 105 are different depending on the conditions. .
  • the consumed energy calculation unit 107 calculates consumed energy according to conditions.
  • the selection unit 110 selects the largest consumed energy as the consumed energy in the planned travel route among the consumed energy calculated for each of the speed information of a plurality of conditions. Information on the selected energy consumption is displayed on a display unit (not shown) or output to the outside.
  • FIG. 2 is a flowchart showing the processing contents of the energy consumption prediction apparatus according to the embodiment.
  • the energy consumption prediction apparatus 100 predicts energy consumption in the following processing order.
  • the planned travel route calculation unit 101 searches for a route (planned route) to the destination based on the input of the destination of the vehicle (step S201). Map information is used for this search.
  • the speed calculation unit 102 predicts speed information indicating the speed on the planned travel route according to the conditions set by the condition setting unit 109 (step S202). At this time, the position and distance of the vehicle for each hour on the planned route can be obtained based on the speed calculated for each condition (step S203). As described above, for example, the conditions are different when each signal on the planned travel route passes without stopping (non-stop) and when it stops at each signal (stop).
  • the energy consumption at this position is calculated for each condition based on the position of the vehicle that varies with time.
  • the gradient acquisition unit 108 calculates the gradient at this position from the map information (step S204).
  • the travel resistance value calculation unit 103 calculates a travel resistance value based on the calculated speed information and gradient information (step S205).
  • the driving force calculation unit 104 calculates the driving force of the vehicle based on the calculated running resistance value (step S206).
  • the torque calculation unit 105 calculates a necessary torque at this position based on the calculated driving force (step S207). Thereafter, the efficiency map acquisition unit 106 acquires an efficiency map of the vehicle motor, and calculates the efficiency at this position using the efficiency map based on the calculated speed and torque (step S208).
  • the consumed energy calculation unit 107 calculates consumed energy based on the speed information, torque information, and efficiency map at this position (step S209).
  • the calculated energy consumption information is displayed on a display unit (not shown) or output to the outside.
  • the processing after step S204 is repeatedly executed for each position of the planned route.
  • the planned route is divided into predetermined sections (for example, a node-node link (edge)), and energy consumption is calculated for each section.
  • step S210 Each process of step S202 to step S209 is calculated for each condition set in the condition setting unit 109. Then, the selection unit 110 determines whether the calculation based on all conditions has been completed (step S210). If calculation based on conditions still remains (step S210: No), the process returns to step S202, and if calculation based on all conditions is completed (step S210: Yes), the process proceeds to step S211.
  • step S211 the selection unit 110 selects and outputs the largest consumption energy as the consumption energy in the planned travel route among the consumption energy calculated for each of the speed information of the plurality of conditions calculated by the consumption energy calculation unit 107. (Step S211).
  • the torque on the planned route is calculated, and the efficiency of the motor of the vehicle is obtained from the torque and speed.
  • the energy consumption of the planned route can be predicted.
  • the energy consumed before the vehicle travels can be accurately predicted.
  • FIG. 3 is a block diagram illustrating a hardware configuration example of the energy consumption prediction apparatus.
  • the energy consumption prediction apparatus 100 includes a CPU 301, a ROM 302, a RAM 303, a communication I / F 304, a GPS unit 305, and various sensors 306. Each component 301 to 306 is connected by a bus 307.
  • the CPU 301 governs overall control of the energy consumption prediction apparatus 100.
  • the ROM 302 records and holds programs such as a boot program and an energy prediction program.
  • the RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 executes the program recorded in the ROM 302 while using the RAM 303 as a work area.
  • the communication I / F 304 is connected to the network via wireless and functions as an interface between the energy consumption prediction apparatus 100 and the CPU 301.
  • the communication network functioning as a network includes a public line network, a mobile phone network, DSRC (Dedicated Short Range Communication), LAN, WAN, and the like.
  • the communication I / F 304 is, for example, a public line connection module, an ETC unit, an FM tuner, a VICS (Vehicle Information and Communication System (registered trademark)) / beacon receiver, or the like.
  • the GPS unit 305 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 305 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors such as a speed sensor, an acceleration sensor, and a yaw rate sensor.
  • the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
  • Each configuration shown in FIG. 1 realizes its function by the CPU 301 executing a predetermined program using programs and data recorded in the ROM 302, RAM 303, and the like. And the energy consumption prediction apparatus 100 shown in FIG. 3 can be made into one function of a navigation apparatus.
  • FIG. 4 is a diagram for explaining the outline of speed prediction.
  • the process of step S202 will be described.
  • the figure shows a planned travel route of the vehicle.
  • a predetermined route (scheduled travel route) 401 starting from the departure point (S) and returning to the destination (G, the same position as the departure point in the illustrated example) is shown.
  • An example is shown.
  • a route is divided into several sections based on map information, and a graph using feature points such as a signal p and a corner as a node is used.
  • the edge (link) between the nodes has distance information for each edge, speed information, presence / absence of a signal, presence / absence of a corner, etc. as information necessary for speed prediction.
  • each edge has rolling resistance coefficient and gradient information for each edge. These can be acquired not only from sensor detection but also from map information.
  • the traveling speed for each section is predicted based on the edge information.
  • the traveling speed is determined according to a predetermined rule. For example, a. The acceleration / deceleration is 0.1 [G]. b. When there is a signal at the edge of the corner, the speed at that point is set to 0 [km / h]. c. When the edge end is a corner and there is no signal, the speed at that point is set to 10 [km / h]. d. If the edge is not a corner but a signal, the speed is set to 0 [km / h]. Etc. Moreover, in speed prediction, not only the above-described rule is used, but also probe data obtained by actually traveling the vehicle can be used.
  • FIG. 5 is a chart showing speed changes in a certain section.
  • Vmax is a speed based on edge information (upper limit speed)
  • Vstart which is the start point is the end speed in the previous section
  • a is the acceleration determined based on the rule
  • -a is based on the rule.
  • the determined deceleration, Vstop is the terminal speed in this section determined based on the rule.
  • FIG. 6A is a diagram for explaining speed calculation for each condition.
  • (A) shows an outline of a route (scheduled route) 401 searched by the planned traveling route calculation unit 101. It is assumed that there is a straight signal p1 and a turn signal p2 on the planned route 401.
  • the planned route 401 is configured by a graph (link) 601a having feature points such as intersections, signals, and corners as nodes.
  • the condition 1 is set such that the vehicle stops at the turn signal p2 and does not stop at the straight signal p1 other than the turn (non-stop).
  • a graph (link) 601b ignoring the straight signal p1 is reconstructed, and the speed based on the link 601b is calculated.
  • the time-speed chart 610 shown in the figure corresponds to this condition 1.
  • FIG. 6-2 is a flowchart showing speed calculation processing according to conditions. The configuration and reconstruction of the above-mentioned graphs according to conditions are mainly described. The details of the process of step S202 of FIG. 2 are shown.
  • the speed calculation unit 102 configures a graph in which feature points such as intersections, signals, and corners are nodes for the travel route calculated by the planned travel route calculation unit 101 (step S601).
  • the speed calculation unit 102 calculates the speed for each condition set in the condition setting unit 109.
  • the condition setting unit 109 receives the above conditions 1. non-stop; 2. Assume that stop is set. Accordingly, the speed calculation unit 102 determines which condition is to be calculated. For example, if the condition is 2. If it is a stop (step S602: Yes), the speed is predicted based on the graph constructed in step S601 (step S609).
  • step S602 If it is non-stop (step S602: No), the following processing is performed. First, it moves to the first node of the travel route (step S603), and determines whether it is a destination (step S604). If this node is the destination (step S604: No), the process proceeds to step S609. If this node is not the destination (step S604: Yes), it is determined whether the next node on the travel route is a corner or a destination (step S605).
  • step S605 If the next node of the travel route is not at the corner or the destination (step S605: Yes), the next node is ignored and the previous node is joined to the next node (step S606). Then, the speed information between nodes is changed (step S607), and the process returns to step S605. Since the distance between the nodes becomes longer due to the combination of the nodes, the acceleration / deceleration of the vehicle is correspondingly reduced by one and the speed between the nodes changes accordingly.
  • step S605 if the next node on the travel route is a corner or a destination (step S605: No), it moves to the next node on the travel route (step S608), and returns to step S604.
  • Fig. 7-1 is a flowchart showing the detailed contents of speed prediction. A detailed processing example of step S609 in FIG. 6-2 will be described. First, it moves to the first node in the section (step S701). Then, it is determined whether this node is not the destination (step S702). If it is the destination (step S702: No), the process is terminated. If it is not the destination (step S702: Yes), the following process is performed. Do.
  • the distance to the next node is calculated based on the map information or the like (step S703).
  • the acceleration time ta, the deceleration time td, and the constant speed traveling time tc between the nodes are calculated from the distance / speed information between the nodes and the set acceleration / deceleration (step S704).
  • the speed between the nodes is calculated from the calculated acceleration time ta, deceleration time td, constant speed traveling time tc, speed information between the nodes, and the set acceleration / deceleration (step S705).
  • the node moves to the next node (step S706), and returns to step S702.
  • Fig. 7-2 is a chart showing an example of speed prediction.
  • the horizontal axis is distance, and the vertical axis is speed.
  • running route 401 of FIG. 4 is shown.
  • This figure shows the predicted speed when the signal other than the turn by condition 1 does not stop (non-stop) and the predicted speed when the signal stops by condition 2 (stop) (one-dot chain line in the figure). ing.
  • stopping at a signal (stop) it is shown that the speed changes more finely in addition to the change characteristics when the signal does not stop at a signal other than a corner (non-stop).
  • position calculation and gradient calculation will be described.
