WO2013091689A1 - Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type - Google Patents

Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type Download PDF

Info

Publication number
WO2013091689A1
WO2013091689A1 PCT/EP2011/073589 EP2011073589W WO2013091689A1 WO 2013091689 A1 WO2013091689 A1 WO 2013091689A1 EP 2011073589 W EP2011073589 W EP 2011073589W WO 2013091689 A1 WO2013091689 A1 WO 2013091689A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
semiconductor switch
separating device
mechanical switch
photovoltaic generator
Prior art date
Application number
PCT/EP2011/073589
Other languages
German (de)
English (en)
Inventor
Richard Schmidt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2011/073589 priority Critical patent/WO2013091689A1/fr
Publication of WO2013091689A1 publication Critical patent/WO2013091689A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Separating device for DC interruption between a photovoltaic generator and an electrical device and photovoltaic system with such a separation device
  • the invention relates to a separation device for DC interruption between a photovoltaic generator and an electrical device according to the preamble of patent claim 1.
  • the invention further relates to a photovoltaic system with such a separation device according to claim 10.
  • Photovoltaic systems generate electrical energy in the form of DC or DC. This (r) is generated by a photovoltaic generator, then usually converted by an inverter in AC or AC and then fed into a power grid.
  • the Photovol ⁇ taikgenerator often referred to as a solar generator, environmentally summarizes thereby usually a plurality of series and / or parallel strings solar modules.
  • semiconductor switches can be used to switch DC currents, but these cause unwanted transmission losses and there is no electrical isolation and thus no personal protection ensured.
  • the mechanical switch and the semiconductor switch are electrically connected in parallel with each other and this parallel circuit in turn is electrically connected in series with the electrical device.
  • the mechanical switch and the semiconductor switch are coupled to each other via an electrical circuit such that when the switch is closed, the semiconductor switch is in a current-blocking state and at the opening switch an arc voltage generated due to an arc across the switch switches the semiconductor switch in an electrically conductive state.
  • a disconnecting device for DC interruption between a photovoltaic generator and an electrical device, in particular an inverter, comprises a mechanical switch and a semiconductor switch, wherein the mechanical switch is electrically switchable in series with the electrical device.
  • the semiconductor switch is parallel to the series circuit of mecha ⁇ African switch with the electrical device switchable.
  • a mechanical switch is generally understood to mean a component with a mechanical switching contact or with meh ⁇ reren mutually parallel switching contacts.
  • the invention is based on the recognition that in a parallel connection of the mechanical switch and the semiconductor switch according to the prior art in the Kom ⁇ mutation of the current must be redirected from a very good conductive mechanical contact of the mechanical switch to the semiconductor switch.
  • each semiconductor switch has a forward voltage or a higher resistance value than the switch contact. This has the consequence that the commutation takes place only after opening the switch, ie when contact spark or an arc occurs. This leads to contact erosion and beyond to EMC interference. Since even with open switch contact a semiconductor Switched contacts bridged, the function of safe electrical isolation by another mechanical
  • the semiconductor switch is on the side of the photovoltaic generator, so that the DC voltage generated by the photovoltaic generator can be short-circuited by the semiconductor switch.
  • the short-circuit current is determined by the dimensioning of the photovoltaic system and the Pho ⁇ tovoltaikgenerator behaves in case of short circuit as a constant current source.
  • the semiconductor switch can temporarily take over the flow of current from the mechanical switch.
  • the mechanical switch can then virtually switch off voltage and current.
  • the mechanical switch is thus subject to almost no wear or requires no additional measures for arc extinguishing.
  • the mechanical switch can then be designed, for example, as a simple circuit breaker (often referred to as a "disconnector").
  • the mechanical switch By the mechanical switch while a galvanic isolation of the photovoltaic generator is ensured by the electrical device to be fed through it. Since in normal operation, a current flow through the semiconductor switch takes place only briefly until the mechanical switch is opened, can also its passage losses are kept low. Due to the constant current behavior of the photovoltaic generator, the semiconductor switch also needs to be designed only for a current at the level of the maximum operating current.
  • the semiconductor switch and the mechanical switch are coupled together such that switches before opening the mechanical switch, the semiconductor switch in an electrically conductive state.
  • This coupling can, for example, be effected by having the mechanical switch auxiliary contacts, which are connected to a drive circuit of the semiconductor switch and generate a defi ⁇ ned lead time prior to opening of the main contacts a switch for the semiconductor switch.
  • the coupling can alternatively also be effected by a common drive circuit for both switches. Because of design reasons, the mechanical switch usually switches significantly slower than a semiconductor switch (eg milliseconds in the case of mechanical switches compared to microseconds in the case of semiconductor switches) due to inertia and magnetization times, then even with a simultaneous activation of both switches automatically (ie without additional delay elements) the time offset in opening the two switches set.
