WO2013091571A1 - 单相可控整流器的控制系统 - Google Patents

单相可控整流器的控制系统 Download PDF

Info

Publication number
WO2013091571A1
WO2013091571A1 PCT/CN2012/087160 CN2012087160W WO2013091571A1 WO 2013091571 A1 WO2013091571 A1 WO 2013091571A1 CN 2012087160 W CN2012087160 W CN 2012087160W WO 2013091571 A1 WO2013091571 A1 WO 2013091571A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
signal
phase
unit
voltage
Prior art date
Application number
PCT/CN2012/087160
Other languages
English (en)
French (fr)
Inventor
艾永保
刘智翎
丁国萍
邱海陵
王立军
Original Assignee
上海儒竞电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海儒竞电子科技有限公司 filed Critical 上海儒竞电子科技有限公司
Publication of WO2013091571A1 publication Critical patent/WO2013091571A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel

Definitions

  • the present invention relates to a control system for a single-phase controlled rectifier, and more particularly to a control system for a single-phase controlled rectifier of a higher power level.
  • the rectifier also known as an AC-DC converter, is an AC-DC converter.
  • the single-phase controlled rectifier is a 2H bridge structure rectifier using power switching IGBT or IGCT or IECT. It is a step-up AC-DC converter, considering the sine wave input current, four-quadrant power electronic converter, potential application fields. a lot of.
  • the circuit topology of the single-phase controlled rectifier is mature circuit, and the control algorithm also has many types, but the high-power single-phase controlled rectifier and its control algorithm will continue to appear, and the research will not stop.
  • the existing single-phase can be
  • the control algorithms of the controlled rectifier all require the detection of the AC measured grid voltage to participate in the calculation.
  • the calculation method is complicated and increases the complexity of the circuit, especially for the high-voltage single-phase controlled rectifier of the power electronic transformer. How to propose a control system for a single-phase controlled rectifier with a higher power level and a simple structure is an urgent problem to be solved. Summary of the invention
  • the present invention provides a control system for a single-phase controllable rectifier, wherein the single-phase controllable rectifier includes a single-phase AC source having a live terminal and a neutral terminal, a first power circuit, a second power circuit and a voltage measuring circuit;
  • the first power circuit includes: a first current transformer, one end of which is connected to the live line end, and is configured to measure and output a first current value; a first inductor, one end of which is connected to the first current transformer The other end; the first single-phase rectifier bridge has four reverse-conducting switches, each of which constitutes one bridge arm, and forms a first bridge arm and a second bridge arm, respectively, and the first bridge arm and the second bridge The common connection ends of the arms respectively constitute a first positive output terminal and a first negative output terminal, and a midpoint of the first bridge arm is connected to the other end of the first inductor, a midpoint of the second bridge arm and the a zero line end connection; and a first capacitor connected across the first positive output terminal and the first negative output terminal;
  • the second power circuit includes: a second current transformer, one end of which is connected to the live line end, and is used for measuring and outputting a second current value; and a second inductor having one end connected to the second current transformer The other end;
  • the second single-phase rectifier bridge has four reverse-conducting switches, each of which constitutes one bridge arm, and forms a third bridge arm and a fourth bridge arm, respectively, and the third a common connection end of the bridge arm and the fourth bridge arm respectively constitute a second positive output end and a second negative output end, and a midpoint of the third bridge arm is connected to another end of the second inductor, the fourth bridge arm a midpoint is connected to the neutral terminal, and the first positive output terminal and the second positive output terminal are connected to form a positive output terminal, and the first negative output terminal is connected to the second negative output terminal.
  • a second output terminal is connected across the second positive output terminal and the second negative output terminal, and is connected in parallel with the first capacitor;
  • the voltage measuring circuit is connected in parallel with the first capacitor and the second capacitor, and includes: a resistor group, one end of which is connected to the positive output terminal, and includes a first resistor or two or more serially connected first And a second resistor, one end of which is connected to the other end of the resistor group, the other end of which is connected to the negative output terminal, and a junction point of the output DC voltage is formed between the second resistor and the resistor group ;
  • the control system of the single-phase controllable rectifier comprises: a voltage closed loop module, a first current closed loop module and a second current closed loop module;
  • the voltage closed-loop module includes: a reference voltage source for generating a reference voltage; and a subtraction unit that respectively receives a reference voltage generated by the reference voltage source and a DC voltage output by the tap point, and is used to And subtracting the DC voltage to generate and output a voltage deviation value; and an error filtering amplifying unit, receiving a voltage deviation value output by the subtracting unit, and performing filtering amplification processing on the voltage deviation value ;
  • the first current closed loop module includes: a first sawtooth wave generating unit configured to generate a first sawtooth wave signal; and a first synchronization signal generating unit configured to generate a first synchronization that is in phase with the first sawtooth wave signal a first multiplication unit, respectively receiving a voltage deviation value of the filtered amplification process output by the error filtering amplification unit and a first sawtooth wave signal generated by the first sawtooth wave generating unit, and The voltage deviation value of the filter amplification process is multiplied by the first sawtooth wave signal to generate and output a first amplitude modulation carrier; the first comparison unit respectively receives the first current value output by the first current transformer and a first amplitude modulated carrier output by the first multiplying unit, and configured to compare the first current value with the first amplitude modulated carrier to generate a high level when the first amplitude modulated carrier is higher than the first current value, Generating a low level when the first amplitude modulated carrier is lower than the first current value, thereby
  • the second current closed-loop module includes: a second sawtooth generating unit configured to generate a second sawtooth signal having the same amplitude as the first sawtooth signal and having a phase shifted by 180°; and a second synchronization signal generating unit a second synchronization signal having the same amplitude of the first synchronization signal and a phase shift of 180°; the second multiplication unit respectively receiving the voltage deviation value of the filtered amplification processing output by the error filtering amplification unit and the second sawtooth Second sawtooth generated by the wave generating unit a wave signal, and is used to multiply the filtered amplification process voltage deviation value by the second sawtooth wave signal to generate and output a second amplitude modulation carrier; and a second comparison unit respectively receiving the second current mutual inductance And a second amplitude modulated carrier output by the second multiplying unit, and configured to compare the second current value with the second amplitude modulated carrier to be higher than the second amplitude modulated carrier Generating a high level when the current value
  • the reverse conducting switch is an IGBT or IGCT or IECT with an anti-parallel diode.
  • the first control unit is an RS flip-flop having a first set end, a first reset end, and a complementary first output end and a second output end, where the first set end is configured to receive the first comparison unit And outputting the first pulse signal, wherein the first reset end is configured to receive the first synchronization signal generated by the first synchronization signal generating unit, and the first output end is configured to output the first single signal for driving