  • position changes are calculated in time series based on the speed prediction.
  • the position calculation is performed based on the following formula.
  • FIG. 8 is a chart showing an example of position calculation calculated based on speed prediction.
  • the horizontal axis is time, and the vertical axis is distance.
  • the example calculated based on the prediction speed (stop) of FIG. 7 is shown. As shown in the figure, the distance is integrated every time.
  • FIG. 9 is a chart showing a gradient calculation example calculated based on the position change.
  • the horizontal axis is time, and the vertical axis is gradient (angle).
  • This gradient ⁇ [deg] can be obtained from the map information, and the gradient for each position is obtained.
  • the map information is stored in, for example, the ROM 302 or the external storage unit illustrated in FIG. Or it can acquire from an external server etc. via communication I / F304.
  • Fd [N] 1/2 ⁇ ⁇ C D Av 2 + ⁇ rmg + mg sin ⁇ + m (dv / dt) + Ri
  • driving force [rho: air density
  • C D C D value
  • A front projected area
  • .mu.r rolling resistance coefficient
  • m vehicle weight
  • g gravitational acceleration
  • Ri Internal resistance
  • the internal resistance is a resistance component other than air resistance, rolling resistance, gradient resistance, and acceleration resistance, including mechanical loss of the drive system, and is assumed to be a known one here.
  • FIG. 10 is a diagram illustrating a configuration example of the driving force observer.
  • the torque T is the total torque per vehicle. (Where T: torque [Nm], J: tire inertia [Nms 2 ], ⁇ : tire rotation speed [rad / s], r: tire radius [m])
  • 1.29 [kg / m 3 ]
  • C D 0.530
  • A 1.28 [m 2 ]
  • ⁇ r 0.0185
  • m 395 [ kg].
  • FIG. 11 is a chart showing a motor efficiency map.
  • This efficiency map 1100 shows the relationship between the rotational speed on the horizontal axis and the torque on the vertical axis and the efficiency.
  • the efficiency map 1100 has different characteristics for each motor mounted on the vehicle.
  • the efficiency map 1100 is stored in advance in the ROM 302 or the external storage unit illustrated in FIG. Or it can acquire from an external server etc. via communication I / F304.
  • the efficiency ⁇ can be obtained from the intersection corresponding to the rotational speed and the torque.
  • the torque T is the total torque for each vehicle, and when the vehicle includes one motor, one efficiency map 1100 is used.
  • the torque is different for each wheel.
  • an in-wheel motor is provided for each of the four wheels, the total torque is simply divided by four to drive each motor, but the torque distribution of each wheel differs depending on the curve, gradient, and the like.
  • a vehicle equipped with such a plurality of motors is provided with an efficiency map 1100 for the number of motors, resulting in an independent torque for each motor of each wheel, and correspondingly different efficiency.
  • the consumed energy is calculated based on the speed, torque, and efficiency after each calculation described above.
  • the consumed energy E is calculated by the following formula.
  • FIG. 12 is a chart showing the energy consumption after calculation.
  • the horizontal axis represents the distance, and the vertical axis represents the amount of electric power.
  • the integrated value of the amount of energy consumed when the travel route 401 from the starting point to the destination shown in FIG. 4 is traced is shown.
  • the figure shows the calculation results of energy consumption under the condition of stopping at each signal (stop) and the condition of not stopping at a signal other than a corner (non-stop) set as speed conditions.
  • the calculated energy consumption amount can be output as an integrated amount as shown in FIG. 12 on a display unit or the like as a graph or numerical value, or output outside the apparatus.
  • the selection unit 110 always selects and outputs the largest value for the consumed energy calculated according to the conditions.
  • the energy consumption shown in FIG. 12 is any of the energy consumption at each distance among the conditions of stopping at each signal (stop) and the energy consumption of not stopping at a signal other than a corner (non-stop). The energy consumption of the higher one (always above the figure) is selected.
  • the estimated energy consumption at each distance is always estimated to be higher than the actual energy consumption.
  • the actual amount of energy consumed does not exceed the predicted amount of energy consumed during actual traveling, and problems such as the inability to travel due to insufficient remaining battery power can be avoided.
  • the vehicle is provided with all the functions of the energy consumption estimation device.
  • the present invention is not limited to this.
  • the configuration shown in FIG. 1 and FIG. 3, that is, the configuration relating to the energy consumption estimation may be provided in an external server, and the vehicle may be configured to include a terminal having only a function of communicating with the server.
  • the server executes processing related to the energy consumption estimation
  • the terminal of the vehicle is configured so that the server can detect information that can identify the motor mounted on the vehicle, such as the communication function with the server and the type of the vehicle. do it.
  • the apparatus cost and processing burden on the vehicle side can be reduced.
  • the amount of energy consumed to reach the destination can be accurately measured before the vehicle travels. Be able to predict.
  • an appropriate charging point on the planned route can be planned in advance.
  • the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This energy consumption prediction device (100) comprises: a scheduled travel route calculating unit (101) that calculates a scheduled travel route corresponding to a destination; a speed calculating unit (102) that calculates speed information, which indicates the speed on the scheduled travel route, for a plurality of conditions; a travel resistance value calculating unit (103) that calculates a travel resistance value on the basis of the speed information; a driving force calculating unit (104) that calculates the driving force of a vehicle on the basis of the travel resistance value; a torque calculating unit (105) that calculates torque information indicating the torque for the scheduled travel route on the basis of the driving force; an efficiency map acquiring unit (106) that acquires an efficiency map of a motor which drives the vehicle; an energy consumption calculating unit (107) that calculates energy consumption on the basis of the speed information, the torque information, and the efficiency map for the scheduled travel route; and a selection unit (110) that selects, from the energy consumptions calculated for respective pieces of speed information for said plurality of conditions, the greatest energy consumption as the energy consumption for the scheduled travel route.

Description

消費エネルギー予測装置、消費エネルギー予測方法および消費エネルギー予測プログラムEnergy consumption prediction apparatus, energy consumption prediction method, and energy consumption prediction program
 この発明は、車両のモータへ電源を供給し車両を駆動する消費エネルギー予測装置、消費エネルギー予測方法および消費エネルギー予測プログラムに関する。ただし、この発明の利用は、上述した消費エネルギー予測装置、消費エネルギー予測方法および消費エネルギー予測プログラムには限られない。 The present invention relates to an energy consumption prediction apparatus, an energy consumption prediction method, and an energy consumption prediction program for supplying power to a motor of a vehicle to drive the vehicle. However, the use of the present invention is not limited to the above-described consumption energy prediction apparatus, consumption energy prediction method, and consumption energy prediction program.
 従来、移動体である電気自動車(EV)にモータを設け、車輪を駆動する構成において、モータを車輪に設けるインホイールモータ構造とし、このモータに対する電源を車両から供給するものとして、下記の各技術が開示されている。 Conventionally, an electric vehicle (EV) that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
 たとえば、走行予定経路でのモータの消費エネルギー量を推定する際に、走行する車両に生じる走行抵抗その他の抵抗を考慮して、消費エネルギー量を推定する技術がある(たとえば、下記特許文献1参照。)。また、車両の速度および道路勾配を用い、省電力ルートと消費電力を推定する技術がある(たとえば、下記特許文献2参照。)。 For example, when estimating the energy consumption of a motor on a planned travel route, there is a technique for estimating the amount of energy consumption in consideration of travel resistance and other resistances that occur in a traveling vehicle (for example, see Patent Document 1 below). .) In addition, there is a technique for estimating a power saving route and power consumption using a vehicle speed and a road gradient (see, for example, Patent Document 2 below).
特開2009-67350号公報JP 2009-67350 A 特開2011-122926号公報JP 2011-122926 A
 しかしながら、上記いずれの技術においても、車両に設けられたモータの効率が考慮されておらず、モータ毎に効率が異なるため、いずれも消費エネルギーを精度よく求めることができず、推定した状態で実際に走行した後に推定と異なるためにバッテリ切れを起こす問題が生じることが考えられる。 However, in any of the above technologies, the efficiency of the motor provided in the vehicle is not taken into consideration, and the efficiency varies from motor to motor. It is considered that there is a problem that the battery runs out because it is different from the estimation after traveling.
 上述した課題を解決し、目的を達成するため、この発明にかかる消費エネルギー予測装置は、目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置であって、前記目的地に対応する前記走行予定経路を算出する走行予定経路算出手段と、前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出手段と、前記複数条件の速度情報の夫々について、前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出手段と、前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出手段と、前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出手段と、前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得手段と、前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出手段と、前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the energy consumption predicting apparatus according to the present invention is an energy consumption predicting apparatus that predicts energy consumed when a vehicle travels on a planned travel route to a destination. A planned travel route calculating means for calculating the planned travel route corresponding to the destination, a speed calculating means for calculating speed information indicating a speed on the planned travel route for a plurality of conditions, and speeds for the plurality of conditions For each piece of information, based on the driving force, a driving resistance value calculating unit that calculates a driving resistance value based on the speed information, a driving force calculating unit that calculates a driving force of the vehicle based on the driving resistance value, and A torque calculation means for calculating torque information indicating the torque of the planned travel route, and an efficiency map acquisition for obtaining an efficiency map of the drive means for driving the vehicle. Energy consumption calculating means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route, and the energy consumption calculated for each of the speed information of the plurality of conditions. Selecting means for selecting the largest consumed energy as the consumed energy in the scheduled travel route.
