WO2013089456A1 - 간단한 도파관 급전망과, 이의 평판형 도파관 안테나 - Google Patents
간단한 도파관 급전망과, 이의 평판형 도파관 안테나 Download PDFInfo
- Publication number
- WO2013089456A1 WO2013089456A1 PCT/KR2012/010846 KR2012010846W WO2013089456A1 WO 2013089456 A1 WO2013089456 A1 WO 2013089456A1 KR 2012010846 W KR2012010846 W KR 2012010846W WO 2013089456 A1 WO2013089456 A1 WO 2013089456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plane
- bend
- waveguide
- conduits
- feeder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/19—Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/02—Bends; Corners; Twists
- H01P1/022—Bends; Corners; Twists in waveguides of polygonal cross-section
- H01P1/025—Bends; Corners; Twists in waveguides of polygonal cross-section in the E-plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/02—Bends; Corners; Twists
- H01P1/022—Bends; Corners; Twists in waveguides of polygonal cross-section
- H01P1/027—Bends; Corners; Twists in waveguides of polygonal cross-section in the H-plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/19—Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
- H01P5/20—Magic-T junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0241—Waveguide horns radiating a circularly polarised wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
Definitions
- the present invention relates to a waveguide feeder network of a planar antenna and a planar waveguide antenna using the waveguide feeder network.
- Microwaves with electromagnetic waves in the range of lmm to lm of radio frequency including ultra-high frequency (UHF) of 0.1 to 1 meter (m), are extremely short wave and radar during World War II.
- UHF ultra-high frequency
- An antenna is a passive element that emits or receives electromagnetic waves. Although there are various types of antennas, parabolic antennas have been mainly used for communication and broadcast reception at microwave band frequencies. Parabola antenna is a reflector antenna with a high-direction reflector and is simple in structure, but it is used a lot. In addition, since the appearance is not good, the use of a flat panel antenna is increasing as a substitute.
- the flat panel antenna arranges the elements of small antennas, distributes and radiates the power from the feed port to each antenna element through the feeder network, and can be designed in various sizes according to the arrangement method of the antenna elements. Designs can be made in different numbers so that performance is asymmetrical and reduced in height.
- Antennas mainly used as flat antennas can be divided into microstrip and waveguide antennas based on a feed grid.
- a microstrip antenna is a type of antenna that implements a feed network and a plurality of arrayed antenna elements by microstrip.
- a waveguide type flat antenna uses a waveguide feeder network and feeds through the waveguide to the arranged slot radiating element or horn antenna elements. It is an antenna.
- a waveguide is a type of transmission line that transmits electromagnetic waves (hereinafter referred to as 'electromagnetic waves') of frequency in the microwave (MICROWAVE) band of 1 GHz or more, and is formed of an electrical conductor or metalized material such as iron or copper.
- the electromagnetic wave is to be transmitted inside.
- the waveguide has a kind of high-pass filter, and electromagnetic waves of longer wavelength than the cutoff wavelength are not transmitted.
- the waveguide is a hollow metal tube, and the fundamental mode of the wavelength transmitted in the tube is determined by the size of the waveguide. It has a constant cutoff wavelength.
- low-frequency signals are transmitted through two copper wires, which are conductors.
- high-frequency signals increase conductor losses due to surface effects of conductors and dielectric losses due to surrounding insulation.
- the waveguide transmits the electromagnetic wave while reflecting it between the walls of the internal wall, so there is little loss (attenuation). It is suitable for transmission lines for transmitting high-power microwaves by blocking noise from the outside and preventing unnecessary external radiation of the electromagnetic wave.
- the cross section has various shapes such as round, square, elliptical.
- the problem with the microstrip feed grid is that the gain of the antenna is relatively low due to line losses.
- the waveguide feed network has a lower transmission loss than the microstrip feed grid.
- the feed strip of the microstrip type is formed in a pattern on the plane of the circuit board, whereas the feed waveguide structure has a three-dimensional structure due to the nature of the waveguide.
- a single polarized antenna that receives only one of horizontal and vertical polarizations, or only one of left handed circular polarization (LHCP) or right handed circular polarization (RHCP)
- LHCP left handed circular polarization
- RHCP right handed circular polarization
- a waveguide pipe structure of two layers may be formed.
- E-Plane type structure includes E-plane T distributor and E-plane bend.
- H-Plane type structure includes H-Plane T distributor and H-Plane Bend.
- feeders consisting of waveguides, they are mostly constructed by a combination of these structures. And some of the complex shapes of these structures are used.
- E-plane bend refers to the bending structure in which the long axis of the waveguide remains in a plane parallel to the plane of the vector of the electric field as the waveguide is bent.
- H-Plane Bend refers to the bending structure in which the long axis of the waveguide remains in a plane parallel to the plane of the magnetic field vector as the waveguide is bent.
- An E-Plane T junction refers to a T junction in which all of the conduits of the waveguide have parallel planes and vectors of the electric field, including all axes in the direction in which the conduits extend.
- the H-plane T junction refers to a T junction in the orthogonal plane of the electric field and the plane including all axes in the direction in which the conduit extends in all the conduits of the waveguide.
- an E-plane T divider, an E-Plane Bend, an H-Plane T divider, and an H-Plane Bend structure are all used, but an E-Plane T divider and two E-Planes. Bend is characterized by one set, two H-Plane Bends and H-Plane T-distributors to form a number of pipelines.
- the layout of the entire feed grid is not formed mainly in one layer, but whenever the H-Plane assembly and the E-Plane assembly are repeated, that is, from the pipeline of the E-Plane Bend to the H-Plane T divider, or Whenever the pipe is connected from the E-Plane distributor to the H-Plane Bend from the E-Plane T distributor, vertically connected pipes are generated, and when the waveguide pipes are designed to be connected to the upper and lower layers repeatedly by this vertical pipe, In order to realize the shape as a mold, the vertical pipe part should be separated into three parts, and the shape of the part to which the gradient should be applied due to the mold characteristics is generated.
- the waveguide structure is generated so that the shape of the vertical structure is as small as possible.
- the first set is one E-Plane T divider consisting of two sub-pipes that meet at a constant angle with the common pipe, and the common pipe of the E-Plane T divider of the first set is It is connected to one port, and each set consists of a combination of E-Plane T-distributors consisting of two sub-pipes that meet at a certain angle with a common pipe, and a combination of E-Plane Bends that meet at a certain angle with the second pipe.
- the sum of the number of the E-Plane T dividers and the E-Plane Bends is at least two, and when n is an integer value between 2 and any integer N, the n-th set of E-Plane T dividers is n.
- the common conduits of and the first conduits of E-Plane Bend are connected to the sub conduits of the n-th set of E-Plane T distributors or the second conduits of E-Plane Bend.
- At least one of an E-plane bend and an H-plane bend between a common conduit of the first set of E-plane T dividers of the first set of the E-plane full-scale feed networks and the first port More than one may be included.
- the secondary pipes of the E-plane T dividers of the N + 2 th set and the second pipes of the E-plane bends respectively propose a structure connected to the second ports, respectively.
- the N + 2th rear end includes an N + 3rd set consisting of only E-Plane Bends, and the first conduit of each E-Plane Bend is an N + 2th E-Plane T distributor. And the second conduits of the N + 2th E-Plane Bends and the second conduits of the N + 3th E-Plane Bends, respectively, are proposed to be connected to the second ports.
- the second port is proposed to the waveguide feed network, characterized in that connected to each of the antenna elements.
- planar horn array antenna In addition, in the planar horn array antenna,
- the waveguide feeder network is a first waveguide feeder network, and an antenna element including a feeder portion and a horn portion composed of a partition portion, a first feed port, and a second feed port for converting linearly polarized waves into rotational polarization is arranged at regular intervals. And a plurality of antenna elements, wherein the first feed ports of the respective antenna elements are connected to the second ports of the first waveguide feed network, respectively.
- the remaining waveguide structures are H-Plane T distributor and H-Plane Bend.
- the feeder network consisting of the E-Plane T distributor and the E-Plane Bend is proposed.
- a feeder network may be disposed between the antenna element and the antenna element to make a thin flat antenna.
- 1 is a perspective view showing an E-Plane Bend.
- FIG. 2 is a perspective view showing an H-plane Bend.
- FIG. 3 is a perspective view showing an E-plane T distributor.
- FIG. 4 is a perspective view showing an H-Plane T distributor.
- 5 is a simplified schematic illustrating E-Plane Bend.
- FIG. 6 is a simplified diagram showing an H-plane Bend.
- FIG. 7 is a schematic diagram showing an E-plane T distributor.
- FIG. 8 is a simplified diagram showing an H-Plane T distributor.
- FIG-16 are perspective views of embodiments of a waveguide feeder network in accordance with the present invention.
- FIG. 17 is a perspective view of a waveguide feeder network to which a gradient is applied as an embodiment of the waveguide feeder network according to the present invention
- Fig. 18 is a perspective view showing a reversed-phase projection of a rotary polarization horn antenna element including a diaphragm polarizer.
- FIG. 19 is a perspective view of a rotating polarized horn antenna element including a diaphragm polarizer.
- FIG. 20 is a reversed top perspective view of a single rotary polarization horn array antenna including a diaphragm polarizer fed to a waveguide feeder network according to the present invention.
- FIG. 21 is a single rotation including a diaphragm polarizer fed to a waveguide feeder network according to the present invention.
- FIG. 22 is a perspective view of a single rotating polarized horn array antenna including a diaphragm polarizer fed to the waveguide feeder network according to the present invention.
- Figure 23 is an exploded perspective view of a single rotary polarization horn array antenna including a diaphragm polarizer fed to the waveguide feeder network in accordance with the present invention.
- FIG. 24 is a reverse phase exploded perspective view of a dual rotating polarization horn array antenna including a diaphragm polarizer further coupled to form a second waveguide feeder network mainly with an H-plane structure according to the present invention.
- FIG. 25 is an exploded perspective view of a dual rotary polarization horn array antenna including a diaphragm polarizer further coupled to form a second waveguide feeder network mainly with an H-plane structure according to the present invention.
- FIG. 26 is an inverted exploded perspective view of a dual rotary polarization horn array antenna including a diaphragm polarizer further coupled by forming a second waveguide feeder network mainly with an E-plane structure according to the present invention.
- FIG. 26 is an inverted exploded perspective view of a dual rotary polarization horn array antenna including a diaphragm polarizer further coupled by forming a second waveguide feeder network mainly with an E-plane structure according to the present invention.
- FIG. 27 is an exploded perspective view of a dual rotary polarization horn array antenna including a diaphragm polarizer further coupled to form a second waveguide feeder network mainly with an E-plane structure according to the present invention.
- Waveguides are structures in the form of pipes having a square (spherical), circular or elliptical or other shaped cross section.
- the waveguide may transmit or induce electromagnetic waves through the internal space.
- the cross section of the waveguide feeder network of the present invention may basically have a round shape in a square or corner.
- the structure of the feeder network of the present invention uses an E-plane bend, an E-plane T divider, and an H-plane bend structure.
- the direction of the electric field of the first conduit or the common conduit and the direction of the electric field vector in the second conduit or the sub conduit are different.
