WO2013094019A1 - 車両駆動ユニットの制御装置 - Google Patents

車両駆動ユニットの制御装置 Download PDF

Info

Publication number
WO2013094019A1
WO2013094019A1 PCT/JP2011/079526 JP2011079526W WO2013094019A1 WO 2013094019 A1 WO2013094019 A1 WO 2013094019A1 JP 2011079526 W JP2011079526 W JP 2011079526W WO 2013094019 A1 WO2013094019 A1 WO 2013094019A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
margin
internal combustion
combustion engine
vehicle
Prior art date
Application number
PCT/JP2011/079526
Other languages
English (en)
French (fr)
Inventor
貴志 錦織
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/079526 priority Critical patent/WO2013094019A1/ja
Publication of WO2013094019A1 publication Critical patent/WO2013094019A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device for a vehicle drive unit, and more particularly, includes at least an internal combustion engine as a power device for the vehicle, and a torque reserve operation for securing a potential margin torque that can be output by the vehicle in a plurality of forms.
  • the present invention relates to a control device for an executable vehicle drive unit.
  • Patent Document 1 discloses a control device for an internal combustion engine.
  • this conventional control device in order to advance the ignition timing and increase the torque with high response when a high torque is required for the internal combustion engine, control is performed to retard the ignition timing in advance.
  • a surplus torque reserve torque
  • an ignition device as a sub-actuator for adjusting the torque. Therefore, a torque reserve operation is performed.
  • the retard amount of the ignition timing for ensuring a surplus torque is adjusted according to the lift amount of the intake valve. According to such control, it is possible to suppress the ignition timing from being retarded excessively in order to improve the torque response in an operating state where the torque response is high with respect to the change in the lift amount of the intake valve. .
  • variable valve mechanism or the waste gate valve is coordinated with the throttle valve in addition to securing the surplus torque by the cooperation between the ignition device and the throttle valve in Patent Document 1.
  • a surplus torque can be secured (reserved) by a plurality of forms of torque reserve operation using various actuators.
  • a motor provided as a power device together with the internal combustion engine is required by power generation using the driving force of the internal combustion engine or torque reserve operation using power generation by a device mounted on the vehicle. It is also possible to secure a marginal torque that can be released according to the condition.
  • the magnitude of the decrease in the performance value as a price for executing the individual torque reserve operations depends on various situations in which the vehicle is placed (specifically, the operating state of the internal combustion engine, the battery mounted on the vehicle) It also changes according to the state of charge (SOC) and the environmental state of the vehicle (for example, the amount of solar radiation, the outside air temperature and the road gradient).
  • SOC state of charge
  • the environmental state of the vehicle for example, the amount of solar radiation, the outside air temperature and the road gradient.
  • Patent Document 1 does not assume that the vehicle drive unit uses a plurality of torque reserve operations in order to use the surplus torque. For this reason, when multiple torque reserve operations are used to use surplus torque, the above performance values (such as internal combustion engine fuel efficiency, exhaust emission, or quietness) associated with execution of torque reserve operations are minimized. However, there was still room for improvement in terms of providing a method that can be used.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • An object of the present invention is to provide a control device for a vehicle drive unit that can secure a desired margin torque while suppressing a decrease in value as much as possible.
  • the present invention is a control device for a vehicle drive unit including at least an internal combustion engine as a power device for a vehicle, and includes a surplus torque control means and a surplus torque management means.
  • the surplus torque control means is configured so that the internal combustion engine is in accordance with a predetermined torque reserve request that requires securing a potential surplus torque that can be output by the vehicle drive unit in addition to the actual torque that is actually output by the vehicle drive unit.
  • a torque reserve operation for securing the margin torque can be executed in a plurality of forms. is there.
  • the margin torque management means is configured to determine which of the plurality of torque reserve operations is based on the fact that the predetermined performance value of the vehicle is small when each of the plurality of torque reserve operations secures the same margin torque. Is used to manage whether the margin torque should be secured.
  • the margin torque management means in the present invention determines the superiority or inferiority of the plurality of torque reserve operations on the basis of a small decrease in the performance value, and determines the superiority or inferiority in order to obtain a predetermined target margin torque.
  • the margin torque control means may be instructed to select and execute one or more torque reserve operations having a relatively high priority.
  • the margin torque management means when securing the target margin torque, the torque that can ensure the target margin torque in a state where the decrease in the performance value is the smallest among the plurality of torque reserve operations.
  • Optimal reserve operation selection means for selecting the reserve operation may be included.
  • the margin torque management means in the present invention when a predetermined target margin torque is secured using the plurality of torque reserve operations, when the margin torque equivalent to the target margin torque is to be maintained, Including margin torque ratio correction means for correcting the ratio of the margin torque secured by each torque reserve operation so that the ratio of the margin torque due to the torque reserve operation of one or more with a relatively small decrease in performance value increases It may be. As a result, it is possible to efficiently secure a sufficient torque while suppressing the decrease in the performance value as a price for executing the torque reserve operation as much as possible.
  • the internal combustion engine in the present invention may be a supercharged internal combustion engine.
  • one of the plurality of torque reserve operations may be an operation of securing the margin torque by increasing a boost pressure of the internal combustion engine.
  • the surplus torque management means prohibits the fuel cut execution in response to a deceleration request of the vehicle when the target surplus torque cannot be secured without using the surplus torque by adjusting the boost pressure. May be included. Thereby, it is possible to prevent the supercharging pressure from being easily lowered during deceleration due to the fuel cut. As a result, the target surplus torque can be more reliably secured in preparation for the next request for acceleration or the like, so that deterioration of the drivability of the vehicle due to the lack of the surplus torque can be suppressed.
  • the performance value in the present invention may be a fuel consumption of the internal combustion engine. As a result, it is possible to secure a desired margin torque while suppressing as much as possible fuel consumption deterioration as a price for executing the torque reserve operation.
  • FIG. 2 is a diagram showing a detailed configuration of the vehicle drive unit shown in FIG. 1 centering on a configuration of an internal combustion engine that is a main power unit. It is a flowchart of the routine performed in Embodiment 1 of the present invention. It is a figure used for demonstrating an example of the process of step 108 shown in FIG. It is a flowchart of the routine performed in Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle drive unit 10 according to Embodiment 1 of the present invention.
  • the vehicle drive unit 10 of this embodiment includes an internal combustion engine (for example, a spark ignition type internal combustion engine) 12, a first motor generator 14 (hereinafter simply referred to as “MG1”), and a second motor generator 16 (hereinafter referred to as “MG1”). Simply referred to as “MG2”).
  • MG1 and MG2 function reversibly as an electric motor or a generator depending on the driving situation of the vehicle.
  • the MG 1 functions as a generator that generates electric power by receiving a driving force supplied from the internal combustion engine 12, and also functions as a starter motor when the internal combustion engine 12 is started.
  • MG2 functions as an electric motor as a second power source of the vehicle, and also functions as a generator when regenerating kinetic energy of the vehicle during deceleration. That is, the vehicle drive unit 10 is a hybrid system that includes the internal combustion engine 12 and the MG 2 that can assist the torque of the internal combustion engine 12 as a power device of the vehicle.
  • the internal combustion engine 12, MG1, and MG2 are connected to each other via a planetary gear type power split mechanism 18. More specifically, MG1 is connected to the sun gear (not shown) of power split mechanism 18. The ring gear (not shown) of the power split mechanism 18 is connected to the MG 2 and the speed reducer 20. The speed reducer 20 connects the rotation shaft of the MG 2 and the drive shaft 24 connected to the drive wheels 22. The internal combustion engine 12 is connected to a planetary carrier (not shown) of the power split mechanism 18. According to the power split mechanism 18 configured as described above, the driving force of the internal combustion engine 12 can be split into the MG1 side and the reducer 20 side. The distribution of the driving force by the power split mechanism 18 can be arbitrarily changed.
  • the vehicle drive unit 10 further includes an inverter 26, a converter 28, and a high voltage battery 30.
  • Inverter 26 is connected to MG 1 and MG 2, and is also connected to high voltage battery 30 via converter 28.
  • the electric power generated by MG1 can be supplied to MG2 via inverter 26, or high voltage battery 30 can be charged via inverter 26 and converter 28.
  • the electric power generated by MG2 due to regeneration during deceleration can be supplied to MG1 via inverter 26, or can be charged to high-voltage battery 30 via inverter 26 and converter 28.
  • the electric power charged in the high voltage battery 30 can be supplied to MG2 and MG1 via the converter 28 and the inverter 26.
  • the solar panel 31 for converting the energy of sunlight into electric power is mounted on the roof of the vehicle of the present embodiment. Here, it is assumed that the electric power generated by the solar panel 31 can be charged in the high voltage battery 30.
  • the drive wheels 22 can be rotated only by the driving force of the internal combustion engine 12 with the MG 2 stopped, and conversely, with the internal combustion engine 12 stopped.
  • the driving wheel 22 can be rotated only by the driving force of MG2. It is also possible to operate both the MG 2 and the internal combustion engine 12 and rotate the drive wheels 22 by both driving forces.
  • FIG. 2 is a diagram showing the detailed configuration of the vehicle drive unit 10 shown in FIG. 1 centering on the configuration of the internal combustion engine 12 which is a main power unit.
  • a piston 32 is provided in the cylinder of the internal combustion engine 12.
  • a combustion chamber 34 is formed on the top side of the piston 32 in the cylinder.
  • An intake passage 36 and an exhaust passage 38 communicate with the combustion chamber 34.
  • an air filter 40 is arranged Near the inlet of the intake passage 36.
  • an air flow meter 42 that outputs a signal corresponding to the flow rate of the air sucked into the intake passage 36 is provided.
  • a compressor 44 a of the turbocharger 44 is disposed in the intake passage 36 on the downstream side of the air flow meter 42.
  • the intake passage 36 is connected to an air bypass passage 46 for bypassing the compressor 44a.
  • An air bypass valve (ABV) 48 for controlling the flow rate of air flowing through the air bypass passage 46 is disposed in the middle of the air bypass passage 46.
  • An intercooler 50 that cools the air compressed by the compressor 44a is disposed in the intake passage 36 on the downstream side of the compressor 44a.
  • An electronically controlled throttle valve 52 is provided in the intake passage 36 on the downstream side of the intercooler 50.
  • a throttle upstream pressure sensor 54 for detecting the intake pressure (supercharging pressure) at this portion is attached to the intake passage 36 upstream of the throttle valve 52 and downstream of the compressor 44a (and the intercooler 50).
  • a throttle downstream pressure sensor 56 for detecting the intake pressure (throttle downstream pressure) at this portion is attached to the intake passage 36 (collection portion of the intake manifold) on the downstream side of the throttle valve 52.
  • each intake port after branching to each cylinder, a port injection valve 58 for injecting fuel into the intake port is installed. Further, each cylinder of the internal combustion engine 12 is provided with an in-cylinder injection valve 60 for directly injecting fuel into the combustion chamber 34 (in-cylinder) and an ignition plug 62 for igniting the air-fuel mixture. Yes.
  • the port injection valve 58 and the in-cylinder injection valve 60 is selected in accordance with the operating conditions in order to stabilize combustion and improve fuel efficiency.
  • the internal combustion engine 12 includes an intake variable valve mechanism 66 that varies the valve opening characteristic of the intake valve 64 and an exhaust variable valve mechanism 70 that varies the valve opening characteristic of the exhaust valve 68. More specifically, here, the variable valve mechanisms 66 and 70 change the rotational phase of the cam shaft (not shown) with respect to the rotational phase of the crankshaft 72, thereby fixing the intake valve and the intake valve. 64 and a variable phase mechanism (VVT (Variable Valve Timing) mechanism) that continuously varies the opening and closing timing of the exhaust valve 68.
  • VVT Variariable Valve Timing
  • an intake cam angle sensor 74 and an exhaust cam angle sensor 76 for detecting the rotation angles of the respective cam shafts, that is, the intake cam angle and the exhaust cam angle, are arranged in the vicinity of the intake cam shaft and the exhaust cam shaft, respectively. Has been.
  • the turbine 44b of the turbocharger 44 is disposed in the exhaust passage 38.
  • an exhaust purification catalyst in this case, a three-way catalyst
  • SC start catalyst
  • UBC underfloor catalyst
  • a muffler 82 is installed in the exhaust passage 38 on the downstream side of the downstream catalyst 80.
  • an A / F sensor 84 that emits a substantially linear output with respect to the air-fuel ratio of the exhaust gas (exhaust gas discharged from each cylinder) flowing into the upstream catalyst 78 in the exhaust passage 38 upstream of the upstream catalyst 78. Is arranged in the exhaust passage 38 between the upstream catalyst 78 and the downstream catalyst 80 when the exhaust gas flowing out from the upstream catalyst 78 is rich with respect to the stoichiometric air-fuel ratio.
  • An O 2 sensor 86 that generates a lean output when the exhaust gas is lean with respect to the stoichiometric air-fuel ratio is disposed.
  • the exhaust passage 38 is connected to an exhaust bypass passage 88 that bypasses the turbine 44b and connects the inlet side and the outlet side of the turbine 44b.
  • a waste gate valve (WGV) 90 that opens and closes the exhaust bypass passage 88 is installed in the middle of the exhaust bypass passage 88.
  • the WGV 90 is assumed to be electric.
  • a crank angle sensor 92 for detecting the crank angle and the engine speed is disposed.
  • the system of the present embodiment includes an electronic control unit (ECU) for comprehensively controlling the vehicle drive unit 10 including the internal combustion engine 12 and the MG2.
  • the ECU includes an engine controller 100 that directly controls the internal combustion engine 12, and a motor controller 102 that directly controls MG1 and MG2.
  • the ECU further includes a power train manager (PTM) 104 positioned above the controllers 100 and 102 in the control system of the vehicle drive unit.
  • PTM power train manager
  • Each element of the controllers 100 and 102 and the PTM 104 may be configured by dedicated hardware, or may be configured virtually by software while sharing the hardware. There may be.
  • the input portion of the engine controller 100 includes the air flow meter 42, the throttle upstream pressure sensor 54, the throttle downstream pressure sensor 56, the cam angle sensors 74 and 76, the A / F sensor 84, and the O 2 sensor.
  • Various sensors for detecting the operating state of the internal combustion engine 12 such as 86 and a crank angle sensor 92 are connected. Information from these sensors is transmitted from the engine controller 100 to the PTM 104 as engine operating state information.
  • the output portion of the engine controller 100 includes an internal combustion engine such as the above-described ABV 48, throttle valve 52, port injection valve 58, in-cylinder injection valve 60, ignition plug 62, ignition valve 62, variable valve mechanisms 66, 70 and WGV 90.
  • Various actuators for controlling the operation of the engine 12 are connected.
  • the motor controller 102 is inputted with operation state information (such as the state of charge (SOC) of the high-voltage battery 30 and the temperature of MG2) of MG1 and MG2. Such information is transmitted from the motor controller 102 to the PTM 104.
  • operation state information such as the state of charge (SOC) of the high-voltage battery 30 and the temperature of MG2
  • SOC state of charge
  • MG2 temperature of MG2
  • an input part of the PTM 104 includes an accelerator opening sensor 106 for detecting an accelerator pedal depression amount (accelerator opening), and a driving mode selector 108 for a vehicle driver to select a desired driving mode. Is connected.
  • the PTM 104 acquires the driver's torque request based on the information from the sensor 106 and the selector 108.
  • the PTM 104 detects a vehicle speed sensor 110 for detecting the vehicle speed, a battery temperature sensor 112 for detecting the temperature of the high voltage battery 30, a solar radiation sensor 114 for detecting the solar radiation amount, and an outside air temperature.
  • An outside air temperature sensor 116 is connected.
  • Various devices related to vehicle control such as a navigation system 118 are connected to the PTM 104. According to these various sensors and devices, the traveling state of the vehicle and the environmental state where the vehicle is placed can be acquired.
  • the PTM 104 controls the driving state of the vehicle by adjusting the torque output from the internal combustion engine 12 and the MG 2 via the engine controller 100 and the motor controller 102, respectively.
  • the PTM 104 calculates the torque to be output as the entire vehicle at the present time based on the information from the various sensors and devices described above in addition to the driver's torque request obtained from the accelerator opening sensor 106 and the travel mode selector 108.
  • the required torque of the vehicle as a whole is distributed to the required torque that the internal combustion engine 12 bears and the required torque that the MG2 bears.
  • the PTM 104 outputs each required torque calculated in this way to the engine controller 100 and the motor controller 102 as a torque request.
  • the PTM 104 calculates not only the torque required for vehicle control at the present time but also the torque required for vehicle control in the future (future torque).
  • the calculated future torque is output to the engine controller 100 and the motor controller 102 as future information.
  • This operation means a reservation for torque adjustment from the PTM 104 to the internal combustion engine 12 and MG2.
  • the future information received by the engine controller 100 and the motor controller 102 becomes reservation information, and a control schedule for the internal combustion engine 12 and MG2 is set according to the contents.
  • information from the motor controller 102 and the navigation system 118 is used for calculating the future torque in the PTM 104.
  • the engine controller 100 for example, information regarding the operation / stop of the MG2 and information regarding a change in the ratio of the driving torque of the MG2 to the driving torque of the internal combustion engine 12 can be received from the motor controller 102 in advance. Based on this information, the torque necessary for absorbing the torque fluctuation accompanying the operation / stop of the MG2 or the change in the ratio is calculated in advance, and reserved for the engine controller 100, so that the MG2 is subsequently started / stopped. Appropriate torque adjustment is possible.
  • the navigation system 118 (other information communication system such as a vehicle-to-vehicle communication system)
  • the optimal torque for the predicted situation in advance By calculating the optimal torque for the predicted situation in advance and making a reservation for the engine controller 100 and the motor controller 102, it is possible to adjust the torque appropriately according to the situation where the vehicle is placed thereafter.
  • the uphill angle ahead can be predicted. If necessary torque is calculated from the predicted uphill angle and reserved for the engine controller 100 or the like, deceleration at the time of uphill can be prevented by increasing the torque at an appropriate timing.