 また、この発明にかかる消費エネルギー予測方法は、目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置の消費エネルギー予測方法であって、前記目的地に対応する前記走行予定経路を算出する走行予定経路算出工程と、前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出工程と、前記複数条件の速度情報の夫々について、前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出工程と、前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出工程と、前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出工程と、前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得工程と、前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出工程と、前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択工程と、を含むことを特徴とする。 The energy consumption prediction method according to the present invention is a consumption energy prediction method of a consumption energy prediction device for predicting consumption energy consumed when a vehicle travels on a planned travel route to a destination. For each of the planned travel route calculation step for calculating the corresponding planned travel route, the speed calculation step for calculating speed information indicating the speed in the planned travel route for a plurality of conditions, and the speed information for the plurality of conditions, A travel resistance value calculating step of calculating a travel resistance value based on the speed information; a driving force calculation step of calculating a driving force of the vehicle based on the travel resistance value; and A torque calculation step of calculating torque information indicating torque, an efficiency map acquisition step of acquiring an efficiency map of a driving means for driving the vehicle, Based on the speed information, the torque information, and the efficiency map on the planned travel route, among the consumed energy calculated step for calculating the consumed energy and the consumed energy calculated for each of the speed information of the plurality of conditions, And a selection step of selecting large energy consumption as energy consumption in the planned travel route.
 また、この発明にかかる消費エネルギー予測プログラムは、目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置に適用される消費エネルギー予測プログラムであって、コンピュータを、前記目的地に対応する前記走行予定経路を算出する走行予定経路算出手段と、前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出手段と、前記複数条件の速度情報の夫々について、前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出手段と、前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出手段と、前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出手段と、前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得手段と、前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出手段と、前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択手段、として機能させることを特徴とする。 An energy consumption prediction program according to the present invention is an energy consumption prediction program applied to an energy consumption prediction apparatus for predicting energy consumption consumed when a vehicle travels on a planned travel route to a destination, and is a computer. A planned travel route calculating means for calculating the planned travel route corresponding to the destination, a speed calculating means for calculating speed information indicating speed on the planned travel route for a plurality of conditions, and a speed for the plurality of conditions For each piece of information, based on the driving force, a driving resistance value calculating unit that calculates a driving resistance value based on the speed information, a driving force calculating unit that calculates a driving force of the vehicle based on the driving resistance value, and Torque calculating means for calculating torque information indicating the torque of the planned travel route, and an efficiency map of the driving means for driving the vehicle. Efficiency map acquisition means for acquiring a power consumption, energy consumption calculation means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route, speed information of the plurality of conditions It functions as a selection means for selecting the largest consumed energy among the consumed energy calculated for each as the consumed energy in the planned travel route.
図1は、実施の形態にかかる消費エネルギー予測装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of the energy consumption prediction apparatus according to the embodiment. 図2は、実施の形態にかかる消費エネルギー予測装置の処理内容を示すフローチャートである。FIG. 2 is a flowchart illustrating the processing contents of the energy consumption prediction apparatus according to the embodiment. 図3は、消費エネルギー予測装置のハードウェア構成を示すブロック図である。FIG. 3 is a block diagram illustrating a hardware configuration of the energy consumption prediction apparatus. 図4は、速度予測の概要を説明する図である。FIG. 4 is a diagram for explaining the outline of speed prediction. 図5は、ある区間での速度変化を示す図表である。FIG. 5 is a chart showing speed changes in a certain section. 図6-1は、条件別の速度算出を説明する図である。FIG. 6A is a diagram for explaining speed calculation for each condition. 図6-2は、条件別の速度算出処理を示すフローチャートである。FIG. 6B is a flowchart of the speed calculation process for each condition. 図7-1は、速度予測の詳細内容を示すフローチャートである。FIG. 7A is a flowchart illustrating the detailed contents of speed prediction. 図7-2は、速度予測例を示す図表である。FIG. 7-2 is a chart illustrating an example of speed prediction. 図8は、速度予測に基づき算出した位置算出例を示す図表である。FIG. 8 is a chart showing an example of position calculation calculated based on speed prediction. 図9は、位置変化に基づき算出した勾配算出例を示す図表である。FIG. 9 is a chart showing a gradient calculation example calculated based on the position change. 図10は、駆動力オブザーバの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of the driving force observer. 図11は、モータの効率マップを示す図表である。FIG. 11 is a chart showing a motor efficiency map. 図12は、算出後の消費エネルギーを示す図表である。FIG. 12 is a chart showing the energy consumption after calculation.
(実施の形態)
 以下に添付図面を参照して、この発明にかかる消費エネルギー予測装置、消費エネルギー予測方法および消費エネルギー予測プログラムの好適な実施の形態を詳細に説明する。以下の説明では、車両の各車輪にモータを備えたインホイール型の構成を例に説明するが、この発明は、モータを備えた車両の消費エネルギー予測を行うものであり、モータはインホイールモータに限らず適用できる。
(Embodiment)
Exemplary embodiments of a consumption energy prediction apparatus, a consumption energy prediction method, and a consumption energy prediction program according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, an in-wheel type configuration in which a motor is provided for each wheel of the vehicle will be described as an example. However, the present invention is for predicting energy consumption of a vehicle having a motor, and the motor is an in-wheel motor. It is applicable not only to.
(消費エネルギー予測装置の構成)
 図1は、実施の形態にかかる消費エネルギー予測装置の構成を示すブロック図である。消費エネルギー予測装置100は、目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する。この消費エネルギー予測装置100は、走行予定経路算出部101と、速度算出部102と、走行抵抗値算出部103と、駆動力算出部104と、トルク算出部105と、効率マップ取得部106と、消費エネルギー算出部107と、走行予定経路における勾配を示す勾配情報を取得する勾配取得部108と、条件設定部109と、選択部110と、を備えている。
(Configuration of energy consumption prediction device)
FIG. 1 is a block diagram illustrating a configuration of the energy consumption prediction apparatus according to the embodiment. The energy consumption prediction apparatus 100 predicts energy consumption consumed when a vehicle travels on a planned travel route to a destination. The energy consumption prediction apparatus 100 includes a planned travel route calculation unit 101, a speed calculation unit 102, a travel resistance value calculation unit 103, a driving force calculation unit 104, a torque calculation unit 105, an efficiency map acquisition unit 106, A consumption energy calculation unit 107, a gradient acquisition unit 108 that acquires gradient information indicating a gradient in the planned travel route, a condition setting unit 109, and a selection unit 110 are provided.
 走行予定経路算出部101は、車両の目的地の入力に基づき、目的地までの走行予定経路を算出する。速度算出部102は、走行予定経路における速度を示す速度情報を算出する。走行抵抗値算出部103は、速度情報に基づいて走行抵抗値を算出する。駆動力算出部104は、走行抵抗値に基づいて車両の駆動力を算出する。トルク算出部105は、駆動力に基づいて走行予定経路のトルクを示すトルク情報を算出する。 The planned travel route calculation unit 101 calculates the planned travel route to the destination based on the input of the destination of the vehicle. The speed calculation unit 102 calculates speed information indicating the speed on the planned travel route. The running resistance value calculation unit 103 calculates a running resistance value based on the speed information. The driving force calculation unit 104 calculates the driving force of the vehicle based on the running resistance value. The torque calculation unit 105 calculates torque information indicating the torque of the planned travel route based on the driving force.
 効率マップ取得部106は、車両を駆動する駆動手段、すなわちモータの効率マップを取得する。効率マップは、トルクと速度からモータの効率を得るためのマップであり、車両のモータに固有の特性を有する。消費エネルギー算出部107は、走行予定経路における速度情報、トルク情報、および効率マップに基づいて、消費エネルギーを算出する。 The efficiency map acquisition unit 106 acquires a driving means for driving the vehicle, that is, an efficiency map of the motor. The efficiency map is a map for obtaining the efficiency of the motor from the torque and the speed, and has a characteristic specific to the motor of the vehicle. The energy consumption calculation unit 107 calculates energy consumption based on speed information, torque information, and an efficiency map on the planned travel route.
 また、走行抵抗値算出部103は、速度算出部102で算出された速度情報および勾配取得部108により取得された勾配情報に基づいて走行抵抗値を算出することができる。 Also, the running resistance value calculation unit 103 can calculate the running resistance value based on the speed information calculated by the speed calculation unit 102 and the gradient information acquired by the gradient acquisition unit 108.
 そして、条件設定部109は、速度算出部102に対し、走行予定経路における速度を示す速度情報を複数条件に対して算出させる。複数条件とは、車両の走行状態等の違いにより、異なる値の消費エネルギーが算出されるそれぞれの条件であり、図示の例では、同じ走行予定経路であっても、車両の速度変化の状態が異なる条件、たとえば、走行予定経路上の各信号を停止せずに通過する場合(non-stop)、および各信号で停止する場合(stop)、を異なる条件としている。条件設定部109には、あらかじめこの条件が設定されている。 Then, the condition setting unit 109 causes the speed calculation unit 102 to calculate speed information indicating the speed on the planned travel route for a plurality of conditions. The multiple conditions are conditions for calculating different values of energy consumption due to differences in the driving state of the vehicle.In the example shown in the figure, the speed change state of the vehicle is the same even for the same planned driving route. Different conditions, for example, a case where each signal on the planned travel route passes without stopping (non-stop) and a case where each signal stops (stop) are different conditions. This condition is set in the condition setting unit 109 in advance.
 速度の条件が異なることにより、速度算出部102、走行抵抗値算出部103、駆動力算出部104、トルク算出部105、でそれぞれ算出される走行抵抗、駆動力、トルクが条件別に異なることになる。結果として、消費エネルギー算出部107では、条件別の消費エネルギーが算出される。 Due to the different speed conditions, the running resistance, driving force, and torque calculated by the speed calculating unit 102, the running resistance value calculating unit 103, the driving force calculating unit 104, and the torque calculating unit 105 are different depending on the conditions. . As a result, the consumed energy calculation unit 107 calculates consumed energy according to conditions.