- the direction of the electric field vector in the first conduit or common conduit and the direction of the electric field vector in the second conduit or subconduit are the same. This feature makes it possible to distinguish between an E-Plane structure and an H-Plane structure.
- the propagation mode of electromagnetic waves in the waveguide indicates a pattern of electric and magnetic fields of the electromagnetic waves.
- the propagation mode of electromagnetic waves includes TE (Transverse Electric), TM, and TEM modes.
- the TE mode refers to a propagation mode in which the magnitude of the electric field vector in the propagation direction is 0, and the TM mode refers to a propagation mode in which the magnitude of the magnetic field vector in the propagation direction of the electromagnetic wave is 0.
- TM mode refers to a propagation mode in which the magnitude of the magnetic field vector in the propagation direction of the electromagnetic wave is 0.
- both the magnitude of the electric field vector and the magnitude of the magnetic field vector are zero with respect to the traveling direction of the electromagnetic wave. This is the case where electromagnetic waves propagate through free space or propagate through coaxial cables.
- mn When classifying TE mode, as in TE mn, the integers m and n are added after TE, where m is the number of half-wavelengths in the direction of the waveguide in the direction of the width (b), and n is the waveguide height (a). The number of half-waves in the direction is shown. In the rectangular waveguide used in the present invention Mode is used.
- Waveguides have the same properties as high-frequency filters, so that frequencies below a certain frequency (hereinafter referred to as cutoff frequency) cannot pass, depending on the dimensions of the cross-section of the waveguide.
- FIG. 1 shows an E-Plane Bend
- FIG. 2 shows an H-Plane Bend. Both the E-Plane Bend and the H-Plane Bend are essentially two perpendicular to each other, but in some cases they can be modified to have any angle.
- a is a dimension perpendicular to the direction of the electric field of the inner wall when viewing the cross section of the waveguide
- b is a dimension of the direction parallel to the direction of the electric field of the inner wall of the dimension of the cross section of the waveguide.
- a rectangular waveguide structure it is usually indicated in the drawings as having a relationship of a> b.
- FIG. 3 the directions of a and b are the same as in FIG. 1, where the long axis of the rectangular waveguide is a and the short axis is b.
- the wavelength ⁇ c of the cutoff frequency is calculated by the following equation. Therefore, electromagnetic waves having a wavelength greater than twice the length (a) of the long axis do not enter the waveguide and cannot pass.
- the wavelength in the waveguide is longer than the wavelength of the propagating electromagnetic wave in free space.
- the wavelength in free space The blocking wavelength of the waveguide Intraductal wavelength when May be expressed by the following equation.
- the operating frequency of the waveguide is determined by the length a of the long axis of the waveguide cross section.
- waveguide specifications consist of WR (abbreviation of Waveguide Rectangular) or WC (abbreviation of Waveguide Circular) letters and a certain number. Diameter is multiplied by 100 in inches.
- This frequency band includes frequencies for satellite broadcast reception or satellite communications.
- the E-Plane T distributor divides the phase of the electromagnetic waves by 180 degrees with respect to each other at the ports of the secondary pipe when the secondary pipes are symmetrical with each other.
- the H-Plane T distributor has the same phase of electromagnetic waves with respect to each other at the ports of the secondary pipe when the secondary pipes are symmetrical to each other.
- the feed grid is formed while the phases are summed or canceled in the T divider. If a misfeeding grid is constructed, the phases are canceled and electromagnetic waves cannot be delivered at maximum efficiency.
- the design of the waveguide inner space is designed and analyzed through antenna analysis programs such as MICROWAVE STUDIO and HFSS, and then the waveguide that surrounds the inner space is mainly used. .
- the internal structure of the waveguide can be expressed in terms of planes. This method represents only the plane perpendicular to the direction of the electric field in the shape of the internal space of the waveguide.
- the structure of the Bend and T distributor in this manner is as shown in Figs. Accordingly, the E-Plane Bend pipeline 31 of FIG. 1 is represented by being modified to 33 and 32 of FIG. 5. If one of pipeline 31 or pipeline 32 in FIG.
- Pipe lines 31 and 32 of FIG. 1 are represented by 33 and 34 of FIG. If one of pipeline 41 or pipeline 42 in FIG. 2 becomes the first pipeline of H-Plane Bend, the other pipeline becomes the second pipeline of H-Plane Bend.
- Pipe lines 41 and 42 in FIG. 2 are correspondingly indicated by 43 and 44 in FIG.
- the waveguide feeder network according to the present invention is used as a feeder of a flat array antenna, and includes a first port, a plurality of second ports arranged in one direction, an E-Plane general feeder, an H-Plane Bend feeder, It consists of the latter part of the E-Plane feeder.
- FIG. 9 illustrates a basic configuration of a feeder network according to the present invention as a simplified display method of a waveguide feeder network.
- E-Plane T divider is indicated as E-Plane Junction (EJ) and E-Plane Bend as EB (E-Plane Bend).
- H-Plane T Junction H-Plane T Junction
- H-Plane Bend H-Plane Bend
- the first set of waveguide feeder networks according to the present invention is defined as an E-Plane T distributor that meets for the first time starting from the first port.
- the E-plane T divider constituting the first set is indicated as EJ1.
- the second set is an E-Plane Bend or E-Plane T-distributor that connects to the subordinate routes of the first set, EJ1.
- EB2 and EJ2 become the second set.
- EJ3 and EB3 become the third set.
- the number of sets of E-Plane propagation grids according to the present invention is three, that is, EJ1, EJ2, and EB3, and the remaining sets are HB4 and EJ5, and the total number of sets is five.
- the first E-Plane T distributor (EJ1) which meets the first port 10 and the waveguide, becomes the first set of the feeder network, and the secondary lines of the first set (EJ1) are the two E-Plane Ts, the second set (EJ2). It is connected to the common pipe of the distributor.
- the third set (EB3) consists of four and all consist of E-Plane Bend only, and the first line of each of the third set (EB3) is connected to the secondary line of the E-Plane T distributor of the second set (EJ2). .
- the first set (EJ1) to the third set (EB3) make up the entire E-Plane feed network.
- the second conduits of the third set (EB3) are all connected to H-Plane Bend.
- These H-Plane Bends constitute the N + 1th set, that is, the fourth set (HB4), and are all composed of H-Plane Bends only.
- the first conduits of the N + 1th set of H-Plane pipelines are connected to the second conduit of the N-th set of E-Plane Bend, and the second conduits of H-Bend form the N + 2th set which forms the latter part of the E-Plane feeder. That is, it is connected to the common pipeline of the 5th set of E-Plane T distributor.
- Sub-pipes of the fifth set EJ5 E-Plane T distributors are connected to the second ports 20.
- the secondary aisles of the N + 2 th set EJ5 of FIG. 9 are divided in opposite directions and the second ports 20 are located, which may be applied when the port is provided with a side feed port of the antenna element. .
- two E-Plane Bends which are not included in the waveguide feeder network, are included between the first port and the first E-Plane T distributor. These two E-Plane Bends (EB) do not play any role other than the direction of propagation in the middle from the first port to the first set of E-Plane T-distributors. Do not. H-plane bend may be included between the first set E-plane T divider (EJ1) in the port (10).
- the N + 2th set EB7 is a feeder network composed of all E-Plane Bends.
- the characteristic of this feeder network is that the N + 2nd set (EB7) is all composed of E-Plane Bend, and the direction of the second pipe of EB7 is all pointing in the same direction.
- a feeder network structure that can be applied when the position of the feeder port of the antenna element is located on the side.
- E-plane bends are added to the N + 3th set in FIG. 11, so that the waveguide feeder network can be applied when the feed port of the antenna element is located below the antenna element.
- the number N of the set of the E-Plane propagation feeder is 3, and the difference from FIG. 11 is that the connection direction of the second conduits of the E-Plane Bends in the configuration of the N + 2th set is opposite to each other. .
- FIG. 13 may be applied to the case where the feeder port of the antenna element is located at the side of the antenna element, similar to FIGS. 9 and 11.
- the first port may be connected to the end of the first line of the E-Plane Bend or the common line of the E-Plane T distributor, as in the case of 10, and may be formed in the first line of the H-Plane Bend as in the case of 30. .
- FIG. 14 the number N of three sets of E-Plane propagation grids is 3, and the difference from FIG. 13 is that the N + 3 sets are added to each other. It is possible configuration.
- FIG. 13 may be applied to the case where the feeder port of the antenna element is located at the side of the antenna element, similar to FIGS. 9 and 11.
- the first set EJ1 from the E-Plane T divider to the seventh set EB7 is the E-Plane general feed network unit, and thus the number of sets of E-Plane general feed network units N. Is 7.
- the N + 1 th set are all H-Plane Bends and are denoted by HB8 in the figure.
- the N + 2th feeder consists of E-Plane Bends and E-Plane T-distributors and is labeled EJ9 or EB9.
- the N + 3 feeder is composed entirely of E-Plane Bends, all marked EB10.
- 16 is an antenna diagram designed according to the present invention, which shows a feeder structure applied when the number of second ports is 32. Referring to FIG.
- FIG. 17 illustrates an inner space of a waveguide through which radio waves pass in an actual implementation shape of the waveguide feeder network according to the present invention, and is an example of a feeder network for a planar waveguide antenna constructed using the WR75 waveguide standard.
- a line is formed on the side of the waveguide, which is called a parting surface, and is a line formed by applying a gradient to a rectangle by applying a gradient in consideration of a mold.
- the E-Plane front feeder is the case where the parting surface 41 is formed at the midpoint of the waveguide's long axis in the waveguide section, and the EB10 and the 11th set are the tenth set in the E-Plane feeder.
- the parting surface 42 is formed in the middle part of the uniaxial direction of the waveguide cross section between EB11.
- FIG. 18 is an inverted phase of the shape of an antenna element to be connected to a waveguide feeder designed in accordance with the present invention, shown in FIG.
- a horn 110 antenna including a septum polarizer 200 was used as the antenna element.
- the diaphragm polarizer 200 serves to convert linear polarization into rotational polarization.
- the diaphragm polarizer itself generates two rotational polarizations, that is, two feeders capable of generating left circular polarization (LHCP) and right circular polarization (RHCP), respectively.
- the ports 210 and 220 are provided.
- the diaphragm polarizer 200 has a shape in which the diaphragm divides the inside of the rectangular tube shape at a predetermined ratio, and one side of the diaphragm 130 reaches to an upper end of one side of the rectangular cylindrical shape, and the other side of the diaphragm is one side of the diaphragm 130. It is structured to touch the lower side opposite to.
- the feed ports 210 and 220 are formed on the left and right sides of the diaphragm 130, and when the electromagnetic waves travel in the horn direction from the feed port, rotation polarization is generated.
- two feed ports are positioned side by side under the antenna element, and in FIG. 20, only one port thereof is connected to the second port 20 of the waveguide feeder network structure according to the present invention.
- a single polarized antenna can be easily configured using only the first polarization port of the two feed ports of the antenna element.
- the waveguide feeder network is disposed between the antenna element and the antenna element, the thickness of the flat antenna is reduced.
- a single rotating polarized wave type flat waveguide antenna is used.