  • the semiconductor switch and the mechanical switch are coupled to one another in such a way that, after the mechanical switch has been opened, the semiconductor switch switches back into a current-blocking state.
  • This coupling can also be done, for example, via auxiliary contacts of the mechanical switch, which are connected to a drive circuit of the semiconductor switch and generate a turn-off signal for the semiconductor switch with a definier ⁇ time lag after opening the main contacts.
  • the semiconductor switch (automatically) switches from the current-conducting to the current-blocking state after a defined limited time. This can be effected, for example, by a timing element being coupled to a drive circuit of the semiconductor switch and generating a turn-off signal for the semiconductor switch for this purpose.
  • a drive circuit for the semiconductor switch can be connected to its power supply with the photovoltaic generator.
  • the supply voltage required to drive the semiconductor switch is then supplied by the photovoltaic generator.
  • the separator may then be self-sufficient, i. independently of another source of energy.
  • the drive circuit in this case comprises an energy store which can be charged by the photovoltaic generator.
  • the basic consideration is that the required for the control of the semiconductor switch versor ⁇ supply voltage on the side of the photovoltaic generator is always present when an operating current flows.
  • this supply voltage collapses, it can be maintained by the energy storage, eg a buffer capacitor, for a limited time. Since this time is very short, the energy storage can be kept relatively small accordingly.
  • the semiconductor switch is designed such that it is without a control by the drive circuit in an electrically conductive state and with a drive by the drive circuit in a current-blocking state.
  • the semiconductor switch is thus in the "idle state” conductive and must be ge ⁇ switched by a control signal in the high impedance state (semiconductor switches with such behavior are often used as semiconductor switch with a "normal mally on” behavior hereinafter).
  • Such a semiconductor Switch can maintain the short circuit even if the control voltage fails. This makes it possible to short-circuit a photovoltaic system even in case of fire arc-free and thereby prevent personal injury from direct contact with live parts or extinguishing water.
  • Thyristors with an erase circuit for switching off the semiconductor are characterized by particularly low forward losses. Since not play a major role through ⁇ let losses for the brief moment of turn on of the semiconductor switch, can connect ⁇ put a thyristor with an elaborate clear circuit and an IGBT or IGCT be used and still the losses are kept low.
  • a photovoltaic system with a Pho ⁇ tovoltaikgenerator, an electrical device, in particular an inverter, and a separator described above for DC interruption between the photovoltaic generator and the electrical device, the mechanical switch is electrically connected in series with the electrical device and the semiconductor switch is electrically parallel connected to the series connection of the mechanical switch with the electrical device.
  • FIG. 1 shows a first embodiment of a guide according to the invention
  • FIG. 2 shows a second embodiment of a separating device according to the invention
  • FIG. 3 shows a photovoltaic system with a separating device according to FIG. 1 or FIG. 2.
  • a shown in Figure 1 separator 1 is designed as a four-pole network having two input terminals 2a, 2b formed for each ⁇ wells positive or negative DC voltage potential, and two output terminals 3a, 3b for each positive and nega tive ⁇ DC potential. It comprises a mechanical switch 4, which is connected with a switching contact between the input terminal 2a and the output terminal 3a (whereby a separation of the positive current path 2a-3a Ch ⁇ resembled is), and a semiconductor switch 5 connected between the input terminals 2a, 2b is.
  • the switch 4 be formed multipolar and, for example, each ⁇ wells a switching contact both between the input terminal 2a and the output terminal 3a and between the input ⁇ terminal 2b and the output terminal may be connected 3b - alternatively - as shown in Fig. 2
  • ⁇ through an all-pole separation of both the positive current path 2a-3a and the negative current path 2b-3b is possible.
  • the separator 1 is - as explained later in connection with FIG 3 - in a photovoltaic system between a photovoltaic generator and an electrical device powered by this, such as an inverter, switchable. For this purpose, it is on the input side by means of the A ⁇ through terminals 2a, 2b to the photovoltaic generator and the output side by means of the output terminals 3a, 3b connected to the elekt ⁇ generic device.
  • the mechanical switch 4 is electrically switchable in series with the electrical device, and the semiconductor switch 5 is connected in parallel with the series connection of the mecha- nischen switch 4 switchable with the electrical device.
  • the semiconductor switch 5 is advantageously a turn-off IGBT semiconductor switch.
  • a drive circuit 6 serves to control the switching state of the semiconductor switch 5.
  • the semiconductor switch 5 is designed such that it is in a current-conducting state without a control by the An Kunststoffschal- 6 and with a control by the drive circuit 6 in a current-blocking state.
  • the drive circuit 6 is connectable via the terminals 2a, 2b to their power supply to the photovoltaic generator.