  • One of the four reverse-conductivity switches of the phase rectifying bridge can form a first P- driving signal of the reverse-conductivity switch of the path, and the second output is used for outputting the first single-phase rectifier bridge for driving
  • the remaining two of the four reverse-conductivity switches form a second PWM drive signal of the reverse-conductivity switch of the path, and the first PWM drive signal and the second PWM drive signal are complementary signals.
  • the second control unit is an RS flip-flop having a second set end, a second reset end, and complementary third output ends and a fourth output end, wherein the second set end is configured to receive the second comparison unit And outputting a second pulse signal, wherein the second reset end is configured to receive a second synchronization signal generated by the second synchronization signal generating unit, and the third output end is configured to output the second second signal for driving
  • the third of the four reverse-conductivity switches of the phase rectifying bridge can form a third P- driving signal of the reverse-conducting switch of the path, and the fourth output is used for outputting the second single-phase rectifier bridge for driving
  • the remaining two of the four reverse-conductivity switches form a fourth P-drive signal of the reverse-conductivity switch of the path, and the third P-drive signal and the fourth PWM drive signal are complementary signals.
  • control system of the single-phase controlled rectifier of the present invention is mainly based on the first power circuit and the second power circuit of the interleaved structure, and the voltage measuring circuit connected in parallel with the output ends of the first and second power circuits.
  • the DC voltage measured in the single-phase controlled rectifier circuit is used to generate an amplitude-modulated carrier that fluctuates with DC voltage fluctuation, that is, the AC-side current measured by the above circuit and Comparing the amplitude modulated carriers, generating a pulse sequence that can initially drive the first and second power circuits through the RS flip-flops, and further, the control portions of the two-stage interleaved power circuits use the same voltage (the same DC voltage and the same reference voltage)
  • the closed-loop output, the respective current closed-loop control structure is simple, and the operation speed is fast. Therefore, the two-stage interleaved rectifier power circuit has excellent current sharing characteristics. When the power circuit parameters are inconsistent, a satisfactory current sharing effect can be obtained, thereby supporting Higher output power
  • the level while eliminating the need to detect the grid side voltage, helps simplify circuit design, reduce cost and improve reliability.
  • Figure 1 is a block diagram showing the control system of the single-phase controlled rectifier of the present invention applied to a single-phase controlled rectifier.
  • Component label description is a block diagram showing the control system of the single-phase controlled rectifier of the present invention applied to a single-phase controlled rectifier.
  • the single-phase controlled rectifier includes a single-phase AC source 11 having a live terminal a and a neutral terminal b, a first power circuit 13, a second power circuit 15, and a voltage measuring circuit 17.
  • the first power circuit 13 is composed of a first current transformer 131, a first inductor 133, a first single-phase rectifier bridge 135, and a first capacitor 137.
  • One end of the first current transformer 131 is connected to the live end a, and is used for measuring and outputting a first current value i 1 ;
  • one end of the first inductor 133 is connected to the other end of the first current transformer 131;
  • the single-phase rectifier bridge 135 has four reverse-conductivity switches S1 l, S12, S21 and S22, and each of the two reverse-conducting switches constitutes one bridge arm, and forms a first bridge arm S1 and a second bridge arm S2, respectively.
  • the common connection ends of the first bridge arm S1 and the second bridge arm S2 respectively constitute a first positive output terminal cl and a first negative output terminal c2, and a midpoint S1a of the first bridge arm S1 and another of the first inductor 133 One end is connected, and a midpoint S2a of the second bridge arm S2 is connected to the neutral line end b.
  • the first capacitor 137 is connected across the first positive output terminal c1 and the first negative output terminal c2.
  • the reverse conducting switches S1 l, S12, S21 and S22 are IGBTs or IGCTs or IECTs with anti-parallel diodes.
  • the second power circuit 15 is composed of a second current transformer 151, a second inductor 153, a second single-phase rectifier bridge 155, and a second capacitor 157.
  • One end of the second current transformer 151 is connected to the live end a, and is used to measure and output a second current value i 2 ;
  • one end of the second inductor 153 is connected to the other end of the second current transformer 151;
  • the single-phase rectifier bridge 155 has four reverse-conductivity switches S31, S32, S41 and S42, each of which constitutes one bridge arm, and forms a third bridge arm S3 and a fourth bridge arm S4, respectively, and the third bridge arm S3
  • the common connection end with the fourth bridge arm S4 constitutes a second positive output terminal c3 and a second negative output terminal c4, respectively, and the midpoint S3a of the third bridge arm S3 is connected to the other end of the second inductor 153, the fourth The midpoint S4a of the bridge arm S4 is
  • the voltage measuring circuit 17 is connected in parallel with the first capacitor 137 and the second capacitor 157, and the voltage measuring circuit 17 includes a resistor group 171 and a second resistor 173.
  • One end of the resistor group 171 is connected to the positive output terminal dl, and includes a first resistor or two or more first resistors connected in series. In this embodiment, the two first resistors 1711 are connected in series to form the resistor.
  • the resistor group 171 is illustrated as an example.
  • One end of the second resistor 173 is connected to the other end of the resistor group 171, the other end of which is connected to the cathode output terminal d2, and a second resistor 173 is formed between the resistor 171 and the resistor group 171.
  • the tap point e of the DC voltage is output.
  • the control system of the single-phase controlled rectifier of the present invention comprises a voltage closed loop module 21, a first current closed loop module 23 and a second current closed loop module 25, and the following is a single phase controllable of the present invention in combination with the hardware circuit of the single phase controllable rectifier described above.
  • the components of the rectifier control system are described in detail.
  • the voltage closed loop module 21 is composed of a reference voltage source 211, a subtraction unit 213, and an error filter amplifying unit 215.
  • the reference voltage source 211 is used to generate a reference voltage.
  • the subtraction unit 213 receives the reference voltage generated by the reference voltage source 211 and the DC voltage output by the tap point e, and subtracts the DC voltage from the reference voltage to generate and output a voltage deviation value.
  • the error filtering amplifying unit 215 receives the voltage deviation value output by the subtracting unit 213, and performs filtering amplification processing on the voltage deviation value.
  • the first current closed loop module 23 is composed of a first sawtooth wave generating unit 231, a first synchronizing signal generating unit 233, a first multiplying unit 235, a first comparing unit 237, and a first control unit 239.
  • the first sawtooth generating unit 231 is configured to generate a first sawtooth wave signal.
  • the first synchronization signal generating unit 233 is configured to generate a first synchronization signal that is in phase with the first sawtooth wave signal.
  • the first multiplying unit 235 receives the filtered bias voltage value of the filtered amplification processing output by the error filtering and amplifying unit 215 and the first sawtooth wave signal generated by the first sawtooth wave generating unit 231, and is used for filtering the signal.