  • the torque reserve operation described later corresponds to an operation for specifically securing future torque in such a case.
  • the PTM 104 commands the engine controller 100 and the motor controller 102 to execute a torque reserve operation request (torque reserve request) based on the future information as described above.
  • torque reserve request is output to these controllers 100 and 102. It corresponds.
  • a signal from the accelerator opening sensor 106 that is, a torque request from the driver is not directly output to the engine controller 100, but a delay process is performed. Can also be output.
  • the signal from the accelerator opening sensor 106 represents the future torque.
  • the engine operation state information is input to the engine controller 100 as described above.
  • the engine controller 100 drives each actuator among the above-mentioned various actuators via each driver (not shown) based on these requests and information, and the torque reserve request. Control torque.
  • the motor controller 102 receives the operating state information of MG1 and MG2 as described above.
  • the motor controller 102 controls the motor torque of the MG 2 that assists the torque of the internal combustion engine 12 by driving the MG 2 via a driver (not shown) based on these requests and information, and the torque reserve request.
  • a throttle valve 52 is used as an actuator mainly used for torque adjustment.
  • an ignition device including the ignition plug 62
  • variable valve mechanisms 66 and 70, and WGV 90 are used as sub actuators for assisting torque adjustment by the throttle valve 52.
  • the target torque of the internal combustion engine 12 is determined based on the torque request.
  • the engine controller 100 calculates a target throttle opening for realizing the target torque by MBT according to a predetermined map, and controls the throttle valve 52.
  • the target throttle opening degree may be corrected as necessary with the execution of the control of the sub actuator based on another request such as a torque reserve request.
  • MG2 is used as an actuator for assisting torque adjustment of the internal combustion engine 12.
  • the vehicle drive unit 10 can use the torque output from the internal combustion engine 12 and MG2 as the drive force of the vehicle. Such a torque that the vehicle drive unit 10 can potentially output is referred to herein as “latent torque”.
  • latent torque In order to be able to demonstrate high responsiveness to demands for rapidly increasing vehicle torque (acceleration, climbing demand, etc.) while the vehicle is in operation, the vehicle should be provided with “margin torque” that can be released with high responsiveness.
  • the drive unit 10 performs an operation (hereinafter, referred to as “torque reserve operation”) that is secured in advance (reserving a torque that can cope with a torque increase that can be required in the future).
  • torque reserve operation an operation that is secured in advance (reserving a torque that can cope with a torque increase that can be required in the future).
  • the “margin torque” here is a potential torque that the vehicle drive unit 10 can output in addition to the actual torque that the vehicle drive unit 10 actually outputs. This corresponds to the difference between the torque and the
  • the required torque when it is actually required to increase the torque with high torque responsiveness, the required torque can be quickly increased by controlling the target actuator so that the surplus torque is released. Can be realized.
  • torque reserve operation for example, an operation using the following actuator included in the internal combustion engine 12, and further, as will be described later, power generation using the driving force of the internal combustion engine 12 or a device ( The charging operation to the high voltage battery 30 using the power generation by the solar panel 31) corresponds to this.
  • these operations will be described in order.
  • a torque reserve operation using ignition device First, a torque reserve operation for securing a surplus torque will be described by taking an ignition device for adjusting the ignition timing as an example.
  • the ignition timing during operation of the internal combustion engine 12 is basically controlled so as to obtain an optimum ignition timing (MBT) corresponding to the current operating state.
  • the ignition device which is an actuator that can control the torque of the internal combustion engine 12 by adjusting the ignition timing, can provide torque with higher responsiveness than the throttle valve 52 that is an actuator that controls the torque of the internal combustion engine 12 by adjusting the intake air amount. Can be changed.
  • the engine controller 100 sets the target torque of the internal combustion engine 12 to a value that satisfies the torque request supplied from the PTM 104 to the engine controller 100. Is also set to a value raised by a predetermined amount. As a result, the target throttle opening is increased to an opening at which the target torque after raising can be generated by MBT. Then, the engine controller 100 does not increase the target control value so that the increase in the target torque is not caused while the increase in the torque with high responsiveness is not actually required for the internal combustion engine 12. Delay the ignition timing. That is, the torque reserve operation in this case is realized by cooperation between the ignition device and the throttle valve 52.
  • the potential torque of the internal combustion engine 12 when executing such retarding of the ignition timing corresponds to the target torque after the above-mentioned increase, and the increase amount of the target torque in this case is the future torque. This is an extra torque that is secured in order to perform a quick response, and corresponds to the “margin torque”. Therefore, in the relationship between the surplus torque and the ignition timing, the retard amount of the ignition timing increases as the surplus torque increases.
  • an ignition device corresponds to the actuator responsible for releasing the surplus torque. That is, when an increase in torque with high responsiveness is required in a state where such a margin torque is secured, the margin torque is released by advancing the retarded ignition timing. Thereby, compared with the case where the amount of intake air is increased and the torque is increased by controlling the throttle valve 52, it is possible to realize a high torque response.
  • the torque reserve operation will be described using the WGV 90 capable of adjusting the supercharging pressure as an example.
  • the WGV 90 in a region other than the high rotation high load region where the WGV 90 is opened to protect the engine, the WGV 90 is opened at a predetermined opening according to the current operating state in a normal state (except when a high output is requested). In this state, when the high output is required, the normal open control for closing the WGV 90 is performed.
  • the supercharging pressure is increased by controlling the WGV 90 to be fully closed.
  • the engine controller 100 sends the target torque of the internal combustion engine 12 from the PTM 104 to the engine so that the intake air amount does not increase due to the increase in the supercharging pressure (that is, the torque does not increase).
  • the value is set to a value lower than the value satisfying the torque requirement supplied to the controller 100 by a predetermined amount.
  • the target throttle opening is reduced to an opening at which MBT can generate the target torque after the bulk reduction. That is, the torque reserve operation in this case is realized by cooperation between the WGV 90 and the throttle valve 52.
  • the torque output from the internal combustion engine 12 is the same, and a state in which the boost pressure (throttle upstream pressure) is increased is obtained.
  • the “surplus torque” in this case is ensured by increasing the latent torque with respect to the current actual torque by increasing the supercharging pressure.
  • an increase in torque expected according to the increase in the boost pressure value associated with the execution of this operation is This corresponds to the “margin torque” in this case.
  • the throttle valve 52 corresponds to the actuator that is responsible for releasing the surplus torque.
  • the opening degree of the WGV 90 during the torque reserve operation is controlled during normal operation (non-torque reserve operation). As long as the value is closer to the closing side than the predetermined value, it is not necessarily limited to full closing.
  • variable valve mechanism 66 that makes it possible to adjust a valve overlap period (hereinafter simply referred to as “O / L period”) in which the valve opening period of the intake valve 64 and the valve opening period of the exhaust valve 68 overlap.
  • the torque reserve operation will be described by taking 70 as an example.
  • Ensuring a surplus torque by this torque reserve operation means that the intake / exhaust is performed in a region where the intake pressure is higher than the exhaust pressure, that is, in the supercharging region where the scavenge effect can be expected, without providing an O / L period for obtaining the scavenge effect. It means adjusting the valve timing of the valves 64 and 68. In a state where such control is performed, the throttle opening required to obtain the same torque is larger than when the scavenging effect is used. Therefore, in such a situation where the throttle opening is largely controlled without setting O / L, the torque increase amount expected by setting the O / L period for obtaining the scavenging effect is This corresponds to the “margin torque”.
  • the torque reserve operation in this case is realized by cooperation between the variable valve mechanisms 66 and 70 and the throttle valve 52.
  • a scavenging effect can be obtained by using the electric variable valve mechanisms 66 and 70 having high responsiveness. It can be said that the surplus torque is released by providing the O / L period. That is, in this case, the variable valve mechanisms 66 and 70 correspond to the actuator responsible for releasing the surplus torque. As a result, it is possible to achieve high torque response using the scavenge effect.
  • an O / L period is not provided for securing a surplus torque has been described.
  • the O / L period adjusted in this torque reserve operation is a part of the torque improvement allowance due to the scavenging effect. Is not limited to zero (a state in which no O / L period is provided).
  • the torque reserve operation using charging of high-voltage battery with electric power used by MG2
  • the torque reserve operation will be described by taking MG2 capable of assisting torque adjustment of the internal combustion engine 12 as an example.
  • the amount of torque that can be generated by MG2 by the electric power stored in the high-voltage battery 30 corresponds to the “margin torque”.
  • the high-voltage battery 30 can be charged with the electric power generated by driving the MG 1 by the internal combustion engine 12.
  • the execution opportunity is limited to when the vehicle is in a decelerating state, but the high-voltage battery 30 can be charged with electric power generated by performing regeneration using the MG2 during deceleration.
  • the electric power generated using the solar panel 31 can be charged to the high-voltage battery 30 under a situation where solar radiation can be secured. It can be said that the operation of increasing the amount of surplus torque that can be generated by the MG2 by increasing the amount of electric power stored in the high-voltage battery 30 by these aspects corresponds to the torque reserve operation in this case.
  • the torque reserve operation in this case is realized by the use of the internal combustion engine 12 and MG1, the vehicle control at the time of deceleration using MG2, or the vehicle control using the solar panel 31 mounted on the vehicle.
  • MG2 corresponds to the actuator responsible for releasing the surplus torque. According to such use of MG2, it is possible to assist the torque response of the internal combustion engine 12 with high responsiveness efficiently, particularly in a low rotation and low load region.
  • the influence of each torque reserve operation on a predetermined performance value of the vehicle drive unit 10 such as fuel consumption, exhaust emission, or quietness of the internal combustion engine 12 varies depending on the individual torque reserve operations.
  • the reduction in the performance value due to the execution of the individual torque reserve operations is caused by various situations in which the vehicle is placed (specifically, the operating state of the internal combustion engine 12, the high voltage battery 30 mounted on the vehicle). It also changes according to the state of charge (SOC), the environmental state of the vehicle (for example, the amount of solar radiation, the outside air temperature, the road conditions (road gradient, etc.)), etc. Also, it is determined that the vehicle drive unit 10 is currently necessary.
  • the secured margin torque amount is released when a predetermined margin torque is requested to be released (acceleration request, climbing request, etc.).
  • margin torque release timing is basically difficult to predict in advance, such as when acceleration is requested based on the driver's intention.
  • a torque reserve operation (one and only one) that can suppress deterioration of a predetermined performance value of the vehicle drive unit 10 (in this embodiment, the fuel consumption of the internal combustion engine 12 is assumed as an example) at the time is minimized. Is not limited), and the target surplus torque is secured.
  • FIG. 3 is a flowchart showing a control routine executed by the control system (PTM 104, engine controller 100 and motor controller 102) of the vehicle drive unit 10 in order to realize the surplus torque management in the first embodiment of the present invention.
  • this routine shall be repeatedly performed for every predetermined
  • the PTM 104 acquires the target margin torque (step 100).
  • the PTM 104 stores a target margin torque map in which the target margin torque is set in advance based on the relationship between the operation region of the internal combustion engine 12 (specified by the engine load (intake air amount) and the engine speed). Further, the PTM 104 includes a plurality of target margin torque maps that differ depending on the setting of the vehicle travel mode by the travel mode selector 108. For example, it is assumed that the driving mode set by the driving mode selector 108 includes a normal mode and a sports mode in which torque response to an accelerator pedal operation is higher than that in the normal mode.
  • the target margin torque in the present step 100 may be a value updated based on the near future road information (the future information) obtained by the navigation system 118, for example.
  • step 100 corresponds to the current state of the vehicle (the operation region of the internal combustion engine 12, the travel mode requested by the driver, etc.) and the vehicle situation (road conditions, etc.) in the near future, which changes from moment to moment.
  • the latest target margin torque is acquired.
  • the PTM 104 has various parameters such as the ignition timing, the state of charge (SOC) of the high-voltage battery 30, the supercharging pressure (the intake pressure between the compressor 44 a and the throttle valve 52), and the intake pressure on the downstream side of the throttle.
  • SOC state of charge
  • the supercharging pressure the intake pressure between the compressor 44 a and the throttle valve 52
  • the intake pressure on the downstream side of the throttle are acquired based on the outputs of the various sensors described above (step 102).
  • the SOC can be acquired based on the voltage of the high voltage battery 30 or the like.
  • the PTM 104 calculates a margin torque (total value) currently secured by the plurality of torque reserve operations (step 104).
  • the surplus torque secured using the ignition device increases as the retard amount of the ignition timing increases.
  • the surplus torque that can be released by MG2 increases as the SOC becomes better (as the remaining amount of the high-voltage battery 30 increases).
  • the margin torque secured using the WGV 90 increases as the supercharging pressure increases.
  • the surplus torque secured by using the variable valve mechanisms 66 and 70 is due to the fact that the charging efficiency of the intake air into the cylinder, including the scavenging effect, changes according to the intake air pressure on the downstream side of the throttle. Change.
  • the margin torque is determined in relation to each of the retard amount of the ignition timing, the SOC, the supercharging pressure, and the intake pressure on the downstream side of the throttle, it is ensured by each of the torque reserve operations described above.
  • the present surplus torque can be calculated.
  • the PTM 104 determines whether or not the target margin torque is secured (step 106). This determination can be made by comparing the target margin torque acquired in step 100 with the current margin torque calculated in step 104.
  • step 106 If it is determined in step 106 that the target margin torque is not secured, the process of step 108 by the PTM 104 and the process of step 110 by the engine controller 100 and / or the motor controller 102 are sequentially executed.
  • step 108 in order to secure the insufficient margin torque, a process of selecting an optimum torque reserve operation that can suppress deterioration in fuel consumption to a minimum among the plurality of torque reserve operations described above is executed. Specifically, for each torque reserve operation, a fuel consumption deterioration allowance (a decrease in the above performance value) is calculated as a compensation (cost) when attempting to secure a deficiency of the surplus torque. Then, the torque reserve operation with the smallest calculated fuel consumption deterioration margin is selected as the optimum torque reserve operation at the present time.
  • the torque reserve operation using the WGV 90 and the torque reserve operation using the variable valve mechanisms 66 and 70 can be used when the internal combustion engine 12 is in a supercharged state.
  • step 108 when the internal combustion engine 12 is in the supercharged state, the above four processes for the torque reserve operation are executed.
  • the internal combustion engine 12 is in the non-supercharged state, the ignition timing and the SOC The process for the torque reserve operation using is performed.
  • the PTM 104 corresponds to each torque reserve operation for each torque reserve operation, a fuel consumption deterioration allowance, a surplus torque shortage (corresponding to a shortage of surplus torque at the time of the determination in step 106), and each torque reserve operation.
  • a fuel consumption deterioration calculation map (not shown) that stores the relationship between the parameters (the parameters acquired in step 102) and stores a shortage of excess torque is stored. If the environment surrounding the vehicle changes during traveling, the fuel consumption reduction efficiency (efficiency) of each torque reserve operation may change. For example, when the amount of solar radiation changes, the amount of power that can be charged using the solar panel 31 increases, so that the amount of power to be secured by driving the MG 1 by the internal combustion engine 12 decreases.
  • the fuel efficiency deterioration allowance calculation map may be sequentially updated in accordance with changes in various vehicle conditions such as changes in the vehicle environment during travel. Further, the relationship defined by such a map changes depending on the operating state of the internal combustion engine 12. For example, even if the map is related to the torque reserve operation using the SOC, when the operating state of the internal combustion engine 12 changes, the fuel consumption deterioration margin when the MG1 is driven by the internal combustion engine 12 to generate power changes.
  • the fuel efficiency deterioration calculation map described above is a result obtained from an experiment or the like in advance so as to vary depending on the operating state of the internal combustion engine 12 (engine load (intake air amount), engine speed, coolant temperature, etc.). It is assumed that it is set based on
  • FIG. 4 is a diagram used for explaining an example of the processing in step 108 shown in FIG. More specifically, FIG. 4 shows an example of the torque reserve operation using the SOC, and the relationship of the fuel consumption deterioration calculation map when the current insufficient torque shortage is specified is two-dimensionally shown. It is the illustrated example.
  • the fuel consumption deterioration allowance is calculated as a small value.
  • the current SOC is worse than the value A, the worse the cost of fuel consumption associated with securing the power for the current insufficient torque, the greater the SOC is worse. It will be calculated as a value. According to such a process, it is possible to acquire the fuel consumption deterioration margin when securing the current marginal torque shortage by using the torque reserve operation using the SOC under the current SOC.
  • the power generation method of the electric power stored in the high-voltage battery 30 is based on regenerative braking by MG2 as a power generation method in which the internal combustion engine 12 is not used other than the method of driving the MG1 by the internal combustion engine 12. Some of them use solar panels 31. For this reason, in determining the relationship between the SOC and the fuel consumption deterioration allowance, how much the driving of the internal combustion engine 12 contributes to the electric power stored in the high voltage battery 30 becomes a problem.