  • the drive circuit in this case comprises an energy store 7 which can be charged by the photovoltaic generator and, in the event of a short-term failure of the energy supply by the photovoltaic generator, can supply the drive circuit 6 with energy.
  • the mechanical switch 4 is designed as a circuit breaker (disconnector), i. for a currentless disconnection.
  • a coil 8 with an armature serves as a drive for the switch 4.
  • FIG. 3 shows by way of example an integration of the
  • the photovoltaic system 10 includes a photovoltaic generator 11 and one of this with electrical DC-powered electrical device in the form of an inverter 12th
  • the separator 1 is connected between the photovoltaic generator 11 and the inverter 12. It is the
  • the separator 1 on the input side by means of the input terminals 2a, 2b connected to the photovoltaic generator 11 and the output side by means of the output terminals 3a, 3b to the inverter 12.
  • the separator 1 serves to interrupt a direct current I between the Photovoltaikgene ⁇ generator 11 and the inverter 12th
  • the photovoltaic generator 11, often referred to as a solar generator, usually includes a plurality of connected in series and / or parallel strands solar modules.
  • the inverter 12 is used to convert the DC voltage generated by the photovoltaic generator 11 into an AC voltage for an unspecified AC network.
  • the mechanical switch 4 uni. the semiconductor switch 5 of the separation device 1 (see FIGS. 1 and 2) are coupled to one another in such a way that, before the mechanical switch 4 is opened, the semiconductor switch 5 switches into an electrically conducting state.
  • the DC voltage generated by the photovoltaic generator 11 is short-circuited. This is possible in the case of a photovoltaic generator, since the short-circuit current is determined by the dimensioning of the photovoltaic system and the photovoltaic generator behaves like a constant current source in the event of a short circuit.
  • the semiconductor switch 5 can temporarily take over the flow of current from the mechanical switch 4.
  • the mechanical switch 4 can then switch virtually voltage and current-free.
  • the mechanical switch 4 un ⁇ terliegt characterized virtually no wear and requires no additional measures for arc quenching.
  • the mechanical switch 4 ensures electrical isolation of the photovoltaic generator 11 from the inverter 12.
  • the mechanical switch 4 and the semiconductor switch ⁇ 5 are coupled together such that switches after opening of the mechanical switch 4, the semiconductor switch 5 in a current-blocking state.
  • a current flow via the semiconductor switch 5 then takes place only briefly until the mechanical switch 4 is opened, so that the forward losses of the semiconductor switch 5 can be kept low. Due to the constant current behavior of the photovoltaic generator 11, the semiconductor switch 5 also needs to be designed only for a current at the level of the maximum operating current.
  • the coupling between the mechanical switch 4 and the semiconductor switch 5 for turning on the semiconductor switch 5 can be done, for example, that the mecha ⁇ African switch 4 auxiliary contacts, which are connected to the Ansteu ⁇ ersciens 6 of the semiconductor switch 5 and with a defined temporal Forward before opening the main contacts of the mechanical switch 4 a switch ⁇ signal for the semiconductor switch 5 generate.
  • the coupling for switching on the semiconductor switch 5 may alternatively be done by a common drive circuit for both switches 4 and 5. Since the mechanical switch 4 due to inertia and magnetization usually usually switches much slower than the semiconductor switch 5 (eg milliseconds in the case of the mechanical switch 4 compared to microseconds in the case of the semiconductor switch 5) can then even with ei ⁇ ner simultaneous control both switches 4, 5 automatically (ie without additional delay elements) set the time offset in the opening of the two switches 4, 5.
  • a coupling for switching off the semiconductor switch 5 can also be done via auxiliary contacts of the mechanical switch 4, which are connected to the drive circuit 6 of the semiconductor switch 5 and with a defined time lag after opening the main contacts of the switch 4 generate a turn-off signal for the semiconductor switch 5.
  • the semiconductor switch 5 (automatically) switches from the current-conducting to the current-blocking state after a defined limited time. This can be effected, for example, by coupling a timer to the drive circuit 6 of the semiconductor switch 5 and generating a turn-off signal for the semiconductor switch 5 for this purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne un dispositif de séparation (1) destiné à interrompre le flux de courant continu entre un générateur photovoltaïque (11) et un dispositif électrique (12), en particulier un onduleur, comprenant un commutateur mécanique (4) et comprenant un commutateur à semi-conducteur (5), le commutateur mécanique (4) pouvant être monté électriquement en série avec le dispositif électrique (12). Selon l'invention, le commutateur à semi-conducteur (5) peut être monté parallèlement au montage en série du commutateur mécanique (4) avec le dispositif électrique (12). Ainsi, outre le fait que la séparation galvanique est fiable et que les pertes en direct sont faibles, il est possible d'éviter une usure du commutateur mécanique, sans que des mesures supplémentaires ne soient nécessaires pour éteindre l'arc, comme par exemple une chambre d'extinction.
PCT/EP2011/073589 2011-12-21 2011-12-21 Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type WO2013091689A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/073589 WO2013091689A1 (fr) 2011-12-21 2011-12-21 Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/073589 WO2013091689A1 (fr) 2011-12-21 2011-12-21 Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type