- the second polarized wave is used to form a waveguide feeder network, a dual rotating polarized wave type flat waveguide antenna is used.
- FIG. 20 illustrates a method of forming a waveguide when a mold and a mock-up are manufactured as a method of generating a waveguide feeder network.
- the waveguide is formed by separating the upper part of the waveguide into the upper panel 160 and the lower panel 170 by the upper and lower plates.
- the angle formed by the inner sidewall and the bottom of the waveguide in addition to the angle of the angle is not necessary to the angle of 90 degrees additionally 1 to 5 degrees draft angle 150 is required.
- 21 is a perspective view from below of an array antenna to which a waveguide feeder network designed in accordance with the present invention is connected; 21 shows a case of a single polarization antenna using only the first polarization port.
- the second feeding port 190 of the feeding port of the antenna element is a feeding port which is blocked or penetrated without being used and is not used.
- the second ports of the waveguide feeder network are not shown connected to the first feed ports of the antenna elements, but the port of the antenna element connected to the second conduit of the eleventh set (EB11) of the waveguide feeder network is the first feed port. .
- the line dividing the top and bottom of the pipe into two lines is because there is a parting line for mold manufacturing when the antenna is manufactured.
- the antenna body 100 may be operated as an antenna when not only metal such as brass, aluminum, iron, etc., but also made of metal coated plastic or conductive material.
- a method of plating plastic injection moldings is widely used.
- the planar array antenna including the waveguide feeder network is divided into several panels by using the middle part of the waveguide as the parting surface, and the feeder network and the antenna element structure are processed to produce the combined parts. This completes the antenna. Referring to FIG.
- the first panel 101 belongs to a mixed portion of the antenna elements, and is a space formed by attaching the second panel 102 and the third panel 103 to each other.
- An upper portion 121 and a lower portion 123 of the diaphragm polarizer portion of the antenna elements are formed, and the diaphragm 133 is disposed separately from the second panel and the third panel.
- the fourth panel includes reflectors 131 and 132 of EB10 and EB11, which are E-Plane Bends of the first E-Plane rear feeder, which belong to the first waveguide feeder.
- FIG. 24 and 25 show an example of configuring a dual rotary polarization antenna using a waveguide feeder network according to the present invention.
- FIG. 24 is a second waveguide feed network composed of only an H-Plane T distributor and an H-Plane Bend structure conventionally used for the second feed port 190, which is not used in the structure of the single-rotation polarization antenna shown in FIGS. It is a dual rotary polarization flat type antenna which is further connected.
- the waveguide feeder that is started at the third port 310 is sequentially connected to HB2, HJ3, HJ4, HB5, and finally to EB6 via the HJ1 and to the fourth ports 320.
- a second waveguide feeder network 300 is formed.
- the fourth ports of the second waveguide feeder network are connected to the second feed ports of the antenna elements, respectively, to form a dual rotating polarized flat plate antenna.
- FIG. 24 shows that the first waveguide feeder is coupled to the antenna elements and the second feeder feeder is further coupled.
- the first feed ports and the third feed port 310 of the second feed grid start from the first set (HJ1) H-Plane T distributor in the waveguide feed network configuration to the fifth set (HB5) H-Plane Bend. H-plane T distributors to H_plane Bends were used.
- the second feed port 190 of the antenna element is connected to the fourth port 320 of the second feed network 300 to form a dual rotary polarization flat waveguide antenna.
- FIG. 25 is a diagram illustrating a configuration in which the antenna element and the feeder network are connected in such a manner that the shape is reversed and then separated into various panels to enable actual manufacture.
- FIG. 25 is a diagram illustrating a configuration in which the antenna element and the feeder network are connected in such a manner that the shape is reversed and then separated into various panels to enable actual manufacture.
- only the last waveguide structure in the configuration of the second feeder network includes E-Plane Bend.
- the H-Plane T distributor or In addition to the H-Plane Bend two E-plane Bend structures may be inserted for each different layer.
- a fifth panel 405 is added in addition to the first panel 401 to the fourth panel 404, and the first panel includes a horn of the antenna element, a second panel, and a third panel.
- the first waveguide feeder and the diaphragm polarization portion of the antenna element, the fourth panel and the fifth panel includes a second waveguide feeder.
- a conduit for connecting the second feed port of the antenna element and the fourth port of the second feed network is indicated at 410 in the fourth panel.
- a feed part 510 including a reverse part of the structure of the waveguide antenna is formed by a horn part 110 of the antenna element, a diaphragm polarizer part of the antenna element, a first feed port 512, and a second feed port 511. It is shown separately.
- FIG. 27 is a coupling diagram of the antenna shown in FIG. 26 separately.
- the waveguide feeder is a feeder that can deliver microwave signals with less loss than other antennas.
- the waveguide feeder is manufactured in the form of a linearly polarized antenna designed to stack flat metalized plastic panels that use waveguides as feeders. Recently, it is widely used as an antenna for receiving general satellite broadcasting for military use, and the waveguide feeding network of the present invention can be used for various types of horn array flat antennas or slot array flat antennas.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
본 밭명은 평판 안테나의 도파관 급전망과 이 급전망을 이용한 평판형 안테나에 관한 것으로 혼 배열안테나 소자와 소자 사이의 공간에 배치되며, E-Plane T 분배기, E-Plane Bend, H-Plane Bend만으로 구성된 도파관 급전망이며, 제 1 포트, 다수의 제2 포트들, 다수의 E-Plane T분배기들 및 E-Plane Bend들로 이루어진 E-Plane 전반 급전망부와 H-Plane Bend들 만으로 구성된 H-Plane 급전망부 및 다수의 E-Plane T분배기들 및 E-Plane Bend들로 이루어진 후반 급전망부로 구성된 도파관 안테나 급전망 및 상기 급전망을 이용한 싱글 회전편파 평판 안테나 및 듀얼 회전편파 평판 안테나에 관한 것이다.
Description
본 발명은 평판형 안테나의 도파관 급전망 및 이 도파관 급전망을 이용한 평판형 도파관 안테나에 관한 것으로 무선 통신용 안테나 및 위성 방송 수신용 안테나 분야와 관련이 있다.
무선주파수의 파장이 lmm∼lm 범위인 전자파를 마이크로웨이브라하며.파장이 0.1내지 1미터(m) 인 유에이치에프(ULTRA HIGH FREQUENCY:UHF)를 포함하여 극초단파라하고 제2차 세계대전때 레이더(RADAR)등의 개발에 의하여 사용이 활성화 되었다
안테나는 전자기파를 방사 또는 수신하는 수동소자이다. 다양한 형태의 안테나가 있지만 마이크로웨이브 밴드의 주파수에서는 파라볼라 안테나가 주로 통신및 방송수신용으로 주로 많이 사용되어 왔다. 파라볼라 안테나는 고지향성 반사판을 지닌 반사판 안테나이며 구조가 간단하여 많이 사용되나 부피가 커 바람의 영향에 약하고 부피가 커 지지구조물이 많이 필요한 것이 단점이다. 또한 미관상 좋지 않기 때문에 그 대용으로 평판형 안테나의 사용이 증가하고 있다.
평판형 안테나는 작은 안테나의 소자를 배열하여 급전망을 통해 급전포트에서 각 안테나 소자로 전력을 분배하고 방사시키며, 안테나 소자의 배열방식에 따라 다양한 사이즈로 설계가 가능하고 안테나 소자의 가로 세로의 배열 개수을 달리하여 설계가 가능하기 때문에 비대칭이면서 높이를 낮추고도 성능을 유지할 수 있다. 평판형 안테나로 주로 사용되는 안테나로서는 급전망을 기준으로 볼 때 마이크로스트립방식과 도파관 방식 안테나로 나뉠 수 있다. 마이크로스트립 안테나는 급전망 및 배열된 다수의 안테나소자를 마이크로스트립으로 구현하는 안테나 종류이며 도파관 방식의 평판안테나는 도파관 급전망을 사용하며 배열된 슬롯방사 소자 또는 혼 안테나 소자들에 도파관을 통해 급전하는 안테나이다.
도파관은 1GHz이상의 마이크로파(MICROWAVE)대역의 주파수의 전자기파(이하 '전자파'라한다.) 에너지를 전송하는 전송선로의 일종이며, 철,구리 등의 전기 도체 또는 금속화된 재질로 형성된관(管)의 내부에 전자기파가 전송되도록 한 것이다. 도파관은 일종의 고역(高域)통과 필터 특성이 있으며 차단 파장 보다도 긴 파장의 전자파는 전달되지 않는다.도파관은 속이 빈 금속관이고,관내 전달되는 파장의 기본 모드(MODE)는 도파관의 크기에 의하여 결정되는 일정한 차단 파장을 가진다.
일반적으로 저주파 신호는 도체인 2 개의 구리선 등을 통하여 전송되지만,고주파가 되면 도체의 표면 효과로 인하여 도체 손실이 늘어나고 주위의 절연물 등에 의한 유전체 손실도 증가한다.
도파관은 전자파가 내부의 벽 사이룔 반사하면서 전송하므로 손실(감쇄)가 적고.외부로부터 잡음 유입을 차단하는 동시에 전자파의 불필요한 외부 방사를 차단하는 특성에 의하여 고출력의 마이크로파 등을 전송하는 전승선로에 적합하며, 단면은 원형,사각형,타원형 등의 다양한 모양을 한다
마이크로스트립 방식의 급전망의 문제점은 선로 손실로 인해 안테나의 게인이상대적으로 낮다는 것이다. 도파관 방식의 급전망은 마이크로스트립 방식의 급전망보다 낮은 전송손실을 갖는다.
마이크로스트립 방식의 급전망은 회로기판의 평면상에 패턴으로 형성되는 반면에, 급전망 도파관 구조는 도파관의 특성상 3차원 구조를 가지게 된다. 수신 또는 송신하는 편파의 개수에 따라 수평편파 와 수직편파 중 하나만 수신하거나, 좌원편파(Left Handed Circular Polarization, LHCP) 또는 우원편파(Right Handed Circular Polarization ,RHCP)중 하나만 수신하는 싱글편파 안테나와 수평과 수직편파를 모두 수신하는 듀얼 선형편파 및 좌원 및 우원편파를 모두 수신하는 듀얼원형편파가 있다. 듀얼편파 안테나가 되기 위해서는 2개의 층의 도파관 관로 구조가 형성되어야 가능하다.
도파관 급전망을 이루는 구조에는 크게 E-Plane 타입과 H-Plane 타입으로 나뉜다. E-Plane 형 구조에는 E-Plane T분배기와 E-Plane Bend가 있다. H-Plane 형 구조에는 H-Plane T분배기와 H-Plane Bend가 있다. 도파관으로 구성된 급전망의 경우 이들 구조들의 조합에 의해 대부분 구성된다. 그리고 이들 구조들의 복합적인 형상이 일부 사용되기도 한다.
E-Plane Bend는 도파관의 장축면이 도파관이 굽어지면서 계속 전기장의 벡터의 평면과 평행한 평면에 남아있는 꺽임구조를 가리킨다.
H-Plane Bend는 도파관의 장축면이 도파관이 굽어지면서 계속 자기장 벡터의 평면과 평행한 평면에 남아있는 꺽임구조를 가리킨다.