  • the torque reserve operation using the SOC is shown as an example, but in this step 108, the same processing is executed for other torque reserve operations.
  • a fuel consumption deterioration margin is calculated as a compensation when an attempt is made to secure a shortage of surplus torque.
  • the PTM 104 selects the torque reserve operation having the smallest calculated fuel consumption deterioration margin as the optimum torque reserve operation at the present time, and selects the optimum torque reserve operation selected as the torque reserve request in this case. Is output to the engine controller 100 and the motor controller 102.
  • the engine controller 100 (or the motor controller 102 when the torque reserve operation using the SOC is selected as the optimum torque reserve operation) is the optimum torque reserve operation selected by the processing at step 108 above. Execute.
  • the PTM 104 determines the fuel efficiency when attempting to maintain the current margin torque (the total value of the margin torque by all torque reserve operations).
  • the engine controller 100 and, if necessary, the motor controller 102 are instructed to correct the ratio of the surplus torque due to the corresponding torque reserve operation so that the ratio of the surplus torque due to the torque reserve operation that minimizes the deterioration margin increases ( Step 112).
  • the degree of fuel consumption of the internal combustion engine 12 required to maintain the surplus torque ensured by each torque reserve operation or the presence or absence of the consumption differs depending on the individual torque reserve operation, and the operating state of the internal combustion engine 12 and the like. It depends on the various situations where the vehicle is placed.
  • the torque reserve operation with the least fuel cost deterioration is maintained with respect to the maintenance of the current margin torque by the processing of the same procedure as the processing of the above step 108.
  • the PTM 104 includes a currently reserved surplus torque, a fuel consumption deterioration per unit time when maintaining the surplus torque, and parameters corresponding to each torque reserve operation (The fuel consumption deterioration allowance calculation map (not shown) when maintaining the surplus torque that defines the relationship between the parameters acquired in step 102) is stored. Although detailed description of these maps is omitted here, it can be determined in advance through experiments or the like.
  • these maps may be sequentially updated in accordance with changes in various vehicle conditions such as changes in the vehicle environment during travel.
  • These maps are set based on results obtained in advance from experiments or the like so as to differ depending on the operating state of the internal combustion engine 12 (engine load (intake air amount), engine speed, coolant temperature, etc.). It is assumed that
  • the electric power stored in the high voltage battery 30 is used only for the purpose of releasing the surplus torque when a high torque response to the vehicle drive unit 10 is required.
  • the fuel consumption deterioration allowance calculated in this case can be calculated as zero.
  • the high voltage battery 30 is used to assist the torque of the internal combustion engine 12 as necessary in addition to the use of surplus torque when a high torque response is required for the vehicle.
  • this step 112 by using the fuel consumption deterioration allowance calculation map at the time of maintaining the surplus torque, it is possible to calculate the fuel consumption deterioration allowance as a compensation for each torque reserve operation to maintain the individual surplus torque. .
  • the torque reserve operation with the least fuel consumption deterioration is specified for maintaining the current margin torque (total value), and at the same time, the torque reserve operation with the most fuel consumption deterioration is specified.
  • the PTM 104 increases the ratio of the margin torque due to the torque reserve operation with the least fuel consumption deterioration with respect to the maintenance of the current margin torque by a predetermined value, and the torque reserve operation with the largest fuel consumption degradation.
  • the engine controller 100 and, if necessary, the motor controller 102 are instructed to correct the ratio of the margin torque ensured by each torque reserve operation so that the ratio of the margin torque due to the above is reduced by the predetermined value.
  • the ratio of the surplus torque due to the torque reserve operation with the largest fuel consumption deterioration allowance may include zero. That is, depending on the situation, control may be performed such that the margin torque due to the torque reserve operation with the largest fuel consumption deterioration margin becomes zero.
  • the engine controller 100 and, if necessary, the motor controller 102 execute a process for adjusting the corresponding torque reserve operation in accordance with a margin torque ratio correction command from the PTM 104 (step 114).
  • the ignition timing is advanced and the throttle valve 52 is used to cancel the torque change (increase) accompanying the advance of the ignition timing.
  • the opening is controlled to the closing side.
  • the PTM 104 specifies the torque reserve operation with the largest fuel consumption deterioration rate with respect to the maintenance of the current margin torque by the same determination as in step 112 above. Then, the PTM 104 instructs the engine controller 100 or the motor controller 102 to reduce or eliminate the surplus torque by the specified torque reserve operation in order to eliminate the surplus surplus torque.
  • the plurality of torques for securing the deficiency of the surplus torque while minimizing the deterioration of fuel consumption is minimized.
  • the superiority or inferiority of the reserve operation is determined. That is, a process for selecting a torque reserve operation that can efficiently generate a surplus torque is performed based on the state of each parameter acquired in step 102. Then, based on such a determination result, an optimum torque reserve operation that can suppress deterioration in fuel consumption to a minimum is selected from among the plurality of torque reserve operations, and a shortage of margin torque is secured (the above step). 108 and 110).
  • a desired surplus torque can be secured while suppressing a decrease in fuel consumption (performance value) due to the execution of the torque reserve operation as much as possible. become.
  • the ratio of the margin torque due to the torque reserve operation with the least fuel consumption deterioration when attempting to maintain the current margin torque (total value). So that the ratio of the surplus torque by the corresponding torque reserve operation is corrected (steps 112 and 114 above).
  • the ratio of the margin torque due to the torque reserve operation with the least amount of fuel consumption deterioration with respect to the maintenance of the current margin torque is increased, the margin torque due to the torque reserve operation with the largest amount of fuel consumption degradation is increased. The ratio of is reduced. As a result, it is possible to continue to secure a sufficient torque efficiently in preparation for future demands such as acceleration.
  • the control device for the vehicle drive unit 10 has a vehicle performance value (here, fuel consumption as an example) as a compensation when each of the plurality of torque reserve operations secures the same marginal torque.
  • a function is provided for managing which of the plurality of torque reserve operations should be used to secure the surplus torque with reference to the magnitude of the decrease. That is, according to the system of the present embodiment, during the operation of the internal combustion engine 12, a plurality of reserve operations are performed so that an efficient torque reserve operation is always executed in consideration of various situations where the vehicle is placed. The execution of is managed.
  • the superiority or inferiority of the fuel consumption deterioration when securing a surplus torque can be changed between each torque reserve operation.
  • the ratio of each torque reserve operation when securing the surplus torque is sequentially changed. For example, in a high load region where supercharging is performed, there is a case where the torque reserve operation can be efficiently increased by using the WGV 90 to increase the supercharging pressure.
  • the torque of MG2 (motor) is high at a low rotational speed and decreases in proportion to an increase in the rotational speed.
  • the torque of the internal combustion engine 12 can be efficiently assisted using MG2, but in the high rotation region, MG2 is not necessarily.
  • MG2 is not necessarily
  • the following control is performed. It will be. That is, in the process in which the operation region of the internal combustion engine 12 shifts from the low load side region to the high load side region, the ratio of the torque reserve operation using the WGV 90 is increased and other torque reserve operations (for example, The ratio of torque reserve operation using the SOC is lowered.
  • the torque reserve operation using the WGV 90 can be used in the supercharging region. Therefore, for example, in the process of shifting from the supercharging region to the non-supercharging region of the internal combustion engine 12, as the torque reserve operation using the WGV 90 decreases, other torque reserve operations (torque reserve operation using the SOC and ignition) Among the torque reserve operations using the device, the torque reserve operation having a higher priority is selected based on the performance value (fuel consumption deterioration allowance), and the target margin torque is secured.
  • Embodiment 1 By the way, in Embodiment 1 mentioned above, it demonstrated exemplifying the control which made object the fuel consumption of the internal combustion engine 12 as a predetermined
  • the predetermined performance value (objective variable) of the vehicle in the control of the present invention is not limited to the fuel consumption. That is, this performance value uniformly determines the superiority or inferiority of various performance degradations of the vehicle (the effect of this operation on fuel consumption, exhaust emission, or silence of the internal combustion engine 12) when each of the plurality of torque reserve operations is performed. Anything that can be evaluated based on the above criteria may be used.
  • the performance value is, for example, a predetermined index value for evaluating the quietness of the internal combustion engine 12 and further the vehicle drive unit 10 when the torque reserve operation is performed, and the internal combustion engine when the torque reserve operation is performed. It may be a predetermined index value (e.g., emission amount of NOx or the like) for evaluating 12 exhaust emissions, or the power consumption of the vehicle drive unit 10.
  • a predetermined index value e.g., emission amount of NOx or the like
  • the superiority or inferiority of a plurality of torque reserve operations is determined using a single index value (fuel consumption).
  • the present invention is not limited to such a method. That is, determination using a plurality of performance values in the present invention may be performed. For example, when determining the superiority or inferiority of a plurality of torque reserve operations using two performance values as an index, first, after determining the superiority or inferiority using one performance value, in relation to the one performance value, When it is difficult to attach superiority or inferiority, the final superiority or inferiority may be determined using the other performance value. This also applies to the case where control is performed to correct the ratio of the surplus torque by each torque reserve operation (see steps 112 and 114 above) when the target surplus torque is secured.
  • torque responsiveness when releasing the surplus torque may be added as another index value to determine the superiority or inferiority of the plurality of torque reserve operations.
  • a map similar to the fuel consumption deterioration allowance calculation map described above is used, and a map using the torque response as an index here is provided instead of the fuel consumption deterioration allowance. Then, not only the performance value but also responsiveness is determined. At that time, whether to place importance on the performance value or the responsiveness is an item that can be arbitrarily selected as necessary. This is the same in the case where control is performed by the processing in steps 112 and 114 described above.
  • an optimum “A “single” torque reserve operation is selected.
  • the present invention is not limited to such a method. That is, in order to obtain a predetermined target margin torque after determining the superiority or inferiority of the plurality of torque reserve operations based on the magnitude of the decrease in the performance value, the “multiple” torque reserve operations having a relatively high priority are performed. You may choose. For example, when securing a surplus torque using a single torque reserve operation, efficiency is good if a small amount of surplus torque is secured, but suddenly increasing efficiency when attempting to secure a certain amount of surplus torque It is also assumed that will worsen.
  • the upper limit value of the surplus torque secured by the first torque reserve operation is set. If a target surplus torque higher than the upper limit value is required, the most efficient torque reserve operation secures a surplus torque up to the above upper limit value, and the surplus torque that is insufficient by itself is second. Ensure that the torque reserve operation is efficient.
  • the above contents can also be applied to control (see steps 112 and 114 above) for correcting the ratio of the margin torque by each torque reserve operation when the target margin torque is secured. That is, even when this control is performed, the ratio of the margin torque due to the “plurality” of torque reserve operations is relatively small when the margin torque corresponding to the target margin torque is maintained. As described above, the ratio of the surplus torque secured by each torque reserve operation may be corrected.
  • the ignition device including the throttle valve 52 and the spark plug 62, the variable valve mechanisms 66 and 70, and the WGV 90 are “the torque output from the internal combustion engine 1 can be adjusted.
  • MG1, MG2, and solar panel 31 correspond to “one or more devices mounted on the vehicle” in the present invention, respectively.
  • the engine controller 100 or the motor controller 102 executes a predetermined torque reserve operation based on the torque reserve request from the PTM 104, thereby realizing the “margin torque control means” in the present invention.
  • the “margin torque management means” according to the present invention is realized by executing the process of step 112 or 112, and the engine controller 100 or the motor controller 102 executing the process of step 110 or 114.
  • the PTM 104 executes the process of step 108, and the engine controller 100 or the motor controller 102 executes the process of step 110, so that “optimum reserve operation selection” according to the present invention is selected. Means "are realized. Further, in the first embodiment described above, the PTM 104 executes the process of step 112, and the engine controller 100 or the motor controller 102 executes the process of step 114, so that the “margin torque ratio correction” in the present invention is performed. Means "are realized.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
  • the system of this embodiment uses the hardware configuration shown in FIGS. 1 and 2 to cause the PTM 104, the engine controller 100, and the motor controller 102 to execute a routine shown in FIG. 5 described later in addition to the routine shown in FIG. Can be realized. That is, the control of the present embodiment is suitable for performing in combination with the control of the first embodiment described above.
  • the accelerator pedal is turned off in a situation where a surplus torque is secured by using the WGV 90 to increase the boost pressure, keep the boost pressure as high as possible in preparation for the next acceleration request. I want.
  • the accelerator pedal is turned off, that is, when a driver requests to decelerate the vehicle, the fuel cut is performed to improve fuel consumption on condition that a predetermined fuel cut execution condition is satisfied. May be executed.
  • the fuel cut is executed under the above-described circumstances, the exhaust energy supplied to the turbine 44b is reduced as compared with the time of deceleration without the fuel cut being executed, so that the turbine speed is likely to decrease. Therefore, when the fuel cut is executed, the supercharging pressure is likely to decrease.
  • the supercharging pressure is reduced. Whether or not the target margin torque can be secured without using the margin torque by adjustment is determined. Then, when it is determined that the target surplus torque cannot be secured without using the surplus torque by adjusting the supercharging pressure, the execution of the fuel cut is prohibited.
  • FIG. 5 is a flowchart showing a control routine executed by the PTM 104 and the engine controller 100 in the second embodiment in order to realize the above function. Note that this routine is repeatedly executed at predetermined time intervals in a situation where the torque reserve operation is being executed.
  • the PTM 104 determines whether or not a predetermined precondition is satisfied (step 200).
  • the precondition in this step 200 is that the target surplus torque (which can be acquired by the processing in step 100 above) is the surplus torque secured at the present time excluding the surplus torque by adjusting the boost pressure (the processing result in step 104 above). It can be obtained using the That is, when this precondition is satisfied, it can be determined that the target margin torque can be secured without using the margin torque by adjusting the supercharging pressure.
  • Such a situation corresponds to, for example, a case where the high voltage battery 30 has a sufficient remaining amount. In such a case, fuel cut is not prohibited.
  • step 200 If the precondition in step 200 is not satisfied, that is, if it can be determined that the target surplus torque cannot be secured without using the surplus torque by adjusting the boost pressure, the PTM 104 then turns off the accelerator pedal (all It is determined whether or not (closed) (step 202). As a result, when it is determined that the accelerator pedal is turned off, that is, when it can be determined that the driver has requested deceleration of the vehicle, the PTM 104 then determines whether or not a predetermined fuel cut execution condition is satisfied. Is determined (step 204).
  • step 204 If it is determined in step 204 that the fuel cut execution condition is not satisfied, the engine controller 100 executes opening control of the throttle valve 52 and the ABV 48 (step 206). Specifically, the throttle valve 52 is closed as the accelerator pedal is turned off, and the ABV 48 is opened to avoid a surge of the compressor 44a.
  • step 204 if it is determined in step 204 that the fuel cut execution condition is satisfied, the PTM 104 outputs a command for prohibiting execution of the fuel cut to the engine controller 100 (step 208). If the operating conditions are such that prohibition of fuel cut cannot be performed, it is preferable to prepare for the next acceleration request by performing the fuel cut while the WGV 90 is closed. .
  • the target margin can be obtained without using the margin torque due to the adjustment of the boost pressure in a situation where the margin torque is ensured by using at least the margin torque due to the adjustment of the boost pressure. If it is determined that the torque cannot be secured, execution of fuel cut is prohibited. As a result, it is possible to prevent the supercharging pressure from being easily lowered during deceleration by executing the fuel cut. As a result, the target surplus torque can be more reliably secured in preparation for the next request for acceleration or the like, so that deterioration of the drivability of the vehicle due to the lack of the surplus torque can be suppressed.
  • the turbocharger 44 corresponds to the “supercharger” in the present invention. Further, when the determination of step 200 is not established and the determination of steps 202 and 202 is established for the PTM 104, the “fuel cut prohibiting means” in the present invention is realized by executing the processing of step 208. .
  • Embodiment 1 and 2 By the way, in Embodiment 1 and 2 mentioned above, it demonstrated taking the case of the vehicle drive unit 10 provided with MG2 as a power unit with the internal combustion engine 12.
  • the vehicle drive unit in the present invention is not limited to the one having such a configuration. That is, for example, the vehicle power unit may include only an internal combustion engine.
  • the control device for the vehicle drive unit in the present invention is not limited to the one using such a configuration. That is, for example, the engine controller 100 or the motor controller 102 that directly controls the internal combustion engine or the MG 2 as the power unit is configured to perform the above management, not the host controller such as the PTM 104. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 本発明における車両駆動ユニット(10)の制御装置は、車両駆動ユニット(10)が実際に出力する実トルク以外に車両駆動ユニット(10)が出力し得る潜在的な余裕トルクを確保することを要求する所定のトルクリザーブ要求に従って、内燃機関(12)が出力するトルクを調整可能な1以上の複数のアクチュエータ(52、62、66、70、90)、または車両に搭載された1以上のデバイス(14、16、31)を用いて、余裕トルクを確保するためのトルクリザーブ動作を複数の形態で実行可能である。また、上記制御装置は、複数のトルクリザーブ動作のそれぞれが同一の余裕トルクを確保する際の代償としての車両の所定の性能値の低下が少ないことを基準として、複数のトルクリザーブ動作のうちの何れを用いて余裕トルクを確保すべきかを管理する。

