WO2013091471A1 - 一种无源光网络pon保护方法及装置 - Google Patents

一种无源光网络pon保护方法及装置 Download PDF

Info

Publication number
WO2013091471A1
WO2013091471A1 PCT/CN2012/085509 CN2012085509W WO2013091471A1 WO 2013091471 A1 WO2013091471 A1 WO 2013091471A1 CN 2012085509 W CN2012085509 W CN 2012085509W WO 2013091471 A1 WO2013091471 A1 WO 2013091471A1
Authority
WO
WIPO (PCT)
Prior art keywords
olt
transmission path
pon
path
network node
Prior art date
Application number
PCT/CN2012/085509
Other languages
English (en)
French (fr)
Inventor
江元龙
李宏宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12860786.8A priority Critical patent/EP2787684B1/en
Publication of WO2013091471A1 publication Critical patent/WO2013091471A1/zh
Priority to US14/310,884 priority patent/US20140321845A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the invention belongs to the field of assive optical network (PON), and in particular relates to a PON protection method and device.
  • FIG. 1 shows a typical PON access network with high reliability.
  • a first optical line terminal (OLT) 11 and a second OLT 12 as a backup pass through an uplink network ( Or a direct physical link) is respectively connected to the remote network node 13, and each optical splitter 14 is connected to a plurality of optical network units (ONUs) 15 and is dual-connected to the first OLT 11 and the second
  • the OLT ports of the OLT 12 are mutually protected, and the first OLT 11 and the second OLT 12 can connect up to hundreds of optical splitters 14 to provide access services for up to tens of thousands of ONUs 15 to implement backup service protection. .
  • the first 0LT and the second 0LT perform the P0N port switching, that is, the P0N port on the first 0LT that provides the optical path access to the optical splitter is switched to the second.
  • the corresponding P0N port on the 0LT enables the second optical path between the splitter and the second OLT to be used, thereby further causing all the ONUs on the optical splitter to transmit and receive data streams through the second OLT.
  • the remote network node cannot detect the fault on the optical path, so that the downlink data flow corresponding to the ONU on the optical splitter is still sent by the remote network node.
  • the user's business is interrupted.
  • an existing protection technology is to configure two paths of primary and backup between each ONU and the remote network node, and operate and maintain on both the primary and backup paths (opera t ion and ma) Intenance, 0AM) to detect end-to-end path failures.
  • this method requires establishing tens of thousands of primary and backup paths between the ONU and the remote network node, and needs to configure 0AM for each ONU and on the remote network.
  • the corresponding 0AM and protection state machines are maintained on the node, and configuration and management are very complicated. Summary of the invention
  • An object of the present invention is to provide a PON protection method, which aims to solve the problem of high complexity of configuration and management of the existing PON protection method.
  • a PON protection method is applied to a remote network node in a PON access network, and the method includes:
  • first transmission path with the first optical line terminal OLT, for transmitting a data flow of one or a group of PON ports on the first OLT, and establishing a second transmission path with the second OLT for transmitting the second a data stream of one or a group of P0N ports on the 0LT, wherein the first transmission path and the second transmission path are mutually active and alternate transmission paths;
  • the failure of the first OLT is received. Notifying that the data stream of the P0N port corresponding to the optical path is switched from the first transmission path to the second transmission path.
  • Another object of the present invention is to provide a P0N protection method, which is applied to a first 0LT in a P0N access network, where the method includes:
  • the second transmission path established between the remote network node and the secondary transmission path is used as a primary and secondary transmission path; when the optical path of the first OLT connection fails, the P0N port corresponding to the optical path is switched to the a corresponding P0N port on the OLT, and sending a fault notification to the remote network node, so that the remote network node passes the data stream of the P0N port corresponding to the optical path by the first transmission
  • the sending path is switched to the second transmission path, and the fault notification includes a PON port identifier corresponding to the optical path.
  • Another object of the present invention is to provide a PON protection apparatus, where the apparatus includes: a path establishment module, configured to establish a first transmission path with a first OLT, and transmit one or a group of PONs on the first OLT. a data stream of the port, establishing a second transmission path with the second OLT, and transmitting a data stream of one or a group of P0N ports on the second OLT;
  • a fault notification receiving module configured to: when the optical path of the first OLT connection fails, after the first OLT switches the PON port corresponding to the optical path to a corresponding PON port on the second OLT, the receiving station Describe the fault notification sent by the first OLT;
  • a path switching module configured to switch, by the first transmission path, the data flow of the PON port corresponding to the optical path to the second transmission path.
  • Another object of the present invention is to provide a PON protection apparatus, where the apparatus includes: a path establishment module, configured to establish a first transmission path between the first OLT and a remote network node, and transmit the a data stream of one or a group of PON ports on the OLT, the first transmission path and the second transmission path established between the second OLT and the remote network node are mutually active and alternate transmission paths;
  • a path establishment module configured to establish a first transmission path between the first OLT and a remote network node, and transmit the a data stream of one or a group of PON ports on the OLT, the first transmission path and the second transmission path established between the second OLT and the remote network node are mutually active and alternate transmission paths;
  • a PON port switching module configured to switch a PON port corresponding to the optical path to a corresponding PON port on the second OLT when the optical path of the first OLT connection fails;
  • the fault notification module is configured to send a fault notification to the remote network node when the optical path fails, where the fault notification includes a PON port identifier corresponding to the optical path.
  • the embodiment of the present invention transmits the service of the ONU by establishing a transmission path between the remote network node and the first OLT, the remote network node, and the second OLT, respectively. And by monitoring the service fault, when the access path of the first 0LT access, the P0N port of the 0LT, or the transmission path between the 0LT and the remote network node fails, the service can switch to the corresponding backup path in time. Therefore, the complexity of configuration and management of the P0N access network is greatly reduced, the performance requirements of the remote network node are reduced, and the scalability of the system is improved.
  • FIG. 1 is a schematic structural diagram of a PON network provided by the prior art
  • FIG. 2 is a schematic structural diagram of a PON network according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of implementing a PON protection method according to an embodiment of the present invention
  • FIG. 6 is a flowchart of implementing a PON protection method for an OLT uplink network as an Ethernet network
  • FIG. 7 is a flowchart of implementing a PON protection method for a multi-protocol label switching (MPLS) network in an OLT uplink network
  • MPLS multi-protocol label switching
  • FIG. 8 is a schematic structural diagram of a PON protection apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a PON protection apparatus according to another embodiment of the present invention. detailed description
  • the network deployment scenario of the embodiment of the present invention is as shown in FIG. 2, which is no longer established for each ONU compared to the prior art, but is for a PON port of each OLT, at the far end.
  • a first transmission path 23 is established between the network node 21 and the first OLT 22, and a second transmission path 25 is established between the remote network node 21 and the second OLT 24 to transmit the data stream of its subordinate ONUs, and the access port is
  • the first OLT 22 notifies the fault to the remote network node 21 while the PON port is being switched, and the fault notification includes
  • the PON port identifier corresponding to the optical path 26 enables the remote network node 21 to switch the corresponding data stream to the standby transmission path 25 in time.
  • the first A transmission path 23 performs monitoring.
  • the first OLT 22 switches the protected one or a group of PON ports, and the remote network node 21 switches the corresponding data stream to the second.
  • the transmission path 25 On the transmission path 25. Since the number of P0N ports in a P0N network is usually much smaller than the number of its 0NUs, this method greatly reduces the complexity of PON access network configuration and management.
  • the ONU further includes an optical network terminal (ONT), a multi-dwelling unit (MDU), or a multi-tenant unit (MTU).
  • the remote network node may be a network node such as a switch/router, a broadband remote access server (BRAS), a broadband network gateway (BNG), or an IP edge node. limited.
  • FIG. 3 shows an implementation flow of a PON protection method according to an embodiment of the present invention, and the method is described in detail in conjunction with FIG. 2:
  • a first transmission path is established between the first OLT and the remote network node, and is used to transmit a data flow of one or a group of P0N ports on the first OLT, in the second OLT.
  • the primary and secondary protected P0N ports respectively establish a first transmission path and a second transmission path for respectively transmitting the data stream of the P0N port as the primary and backup transmission paths.
  • the protection mechanism of the single P0N port is described in the present invention, and the other P0N port protection is the same.
  • only one transmission may be configured for all protected P0N ports on the first OLT and all protected P0N ports corresponding to the second OLT.
  • the path that is, the configured primary and backup two transmission paths correspond to all the primary and secondary P0N ports that are dual-homed by two 0LTs.
  • each path is used to transmit data of all P0N ports on each 0LT. Streaming, thereby further improving the scalability of the network.
  • both the primary and backup transmission paths form a mutual protection relationship.
  • the two transmission paths are preferably physically isolated from each other (except for the two ends of the path).
  • step S302 when the optical path of the first OLT connection fails, the PON port corresponding to the optical path is switched to the corresponding PON port on the second OLT, and the fault notification is sent to the remote network.
  • the fault notification includes a PON port identifier corresponding to the optical path
  • the remote network node switches the data flow corresponding to the corresponding PON port from the first transmission path to the second according to the PON port identifier Transfer path.
  • the optical path connected to the first OLT refers to an optical path connecting a certain optical splitter and the first OLT, such as the optical path 26 in FIG.
  • the first OLT detects the fault in time, and switches the PON port corresponding to the optical path to the corresponding PON port of the second OLT, thereby implementing protection. Switched.
  • the handover process is a prior art of the PON, and can be detected by the PON port of the second OLT or by negotiation between the first and second OLTs.
  • the first OLT sends the fault notification to the remote network node by using the corresponding OAM or control signaling, so that the remote network node switches the data flow of the PON port corresponding to the optical path from the first transmission path after receiving the notification.
  • the corresponding data stream is transmitted and received by the second OLT.
  • the remote network node In the case of transmitting a data stream of one PON port in each transmission path, it is only necessary to directly notify the remote network node by OAM or control signaling. In the case that a transmission path transmits a data stream of a group of PON ports, it is also necessary to distinguish different PON ports (or different optical paths) connected to the OLT in the failure notification, so that the remote network node can be faulty at the PON port. Or when a light path failure occurs, the data stream that needs to be switched is known.
  • the information such as the virtual local area network (VLAN) identifier or the PW identifier may be carried in the extended TLV (type length variable) field in the OAM or the control signaling according to the actual network application scenario, thereby different PONs.
  • the data streams corresponding to the port are differentiated, so that the remote network node can switch the corresponding data stream according to the corresponding VLAN identifier or PW identifier.
  • control signaling used when the fault is notified to the remote network node is determined by its specific network application scenario.
  • Two specific examples are given in the following embodiments. It should be noted that the foregoing method is also applicable to the case where a certain PON port of the first OLT fails.
  • the specific protection principle is as described above, and details are not described herein again.
  • the remote network node when it is found that the optical path connected to the first OLT fails, the remote network node can receive the fault notification in time through the OAM or control signaling sent by the first OLT, and according to the notification
  • the PON port identifier corresponding to the included optical path switches its corresponding data stream to the second transmission path, and is sent and received by the second OLT. Since it is only necessary to establish a corresponding first transmission path and a second transmission path for each PON port or each group of PON ports of each OLT, it is no longer necessary to establish a path for each ONU, so that the PON access network is configured and managed. The complexity is greatly reduced, and the performance requirements for remote network nodes are greatly reduced, thereby improving the scalability of the network.
  • the PON protection method is implemented as follows:
  • step S303 when it is found that the first transmission path is faulty, the one or a group of PON ports in the first OLT and the second OLT are mutually protected are switched to corresponding to the second OLT. a PON port, and the data stream corresponding to the one or a group of PON ports is switched by the remote network node from the first transmission path to the second transmission path.
  • the fault detection of the transmission path is that the corresponding OAM can be operated on the first transmission path and the second transmission path, the Ethernet OAM applicable to the Ethernet, or the OAM applicable to the MPLS network; or, in the control signaling and the transmission data Control signaling is used in the same path (with the path), such as the Access Node Control Protocol (ANCP), the Targeted Label Distribution Protocol (T-LDP), and the like.
  • the first OLT and the second OLT respectively perform fault monitoring on the uplink and the transmission path with the remote network node.
  • the first OLT when a failure of the first transmission path occurs on its downlink, the first OLT can directly perceive the failure through OAM continuity detection, and when the failure occurs on the uplink of the first transmission path, the first OLT The fault can be sensed by receiving a reverse fault report sent by the remote network node. After detecting that the first transmission path is faulty, switching the PON port corresponding to the transmission path on the first OLT and the second OLT, that is, one or a group of the first OLT protected by the second OLT active/standby protection The PON port is switched to the corresponding PON port of the second OLT.
  • the PON port switching method is the same as the PON port switching technology described in step S302, and details are not described herein.
  • the remote network node can directly perceive the failure through OAM continuity detection, and when the failure occurs on the downlink of the first transmission path, far
  • the end network node can sense the fault by receiving a reverse fault notification sent by the first OLT. After receiving the reverse fault notification, the remote network node switches the corresponding data flow from the first transmission path to the second transmission path according to the PON port identifier corresponding to the optical path included in the fault notification.
  • the transmission path between the first OLT and the remote network node fails, whether the fault occurs in the uplink direction or the downlink direction of the transmission path, the data flow corresponding to one or a group of PON ports will eventually switch to the first
  • the two OLTs transmit and receive and transmit through the second transmission path, so that the faulty service can be quickly recovered.
  • FIG. 4 is a flowchart showing an implementation process of a PON protection method according to an embodiment of the present invention.
  • an execution body of the process is an OLT in a PON access network, and the specific process is as follows:
  • a first transmission path is established between the first OLT and the remote network node, and is used to transmit a data flow of one or a group of PON ports on the first OLT, where the first transmission path And a second transmission path established between the second OLT and the remote network node is used as a primary and backup transmission path.
  • step S402 when the optical path of the first OLT connection fails, the PON port corresponding to the optical path is switched to the corresponding PON port on the second OLT, and the fault notification is sent to the remote network.
  • a node wherein the remote network node switches a data flow of the PON port corresponding to the optical path from the first transmission path to the second transmission path, where the failure notification includes the light
  • the PON port identifier corresponding to the road
  • step S403 when the first transmission path fails, one or a group of P0N ports that are mutually protected with the second OLT are switched to corresponding P0N ports on the second 0LT.
  • FIG. 5 is a flowchart of an implementation process of a PON protection method according to an embodiment of the present invention.
  • an execution entity of the process is a remote network node in a PON access network, and the specific process is as follows:
  • step S501 Establishing a first transmission path with the first OLT, for transmitting a data stream of one or a group of P0N ports on the first OLT, and establishing a second transmission path with the second OLT, for transmitting the a data stream of one or a group of PON ports on the OLT; the first transmission path and the second transmission path are mutually active and alternate transmission paths.
  • step S502 when the optical path of the first OLT connection fails, after the first OLT switches the PON port corresponding to the optical path to the corresponding PON port on the second OLT, the first A fault notification sent by the OLT sends the data stream of the PON port corresponding to the optical path from the first transmission path to the second transmission path.
  • step S503 when the first transmission path fails, the data stream corresponding to one or a group of P0N ports protected by the second OLT in the first OLT is switched from the first transmission path to The second transmission path.
  • Figure 6 shows the implementation flow of the OLT protection method of the OLT uplink network for the Ethernet network, as detailed below:
  • a first Ethernet forwarding path is established between the first OLT and the remote network node, and between the second OLT and the remote network node for each or each group of PON ports on each OLT ( An Ethernet Forwarding Path (EPP) and a second EFP, configured to transmit data streams corresponding to all ONUs connected to one or a group of P0N ports, the first EEP and the second EEP Mutual use, alternate transfer path.
  • EPP Ethernet Forwarding Path
  • second EFP configured to transmit data streams corresponding to all ONUs connected to one or a group of P0N ports, the first EEP and the second EEP Mutual use, alternate transfer path.
  • the EFP is a point-to-point Ethernet forwarding path, which can be identified by a VLAN, a port, or a combination of a VLAN and a port.
  • the EFP can identify the data flow through a specific PON port of the OLT through a virtual local area network (VLAN).
  • VLAN virtual local area network
  • the data flows of different services can be distinguished by one or more virtual local area network (VLAN) identifiers when passing through the uplink network.
  • VLAN virtual local area network
  • Each VLAN can establish an EFP correspondingly (by adding an additional VLAN tag to the packet header and establishing a single EFP for this added outer VLAN, multiple EFPs can be avoided). Therefore, one or a group of P0N ports in the OLT may correspond to one or more EFPs.
  • step S602 when it is found that the optical path of the first OLT connection is faulty, the P0N port corresponding to the optical path on the first OLT is switched to the corresponding PON port on the second OLT, and the fault is sent through the 0AM message or the control signaling.
  • the notification is sent to the remote network node, and the fault notification includes the P0N port identifier corresponding to the optical path.
  • the 0AM message may be a Client Signal Fail (CSF) type message of the Y.1731, and the control signaling may be an Access Node Control Protocol (ACNP) or other control signaling.
  • CSF Client Signal Fail
  • ACNP Access Node Control Protocol
  • step S603 after the remote network node receives the fault notification through the 0AM message or the control signaling, the VLAN information can be obtained through the packet header or the VLAN field in the packet data, and then the corresponding information is obtained according to the VLAN information.
  • the data flow on the VLAN is switched from the first EFP to the second EFP, thereby implementing the switching of the access service.
  • the remote network node may simply set the first port corresponding to the first EFP to prohibit transmission of the data stream of the corresponding VLAN, and set the second port corresponding to the second EFP to allow the data stream of the corresponding VLAN to be transmitted.
  • the path protection method in the Ethernet application scenario is as follows: In step S604, when the first EFP is found to be faulty, the first OLT corresponds to one or a group of PON ports of the EFP. Switching to the second OLT, and the remote network node switches the data stream corresponding to the one or a group of PON ports from the first EFP to the second EFP.
  • EFP path failure detection can be done by Ethernet OAM or ANCP control signaling.
  • Other control signaling with a keepalive Keep alive mechanism can also be used to implement ESP path failure detection.
  • an OAM maintenance end point is configured for the first EFP and the second EFP, that is, the first MEP and the second MEP are respectively configured on the first OLT and the remote network node.
  • the session endpoint may be separately configured on the first OLT and the remote network node, respectively, on the second OLT and the remote network node.
  • the session endpoints are configured, and then the first EFP and the second EFP can perform end-to-end path fault monitoring by using messages between the session endpoints.
  • the first OLT when the downlink link of the first EFP fails, the first OLT does not receive the 0AM message or the control message, and the fault can be directly detected.
  • the first OLT can sense the failure by receiving a reverse fault notification of the remote network node.
  • the remote network node when the uplink link of the first EFP fails, the remote network node does not receive the 0AM message or the control message, so that the fault can be directly perceived, when the downlink link of the first EFP fails.
  • the remote network node can sense the fault by receiving a reverse fault notification of the first OLT.
  • the remote network node may simply set the first port corresponding to the first transmission path to prohibit transmission of the data stream of the corresponding VLAN, and will correspond to the second transmission.
  • the second port of the path is set to allow the flow of data for the corresponding VLAN to be sent.
  • a transmission path transmits a data stream of a set of P0N ports preferably, it may be first First, an index table is established for all the current VLANs. When the first EFP is found to be faulty, the remote network node may set the first port corresponding to the first transmission path to prohibit sending the corresponding VLAN in the index table according to the index table. The data stream is set and the second port corresponding to the second transmission path is set to allow transmission of the corresponding data stream in the index table.
  • the VLANs may be various types of VLANs, including IEEE 802.1 series standards and various VLANs defined in BBF (The Broadband Forum), such as C-VLAN, S-VLAN, QinQ VLAN, and B-VLAN.
  • BBF The Broadband Forum
  • FIG. 7 shows an implementation flow of a PON protection method in which an OLT uplink network is an MPLS network, which is described in detail as follows:
  • a first pseudowire is established between the first OLT and the remote network node, and between the second OLT and the remote network node for each or each group of PON ports on each OLT (Pseudo Wire) And a second PW, configured to transmit a data stream corresponding to all ONUs connected by one or a group of PON ports; the first PW and the PW are mutually active and alternate transmission paths.
  • the two PWs that are established are preferably carried on the outer tunnels of the Label Switched Path (LSP) that do not overlap each other (except the two endpoints of the path) to avoid the appearance of a single PW. Point path failure.
  • LSP Label Switched Path
  • step S702 when it is found that the optical path of the first OLT connection is faulty, the PON port corresponding to the optical path on the first OLT is switched to the corresponding PON port on the second OLT, and bidirectional forwarding detection is performed.
  • the BFD) message or PW control signaling informs the remote network node.
  • BFD messages are transmitted in the PW
  • PW control signaling can be transmitted along the PW (for example, static PW status signaling) or through IP (for example, PW under T-LDP). Status signaling).
  • the first OLT may send the fault notification to the remote network node by using a "concatenated path down" diagnostic code in the BFD message, or by using PW control signaling, T-LDP "local entry reception error" status indication. .
  • step S703 after receiving the BFD message or the PW control signaling, the remote network node cuts the data stream on the corresponding first PW according to the PW information included in the fault notification. Switch to the second PW.
  • step S704 when the first PW is found to be faulty, one or a group of PON ports protected by the second OLT on the first OLT is detected. Switching to the second OLT, and the remote network node switches the data stream corresponding to the one or a group of P0N ports from the first PW to the second PW.
  • fault detection of the PW can be performed by PW OAM or T-LDP control signaling.
  • Other control signaling with a keep-alive Keep alive mechanism, such as ANCP, can also be used to implement ESP path failure detection.
  • the OAM maintenance endpoint is configured for the first PW and the second PW respectively.
  • the first MEP and the second MEP are respectively configured on the first OLT and the remote network node, and the second OLT and the remote end are respectively configured.
  • the third MEP and the fourth MEP are configured on the network node, and the end-to-end path fault monitoring can be performed on the first PW and the second PW by configuring the OAM maintenance endpoint and running the BFD between the MEPs.
  • the session endpoint may be separately configured on the first OLT and the remote network node, and the second OLT and the remote end are respectively configured.
  • the session endpoints are respectively configured on the network node, and then the first PW and the second PW are respectively monitored for end-to-end faults by exchanging hello messages between the session endpoints.
  • the first OLT does not receive the BFD message, and the fault can be directly detected.
  • the first 0LT The fault can be sensed by receiving a reverse path fault indication of the BFD of the remote network node.
  • the remote network node does not receive the BFD message, and the fault can be directly detected.
  • the remote end The network node may perceive the failure by receiving a reverse path failure indication of the BFD of the first OLT.
  • FIG. 8 shows the structure of a PON protection device according to an embodiment of the present invention. For the convenience of description, only parts related to the present embodiment are shown.
  • the device is based on the PON access network shown in FIG. 2 and can be run in the OLT device of the PON protection system, including:
  • a path establishing module 81 configured to establish a first transmission path between the first OLT and the remote network node, where the first transmission path is used to transmit a data flow of one or a group of PON ports on the first OLT,
  • the first transmission path and the second transmission path established between the second OLT and the remote network node are mutually active and alternate transmission paths.
  • the PON port switching module 82 is configured to switch the PON port corresponding to the optical path to the corresponding PON port on the second OLT when the optical path of the first OLT connection fails.
  • the fault notification module 83 is configured to send a fault notification to the remote network node when the optical path fails, where the fault notification includes a PON port identifier corresponding to the optical path.
  • the PON port switching module 82 is further configured to switch, when the first transmission path fails, one or a group of PON ports that are mutually protected with the second OLT to the second The corresponding PON port on the OLT.
  • the various module functions of the above described devices may also be distributed across multiple devices, together providing the overall functionality of the device.
  • the first path establishing module function is provided by the operation and maintenance network management system
  • the PON port switching module and the fault notification module function are provided by the OLT.
  • FIG. 9 shows the structure of a PON protection device according to an embodiment of the present invention. For the convenience of description, only parts related to the present embodiment are shown.
  • the device is based on the PON access network shown in FIG. 2 and can be run in a remote network node of the PON protection system, including:
  • a path establishing module 91 configured to establish a first transmission path with the first OLT, transmit a data flow of one or a group of PON ports on the first OLT, establish a second transmission path with the second OLT, and transmit the second transmission path a data stream of one or a group of PON ports on the OLT; the first transmission path and the second transmission path are mutually active and alternate transmission paths.
  • the fault notification receiving module 92 is configured to receive the fault notification sent by the first OLT, and obtain The PON port identifier corresponding to the optical path included in the fault notification.
  • the switching module 93 is configured to switch, according to the PON port identifier, a data stream corresponding to the corresponding PON port from the first transmission path to the second transmission path.
  • the switching module 93 is further configured to: when the first transmission path fails, the data stream corresponding to one or a group of PON ports protected by the second OLT in the first OLT Switching from the first transmission path to the second transmission path.
  • the various module functions of the above described devices may also be distributed across multiple devices, together providing the overall functionality of the device.
  • the second path establishment module function is provided by the operation and maintenance network management system
  • the function of the switching module and the failure notification receiving module is provided by the remote network node.
  • the embodiment of the present invention is applied to the PON access network shown in FIG. 2, which no longer establishes a path for each ONU, but for one or a group of PON ports of each OLT, respectively, through the remote network node. And establishing a transmission path between the first OLT, the remote network node, and the second OLT to transmit the service of the ONU, and monitoring the service fault, and accessing the first access optical path and the OLT of the first OLT.
  • the transmission path between the PON port or the OLT and the remote network node fails, the service can be switched to the corresponding backup path in time, thereby greatly reducing the complexity of configuring and managing the PON access network, and reducing the farness.
  • the performance requirements of the end network nodes improve the scalability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明适用于PON领域,提供了PON保护方法及装置。在第一OLT与远端网络节点之间建立第一传送路径,在第二OLT与远端网络节点之间建立第二传送路径;当发现第一OLT的光路发生故障时,将该光路对应的PON 口切换至第二OLT上相应的PON口,并将故障通告发送给所述远端网络节点,所述远端网络节点接收到故障通告后将该光路对应的PON口的数据流由第一传送路径切换至第二传送路径。本发明通过分别建立主备保护的传送路径来传送ONU的业务,当OLT的接入光路、OLT的PON口或者OLT与远端网络节点之间的传送路径出现故障时,业务能够及时地切换到相应的备份路径上,由此降低了网络配置和管理的复杂度。

Description

一种无源光网络 PON保护方法及装置 本申请要求于 2011 年 12 月 20 日提交中国专利局、 申请号为 CN 201110429051.2、 发明名称为 "PON保护方法及装置" 的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明属于无源光网络 ( assive optical network , PON )领域, 尤其涉及 一种 PON保护方法及装置。
背景技术
图 1示出了一种典型的具有高可靠性的 PON接入网络, 如图 1所示, 第 一光线路终端 (optical line terminal, OLT ) 11和作为备份的第二 OLT 12通 过上行网络(或者直接的物理链路)分别连接到远端网络节点 13 , 同时, 每 个分光器 14连接多个光网络单元(optical network unit, ONU ) 15 , 并双归连 接到第一 OLT 11和第二 OLT 12中互为保护的 PON口上, 且第一 OLT 11和 第二 OLT 12可连接多至数百个分光器 14,为多达数万个 ONU 15提供接入服 务, 实现有备份的业务保护。
在上述网络应用场景下, 一个 ONU通过分光器所连接的两个 OLT中, 只有第一 OLT对该 ONU来说正常工作, 第二 OLT的 PON口禁止向该 ONU 发送数据流。 当发现一个分光器与第一 OLT之间连接的光路出现故障时, 第 一 0LT和第二 0LT进行 P0N口倒换,即将第一 0LT上为该分光器提供光路 接入的 P0N口切换至第二 0LT上相对应的 P0N口,使得分光器到第二 0LT 之间的第二光路可用, 从而进一步使得该分光器上所有的 0NU 均通过第二 0LT收发数据流。
然而, 在第一 0LT和第二 0LT进行 P0N口倒换时, 远端网络节点却无 法感知到光路上的故障,使得该分光器上的 0NU所对应的下行数据流仍然会 由远端网络节点发送到第一 0LT上, 造成用户业务的中断。 对于上述问题, 现有的一种保护技术是在每个 0NU和远端网络节点之间分 别配置主、备两条路径, 并在主、备路径上均运行运营与维护(opera t ion and ma intenance , 0AM )来检测端对端的路径故障, 然而, 该方法需要在 0NU和远 端网络节点之间建立数万条主、 备路径, 且对每个 0NU都需要配置 0AM, 并在 远端网络节点上维护对应的 0AM和保护状态机, 配置和管理十分复杂。 发明内容
本发明实施例的目的在于提供一种 PON保护方法, 旨在解决现有的 PON 保护方法配置及管理复杂度高的问题。
本发明实施例是这样实现的, 一种 PON保护方法, 应用于 PON接入网 络中的远端网络节点, 所述方法包括:
与第一光线路终端 OLT建立第一传送路径, 用于传送所述第一 OLT上 的一个或一组 PON口的数据流, 与第二 0LT建立第二传送路径, 用于传送 所述第二 0LT上的一个或一组 P0N口的数据流, 所述第一传送路径和所述 第二传送路径互为主用、 备用传送路径;
当所述第一 0LT连接的光路发生故障时,在所述第一 0LT将所述光路对 应的 P0N口切换至所述第二 0LT上相应的 P0N口后, 接收所述第一 0LT 发送的故障通告, 将所述光路对应的 P0N口的数据流由所述第一传送路径切 换至所述第二传送路径。
本发明实施例的另一目的在于提供一种 P0N保护方法, 应用于 P0N接 入网络中的第一 0LT, 所述方法包括:
在所述第一 0LT与远端网络节点之间建立第一传送路径, 用于传送所述 第一 0LT上的一个或一组 P0N口的数据流,所述第一传送路径与在第二 0LT 与所述远端网络节点之间建立的第二传送路径互为主用、 备用传送路径; 当所述第一 0LT连接的光路发生故障时, 将所述光路对应的 P0N口切 换至所述第二 0LT上相应的 P0N口, 并将故障通告发送给所述远端网络节 点, 以使所述远端网络节点将所述光路对应的 P0N口的数据流由所述第一传 送路径切换至所述第二传送路径, 所述故障通告包含所述光路对应的 PON口 标识。
本发明实施例的另一目的在于提供一种 PON保护装置, 所述装置包括: 路径建立模块, 用于与第一 OLT建立第一传送路径, 传送所述第一 OLT 上的一个或一组 PON口的数据流, 与第二 OLT建立第二传送路径, 传送所 述第二 OLT上的一个或一组 P0N口的数据流;
故障通告接收模块, 用于当所述第一 OLT连接的光路发生故障时, 在所 述第一 OLT将所述光路对应的 PON口切换至所述第二 OLT上相应的 PON口 后, 接收所述第一 OLT发送的故障通告;
路径切换模块, 用于将所述光路对应的 PON口的数据流由所述第一传送 路径切换至所述第二传送路径。
本发明实施例的另一目的在于提供一种 PON保护装置, 所述装置包括: 路径建立模块, 用于在所述第一 OLT与远端网络节点之间建立第一传送 路径, 传送所述第一 OLT上的一个或一组 PON口的数据流, 所述第一传送 路径与在第二 OLT与所述远端网络节点之间建立的第二传送路径互为主用、 备用传送路径;
PON口切换模块, 用于当所述第一 OLT连接的光路发生故障时, 将所述 光路对应的 PON口切换至所述第二 OLT上相应的 PON口;
故障通告模块, 用于当所述光路发生故障时, 将故障通告发送给所述远 端网络节点, 所述故障通告包含所述光路对应的 PON口标识。
本发明实施例针对每个 0LT的一个或一组 P0N 口, 通过分别在远端网络 节点与第一 0LT、远端网络节点与第二 0LT之间建立主备保护的传送路径来传 送 0NU的业务, 并通过对业务故障进行监控, 当接入第一 0LT的接入光路、 0LT的 P0N口或者 0LT与远端网络节点之间的传送路径出现故障时,业务能够 及时地切换到相应的备份路径上, 由此大大降低了 P0N接入网络配置和管理 的复杂度, 降低了远端网络节点的性能要求, 提高了系统的可扩展性。 附图说明
图 1是现有技术提供的 PON网络结构示意图;
图 2是本发明实施例提供的 PON网络结构示意图;
图 3是本发明实施例提供的 PON保护方法的实现流程图; 图; 实现流程图;
图 6是 OLT上行网络为以太网网络的 PON保护方法的实现流程图; 图 7是 OLT上行网络为多协议标签交换 ( multi-protocol label switching, MPLS ) 网络的 PON保护方法的实现流程图;
图 8是本发明实施例提供的 PON保护装置结构示意图;
图 9是本发明另一实施例提供的 PON保护装置结构示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及 实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施 例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例的网络部署场景如图 2所示, 相比于现有技术, 其不再针 对每个 ONU来建立路径, 而是针对每个 OLT的一个或一组 PON口, 通过在 远端网络节点 21与第一 OLT 22之间建立第一传送路径 23 , 在远端网络节点 21与第二 OLT 24之间建立第二传送路径 25来传送其下属 ONU的数据流, 并对接入端口进行监控, 当发现接入第一 OLT 22的某条光路, 例如光路 26, 出现故障时, 第一 OLT 22在进行 PON口切换的同时, 将故障通告到远端网 络节点 21 , 故障通告中包含光路 26对应的 PON口标识, 从而使得远端网络 节点 21 能够将相应的数据流及时切换到备传送路径 25上。 进一步地, 对第 一传送路径 23进行监控, 当发现第一传送路径 23故障时, 第一 0LT 22对被 保护的一个或一组 P0N口进行切换, 而远端网络节点 21则将相应的数据流 切换到第二传送路径 25上。 由于 P0N网络中 P0N口的数量通常远远小于其 0NU的数量, 这种方法大大降低了 PON接入网络配置和管理的复杂度。
需要说明的是, 在本发明中, ONU还包括光网络终端 (optical network terminal, ONT ) 、 多用户单元 ( multi dwelling unit, MDU )或者多租户单元 ( multi tenant unit, MTU )等光终端形态的设备, 此外 , 远端网络节点可以为 交换机 /路由器、宽带远程接入服务器( broadband remote access server, BRAS ) , 宽带网络网关( broadband network gateway , BNG )或 IP边缘节点等网络节点, 在此均不作限定。
图 3示出了本发明实施例提供的 PON保护方法的实现流程, 结合图 2对 该方法详述^口下:
在步骤 S301 中, 在所述第一 OLT与远端网络节点之间建立第一传送路 径, 用于传送所述第一 0LT上的一个或一组 P0N口的数据流, 在所述第二 0LT与所述远端网络节点之间建立第二传送路径,用于传送所述第二 0LT上 的一个或一组 P0N口的数据流。
对于每条传送路径传送一个 P0N 口的数据流的情况, 需要在第一 0LT 与远端网络节点之间、第二 0LT与远端网络节点之间,针对第一 0LT与第二 0LT之间每个主备保护的 P0N口 (或者说是针对每个双归的分光器)分别建 立第一传送路径和第二传送路径, 用于分别作为主用、 备用传送路径来传送 该 P0N口的数据流。 该情况下, 本发明中只针对其单个 P0N口的保护机制 加以说明, 其它的 P0N口保护与此相同。
对于每条传送路径传送一组 P0N口的数据流的情况, 优选地, 可以是针 对第一 0LT上所有被保护的 P0N口和第二 0LT上对应的所有被保护的 P0N 口分别只配置一条传送路径, 即配置的主、 备两条传送路径与所有通过两个 0LT进行双归保护的主、备 P0N口分别对应, 此时每条路径用于传送的是每 个 0LT上所有 P0N口的数据流, 由此进一步提高网络的扩展性。 两种情况下, 在远端网络节点上, 主、 备两条传送路径都形成互为保护 的关联关系。 另外, 为了保证可靠性, 这两条传送路径最好是物理上互相隔 离的 (除了路径的两端点之外) 。
在步骤 S302中, 当所述第一 OLT连接的光路发生故障时, 将所述光路 对应的 PON口切换至所述第二 OLT上相应的 PON口, 并将故障通告发送给 所述远端网络节点, 所述故障通告包含所述光路对应的 PON口标识, 由所述 远端网络节点根据所述 PON口标识将相应 PON口对应的数据流由所述第一 传送路径切换至所述第二传送路径。 所述第一 OLT连接的光路, 是指连接某 个分光器与所述第一 OLT的光路, 如图 2中的光路 26。
在本步骤中, 当与第一 OLT连接的光路发生故障时,第一 OLT会及时地 感知到该故障, 并且将该光路对应的 PON口与第二 OLT的相应 PON口进行 切换, 即实现保护倒换。 该切换过程是 PON 的现有技术, 可以由第二 OLT 的 PON口进行检测或由第一、 二 OLT之间的协商来完成。 同时, 第一 OLT 通过相应的 OAM或控制信令将该故障通告发送给远端网络节点,使远端网络 节点在收到通告之后将该光路对应的 PON口的数据流由第一传送路径切换至 第二传送路径, 从而由第二 OLT来对相应的数据流进行收发。
在每条传送路径传送一个 PON口的数据流的情况下, 只需要通过 OAM 或者控制信令简单地将故障通告给远端网络节点。 而在一条传送路径传送一 组 PON口的数据流的情况下,还需要在故障通告中对连接至 OLT的不同 PON 口 (或不同光路)加以区分, 才能够使远端网络节点在 PON口故障或光路故 障发生时, 知晓需要进行切换的数据流。 在此, 可以根据实际的网络应用场 景, 通过 OAM或者控制信令中的扩展 TLV (类型长度变量)字段来携带虚 拟局域网 ( Virtual Local Area Network, VLAN )标识或者 PW标识等信息, 从而对不同 PON口对应的数据流进行区分, 以使远端网络节点可以根据相应 的 VLAN标识或者 PW标识来切换对应的数据流。
在本实施例中, 将故障通告远端网络节点时所釆用的控制信令由其具体 的网络应用场景来决定, 在后续的实施例中会给出两个具体的实例说明。 需要说明的是, 上述方法同样适用于当第一 OLT的某个 PON口出现故 障的情况, 其具体保护原理如上所述, 在此不再赘述。
在本实施例中, 当发现与第一 OLT连接的光路发生故障时, 远端网络节 点通过由第一 OLT发送来的 OAM或者控制信令, 即能够及时地收到故障通 知并根据该通告所包含的该光路对应的 PON口标识将其相应的数据流切换至 第二传送路径, 并由第二 OLT进行收发。 由于只需要针对每个 OLT的每个 PON口或者每组 PON口建立相应的第一传送路径和第二传送路径,不再需要 针对每个 ONU来建立路径, 使得对 PON接入网络配置和管理的复杂度大大 降低, 同时极大地降低了对远端网络节点的性能要求, 从而提高了网络的可 扩展性。
同时, 在本实施例中, 当传送路径出现故障时的 PON保护方法实现流程 下:
在步骤 S303中, 当发现所述第一传送路径出现故障时, 将所述第一 OLT 中与所述第二 OLT互为保护的一个或一组 PON口切换至所述第二 OLT上相 应的 PON口, 并由所述远端网络节点将上述一个或一组 PON口对应的数据 流由所述第一传送路径切换至所述第二传送路径。
传送路径的故障检测是, 在第一传送路径及第二传送路径上可以运行相 应的 OAM, 适用于以太网的以太网 OAM、 或者适用于 MPLS网络的 OAM; 或者, 在控制信令与传送数据同路径 (随路) 的时候使用控制信令, 例如随 路的接入节点控制协议(Access Node Control Protocol, ANCP ) , 随路的定向 标签分发协议(Targeted Label Distribution Protocol, T-LDP )等。 在第一传送 路径及第二传送路径上, 第一 0LT、 第二 OLT分别与远端网络节点在上行、 送路径进行故障监控。 通过上述措施, 每个运行中的 0LT均能够及时地感知 到其所连接的传送路径在下行方向上的故障, 远端网络节点能够及时地感知 到其所连接的传送路径在上行方向上的故障, 并且, 它们还能够通过相应的 反向 0AM或控制信令将该故障情况通知给对方。 因此, 当第一传送路径的故障出现在其下行链路时, 第一 OLT可以通过 OAM连续性检测直接感知到该故障, 而当故障出现在第一传送路径的上行链 路时, 第一 OLT可以通过接收远端网络节点发送的反向故障报告来感知到该 故障。 当检测到第一传送路径出现故障后,则对第一 OLT与第二 OLT上该传 送路径对应的 PON口进行切换, 即, 将第一 OLT上由第二 OLT主备保护的 一个或一组 PON口切换至第二 OLT的相应 PON口上。 PON口具体倒换方法 与步骤 S302中阐述的 PON口切换技术原理相同, 在此不再赘述。
同样地, 当第一传送路径的故障出现在其上行链路时, 远端网络节点可 以通过 OAM连续性检测直接感知到该故障,而当故障出现在第一传送路径的 下行链路时, 远端网络节点可以通过接收第一 OLT发送的反向故障通告来感 知到该故障。 当接收到反向故障通告后, 根据所述故障通告包含的光路对应 的 PON口标识, 远端网络节点将对应的数据流由第一传送路径切换至第二传 送路径。
因此, 当第一 OLT与远端网络节点之间的传送路径出现故障时, 无论故 障出现在传送路径的上行方向或是下行方向, 一个或一组 PON口对应的数据 流最终都会切换至经由第二 OLT进行收发, 并通过第二传送路径传送, 使得 出现故障的业务能够快速恢复。
图 4示出了本发明实施例提供的 PON保护方法的实现流程,本实施例中 , 流程的执行主体为 PON接入网络中的 OLT, 具体流程详述如下:
在步骤 S401 中, 在所述第一 OLT与远端网络节点之间建立第一传送路 径, 用于传送所述第一 OLT上的一个或一组 PON口的数据流, 所述第一传 送路径与在所述第二 OLT与所述远端网络节点之间建立的第二传送路径互为 主用、 备用传送路径。
在步骤 S402中, 当所述第一 OLT连接的光路发生故障时, 将所述光路 对应的 PON口切换至所述第二 OLT上相应的 PON口, 并将故障通告发送给 所述远端网络节点, 以使所述远端网络节点将所述光路对应的 PON口的数据 流由所述第一传送路径切换至所述第二传送路径, 所述故障通告包含所述光 路对应的 PON口标识。
在步骤 S403 中, 当所述第一传送路径出现故障时, 将与所述第二 OLT 互为保护的一个或一组 P0N口切换至所述第二 0LT上相应的 P0N口。
图 5示出了本发明实施例提供的 PON保护方法的实现流程,本实施例中, 流程的执行主体为 PON接入网络中的远端网络节点, 具体流程详述如下: 在步骤 S501 中, 与所述第一 OLT建立第一传送路径, 用于传送所述第 一 OLT上的一个或一组 P0N口的数据流, 与所述第二 OLT建立第二传送路 径, 用于传送所述第二 OLT上的一个或一组 PON口的数据流; 所述第一传 送路径和所述第二传送路径互为主用、 备用传送路径。
在步骤 S502中, 当所述第一 0LT连接的光路发生故障时, 在所述第一 0LT将所述光路对应的 P0N口切换至所述第二 0LT上相应的 P0N口后,接 收所述第一 0LT发送的故障通告, 将所述光路对应的 PON口的数据流由所 述第一传送路径切换至所述第二传送路径。
在步骤 S503 中, 当所述第一传送路径出现故障时, 将所述第一 0LT中 由所述第二 0LT保护的一个或一组 P0N口对应的数据流由所述第一传送路 径切换至所述第二传送路径。
上述图 4和图 5所示实施例是从不同角度对图 3的进一步补充, 对于其 中没有描述的特征, 可以参考对图 3的说明。
以下针对 0LT上行网络为以太网网络和 MPLS网络的不同情况分别给出 具体的实施例, 对上述图 3、 图 4、 以及图 5所述的 PON保护方法的实施方 式给出详细说明:
首先, 图 6示出了 OLT上行网络为以太网网络的 PON保护方法的实现 流程, 详述如下:
在步骤 S601 中, 针对每个 OLT上的每个或每组 PON口, 在第一 OLT 与远端网络节点之间、 第二 OLT与远端网络节点之间分别建立第一以太网转 发路径(Ethernet Forwarding Path, EFP )和第二 EFP, 用于传送一个或者一 组 P0N口连接的所有 0NU所对应的数据流, 所述第一 EEP和所述第二 EEP 互为主用、 备用传送路径。
在本实施例中, EFP是一条点对点的以太网转发路径, 可以由 VLAN、 端口或者 VLAN和端口的组合来标识。 优选地, EFP 可以通过虚拟局域网 ( Virtual Local Area Network, VLAN ) 来标识经过 OLT的特定 PON口的数 据流。
通常, OLT 的一个或一组 PON 口的不同业务(例如 Internet, IPTV和 VoIP等)的数据流在通过上行网络时可以通过一个或多个虚拟局域网( Virtual Local Area Network , VLAN )标识来区分, 而每个 VLAN可以对应地建立一 条 EFP (通过在分组首部额外增加一层 VLAN标签, 并针对这个增加的外层 VLAN来建立单一 EFP, 可以避免建立多条 EFP ) 。 因此, OLT中的一个或 一组 P0N口可以对应于一条或多条 EFP。
在步骤 S602中, 当发现第一 0LT连接的光路发生故障时, 将第一 0LT 上该光路所对应的 P0N口切换至第二 0LT上的相应 P0N口, 并通过 0AM 消息或者控制信令发送故障通告到远端网络节点, 所述故障通告包含该光路 对应的 P0N口标识。
其中, 0AM消息可以为 Y.1731的客户信号失效(Client Signal Fail, CSF ) 类型消息, 控制信令可以是接入节点控制协议( Access Node Control Protocol, ACNP ) , 或者其他的控制信令。
当一个 P0N口只对应于一条 EFP时, 则只要针对该 EFP发送相应的故 障通告。 当一个 P0N口对应于多条 EFP时 , 则可以针对每条 EFP发送相应 的故障通告。
在步骤 S603中, 当远端网络节点通过 0AM消息或者控制信令接收到故 障通告之后, 通过其报文首部或者是报文数据中的 VLAN 字段, 可以取得 VLAN信息, 然后根据该 VLAN信息将相应的 VLAN上的数据流由第一 EFP 切换至第二 EFP上, 由此实现了对接入业务的切换。 远端网络节点可以简单 地将对应于第一 EFP的第一端口设置为禁止发送相应 VLAN的数据流, 并将 对应于第二 EFP的第二端口设置为允许发送相应 VLAN的数据流。 当第一 EFP发生故障时, 在以太网应用场景下的路径保护方法如下: 在步骤 S604中, 当发现第一 EFP出现故障时, 将第一 OLT上对应于该 EFP的一个或一组 PON口切换至第二 0LT,并由远端网络节点将所述一个或 一组 P0N口对应的数据流由第一 EFP切换至第二 EFP。
在本步骤中, EFP的路径故障检测可以通过以太网 OAM或者 ANCP控 制信令来完成。其它具备类似保活 Keep alive机制的控制信令也可以用来实现 ESP路径故障检测。
例如 , 运行以太网 OAM时 , 分别为第一 EFP和第二 EFP配置 OAM维 护端点( Maintenance End Point, MEP ), 即, 在第一 OLT和远端网络节点上 分别配置第一 MEP和第二 MEP, 在第二 0LT和远端网络节点上分别配置第 三 MEP和第四 MEP,通过配置 0AM维护端点并在 MEP之间运行 Y.1731协 议的连续性检测,即可以对第一 EFP和第二 EFP进行端对端的路径故障监控。
或者, 运行 ANCP等控制信令并且该控制协议的报文在第一 EFP上传送 时,可以在第一 0LT和远端网络节点上分别配置会话端点,在第二 0LT和远 端网络节点上分别配置会话端点, 然后通过在会话端点之间的消息, 也可以 对第一 EFP和第二 EFP分别进行端对端的路径故障监控。
具体地, 当第一 EFP的下行方向链路发生故障时, 第一 0LT接收不到 0AM消息或者控制消息, 由此可以直接感知到该故障, 当第一 EFP的上行方 向链路发生故障时, 第一 0LT可以通过接收远端网络节点的反向故障通知从 而感知到该故障。 同样地, 当第一 EFP的上行方向链路发生故障时, 远端网 络节点接收不到 0AM消息或者控制消息, 由此可以直接感知到该故障, 当第 一 EFP的下行方向链路发生故障时,远端网络节点可以通过接收第一 0LT的 反向故障通知从而感知到该故障。
在一条传送路径传送一个 P0N口的数据流的情况下, 远端网络节点可以 简单地将对应于第一传送路径的第一端口设置为禁止发送相应 VLAN的数据 流, 并将对应于第二传送路径的第二端口设置为允许发送相应 VLAN的数据 流。 而在一条传送路径传送一组 P0N口的数据流的情况下, 优选地, 可以首 先为当前的所有 VLAN建立索引表, 当发现第一 EFP故障时, 远端网络节点 可以根据该索引表, 将对应于第一传送路径的第一端口设置为禁止发送该索 引表中相应 VLAN的数据流, 并将对应于第二传送路径的第二端口设置为允 许发送该索引表中相应的数据流。
本发明中, VLAN可以是各种类型的 VLAN, 包括 IEEE 802.1系列标准 及 BBF ( The Broadband Forum ) 中定义的各种 VLAN, 例如 C-VLAN , S-VLAN, QinQ VLAN, 以及 B- VLAN等。
图 7示出了 OLT上行网络为 MPLS网络的 PON保护方法的实现流程, 详述如下:
在步骤 S701 中, 针对每个 OLT上的每个或每组 PON口, 在第一 OLT 与远端网络节点之间、 第二 OLT 与远端网络节点之间分别建立第一伪线 ( Pseudo Wire, PW )和第二 PW, 用于传送一个或者一组 PON口连接的所有 ONU所对应的数据流; 所述第一 PW和所述 PW互为主用、 备用传送路径。
在本实施例中, 为保证可靠性, 建立的两条 PW最好承载在互不重叠的 标签交换路径(Label Switched Path, LSP )外层隧道上(除了路径的两个端 点) , 以免出现单点路径故障。
在步骤 S702中, 当发现第一 OLT连接的光路发生故障时, 将第一 OLT 上该光路所对应的 PON口切换至第二 OLT上的相应 PON口, 并通过双向转 发检测( bidirectional forwarding detection, BFD )消息或者 PW控制信令通知 远端网络节点。
通常情况下, BFD消息在 PW中随路传送,而 PW控制信令既可以在 PW 中随路传送(例如静态的 PW状态信令),也可以通过 IP进行路由(例如 T-LDP 下的 PW状态信令)。具体地,第一 0LT可以通过 BFD消息中的 "concatenated path down"诊断码, 或者通过 PW控制信令、 T-LDP的 "本地入口接收错误" 状态指示, 将该故障通告发送给远端网络节点。
在步骤 S703中, 远端网络节点在接收到上述 BFD消息或者 PW控制信 令之后, 根据故障通告中包含的 PW信息, 将相应的第一 PW上的数据流切 换到第二 PW上。
当第一 PW发生故障时, 在 MPLS网络应用场景下的保护方法如下: 在步骤 S704中,当发现第一 PW出现故障时,将第一 OLT上由第二 OLT 保护的一个或一组 PON口切换至第二 OLT,并由远端网络节点将所述一个或 一组 P0N口对应的数据流由第一 PW切换至第二 PW。
在本步骤中, PW的故障检测可以通过 PW OAM或者 T-LDP控制信令来 完成。 其它具备类似保活 Keep alive机制的控制信令, 如 ANCP也可以用来 实现 ESP路径故障检测。
例如 , 运行 OAM时 , 分别为第一 PW和第二 PW配置 OAM维护端点 , 具体地, 在第一 OLT和远端网络节点上分别配置第一 MEP和第二 MEP, 在 第二 OLT和远端网络节点上分别配置第三 MEP和第四 MEP,通过配置 OAM 维护端点并在 MEP之间运行 BFD,即可以对第一 PW和第二 PW进行端对端 的路径故障监控。
或者, 运行 T-LDP等 PW控制信令并且该控制协议的报文在第一传送路 径上传送时, 可以在第一 OLT和远端网络节点上分别配置会话端点, 在第二 OLT 和远端网络节点上分别配置会话端点, 然后通过在会话端点之间交换 hello消息, 也可以对第一 PW和第二 PW分别进行端对端的故障监控。
具体地,当第一 PW的下行方向链路发生故障时,第一 0LT接收不到 BFD 消息, 由此可以直接感知到该故障, 当第一 PW的上行方向链路发生故障时, 第一 0LT可以通过接收远端网络节点的 BFD的反向路径故障指示从而感知到 该故障。 同样地, 当第一 PW的上行方向链路发生故障时, 远端网络节点接 收不到 BFD消息, 由此可以直接感知到该故障, 当第一 PW的下行方向链路 发生故障时,远端网络节点可以通过接收第一 0LT的 BFD的反向路径故障指 示从而感知到该故障。
当发现第一 PW出现故障时, 在 0LT侧, 将第一 0LT上由第二 0LT保 护的一个或一组 P0N口切换至第二 0LT其相应的 P0N口; 在远端网络节点 侧, 将所述一个或一组 P0N口对应的数据流由第一 PW切换至第二 PW。 图 8示出了本发明实施例提供的 PON保护装置的结构, 为了便于说明, 仅示出了与本实施例相关的部分。
如图 8所示, 该装置基于如图 2所示的 PON接入网络, 可以运行于 PON 保护系统的 OLT设备中, 包括:
路径建立模块 81 ,用于在第一 OLT与远端网络节点之间建立第一传送路 径, 所述第一传送路径用于传送所述第一 OLT上的一个或一组 PON口的数 据流, 所述第一传送路径与在第二 OLT和所述远端网络节点之间建立的第二 传送路径互为主用、 备用传送路径。
PON口切换模块 82 , 用于当所述第一 OLT连接的光路发生故障时, 将 所述光路对应的 PON口切换至所述第二 OLT上相应的 PON口。
故障通告模块 83 , 用于当所述光路发生故障时, 将故障通告发送给所述 远端网络节点, 所述故障通告包含所述光路对应的 PON口标识。
作为本发明的一个实施例 , PON口切换模块 82还用于当所述第一传送路 径出现故障时, 将与所述第二 OLT互为保护的一个或一组 PON口切换至所 述第二 OLT上相应的 PON口。
另外, 上述装置的各个模块功能也可能分布式运行于多个设备上, 一起 提供所述装置的整体功能。 例如, 由运维网管系统来提供所述第一路径建立 模块功能, 由 OLT来提供所述 PON口切换模块和所述故障通告模块功能。
图 9示出了本发明实施例提供的 PON保护装置的结构, 为了便于说明, 仅示出了与本实施例相关的部分。
如图 9所示, 该装置基于如图 2所示的 PON接入网络, 可以运行于 PON 保护系统的远端网络节点中, 包括:
路径建立模块 91 , 用于与第一 OLT建立第一传送路径, 传送所述第一 OLT上的一个或一组 PON口的数据流, 与第二 OLT建立第二传送路径, 传 送所述第二 OLT上的一个或一组 PON口的数据流; 所述第一传送路径和所 述第二传送路径互为主用、 备用传送路径。
故障通告接收模块 92 , 用于接收所述第一 OLT发送的故障通告, 并获取 所述故障通告中包含的所述光路对应的 PON口标识。
切换模块 93 , 用于根据所述 PON口标识, 将相应的 PON口对应的数据 流由所述第一传送路径切换至所述第二传送路径。
作为本发明的一个实施例, 切换模块 93还用于当所述第一传送路径出现 故障时, 将所述第一 OLT中由所述第二 OLT保护的一个或一组 PON口对应 的数据流由所述第一传送路径切换至所述第二传送路径。
另外, 上述装置的各个模块功能也可能分布式运行于多个设备上, 一起 提供所述装置的整体功能。 例如, 由运维网管系统来提供所述第二路径建立 模块功能, 由远端网络节点来提供所述切换模块和所述故障通告接收模块功 能。
本发明实施例应用于如图 2 所示的 PON接入网络中, 其不再针对每个 ONU来建立路径, 而是针对每个 OLT的一个或一组 PON口, 通过分别在远 端网络节点与第一 OLT、远端网络节点与第二 OLT之间建立主备保护的传送 路径来传送 ONU的业务, 并通过对业务故障进行监控, 当接入第一 OLT的 第一接入光路、 OLT的 PON口或者 OLT与远端网络节点之间的传送路径出 现故障时, 业务能够及时地切换到相应的备份路径上, 由此大大降低了 PON 接入网络配置和管理的复杂度, 降低了远端网络节点的性能要求, 提高了系 统的可扩展性。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。

Claims

权 利 要 求
1、 一种无源光网络 PON保护方法, 其特征在于, 应用于 PON接入网络 中的远端网络节点, 所述方法包括:
与第一光线路终端 OLT建立第一传送路径, 用于传送所述第一 OLT上 的一个或一组 PON口的数据流, 与第二 OLT建立第二传送路径, 用于传送 所述第二 OLT上的一个或一组 PON口的数据流, 所述第一传送路径和所述 第二传送路径互为主用、 备用传送路径;
当所述第一 OLT连接的光路发生故障时, 在所述第一 OLT将所述光路 对应的 PON口切换至所述第二 OLT上相应的 PON口后,接收所述第一 OLT 发送的故障通告, 将所述光路对应的 PON口的数据流由所述第一传送路径切 换至所述第二传送路径。
2、 如权利要求 1所述的方法, 其特征在于, 当 OLT上行网络为以太网 网络时, 所述第一传送路径和所述第二传送路径均为以太网转发路径 EFP。
3、 如权利要求 2所述的方法, 其特征在于, 所述接收第一 OLT发送的 故障通告, 将所述光路对应的 PON口的数据流由所述第一传送路径切换至所 述第二传送路径的步骤包括:
获取所述故障通告, 所述故障通告中携带所述光路对应的 PON口所对应 的 VLAN信息;
根据所述 VLAN信息,将所述 VLAN相应的数据流由所述第一传送路径 切换至所述第二传送路径。
4、 如权利要求 3所述方法, 其特征在于, 所述将 VLAN相应的数据流由 所述第一传送路径切换至所述第二传送路径的步骤包括:
将对应于所述第一传送路径的第一端口设置为禁止发送所述 VLAN相应 的数据流, 并将对应于所述第二传送路径的第二端口设置为允许发送所述 VLAN相应的数据流。
5、 如权利要求 1所述的方法, 其特征在于, 当 OLT上行网络为多协议 标签交换 MPLS 网络时, 所述第一传送路径和所述第二传送路径均为伪线 PW。
6、 如权利要求 6所述的方法, 其特征在于, 所述接收第一 OLT发送的 故障通告, 将所述光路对应的 PON口的数据流由所述第一传送路径切换至所 述第二传送路径的步骤包括:
获取所述故障通告, 所述故障通告中携带 PW信息;
根据所述 PW信息, 将数据流由所述第一 PW切换至所述第二 PW。
7、如权利要求 1至 6任一项所述的方法,其特征在于, 所述方法还包括: 当所述第一传送路径出现故障时, 将所述一个或一组 PON口对应的数据 流由所述第一传送路径切换至所述第二传送路径。
8、 一种 PON保护方法, 其特征在于, 应用于 PON接入网络中的第一 OLT, 所述方法包括:
在所述第一 OLT与远端网络节点之间建立第一传送路径, 用于传送所述 第一 OLT上的一个或一组 PON口的数据流,所述第一传送路径与在第二 OLT 与所述远端网络节点之间建立的第二传送路径互为主用、 备用传送路径; 当所述第一 OLT连接的光路发生故障时, 将所述光路对应的 PON口切 换至所述第二 OLT上相应的 PON口, 并将故障通告发送给所述远端网络节 点, 以使所述远端网络节点将所述光路对应的 PON口的数据流由所述第一传 送路径切换至所述第二传送路径, 所述故障通告包含所述光路对应的 PON口 标识。
9、 如权利要求 8所述的方法, 其特征在于, 当 OLT上行网络为以太网 通过客户信号失效 CSF消息、 运营与维护 OAM消息或者接入节点控制 协议 ANCP消息将所述故障通告发送给所述远端网络节点。
10、 如权利要求 8所述的方法, 其特征在于, 当 OLT上行网络为 MPLS 通过双向转发检测 BFD消息、 PW控制信令或者定向标签分发协议 T-LDP 将所述故障通告发送给所述远端网络节点。
11、 如权利要求 8-10中任意一项所述的方法, 其特征在于, 还包括: 当所述第一传送路径出现故障时, 将与所述第二 OLT互为保护的一个或 一组 PON口切换至所述第二 OLT上的相应 PON口。
12、 一种 PON保护装置, 其特征在于, 所述装置包括:
路径建立模块, 用于与第一 OLT建立第一传送路径, 传送所述第一 OLT 上的一个或一组 PON口的数据流, 与第二 OLT建立第二传送路径, 传送所 述第二 OLT上的一个或一组 P0N口的数据流; 所述第一传送路径和所述第 二传送路径互为主用、 备用传送路径;
故障通告接收模块, 用于当所述第一 OLT连接的光路发生故障时, 在所 述第一 OLT将所述光路对应的 PON口切换至所述第二 OLT上相应的 PON口 后, 接收所述第一 OLT发送的故障通告;
路径切换模块, 用于将所述光路对应的 PON口的数据流由所述第一传送 路径切换至所述第二传送路径。
13、 如权利要求 12所述的装置, 其特征在于, 所述 PON保护装置还包 括所述路径切换模块还用于当所述第一传送路径出现故障时, 将所述一个或 一组 PON口对应的数据流由所述第一传送路径切换至所述第二传送路径。
14、 一种 PON保护装置, 其特征在于, 所述装置包括:
路径建立模块, 用于在所述第一 OLT与远端网络节点之间建立第一传送 路径, 传送所述第一 OLT上的一个或一组 PON口的数据流, 所述第一传送 路径与在第二 OLT与所述远端网络节点之间建立的第二传送路径互为主用、 备用传送路径;
PON口切换模块, 用于当所述第一 OLT连接的光路发生故障时, 将所述 光路对应的 PON口切换至所述第二 OLT上相应的 PON口;
故障通告模块, 用于当所述光路发生故障时, 将故障通告发送给所述远 端网络节点, 所述故障通告包含所述光路对应的 PON口标识。
15、 如权利要求 14所述的装置, 其特征在于, 所述 PON口切换模块还 用于当所述第一传送路径出现故障时, 将与所述第二 OLT互为保护的一个或 一组 P0N口切换至所述第二 0LT上相应的 P0N口。
PCT/CN2012/085509 2011-12-20 2012-11-29 一种无源光网络pon保护方法及装置 WO2013091471A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12860786.8A EP2787684B1 (en) 2011-12-20 2012-11-29 Method and device for protecting passive optical network (pon)
US14/310,884 US20140321845A1 (en) 2011-12-20 2014-06-20 Passive optical network pon protection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110429051.2 2011-12-20
CN201110429051.2A CN103178971B (zh) 2011-12-20 2011-12-20 Pon保护方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/310,884 Continuation US20140321845A1 (en) 2011-12-20 2014-06-20 Passive optical network pon protection method and apparatus

Publications (1)

Publication Number Publication Date
WO2013091471A1 true WO2013091471A1 (zh) 2013-06-27

Family

ID=48638603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085509 WO2013091471A1 (zh) 2011-12-20 2012-11-29 一种无源光网络pon保护方法及装置

Country Status (4)

Country Link
US (1) US20140321845A1 (zh)
EP (1) EP2787684B1 (zh)
CN (1) CN103178971B (zh)
WO (1) WO2013091471A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365742A1 (en) * 2014-03-05 2015-12-17 Huawei Technologies Co., Ltd. Link Switching Method, Device, and System
US20220385999A1 (en) * 2019-10-07 2022-12-01 British Telecommunications Public Limited Company Optical communications network and method for continuous service provision thereon

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067220B (zh) * 2012-12-19 2016-02-10 中兴通讯股份有限公司 参数更新情况下双向链路转发检测方法及装置
CN104025511A (zh) * 2012-12-20 2014-09-03 华为技术有限公司 一种无源光网络中的业务保护方法、光线路终端及系统
US9425893B1 (en) * 2013-07-31 2016-08-23 Juniper Networks, Inc. Methods and apparatus for implementing optical integrated routing with traffic protection
WO2015101763A1 (en) * 2013-12-31 2015-07-09 British Telecommunications Public Limited Company Operationally resilient optical network
CN103957142B (zh) * 2014-04-11 2017-04-12 烽火通信科技股份有限公司 一种实现pon系统三网合一的系统、方法及装置
CN104283711B (zh) * 2014-09-29 2018-01-26 中国联合网络通信集团有限公司 基于双向转发检测bfd的故障检测方法、节点及系统
CN104320180A (zh) * 2014-10-29 2015-01-28 国家电网公司 一种供电所信息通过双上联通道进行传输的方法及装置
US20160234582A1 (en) * 2015-02-10 2016-08-11 Daniel Ronald Method and system for redundancy in a passive optical network
CN104796287A (zh) * 2015-04-07 2015-07-22 国网上海市电力公司 一种epon环网故障检测方法
CN104954065B (zh) * 2015-05-22 2018-02-13 上海斐讯数据通信技术有限公司 一种无源光网络系统及通信方法
US9800960B2 (en) * 2015-06-23 2017-10-24 Alcatel-Lucent Usa Inc. Monitoring of IP multicast delivery over an optical network
WO2017144375A1 (en) * 2016-02-24 2017-08-31 British Telecommunications Public Limited Company An optical network node
US11165529B2 (en) 2016-03-29 2021-11-02 Nec Corporation Optical wavelength multiplex transmission system, optical wavelength multiplex apparatus, and standby system checking method
WO2017192894A1 (en) * 2016-05-04 2017-11-09 Adtran, Inc. Systems and methods for performing optical line terminal (olt) failover switches in optical networks
EP3579461B1 (en) * 2017-02-28 2022-01-26 Huawei Technologies Co., Ltd. Virtualization method for optical line terminal (olt) device, and related device
CN109698758B (zh) * 2017-10-20 2022-03-29 中国移动通信集团广东有限公司 一种网络资源信息核查方法及系统
CN110945852B (zh) * 2017-10-25 2021-10-26 华为技术有限公司 一种物理olt和虚拟olt建立连接的方法及装置
US10491318B1 (en) * 2018-09-24 2019-11-26 Ciena Corporation Systems and methods for coordinating layer 1 and layer 2 protection switching techniques for efficient layer 2 traffic recovery
CN111294269B (zh) * 2018-12-07 2021-09-21 中国移动通信集团广东有限公司 一种家庭宽带业务内外层vlan分配方法及装置
US10756813B1 (en) * 2019-05-03 2020-08-25 Cisco Technology, Inc. Broadband subscriber switchover in a ring network
EP3849205B1 (en) * 2020-01-10 2024-05-15 Nokia Solutions and Networks Oy An optical line terminal and a passive optical network
WO2021176696A1 (ja) * 2020-03-06 2021-09-10 日本電信電話株式会社 通信システム及びoltシステム
CN112291162B (zh) * 2020-10-02 2022-12-06 中盈优创资讯科技有限公司 一种业务动态资源分配方法
CN113472431B (zh) * 2021-06-25 2022-05-13 中航光电科技股份有限公司 一种具有双主架构的新型链式光通信网络
US20230188874A1 (en) * 2021-12-10 2023-06-15 Adtran, Inc. Rapid Network Redundancy Failover
CN117834391A (zh) * 2022-09-29 2024-04-05 中兴通讯股份有限公司 业务处理方法及装置、olt设备及存储介质
CN115643504B (zh) * 2022-10-12 2023-05-12 广州芯德通信科技股份有限公司 一种双归属pon保护自动同步配置的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968175A (zh) * 2005-11-03 2007-05-23 阿尔卡特公司 用于在无源光网络中实现快速的第2层保护的系统和方法
CN101340351A (zh) * 2008-08-19 2009-01-07 华为技术有限公司 一种vpls网络中的数据传输方法、装置和系统
CN101651495A (zh) * 2009-09-25 2010-02-17 中兴通讯股份有限公司 一种波分复用无源光网络主干光纤保护的方法及装置
CN101822070A (zh) * 2007-10-15 2010-09-01 英国电讯有限公司 通信网络

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859811B (zh) * 2006-03-15 2011-02-02 华为技术有限公司 一种无源光网络系统及其业务保护方法
JP4840236B2 (ja) * 2007-04-12 2011-12-21 株式会社日立製作所 ネットワークシステム及びノード装置
CN101325464A (zh) * 2007-06-15 2008-12-17 上海未来宽带技术及应用工程研究中心有限公司 光无源网络保护系统
CN101453415A (zh) * 2007-11-29 2009-06-10 华为技术有限公司 一种接入网络的保护方法、系统及设备
US20090154349A1 (en) * 2007-12-12 2009-06-18 Bernard Marc R Method and apparatus for managing traffic flow of forwarding entries through a virtual forwarding database of a network node
US7921326B2 (en) * 2007-12-12 2011-04-05 Alcatel Lucent Spatial monitoring-correlation mechanism and method for locating an origin of a problem with an IPTV network
EP2086136A1 (en) * 2008-01-29 2009-08-05 British Telecommunications Public Limited Company Optical communication
CN101729384B (zh) * 2008-10-15 2013-04-17 华为技术有限公司 一种标签交换方法、装置和系统
CN101729372B (zh) * 2008-10-29 2012-10-03 华为技术有限公司 光通信系统中报文传输的方法、系统和光线路终端
CN101505191B (zh) * 2009-04-01 2012-07-11 北京讯风光通信技术开发有限责任公司 一种以太网无源光网络的故障处理方法及系统
CN101888324B (zh) * 2009-05-15 2013-02-13 华为技术有限公司 无源光网络中的报文传输方法、装置和系统
CN101909222A (zh) * 2009-06-03 2010-12-08 华为技术有限公司 光线路终端设备和保护方法以及无源光网络系统
CN101998191A (zh) * 2009-08-27 2011-03-30 华为技术有限公司 汇聚节点联动切换方法及汇聚节点和系统
CN101710877B (zh) * 2009-12-04 2012-02-15 华为技术有限公司 基于伪线的业务流量处理方法、设备和系统
CN102136958B (zh) * 2010-01-22 2014-12-10 中兴通讯股份有限公司 一种接入节点的诊断方法及系统
CN101860461B (zh) * 2010-05-17 2015-10-21 中兴通讯股份有限公司 一种在汇聚链路中进行用户端口管理的方法及系统
US8842982B2 (en) * 2010-09-28 2014-09-23 British Telecommunications Public Limited Company Communications network
CN102006222B (zh) * 2010-11-16 2015-06-24 中兴通讯股份有限公司 一种业务链路切换方法及装置
CN102281155A (zh) * 2011-08-01 2011-12-14 中兴通讯股份有限公司 基于分组传送网ptn的伪线pw切换方法、系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968175A (zh) * 2005-11-03 2007-05-23 阿尔卡特公司 用于在无源光网络中实现快速的第2层保护的系统和方法
CN101822070A (zh) * 2007-10-15 2010-09-01 英国电讯有限公司 通信网络
CN101340351A (zh) * 2008-08-19 2009-01-07 华为技术有限公司 一种vpls网络中的数据传输方法、装置和系统
CN101651495A (zh) * 2009-09-25 2010-02-17 中兴通讯股份有限公司 一种波分复用无源光网络主干光纤保护的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365742A1 (en) * 2014-03-05 2015-12-17 Huawei Technologies Co., Ltd. Link Switching Method, Device, and System
US10129617B2 (en) * 2014-03-05 2018-11-13 Huawei Technologies Co., Ltd Link switching method, device, and system
US20220385999A1 (en) * 2019-10-07 2022-12-01 British Telecommunications Public Limited Company Optical communications network and method for continuous service provision thereon

Also Published As

Publication number Publication date
CN103178971B (zh) 2015-12-16
US20140321845A1 (en) 2014-10-30
EP2787684B1 (en) 2019-10-09
CN103178971A (zh) 2013-06-26
EP2787684A4 (en) 2015-01-28
EP2787684A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2013091471A1 (zh) 一种无源光网络pon保护方法及装置
US8259590B2 (en) Systems and methods for scalable and rapid Ethernet fault detection
US8521896B2 (en) Method and system for negotiating the bidirectional forwarding detection session discriminator of pseudo wire
JP4610621B2 (ja) ネットワークシステム
US20160041888A1 (en) Link state relay for physical layer emulation
EP2720407B1 (en) Fault processing method, aggregation node and optical network protection system
CN102282805B (zh) 一种业务保护方法及接入设备
US20130272114A1 (en) Pseudo wire switching method and device
WO2015131360A1 (zh) 一种链路切换方法、设备和系统
US8787147B2 (en) Ten gigabit Ethernet port protection systems and methods
WO2012103758A1 (zh) 网络中的二层业务处理方法和系统以及设备
WO2012024952A1 (zh) 一种基于点到多点业务的路径切换方法及系统
WO2009076862A1 (zh) 无源光网络的主备链路保护方法和环路系统
WO2006108352A1 (fr) Procede de gestion de panne et appareil permettant l'interfonctionnement entre ethernet et un reseau de commutation multiprotocole par etiquette
WO2014094268A1 (zh) 一种无源光网络中的业务保护方法、光线路终端及系统
US9300490B2 (en) Packet forwarding method and network device
WO2013189381A2 (zh) 无源光网络链路检测方法及装置
WO2012068894A1 (zh) 一种实现光线路终端异地容灾的系统和方法
WO2011020361A1 (zh) 一种光接入节点的管理方法及光接入节点
CN100446476C (zh) 一种网络故障检测结果互通的方法和装置
CN101815006A (zh) 一种穿越运营商网络的链路汇聚控制方法和系统
WO2011088692A1 (zh) 一种接入节点的诊断方法及系统
WO2012100571A1 (zh) 一种多条相同路径隧道集中管理的方法和系统
WO2014101185A1 (zh) 组播通道的性能检测方法、装置和系统
McFarland et al. Ethernet OAM: key enabler for carrier class metro ethernet services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012860786

Country of ref document: EP