E-Plane T 분배기(junction)은 도파관의 모든 관로에 있어서, 관로가 연장되는 방향의 축을 모두 포함하는 평면과 전기장의 벡터가 평행한 T분배기(T junction)를 말한다.
H-Plane T 분배기(junction)은 도파관의 모든 관로에 있어서, 관로가 연장되는 방향의 축을 모두 포함하는 평면과 전기장의 벡터가 직교(orthogonal)한 경우의 T분배기(T junction)를 말한다.
근래에 싱글 편파 안테나 뿐 아니라 듀얼 편파 안테나에 있어서 도파관을 이용한 제품이 상용화되어 왔다. 이 제품들의 대부분은 E-Plane T형 분배기 및 E-Plane Bend 의 조합으로 구성된 평판형 배열 안테나의 급전망이 주로 사용 되었다. 예를 들면 미국특허(US 4,743,915)에서 근래에 많이 사용되는 4개의 혼 안테나 소자를 급전하는 구조에 대해 기술되어 있다. 이 방식은 도파관급전망이 모두 E-Plane T분배기와 E-Plane Bend 만으로 연결되어 있다. 선형편파 안테나에서 2개층 모두 E-Plane 도파관 방식이 적용된 예가 한국특허 10-0801030에 제시되어 있다. 이 방식의 제한사항은 선형편파 안테나의 경우에는 쉽게 적용이 가능하지만 연결하려고 하는 안테나소자의 급전부가 안테나소자의 하측에 위치해 있는 경우에는 적용이 어렵다. 격막편파기가 포함된 회전편파 안테나의 경우에는 좌원편파와 우원편파의 급전포트가 안테나 소자의 하측의 동일면에 위치해 있기 때문에 회전편파의 듀얼편파의 방식으로는 적합하지 못하다.
미국특허 US 6,563,398 B1 에 설명된 도파관급전망의 경우 E-plane T분배기, E-Plane Bend, H-Plane T분배기 , H-Plane Bend 구조가 모두 사용되나 E-Plane T분배기 와 2개의 E-Plane Bend 가 한 집합, 2개의 H-Plane Bend와 H-Plane T분배기가 한 집합를 이루어 다수의 관로를 형성하는 것이 특징이다. 이 급전망의 방식에 따라 전체적 급전망의 배치가 한 층에 주로 형성되는 되기 보다는 H-Plane 집합와 E-Plane 집합가 반복될 때마다 즉, E-Plane Bend의 관로에서 H-Plane T분배기로, 또는 E-Plane 분배기에서 E-Plane T분배기에서 H-Plane Bend 로 관로가 연결될 때마다 수직으로 연결되는 관로가 발생하며,이 수직 관로로 인해 도파관 관로가 상하층을 반복하여 연결되도록 설계하였을 때, 해당 형상을 금형으로 구현하려면 수직관로 부분은 3개로 분리되어 형성되어야 하며 또한 금형 특성상 구배가 적용되어야 하는 부분의 형상이 발생하여 금형 구조상 E-Plane Bend의 관로에서 H-Plane T분배기로, 또는 E-Plane 분배기에서 E-Plane T분배기에서 H-Plane Bend 로 관로가 연결되는 부분에서 제품 결합 설계 방식에 따라 손실이 발생할 가능성이 크다. 따라서 가급적 수직구조의 형상은 작은 수가 되도록 도파관의 구조가 생성되는 것이 유리하다.
종래 사용되는 E-Plane T분배기 및 E-Plane Bend만으로 구성된 도파관 급전망구조의 문제점인 안테나소자 하측으로의 급전이 어려운 구조인 것을 극복하고 또한 종래의 H-Plane 도파관 급전망 및 E-Plane 급전망의 혼합방식의 도파관급전망이 가진 문제점인 급전망의 형성층을 수직방향으로 반복 연결하여 발생할 수 있는 손실에 대해 H-Plane 구조의 사용을 최소화 하여 금형을 통해 대량 생산시 발생할 수 있는 급전망의 성능 손실을 최소화시키며, 효율적으로 안테나 소자에 급전되는 부위가 안테나소자의 측면 내지 하측에 급전이 가능한 구조를 제안하고자 한다.
상기와 같은 목적을 달성하기 위하여 안출한 본 발명은,
도파관 급전망에 있어서
a) 제 1 포트; b) 다수의 한 방향으로 배치된 제 2 포트들; c) 일정 정수인 N개의 집합으로 구성되며, 1번째 집합는 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 1개의 E-Plane T분배기이며, 1번째 집합의 E-Plane T분배기의 공통관로는 제 1포트와 연결되며, 나머지 각 집합은 공통 관로와 일정각으로 만나는 2개의 부관로로 이루어진 E-Plane T분배기들과 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 E-Plane Bend들의 조합으로 구성되며 상기 E-Plane T분배기들과 E-Plane Bend들의 수의 합은 적어도 2개 이상이며, 2부터 임의의 정수 N 사이의 임의의 정수값을 n이라고 할 때, n번째 집합의 E-Plane T분배기의 공통관로들과 E-Plane Bend의 첫째 관로들은 n-1 번째 집합의 E-Plane T분배기의 부관로들 또는 E-Plane Bend의 둘째 관로들와 연결되고, N번째 집합는 모두 E-Plane Bend만로 구성되며, n번째 집합의 E-Plane Bend의 둘째 관로의 방향이 모두 동일한 방향인 E-Plane 전반 급전망부; d) 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 H-Plane Bend로 이루어지며, E-Plane 전반 급전망부의 n번째 집합의 E-Plane Bend의 둘째 관로들과 H-Plane Bend 의 첫째관로들과 각각 연결되며, N+1번째 집합를 구성하는 H-Plane 급전망부; e) E-Plane T분배기들과 E-Plane Bend들의 조합으로 구성되며 E-Plane T분배기의 공통 관로들과 E-Plane Bend의 첫째 관로들이, 각각 H-Plane 급전망부의 H-Plane Bend의 둘째 관로들과 각각 연결되며, N+2 번째 집합을 구성하는 E-Plane 후반 급전망부;로 구성된 것을 특징으로 하는 도파관 급전망을 제시한다.
연결되는 안테나 소자들이 배치되는 배열에 있어서 상기 E-Plane 전반 급전망부의 제 1번째 집합의 E-Plane T분배기의 공통 관로와 상기 제 1 포트 사이에 E-Plane Bend 및 H-Plane Bend와 적어도 한 개 이상 포함될 수 있다.
상기 E-plane 후반 급전망부에 있어서, N+2 번째 집합의 각 E-Plane T분배기들의 부관로들 및 E-plane Bend들의 둘째 관로들은 각각 상기 제 2포트들과 각각 연결되는 구조를 제안한다.
상기 E-plane 후반 급전망부에 있어서, N+2번째 후단에 E-Plane Bend들로만 구성되는 N+3 번째 집합가 추가로 포함되며 각 E-Plane Bend들의 첫째 관로는 N+2번째 E-Plane T분배기들의 부관로들과 N+2 번째 E-Plane Bend들의 둘째 관로들에 각각 연결되며 N+3번째 E-Plane Bend들의 둘째 관로들은 상기 제 2포트들과 각각 연결되는 구조를 제안한다.
또한 상기 제 2 포트들은 각각 안테나 소자들과 연결되는 것을 특징으로 하는 도파관 급전망을 제안한다.
또한 평판형 혼 배열 안테나에 있어서,
상기 도파관 급전망을 제 1 도파관 급전망으로 하며, 선형편파를 회전편파로 변화시키는 격벽부, 제 1 급전 포트및 제 2 급전 포트로 이루어진 급전부 및 혼부로 구성되는 안테나 소자가 일정 간격으로 배열을 이루는 다수의 안테나 소자들;을 포함하며, 상기 각 안테나 소자들의 제 1 급전 포트들이 제 1 도파관 급전망의 제 2포트들과 각각 연결되는 것을 특징으로 하는 평판형 혼 배열 안테나를 제안한다.
상기 제 2 급전 포트에 제 2 도파관 급전망이 결합하며, 제 2 급전포트와 연결되는 마지막 집합의 도파관 구조가 E-plane Bend만으로 된 경우는 나머지 도파관 구조가 H-Plane T분배기와 H-Plane Bend로 구성된 급전망과 제 2 급전포트와 연결되는 마지막 집합의 도파관 구조가 H-plane Bend만으로 된 경우는 나머지 도파관 구조가 E-Plane T분배기와 E-Plane Bend로 구성된 급전망을 제안한다.
도파관의 구조가 종래 많이 사용되는 E-Plane T분배기, E-Plane Bend, H-Plane Bend 구조만을 사용하기 때문에 설계가 매우 쉽고 간단하며, 다양한 종류의 급전망으로 변형이 가능하며, 종래 보다 급전망이 상하로 연결되는 수가 적어 손실발생 가능성을 줄인 평판형 안테나의 개발이 가능하게 된다. 또한 본 발명에 따른 급전망을 이용하여 평판형 위성안테나를 설계시 급전망이 안테나 소자 와 안테나소자 사이에 배치되어 얇은 평판형 안테나를 만들수 있다. 또한 2개의 편파를 동시에 수신할 수 있는 도파관 급전망 및 안테나를 구성할 수 있다.
도 1은 E-Plane Bend를 나타내는 사시도.
도 2는 H-plane Bend를 나타내는 사시도.
도 3은 E-plane T분배기를 나태내는사시도.
도 4는 H-Plane T분배기를 나타내는 사시도.
도 5는 E-Plane Bend를 나태내는간략화 도식.
도 6는 H-plane Bend를 나타내는 간략화 도식.
도 7은 E-plane T분배기를 나태내는간략화 도식.
도 8는 H-Plane T분배기를 나타내는 간략화 도식.
도 9 ~ 도16는 본 발명에 따른 도파관 급전망의 실시예들의 사시도.
도 17은 본 발명에 따른 도파관 급전망의 실시예로서 구배가 적용되어 있는 도파관 급전망의 사시도.
도 18은 격막편파기가 포함된 회전편파 혼 안테나 소자의 역상 투영 사시도.
도 19는 격막편파기가 포함된 회전편파 혼 안테나 소자의 사시도.
도 20은 본 발명에 따른 도파관 급전망으로 급전되는 격막편파기가 포함된 싱글 회전편파 혼 배열안테나의 역상 하측 사시도이다.도 21은 본 발명에 따른 도파관 급전망으로 급전되는 격막편파기가 포함된 싱글 회전편파 혼 배열안테나의 역상 상측 사시도.
도 22는 본 발명에 따른 도파관 급전망으로 급전되는 격막편파기가 포함된 싱글 회전편파 혼 배열안테나의 사시도.
도 23은 본 발명에 따른 도파관 급전망으로 급전되는 격막 편파기가 포함된 싱글 회전편파 혼 배열안테나의 분해 사시도.
도 24는 본 발명에 따른 주로 H-plane 구조로 제 2 도파관 급전망이 형성되어 추가로 결합된 격막 편파기가 포함된 듀얼 회전편파 혼 배열안테나의 역상 분해 사시도.
도 25는 본 발명에 따른 주로 H-plane 구조로 제 2 도파관 급전망이 형성되어 추가로 결합된 격막 편파기가 포함된 듀얼 회전편파 혼 배열안테나의 분해 사시도.
도 26는 본 발명에 따른 주로 E-plane 구조로 제 2 도파관 급전망이 형성되어 추가로 결합된 격막 편파기가 포함된 듀얼 회전편파 혼 배열안테나의 역상 분해 사시도.
도 27는 본 발명에 따른 주로 E-plane 구조로 제 2 도파관 급전망이 형성되어 추가로 결합된 격막 편파기가 포함된 듀얼 회전편파 혼 배열안테나의 분해 사시도.
도파관은 사각형(구형), 원형 또는 타원형 또는 다른 형태의 단면을 지니는 파이프 형태의 구조물이다. 도파관은 내부 공간을 통해서 전자기파를 전달 또는 유도할 수 있다. 본 발명의 도파관 급전망의 단면은 기본적으로 사각형이나 모서리에 라운드형상이 들어갈 수 있다.
본 발명의 급전망의 구조는 연결방식에 있어서 E-Plane Bend와 E-plane T분배기, H-Plane Bend구조를 사용하고 있다.
E-Plane Bend 또는 E-Plane T분배기 구조에서 첫째 관로, 또는 공통관로의 전기장의 방향과, 둘째 관로 또는 부관로에서의 전기장 벡터의 방향이 서로 다르다. H-Plane Bend 또는 E-Plane T분배기 구조에서는 첫째 관로, 또는 공통관로의 전기장 벡터의 방향과 둘째 관로 또는 부관로에서의 전기장 벡터의 방향이 서로 같다. 이런 특징으로 E-Plane 구조와 H-Plane 구조를 구별할 수 있다.
도파관내의 전자기파의 전파모드는 전자기파의 전기장 및 자기장의 패턴을 가리킨다. 전자기파의 전파모드에는 TE(Transverse Electric), TM, TEM모드가 있다. TE모드는 전파의 진행방향의 전기장 벡터의 크기가 0 인 전파모드를 말하며, TM모드는 전자기파의 진행방향의 자기장 벡터의 크기가 0 인 전파모드를 말한다. TEM모드는 전자기파의 진행방향에 대해 전기장벡터의 크기와 자기장벡터의 크기가 모두 0인 경우이다. 이러한 경우는 전자기파가 자유공간을 진행하거나 동축케이블을 통해 전파되는 경우이다. TE모드를 표기할 때 분류할 때 TE mn과 같이 TE 뒤에 정수 m 과 n 이 붙는데, m은 도파관의 폭(b)방향으로의 방향측으로의 반파장의 수를 나타내며, n은 도파관의 높이(a)방향으로의 반파장의 수를 나타낸다. 본 발명에서 사용되는 구형도파관(rectangular waveguide)에서는 모드가 사용된다.
도파관은 고주파 필터와 같은 성질을 가지고 있어서 도파관의 단면의 치수에 따라 일정주파수(이하 차단주파수)이하의 주파수는 통과하지 못하는 특성이 있다.
도 1는 E-Plane Bend, 도 2는 H-Plane Bend 를 보여주고 있다. E-Plane Bend 나 H-Plane Bend 모두 2개의 관로가 기본적으로 서로 직각을 이루나 경우에 따라서는 임의의 각을 가지도록 변형될 수 있다. 도 1에서, a는 도파관의 단면을 볼 때,내벽의 전기장의 방향과 수직방향의 치수이며 b는 도파관의 단면의 치수중 내벽의 전기장의 방향과 평행한 방향의 치수이다. 구형도파관(rectangular waveguide) 구조에서는 보통 a > b 의 관계를 가지는 것으로 도면에 표시한다. 도 3에서도 a 와 b의 방향은 도 1과 동일하게 구형도파관(rectangular waveguide)의 장축이 a, 단축이 b 로 표시되어 있다.
구형도파관(Rectangular Waveguide)의 장축 a 의 치수에 따라 차단 주파수의 파장(λc)은 아래의 수식에 의해 계산된다. 따라서 장축의 길이(a)의 2배 이상의 파장의 전자기파는 도파관 내로 진입하지 못하여 통과하지 못하게 된다.
λc = 2 a
도파관은 도파관 단면의 장축의 길이 a 에 따라 도파관의 동작 주파수가 결정된다. EIA(Electronic Industry Association)에서 제정한 도파관 표기법에 따르면 도파관의 규격은 WR(Waveguide Rectangular의 약자)또는 WC(Waveguide Circular의 약자) 글자와 일정수치로 구성되며 뒤의 수치는 도파관의 가로길이 혹은 지름(Diameter)의 길이를 inch로 보고 그 수치에 100을 곱한 숫자이다. 예를 들면 WR75 는 a의 길이가 0.75 inch 즉 a = 19.05 mm 이며 이때의 동작주파수는 9.84 ~ 15 GHz 이다. 이 주파수 대역은 위성방송 수신용 또는 위성통신용 주파수가 포함된다.
도 3,4는 각각 E-Plane T분배기와 H-Plane T분배기이다. E-Plane T분배기는 부관로가 서로 대칭인 경우 부관로의 포트에서 서로에 대해 전자기파의 위상이 180도 차이가 난다. 반면에 H-Plane T분배기는 부관로가 서로 대칭일 때 부관로의 포트에서 서로에 대해 전자기파의 위상이 동일한 특징을 가지고 있다. 이렇게 사용되는 구조에 따라 T분배기에서 위상이 합해지기도 하고 상쇄되기도 하면서 급전망이 형성된다. 잘못 급전망을 구성하는 경우 위상이 상쇄되어 전자기파가 최대의 효율로 전달되지 못한다.
도파관 급전망을 설계할 때에는 도파관의 외형을 설계해서 설계하기 보다는 도파관의 내부 공간을 설계하고 MICROWAVE STUDIO, HFSS 와 같은 안테나 해석 프로그램을 통해 분석한 다음 이 내부 공간을 감싸는 도파관을 만드는 방식이 주로 사용된다. 도파관 급전망을 알아보기 쉽게 표현하기 위해 도파관 내부공간 구조를 면으로 표현할 수 있다. 이 방법은 도파관의 내부 공간 형상에서 전기장의 방향과 수직이 되는 면만을 표현하는 방법이다. 이 방식으로 Bend및 T분배기의 구조를 그리면 도5 ~ 도8과 같이 된다. 따라서 도 1의 E-Plane Bend 관로 31 은 도5의 33, 32는 34로 변형되어 표시된다. 도 1의 관로 31 또는 관로 32 둘 중 하나가 E-Plane Bend의 첫째 관로가 되면, 나머지 하나는 E-Plane Bend의 둘째 관로가 된다. 도 1의 관로 31, 32는 도 5의 33, 34로 표시된다. 도 2의 관로 41 또는 관로 42 둘 중의 하나가 H-Plane Bend의 첫째 관로가 되면, 나머지 하나의 관로가 H-Plane Bend의 둘째 관로가 된다. 도2의 관로 41, 42는 도6의 43, 44로 대응해서 표시된다. 도3의 관로 51,52,53은 도7의 54,55,56에 대응해서 표시되며, 도4의 61,62,63은 도8의 64,65,66으로 대응해서 표시된다. 도3의 51, 도4의 61은 공통 관로가 되며,나머지 52,53, 54,55, 62,63, 64,65은 E-Plane T분배기 또는 H-Plane T분배기의 부관로가 된다.
본 발명에 따른 도파관 급전망은 평판형 배열 안테나의 급전망으로 사용되며, 제 1 포트, 및 다수의 한 방향으로 배치된 제 2포트들, E-Plane 전반 급전망부, H-Plane Bend급전망부, E-Plane 후반 급전망부로 구성된다.
구체적 적용 사례를 보면, 도9 에서는 도파관 급전망의 간략 표시 방법으로, 본 발명에 따른 급전망의 기본 구성을 도시하였다. E-Plane T분배기는 EJ(E-Plane Junction), E-Plane Bend는 EB(E-Plane Bend)로 표시하였다. H-Plane T분배기(H-Plane T Junction)은 HJ, H-Plane Bend는 HB로 표기하였다. 도파관 급전망의 구조를 설명함에 있어서, 제 1 포트에서 시작하여 만나는 첫 E-Plane T분배기를 1번째 집합으로 정의하고 그 다음 연결되는 도파관 구조들은 2번째 집합으로 규정하고 이렇게 하여 N번째 집합까지 표시될 수 있다. 예를 들면 본 발명에 따른 도파관 급전망의 첫번째 집합의 경우는 제 1포트에서 시작해서 처음으로 만나는 E-Plane T분배기로 정의한다. 1번째 집합을 이루는 E-Plane T분배기를 EJ1으로 표기하였다. 두번째 집합은 첫번째 집합인 EJ1의 부관로들과 연결되는 E-Plane Bend 또는 E-Plane T분배기로 EB2, EJ2는 모두 2번째 집합이 된다. 이와 같은 방법으로 EJ3, EB3은 세번째 집합이 된다.
도9에 있어서 본 발명에 따른 E-Plane 전반 급전망부의 집합의 개수는 3개 즉, EJ1, EJ2, EB3 이며 나머지 집합은 HB4, EJ5 이며 총 집합의 개수는 5개이다. 제 1포트(10)와 도파관을 통해 만나는 첫번째 E-Plane T분배기(EJ1)가 급전망의 첫번째 집합이 되며 첫번째 집합(EJ1)의 부관로들은 2 번째 집합(EJ2)인 2개의 E-Plane T분배기의 공통관로와 연결된다. 3번째 집합(EB3)는 4개이며 모두 E-Plane Bend만으로 구성되어 있으며, 3번째 집합(EB3) 각각의 첫째 관로는 2번째 집합(EJ2)의 E-Plane T분배기의 부관로와 연결되어 있다. 첫번째 집합(EJ1)에서 3번째 집합(EB3)까지가 E-Plane 전반 급전망부를 구성한다. 3번째 집합(EB3)의 둘째 관로들은 모두 H-Plane Bend와 연결된다. 이 H-Plane Bend들이 N+1 번째 집합 즉 4번째 집합(HB4)을 구성하며 모두 H-Plane Bend 만으로 이루어져 있다. N+1번째 집합인 H-Plane 관로들의 첫째 관로들과 N번째 집합의 E-Plane Bend의 둘째 관로가 연결되며, H-Bend의 둘째 관로들은 E-Plane 후반 급전망부를 이루는 N+2번째 집합, 즉 5번째 집합인 E-Plane T분배기의 공통관로와 연결된다. 5번째 집합(EJ5)인 E-Plane T분배기들의 부관로들은 제 2포트들(20)와 연결된다. 도 9의 N+2번째 집합(EJ5)의 부관로들은 서로 반대 방향으로 나뉘고 제 2 포트들(20)이 위치해 있는데, 이것은 이 포트가 안테나 소자의 측면 급전포트가 형성되어 있는 경우에 적용될 수 있다.
도 10에서는 도9의 마지막 N+2번째 집합 즉, 5번째 집합(EJ5)의 부관로들이 제 2포트들과 바로 연결되는 대신, N+3번째 집합 즉 6번째 집합(EB6)인 E-Plane Bend의 첫째 관로와 5번째 집합(EJ5)의 부관로들이 연결되고 N+3번째 집합, 즉 6번째 집합을 이루는 E-Plane Bend들의 둘째 관로들이 제 2 포트들과 각각 연결된다. 도 10과 같이 마지막 N+3번째 집합인 E-Plane Bend가 포함된 경우에는 안테나 소자의 급전망이 안테나 소자의 하측에 위치해 있는 경우이다.
도 9와 도 10에서 공통으로 제 1포트와 제 1 번째 집합인 E-Plane T분배기 사이에 도파관 급전망의 집합에는 포함되어 있지 않은 E-Plane Bend가 2개 씩 포함되어 있다. 이 두개 E-Plane Bend들(EB)은 제 1 포트에서 1번째 집합인 E-Plane T분배기까지 중간에 전파의 방향 전환 이외에 다른 역할을 하지 않기 때문에 1개의 관로의 일부로 볼 수 있으므로 집합에 포함시키지 않는다. 제 1 포트(10)에서 1번째 집합인 E-plane T분배기(EJ1)사이에는 H-Plane Bend가 포함될 수 있다.
도 11에는 N+2번째 집합(EB7)이 모두 E-Plane Bend로 구성된 급전망이다. 이 급전망의 특징은 N+2번째 집합(EB7)이 모두E-Plane Bend로 구성되어 있으며, EB7 의 둘째 관로의 방향이 모두 동일한 방향으로 향하고 있다. 도 11의 경우에도 도 9의 경우와 같이 안테나 소자의 급전포트의 위치가 측면에 있는 경우에 적용될 수 있는 급전망 구조이다.
도 12에는 도 11에서 N+3번째 집합으로 E-Plane Bend들이 더해져 안테나소자의 급전포트가 안테나소자의 하측에 위치한 경우에 적용될 수 있는 도파관 급전망이다.
도 13에서는 E-Plane 전반 급전망부의 집합의 개수 N이 3이며, 도 11과 다른 점은 N+2번째 집합의 구성에서 E-Plane Bend들의 둘째 관로의 연결방향이 서로 반대가 되도록 된 구성이다.
도 13는 도 9, 도 11과 마찬가지로 안테나 소자의 급전부포트가 안테나 소자의 측면에 위치해 있는 경우 적용될 수 있다. 도3에서 처럼 제 1포트는 10의 경우 처럼 E-Plane Bend의 첫째 관로 또는 E-Plane T분배기의 공통관로의 끝단에 연결될 수 있고 30의 경우처럼 H-Plane Bend의 첫째 관로에 형성될 수도 있다.
도 14 에서는 E-Plane 전반 급전망부의 집합의 개수 N이 3이며, 도 13과 다른 점은 N+3번째 집합이 더하여 포함되어 의 구성에서 E-Plane Bend들의 둘째 관로의 연결방향이 서로 반대가 되도록 된 구성이다. 도 13는 도 9, 도 11과 마찬가지로 안테나 소자의 급전부포트가 안테나 소자의 측면에 위치해 있는 경우 적용될 수 있다.
도 15에서는 본 발명에 따른 급전망으로서 제 1 집합(EJ1)인 E-Plane T분배기에서 7번째 집합(EB7)까지가 E-Plane 전반 급전망부이며 따라서 E-Plane 전반 급전망부의 집합의 개수 N은 7이다. N+1번째 집합은 모두 H-Plane Bend들이며 도면에서 HB8 로 표시된다. E-Plane 후반 급전망부에서 N+2번째 급전망부는 E-Plane Bend들 및 E-Plane T분배기로 구성되며 EJ9 또는 EB9로 표시되어 있다. N+3번째 급전망부는 모두 E-Plane Bend들로만으로 구성되어 모두 EB10으로 표시되어 있다.
도 16은 본 발명에 따라 설계된 안테나 도면으로 제 2 포트들의 개수가 32개인 경우 적용된 급전망 구조를 나타낸 것이다.
도 17은 본 발명에 따라 도파관 급전망의 실제 구현 형상으로 전파가 통과하는 도파관의 내부 공간을 그린 것으로서, WR75 도파관 규격을 사용하여 구성한 평판형 도파관 안테나를 위한 급전망의 한 예이다. 도17을 보면, 도파관의 측면에 라인이 생성되어 있는데, 이것을 파팅면이라고 하며, 금형을 고려하여 구배를 적용하여 단면이 직사각형에 약간의 경사각이 적용되어 생긴 선이다. 따라서 금형으로 도파관 급전망이 구현되기 위해서는 도파관의 단면의 일 방향의 일정 위치에서, 대부분은 가운데 위치에, 도파관이 서로 상하로 대칭이 되도록 분리되고, 분리된 형상들에 구배가 적용되어야 한다.. 도 17의 경우에, E-Plane 전반 급전망부는 도파관 단면에서 도파관의 장축 방향의 중간 지점에서 파팅면(41)이 생긴 경우이며, E-Plane 후반 급전망부에서는 10번째 집합인 EB10 과 11번째 집합인 EB11사이에서 도파관 단면의 단축방향의 중간부분에서 파팅면(42)이 생긴 경우이다.
도 18은 도 17에서 보인, 본 발명에 따라 설계된 도파관 급전망부에 연결될 안테나 소자(Antenna Element) 형상의 역상이다. 안테나 소자로는 격막 편파기(Septum Polarizer, 200)가 포함된 혼(110) 안테나를 사용하였다. 격막 편파기(200)는 선형편파를 회전편파로 변환시켜주는 역할을 하며 격막 편파기 자체가 2개의 회전편파,즉 좌원편파(LHCP) 와 우원편파(RHCP)를 각각 생성시킬 수 있는 2개의 급전 포트(210, 220)가 구비된 구조를 가지고 있다. 격막 편파기(200)는 사각통 형상 내부를 일정 비율로 격막이 가르는 형상을 가지며 격막(130)의 일측은 사각 통형상의 일측 상단에 까지 닿으며 격막의 다른 한 측은 상기 격막(130)의 일측의 반대측 하측면에 닿는 구조로 되어 있다. 급전포트(210, 220)는 격막(130)의 좌우측에 형성되며 이 급전포트에서 혼 방향으로 전자기파가 진행하면 회전편파가 생성된다. 격막 편파기를 가진 혼 안테나의 경우 급전 포트는 안테나 소자의 하측에 2개가 나란히 위치해 있고 도20 에서는 그 중 한 개의 포트에만 본 발명에 따른 도파관 급전망 구조의 제 2포트(20)가 연결된다.
도 18의 안테나 소자의 실제 형상은 도 19에서 볼 수 있다.
도20 내지 도23은 본 발명에 따른 도파관 급전망을 이용하는 경우 안테나소자의 2개의 급전 포트중 제 1 편파 포트만 사용하여 쉽게 싱글편파 안테나를 구성할 수 있다. 이런 경우에 안테나 소자와 안테나 소자 사이에 도파관 급전망이 배치되기 때문에 평판형 안테나의 두께가 얇게 되는 효과가 있다. 제 1 편파 포트만을 사용하여 안테나를 구성하는 경우는 싱글 회전편파 평판형 도파관 안테나가 되는 것이며, 제 2편파까지 모두 사용하여 도파관 급전망을 형성하는 경우에는 듀얼 회전편파 평판형 도파관 안테나가 되는 것이다.
도 20 은 도파관 급전망을 생성시키는 방법으로 금형 및 목업제작을 하는 경우 도파관을 형성하는 방법을 보이고 있다. 도파관은 상하 판으로 도파관의 중심부위를 상측 패널(160)과 하측 패널(170)로 분리하여 형성시킨다. 이때 금형을 제작하는 경우에는, 금형의 성질상, 도파관의 내부 측벽과 바닥이 이루는 각도가 90도 직각이 아닌 추가적으로 1~5도의 구배각(150)이 필요하게 된다.
도 21은 본 발명에 따라 설계된 도파관 급전망이 연결된 배열 안테나의 하측에서의 사시도이다. 도21 에서는 제 1 편파 포트만을 사용하는 싱글편파 안테나의 경우를 보이고 있다. 안테나 소자의 급전 포트중 제 2 급전포트(190)는 사용하지 않고 막히게 두거나 관통되며 사용하지 않는 급전 포트이다. 도 21에서는 도파관 급전망의 제 2 포트들이 안테나 소자들의 제 1 급전포트들과 연결되어 보이지 않으나, 도파관 급전망의 11번째 집합(EB11)의 둘째 관로와 연결된 안테나 소자의 포트가 제 1 급전포트이다. 관로 상하를 둘로 나누는 라인이 보이는 것은 안테나를 제조할 때 금형제조를 위한 파팅 라인이 있기 때문이며, 금형을 설계하기 위한 도면이기 때문에 구배가 적용된 형상이다.
도 22의 형상 데이타를 사용하여 그대로 HFSS 또는 MWS와 같은 안테나 해석 프로그램을 통해서 쉽게 안테나의 성능을 검증해 볼 수 있다. 안테나 몸체(100)는 황동,알루미늄,철등의 금속뿐 아니라, 금속코팅이 된 플라스틱 또는 전도성 물질이 입혀진 구조물 등으로 되어 있는 경우 안테나로서 동작 가능하다. 대량 양산을 하는 제품을 만드는 경우에는 플라스틱 사출물에 도금을 하는 방식이 많이 사용되고 있다. 도 22의 도면대로는 내부에 3차원 형상들이 다수 포함되어 있기 때문에 직접적인 제조는 제조가 불가능하다. 따라서 도23과 같이 도파관 급전망이 포함된 평판형 배열안테나는 도파관의 중간부위를 파팅면으로 해서 몇개의 패널로 분해해서 급전망과 안테나 소자 구조를 가공하여 생성시킨 후에 각각 생성된 부분을 결합시켜 안테나를 완성하게 된다. 도 23을 보면 싱글 회전편파 평판형 안테나를 구성하기 위해 4개의 패널로 분리된 것이다. 제 1 패널(101) 내지 제 4패널(104)까지로 구성된다.제 1패널(101)은 안테나 소자들의 혼부에 속하며, 제 2 패널(102)과 제 3 패널(103)이 붙어서 생성되는 공간에 안테나 소자들의 격막 편파기부의 상부(121) 및 하부(123)을 이루고, 격막(133)은 제 2 패널과 제 3 패널에 분리되어 배치되었다. 제 4 패널은 제 1 도파관 급전망에 속한 제 1 E-Plane 후반 급전망부의 E-Plane Bend인 EB10, EB11의 반사판(131,132)이 포함되어 있다.
도 24와 도25는 본 발명에 따른 도파관 급전망을 이용하여 듀얼 회전편파 안테나를 구성하는 예를 보인 것이다. 도 24는 도 20 내지 23에서 보인 싱글 회전 편파 안테나의 구조에서 사용하지 않았던 제 2 급전 포트(190)에 종래에 사용되어 온 H-Plane T분배기 및 H-Plane Bend구조만으로 구성된 제 2 도파관 급전망이 추가로 연결되어 구성되는 듀얼 회전편파 평판형 안테나이다. 하층 도파관 급전망은 제 3 포트(310)에서 시작된 도파관 급전망이 차례대로 HJ1을 거쳐 HB2, HJ3, HJ4, HB5, 마지막으로 EB6 까지 연결되고 제 4 포트들(320)까지 연결되는 도파관 급전망이 제 2 도파관 급전망(300)을 형성한다. 제 2 도파관 급전망의 제 4 포트들은 안테나 소자들의 제 2 급전포트들과 각각 연결되어 듀얼 회전편파 평판형 안테나가 구성된다.
도 24에서는 제 1 도파관 급전망은 안테나 소자들과 결합되어 있고 제 2 급전망이 추가로 결합하는 것을 보이고 있다. 제 1급전 포트들과 제 2급전망의 제 3 포트(310)는 도파관 급전망의 구성에서 첫번째 집합(HJ1)인 H-Plane T분배기에서 시작하여 다섯 번째 집합(HB5)인 H-Plane Bend까지 H-plane T분배기 내지 H_plane Bend가 사용되었다. 안테나 소자의 제 2 급전포트(190)는 제 2 급전망(300)의 제 4 포트(320)와 연결되어 듀얼 회전편파 평판형 도파관 안테나가 형성된다. 도 25는 이렇게 형성된 안테나 소자와 급전망이 연결된 후 형상을 역상시킨 후 실제 제조가 가능하도록 여러 패널로 분리한 형상도이다. 도 24에서는 제 2 급전망의 구성에서 마지막 도파관 구조만 E-Plane Bend가 포함되었으나, 종종 도파관의 설계시에 도파관 급전망이 동일한 층에 형성이 곤란한 경우에는 층을 달리하여 H-Plane T분배기나 H-Plane Bend 이외에 층을 달리 하는 경우마다 2개의 E-plane Bend 구조가 삽입되기도 한다.
도 25에는 도 23의 구성에서는 제 1 패널(401) 내지 제 4 패널(404)외에 추가로 제 5 패널(405)이 추가되며, 제 1 패널은 안테나 소자의 혼부, 제 2 패널과 제 3패널은 제 1 도파관 급전망과 안테나 소자의 격막 편파부, 제 4 패널과 제 5패널은 제 2 도파관 급전망을 포함하고 있다. 안테나 소자의 제 2 급전포트와 제 2 급전망의 제 4 포트를 연결하기 위한 관로가 제 4 패널에서 410 로 표기되어 있다.
도 26에서는 도파관 안테나의 구조의 역상을 각각 부위별로 안테나 소자의 혼부(110), 안테나 소자의 격막 편파기부 및 제 1 급전 포트(512), 제 2 급전 포트(511)로 이루어진 급전부(510) 분리하여 보이고 있다.
도 27은 도 26에 분리되어 보인 안테나의 결합도이다.
이상에서 본 발명은 기재된 구체 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허 청구범위에 속함은 당연한 것이다.
도파관 급전망은 다른 안테나에 비해 손실이 적게 마이크로웨이브 신호를 전달할 수 있는 급전망으로 도파관을 급전망으로 사용하는 평판형 금속화된 플라스틱 패널이 적층 되도록 설계된 선형편파 안테나 형태로 제조되고 있으며, 과거에는 군용으로 최근에는 일반 위성방송 수신용 안테나로서 많이 사용되고 있고, 본 발명의 도파관 급전망은 다양한 형태의 혼 배열 평판형 안테나 또는 슬롯 배열 평판형 안테나 등에 사용될 수 있다.
Claims (11)
- 도파관 급전망에 있어서,
a) 제 1 포트;
b) 다수의 한 방향으로 배치된 제 2 포트들;
c) 일정 정수인 N개의 집합로 구성되며, 1번째 집합은 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 1개의 E-Plane T분배기이며 1번째 집합의 E-Plane T분배기의 공통관로는 제 1포트와 연결되며, 나머지 각 집합은 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 E-Plane T분배기들과 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 E-Plane Bend들의 조합으로 구성되며 상기 E-Plane T분배기들과 E-Plane Bend들의 수의 합은 적어도 2개 이상이며,
2부터 임의의 정수 N 사이의 임의의 정수값을 n이라고 할 때, n번째 집합의 E-Plane T분배기의 공통관로들과 E-Plane Bend의 첫째 관로들은 n-1 번째 집합의 E-Plane T분배기의 부관로들 또는 E-Plane Bend의 둘째 관로들와 연결되고, N번째 집합는 모두 E-Plane Bend만로 구성되며, N번째 집합의 E-Plane Bend의 둘째 관로의 방향이 모두 동일한 방향인 E-Plane 전반 급전망부;
d) 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 H-Plane Bend로 이루어지며, E-Plane 전반 급전망부의 N번째 집합의 E-Plane Bend의 둘째 관로들과 상기 H-Plane Bend 의 첫째 관로들과 각각 연결되며, 상기 각 H-Plane Bend의 둘째 관로들의 방향이 모두 동일한 방향인, N+1번째 집합를 구성하는 H-Plane 급전망부;
e) E-Plane T분배기들과 E-Plane Bend들의 조합으로 구성되며 N+2 번째 집합를 구성하는, E-Plane T분배기의 공통 관로들과 E-Plane Bend의 첫째 관로들이, 각각 H-Plane 급전망부의 H-Plane Bend의 둘째 관로들과 각각 연결되는, E-Plane 후반 급전망부;를 포함하는 것을 특징으로 하는 도파관 급전망. - 제 1항에 있어서, 상기 E-Plane 전반 급전망부의 제 1번째 집합의 E-Plane T분배기의 공통관로와 상기 제 1 포트 사이에 다수의 E-Plane Bend , H-Plane Bend가 직렬로 배치되며, 이들의 수가적어도 한개 이상인 것을 특징으로 하는 도파관 급전망.
- 제 1항에 있어서, 상기 E-plane 후반 급전망부에 있어서, N+2 번째 집합의 각 E-Plane T분배기들의 부관로들 및 E-plane Bend들의 둘째 관로들은 각각 상기 제 2포트들과 각각 연결되는 것을 특징으로 하는 도파관 급전망.
- 상기 제 3항에 있어서, 상기 제 2 포트들은 각각 안테나 소자들과 연결되는 것을 특징으로 하는 도파관 급전망
- 제 1항에 있어서, 상기 E-plane 후반 급전망부에 있어서, E-Plane Bend들로만 구성되는 N+3 번째 집합이 추가로 포함되며, N+3번째 집합의 각 E-Plane Bend들의 첫째 관로는 N+2번째 E-Plane T분배기들의 부관로들과 N+2 번째 E-Plane Bend들의 둘째 관로들에 각각 연결되며 N+3번째 E-Plane Bend들의 둘째 관로들은 상기 제 2포트들과 각각 연결되는 것을 특징으로 하는 도파관 급전망.
- 상기 제 6항에 있어서, 상기 제 2 포트들은 각각 안테나 소자들과 연결되는 것을 특징으로 하는 도파관 급전망
- 평판형 혼 배열 안테나에 있어서,
a) 제 1 포트;
b) 다수의 한 방향으로 배치된 제 2 포트들;
c) 일정 정수인 N개의 집합으로 구성되며, 1번째 집합는 1개의 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 E-Plane T분배기이며 1번째 집합의 E-Plane T분배기의 공통관로는 제 1포트와 연결되며, 나머지 각 집합는 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 E-Plane T분배기들과 첫째 관로와일정각을 이루고 둘째 관로와 만나는 E-Plane Bend들의 조합으로 구성되며 상기 E-Plane T분배기들과 E-Plane Bend들의 수의 합은 적어도 2개 이상이며,
2부터 임의의 정수 N 사이의 임의의 정수값을 n이라고 할 때, n번째 집합의 E-Plane T분배기의 공통 관로들과 E-Plane Bend의 첫째 관로들은 n-1 번째 집합의 E-Plane T분배기의 부관로들 또는 E-Plane Bend의 둘째 관로들와 연결되고, N번째 집합는 모두 E-Plane Bend만로 구성되며, N번째 집합의 E-Plane Bend의 둘째 관로의 방향이 모두 동일한 방향인 제 1 E-Plane 전반 급전망부;
d) 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 H-Plane Bend로 이루어지며, E-Plane 전반 급전망부의 N번째 집합의 E-Plane Bend의 둘째 관로들과 상기 H-Plane Bend 의 첫째 관로들과 각각 연결되며, , 상기 각 H-Plane Bend의 둘째 관로들의 방향이 모두 동일한 방향인, N+1번째 집합를 구성하는 제 1 H-Plane 급전망부;
e) E-Plane T분배기들과 E-Plane Bend들의 조합으로 구성되며 E-Plane T분배기의 공통 관로들과 E-Plane Bend의 첫째 관로들이, 각각 H-Plane 급전망부의 H-Plane Bend의 둘째 관로들과 각각 연결되며, N+2 번째 집합를 구성하며, N+3번째 집합는 모두 E-Plane Bend들로만 구성되며 각 E-Plane Bend들의 첫째 관로는 N+2번째 집합의 E-Plane T분배기들의 부관로들 또는 N+2 번째 집합의 E-Plane Bend들의 둘째 관로들에 각각 연결되며 N+3 번째 E-Plane Bend들의 둘째 관로들은 상기 제 2포트들과 각각 연결되는 제 1 E-Plane 후반 급전망부;를 포함하는 제 1 도파관 급전망;
선형편파를 회전편파로 변화시키는 격벽부, 제 1 급전 포트및 제 2 급전 포트로 이루어진 급전부 및 혼부로 구성되는 안테나 소자가 일정 간격으로 배열을 이루는 다수의 안테나 소자들;을 포함하며, 상기 각 안테나 소자들의 제 1 급전 포트들이 제 1 도파관 급전망의 제 2포트들과 각각 연결되는 것을 특징으로 하는 평판형 혼 배열 안테나. - 상기 9항에 있어서,
a) 제 3 포트;b) 다수의 제 4포트들,
c) 일정 정수인 K개의 집합로 구성되며, 1번째 집합은 1개의 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 H-Plane T분배기이며 상기 H-Plane T분배기의 공통관로는 제 3포트와 만나며, 나머지 각 집합은 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 H-Plane T분배기들과 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 H-Plane Bend들의 조합으로 구성되며 상기 H-Plane T분배기들과 H-Plane Bend들의 수의 합은 적어도 2개 이상이며,
2부터 임의의 정수 K 사이의 임의의 정수값을 k이라고 할 때, k번째 집합의 H-Plane T분배기의 공통관로들과 k번째 집합의 H-Plane Bend의 첫째 관로들은, k-1 번째 집합의 E-Plane T분배기의 부관로들 또는 k-1 번째 집합의 H-Plane Bend의 둘째 관로들와 연결되고, K번째 집합는 모두 H-Plane Bend만으로 구성되며, K번째 집합의 H-Plane Bend의 둘째 관로의 방향이 모두 동일한 방향인 제 2 H-Plane 급전망부;
첫째 관로와 일정각을 이루고 둘째 관로와 만나는 E-Plane Bend로 이루어지며, K+1번째 집합를 구성하는 제 2 E-Plane 후반 급전망부;를 포함하고,
상기 제 2 E-Plane 후반 급전망부의 E-Plane Bend의 첫째 관로들은 상기 제 2 H-Plane 전반 급전망부의 K번째 집합의 H-Plane Bend의 둘째 관로들과 각각 연결되며, 상기 제 2 E-Plane 후반 급전망부의 각 E-Plane Bend들의 둘째 관로들의 방향이 모두 동일한 방향인 것을 특징으로 하는 제 2 도파관 급전망이 추가로 포함되며,
상기 안테나 소자들의 제 2 급전 포트들은 K+1 번째 E-Plane Bend들의 둘째 관로와 각각 연결되는 것을 특징으로 하는 평판형 혼 배열 안테나.
- 상기 9항에 있어서,
a) 제 3 포트;
b) 다수의 제 4포트들,
c) 일정 정수인 M개의 집합으로 구성되며, 1번째 집합은 제 1개의 E-Plane T분배기이며, 나머지 각 집합은 공통 관로와 일정각으로 만나는 2개의 부 관로로 이루어진 E-Plane T분배기들과 첫째 관로와 일정각을 이루고 둘째 관로와 만나는 E-Plane Bend들의 조합으로 구성되며 상기 E-Plane T분배기들과 E-Plane Bend들의 수의 합은 적어도 2개 이상이며,
2부터 임의의 정수 M 사이의 임의의 정수값을 m이라고 할 때, m번째 집합의 E-Plane T분배기의 공통관로들과 E-Plane Bend의 첫째 관로들은 m-1 번째 집합의 E-Plane T분배기의 부관로들 또는 E-Plane Bend의 둘째 관로들와 연결되고, M번째 집합는 모두 E-Plane Bend만으로 구성되며, M번째 집합의 E-Plane Bend의 둘째 관로의 방향이 모두 동일한 방향인 제 2 E-Plane 전반 급전망부;
첫째 관로와 일정각을 이루고 둘째 관로와 만나는 H-Plane Bend로 이루어지며, 상기 E-Plane 전반 급전망부의 M번째 집합의 E-Plane Bend의 둘째 관로들과 상기 H-Plane Bend 의 첫째 관로들과 각각 연결되며, 상기 각 H-Plane Bend의 둘째 관로들의 방향이 모두 동일한 방향인, M+1번째 집합를 구성하는 제 2 H-Plane 급전망부;
를 포함하는 제 2 도파관 급전망을 추가로 포함하며, 상기 안테나 소자들의 제 2 급전 포트들은 M+1 번째 H-Plane Bend들의 둘째 관로와 각각 연결되는 것을 특징으로 하는 평판형 혼 배열 안테나.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0133669 | 2011-12-13 | ||
KR1020110133669A KR20130066906A (ko) | 2011-12-13 | 2011-12-13 | 간단한 도파관 급전망과, 이의 평판형 도파관 안테나 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089456A1 true WO2013089456A1 (ko) | 2013-06-20 |
Family
ID=48612826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/010846 WO2013089456A1 (ko) | 2011-12-13 | 2012-12-13 | 간단한 도파관 급전망과, 이의 평판형 도파관 안테나 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20130066906A (ko) |
WO (1) | WO2013089456A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3012918A1 (fr) * | 2013-11-04 | 2015-05-08 | Thales Sa | Coupleur en te dans le plan e, repartiteur de puissance, reseau rayonnant et antenne comportant un tel coupleur |
EP3048669A1 (en) | 2015-01-15 | 2016-07-27 | MTI Wireless Edge Ltd. | Antenna formed from plates and manufacturing method |
CN107204518A (zh) * | 2017-04-21 | 2017-09-26 | 西北工业大学 | 一种宽带高效率平板天线 |
WO2019028070A1 (en) | 2017-08-01 | 2019-02-07 | Lockheed Martin Corporation | WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES |
CN109713436A (zh) * | 2017-10-26 | 2019-05-03 | 华为技术有限公司 | 一种印刷偶极子天线、阵列天线及通信设备 |
WO2020025739A3 (en) * | 2018-07-31 | 2020-03-26 | Calzuola Sonia | Dual-polarized broadband horn antenna for microwave transceiver |
WO2021124170A1 (fr) * | 2019-12-18 | 2021-06-24 | Swissto12 Sa | Antenne à double polarisation |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101426055B1 (ko) * | 2013-06-27 | 2014-09-22 | 주식회사 마이크로페이스 | 확장가능한 도파관 안테나 |
KR20220169565A (ko) * | 2021-06-21 | 2022-12-28 | (주)자누셋 | 듀얼 선형 편파 혼 안테나 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001189618A (ja) * | 1999-12-13 | 2001-07-10 | Space Syst Loral Inc | 射出成型されたフェーズドアレイアンテナ装置 |
US6563398B1 (en) * | 1999-12-23 | 2003-05-13 | Litva Antenna Enterprises Inc. | Low profile waveguide network for antenna array |
KR20050062726A (ko) * | 2003-12-22 | 2005-06-27 | 이병제 | 고이득 슬롯 배열 안테나용 급전 도파관 구조 |
KR100801030B1 (ko) * | 2006-12-08 | 2008-02-12 | 주식회사 아이두잇 | 듀얼선형편파 혼어레이 안테나 |
KR20110069386A (ko) * | 2009-12-17 | 2011-06-23 | (주)마이크로페이스아이엔씨 | 평판형 회전편파 도파관 안테나 및 도파관의 꺽임 구조 |
-
2011
- 2011-12-13 KR KR1020110133669A patent/KR20130066906A/ko not_active Application Discontinuation
-
2012
- 2012-12-13 WO PCT/KR2012/010846 patent/WO2013089456A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001189618A (ja) * | 1999-12-13 | 2001-07-10 | Space Syst Loral Inc | 射出成型されたフェーズドアレイアンテナ装置 |
US6563398B1 (en) * | 1999-12-23 | 2003-05-13 | Litva Antenna Enterprises Inc. | Low profile waveguide network for antenna array |
KR20050062726A (ko) * | 2003-12-22 | 2005-06-27 | 이병제 | 고이득 슬롯 배열 안테나용 급전 도파관 구조 |
KR100801030B1 (ko) * | 2006-12-08 | 2008-02-12 | 주식회사 아이두잇 | 듀얼선형편파 혼어레이 안테나 |
KR20110069386A (ko) * | 2009-12-17 | 2011-06-23 | (주)마이크로페이스아이엔씨 | 평판형 회전편파 도파관 안테나 및 도파관의 꺽임 구조 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9728863B2 (en) | 2013-11-04 | 2017-08-08 | Thales | Power splitter comprising a tee coupler in the e-plane, radiating array and antenna comprising such a radiating array |
FR3012918A1 (fr) * | 2013-11-04 | 2015-05-08 | Thales Sa | Coupleur en te dans le plan e, repartiteur de puissance, reseau rayonnant et antenne comportant un tel coupleur |
US10205213B2 (en) | 2015-01-15 | 2019-02-12 | Mti Wireless Edge, Ltd. | Antenna formed from plates and methods useful in conjunction therewith |
EP3048669A1 (en) | 2015-01-15 | 2016-07-27 | MTI Wireless Edge Ltd. | Antenna formed from plates and manufacturing method |
US9899722B2 (en) | 2015-01-15 | 2018-02-20 | Mti Wireless Edge, Ltd. | Antenna formed from plates and methods useful in conjunction therewith |
CN107204518A (zh) * | 2017-04-21 | 2017-09-26 | 西北工业大学 | 一种宽带高效率平板天线 |
CN107204518B (zh) * | 2017-04-21 | 2019-04-19 | 西北工业大学 | 一种宽带高效率平板天线 |
WO2019028070A1 (en) | 2017-08-01 | 2019-02-07 | Lockheed Martin Corporation | WAVEGUIDE OPENING DESIGN FOR GEOSTATIONARY SATELLITES |
EP3662536A4 (en) * | 2017-08-01 | 2021-04-28 | Lockheed Martin Corporation | WAVE GUIDE APERTURE DESIGN FOR GEOSATELLITES |
CN109713436A (zh) * | 2017-10-26 | 2019-05-03 | 华为技术有限公司 | 一种印刷偶极子天线、阵列天线及通信设备 |
US10700439B2 (en) | 2017-10-26 | 2020-06-30 | Huawei Technologies Co., Ltd. | Printed dipole antenna, array antenna, and communications device |
WO2020025739A3 (en) * | 2018-07-31 | 2020-03-26 | Calzuola Sonia | Dual-polarized broadband horn antenna for microwave transceiver |
WO2021124170A1 (fr) * | 2019-12-18 | 2021-06-24 | Swissto12 Sa | Antenne à double polarisation |
FR3105611A1 (fr) * | 2019-12-18 | 2021-06-25 | Swissto12 Sa | Antenne à double polarisation |
Also Published As
Publication number | Publication date |
---|---|
KR20130066906A (ko) | 2013-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013089456A1 (ko) | 간단한 도파관 급전망과, 이의 평판형 도파관 안테나 | |
CN107210533B (zh) | 波导缝隙阵列天线 | |
EP3021416B1 (en) | Antenna | |
CN109643852B (zh) | 端射圆极化基片集成波导喇叭天线及其制造方法 | |
KR101092846B1 (ko) | 직렬 슬롯 배열 안테나 | |
EP2337153B1 (en) | Slot array antenna and radar apparatus | |
CN108183318A (zh) | 一种紧凑型双圆极化波导阵列天线及其馈电方法 | |
WO2014090290A1 (en) | Quasi-planar array antenna | |
US20130328733A1 (en) | Waveguide or slot radiator for wide e-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control | |
EP1497891A1 (en) | Leaky-wave dual polarized slot type antenna | |
Feng et al. | High-performance dual circularly-polarized antenna arrays using 3D printing for 5G millimetre-wave communications | |
KR101090188B1 (ko) | 평판형 회전편파 도파관 안테나 및 도파관의 꺽임 구조 | |
JP3464107B2 (ja) | 誘電体導波管スロットアンテナ | |
KR100662733B1 (ko) | 도파관용 슬롯 안테나 | |
KR20120081410A (ko) | 듀얼 회전편파 안테나 | |
Holzman | A wide band TEM horn array radiator with a novel microstrip feed | |
CN110504547B (zh) | 一种有限带宽内大扫描角的串馈波导缝隙频率扫描天线 | |
Hsieh et al. | Application of a two-dimensional Butler matrix antenna array for tile-based beamforming | |
CN106450762B (zh) | 一种紧凑的对称馈电网络 | |
CN107689491B (zh) | 天线阵列侧馈式馈电网络 | |
CN107658568B (zh) | 双频双极化共口径波导喇叭平面阵列天线 | |
Balakrishnan et al. | Dual-linear polarized cavity-backed sinuous antenna with non-sequential feeding | |
JPH04296106A (ja) | 平面アレイアンテナ | |
Yang | Design and Synthesis of Dual Polarized Millimetre Wave Array Antennas for Advanced Wireless Communications | |
CN113937509A (zh) | 一种圆极化psoam阵列天线、控制方法、无线通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12857933 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12857933 Country of ref document: EP Kind code of ref document: A1 |