 選択部110は、複数条件の速度情報の夫々について算出した消費エネルギーのうち、最も大きい消費エネルギーを走行予定経路における消費エネルギーとして選択する。選択された消費エネルギーの情報は、図示しない表示部に表示されたり、外部へ出力されたりする。 The selection unit 110 selects the largest consumed energy as the consumed energy in the planned travel route among the consumed energy calculated for each of the speed information of a plurality of conditions. Information on the selected energy consumption is displayed on a display unit (not shown) or output to the outside.
 図2は、実施の形態にかかる消費エネルギー予測装置の処理内容を示すフローチャートである。消費エネルギー予測装置100は、以下の処理順に消費エネルギーを予測する。はじめに、走行予定経路算出部101により、車両の目的地の入力に基づき、目的地までのルート(予定経路)を探索する(ステップS201)。この探索には、地図情報を用いる。 FIG. 2 is a flowchart showing the processing contents of the energy consumption prediction apparatus according to the embodiment. The energy consumption prediction apparatus 100 predicts energy consumption in the following processing order. First, the planned travel route calculation unit 101 searches for a route (planned route) to the destination based on the input of the destination of the vehicle (step S201). Map information is used for this search.
 次に、速度算出部102により、走行予定経路における速度を示す速度情報を条件設定部109で設定された条件別に予測する(ステップS202)。この際、条件別に算出された速度により、予定経路上における車両の時間毎の位置、および距離を得ることができる(ステップS203)。上述したように、たとえば、条件としては、走行予定経路上の各信号を停止せずに通過する場合(non-stop)、および各信号で停止する場合(stop)、を異なる条件とする。 Next, the speed calculation unit 102 predicts speed information indicating the speed on the planned travel route according to the conditions set by the condition setting unit 109 (step S202). At this time, the position and distance of the vehicle for each hour on the planned route can be obtained based on the speed calculated for each condition (step S203). As described above, for example, the conditions are different when each signal on the planned travel route passes without stopping (non-stop) and when it stops at each signal (stop).
 以下の処理では、時間毎に異なる車両の位置に基づき、この位置での消費エネルギーを条件別にそれぞれ算出する。はじめに、車両の予定経路上での位置に基づき、勾配取得部108は地図情報からこの位置での勾配を算出する(ステップS204)。そして、走行抵抗値算出部103は、算出された速度情報と、勾配情報に基づいて走行抵抗値を算出する(ステップS205)。この後、駆動力算出部104は、算出された走行抵抗値に基づいて車両の駆動力を算出する(ステップS206)。 In the following processing, the energy consumption at this position is calculated for each condition based on the position of the vehicle that varies with time. First, based on the position of the vehicle on the planned route, the gradient acquisition unit 108 calculates the gradient at this position from the map information (step S204). Then, the travel resistance value calculation unit 103 calculates a travel resistance value based on the calculated speed information and gradient information (step S205). Thereafter, the driving force calculation unit 104 calculates the driving force of the vehicle based on the calculated running resistance value (step S206).
 次に、トルク算出部105により、算出された駆動力に基づいてこの位置における必要なトルクを算出する(ステップS207)。この後、効率マップ取得部106は、車両のモータの効率マップを取得し、算出された速度とトルクに基づき、効率マップを用いてこの位置での効率を算出する(ステップS208)。 Next, the torque calculation unit 105 calculates a necessary torque at this position based on the calculated driving force (step S207). Thereafter, the efficiency map acquisition unit 106 acquires an efficiency map of the vehicle motor, and calculates the efficiency at this position using the efficiency map based on the calculated speed and torque (step S208).
 この後、消費エネルギー算出部107は、この位置での速度情報、トルク情報、および効率マップに基づいて、消費エネルギーを算出する(ステップS209)。算出された消費エネルギーの情報は、図示しない表示部に表示されたり、外部へ出力されたりする。ステップS204以下の処理は、予定経路の各位置について繰り返し実行される。たとえば、予定経路を所定の区間(たとえばノード-ノード間のリンク(エッジ))毎に分割し、この区間毎に消費エネルギーを算出する。 Thereafter, the consumed energy calculation unit 107 calculates consumed energy based on the speed information, torque information, and efficiency map at this position (step S209). The calculated energy consumption information is displayed on a display unit (not shown) or output to the outside. The processing after step S204 is repeatedly executed for each position of the planned route. For example, the planned route is divided into predetermined sections (for example, a node-node link (edge)), and energy consumption is calculated for each section.
 ステップS202~ステップS209の各処理は、条件設定部109に設定された各条件ごとに算出する。そして、選択部110は、全ての条件による算出が終了したか判断する(ステップS210)。まだ条件による算出が残っていれば(ステップS210:No)、ステップS202に戻り、全ての条件による算出が終了すれば(ステップS210:Yes)、ステップS211に移行する。 Each process of step S202 to step S209 is calculated for each condition set in the condition setting unit 109. Then, the selection unit 110 determines whether the calculation based on all conditions has been completed (step S210). If calculation based on conditions still remains (step S210: No), the process returns to step S202, and if calculation based on all conditions is completed (step S210: Yes), the process proceeds to step S211.
 ステップS211では、選択部110は、消費エネルギー算出部107によって算出された複数条件の速度情報の夫々について算出した消費エネルギーのうち、最も大きい消費エネルギーを走行予定経路における消費エネルギーとして選択し、出力する(ステップS211)。 In step S211, the selection unit 110 selects and outputs the largest consumption energy as the consumption energy in the planned travel route among the consumption energy calculated for each of the speed information of the plurality of conditions calculated by the consumption energy calculation unit 107. (Step S211).
 上記構成によれば、車両に搭載されたモータの特性を考慮し、予定経路上でのトルクを算出し、トルクと速度からモータの効率を得る車両のモータに固有の効率マップを利用して、予定経路の消費エネルギーを予測することができるようになる。これにより、車両の走行前に消費するエネルギーを精度よく予測できるようになる。 According to the above configuration, in consideration of the characteristics of the motor mounted on the vehicle, the torque on the planned route is calculated, and the efficiency of the motor of the vehicle is obtained from the torque and speed. The energy consumption of the planned route can be predicted. As a result, the energy consumed before the vehicle travels can be accurately predicted.
 そして、速度の条件別に消費エネルギーを予測し、最も大きい消費エネルギーを走行予定経路における消費エネルギーとして選択する構成であるため、実際の車両走行時の消費エネルギーが予測した消費エネルギーを超えることを防ぐことができるようになる。これにより、車両が走行経路途中でバッテリ切れを起こすなどの問題を回避できるようになる。 And because it is configured to predict the energy consumption according to speed conditions and select the largest energy consumption as the energy consumption in the planned driving route, it prevents the actual energy consumption during vehicle travel from exceeding the predicted energy consumption Will be able to. As a result, it is possible to avoid problems such as the vehicle running out of battery along the travel route.
(消費エネルギー予測装置のハードウェア構成)
 次に、上記実施形態の実施例について説明する。図3は、消費エネルギー予測装置のハードウェア構成例を示すブロック図である。図3において、消費エネルギー予測装置100は、CPU301、ROM302、RAM303、通信I/F304、GPSユニット305、各種センサ306を備えている。各構成部301~306は、バス307によってそれぞれ接続されている。
(Hardware configuration of energy consumption prediction device)
Next, examples of the above embodiment will be described. FIG. 3 is a block diagram illustrating a hardware configuration example of the energy consumption prediction apparatus. 3, the energy consumption prediction apparatus 100 includes a CPU 301, a ROM 302, a RAM 303, a communication I / F 304, a GPS unit 305, and various sensors 306. Each component 301 to 306 is connected by a bus 307.
 CPU301は、消費エネルギー予測装置100の全体の制御を司る。ROM302は、ブートプログラム、エネルギー予測プログラムなどのプログラムなどを記録保持する。RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録されたプログラムを実行する。 The CPU 301 governs overall control of the energy consumption prediction apparatus 100. The ROM 302 records and holds programs such as a boot program and an energy prediction program. The RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 executes the program recorded in the ROM 302 while using the RAM 303 as a work area.
 通信I/F304は、無線を介してネットワークに接続され、消費エネルギー予測装置100およびCPU301のインターフェースとして機能する。ネットワークとして機能する通信網には、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F304は、たとえば、公衆回線用接続モジュールやETCユニット、FMチューナー、VICS(Vehicle Information and Communication System(登録商標))/ビーコンレシーバなどである。 The communication I / F 304 is connected to the network via wireless and functions as an interface between the energy consumption prediction apparatus 100 and the CPU 301. The communication network functioning as a network includes a public line network, a mobile phone network, DSRC (Dedicated Short Range Communication), LAN, WAN, and the like. The communication I / F 304 is, for example, a public line connection module, an ETC unit, an FM tuner, a VICS (Vehicle Information and Communication System (registered trademark)) / beacon receiver, or the like.
 GPSユニット305は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット305の出力情報は、速度センサ、加速度センサ、ヨーレートセンサ等の各種センサの出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。 The GPS unit 305 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 305 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors such as a speed sensor, an acceleration sensor, and a yaw rate sensor. The information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
 図1に示した各構成は、ROM302、RAM303、等に記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行することによってその機能を実現する。そして、図3に示した消費エネルギー予測装置100は、ナビゲーション装置の一機能とすることができる。 Each configuration shown in FIG. 1 realizes its function by the CPU 301 executing a predetermined program using programs and data recorded in the ROM 302, RAM 303, and the like. And the energy consumption prediction apparatus 100 shown in FIG. 3 can be made into one function of a navigation apparatus.