  • the amplified voltage deviation value is multiplied by the first sawtooth wave signal to generate and output a first amplitude modulated carrier.
  • the first comparison unit 237 receives the first current value L output by the first current transformer 131 and the first amplitude modulation carrier output by the first multiplication unit 235, and compares the first current value L with the first current value L.
  • the first amplitude modulation carrier generates a high level when the first amplitude modulation carrier is higher than the first current value ⁇ , and generates a low level when the first amplitude modulation carrier is lower than the first current value, thereby generating and outputting The first pulse signal.
  • the first control unit 239 is configured to receive the first pulse signal output by the first comparison unit 237 and the first synchronization signal generated by the first synchronization signal generation unit 233, and to use the first pulse signal and the first A PWM drive signal for driving the four reverse-conductivity switches S1, S12, S21, and S22 of the first single-phase rectifier bridge 135 is generated by the synchronization signal.
  • the first control unit 239 is an RS flip-flop having a first set terminal, a first reset terminal, and a complementary first output terminal 2391 and a second output terminal 2393, where the first set terminal is used.
  • the first reset terminal is configured to receive the first synchronization signal generated by the first synchronization signal generation unit 233
  • the first output terminal 2391 is configured to output A reverse-conductivity type switch in which two of the four reverse-conductivity switches for driving the first single-phase rectifier bridge 135 can form a path (in the present embodiment, as shown in FIG. 1, S21 and S12, but not For example, in other embodiments, the first PWM driving signals of S11 and S22 are also used, and the second output terminal 2393 is configured to output four reverse-conducting switches for driving the first single-phase rectifier bridge 135.
  • the remaining two of the second PWM drive signals of the reverse-conductivity type switch (in the present embodiment, as shown in FIG. 1 , S11 and S22 ), and the first PWM drive signal and the second PWM
  • the driving signal is a complementary signal, and when the first P driving signal is a conducting signal, the first The second P drive signal is a cutoff signal.
  • the second current closed loop module 25 is composed of a second sawtooth wave generating unit 251, a second synchronizing signal generating unit 253, a second multiplying unit 255, a second comparing unit 257, and a second control unit 259.
  • the second sawtooth generating unit 251 is configured to generate a second sawtooth wave signal having the same amplitude as the first sawtooth wave signal and having a phase shifted by 180°.
  • the second synchronizing signal generating unit 253 is configured to generate a second synchronizing signal having the same amplitude of the first synchronizing signal and having a phase shifted by 180°.
  • the second multiplying unit 255 receives the filtered bias voltage value of the filtered amplification processing output by the error filtering and amplifying unit 215 and the second sawtooth wave signal generated by the second sawtooth wave generating unit 251, and is used for filtering the signal.
  • the amplified voltage deviation value is multiplied by the second sawtooth wave signal to generate and output a second amplitude modulated carrier.
  • the second comparison unit 257 receives the second current value i 2 output by the second current transformer 151 and the second amplitude modulation carrier output by the second multiplication unit 255, and compares the second current value i 2 And the second amplitude modulated carrier, to generate a high level when the second amplitude modulated carrier is higher than the second current value 1 2 , and generate a low level when the second amplitude modulated carrier is lower than the second current value i 2 And generating and outputting a second pulse signal.
  • the second control unit 259 is configured to receive the second pulse signal output by the second comparison unit 257 and the second synchronization signal generated by the second synchronization signal generation unit 253, and to use the second pulse signal and the second A PWM drive signal for driving the four reverse-conductivity switches S31, S32, S41, and S42 of the second single-phase rectifier bridge 155 is generated by the synchronization signal.
  • the second control unit 259 has a second set end, a second reset end, and a complementary third output end.
  • An RS trigger of the second output terminal 2593, the second set terminal is configured to receive the second pulse signal output by the second comparison unit 257, and the second reset terminal is configured to receive the second synchronization signal.
  • the third output terminal 2591 is configured to output a reverse-conductivity switch of two of the four reverse-conductivity switches for driving the second single-phase rectifier bridge 155 to form a path ( In this embodiment, as shown in FIG. 1, S41 and S32 respectively, but not limited thereto, in other embodiments, may be S31 and S42), and the fourth output is the fourth output.
  • the terminal 2593 is configured to output the remaining two of the four reverse-conductivity switches for driving the second single-phase rectifier bridge 155 to form a reverse-conductivity switch (in this embodiment, as shown in FIG. 1 , S31 And a fourth PWM driving signal of S42), wherein the third PWM driving signal and the fourth PWM driving signal are complementary signals, and when the third PWM driving signal is an on signal, the fourth PWM driving signal is an off signal .
  • the first sawtooth wave signal in the first current closed loop module 23 and the second current closed loop module 25 are offset from the second sawtooth wave signal by 180°, and the first synchronization signal and the second synchronization signal are shifted by 180°, so that the first single is driven separately.
  • the PWM drive signal of the phase rectification bridge 135 is offset by 180° corresponding to the PWM drive signal of the second single-phase rectifier bridge 155 to form an interleaved drive; and the first current closed loop module 23 and the second current closed loop module 25 share the same voltage closed loop module.
  • the output of 21 (by the error filtering amplifying unit 215 filters the voltage deviation value of the amplification processing), thereby obtaining excellent current sharing performance and improving the power level.
  • the control system of the single-phase controlled rectifier of the present invention is mainly based on the first power circuit and the second power circuit of the interleaved structure, and the voltage measurement in parallel with the output ends of the first and second power circuits.
  • the function is to realize the two-stage interleaved single-phase AC-DC conversion by the high-frequency PWM modulation principle
  • the control system of the single-phase controlled rectifier of the present invention can collect the above single-phase The AC side current and the output DC voltage measured in the rectifier circuit and a series of numerical calculations and logic processing respectively generate two sets of four driving pulses, and correspondingly drive the first power circuit and the second power circuit, not only realize The overall function of the single-phase controlled rectifier is improved, and the response speed is improved.
  • the detection of the voltage on the AC side is also reduced, and the size and cost are reduced.
  • the first and second sawtooth in the control system of the single-phase controlled rectifier of the present invention are The phase of the wave signal, the first and second synchronization signals are all shifted by 180 °, so that the PW of the first single-phase rectifier bridge finally produced
  • the M drive signal and the PWM drive signal of the second single-phase rectifier bridge are interleaved by 180° in phase, thereby forming an interleaved drive, and the first and second current closed-loop modules share the output of the same voltage closed-loop module, so that an excellent current sharing can be obtained. Performance, increased power level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种单相可控整流器的控制系统,用于控制由两级交错结构的第一与第二功率电路(13,15)、以及与第一及第二功率电路的输出端并联的测压电路(17)构成的单相可控整流器电路。该控制系统采用测压电路测量得到的直流电压产生随直流电压波动的调幅载波,将该整流器电路中测量得到的交流侧电流与调幅载波相比较,产生可以通过RS触发器驱动第一及第二功率电路的脉冲序列。该两级交错结构的第一与第二功率电路各自的控制部分采用同一电压闭环模块(21)的输出,各自的电流闭环模块(23,25)控制结构简单,运算速度快,因而该整流器电路具有优良的均流特性,从而支持更高的输出功率等级。由于无需检测交流侧电压,有利于简化电路设计、降低成本和提高可靠性。