Description

車両駆動ユニットの制御装置
 この発明は、車両駆動ユニットの制御装置に関し、より詳しくは、車両の動力装置として少なくとも内燃機関を備え、車両が出力し得る潜在的な余裕トルクを確保するためのトルクリザーブ動作を複数の形態で実行可能な車両駆動ユニットの制御装置に関する。
 従来、例えば特許文献1には、内燃機関の制御装置が開示されている。この従来の制御装置では、内燃機関に対して高いトルクが要求された時に点火時期を進角させて高応答にトルクを増大できるようにするために、予め点火時期を遅角させておく制御を行うようにしている。すなわち、上記制御装置では、内燃機関のトルク調整のための主アクチュエータとしてスロットルバルブを用いつつ、上記トルク調整のための副アクチュエータとしての点火装置を利用して、余裕トルク(リザーブトルク)を確保するためのトルクリザーブ動作を行うようにしている。
 そのうえで、上記特許文献1に記載の制御装置では、吸気弁のリフト量に応じて、余裕トルクを確保するための点火時期の遅角量を調整するようにしている。このような制御によれば、吸気弁のリフト量の変化に対するトルクの応答性の高い運転状態において、トルク応答性の向上のために過剰に点火時期が遅角されるのを抑制することができる。
 上記特許文献1における点火装置とスロットルバルブとの協調による余裕トルクの確保以外にも、例えば、ターボ過給機付き内燃機関であれば、可変動弁機構またはウェイストゲートバルブとスロットルバルブとの協調による手法などのように、様々なアクチュエータを利用した複数の形態のトルクリザーブ動作によって、余裕トルクを確保(予約)しておくことができる。また、ハイブリッド車両の車両駆動ユニットの場合には、内燃機関の駆動力を利用する発電や車両に搭載されたデバイスによる発電を利用したトルクリザーブ動作によって、内燃機関とともに動力装置として備えられるモータが必要に応じて放出可能な余裕トルクを確保しておくこともできる。
 上述したようなトルクリザーブ動作のそれぞれが内燃機関の燃費、排気エミッションまたは静粛性などの車両の所定の性能値に与える影響は、個々のトルクリザーブ動作に応じて異なるものとなる。そして、個々のトルクリザーブ動作の実行の代償としての当該性能値の低下の大小は、車両が置かれている様々な状況(具体的には、内燃機関の運転状態、車両に搭載された電池の充電状態(SOC)、および車両の環境状態(例えば、日射量、外気温度および道路の勾配)などに応じて変化するものでもある。
 しかしながら、上記特許文献1に記載の技術は、余裕トルクの利用のために車両駆動ユニットが複数のトルクリザーブ動作を使用することを想定したものではない。このため、余裕トルクの利用のために複数のトルクリザーブ動作を使用する場合に、トルクリザーブ動作の実行に伴う上記性能値(内燃機関の燃費、排気エミッションまたは静粛性など)の低下を極力抑制させられる手法を提供するという点において、未だ改善の余地を残すものであった。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2010-024963号公報 日本特開2010-275955号公報 日本特開2011-051542号公報 日本特開2010-051383号公報
 この発明は、上述のような課題を解決するためになされたもので、余裕トルクの利用のために複数のトルクリザーブ動作を実行可能な場合において、トルクリザーブ動作の実行に伴う車両の所定の性能値の低下を極力抑制しつつ、所望の余裕トルクを確保可能とする車両駆動ユニットの制御装置を提供することを目的とする。
 本発明は、車両の動力装置として少なくとも内燃機関を備える車両駆動ユニットの制御装置であって、余裕トルク制御手段と、余裕トルク管理手段とを備えている。
 余裕トルク制御手段は、前記車両駆動ユニットが実際に出力する実トルク以外に当該車両駆動ユニットが出力し得る潜在的な余裕トルクを確保することを要求する所定のトルクリザーブ要求に従って、前記内燃機関が出力するトルクを調整可能な1または2以上のアクチュエータ、または前記車両に搭載された1以上のデバイスを用いて、前記余裕トルクを確保するためのトルクリザーブ動作を複数の形態で実行可能なものである。
 余裕トルク管理手段は、前記複数のトルクリザーブ動作のそれぞれが同一の余裕トルクを確保する際の前記車両の所定の性能値の低下が少ないことを基準として、前記複数のトルクリザーブ動作のうちの何れを用いて前記余裕トルクを確保すべきかを管理するものである。
 本発明によれば、トルクリザーブ動作の実行の代償としての上記性能値の低下を極力抑制しつつ、所望の余裕トルクを確保することが可能となる。
 また、本発明における前記余裕トルク管理手段は、前記性能値の低下が少ないことを基準として前記複数のトルクリザーブ動作の優劣を判定し、所定の目標余裕トルクを得るために、当該優劣の判定に基づく優先順位の相対的に高い1以上の前記トルクリザーブ動作を選択して実行するように前記余裕トルク制御手段に対して指令するものであってもよい。
 これにより、トルクリザーブ動作の実行の代償としての上記性能値の低下を極力抑制しつつ、所望の余裕トルクを確保する際における好適な一手法を提供することができる。
 また、本発明における前記余裕トルク管理手段は、前記目標余裕トルクを確保する際に、前記複数のトルクリザーブ動作のうちで上記性能値の低下が最も少ない状態で当該目標余裕トルクを確保し得るトルクリザーブ動作を選択する最適リザーブ動作選択手段を含むものであってもよい。
 これにより、トルクリザーブ動作の実行の代償としての上記性能値の低下を極力抑制しつつ、所望の余裕トルクを確保する際における好適かつより具体的な一手法を提供することができる。
 また、本発明における前記余裕トルク管理手段は、前記複数のトルクリザーブ動作を用いて所定の目標余裕トルクを確保している場合において、当該目標余裕トルク相当の余裕トルクを維持しようとした際に前記性能値の低下が相対的に少ない1以上の前記トルクリザーブ動作による余裕トルクの比率が増加するように、各トルクリザーブ動作が確保する前記余裕トルクの比率を修正する余裕トルク比率修正手段を含むものであってもよい。
 これにより、トルクリザーブ動作の実行の代償としての上記性能値の低下を極力抑制しつつ、効率良く余裕トルクを確保し続けることが可能となる。
 また、本発明における前記内燃機関は、過給機付き内燃機関であってもよい。そして、前記複数のトルクリザーブ動作のうちの1つは、前記内燃機関の過給圧を高めることによって前記余裕トルクを確保する動作であってもよい。そして、前記余裕トルク管理手段は、過給圧の調整による前記余裕トルクを用いずに前記目標余裕トルクを確保できない場合には、車両の減速要求に伴う燃料カットの実行を禁止する燃料カット禁止手段を含むものであってもよい。
 これにより、燃料カットの実行によって減速時に過給圧が低下し易くなるのを防止することができる。これにより、次の加速等の要求に備えて目標とする余裕トルクをより確実に確保できるようになるので、余裕トルクの不足による車両のドライバビリティの悪化を抑制することができる。
 また、本発明における前記性能値は、前記内燃機関の燃費であるものであってもよい。
 これにより、トルクリザーブ動作の実行の代償としての燃費悪化を極力抑制しつつ、所望の余裕トルクを確保することが可能となる。
本発明の実施の形態1における車両駆動ユニットの概略構成を示す図である。 図1に示す車両駆動ユニットの詳細な構成を、主たる動力装置である内燃機関の構成を中心として表した図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 図3に示すステップ108の処理の一例を説明するための用いる図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。
実施の形態1.
[システム構成の説明]
(車両駆動ユニットの全体構成)
 図1は、本発明の実施の形態1における車両駆動ユニット10の概略構成を示す図である。
 本実施形態の車両駆動ユニット10は、内燃機関(一例として、火花点火式の内燃機関)12と、第1モータジェネレータ14(以下、単に「MG1」と称する)と、第2モータジェネレータ16(以下、単に「MG2」と称する)とを備えている。これらのMG1、MG2は、車両の運転状況により、電動機または発電機として可逆的に機能するようになっている。より具体的には、MG1は、内燃機関12から駆動力の供給を受けて発電する発電機として機能し、また、内燃機関12の始動時のスターターモータとして機能する役割も有している。また、MG2は、車両の第2の動力源としての電動機として機能し、また、減速時に車両の運動エネルギを回生する際に発電機として機能する役割も有している。つまり、本車両駆動ユニット10は、内燃機関12と、内燃機関12のトルクをアシスト可能なMG2とを車両の動力装置として備えるハイブリッドシステムである。
 内燃機関12、MG1およびMG2は、遊星歯車式の動力分割機構18を介して相互に連結されている。より具体的には、動力分割機構18のサンギヤ(図示省略)には、MG1が連結されている。動力分割機構18のリングギヤ(図示省略)には、MG2と減速機20とが接続されている。減速機20は、MG2の回転軸と、駆動輪22につながる駆動軸24とを連結している。また、動力分割機構18のプラネタリーキャリア(図示省略)には、内燃機関12が連結されている。このように構成された動力分割機構18によれば、内燃機関12の駆動力をMG1側と減速機20側とに分割することができる。動力分割機構18による駆動力の配分は、任意に変更することができる。
 車両駆動ユニット10には、更に、インバータ26、コンバータ28および高圧電池30が含まれている。インバータ26は、MG1およびMG2にそれぞれ接続されているとともに、コンバータ28を介して高圧電池30にも接続されている。MG1で発電された電力は、インバータ26を介してMG2に供給することもできるし、インバータ26およびコンバータ28を介して高圧電池30に充電することもできる。逆に、減速時の回生によりMG2で発電された電力は、インバータ26を介してMG1に供給することもできるし、インバータ26およびコンバータ28を介して高圧電池30に充電することもできる。また、高圧電池30に充電されている電力は、コンバータ28およびインバータ26を介してMG2やMG1に供給することができる。また、本実施形態の車両のルーフには、太陽光のエネルギを電力に変換するためのソーラーパネル31が搭載されている。ここでは、このソーラーパネル31によって発電された電力は、高圧電池30に充電可能であるものとする。
 以上説明した車両駆動ユニット10によれば、MG2を停止させた状態で、内燃機関12の駆動力のみによって駆動輪22を回転させることもできるし、逆に、内燃機関12を停止させた状態で、MG2の駆動力のみによって駆動輪22を回転させることもできる。また、MG2と内燃機関12の双方を作動させ、双方の駆動力によって駆動輪22を回転させることもできる。
(内燃機関の具体的な構成)
 図2は、図1に示す車両駆動ユニット10の詳細な構成を、主たる動力装置である内燃機関12の構成を中心として表した図である。
 内燃機関12の筒内には、ピストン32が設けられている。筒内におけるピストン32の頂部側には、燃焼室34が形成されている。燃焼室34には、吸気通路36および排気通路38が連通している。
 吸気通路36の入口近傍には、エアフィルタ40が配置されている。エアフィルタ40の下流側の吸気通路36には、吸気通路36に吸入される空気の流量に応じた信号を出力するエアフローメータ42が設けられている。エアフローメータ42よりも下流側の吸気通路36には、ターボ過給機44のコンプレッサ44aが配置されている。また、吸気通路36には、コンプレッサ44aをバイパスするためのエアバイパス通路46が接続されている。エアバイパス通路46の途中には、エアバイパス通路46を流れる空気の流量を制御するためのエアバイパスバルブ(ABV)48が配置されている。
 コンプレッサ44aよりも下流側の吸気通路36には、コンプレッサ44aにより圧縮された空気を冷却するインタークーラ50が配置されている。インタークーラ50よりも下流側の吸気通路36には、電子制御式のスロットルバルブ52が設けられている。また、スロットルバルブ52の上流側であって、コンプレッサ44a(およびインタークーラ50)の下流側の吸気通路36には、この部位における吸気圧力(過給圧)を検出するスロットル上流圧センサ54が取り付けられており、スロットルバルブ52の下流側の吸気通路36(吸気マニホールドの集合部)には、この部位における吸気圧力(スロットル下流圧)を検出するスロットル下流圧センサ56が取り付けられている。
 各気筒に向けて枝分かれした後の吸気通路36(各吸気ポート)には、吸気ポート内に燃料を噴射するためのポート噴射弁58が設置されている。更に、内燃機関12の各気筒には、燃焼室34内(筒内)に直接燃料を噴射するための筒内噴射弁60、および、混合気に点火するための点火プラグ62がそれぞれ設けられている。内燃機関12では、燃焼安定化や燃費向上のために、運転条件に応じてポート噴射弁58および筒内噴射弁60のうちの少なくとも一方が選択されるようになっている。
 また、内燃機関12は、吸気弁64の開弁特性を可変とする吸気可変動弁機構66と、排気弁68の開弁特性を可変とする排気可変動弁機構70とを備えている。より具体的には、ここでは、これらの可変動弁機構66、70は、クランク軸72の回転位相に対するカム軸(図示省略)の回転位相を変化させることにより、作用角を固定としつつ吸気弁64や排気弁68の開閉時期を連続的に可変とする位相可変機構(VVT(Variable Valve Timing)機構)を備えるものとする。ここでは、可変動弁機構66、70が備えるVVT機構は、電動式であるものとする。また、吸気カム軸および排気カム軸の近傍には、それぞれのカム軸の回転角度、すなわち、吸気カム角および排気カム角を検出するための吸気カム角センサ74および排気カム角センサ76がそれぞれ配置されている。
 排気通路38には、ターボ過給機44のタービン44bが配置されている。タービン44bよりも下流側の排気通路38には、排気ガスを浄化するための排気浄化触媒(ここでは三元触媒)として、上流側から順に、上流触媒(SC:スタートキャタリスト)78および下流触媒(UFC:床下触媒)80が直列に配置されている。下流触媒80よりも下流側の排気通路38には、マフラー82が設置されている。
 また、上流触媒78の上流側の排気通路38には、上流触媒78に流入する排気ガス(各気筒から排出された排気ガス)の空燃比に対してほぼリニアな出力を発するA/Fセンサ84が配置されており、排気通路38における上流触媒78と下流触媒80との間の部位には、上流触媒78から流出してくる排気ガスが理論空燃比に対してリッチである場合にリッチ出力を発生し、また、その排気ガスが理論空燃比に対してリーンである場合にリーン出力を発生するOセンサ86が配置されている。
 また、排気通路38には、タービン44bをバイパスしてタービン44bの入口側と出口側とを接続する排気バイパス通路88が接続されている。排気バイパス通路88の途中には、排気バイパス通路88の開閉を担うウェイストゲートバルブ(WGV)90が設置されている。ここでは、WGV90は、電動式であるものとする。また、クランク軸72の近傍には、クランク角度およびエンジン回転数を検出するためのクランク角センサ92が配置されている。
(車両駆動ユニットの制御系統)
 次に、図1および図2を参照して、車両駆動ユニット10の制御系統の構成について説明する。
 本実施形態のシステムは、内燃機関12およびMG2等を含む車両駆動ユニット10を総合的に制御するための電子制御装置(ECU)を備えている。このECUは、内燃機関12を直接的に制御するエンジンコントローラ100と、MG1およびMG2を直接的に制御するモータコントローラ102とを含んでいる。更に、本ECUは、車両駆動ユニットの制御系統においてこれらのコントローラ100、102の上位に位置するパワートレーンマネージャ(PTM)104を備えている。尚、これらのコントローラ100、102、およびPTM104の各要素は、それぞれが専用のハードウェアによって構成されていてもよいし、或いは、ハードウェアは共有しつつ、ソフトウェアによって仮想的に構成されたものであってもよい。
 図2に示すように、エンジンコントローラ100の入力部には、上述したエアフローメータ42、スロットル上流圧センサ54、スロットル下流圧センサ56、カム角センサ74、76、A/Fセンサ84、Oセンサ86およびクランク角センサ92等の内燃機関12の運転状態を検出するための各種センサが接続されている。これらのセンサからの情報は、エンジンコントローラ100からエンジン運転状態情報としてPTM104に伝送されるようになっている。また、エンジンコントローラ100の出力部には、上述したABV48、スロットルバルブ52、ポート噴射弁58、筒内噴射弁60、点火プラグ62を含む点火装置、可変動弁機構66、70およびWGV90等の内燃機関12の運転を制御するための各種のアクチュエータが接続されている。