(速度予測について)
 図4は、速度予測の概要を説明する図である。上記ステップS202の処理を説明する。図には車両の走行予定経路を示してあり、出発地(S)から出発し、目的地(G、図示の例では出発地と同位置)に戻る所定のルート(予定の走行経路)401の例を示している。
(About speed prediction)
FIG. 4 is a diagram for explaining the outline of speed prediction. The process of step S202 will be described. The figure shows a planned travel route of the vehicle. A predetermined route (scheduled travel route) 401 starting from the departure point (S) and returning to the destination (G, the same position as the departure point in the illustrated example) is shown. An example is shown.
1.はじめに、速度予測では、地図情報に基づき、ルートをいくつかの区間に分割し、特徴点、たとえば信号pや曲がり角をノード(node)としたグラフを用いる。また、ノード-ノード間のエッジ(リンク)には、速度予測に必要な情報として、エッジ毎の距離情報、速度情報、信号の有無、曲がり角の有無等、を持たせておく。また、各エッジ毎にエッジ毎の転がり抵抗係数や、勾配の情報を持つ構成にできる。これらはセンサ検出に限らず地図情報から取得することができる。 1. First, in the speed prediction, a route is divided into several sections based on map information, and a graph using feature points such as a signal p and a corner as a node is used. In addition, the edge (link) between the nodes has distance information for each edge, speed information, presence / absence of a signal, presence / absence of a corner, etc. as information necessary for speed prediction. Further, it is possible to have a configuration in which each edge has rolling resistance coefficient and gradient information for each edge. These can be acquired not only from sensor detection but also from map information.
2.次に、エッジの情報を基に、各区間毎の走行速度を予測する。この際には、あらかじめ定めた所定のルールに従い走行速度を決定する。たとえば、
 a.加速度/減速度は0.1[G]とする。
 b.エッジ端が曲がり角で信号がある場合はその点での速度を0[km/h]とする。
 c.エッジ端が曲がり角で信号がない場合はその点での速度を10[km/h]とする。
 d.エッジ端が曲がり角でなく信号がある場合は速度を0[km/h]とする。
等がある。
 また、速度予測にあたり、上記のルールを用いるに限らず、車両が実際に走行して得たプローブデータを用いることもできる。
2. Next, the traveling speed for each section is predicted based on the edge information. At this time, the traveling speed is determined according to a predetermined rule. For example,
a. The acceleration / deceleration is 0.1 [G].
b. When there is a signal at the edge of the corner, the speed at that point is set to 0 [km / h].
c. When the edge end is a corner and there is no signal, the speed at that point is set to 10 [km / h].
d. If the edge is not a corner but a signal, the speed is set to 0 [km / h].
Etc.
Moreover, in speed prediction, not only the above-described rule is used, but also probe data obtained by actually traveling the vehicle can be used.
3.次に、エッジの情報を基に、各区間毎の速度を予測する。図5は、ある区間での速度変化を示す図表である。図中、Vmaxはエッジの情報に基づく速度(上限速度)、始点であるVstartは、前の区間における終端速度、aの勾配は、ルールに基づき決めた加速度、-aの勾配は、ルールに基づき定めた減速度、Vstopは、ルールに基づき決めたこの区間における終端速度、である。 3. Next, the speed for each section is predicted based on the edge information. FIG. 5 is a chart showing speed changes in a certain section. In the figure, Vmax is a speed based on edge information (upper limit speed), Vstart which is the start point is the end speed in the previous section, a is the acceleration determined based on the rule, and -a is based on the rule. The determined deceleration, Vstop, is the terminal speed in this section determined based on the rule.
 この一つ区間における各時間は下記式により得ることができる。
 加速時間ta=(Vmax-Vstart)/a
 減速時間td=(Vmax-Vstop)/a
 定速走行時間tc=[X-((Vstart・ta)/2)+((Vstop・td)/2)/Vmax}-[(ta/2)+(td/2)]
 (ただし、X:この区間の距離である)
Each time in this one section can be obtained by the following formula.
Acceleration time ta = (Vmax−Vstart) / a
Deceleration time td = (Vmax−Vstop) / a
Constant speed travel time tc = [X − ((Vstart · ta) / 2) + ((Vstop · td) / 2) / Vmax} − [(ta / 2) + (td / 2)]
(However, X is the distance of this section)
(条件別の速度予測について)
 上述した速度算出部102は、条件設定部109に設定された条件別に速度を算出する。この複数の条件について説明する。図6-1は、条件別の速度算出を説明する図である。(a)には、走行予定経路算出部101に探索されたルート(予定経路)401の概要を示している。予定経路401上には、直進の信号p1と曲がり角の信号p2があったとする。
(About speed prediction according to conditions)
The speed calculation unit 102 described above calculates a speed for each condition set in the condition setting unit 109. The plurality of conditions will be described. FIG. 6A is a diagram for explaining speed calculation for each condition. (A) shows an outline of a route (scheduled route) 401 searched by the planned traveling route calculation unit 101. It is assumed that there is a straight signal p1 and a turn signal p2 on the planned route 401.
 (b)に示すように、予定経路401は、交差点、信号、曲がり角等の特徴点をノードとした、グラフ(リンク)601aにより構成される。そして、条件1としては、曲がり角の信号p2では車両が止まり、曲がり角以外の直進する信号p1では止まらない場合(non-stop)を設定する。この場合、直進する信号p1を無視したグラフ(リンク)601bを再構成し、このリンク601bに基づく速度を算出する。なお、図示してある時間対速度の図表610は、この条件1に対応したものである。 As shown in (b), the planned route 401 is configured by a graph (link) 601a having feature points such as intersections, signals, and corners as nodes. The condition 1 is set such that the vehicle stops at the turn signal p2 and does not stop at the straight signal p1 other than the turn (non-stop). In this case, a graph (link) 601b ignoring the straight signal p1 is reconstructed, and the speed based on the link 601b is calculated. The time-speed chart 610 shown in the figure corresponds to this condition 1.
 条件2としては、全ての信号p1,p2で止まる場合(stop)を設定する。この場合、予定経路401の全ての特徴点(信号p1,p2)を示すグラフ601aに基づく速度を算出する。 (Condition 2) A case (stop) in which all signals p1 and p2 are stopped is set. In this case, the speed based on the graph 601a indicating all the feature points (signals p1, p2) of the planned route 401 is calculated.
 このように、車両が目的地に到達するまでの予定経路では、信号や交差点、曲がり角等で速度変化が生じるものであり、この速度の変化に対応して、トルク、駆動力についても変化し、消費エネルギー量が変わってくる。このように、車両の走行時に想定される条件をあらかじめ設定しておき、条件別の速度を算出することにより、予測する消費エネルギー量を実際の消費エネルギー量に近づけることができるようになる。具体的には、後述するように、選択部110による条件別の消費エネルギー量の選択によりこれを実現する。 In this way, in the planned route until the vehicle reaches the destination, speed changes occur due to signals, intersections, turning corners, etc., and torque, driving force also changes in response to this speed change, The amount of energy consumed will change. In this way, by setting the conditions assumed when the vehicle is traveling in advance and calculating the speed for each condition, the predicted energy consumption can be brought close to the actual energy consumption. Specifically, as will be described later, this is realized by the selection of energy consumption by condition by the selection unit 110.
 図6-2は、条件別の速度算出処理を示すフローチャートである。上述した条件別のグラフの構成および再構成を主に記載してある。図2のステップS202の処理の詳細を示している。はじめに、速度算出部102は、走行予定経路算出部101で算出された走行経路について、交差点、信号、曲がり角等の特徴点をノードにしたグラフを構成する(ステップS601)。 FIG. 6-2 is a flowchart showing speed calculation processing according to conditions. The configuration and reconstruction of the above-mentioned graphs according to conditions are mainly described. The details of the process of step S202 of FIG. 2 are shown. First, the speed calculation unit 102 configures a graph in which feature points such as intersections, signals, and corners are nodes for the travel route calculated by the planned travel route calculation unit 101 (step S601).
 次に、速度算出部102は、条件設定部109に設定された各条件について速度を算出する。この速度算出にあたり、条件設定部109には上記の条件1.non-stopと、2.stopが設定されているとする。これに従い、速度算出部102は、算出する条件がいずれであるか判断する。たとえば、条件が2.stopであれば(ステップS602:Yes)、ステップS601で構成されたグラフに基づき速度を予測する(ステップS609)。 Next, the speed calculation unit 102 calculates the speed for each condition set in the condition setting unit 109. In this speed calculation, the condition setting unit 109 receives the above conditions 1. non-stop; 2. Assume that stop is set. Accordingly, the speed calculation unit 102 determines which condition is to be calculated. For example, if the condition is 2. If it is a stop (step S602: Yes), the speed is predicted based on the graph constructed in step S601 (step S609).
 一方、条件が1.non-stopであれば(ステップS602:No)、以下の処理を行う。はじめに、走行経路の最初のノードへ移動し(ステップS603)、目的地であるか否かを判断する(ステップS604)。このノードが目的地であれば(ステップS604:No)、ステップS609に移行する。このノードが目的地でなければ(ステップS604:Yes)、走行経路の次のノードが曲がり角あるいは目的地ではないか判断する(ステップS605)。 On the other hand, the condition is 1. If it is non-stop (step S602: No), the following processing is performed. First, it moves to the first node of the travel route (step S603), and determines whether it is a destination (step S604). If this node is the destination (step S604: No), the process proceeds to step S609. If this node is not the destination (step S604: Yes), it is determined whether the next node on the travel route is a corner or a destination (step S605).