Description

单相可控整流器的控制系统
技术领域
本发明涉及一种单相可控整流器的控制系统, 特别是涉及一种适合较高功率等级的单相 可控整流器的控制系统。 背景技术
整流器又称 AC-DC变换器, 是完成交流 -直流的变换装置。而单相可控整流器是一种采用 功率开关 IGBT或 IGCT或 IECT的 2H桥结构整流器, 属于升压型 AC-DC变换器, 鉴于为正弦 波输入电流、 四象限电力电子变换器, 潜在应用领域很多。
单相可控整流器的电路拓扑为成熟电路, 控制算法也具有很多种类, 但是大功率单相可 控整流器及其控制算法仍然会不断地出现, 对此研究不会停止, 现有的单相可控整流器的控 制算法都要求检测交流测的电网电压来参与运算, 计算方法比较复杂, 也增加了电路的复杂 程度, 尤其对于电力电子变压器的高压端单相可控整流器而言更是如此, 因此, 如何提出一 种适用较高功率等级且结构简单的单相可控整流器的控制系统, 实为目前急待解决的问题。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种适用较高功率等级的单相可 控整流器的控制系统, 利于简化电路设计、 降低成本。
为实现上述目的及其他相关目的, 本发明提供一种单相可控整流器的控制系统, 其中, 所述单相可控整流器包括具有火线端与零线端的单相交流源、 第一功率电路、 第二功率电路 以及测压电路;
其中, 所述第一功率电路包括: 第一电流互感器, 其一端连接所述火线端, 且用以测量 并输出第一电流值; 第一电感, 其一端连接所述第一电流互感器的另一端; 第一单相整流桥, 具有 4个逆导型开关, 每 2个构成一个桥臂, 而分别形成第一桥臂与第二桥臂, 且所述第一 桥臂与第二桥臂的公共连接端分别构成第一正极输出端与第一负极输出端, 并所述第一桥臂 的中点与第一电感的另一端连接, 所述第二桥臂的中点与所述零线端连接; 以及第一电容, 跨接在所述第一正极输出端与第一负极输出端;
且, 所述第二功率电路包括: 第二电流互感器, 其一端连接所述火线端, 且用以测量并 输出第二电流值; 第二电感, 其一端连接所述第二电流互感器的另一端; 第二单相整流桥, 具有 4个逆导型开关, 每 2个构成一个桥臂, 而分别形成第三桥臂与第四桥臂, 且所述第三 桥臂与第四桥臂的公共连接端分别构成第二正极输出端与第二负极输出端, 并所述第三桥臂 的中点与第二电感的另一端连接, 所述第四桥臂的中点与所述零线端连接, 且所述第一正极 输出端与所述第二正极输出端连接构成正极输出端, 所述第一负极输出端与所述第二负极输 出端连接构成负极输出端; 以及第二电容, 跨接在所述第二正极输出端与第二负极输出端, 并与所述第一电容并联连接;
所述测压电路与所述第一电容以及第二电容并联连接, 且包括: 电阻组, 其一端连接所 述正极输出端, 且包含一个第一电阻或两个及以上个串接的第一电阻; 以及第二电阻, 其一 端连接所述电阻组的另一端, 其另一端连接所述负极输出端, 并在所述第二电阻与所述电阻 组之间形成一个输出直流电压的分接点;
其特征在于, 所述单相可控整流器的控制系统包括: 电压闭环模块、 第一电流闭环模块 以及第二电流闭环模块;
其中, 所述电压闭环模块包括: 参考电压源, 用以产生参考电压; 减法单元, 分别接收 所述参考电压源所产生的参考电压以及所述分接点所输出的直流电压, 且用以将所述参考电 压减去所述直流电压, 以产生并输出一个电压偏差值; 以及误差滤波放大单元, 接收所述减 法单元所输出的电压偏差值, 且用以对所述电压偏差值执行滤波放大处理;
且, 所述第一电流闭环模块包括: 第一锯齿波发生单元, 用以产生第一锯齿波信号; 第 一同步信号发生单元, 用以产生与第一锯齿波信号属于同相位的第一同步信号; 第一乘法单 元, 分别接收所述误差滤波放大单元所输出的经滤波放大处理的电压偏差值以及所述第一锯 齿波发生单元所产生的第一锯齿波信号, 且用以将所述经滤波放大处理的电压偏差值与所述 第一锯齿波信号相乘, 而产生并输出第一调幅载波; 第一比较单元, 分别接收所述第一电流 互感器所输出的第一电流值以及所述第一乘法单元所输出的第一调幅载波, 且用以比较所述 第一电流值与所述第一调幅载波, 以在第一调幅载波高于第一电流值时产生高电平, 在第一 调幅载波低于第一电流值时产生低电平, 进而产生并输出第一脉冲信号; 以及第一控制单元, 用以接收所述第一比较单元所输出的第一脉冲信号以及所述第一同步信号发生单元所产生的 第一同步信号, 且用以依据第一脉冲信号以及第一同步信号而产生供驱动所述第一单相整流 桥的 4个逆导型开关的 PWM驱动信号;
而, 所述第二电流闭环模块包括: 第二锯齿波发生单元, 用以产生与第一锯齿波信号幅 值相同且相位错开 180 ° 的第二锯齿波信号; 第二同步信号发生单元, 用以产生第一同步信 号幅值相同且相位错开 180 ° 的第二同步信号; 第二乘法单元, 分别接收所述误差滤波放大 单元所输出的经滤波放大处理的电压偏差值以及所述第二锯齿波发生单元所产生的第二锯齿 波信号, 且用以将所述经滤波放大处理的电压偏差值与所述第二锯齿波信号相乘, 而产生并 输出第二调幅载波; 第二比较单元, 分别接收所述第二电流互感器所输出的第二电流值以及 所述第二乘法单元所输出的第二调幅载波,且用以比较所述第二电流值与所述第二调幅载波, 以在第二调幅载波高于第二电流值时产生高电平, 在第二调幅载波低于第二电流值时产生低 电平, 进而产生并输出第二脉冲信号; 以及第二控制单元, 用以接收所述第二比较单元所输 出的第二脉冲信号以及所述第二同步信号发生单元所产生的第二同步信号, 且用以依据第二 脉冲信号以及第二同步信号而产生供驱动所述第二单相整流桥的 4个逆导型开关的 PWM驱动 信号。
优选地, 该逆导型开关为含反向并联二极管的 IGBT或 IGCT或 IECT。 该第一控制单元为 具有第一置位端、第一复位端以及互补的第一输出端与第二输出端的 RS触发器, 所述第一置 位端用以接收所述第一比较单元所输出的第一脉冲信号, 而所述第一复位端用以接收所述第 一同步信号发生单元所产生的第一同步信号, 且所述第一输出端用以输出供驱动所述第一单 相整流桥的 4个逆导型开关中其中 2个可形成通路的逆导型开关的第一 P丽驱动信号, 所述 第二输出端用以输出供驱动所述第一单相整流桥的 4个逆导型开关中的剩下 2个可形成通路 的逆导型开关的第二 PWM驱动信号, 且该第一 PWM驱动信号与该第二 PWM驱动信号为互补信 号。 该第二控制单元为具有第二置位端、 第二复位端以及互补的第三输出端与第四输出端的 RS触发器, 所述第二置位端用以接收所述第二比较单元所输出的第二脉冲信号, 而所述第二 复位端用以接收所述第二同步信号发生单元所产生的第二同步信号, 且所述第三输出端用以 输出供驱动所述第二单相整流桥的 4个逆导型开关中其中 2个可形成通路的逆导型开关的第 三 P丽驱动信号, 所述第四输出端用以输出供驱动所述第二单相整流桥的 4个逆导型开关中 的剩下 2个可形成通路的逆导型开关的第四 P丽驱动信号, 且该第三 P丽驱动信号与该第四 PWM驱动信号为互补信号。
如上所述, 本发明的单相可控整流器的控制系统主要是建立在由交错结构的第一功率电 路与第二功率电路、 以及与第一及第二功率电路的输出端并联的测压电路构成的单相可控整 流器电路中, 采用上述单相可控整流器电路中测量得到的直流电压, 产生随直流电压波动即 负载功率波动的调幅载波, 再将由上述电路中测量得到的交流侧电流与调幅载波相比较, 产 生可以通过 RS触发器形成原始驱动第一及第二功率电路的脉冲序列, 此外, 上述两级交错的 功率电路各自的控制部分采用同一电压 (同一直流电压与同一参考电压) 闭环的输出, 各自 的电流闭环控制结构简单, 运算速度快, 因而两级交错的整流器功率电路具有优良的均流特 性, 在功率电路参数不一致的情况下, 可以获得满意的均流效果, 从而支持更高的输出功率 等级, 同时由于无需检测网侧电压, 有利于简化电路设计、 降低成本和提高可靠性。 附图说明
图 1 显示为本发明的单相可控整流器的控制系统应用在单相可控整流器中的方块示意 图。 元件标号说明
11 单相交流源
13 第一功率电路
131 第一电流互感器
133 第一电感
135 第一单相整流桥
137 第一电容
15 第二功率电路
151 第二电流互感器
153 第二电感
155 第二单相整流桥
157 第二电容
17 测压电路
171 电阻组
1711 第一电阻
173 第二电阻
21 电压闭环模块
211 参考电压源
213 减法单元
215 误差滤波放大单元
23 第一电流闭环模块
231 第一锯齿波发生单元
233 第一同步信号发生单元
235 第一乘法单元 237 第一比较单元
239 第一控制单元
2391 第一输出端
2393 第二输出端
25 第二电流闭环模块
251 第二锯齿波发生单元
253 第二同步信号发生单元
255 第二乘法单元
257 第二比较单元
259 第二控制单元
2591 第三输出端
2593 第四输出端
a 火线端
b 零线端
cl 第一正极输出端
c2 第一负极输出端
c3 第二正极输出端
c4 第二负极输出端
dl 正极输出端
d2 负极输出端
e 分接点
ii 第一电流值
i2 第二电流值
Sl l、 S12、 S21、 S22、 S31、 S32、 S41、 S42 逆导型开关
SI 第一桥臂
Sla 第一桥臂的中点
S2 第二桥臂
S2a 第二桥臂的中点
S3 第三桥臂
S3a 第三桥臂的中点 S4 第四桥臂
S4a 第四桥臂的中点 具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外不同的具体实施方式加 以实施或应用, 本说明书中的各项细节也可以基于不同观点与应用, 在没有背离本发明的精 神下进行各种修饰或改变。
请参阅图 1。 需要说明的是, 本实施例中所提供的图示仅以示意方式说明本发明的基本 构想, 遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、 形状及尺寸 绘制, 其实际实施时各组件的型态、 数量及比例可为一种随意的改变, 且其组件布局型态也 可能更为复杂。
如图所示, 该单相可控整流器包括具有火线端 a与零线端 b的单相交流源 11、 第一功率 电路 13、 第二功率电路 15以及测压电路 17。
其中, 该第一功率电路 13是由第一电流互感器 131、第一电感 133、第一单相整流桥 135 以及第一电容 137所构成。 该第一电流互感器 131的一端连接该火线端 a, 且用以测量并输 出第一电流值 i1 ; 该第一电感 133的一端连接该第一电流互感器 131的另一端; 该第一单相 整流桥 135具有 4个逆导型开关 Sl l、 S12、 S21与 S22, 每 2个逆导型开关构成一个桥臂, 而分别形成第一桥臂 S1与第二桥臂 S2, 且该第一桥臂 S1与第二桥臂 S2的公共连接端分别 构成第一正极输出端 cl与第一负极输出端 c2,并该第一桥臂 S1的中点 Sla与该第一电感 133 的另一端连接, 该第二桥臂 S2的中点 S2a与该零线端 b连接; 该第一电容 137跨接在该第一 正极输出端 cl与第一负极输出端 c2。 在本实施例中, 该逆导型开关 Sl l、 S12、 S21与 S22 为含反向并联二极管的 IGBT或 IGCT或 IECT。
该第二功率电路 15是由第二电流互感器 151、 第二电感 153、 第二单相整流桥 155以及 第二电容 157所构成。 该第二电流互感器 151的一端连接该火线端 a, 且用以测量并输出第 二电流值 i2 ; 该第二电感 153的一端连接该第二电流互感器 151的另一端; 该第二单相整流 桥 155具有 4个逆导型开关 S31、 S32、 S41与 S42, 每 2个构成一个桥臂, 而分别形成第三 桥臂 S3与第四桥臂 S4, 且该第三桥臂 S3与第四桥臂 S4的公共连接端分别构成第二正极输 出端 c3与第二负极输出端 c4, 并该第三桥臂 S3的中点 S3a与第二电感 153的另一端连接, 该第四桥臂 S4的中点 S4a与该零线端 b连接, 且该第一正极输出端 cl与该第二正极输出端 c3连接构成正极输出端 dl,该第一负极输出端 c2与该第二负极输出端 c4连接构成负极输出 端 d2; 以及该第二电容 157跨接在该第二正极输出端 c3与第二负极输出端 c4, 并与该第一 电容 137并联连接。 在本实施例中, 该逆导型开关 S31、 S32、 S41与 S42为含反向并联二极 管的 IGBT或 IGCT或 IECT。
该测压电路 17与该第一电容 137以及第二电容 157并联连接, 且该测压电路 17包括电 阻组 171与第二电阻 173。 该电阻组 171的一端连接该正极输出端 dl, 且包含一个第一电阻 或两个及以上个串接的第一电阻, 在本实施例中, 是以两个第一电阻 1711串接组成该电阻组 171为例做说明; 该第二电阻 173的一端连接该电阻组 171的另一端, 其另一端连接该负极 输出端 d2, 并在该第二电阻 173与该电阻组 171之间形成一个输出直流电压的分接点 e。
本发明的单相可控整流器的控制系统包括电压闭环模块 21、 第一电流闭环模块 23 以及 第二电流闭环模块 25, 以下即结合上述单相可控整流器的硬件电路对本发明的单相可控整流 器的控制系统的各元件进行详细说明。
该电压闭环模块 21是由参考电压源 211、减法单元 213以及误差滤波放大单元 215构成。 该参考电压源 211是用以产生参考电压。
该减法单元 213分别接收该参考电压源 211所产生的参考电压以及该分接点 e所输出的 直流电压, 且用以将该参考电压减去该直流电压, 以产生并输出一个电压偏差值。
该误差滤波放大单元 215接收该减法单元 213所输出的电压偏差值, 且用以对该电压偏 差值执行滤波放大处理。
该第一电流闭环模块 23是由第一锯齿波发生单元 231、 第一同步信号发生单元 233、 第 一乘法单元 235、 第一比较单元 237以及第一控制单元 239构成。
该第一锯齿波发生单元 231用以产生第一锯齿波信号。
该第一同步信号发生单元 233 用以产生与该第一锯齿波信号属于同相位的第一同步信 号。
该第一乘法单元 235分别接收该误差滤波放大单元 215所输出的经滤波放大处理的电压 偏差值以及该第一锯齿波发生单元 231所产生的第一锯齿波信号, 且用以将该经滤波放大处 理的电压偏差值与该第一锯齿波信号相乘, 而产生并输出第一调幅载波。
该第一比较单元 237分别接收该第一电流互感器 131所输出的第一电流值 L以及该第一 乘法单元 235所输出的第一调幅载波, 且用以比较该第一电流值 L与该第一调幅载波, 以在 该第一调幅载波高于该第一电流值 ^时产生高电平, 而在该第一调幅载波低于该第一电流值 时产生低电平, 进而产生并输出第一脉冲信号。 该第一控制单元 239用以接收该第一比较单元 237所输出的第一脉冲信号以及该第一同 步信号发生单元 233所产生的第一同步信号, 且用以依据第一脉冲信号以及第一同步信号而 产生供驱动该第一单相整流桥 135的 4个逆导型开关 Sl l、 S12、 S21与 S22的 PWM驱动信号。 在本实施例中, 该第一控制单元 239为具有第一置位端、 第一复位端以及互补的第一输出端 2391与第二输出端 2393的 RS触发器, 该第一置位端用以接收该第一比较单元 237所输出的 第一脉冲信号, 而该第一复位端用以接收该第一同步信号发生单元 233所产生的第一同步信 号, 该第一输出端 2391用以输出供驱动该第一单相整流桥 135的 4个逆导型开关中的其中 2 个可形成通路的逆导型开关(在本实施例中, 如图 1所示, S21与 S12, 但不以此为限, 在其 他实施例中, 亦可为 S11与 S22 ) 的第一 PWM驱动信号, 该第二输出端 2393用以输出供驱动 该第一单相整流桥 135的 4个逆导型开关中的剩下 2个可形成通路的逆导型开关 (在本实施 例中, 如图 1所示, S11与 S22 ) 的第二 PWM驱动信号, 且该第一 PWM驱动信号与该第二 PWM 驱动信号为互补信号, 当该第一 P丽驱动信号为导通信号时, 该第二 P丽驱动信号为截止信 号。
该第二电流闭环模块 25是由第二锯齿波发生单元 251、 第二同步信号发生单元 253、 第 二乘法单元 255、 第二比较单元 257以及第二控制单元 259构成。
该第二锯齿波发生单元 251用以产生与该第一锯齿波信号幅值相同且相位错开 180 ° 的 第二锯齿波信号。
该第二同步信号发生单元 253用以产生该第一同步信号幅值相同且相位错开 180 ° 的第 二同步信号。
该第二乘法单元 255分别接收该误差滤波放大单元 215所输出的经滤波放大处理的电压 偏差值以及该第二锯齿波发生单元 251所产生的第二锯齿波信号, 且用以将该经滤波放大处 理的电压偏差值与该第二锯齿波信号相乘, 而产生并输出第二调幅载波。
该第二比较单元 257分别接收该第二电流互感器 151所输出的第二电流值 i2以及该第二 乘法单元 255所输出的第二调幅载波, 且用以比较该第二电流值 i2与该第二调幅载波, 以在 该第二调幅载波高于该第二电流值 12时产生高电平, 而在该第二调幅载波低于该第二电流值 i2时产生低电平, 进而产生并输出第二脉冲信号。
该第二控制单元 259用以接收该第二比较单元 257所输出的第二脉冲信号以及该第二同 步信号发生单元 253所产生的第二同步信号, 且用以依据第二脉冲信号以及第二同步信号而 产生供驱动该第二单相整流桥 155的 4个逆导型开关 S31、 S32、 S41与 S42的 PWM驱动信号。 在本实施例中, 该第二控制单元 259为具有第二置位端、 第二复位端以及互补的第三输出端 2591与第四输出端 2593的 RS触发器, 该第二置位端用以接收该第二比较单元 257所输出的 第二脉冲信号, 而该第二复位端用以接收该第二同步信号发生单元 253所产生的第二同步信 号, 该第三输出端 2591用以输出供驱动该第二单相整流桥 155的 4个逆导型开关中的其中 2 个可形成通路的逆导型开关 (在本实施例中, 如图 1所示, 分别为 S41与 S32, 但不以此为 限, 在其他实施例中, 亦可为 S31与 S42 ) 的第三 P丽驱动信号, 该第四输出端 2593用以输 出供驱动该第二单相整流桥 155的 4个逆导型开关中的剩下 2个可形成通路的逆导型开关 (在 本实施例中, 如图 1所示, S31与 S42 ) 的第四 PWM驱动信号, 且该第三 PWM驱动信号与该第 四 PWM驱动信号为互补信号, 当该第三 PWM驱动信号为导通信号时, 该第四 PWM驱动信号为 截止信号。
上述第一电流闭环模块 23和第二电流闭环模块 25中的第一锯齿波信号与第二锯齿波信 号错开 180°, 第一同步信号与第二同步信号错开 180°, 使得分别驱动第一单相整流桥 135的 PWM驱动信号与第二单相整流桥 155的 PWM驱动信号对应地错开 180 ° , 进而形成交错驱动; 而且第一电流闭环模块 23与第二电流闭环模块 25共用同一电压闭环模块 21的输出(经该误 差滤波放大单元 215滤波放大处理的电压偏差值), 因而可以获得优良的均流性能, 提高了功 率等级。
综上所述, 本发明的单相可控整流器的控制系统主要是建立在由交错结构的第一功率电 路与第二功率电路、 以及与第一及第二功率电路的输出端并联的测压电路构成的单相可控整 流器电路中, 其作用是通过高频 PWM调制原理, 来实现两级交错单相 AC-DC变换, 本发明的 单相可控整流器的控制系统通过采集上述单相可控整流器电路中测量得到的交流侧电流和所 输出的直流电压和一系列的数值计算和逻辑处理, 分别产生两组四路驱动脉冲, 而对应驱动 第一功率电路与第二功率电路, 不仅实现了单相可控整流器的全部功能, 而且提高了响应速 度, 无需交流侧电压的检测也降低了尺寸和成本, 此外, 由于本发明的单相可控整流器的控 制系统中的第一与二锯齿波信号、 第一与第二同步信号的相位均错开 180 ° , 使得最终产生 的第一单相整流桥的 PWM驱动信号与第二单相整流桥的 PWM驱动信号在相位上交错 180°, 因 而形成交错驱动, 且第一与第二电流闭环模块共用同一电压闭环模块的输出, 因而可以获得 优良的均流性能, 提高了功率等级。
上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。 因此, 举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权 利 要 求 书 、 一种单相可控整流器的控制系统, 其中, 所述单相可控整流器包括具有火线端与零线端的 单相交流源、 第一功率电路、 第二功率电路以及测压电路;
其中, 所述第一功率电路包括:
第一电流互感器, 其一端连接所述火线端, 且用以测量并输出第一电流值; 第一电感, 其一端连接所述第一电流互感器的另一端;
第一单相整流桥, 具有 4个逆导型开关, 每 2个构成一个桥臂, 而分别形成第一桥臂 与第二桥臂, 且所述第一桥臂与第二桥臂的公共连接端分别构成第一正极输出端与第一负 极输出端, 并所述第一桥臂的中点与第一电感的另一端连接, 所述第二桥臂的中点与所述 零线端连接; 以及
第一电容, 跨接在所述第一正极输出端与第一负极输出端;
且, 所述第二功率电路包括:
第二电流互感器, 其一端连接所述火线端, 且用以测量并输出第二电流值; 第二电感, 其一端连接所述第二电流互感器的另一端;
第二单相整流桥, 具有 4个逆导型开关, 每 2个构成一个桥臂, 而分别形成第三桥臂 与第四桥臂, 且所述第三桥臂与第四桥臂的公共连接端分别构成第二正极输出端与第二负 极输出端, 并所述第三桥臂的中点与第二电感的另一端连接, 所述第四桥臂的中点与所述 零线端连接, 且所述第一正极输出端与所述第二正极输出端连接构成正极输出端, 所述第 一负极输出端与所述第二负极输出端连接构成负极输出端; 以及
第二电容,跨接在所述第二正极输出端与第二负极输出端, 并与所述第一电容并联连 接;
而, 所述测压电路与所述第一电容以及第二电容并联连接, 且包括:
电阻组,其一端连接所述正极输出端, 且包含一个第一电阻或两个及以上个串接的第 一电阻; 以及
第二电阻, 其一端连接所述电阻组的另一端, 其另一端连接所述负极输出端, 并在所 述第二电阻与所述电阻组之间形成一个输出直流电压的分接点;
其特征在于, 所述单相可控整流器的控制系统包括:
电压闭环模块、 第一电流闭环模块以及第二电流闭环模块;
其中, 所述电压闭环模块包括: 参考电压源, 用以产生参考电压;
减法单元,分别接收所述参考电压源所产生的参考电压以及所述分接点所输出的直流 电压, 且用以将所述参考电压减去所述直流电压, 以产生并输出一个电压偏差值; 以及 误差滤波放大单元,接收所述减法单元所输出的电压偏差值, 且用以对所述电压偏差 值执行滤波放大处理;
且, 所述第一电流闭环模块包括:
第一锯齿波发生单元, 用以产生第一锯齿波信号;
第一同步信号发生单元, 用以产生与第一锯齿波信号属于同相位的第一同步信号; 第一乘法单元,分别接收所述误差滤波放大单元所输出的经滤波放大处理的电压偏差 值以及所述第一锯齿波发生单元所产生的第一锯齿波信号, 且用以将所述经滤波放大处理 的电压偏差值与所述第一锯齿波信号相乘, 而产生并输出第一调幅载波;
第一比较单元,分别接收所述第一电流互感器所输出的第一电流值以及所述第一乘法 单元所输出的第一调幅载波, 且用以比较所述第一电流值与所述第一调幅载波, 以在第一 调幅载波高于第一电流值时产生高电平, 在第一调幅载波低于第一电流值时产生低电平, 进而产生并输出第一脉冲信号; 以及
第一控制单元,用以接收所述第一比较单元所输出的第一脉冲信号以及所述第一同步 信号发生单元所产生的第一同步信号, 且用以依据第一脉冲信号以及第一同步信号而产生 供驱动所述第一单相整流桥的 4个逆导型开关的 P丽驱动信号;
所述第二电流闭环模块包括:
第二锯齿波发生单元, 用以产生与第一锯齿波信号幅值相同且相位错开 180 ° 的第二 锯齿波信号;
第二同步信号发生单元, 用以产生第一同步信号幅值相同且相位错开 180 ° 的第二同 步信号;
第二乘法单元,分别接收所述误差滤波放大单元所输出的经滤波放大处理的电压偏差 值以及所述第二锯齿波发生单元所产生的第二锯齿波信号, 且用以将所述经滤波放大处理 的电压偏差值与所述第二锯齿波信号相乘, 而产生并输出第二调幅载波;
第二比较单元,分别接收所述第二电流互感器所输出的第二电流值以及所述第二乘法 单元所输出的第二调幅载波, 且用以比较所述第二电流值与所述第二调幅载波, 以在第二 调幅载波高于第二电流值时产生高电平, 在第二调幅载波低于第二电流值时产生低电平, 进而产生并输出第二脉冲信号; 以及 第二控制单元,用以接收所述第二比较单元所输出的第二脉冲信号以及所述第二同步 信号发生单元所产生的第二同步信号, 且用以依据第二脉冲信号以及第二同步信号而产生 供驱动所述第二单相整流桥的 4个逆导型开关的 P丽驱动信号。 、 根据权利要求 1所述的单相可控整流器的控制系统, 其特征在于: 所述逆导型开关为含反 向并联二极管的 IGBT或 IGCT或 IECT。 、 根据权利要求 1所述的单相可控整流器的控制系统, 其特征在于: 所述第一控制单元为具 有第一置位端、 第一复位端以及互补的第一输出端与第二输出端的 RS触发器, 所述第一 置位端用以接收所述第一比较单元所输出的第一脉冲信号,而所述第一复位端用以接收所 述第一同步信号发生单元所产生的第一同步信号,且所述第一输出端用以输出供驱动所述 第一单相整流桥的 4个逆导型开关中的其中 2个可形成通路的逆导型开关的第一 P丽驱动 信号, 所述第二输出端用以输出供驱动所述第一单相整流桥的 4个逆导型开关中的剩下 2 个可形成通路的逆导型开关的第二 P丽驱动信号。 、 根据权利要求 3所述的单相可控整流器的控制系统, 其特征在于: 所述第一 PWM驱动信号 与所述第二 PWM驱动信号为互补信号。 、 根据权利要求 1所述的单相可控整流器的控制系统, 其特征在于: 所述第二控制单元为具 有第二置位端、 第二复位端以及互补的第三输出端与第四输出端的 RS触发器, 所述第二 置位端用以接收所述第二比较单元所输出的第二脉冲信号,而所述第二复位端用以接收所 述第二同步信号发生单元所产生的第二同步信号,且所述第三输出端用以输出供驱动所述 第二单相整流桥的 4个逆导型开关中的其中 2个可形成通路的逆导型开关的第三 P丽驱动 信号, 所述第四输出端用以输出供驱动所述第二单相整流桥的 4个逆导型开关中的剩下 2 个可形成通路的逆导型开关的第四 P丽驱动信号。 、 根据权利要求 5所述的单相可控整流器的控制系统, 其特征在于: 所述第三 PWM驱动信号 与所述第四 P丽驱动信号为互补信号。
PCT/CN2012/087160 2011-12-22 2012-12-21 单相可控整流器的控制系统 WO2013091571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110434535.6A CN103178729B (zh) 2011-12-22 2011-12-22 单相可控整流器的控制系统
CN201110434535.6 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013091571A1 true WO2013091571A1 (zh) 2013-06-27

Family

ID=48638388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087160 WO2013091571A1 (zh) 2011-12-22 2012-12-21 单相可控整流器的控制系统

Country Status (2)

Country Link
CN (1) CN103178729B (zh)
WO (1) WO2013091571A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187891B (zh) * 2011-12-28 2015-11-18 上海儒竞电子科技有限公司 单相可控整流器的载波调幅控制系统
CN109038677A (zh) * 2018-09-05 2018-12-18 淮阴工学院 一种高效的六开关单相并网变流器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663702A (en) * 1984-10-12 1987-05-05 Kabushiki Kaisha Toshiba Power converter apparatus and control method thereof
US7006366B2 (en) * 2004-06-10 2006-02-28 Wisconsin Alumni Research Foundation Boost rectifier with half-power rated semiconductor devices
CN101326705A (zh) * 2006-01-05 2008-12-17 大金工业株式会社 整流电路及三相整流装置
CN202435296U (zh) * 2011-12-28 2012-09-12 上海交通大学 风力发电中单相整流升压电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596007B2 (en) * 2005-10-14 2009-09-29 Astec International Limited Multiphase DC to DC converter
EP2605394B1 (en) * 2007-06-04 2019-03-20 Panasonic Corporation Power-supply control apparatus and heat pump apparatus having the power-supply control apparatus
CN101882878A (zh) * 2010-02-08 2010-11-10 金华大维电子科技有限公司 电除尘用大功率高频高压整流变压器
CN201898448U (zh) * 2010-11-11 2011-07-13 董云志 一种大功率高频开关电源
CN201893557U (zh) * 2010-11-24 2011-07-06 湖南丰日电源电气股份有限公司 一种不同容量模块并联工作的高压直流电源
CN201878014U (zh) * 2010-12-14 2011-06-22 东莞市冠佳电子设备有限公司 一种老化测试用回馈负载节能电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663702A (en) * 1984-10-12 1987-05-05 Kabushiki Kaisha Toshiba Power converter apparatus and control method thereof
US7006366B2 (en) * 2004-06-10 2006-02-28 Wisconsin Alumni Research Foundation Boost rectifier with half-power rated semiconductor devices
CN101326705A (zh) * 2006-01-05 2008-12-17 大金工业株式会社 整流电路及三相整流装置
CN202435296U (zh) * 2011-12-28 2012-09-12 上海交通大学 风力发电中单相整流升压电路

Also Published As

Publication number Publication date
CN103178729A (zh) 2013-06-26
CN103178729B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
TWI530767B (zh) 用於pfc電路的控制電路、控制方法及電源系統
US8958219B2 (en) Non-isolated inverter and related control manner thereof and application using the same
CN106489233B (zh) 多电平逆变器
TWI500251B (zh) 多重化逆變器及有源電力濾波系統
EP2846453B1 (en) Single-phase inverter and three-phase inverter
CN109639160B (zh) 基于软开关技术的新型单向三相三电平整流器
CN103283135A (zh) 电力转换装置
CN110661413B (zh) 基于对称四端口的单相三电平功率因数校正整流器
CN105450063A (zh) 一种半桥级联型多电平逆变器及控制方法
Noguchi Common-emitter topology of multilevel current-source pulse width modulation inverter with chopper-based DC current sources
CN103490656A (zh) 基于h桥的四电平逆变器拓扑结构及该拓扑结构的载波调制方法
WO2019242128A1 (zh) 一种三相逆变器及其控制方法
CN106452141B (zh) 一种无桥臂直通风险的三相双输入逆变器
CN103178734A (zh) 一种光伏逆变器
CN104682762B (zh) 一种低漏电流并网逆变器
CN205336145U (zh) 一种半桥级联型多电平逆变器
WO2013091571A1 (zh) 单相可控整流器的控制系统
JP4100125B2 (ja) 系統連系インバータ装置
CN103840691A (zh) 单级双向降压直流变换器型高频环节逆变器
TWI524647B (zh) 多階交流/直流電力轉換方法及其裝置
TW201251295A (en) Five level power converter
US20150124498A1 (en) Power conversion device
Tran et al. A Single-Phase Common-Ground-Type Boost Inverter for Photovoltaic Applications
CN207884514U (zh) 一种改进型单相逆变器
Munaretto et al. Single-phase transformerless dual buck-based grid-connected inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860160

Country of ref document: EP

Kind code of ref document: A1