 また、モータコントローラ102には、MG1、MG2の運転状態情報(高圧電池30の充電状態(SOC)およびMG2の温度など)が入力されるようになっている。これらの情報は、モータコントローラ102からPTM104に伝送されるようになっている。更に、PTM104の入力部には、アクセルペダルの踏み込み量(アクセル開度)を検出するためのアクセル開度センサ106、および、車両の運転者が希望の走行モードを選択するための走行モードセレクタ108が接続されている。PTM104は、これらのセンサ106およびセレクタ108からの情報に基づいて、運転者のトルク要求を取得する。更に、PTM104には、車速を検出するための車速センサ110、高圧電池30の温度を検出するための電池温度センサ112、日射量を検出するための日射量センサ114、および、外気温度を検出するための外気温度センサ116が接続されている。また、PTM104には、ナビシステム118等の車両制御に係る各種デバイスが接続されている。これらの各種センサおよびデバイスによれば、車両の走行状態および車両が置かれている環境状態を取得することができる。
 PTM104は、エンジンコントローラ100およびモータコントローラ102を介して内燃機関12およびMG2が出力するトルクをそれぞれ調整することによって、車両の駆動状態を制御している。PTM104は、アクセル開度センサ106および走行モードセレクタ108から得られる運転者のトルク要求に加え、上述した各種センサおよびデバイスからの情報に基づいて現時点において車両全体として出力すべきトルクを計算する。そして、この車両全体としての要求トルクが、内燃機関12が担う要求トルクとMG2が担う要求トルクとに配分される。PTM104は、このようにして計算したそれぞれの要求トルクを、トルク要求としてエンジンコントローラ100およびモータコントローラ102に出力している。
 PTM104は、現時点での車両制御に必要とするトルクだけでなく、将来において車両制御に必要となるトルク(将来トルク)も計算している。そして、計算した将来トルクを将来情報としてエンジンコントローラ100およびモータコントローラ102に出力している。この動作はPTM104から内燃機関12およびMG2へのトルク調整の予約を意味している。エンジンコントローラ100およびモータコントローラ102が受け付けた将来情報が予約情報となり、その内容に従って内燃機関12およびMG2の制御スケジュールが立てられることになる。
 より具体的には、PTM104における将来トルクの計算には、モータコントローラ102およびナビシステム118からの情報が用いられる。エンジンコントローラ100に関しては、例えば、モータコントローラ102からMG2の運転/停止に関する情報、および内燃機関12の駆動トルクに対するMG2の駆動トルクの比率の変更に関する情報を前もって受け取ることができる。その情報からMG2の運転/停止或いは上記比率の変更に伴うトルク変動の吸収に必要なトルクを先行して計算し、エンジンコントローラ100に対して予約することで、その後にMG2が運転/停止されるとき等の適正なトルク調整が可能になる。
 また、ナビシステム118(他には、車車間通信システムのような情報通信システム)を備える場合には、それらの情報からこの先車両が置かれる状況を予測することができる。予測した状況に最適なトルクを先行して計算し、エンジンコントローラ100およびモータコントローラ102に対して予約することで、その後に車両が置かれる状況に応じた適正なトルク調整が可能になる。例えば、ナビシステム118の情報からは、この先の登坂角を予測することができる。予測した登坂角から必要なトルクを計算し、エンジンコントローラ100等に対して予約しておけば、適正なタイミングでのトルクアップによって登坂時の減速を防止することができる。
 尚、後述のトルクリザーブ動作が、このような場合に将来のトルクの確保を具体的に行う動作に相当する。PTM104は、上記のような将来情報に基づいて、トルクリザーブ動作を実行する要求(トルクリザーブ要求)をエンジンコントローラ100やモータコントローラ102に指令する。更に付け加えると、PTM104が後述の目標余裕トルクを確保するための指令をエンジンコントローラ100またはモータコントローラ102に発することが、ここでいうトルクリザーブ要求をこれらのコントローラ100、102に対して出力することに相当している。
 また、本実施形態のようなドライブバイワイヤシステムの場合には、アクセル開度センサ106の信号、すなわち、運転者からのトルク要求を直接にエンジンコントローラ100に出力するのではなく、遅延処理を施してから出力することもできる。この場合は、アクセル開度センサ106の信号が将来トルクを表すことになる。
 エンジンコントローラ100には、PTM104から供給されるトルク要求および将来情報に加え、上述したようにエンジン運転状態情報が入力されている。エンジンコントローラ100は、これらの要求および情報、並びにトルクリザーブ要求に基づいて、上記各種のアクチュエータのうちの対象となる各アクチュエータを各ドライバ(図示省略)を介して駆動することにより、内燃機関12のトルクを制御する。一方、モータコントローラ102には、PTM104から供給されるトルク要求および将来情報に加え、上述したようにMG1、MG2の運転状態情報が入力されている。モータコントローラ102は、これらの要求および情報、並びにトルクリザーブ要求に基づいて、図示省略するドライバを介してMG2を駆動することにより、内燃機関12のトルクをアシストするMG2のモータトルクを制御する。
 より具体的には、本実施形態の内燃機関12では、トルク調整のために主として使用するアクチュエータとして、スロットルバルブ52が使用される。そのうえで、内燃機関12では、当該スロットルバルブ52によるトルク調整を補助するためのサブのアクチュエータとして、(点火プラグ62を含む)点火装置、可変動弁機構66、70およびWGV90が使用される。具体的には、上記トルク要求に基づいて、内燃機関12の目標トルクが決定される。基本的には、エンジンコントローラ100は、所定のマップに従って目標トルクをMBTで実現するための目標スロットル開度を算出し、スロットルバルブ52を制御する。そのうえで、目標スロットル開度は、トルクリザーブ要求などの他の要求に基づくサブのアクチュエータの制御の実行に伴って必要に応じて修正されることがある。更に、本実施形態では、内燃機関12のトルク調整を補助するためのアクチュエータとして、MG2が使用される。
[車両駆動ユニットが行うトルクリザーブ動作の具体例]
 車両駆動ユニット10は、内燃機関12およびMG2が出力するトルクを車両の駆動力として利用可能である。このような車両駆動ユニット10が潜在的に出力し得るトルクを、ここでは「潜在トルク」と称する。車両の運転中に車両のトルクを迅速に増大させる要求(加速や登坂要求など)に対して高い応答性を発揮できるようにするためには、高い応答性をもって放出可能な「余裕トルク」を車両駆動ユニット10が事前に確保しておく(将来に要求され得るトルク増加に対応できるトルクを予約しておく)動作(以下、「トルクリザーブ動作」と称する)を行うことが考えられる。より具体的には、ここでいう「余裕トルク」とは、車両駆動ユニット10が実際に出力する実トルク以外に当該車両駆動ユニット10が出力し得る潜在的なトルクのことであり、上記の潜在トルクと実トルクとの差に相当するものである。
 このようなトルクリザーブ動作によれば、実際に高いトルク応答性でトルクを高めることが要求された際に、余裕トルクが放出されるように対象となるアクチュエータを制御することにより、要求トルクを迅速に実現できるようになる。このようなトルクリザーブ動作には、例えば、内燃機関12が備える以下のアクチュエータを利用した動作、更には、後述するように、内燃機関12の駆動力を利用する発電や車両に搭載されたデバイス(ソーラーパネル31)による発電を利用した高圧電池30への充電動作などが相当する。以下、それらの動作について順に説明する。
(点火装置を利用したトルクリザーブ動作)
 先ず、点火時期を調整するための点火装置を例に挙げて、余裕トルクを確保するためのトルクリザーブ動作について説明する。内燃機関12の運転中の点火時期は、基本的には、現時刻の運転状態に応じた最適点火時期(MBT)が得られるように制御されている。点火時期の調整によって内燃機関12のトルクを制御可能なアクチュエータである点火装置は、吸入空気量の調整によって内燃機関12のトルクを制御するアクチュエータであるスロットルバルブ52と比べ、高い応答性でトルクを変化させることができる。PTM104によって点火装置を利用したトルクリザーブ動作を行う要求が出された場合には、エンジンコントローラ100は、内燃機関12の目標トルクを、PTM104からエンジンコントローラ100に供給されるトルク要求を満足する値よりも所定量だけ嵩上げした値に設定する。これにより、目標スロットル開度は、嵩上げ後の目標トルクをMBTで発生させられる開度にまで増大される。そして、エンジンコントローラ100は、現実に高い応答性でのトルクの増大が内燃機関12に対して要求されない間は、上記の目標トルクの嵩上げ分のトルク増加が生じないように、本来の制御値に対する点火時期の遅角を行う。すなわち、この場合のトルクリザーブ動作は、点火装置とスロットルバルブ52との協調により実現される。
 このような点火時期の遅角を実行している場合の内燃機関12の潜在トルクには、上記の嵩上げ後の目標トルクが相当し、また、この場合の目標トルクの嵩上げ量が、将来のトルク応答を迅速に行うために余分に確保されるトルクであり、上記「余裕トルク」に相当する。従って、余裕トルクと点火時期との関係においては、余裕トルクが大きくなるほど、点火時期の遅角量が増大することになる。この場合に余裕トルクの放出を担うアクチュエータには、点火装置が相当する。すなわち、このような余裕トルクを確保した状態において高い応答性でのトルクの増大が要求された場合には、遅角しておいた点火時期を進角させることにより余裕トルクが放出される。これにより、スロットルバルブ52の制御によって吸入空気量を増やしてトルクを増大させる場合と比較して、高いトルク応答性を実現することが可能となる。
(WGVを利用したトルクリザーブ動作)
 次に、過給圧を調整可能なWGV90を例に挙げて、トルクリザーブ動作について説明する。本実施形態では、エンジン保護のためにWGV90を開く高回転高負荷領域以外の領域では、通常時(高出力要求時以外)はWGV90を現時刻の運転状態に応じた所定の開度で開いた状態とし、高出力が要求される場合にWGV90を閉じるノーマルオープン制御が行われるようになっている。内燃機関12の過給領域においてWGV90を利用したトルクリザーブ動作を行う要求がPTM104によって発令された場合には、WGV90を全閉に制御することにより過給圧が高められる。そのうえで、エンジンコントローラ100は、そのような過給圧の上昇によって吸入空気量が増加しないように(すなわち、トルク増加が生じないようにするために)、内燃機関12の目標トルクを、PTM104からエンジンコントローラ100に供給されるトルク要求を満足する値よりも所定量だけ嵩下げした値に設定する。これにより、目標スロットル開度は、嵩下げ後の目標トルクをMBTで発生させられる開度に縮小される。すなわち、この場合のトルクリザーブ動作は、WGV90とスロットルバルブ52との協調により実現される。
 このようなWGV90を利用したトルクリザーブ動作によれば、本動作を行わない場合と比べ、内燃機関12が出力するトルクとしては同一としつつ、過給圧(スロットル上流圧)を高めた状態を得ることができる。このような過給圧の増大によって現在の実トルクに対して潜在トルクを高めることによって、この場合の「余裕トルク」が確保されているといえる。より具体的には、本動作を行わない場合のWGV90の開度で得られる過給圧値に対し、本動作の実行に伴う過給圧値の増加分に応じて見込まれるトルクの増加分がこの場合の「余裕トルク」に相当している。このような余裕トルクを確保した状態において高い応答性でのトルクの増大が要求された場合には、スロットルバルブ52を開くことにより、余裕トルクが放出されることになるといえる。すなわち、この場合に余裕トルクの放出を担うアクチュエータには、スロットルバルブ52が相当する。これにより、上記のように過給圧を高めていない場合と比べ、スロットルバルブ52の制御によって高いトルク応答性を実現することが可能となる。尚、ここでは、本トルクリザーブ動作の実行時には、WGV90を全閉にする例について説明を行ったが、トルクリザーブ動作時のWGV90の開度は、通常時(非トルクリザーブ動作時)に制御される値よりも閉じ側の値であれば、必ずしも全閉に限られない。
(可変動弁機構を利用したトルクリザーブ動作)
 次に、吸気弁64の開弁期間と排気弁68の開弁期間とが重なるバルブオーバーラップ期間(以下、単に「O/L期間」と略する)を調整可能とする可変動弁機構66、70を例に挙げて、トルクリザーブ動作について説明する。これらの可変動弁機構66、70を用いて、吸気弁64の開閉時期の進角値と排気弁68の開閉時期の遅角値のうちの少なくとも一方を変更することにより、上記O/L期間を増減することができる。吸排気上死点の近傍においてO/L期間が設定されている状態において、ターボ過給機44による過給によって(吸気弁64の上流の)吸気圧力が(排気弁の下流の)排気圧力よりも高くなっていると、新気(吸気)が燃焼室34を介して吸気通路36から排気通路38に向けて吹き抜けるという現象が生ずる。このような新気の吹き抜けが発生していると、通常であれば燃焼室34のすきま容積分は少なくとも存在してしまう筒内の残留ガスを、吸気通路36からの新気を用いて押し出すことによって掃気し、新気に置き換えることができる(スカベンジ効果)。これにより、過給領域において筒内への新気の充填効率が向上するので、内燃機関12のトルク向上などの効果を得ることができる。
 本トルクリザーブ動作による余裕トルクの確保とは、吸気圧力が排気圧力よりも高い領域、すなわち、スカベンジ効果の見込める過給領域において、スカベンジ効果を得るためのO/L期間を設けない状態に吸排気弁64、68のバルブタイミングを調整することをいう。このような制御が行われている状態では、スカベンジ効果の利用時と比べて同一トルクを得るために必要とされるスロットル開度が大きくなる。従って、このようにO/Lを設定せずにスロットル開度を大きく制御している状況下において、スカベンジ効果を得るためのO/L期間の設定を行うことによって見込まれるトルク増加量が、この場合の「余裕トルク」に相当する。すなわち、この場合のトルクリザーブ動作は、可変動弁機構66、70とスロットルバルブ52との協調により実現される。このような余裕トルクを確保した状態において高い応答性でのトルクの増大が要求された場合には、高い応答性を有する電動式の可変動弁機構66、70を用いてスカベンジ効果を得るためのO/L期間を設けることにより、余裕トルクが放出されることになるといえる。すなわち、この場合に余裕トルクの放出を担うアクチュエータには、可変動弁機構66、70が相当する。これにより、スカベンジ効果を利用して高いトルク応答性を実現することが可能となる。尚、ここでは、余裕トルクの確保のためにO/L期間を設けない例について説明を行ったが、本トルクリザーブ動作において調整されるO/L期間は、スカベンジ効果によるトルク向上代の一部を残している状態であれば、ゼロ(O/L期間を全く設けない状態)に限られない。
(MG2が使用する電力の高圧電池への充電を利用したトルクリザーブ動作)
 次に、内燃機関12のトルク調整をアシスト可能なMG2を例に挙げて、トルクリザーブ動作について説明する。この場合には、高圧電池30に蓄えられている電力によってMG2が生成可能な量のトルクが上記「余裕トルク」に相当する。既述したように、本実施形態の車両駆動ユニット10によれば、内燃機関12によってMG1を駆動することによって発電した電力を高圧電池30に充電することができる。また、実行機会としては車両が減速状態にある時に限られるが、減速時にMG2を利用した回生を行うことによって発電した電力を高圧電池30に充電することもできる。また、日射が確保できる状況下であれば、ソーラーパネル31を利用して発電した電力を高圧電池30に充電することもできる。これらの態様によって高圧電池30に蓄える電力量を増やすことによってMG2が生成可能な余裕トルクの量を増やす動作が、この場合のトルクリザーブ動作に相当するといえる。このように、この場合のトルクリザーブ動作は、内燃機関12とMG1の利用、MG2を利用した減速時の車両制御、或いは車両に搭載されたソーラーパネル31を利用した車両制御によって実現される。