 走行経路の次のノードが曲がり角あるいは目的地でない場合には(ステップS605:Yes)、次のノードを無視して手前のノードをその次のノードへ結合する(ステップS606)。そして、ノード間の速度情報を変更し(ステップS607)、ステップS605に戻る。ノードの結合によりノード間の距離が長くなるため、対応して車両の加減速が一つ減りノード間の速度が変化する。 If the next node of the travel route is not at the corner or the destination (step S605: Yes), the next node is ignored and the previous node is joined to the next node (step S606). Then, the speed information between nodes is changed (step S607), and the process returns to step S605. Since the distance between the nodes becomes longer due to the combination of the nodes, the acceleration / deceleration of the vehicle is correspondingly reduced by one and the speed between the nodes changes accordingly.
 また、ステップS605において、走行経路の次のノードが曲がり角あるいは目的地である場合には(ステップS605:No)、走行経路の次のノードへ移動し(ステップS608)、ステップS604に戻る。 In step S605, if the next node on the travel route is a corner or a destination (step S605: No), it moves to the next node on the travel route (step S608), and returns to step S604.
 上記例では、条件2でグラフを構成した後、条件1についてはグラフを再構成する処理を行い、条件1.2.それぞれで構成されたグラフに基づき速度を予測する。 In the above example, after constructing the graph with condition 2, the process for reconstructing the graph for condition 1 is performed, and condition 1.2. The speed is predicted based on the graph composed of each.
 図7-1は、速度予測の詳細内容を示すフローチャートである。図6-2のステップS609の詳細な処理例について説明する。はじめに、区間の最初のノードへ移動する(ステップS701)。そして、このノードが目的地でないか判断し(ステップS702)、目的地であれば(ステップS702:No)、処理を終了するが、目的地でなければ(ステップS702:Yes)、以下の処理を行う。 Fig. 7-1 is a flowchart showing the detailed contents of speed prediction. A detailed processing example of step S609 in FIG. 6-2 will be described. First, it moves to the first node in the section (step S701). Then, it is determined whether this node is not the destination (step S702). If it is the destination (step S702: No), the process is terminated. If it is not the destination (step S702: Yes), the following process is performed. Do.
 まず、次のノードまでの距離を地図情報等に基づき算出する(ステップS703)。そして、ノード間の距離/速度情報及び設定された加減速度からノード間での加速時間ta、減速時間td、定速走行時間tcを算出する(ステップS704)。この後、算出したノード間での加速時間ta、減速時間td、定速走行時間tc及びノード間の速度情報と、設定された加減速度からノード間の速度を算出する(ステップS705)。この後、次のノードへ移動し(ステップS706)、ステップS702に戻る。 First, the distance to the next node is calculated based on the map information or the like (step S703). Then, the acceleration time ta, the deceleration time td, and the constant speed traveling time tc between the nodes are calculated from the distance / speed information between the nodes and the set acceleration / deceleration (step S704). Thereafter, the speed between the nodes is calculated from the calculated acceleration time ta, deceleration time td, constant speed traveling time tc, speed information between the nodes, and the set acceleration / deceleration (step S705). Thereafter, the node moves to the next node (step S706), and returns to step S702.
 図7-2は、速度予測例を示す図表である。横軸は距離、縦軸は速度である。図4の走行経路401における時間毎の速度の変化を示している。この図には、条件1による曲がり角以外の信号では止まらない(non-stop)場合の予測速度と、条件2による各信号で止まる(stop)の場合の予測速度(図中1点鎖線)を示している。信号で止まる(stop)の場合には、曲がり角以外の信号では止まらない(non-stop)場合の変化特性に加えて、より細かに速度変化することが示されている。 Fig. 7-2 is a chart showing an example of speed prediction. The horizontal axis is distance, and the vertical axis is speed. The change of the speed for every time in the driving | running route 401 of FIG. 4 is shown. This figure shows the predicted speed when the signal other than the turn by condition 1 does not stop (non-stop) and the predicted speed when the signal stops by condition 2 (stop) (one-dot chain line in the figure). ing. In the case of stopping at a signal (stop), it is shown that the speed changes more finely in addition to the change characteristics when the signal does not stop at a signal other than a corner (non-stop).
(位置、勾配算出について)
 次に、位置算出および勾配算出について説明する。位置算出については、上記速度予測に基づき時系列に位置変化を算出する。位置算出は、下記式に基づき行う。
(About position and gradient calculation)
Next, position calculation and gradient calculation will be described. For position calculation, position changes are calculated in time series based on the speed prediction. The position calculation is performed based on the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図8は、速度予測に基づき算出した位置算出例を示す図表である。横軸は時間、縦軸は距離である。図7の予測速度(stop)に基づき算出した例を示している。図示のように、時間毎に積算された距離となる。 FIG. 8 is a chart showing an example of position calculation calculated based on speed prediction. The horizontal axis is time, and the vertical axis is distance. The example calculated based on the prediction speed (stop) of FIG. 7 is shown. As shown in the figure, the distance is integrated every time.
 次に、勾配算出は、位置変化から時系列の勾配変化を算出する。図9は、位置変化に基づき算出した勾配算出例を示す図表である。横軸は時間、縦軸は勾配(角度)である。この勾配θ[deg]は、地図情報から得ることができ、位置毎の勾配を得る。地図情報は、たとえば、図3に記載のROM302や外部記憶部に記憶される。あるいは通信I/F304を介して外部のサーバ等から取得することができる。 Next, gradient calculation calculates time-series gradient change from position change. FIG. 9 is a chart showing a gradient calculation example calculated based on the position change. The horizontal axis is time, and the vertical axis is gradient (angle). This gradient θ [deg] can be obtained from the map information, and the gradient for each position is obtained. The map information is stored in, for example, the ROM 302 or the external storage unit illustrated in FIG. Or it can acquire from an external server etc. via communication I / F304.
(走行抵抗/駆動力算出、トルク算出について)
 次に、走行抵抗、駆動力算出について説明する。走行抵抗は、上記の速度と勾配に基づき算出する。駆動力はこの走行抵抗から算出する。駆動力=空気抵抗+転がり抵抗+勾配抵抗+加速抵抗+内部抵抗で得ることができ、下記式に基づき算出する。
 Fd[N]=1/2・ρCDAv2+μrmg+mgsinθ+m(dv/dt)+Ri
 (Fd:駆動力、ρ:空気密度、CD:CD値、A:前面投影面積、μr:転がり抵抗係数、m:車重、g:重力加速度、Ri:内部抵抗)
 なお、内部抵抗とは、駆動系の機械損失を含む、空気抵抗、転がり抵抗、勾配抵抗、加速抵抗以外の抵抗成分のことであり、ここでは既知のものであると仮定している。
(About running resistance / driving force calculation, torque calculation)
Next, traveling resistance and driving force calculation will be described. The running resistance is calculated based on the above speed and gradient. The driving force is calculated from this running resistance. Driving force = air resistance + rolling resistance + gradient resistance + acceleration resistance + internal resistance, and can be calculated based on the following formula.
Fd [N] = 1/2 · ρC D Av 2 + μrmg + mg sin θ + m (dv / dt) + Ri
(Fd: driving force, [rho: air density, C D: C D value, A: front projected area, .mu.r: rolling resistance coefficient, m: vehicle weight, g: gravitational acceleration, Ri: Internal resistance)
The internal resistance is a resistance component other than air resistance, rolling resistance, gradient resistance, and acceleration resistance, including mechanical loss of the drive system, and is assumed to be a known one here.
 トルクは、上記の駆動力から算出する。図10は、駆動力オブザーバの構成例を示す図である。ここで、トルクTは、図に示した構成の駆動力オブザーバ1000の入出力を逆算することにより得ることができる。すなわち、
 T=J・(dω/dt)+rFd
により得ることができる。なお、トルクTは、車両あたりの全トルクである。
 (ただし、T:トルク[Nm]、J:タイヤイナーシャ[Nms2]、ω:タイヤの回転速度[rad/s]、r:タイヤ半径[m])
The torque is calculated from the above driving force. FIG. 10 is a diagram illustrating a configuration example of the driving force observer. Here, the torque T can be obtained by calculating back and forth the input / output of the driving force observer 1000 having the configuration shown in the figure. That is,
T = J · (dω / dt) + rFd
Can be obtained. The torque T is the total torque per vehicle.
(Where T: torque [Nm], J: tire inertia [Nms 2 ], ω: tire rotation speed [rad / s], r: tire radius [m])
 上記各パラメータの数値例としては、たとえば、ρ=1.29[kg/m3]、CD=0.530、A=1.28[m2]、μr=0.0185、m=395[kg]である。 As numerical examples of the above parameters, for example, ρ = 1.29 [kg / m 3 ], C D = 0.530, A = 1.28 [m 2 ], μr = 0.0185, m = 395 [ kg].
(効率算出について)
 図11は、モータの効率マップを示す図表である。この効率マップ1100は、横軸の回転速度および縦軸のトルクと効率の関係を示したものである。この効率マップ1100は、車両に搭載されるモータ毎に特性が異なり、たとえば、あらかじめ近似式として、あるいはテーブル化して図3に記載のROM302や外部記憶部に記憶される。あるいは通信I/F304を介して外部のサーバ等から取得することができる。この効率マップ1100を用いることにより、回転速度とトルクに対応する交点から効率ηを求めることができる。
(About efficiency calculation)
FIG. 11 is a chart showing a motor efficiency map. This efficiency map 1100 shows the relationship between the rotational speed on the horizontal axis and the torque on the vertical axis and the efficiency. The efficiency map 1100 has different characteristics for each motor mounted on the vehicle. For example, the efficiency map 1100 is stored in advance in the ROM 302 or the external storage unit illustrated in FIG. Or it can acquire from an external server etc. via communication I / F304. By using this efficiency map 1100, the efficiency η can be obtained from the intersection corresponding to the rotational speed and the torque.