Publications (1)

Publication Number Publication Date
WO2013091689A1 true WO2013091689A1 (fr) 2013-06-27

Family

ID=45491548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/073589 WO2013091689A1 (fr) 2011-12-21 2011-12-21 Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type

Country Status (1)

Country Link
WO (1) WO2013091689A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110240A1 (de) * 2013-09-17 2015-03-19 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
DE102016219855A1 (de) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Schutzvorrichtung für eine Hochvolt-Batterieversorgung und Verfahren zum Schutz einer Hochvolt-Batterieversorgung
CN111971770A (zh) * 2018-03-09 2020-11-20 埃伦贝格尔及珀恩斯根有限公司 用于对电流路径进行直流电流中断的分离设备和机动车的车载电网

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018173A1 (de) * 2005-04-19 2006-10-26 Aixcon Elektrotechnik Gmbh Verfahren zur sicheren Betriebsunterbrechung eines Photovoltaikanlage
DE102005061532A1 (de) * 2005-12-22 2007-07-05 Siemens Ag Österreich Lasttrennschaltung zum stromlosen Verbinden und Trennen von elektrischen Kontakten
DE102008057874A1 (de) * 2008-11-18 2010-05-20 Adensis Gmbh Schaltanordnung zum Zuschalten und Trennen einer Photovoltaikanlage zu bzw. von einem Stromkreis
DE202009004198U1 (de) * 2009-03-25 2010-08-12 Ellenberger & Poensgen Gmbh Trennschalter zur galvanischen Gleichstromunterbrechung
EP2249393A1 (fr) * 2009-05-04 2010-11-10 voltwerk electronics GmbH Agencement de circuit
DE102010011232A1 (de) * 2010-03-12 2011-09-15 Adensis Gmbh Schutzvorrichtung für Wechselrichter einer PV-Anlage
DE102010049293B3 (de) * 2010-09-21 2012-02-16 VWL Umweltcentrum für Haustechnik GmbH Anordnung zum sicheren Außerbetriebsetzen von Photovoltaikanlagen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018173A1 (de) * 2005-04-19 2006-10-26 Aixcon Elektrotechnik Gmbh Verfahren zur sicheren Betriebsunterbrechung eines Photovoltaikanlage
DE102005061532A1 (de) * 2005-12-22 2007-07-05 Siemens Ag Österreich Lasttrennschaltung zum stromlosen Verbinden und Trennen von elektrischen Kontakten
DE102008057874A1 (de) * 2008-11-18 2010-05-20 Adensis Gmbh Schaltanordnung zum Zuschalten und Trennen einer Photovoltaikanlage zu bzw. von einem Stromkreis
DE202009004198U1 (de) * 2009-03-25 2010-08-12 Ellenberger & Poensgen Gmbh Trennschalter zur galvanischen Gleichstromunterbrechung
WO2010108565A1 (fr) 2009-03-25 2010-09-30 Ellenberger & Poensgen Gmbh Disjoncteur pour l'interruption galvanique du courant continu
EP2249393A1 (fr) * 2009-05-04 2010-11-10 voltwerk electronics GmbH Agencement de circuit
DE102010011232A1 (de) * 2010-03-12 2011-09-15 Adensis Gmbh Schutzvorrichtung für Wechselrichter einer PV-Anlage