 尚、MG2を駆動することによって内燃機関12のトルク調整を補助している状況下において、将来の高トルク応答要求時にMG2による内燃機関12のトルクアシストを行えるようにするために、現時点で高圧電池30に蓄えられている電力を節約する動作(具体的には、MG2による内燃機関12のトルク調整を停止したり、内燃機関12の発生トルクに対するMG2の発生トルクの比率を下げたりすることにより、MG2による消費電力を下げる動作)についても、この場合のトルクリザーブ動作に該当するといえる。更には、余裕トルクの放出による電力の消費以外での高圧電池30に蓄えられた電力の使用を制限する動作を行うことも、この場合のトルクリザーブ動作に該当するといえる。
 このような余裕トルクを確保した状態において高い応答性でのトルクの増大が要求された場合には、高圧電池30に蓄えた電力をMG2で消費することにより、余裕トルクが放出されることになるといえる。すなわち、この場合に余裕トルクの放出を担うアクチュエータには、MG2が相当する。このようなMG2の利用によれば、特に低回転低負荷領域において効率良く、内燃機関12のトルク応答を高い応答性をもってアシストすることが可能となる。
[実施の形態1の特徴的な余裕トルク管理]
 一例としての上述した4通りのトルクリザーブ動作のように、複数の形態のトルクリザーブ動作を実行可能な車両においては、車両の運転中に、これらのトルクリザーブ動作を利用して余裕トルクを確保したうえで、所定のアクチュエータを必要に応じて駆動することにより、蓄えられた余裕トルクを放出することができる。
 しかしながら、それぞれのトルクリザーブ動作が内燃機関12の燃費、排気エミッションまたは静粛性などの車両駆動ユニット10の所定の性能値に与える影響は、個々のトルクリザーブ動作に応じて異なるものとなる。そして、個々のトルクリザーブ動作の実行に伴う上記性能値の低下代は、車両が置かれている様々な状況(具体的には、内燃機関12の運転状態、車両に搭載された高圧電池30の充電状態(SOC)、および車両の環境状態(例えば、日射量、外気温度および道路状況(道路の勾配など))等に応じて変化するものでもある。また、車両駆動ユニット10が現在必要と判断した量の目標余裕トルクを確保するように制御している場合、確保されている余裕トルクの量は、所定の余裕トルクの放出要求時(加速要求時や登坂要求時など)において放出されることによって変動する。しかしながら、このような余裕トルクの放出タイミングは、基本的に、運転者の意思に基づく加速要求時のように事前に予測することが困難なものである。
 そこで、本実施形態では、事前に計画した一律の手法によって余裕トルクを確保するのではなく、車両の運転中にトルクリザーブ要求が発令された場合には、複数(一例として、上記の4つ)のトルクリザーブ動作のうちで車両駆動ユニット10の所定の性能値(本実施形態では、一例として内燃機関12の燃費を想定する)の悪化をその時々において最小限に抑えられるトルクリザーブ動作(1つとは限らない)を選択し、目標余裕トルクを確保するようにした。
 図3は、本発明の実施の形態1における余裕トルク管理を実現するために、車両駆動ユニット10の制御系統(PTM104、エンジンコントローラ100およびモータコントローラ102)が実行する制御ルーチンを示すフローチャートである。尚、本ルーチンは、車両システムの起動中に内燃機関12の運転が行われる場合において、PTM104による所定のトルクリザーブ要求の発令中に所定の制御周期毎に繰り返し実行されるものとする。
 図3に示すルーチンでは、先ず、PTM104は、目標余裕トルクを取得する(ステップ100)。PTM104は、内燃機関12の運転領域(エンジン負荷(吸入空気量)とエンジン回転数とで規定)との関係で目標余裕トルクを予め設定した目標余裕トルクマップを記憶している。また、PTM104は、走行モードセレクタ108による車両の走行モードの設定に応じて異なる複数の目標余裕トルクマップを備えている。例えば、走行モードセレクタ108によって設定される走行モードとして、通常モードと、当該通常モード時よりもアクセルペダルの操作に対するトルク応答性を高めたスポーツモードとが備わっている場合を想定する。このような場合であれば、スポーツモード時に選択される目標余裕トルクマップでは、通常モード時に選択される目標余裕トルクマップよりも全体的に高い余裕トルクがマップ値として設定される。また、本ステップ100における目標余裕トルクは、例えば、ナビシステム118によって得られる近い将来の道路情報(上記将来情報)に基づいて更新される値であってもよい。
 上記ステップ100の処理によれば、時々刻々と変化する車両の現在の状態(内燃機関12の運転領域、運転者が要求する走行モードなど)および近い将来における車両状況(道路状況など)に応じた最新の目標余裕トルクが取得される。
 次に、PTM104は、点火時期、高圧電池30の充電状態(SOC)、過給圧(コンプレッサ44aとスロットルバルブ52との間の部位の吸気圧)、およびスロットル下流側の吸気圧などの各種パラメータ(車両が現在置かれている状況(内燃機関12の運転状態など)を判断するためのパラメータ)を上述した各種センサの出力等に基づいて取得する(ステップ102)。尚、SOCは、高圧電池30の電圧等に基づいて取得することができる。
 次に、PTM104は、上記複数のトルクリザーブ動作によって現在確保されている余裕トルク(の合計値)を算出する(ステップ104)。点火装置を利用して確保される余裕トルクは、既述したように、点火時期の遅角量が大きいほど高くなる。MG2が放出可能な余裕トルクは、SOCが良好であるほど(高圧電池30の残量が多いほど)高くなる。WGV90を利用して確保される余裕トルクは、過給圧が高いほど高くなる。また、可変動弁機構66、70を利用して確保される余裕トルクは、スロットル下流側の吸気圧の高低に応じて、スカベンジ効果を含めて筒内への吸気の充填効率が変化することで変化する。従って、点火時期の遅角量、SOC、過給圧およびスロットル下流側の吸気圧のそれぞれとの関係で余裕トルクを定めたマップを備えておくことにより、上記の各トルクリザーブ動作によって確保されている現在の余裕トルクを算出することができる。
 次に、PTM104は、上記目標余裕トルクが確保されているか否かを判定する(ステップ106)。本判定は、上記ステップ100により取得された目標余裕トルクと上記ステップ104において算出された現在の余裕トルクとを比較することによって行うことができる。
 上記ステップ106において目標余裕トルクが確保されていないと判定された場合には、PTM104によるステップ108の処理、および、エンジンコントローラ100および/またはモータコントローラ102によるステップ110の処理が順に実行される。
 先ず、ステップ108では、不足している余裕トルクを確保するために、上記の複数のトルクリザーブ動作のうちで燃費悪化を最小限に抑制できる最適なトルクリザーブ動作を選択する処理が実行される。具体的には、トルクリザーブ動作毎に、余裕トルクの不足分を確保しようとした際の代償(コスト)としての燃費悪化代(上記性能値の低下代)が算出される。そして、算出された燃費悪化代が最も小さいトルクリザーブ動作が現時点での最適なトルクリザーブ動作として選択される。尚、WGV90を利用するトルクリザーブ動作と可変動弁機構66、70を利用するトルクリザーブ動作は、内燃機関12が過給状態にある時に利用可能なものである。従って、本ステップ108では、内燃機関12が過給状態にある時には、上記4通りのトルクリザーブ動作を対象とした処理が実行され、内燃機関12が非過給状態にある時には、点火時期およびSOCを利用したトルクリザーブ動作を対象とした処理が実行される。
 より詳細に説明すると、PTM104には、トルクリザーブ動作毎に、燃費悪化代と、余裕トルク不足分(上記ステップ106の判定時の余裕トルクの不足分に対応)と、各トルクリザーブ動作に対応するパラメータ(上記ステップ102において取得されるパラメータ)との間の関係を定めた、余裕トルク不足時の燃費悪化代算出マップ(図示省略)が記憶されている。走行中に車両を取り巻く環境が変化すると、各トルクリザーブ動作の燃費低下代(効率)が変化し得る。例えば、日射量が変化すると、ソーラーパネル31を用いて充電可能な電力量が増えるので、内燃機関12によってMG1を駆動することにより確保すべき電力量が減少する。また、車両が長い下り坂を走行している場合には、MG2による回生制動による電力量の確保によって、この場合にも内燃機関12によってMG1を駆動することにより確保すべき電力量が減少する。従って、上記の燃費悪化代算出マップは、走行中の車両環境の変化等の様々な車両状態の変化に応じて、逐次更新されるようになっていてもよい。また、このようなマップによって規定される関係は、何れも内燃機関12の運転状態に応じて変化する。例えば、SOCを利用したトルクリザーブ動作に関するマップであっても、内燃機関12の運転状態が変化すると、内燃機関12によってMG1を駆動して発電を行う際の燃費悪化代が変化する。従って、上記の燃費悪化代算出マップは、内燃機関12の運転状態(エンジン負荷(吸入空気量)、エンジン回転数、冷却水温度など)に応じて異なるように、予め実験等から得られた結果に基づいて設定されているものとする。
 図4は、図3に示すステップ108の処理の一例を説明するための用いる図である。より具体的には、図4は、SOCを利用したトルクリザーブ動作を例に挙げたものであって、現時点の余裕トルク不足分を特定した際の燃費悪化代算出マップの関係を2次元的に表した例示したものである。
 図4に示す関係によれば、現時点のSOCが図4中の値Aよりも悪化していなければ(すなわち、余裕トルク不足分の電力を確保可能なレベルの残量が高圧電池30に残っていれば)、燃費悪化代は小さな値として算出されることになる。一方、現在のSOCが値Aよりも悪化している状況であれば、SOCがより悪化している時ほど、現在の余裕トルク不足分の電力を確保する際に伴う燃費悪化代は、より大きな値として算出されることになる。このような処理によれば、現在のSOCの下でSOCを利用したトルクリザーブ動作を用いて現在の余裕トルク不足分を確保する際の燃費悪化代を取得することができる。尚、高圧電池30に貯留する電力の発電手法には、既述したように、内燃機関12によるMG1の駆動によるもの以外に、内燃機関12を利用しない態様の発電手法として、MG2による回生制動によるものやソーラーパネル31を利用したものがある。このため、SOCと燃費悪化代との関係を定めるうえで、高圧電池30に蓄えられる電力に対して内燃機関12の駆動がどれくらい寄与しているかが問題となる。本実施形態では、様々な走行条件下で予め実施したハイブリッド車両の走行試験結果に基づいて、高圧電池30に充電された電力の合計値のうちで内燃機関12の駆動を要した電力の割合を取得するようにした。そして、そのような割合を考慮して、SOCと燃費悪化代と余裕トルク不足分との関係を定めた上記燃費低下代算出マップを設定するようにしている。
 ここでは、SOCを利用したトルクリザーブ動作を一例として示したが、本ステップ108では、他のトルクリザーブ動作に関しても、同様の処理が実行される。これにより、トルクリザーブ動作毎に、余裕トルクの不足分を確保しようとした際の代償としての燃費悪化代がそれぞれ算出される。そして、上述したように、PTM104は、算出された燃費悪化代が最も小さいトルクリザーブ動作を現時点での最適なトルクリザーブ動作として選択し、この場合のトルクリザーブ要求として、選択した最適なトルクリザーブ動作をエンジンコントローラ100やモータコントローラ102に出力する。
 次に、ステップ110では、エンジンコントローラ100(SOCを利用したトルクリザーブ動作が最適トルクリザーブ動作として選択された場合にはモータコントローラ102)が、上記ステップ108の処理によって選択された最適なトルクリザーブ動作を実行する。
 一方、上記ステップ106において目標余裕トルクが確保されていると判定された場合には、PTM104は、現在の余裕トルク(すべてのトルクリザーブ動作による余裕トルクの合計値)を維持しようとした場合に燃費悪化代が最も小さくなるトルクリザーブ動作による余裕トルクの比率が増加するように、該当するトルクリザーブ動作による余裕トルクの比率を修正することをエンジンコントローラ100および必要に応じてモータコントローラ102に指令する(ステップ112)。各トルクリザーブ動作が確保している余裕トルクを維持するために要する内燃機関12の燃料消費の程度もしくは当該消費の有無は、個々のトルクリザーブ動作によって相違し、また、内燃機関12の運転状態などの車両が置かれている様々な状況に応じても相違する。
 そこで、本ステップ112では、先ず、上記ステップ108の処理と同様の手順の処理によって、現在の余裕トルクの維持に対して燃費悪化代の最も少ないトルクリザーブ動作の特定が行われる。具体的には、PTM104には、トルクリザーブ動作毎に、現在確保している余裕トルクと、当該余裕トルクを維持する際の単位時間当たりの燃費悪化代と、各トルクリザーブ動作に対応するパラメータ(上記ステップ102において取得されるパラメータ)との間の関係を定めた余裕トルク維持時の燃費悪化代算出マップ(図示省略)が記憶されている。これらのマップの詳細な設定は、ここでは説明を省略するが、予め実験等を行うことによって定めておくことのできるものである。また、上記ステップ108の場合と同様に、これらのマップについても、走行中の車両環境の変化等の様々な車両状態の変化に応じて、逐次更新されるようになっていてもよい。また、これらのマップは、内燃機関12の運転状態(エンジン負荷(吸入空気量)、エンジン回転数、冷却水温度など)に応じて異なるように、予め実験等から得られた結果に基づいて設定されているものとする。
 尚、上記ステップ112の処理に関し、SOCを利用したトルクリザーブ動作については、車両駆動ユニット10に対する高いトルク応答性の要求時に余裕トルクを放出する目的のみで高圧電池30に蓄えられた電力が使用されるシステムの場合であれば、この場合に算出される燃費悪化代はゼロとして算出することができる。一方、本実施形態の車両駆動ユニット10のように、車両への高いトルク応答性の要求時の余裕トルクの利用以外に、必要に応じて内燃機関12のトルクをアシストするために高圧電池30に蓄えられた電力を用いてMG2を駆動するシステムもある。このようなシステムの場合、余裕トルクを維持しておくために高圧電池30からの電力の取り出しを制限する必要が生じた状況下においては、そのような制限によって内燃機関12が出力すべきトルクの増加に応じた燃料消費が生ずる。このため、このようなシステムの場合には、予め実験等に基づいて、このような燃料消費による単位時間当たりの燃費悪化代の概算値を、内燃機関12の運転状態等に応じた値として備えておくようにしてもよい。そして、そのような概算値を用いて上記燃費悪化代マップを構築しておいてもよい。
 本ステップ112では、上記の余裕トルク維持時の燃費悪化代算出マップを使用することで、各トルクリザーブ動作が個々の余裕トルクを維持するための代償としての燃費悪化代をそれぞれ算出することができる。このような処理によって、現在の余裕トルク(合計値)の維持に対して燃費悪化代の最も少ないトルクリザーブ動作が特定されると同時に、燃費悪化代の最も多いトルクリザーブ動作も特定される。
 次いで、本ステップ112では、PTM104は、現在の余裕トルクの維持に対して燃費悪化代の最も少ないトルクリザーブ動作による余裕トルクの比率が所定値だけ増え、かつ、燃費悪化代の最も多いトルクリザーブ動作による余裕トルクの比率が上記所定値だけ減るように、各トルクリザーブ動作が確保する余裕トルクの比率を修正することを、エンジンコントローラ100および必要に応じてモータコントローラ102に指令する。尚、この場合における、燃費悪化代の最も多いトルクリザーブ動作による余裕トルクの比率には、ゼロも含まれ得る。すなわち、状況によっては、燃費悪化代の最も多いトルクリザーブ動作による余裕トルクがゼロとなるように制御されることもある。
 次に、エンジンコントローラ100および必要に応じてモータコントローラ102は、PTM104からの余裕トルクの比率の修正指令に従って、該当するトルクリザーブ動作を調整する処理を実行する(ステップ114)。例えば、点火装置を利用するトルクリザーブ動作において余裕トルクを減らす場合には、点火時期が進角されるとともに、当該点火時期の進角に伴うトルク変化(増加)を相殺するためにスロットルバルブ52が閉じ側の開度に制御される。
 尚、図3中には表されていないが、車両の運転中に目標余裕トルクが変化して余剰な余裕トルクを抱えることになった場合には、次のような処理を行うようにしてもよい。すなわち、例えば、PTM104が、上記ステップ112と同様の判断によって現在の余裕トルクの維持に対して燃費悪化代の最も多いトルクリザーブ動作を特定するようにする。そして、PTM104が、余剰な余裕トルクの解消のために、特定されたトルクリザーブ動作による余裕トルクの減少もしくは消去をエンジンコントローラ100もしくはモータコントローラ102に指令するようにする。