 効率ηは下記のように、トルクと回転速度に関する関数として近似式で表現することができる。
 η=f(T,ω)
The efficiency η can be expressed by an approximate expression as a function relating to torque and rotational speed as follows.
η = f (T, ω)
 なお、上記のトルクTは、車両毎の全トルクであり、車両が一つのモータを備える場合には、一つの効率マップ1100を利用する。車両が各輪にインホイールモータを備えた複数モータを有する場合には、車輪毎に異なるトルクとなる。たとえば4輪にそれぞれインホイールモータが設けられた場合、単純には全トルクを4で割りそれぞれのモータを駆動するが、カーブや勾配等により、各輪のトルク配分が異なる。このため、このような複数のモータを備えた車両では、モータ数分の効率マップ1100を備え、各車輪のモータ毎に独立したトルクとなり、対応して異なる効率を求めることになる。 The torque T is the total torque for each vehicle, and when the vehicle includes one motor, one efficiency map 1100 is used. When the vehicle has a plurality of motors each having an in-wheel motor on each wheel, the torque is different for each wheel. For example, when an in-wheel motor is provided for each of the four wheels, the total torque is simply divided by four to drive each motor, but the torque distribution of each wheel differs depending on the curve, gradient, and the like. For this reason, a vehicle equipped with such a plurality of motors is provided with an efficiency map 1100 for the number of motors, resulting in an independent torque for each motor of each wheel, and correspondingly different efficiency.
(消費エネルギー算出について)
 消費エネルギーは、上述した各算出後の速度、トルク、効率に基づき算出される。消費エネルギーEは、下記式により算出される。
(About energy consumption calculation)
The consumed energy is calculated based on the speed, torque, and efficiency after each calculation described above. The consumed energy E is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図12は、算出後の消費エネルギーを示す図表である。横軸は距離、縦軸は電力量であり、図4に示した出発地から目的地までの走行経路401を辿ったときに消費されるエネルギー量の積算値が示されている。図には、速度条件として設定された、各信号で止まる(stop)の条件と、曲がり角以外の信号では止まらない(non-stop)の条件の消費エネルギーの算出結果を示している。算出された消費エネルギー量は、図12のような積算量をグラフあるいは数値で表示部等に表示出力したり、装置外部に出力することができる。 FIG. 12 is a chart showing the energy consumption after calculation. The horizontal axis represents the distance, and the vertical axis represents the amount of electric power. The integrated value of the amount of energy consumed when the travel route 401 from the starting point to the destination shown in FIG. 4 is traced is shown. The figure shows the calculation results of energy consumption under the condition of stopping at each signal (stop) and the condition of not stopping at a signal other than a corner (non-stop) set as speed conditions. The calculated energy consumption amount can be output as an integrated amount as shown in FIG. 12 on a display unit or the like as a graph or numerical value, or output outside the apparatus.
 ここで、選択部110は、条件別に算出された消費エネルギーについて常にもっとも大きな値を選択し、出力する。この場合、図12に示した消費エネルギーについては、各信号で止まる(stop)の条件と、曲がり角以外の信号では止まらない(non-stop)の条件の消費エネルギーのうち、各距離でのいずれか高い方(図中常に上方に位置する)の消費エネルギーを選択していく。 Here, the selection unit 110 always selects and outputs the largest value for the consumed energy calculated according to the conditions. In this case, the energy consumption shown in FIG. 12 is any of the energy consumption at each distance among the conditions of stopping at each signal (stop) and the energy consumption of not stopping at a signal other than a corner (non-stop). The energy consumption of the higher one (always above the figure) is selected.
 図12に示した結果によれば、消費エネルギー量の増加の傾向や程度、および目的地に到達するまでの間に消費する最終的な消費エネルギー量を簡単に知ることができるようになる。 According to the result shown in FIG. 12, it becomes possible to easily know the tendency and extent of the increase in the amount of energy consumption and the final amount of energy consumed before reaching the destination.
 特に、選択部110で常に高い消費エネルギーを選択する構成とすることにより、各距離での予測した消費エネルギー量を常に実際の消費エネルギー量よりも高く見積もることになる。これにより、実際の走行時に、予測した消費エネルギー量より実際の消費エネルギー量が上回ることがなく、バッテリが残量不足となり走行不能になる等の問題を回避できるようになる。 Particularly, by selecting a configuration in which the selection unit 110 always selects high energy consumption, the estimated energy consumption at each distance is always estimated to be higher than the actual energy consumption. As a result, the actual amount of energy consumed does not exceed the predicted amount of energy consumed during actual traveling, and problems such as the inability to travel due to insufficient remaining battery power can be avoided.
 上記の実施例では、車両に消費エネルギー推定装置の全機能を搭載する構成としたが、これに限らない。たとえば、図1および図3に示した構成、すなわち、消費エネルギー推定にかかる構成を外部サーバに設け、車両はサーバと通信する機能だけを有する端末を設ける構成とすることもできる。この場合、サーバが消費エネルギー推定にかかる処理を実行し、車両の端末は、サーバとの間の通信機能と、車両の種別等、車両に搭載したモータを特定できる情報をサーバが検出できるよう構成すればよい。このような構成とすれば、車両側の装置コストおよび処理負担を軽減できるようになる。 In the above embodiment, the vehicle is provided with all the functions of the energy consumption estimation device. However, the present invention is not limited to this. For example, the configuration shown in FIG. 1 and FIG. 3, that is, the configuration relating to the energy consumption estimation may be provided in an external server, and the vehicle may be configured to include a terminal having only a function of communicating with the server. In this case, the server executes processing related to the energy consumption estimation, and the terminal of the vehicle is configured so that the server can detect information that can identify the motor mounted on the vehicle, such as the communication function with the server and the type of the vehicle. do it. With such a configuration, the apparatus cost and processing burden on the vehicle side can be reduced.
 以上説明したように、車両の予定経路に関する情報と、車両のモータに固有の特性を有する効率マップを用いることにより、車両の走行前の状態で、目的地に至るまでの消費エネルギー量を精度よく予測できるようになる。これにより、予定経路上での適切な充電ポイントを事前に計画することもできるようになる。 As described above, by using information related to the planned route of the vehicle and an efficiency map having characteristics specific to the motor of the vehicle, the amount of energy consumed to reach the destination can be accurately measured before the vehicle travels. Be able to predict. As a result, an appropriate charging point on the planned route can be planned in advance.
 なお、本実施の形態で説明した方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 Note that the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 消費エネルギー予測装置
 101 走行予定経路算出部
 102 速度算出部
 103 走行抵抗値算出部
 104 駆動力算出部
 105 トルク算出部
 106 効率マップ取得部
 107 消費エネルギー算出部
 108 勾配取得部
 109 条件設定部
 110 選択部
 305 GPSユニット
 306 各種センサ
 307 バス
 401 走行経路
1000 駆動力オブザーバ
1100 効率マップ
DESCRIPTION OF SYMBOLS 100 Consumption energy prediction apparatus 101 Planned travel route calculation part 102 Speed calculation part 103 Traveling resistance value calculation part 104 Driving force calculation part 105 Torque calculation part 106 Efficiency map acquisition part 107 Consumption energy calculation part 108 Gradient acquisition part 109 Condition setting part 110 Selection 305 GPS unit 306 Various sensors 307 Bus 401 Traveling route 1000 Driving force observer 1100 Efficiency map

Claims (7)

  1.  目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置であって、
     前記目的地に対応する前記走行予定経路を算出する走行予定経路算出手段と、
     前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出手段と、
     前記複数条件の速度情報の夫々について、
      前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出手段と、
      前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出手段と、
      前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出手段と、
      前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得手段と、
      前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出手段と、
     前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択手段と、
     を備えることを特徴とする消費エネルギー予測装置。
    An energy consumption prediction device for predicting energy consumption consumed when a vehicle travels on a planned travel route to a destination,
    A planned travel route calculation means for calculating the planned travel route corresponding to the destination;
    Speed calculating means for calculating speed information indicating speed on the planned travel route for a plurality of conditions;
    For each of the multiple conditions of speed information,
    Running resistance value calculating means for calculating a running resistance value based on the speed information;
    Driving force calculating means for calculating the driving force of the vehicle based on the running resistance value;
    Torque calculating means for calculating torque information indicating the torque of the planned travel route based on the driving force;
    Efficiency map acquisition means for acquiring an efficiency map of drive means for driving the vehicle;
    Energy consumption calculating means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route;
    Selecting means for selecting the largest consumed energy as the consumed energy in the planned travel route among the consumed energy calculated for each of the speed information of the plurality of conditions;
    A device for predicting energy consumption, comprising:
  2.  前記複数条件は、前記走行予定経路の複数のノードにおいて全く停止しない場合と、当該複数のノードにおける一部において停止する場合を含むことを特徴とする請求項1に記載の消費エネルギー予測装置。 2. The energy consumption prediction apparatus according to claim 1, wherein the plurality of conditions include a case where no stop is made at a plurality of nodes of the planned travel route and a case where a stop is made at a part of the plurality of nodes.
  3.  前記ノードは、前記走行予定経路上の交差点、信号、あるいは曲がり角であることを特徴とする請求項2に記載の消費エネルギー予測装置。 The energy consumption prediction apparatus according to claim 2, wherein the node is an intersection, a signal, or a turn on the planned travel route.