DE102010049293B3 (de) * 2010-09-21 2012-02-16 VWL Umweltcentrum für Haustechnik GmbH Anordnung zum sicheren Außerbetriebsetzen von Photovoltaikanlagen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110240A1 (de) * 2013-09-17 2015-03-19 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
CN105493397A (zh) * 2013-09-17 2016-04-13 艾思玛太阳能技术股份公司 用于借助短路开关进行断路器放电的光伏逆变器的电路布置和该电路布置的应用
DE102013110240B4 (de) * 2013-09-17 2017-09-07 Sma Solar Technology Ag Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
US10298017B2 (en) 2013-09-17 2019-05-21 Sma Solar Technology Ag Circuit arrangement for a photovoltaic inverter for break relief using short-circuit switches, and uses of the circuit arrangement
DE102016219855A1 (de) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Schutzvorrichtung für eine Hochvolt-Batterieversorgung und Verfahren zum Schutz einer Hochvolt-Batterieversorgung
CN111971770A (zh) * 2018-03-09 2020-11-20 埃伦贝格尔及珀恩斯根有限公司 用于对电流路径进行直流电流中断的分离设备和机动车的车载电网

Similar Documents

Publication Publication Date Title
EP2411990B1 (fr) Disjoncteur pour l'interruption galvanique du courant continu
EP3406029B1 (fr) Dispositif de séparation pour une chaîne photovoltaïque, installation solaire et procédé de fonctionnement pour installation solaire à chaîne photovoltaïque
EP3158571B1 (fr) Dispositif de coupure pour interrompre un courant continu
DE102005061532B4 (de) Lasttrennschaltung zum stromlosen Verbinden und Trennen von elektrischen Kontakten
EP3072143B1 (fr) Dispositif de commutation d'un courant continu
EP2297830B1 (fr) Disjoncteur rapide pour une batterie haute puissance dans un réseau autonome de courant continu
EP2810290B1 (fr) Appareil pour commuter d'un courant continu dans un terminal d'un reseau d'un courant continu
EP2249393B1 (fr) Agencement de circuit
DE102011083693B3 (de) Gleichspannungs-Leitungsschutzschalter
EP3320553B1 (fr) Dispositif de séparation destiné à interrompre le flux de courant continu
WO2016188589A1 (fr) Module convertisseur commandé par tension
EP3210226B1 (fr) Disjoncteur pour l'interruption galvanique de courants continus
WO2013091689A1 (fr) Dispositif de séparation destiné à interrompre le flux de courant continu entre un générateur photovoltaïque et un dispositif électrique et installation photovoltaïque comprenant un dispositif de séparation de ce type
EP3403271B1 (fr) Dispositif de commutation d'un courant continu dans un pôle d'un réseau de tension continue
EP2707888B1 (fr) Dispositif de commutation
DE102018203636B3 (de) Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
EP3743980A1 (fr) Dispositif de commutation
DE112014006555B4 (de) Kommutierungsschaltung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11808630

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11808630

Country of ref document: EP

Kind code of ref document: A1