 以上説明した図3に示すルーチンによれば、目標余裕トルクが確保されていない状況下においては、燃費悪化を最小限に抑制しつつ余裕トルクの不足分を確保するうえでの、上記複数のトルクリザーブ動作の優劣が判断される。つまり、上記ステップ102において取得される各パラメータの状態に基づいて、効率良く余裕トルクを生成することのできるトルクリザーブ動作を選別する処理が行われる。そして、そのような判断結果に基づいて、当該複数のトルクリザーブ動作のうちで燃費悪化を最小限に抑制できる最適なトルクリザーブ動作を選択して、余裕トルクの不足分が確保される(上記ステップ108および110)。これにより、余裕トルクの利用のために複数のトルクリザーブ動作を実行可能な場合において、トルクリザーブ動作の実行に伴う燃費(性能値)の低下を極力抑制しつつ、所望の余裕トルクを確保できるようになる。
 また、上記ルーチンによれば、目標余裕トルクが確保されている状況下においては、現在の余裕トルク(合計値)を維持しようとした場合に燃費悪化代の最も少ないトルクリザーブ動作による余裕トルクの比率が増加するように、該当するトルクリザーブ動作による余裕トルクの比率を修正するための処理が実行される(上記ステップ112および114)。そして、これらの処理では、現在の余裕トルクの維持に対して燃費悪化代の最も少ないトルクリザーブ動作による余裕トルクの比率を増やしたことに伴って、燃費悪化代の最も多いトルクリザーブ動作による余裕トルクの比率が減らされる。これにより、将来の加速等の要求に備え、効率良く余裕トルクを確保し続けることが可能となる。
 このように、本実施形態の車両駆動ユニット10の制御装置は、複数のトルクリザーブ動作のそれぞれが同一の余裕トルクを確保する際の代償としての車両の性能値(ここでは、一例として燃費)の低下の大小を基準として、複数のトルクリザーブ動作のうちの何れを用いて余裕トルクを確保すべきかを管理する機能を備えている。すなわち、本実施形態のシステムによれば、内燃機関12の運転中に、車両の置かれている様々な状況を考慮して常に効率の良いトルクリザーブ動作が実行されるように、複数のリザーブ動作の実行が管理されることになる。
 一例を挙げると、内燃機関12の運転状態の変化に応じて、各トルクリザーブ動作間において、余裕トルクを確保する際の燃費悪化代の優劣が変化し得る。その結果、内燃機関12の運転状態の変化に応じて、余裕トルクを確保しておく際の各トルクリザーブ動作の比率が逐次変更されていく。例えば、過給の行われる高負荷領域では、WGV90を利用して過給圧を高めておくことによって効率良くトルクリザーブ動作を高めることができる場合がある。また、MG2(モータ)のトルクは、低回転数時に高く、回転数の増加に比例して低下していく。このため、内燃機関12の運転領域が低回転高負荷領域である場合には、MG2を利用して効率良く内燃機関12のトルクをアシストすることができるが、高回転領域においては、MG2は必ずしも効率の良いトルクアシスト手段とはいえないという一面もある。上述した燃費悪化代算出マップの設定次第ではあるが、一例として、上記のWGV90とMG2によるトルクアシストについての上述した一面を考慮したマップを備えている場合には、次のような制御が行われることになる。すなわち、内燃機関12の運転領域が低負荷側の領域から高負荷側の領域に移行する過程においては、WGV90を利用したトルクリザーブ動作の比率が高められていくとともに、他のトルクリザーブ動作(例えばSOCを利用したトルクリザーブ動作)の比率が下げられていく。一方、WGV90を利用したトルクリザーブ動作は、過給領域において使用可能なものである。従って、例えば、内燃機関12の過給領域から非過給領域に移行する過程では、WGV90を利用したトルクリザーブ動作の減少に伴って、他のトルクリザーブ動作(SOCを利用したトルクリザーブ動作と点火装置を利用したトルクリザーブ動作)のうちで上記性能値(燃費悪化代)を基準として優先順位の高い方のトルクリザーブ動作を選択して、目標余裕トルクが確保されることになる。
[実施の形態1の変形例]
 ところで、上述した実施の形態1においては、車両の所定の性能値として内燃機関12の燃費を対象とした制御を例に挙げて説明を行った。しかしながら、本発明の制御における車両の所定の性能値(目的変数)は、燃費に限定されるものではない。すなわち、この性能値は、複数のトルクリザーブ動作のそれぞれを実施する際の車両の様々な性能の低下(本動作が燃費、排気エミッションまたは内燃機関12の静粛性などに与える影響)の優劣を一律の基準で評価し得るものであればよい。具体的には、当該性能値は、例えば、トルクリザーブ動作を実施する際の内燃機関12更には車両駆動ユニット10全体の静粛性を評価する所定の指標値、トルクリザーブ動作の実施時の内燃機関12の排気エミッションを評価する所定の指標値(例えば、NOxなどの排出量)、または車両駆動ユニット10の電費であってもよい。
 また、上述した実施の形態1における上記ステップ108および110の処理においては、単一の指標値(燃費)を用いて複数のトルクリザーブ動作の優劣を判定するようにしている。しかしながら、本発明は、このような手法に限定されるものではない。すなわち、本発明における性能値を複数利用する判定が行われるようになっていてもよい。例えば、2つの性能値を指標として用いて複数のトルクリザーブ動作の優劣を判定する場合には、先ず、一方の性能値を用いて優劣を判定したうえで、当該一方の性能値との関係では優劣を付けにくい場合には、他方の性能値を用いて最終的な優劣を判定するようにしてもよい。尚、この点については、目標余裕トルクが確保されている際に各トルクリザーブ動作による余裕トルクの比率を修正する制御(上記ステップ112および114参照)を行う場合も同様である。
 更には、上述した車両の所定の性能値に加え、余裕トルクを放出する際のトルク応答性を別の指標値として加えて、複数のトルクリザーブ動作の優劣を判定するようにしてもよい。この場合には、例えば、上述した燃費悪化代算出マップと類似のマップを利用して、燃費悪化代に代え、ここでいうトルク応答性を指標としたマップを備えておくようにする。そして、上記性能値だけでなく、応答性に関しても優劣を判定するようにする。その際、性能値と応答性のどちらに重きを置くかは、必要に応じて任意に選択しうる事項である。尚、この点については、上記ステップ112および114の処理による制御を行う場合も同様である。
 また、上述した実施の形態1においては、目標余裕トルクに対して不足している余裕トルクを確保するために、上記の複数のトルクリザーブ動作のうちで燃費悪化を最小限に抑制できる最適な「単一の」トルクリザーブ動作を選択するようにしている。しかしながら、本発明は、このような手法に限定されるものではない。すなわち、上記性能値の低下の大小を基準として複数のトルクリザーブ動作の優劣を判定したうえで所定の目標余裕トルクを得るために、当該優先順位の相対的に高い「複数の」トルクリザーブ動作を選択するものであってもよい。例えば、単一のトルクリザーブ動作を利用して余裕トルクを確保する際に、少量の余裕トルクを確保する場合であれば効率が良いが、ある量以上の余裕トルクを確保しようとすると急激に効率が悪くなることも想定される。そのような場合には、次のような手法を用いることが考えられる。1つ目のトルクリザーブ動作で確保する余裕トルクの上限値を設定しておく。そして、当該上限値よりも高い目標余裕トルクが要求されている場合には、一番効率の良いトルクリザーブ動作では上記上限値までの余裕トルクを確保し、それだけでは不足する余裕トルクを二番目に効率の良いトルクリザーブ動作で確保するようにする。
 上記の内容は、目標余裕トルクが確保されている際に各トルクリザーブ動作による余裕トルクの比率を修正する制御(上記ステップ112および114参照)に対しても適用することができる。すなわち、この制御を行う場合においても、当該目標余裕トルク相当の余裕トルクを維持しようとした場合に上記性能値の低下が相対的に少ない「複数の」トルクリザーブ動作による余裕トルクの比率が増加するように、各トルクリザーブ動作が確保する余裕トルクの比率を修正するようにしてもよい。
 尚、上述した実施の形態1においては、スロットルバルブ52、点火プラグ62を含む点火装置、可変動弁機構66、70、およびWGV90が本発明における「前記内燃機関が出力するトルクを調整可能な1以上の複数のアクチュエータ」に、MG1、MG2およびソーラーパネル31が本発明における「前記車両に搭載された1以上のデバイス」に、それぞれ相当している。また、PTM104からのトルクリザーブ要求に基づいてエンジンコントローラ100またはモータコントローラ102が所定のトルクリザーブ動作を実行することにより本発明における「余裕トルク制御手段」が実現されているとともに、PTM104が上記ステップ108または112の処理を実行し、かつ、エンジンコントローラ100またはモータコントローラ102が上記ステップ110または114の処理を実行することにより本発明における「余裕トルク管理手段」が実現されている。
 また、上述した実施の形態1においては、PTM104が上記ステップ108の処理を実行し、かつ、エンジンコントローラ100またはモータコントローラ102が上記ステップ110の処理を実行することにより本発明における「最適リザーブ動作選択手段」が実現されている。
 また、上述した実施の形態1においては、PTM104が上記ステップ112の処理を実行し、かつ、エンジンコントローラ100またはモータコントローラ102が上記ステップ114の処理を実行することにより本発明における「余裕トルク比率修正手段」が実現されている。
実施の形態2.
 次に、図5を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、図1および図2に示すハードウェア構成を用いて、PTM104、エンジンコントローラ100およびモータコントローラ102に図3に示すルーチンに加え、後述の図5に示すルーチンを実行させることにより実現することができるものである。すなわち、本実施形態の制御は、上述した実施の形態1の制御と組み合わせて行うものとして好適なものである。
 WGV90を利用して過給圧を高めることによって余裕トルクを確保している状況下においてアクセルペダルがOFFとされた場合には、次の加速要求時に備えて過給圧をできるだけ高く維持しておきたい。一方、アクセルペダルがOFFとされた場合、すなわち、運転者から車両の減速要求が出された場合には、所定の燃料カット実行条件が成立することを条件として、燃費向上のために燃料カットが実行されることがある。上記状況下において燃料カットが実行されると、燃料カットの実行を伴わない減速時と比べ、タービン44bに供給される排気エネルギが減少するため、タービン回転数が低下し易くなる。従って、燃料カットが実行されると、過給圧が低下し易くなる。
 そこで、本実施形態では、過給圧の調整による余裕トルクを少なくとも利用して余裕トルクを確保している状況下において、運転者によって車両の減速要求が出された場合には、過給圧の調整による余裕トルクを用いずに目標余裕トルクを確保可能か否かが判定されるようにした。そして、過給圧の調整による余裕トルクを用いずに目標余裕トルクを確保できないと判定された場合には、燃料カットの実行を禁止するようにした。
 図5は、上記の機能を実現するために、本実施の形態2においてPTM104およびエンジンコントローラ100が実行する制御ルーチンを示すフローチャートを表した図である。尚、本ルーチンは、トルクリザーブ動作が実行されている状況下において、所定時間毎に繰り返し実行されるものとする。
 図5に示すルーチンでは、先ず、PTM104は、所定の前提条件が成立するか否かを判定する(ステップ200)。本ステップ200における前提条件とは、目標余裕トルク(上記ステップ100の処理によって取得可能)が、過給圧の調整による余裕トルクを除いて現時点で確保されている余裕トルク(上記ステップ104の処理結果を利用して取得可能)よりも低いことである。つまり、この前提条件が成立する場合には、過給圧の調整による余裕トルクを用いずに目標余裕トルクを確保可能であると判断することができる。このような状況としては、例えば、高圧電池30の残量が十分にある場合が該当する。このような場合には、燃料カットは禁止されない。
 上記ステップ200における前提条件が不成立である場合、すなわち、過給圧の調整による余裕トルクを用いずに目標余裕トルクを確保できないと判断できる場合には、PTM104は、次いで、アクセルペダルがOFF(全閉)とされたか否かを判定する(ステップ202)。その結果、アクセルペダルがOFFされたと判定された場合、すなわち、運転者によって車両の減速要求が出されたと判断できる場合には、PTM104は、次いで、所定の燃料カット実行条件が成立するか否かを判定する(ステップ204)。
 上記ステップ204において上記燃料カット実行条件が成立しないと判定された場合には、エンジンコントローラ100は、スロットルバルブ52およびABV48の開度制御を実行する(ステップ206)。具体的には、アクセルペダルのOFFに伴ってスロットルバルブ52が閉じられるとともに、コンプレッサ44aのサージ回避のためにABV48が開かれる。
 一方、上記ステップ204において上記燃料カット実行条件が成立すると判定された場合には、PTM104は、燃料カットの実行を禁止する指令をエンジンコントローラ100に出力する(ステップ208)。尚、燃料カットの禁止を行えないような運転条件である場合には、WGV90を閉じたままの状態で燃料カットが実行されるようにすることで、次の加速要求に備えることが好適である。
 以上説明した図5に示すルーチンによれば、過給圧の調整による余裕トルクを少なくとも利用して余裕トルクを確保している状況下において、過給圧の調整による余裕トルクを用いずに目標余裕トルクを確保できないと判定された場合には、燃料カットの実行が禁止される。その結果、燃料カットの実行によって減速時に過給圧が低下し易くなるのを防止することができる。これにより、次の加速等の要求に備えて目標とする余裕トルクをより確実に確保できるようになるので、余裕トルクの不足による車両のドライバビリティの悪化を抑制することができる。
 尚、上述した実施の形態2においては、ターボ過給機44が本発明における「過給機」に相当している。また、PTM104が上記ステップ200の判定が不成立し、かつ上記ステップ202および202の判定が成立する場合に上記ステップ208の処理を実行することにより本発明における「燃料カット禁止手段」が実現されている。
[実施の形態1および2の変形例]
 ところで、上述した実施の形態1および2においては、内燃機関12とともにMG2を動力装置として備える車両駆動ユニット10を例に挙げて説明を行った。しかしながら、本発明における車両駆動ユニットは、このような構成を有するものに限定されるものではない。すなわち、例えば、車両の動力装置として内燃機関のみを備えるものであってもよい。
 また、上述した実施の形態1においては、トルクリザーブ要求および当該要求に基づく余裕トルクの管理は、エンジンコントローラ100およびモータコントローラ102の上位に位置するPTM104によって行われる例について説明を行った。しかしながら、本発明における車両駆動ユニットの制御装置は、このような構成を使用するものに限定されるものではない。すなわち、例えば、PTM104のような上位のコントローラではなく、動力装置としての内燃機関またはMG2を直接的に制御するエンジンコントローラ100またはモータコントローラ102が、上記のような管理を担うように構成されていてもよい。
10 車両駆動ユニット
12 内燃機関
14 第1モータジェネレータ(MG1)
16 第2モータジェネレータ(MG2)
18 動力分割機構
20 減速機
22 駆動輪
24 駆動軸
26 インバータ
28 コンバータ
30 高圧電池
31 ソーラーパネル
32 ピストン
34 燃焼室
36 吸気通路
38 排気通路
40 エアフィルタ
42 エアフローメータ
44 ターボ過給機
44a コンプレッサ
44b タービン
46 エアバイパス通路
48 エアバイパスバルブ(ABV)
50 インタークーラ
52 スロットルバルブ
54 スロットル上流圧センサ
56 スロットル下流圧センサ
58 ポート噴射弁
60 筒内噴射弁
62 点火プラグ
64 吸気弁
66 吸気可変動弁機構
68 排気弁
70 排気可変動弁機構
72 クランク軸
74 吸気カム角センサ
76 排気カム角センサ
78 上流触媒
80 下流触媒
82 マフラー
84 A/Fセンサ
86 Oセンサ
88 排気バイパス通路
90 ウェイストゲートバルブ(WGV)
92 クランク角センサ
100 エンジンコントローラ
102 モータコントローラ
104 パワートレーンマネージャ(PTM)
106 アクセル開度センサ
108 走行モードセレクタ
110 車速センサ
112 電池温度センサ
114 日射量センサ
116 外気温度センサ
118 ナビシステム