  4.  前記走行予定経路における勾配を示す勾配情報を取得する勾配取得手段をさらに備え、
     前記走行抵抗値算出手段は、前記速度情報および前記勾配情報に基づいて前記走行抵抗値を算出することを特徴とする請求項1に記載の消費エネルギー予測装置。
    Further comprising gradient acquisition means for acquiring gradient information indicating the gradient in the planned travel route;
    The said running resistance value calculation means calculates the said running resistance value based on the said speed information and the said gradient information, The consumption energy prediction apparatus of Claim 1 characterized by the above-mentioned.
  5.  前記トルク算出手段は、
     前記トルクをT、前記駆動力をFd、前記車両に搭載された車輪の慣性モーメントをJ、前記車輪の角速度をω、前記車輪の半径をr、経過時間をtとすると、
     T=J・(dω/dt)+rFd
     により前記トルクの変化を算出することを特徴とする請求項1に記載の消費エネルギー予測装置。
    The torque calculation means includes
    When the torque is T, the driving force is Fd, the moment of inertia of a wheel mounted on the vehicle is J, the angular velocity of the wheel is ω, the radius of the wheel is r, and the elapsed time is t,
    T = J · (dω / dt) + rFd
    The energy consumption prediction apparatus according to claim 1, wherein a change in the torque is calculated by the following.
  6.  目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置の消費エネルギー予測方法であって、
     前記目的地に対応する前記走行予定経路を算出する走行予定経路算出工程と、
     前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出工程と、
     前記複数条件の速度情報の夫々について、
      前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出工程と、
      前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出工程と、
      前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出工程と、
      前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得工程と、
      前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出工程と、
     前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択工程と、
     を含むことを特徴とする消費エネルギー予測方法。
    A consumption energy prediction method of a consumption energy prediction device that predicts consumption energy consumed when a vehicle travels on a planned travel route to a destination,
    A planned travel route calculating step for calculating the planned travel route corresponding to the destination;
    A speed calculating step of calculating speed information indicating speed on the planned travel route with respect to a plurality of conditions;
    For each of the multiple conditions of speed information,
    A running resistance value calculating step of calculating a running resistance value based on the speed information;
    A driving force calculation step of calculating the driving force of the vehicle based on the running resistance value;
    A torque calculating step of calculating torque information indicating the torque of the planned travel route based on the driving force;
    An efficiency map acquisition step of acquiring an efficiency map of driving means for driving the vehicle;
    An energy consumption calculating step of calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route;
    A selection step of selecting the largest consumed energy as the consumed energy in the planned travel route among the consumed energy calculated for each of the speed information of the plurality of conditions,
    A method for predicting energy consumption, comprising:
  7.  目的地までの走行予定経路を車両が走行する際に消費する消費エネルギーを予測する消費エネルギー予測装置に適用される消費エネルギー予測プログラムであって、
     コンピュータを、
     前記目的地に対応する前記走行予定経路を算出する走行予定経路算出手段と、
     前記走行予定経路における速度を示す速度情報を複数条件に対して算出する速度算出手段と、
     前記複数条件の速度情報の夫々について、
      前記速度情報に基づいて走行抵抗値を算出する走行抵抗値算出手段と、
      前記走行抵抗値に基づいて前記車両の駆動力を算出する駆動力算出手段と、
      前記駆動力に基づいて前記走行予定経路のトルクを示すトルク情報を算出するトルク算出手段と、
      前記車両を駆動する駆動手段の効率マップを取得する効率マップ取得手段と、
      前記走行予定経路における前記速度情報、前記トルク情報、および前記効率マップに基づいて、前記消費エネルギーを算出する消費エネルギー算出手段と、
     前記複数条件の速度情報の夫々について算出した前記消費エネルギーのうち、最も大きい消費エネルギーを前記走行予定経路における消費エネルギーとして選択する選択手段、
     として機能させることを特徴とする消費エネルギー予測プログラム。
    An energy consumption prediction program applied to an energy consumption prediction device for predicting energy consumption consumed when a vehicle travels on a planned travel route to a destination,
    Computer
    A planned travel route calculation means for calculating the planned travel route corresponding to the destination;
    Speed calculating means for calculating speed information indicating speed on the planned travel route for a plurality of conditions;
    For each of the multiple conditions of speed information,
    Running resistance value calculating means for calculating a running resistance value based on the speed information;
    Driving force calculating means for calculating the driving force of the vehicle based on the running resistance value;
    Torque calculating means for calculating torque information indicating the torque of the planned travel route based on the driving force;
    Efficiency map acquisition means for acquiring an efficiency map of drive means for driving the vehicle;
    Energy consumption calculating means for calculating the energy consumption based on the speed information, the torque information, and the efficiency map in the planned travel route;
    Selection means for selecting the largest consumed energy as the consumed energy in the planned travel route among the consumed energy calculated for each of the speed information of the plurality of conditions,
    Energy consumption prediction program characterized by functioning as
PCT/JP2011/079735 2011-12-21 2011-12-21 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program WO2013094046A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/079735 WO2013094046A1 (en) 2011-12-21 2011-12-21 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program
JP2013550020A JP5687363B2 (en) 2011-12-21 2011-12-21 Energy consumption prediction apparatus, energy consumption prediction method, and energy consumption prediction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079735 WO2013094046A1 (en) 2011-12-21 2011-12-21 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program

Publications (1)

Publication Number Publication Date
WO2013094046A1 true WO2013094046A1 (en) 2013-06-27

Family

ID=48667970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079735 WO2013094046A1 (en) 2011-12-21 2011-12-21 Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program

Country Status (2)

Country Link
JP (1) JP5687363B2 (en)
WO (1) WO2013094046A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131108A (en) * 2018-02-01 2019-08-08 本田技研工業株式会社 Vehicle control system, vehicle control method, and program
KR20200063668A (en) * 2018-11-28 2020-06-05 현대자동차주식회사 Apparatus and method for energy consumption prediction, and vehicle system
WO2022240424A1 (en) * 2021-05-14 2022-11-17 Hitachi America, Ltd. Optimizing motor control based on received information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310638A (en) * 1996-05-20 1997-12-02 Denso Corp Engine control device and acceleration command device
JP2002188932A (en) * 2000-12-21 2002-07-05 Toyota Motor Corp Automobile navigation system
JP2009067350A (en) * 2007-09-18 2009-04-02 Aisin Aw Co Ltd Device and method for estimating vehicle consuming energy, and computer program
JP2011016465A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Travel energy calculation system for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310638A (en) * 1996-05-20 1997-12-02 Denso Corp Engine control device and acceleration command device
JP2002188932A (en) * 2000-12-21 2002-07-05 Toyota Motor Corp Automobile navigation system
JP2009067350A (en) * 2007-09-18 2009-04-02 Aisin Aw Co Ltd Device and method for estimating vehicle consuming energy, and computer program
JP2011016465A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Travel energy calculation system for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131108A (en) * 2018-02-01 2019-08-08 本田技研工業株式会社 Vehicle control system, vehicle control method, and program
JP7097188B2 (en) 2018-02-01 2022-07-07 本田技研工業株式会社 Vehicle control systems, vehicle control methods, and programs
KR20200063668A (en) * 2018-11-28 2020-06-05 현대자동차주식회사 Apparatus and method for energy consumption prediction, and vehicle system
KR102664115B1 (en) * 2018-11-28 2024-05-10 현대자동차주식회사 Apparatus and method for energy consumption prediction, and vehicle system
WO2022240424A1 (en) * 2021-05-14 2022-11-17 Hitachi America, Ltd. Optimizing motor control based on received information

Also Published As

Publication number Publication date
JPWO2013094046A1 (en) 2015-04-27
JP5687363B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US11880206B2 (en) Power management, dynamic routing and memory management for autonomous driving vehicles
JP5029494B2 (en) Driving energy learning apparatus, method and program
JP5926558B2 (en) Vehicle information system and server device
US9835463B2 (en) Route searching device, terminal device, and route searching method
JP5120204B2 (en) Travel guidance device, travel guidance method, and computer program
JP5218193B2 (en) Navigation device, electric motor drive motor control system, and drive motor control method
JP6502294B2 (en) Electric truck travel route selection system, electric truck travel route selection method
WO2013094045A1 (en) Energy consumption prediction device, energy consumption prediction method, and energy consumption prediction program
EP2820381A1 (en) Fuel consumption calculations and warnings
JP6171141B2 (en) Energy estimation device, vehicle information system, server device
WO2014168023A1 (en) Device for predicting amount of energy consumption and method for predicting amount of energy consumption
JP5841388B2 (en) Fuel consumption prediction device, navigation device, and fuel consumption prediction method
JP5687363B2 (en) Energy consumption prediction apparatus, energy consumption prediction method, and energy consumption prediction program
JP4863086B2 (en) Driving support device, navigation device, and computer program
JP6108910B2 (en) Gradient information generation system, method and program
JP6088082B2 (en) Management device, terminal device, route management method, and route acquisition method
JP2019203781A (en) Travel route guiding device and travel route guiding program
JP2011142757A (en) Distance-to-empty calculation device and vehicle having the same
JP2010091454A (en) Apparatus for measuring vehicle travel speed
WO2015115538A1 (en) Vehicular information system and server device
JPWO2013094045A1 (en) Energy consumption prediction apparatus, energy consumption prediction method, and energy consumption prediction program
JP2012163509A (en) Dead reckoning navigation device for vehicle, dead reckoning navigation method for vehicle and program for dead reckoning navigation method for vehicle
WO2014083710A1 (en) Route search device, route search method, and route search program
JP6012711B2 (en) Management device, terminal device, route management method, and route acquisition method
JP4095460B2 (en) Operation management system for commercial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877794

Country of ref document: EP

Kind code of ref document: A1