Claims (6)

  1.  車両の動力装置として少なくとも内燃機関を備える車両駆動ユニットの制御装置であって、
     前記車両駆動ユニットが実際に出力する実トルク以外に当該車両駆動ユニットが出力し得る潜在的な余裕トルクを確保することを要求する所定のトルクリザーブ要求に従って、前記内燃機関が出力するトルクを調整可能な1または2以上のアクチュエータ、または前記車両に搭載された1以上のデバイスを用いて、前記余裕トルクを確保するためのトルクリザーブ動作を複数の形態で実行可能な余裕トルク制御手段と、
     前記複数のトルクリザーブ動作のそれぞれが同一の余裕トルクを確保する際の前記車両の所定の性能値の低下が少ないことを基準として、前記複数のトルクリザーブ動作のうちの何れを用いて前記余裕トルクを確保すべきかを管理する余裕トルク管理手段と、
     を備えることを特徴とする車両駆動ユニットの制御装置。
  2.  前記余裕トルク管理手段は、前記性能値の低下が少ないことを基準として前記複数のトルクリザーブ動作の優劣を判定し、所定の目標余裕トルクを得るために、当該優劣の判定に基づく優先順位の相対的に高い1以上の前記トルクリザーブ動作を選択して実行するように前記余裕トルク制御手段に対して指令することを特徴とする請求項1記載の車両駆動ユニットの制御装置。
  3.  前記余裕トルク管理手段は、前記目標余裕トルクを確保する際に、前記複数のトルクリザーブ動作のうちで上記性能値の低下が最も少ない状態で当該目標余裕トルクを確保し得るトルクリザーブ動作を選択する最適リザーブ動作選択手段を含むことを特徴とする請求項2記載の車両駆動ユニットの制御装置。
  4.  前記余裕トルク管理手段は、前記複数のトルクリザーブ動作を用いて所定の目標余裕トルクを確保している場合において、当該目標余裕トルク相当の余裕トルクを維持しようとした際に前記性能値の低下が相対的に少ない1以上の前記トルクリザーブ動作による余裕トルクの比率が増加するように、各トルクリザーブ動作が確保する前記余裕トルクの比率を修正する余裕トルク比率修正手段を含むことを特徴とする請求項1乃至3の何れか1項記載の車両駆動ユニットの制御装置。
  5.  前記内燃機関は、過給機付き内燃機関であって、
     前記複数のトルクリザーブ動作のうちの1つは、前記内燃機関の過給圧を高めることによって前記余裕トルクを確保する動作であって、
     前記余裕トルク管理手段は、過給圧の調整による前記余裕トルクを用いずに前記目標余裕トルクを確保できない場合には、車両の減速要求に伴う燃料カットの実行を禁止する燃料カット禁止手段を含むことを特徴とする請求項1乃至4の何れか1項記載の車両駆動ユニットの制御装置。
  6.  前記性能値は、前記内燃機関の燃費であることを特徴とする請求項1乃至5の何れか1項記載の車両駆動ユニットの制御装置。
PCT/JP2011/079526 2011-12-20 2011-12-20 車両駆動ユニットの制御装置 WO2013094019A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079526 WO2013094019A1 (ja) 2011-12-20 2011-12-20 車両駆動ユニットの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079526 WO2013094019A1 (ja) 2011-12-20 2011-12-20 車両駆動ユニットの制御装置

Publications (1)

Publication Number Publication Date
WO2013094019A1 true WO2013094019A1 (ja) 2013-06-27

Family

ID=48667947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079526 WO2013094019A1 (ja) 2011-12-20 2011-12-20 車両駆動ユニットの制御装置

Country Status (1)

Country Link
WO (1) WO2013094019A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021419A (ja) * 2013-07-18 2015-02-02 三菱自動車工業株式会社 エンジンの制御装置
JP2015101144A (ja) * 2013-11-22 2015-06-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両の走行制御装置
EP3088713A1 (en) * 2015-04-30 2016-11-02 Toyota Jidosha Kabushiki Kaisha Automated driving system of vehicle
FR3072726A3 (fr) * 2017-10-19 2019-04-26 Renault S.A.S Procede de controle d'un moteur a combustion interne suralimente a allumage par compression, a l'etat non allume

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283986A (ja) * 2001-01-17 2002-10-03 Robert Bosch Gmbh 車両用のブレーキトルク制御装置および方法
JP2010001769A (ja) * 2008-06-18 2010-01-07 Denso Corp 内燃機関の制御装置
JP2010024963A (ja) * 2008-07-18 2010-02-04 Toyota Motor Corp 内燃機関の制御装置
JP2010216419A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 内燃機関の制御装置
JP2010275955A (ja) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp 車両の制御装置
JP2011051542A (ja) * 2009-09-04 2011-03-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283986A (ja) * 2001-01-17 2002-10-03 Robert Bosch Gmbh 車両用のブレーキトルク制御装置および方法
JP2010001769A (ja) * 2008-06-18 2010-01-07 Denso Corp 内燃機関の制御装置
JP2010024963A (ja) * 2008-07-18 2010-02-04 Toyota Motor Corp 内燃機関の制御装置
JP2010216419A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 内燃機関の制御装置
JP2010275955A (ja) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp 車両の制御装置
JP2011051542A (ja) * 2009-09-04 2011-03-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021419A (ja) * 2013-07-18 2015-02-02 三菱自動車工業株式会社 エンジンの制御装置
JP2015101144A (ja) * 2013-11-22 2015-06-04 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両の走行制御装置
EP3088713A1 (en) * 2015-04-30 2016-11-02 Toyota Jidosha Kabushiki Kaisha Automated driving system of vehicle
US20160320776A1 (en) * 2015-04-30 2016-11-03 Toyota Jidosha Kabushiki Kaisha Automated driving system of vehicle
CN106089393A (zh) * 2015-04-30 2016-11-09 丰田自动车株式会社 车辆的自动驾驶系统
US9891623B2 (en) * 2015-04-30 2018-02-13 Toyota Jidosha Kabushiki Kaisha Automated driving system of vehicle
FR3072726A3 (fr) * 2017-10-19 2019-04-26 Renault S.A.S Procede de controle d'un moteur a combustion interne suralimente a allumage par compression, a l'etat non allume

Similar Documents

Publication Publication Date Title
US10018127B2 (en) Method and device for adjusting a volumetric efficiency and a charge density in an internal combustion engine
US8731751B2 (en) Method and system for controlling a hybrid vehicle
US8346447B2 (en) Feed-forward camshaft phaser control systems and methods
US8386150B2 (en) Fuel cutoff transition control systems and methods
US8499734B2 (en) System and method for controlling torque during engine start operations in hybrid vehicles
US7640744B2 (en) Method for compensating compressor lag of a hybrid powertrain
US8594904B2 (en) System and method for securing engine torque requests
US8311721B2 (en) Reserve torque for lean equivalence ratio requests
US10744892B2 (en) System and method for battery charging
US8538644B2 (en) Driver torque request systems and methods
JP4615037B2 (ja) ハイブリッド自動車およびその制御方法
JP6926656B2 (ja) ハイブリッド車両の制御装置
CN104373232A (zh) 用于扭矩控制的方法和系统
US7870843B2 (en) Torque control system with scavenging
WO2014184871A1 (ja) 内燃機関の制御装置
RU2747342C1 (ru) Транспортное средство и способ управления температурой катализатора транспортного средства
US9056603B2 (en) System and method for controlling engine torque to prevent driveline bump during a downshift when a throttle valve is closed
CN107762584A (zh) 用于调节凸轮轴的方法和系统
CN105317576A (zh) 用于内燃机的控制设备
US20130325234A1 (en) Control device, control method, and control system for hybrid vehicle
JP2013252803A (ja) ハイブリッド車の制御装置
RU2741526C1 (ru) Гибридное транспортное средство и способ его управления
WO2013094019A1 (ja) 車両駆動ユニットの制御装置
JP2010120472A (ja) 内燃機関のegr制御装置
JP5343627B2 (ja) ハイブリッド車のエンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP