WO2013089443A1 - Novel diketopyrrolopyrrole polymer and organic electronic element using same - Google Patents

Novel diketopyrrolopyrrole polymer and organic electronic element using same Download PDF

Info

Publication number
WO2013089443A1
WO2013089443A1 PCT/KR2012/010815 KR2012010815W WO2013089443A1 WO 2013089443 A1 WO2013089443 A1 WO 2013089443A1 KR 2012010815 W KR2012010815 W KR 2012010815W WO 2013089443 A1 WO2013089443 A1 WO 2013089443A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
organic semiconductor
polymer
organic
diketopyrrolopyrrole
Prior art date
Application number
PCT/KR2012/010815
Other languages
French (fr)
Korean (ko)
Inventor
권순기
김윤희
강일
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2013089443A1 publication Critical patent/WO2013089443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3225Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more Se atoms as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Definitions

  • the present invention relates to an organic semiconductor compound for organic electronic device such as an organic thin film transistor (OTFT) and its use. More specifically, the present invention relates to a diketopyrrolopyrrole polymer and an organic electronic device using the same as an organic semiconductor layer as a novel organic semiconductor compound having a high pi electron stack by introducing an electron donor compound into a diketopyrrolopyrrole derivative. will be.
  • OFT organic thin film transistor
  • OFTs organic thin film transistors
  • the organic thin film transistor using the organic semiconductor has the advantages of simpler manufacturing process and lower cost production compared to the organic thin film transistor using amorphous silicon and polysilicon, and is compatible with the plastic substrates for implementing the flexible display. Due to this superior advantage, many researches are being made recently.
  • the use of a polymer organic semiconductor has the advantage that the manufacturing cost can be reduced compared to the low molecular organic semiconductor compound because of the advantage that the thin film can be easily formed by the solution process.
  • Representative semiconductor compounds for polymer-based organic thin film transistors developed to date include P3HT [poly (3-hexylthiophene)] and F8T2 [poly (9,9-dioctylfluorene-co-bithiophene)].
  • P3HT poly (3-hexylthiophene)
  • F8T2 poly (9,9-dioctylfluorene-co-bithiophene
  • FIG. 1 is a cross-sectional view illustrating a structure of a general organic thin film transistor including a substrate, a gate, an insulating layer, an electrode layer (source, drain), and an organic conductive layer, and a gate electrode is formed on the substrate.
  • An insulating layer is formed on the gate electrode, and an organic semiconductor layer, and a source and a drain electrode are formed in this order.
  • the driving principle of the organic thin film transistor having the above structure will be described with reference to an example of a p-type semiconductor. First, when a current is applied by applying a voltage between the source and the drain, a current proportional to the voltage flows under a low voltage.
  • the organic thin film transistors which are constructed on the principle described above, include electrodes (source and drain), substrates and gate electrodes requiring high thermal stability, insulators having high dielectric properties and dielectric constants, and semiconductors that transfer charges well.
  • the core material is organic semiconductor.
  • Organic semiconductors can be classified into low molecular organic semiconductors and high molecular organic semiconductors according to molecular weight, and are classified into n-type organic semiconductors or p-type organic semiconductors according to whether electrons or holes are transferred. In general, when a low molecular weight organic semiconductor is used in forming an organic semiconductor layer, the low molecular weight organic semiconductor is easy to purify and almost removes impurities, so the charge transfer characteristics are excellent.
  • Korean Patent Publication No. 2011-0091711 discloses a polymer in which an S-containing heteroaromatic ring is directly bonded to a diketopyrrolopyrrole group.
  • the materials that have emerged so far do not exhibit sufficient expansion of pi electrons, so it is necessary to develop a polymer semiconductor material exhibiting sufficient pi electron overlap.
  • Korean Patent Publication No. 2009-0024832 discloses a polymer in which an S-containing heteroaromatic ring is directly bonded, and at the same time, alkyl having 1 to 25 carbon atoms can be substituted for a nitrogen atom of a diketopyrrolopyrrole group.
  • alkyl having 8 10 and 16 carbon atoms are substituted are described.
  • the solubility is poor and the charge mobility is not sufficient, making it difficult to apply to the actual organic thin film transistor. there was.
  • the present invention has been completed for the first time to realize that a new diketopyrrolopyrrole polymer having a very good charge mobility as a polymer having an S-containing heteroaromatic ring of the present invention is directly bonded.
  • diketopyrrolopyrrole polymers containing a double bond that can exhibit sufficient pi electron expansion by having an expanded conjugated structure, thereby increasing solubility and having significant charge mobility properties.
  • Another object of the present invention is to provide a diketopyrrolopyrrole polymer which is a novel organic semiconductor compound that is easy to spin coating at room temperature to enable a solution process.
  • another object of the present invention is to provide an organic thin film transistor including a novel diketopyrrolopyrrole polymer in the organic semiconductor layer capable of a high temperature solution process such as high charge mobility and spin coating according to the present invention.
  • the present invention relates to an organic semiconductor compound for organic electronic device such as an organic thin film transistor (OTFT) and its use. More specifically, the present invention relates to a p-type polymer organic semiconductor compound used as an active layer material of an organic thin film transistor configured to alternately polymerize a diketopyrrolopyrrole derivative as an electron acceptor compound and a compound containing a vinylene group as an electron donor compound. Dyketopyrrolopyrrole polymer and an organic electronic device using the same.
  • the inventors of the present invention have unexpected charge mobility, thermal stability, solubility characteristics, oxidation stability, threshold voltage and flashing ratio when the carbon number of the alkyl group substituted at the nitrogen atom of the diketopyrrolopyrrole group is adjusted to 24 or more.
  • the surprising improvement effect was first confirmed to complete the present invention.
  • the cause is unknown, but when the carbon number of the alkyl group is adjusted to 28 or more, the charge mobility and solubility characteristics are improved as compared to the alkyl group having less than 24 carbon atoms.
  • the present invention has been completed for the first time to recognize that an amazing effect of improved mobility is 1.5 times or more or 2 times or more.
  • the organic semiconductor compound of the present invention is a diketopyrrolopyrrole polymer represented by the following formula (1), by introducing a vinylene group (V) increases the coplanarity of the main chain (electron density) by having an expanded conjugated structure Improves intermolecular interactions and high mobility.
  • R 1 and R 2 are each independently (C 24 -C 50) alkyl
  • L 1 and L 2 are each independently selected from the following structures
  • V is ego
  • a 1 and A 2 are each independently hydrogen, cyano or -COOR ';
  • R ' is (C1-C50) alkyl or (C6-C50) aryl;
  • R 3 to R 8 are each independently hydrogen, hydroxy group, amino, (C1-C50) alkyl, (C6-C50) aryl, (C1-C50) alkoxy, mono or di (C1-C50) alkylamino, (C1- C50) alkoxycarbonyl or (C1-C50) alkylcarbonyloxy;
  • n is an integer of 1 or 2, and when m is 2, each of V and L 2 may be the same or different from each other;
  • n is an integer from 1 to 1,000.
  • Is selected from the following structures.
  • R 1 and R 2 are each independently (C28-C50) alkyl, it is preferable that the alkyl includes a linear or branched alkyl.
  • the diketopyrrolopyrrole polymer of the present invention is specifically selected from the following compounds.
  • n is an integer of 1 to 1,000.
  • the diketopyrrolopyrrole polymer of the present invention is selected from the following compounds.
  • n is an integer of 1 to 1,000.
  • the diketopyrrolopyrrole polymer of the present invention is selected from the following compounds.
  • n is an integer of 1 to 1,000.
  • the final compound may be prepared through an alkylation reaction, a Grignard coupling reaction, a Suzuki coupling reaction, a Stiletto coupling reaction, and the like.
  • the organic semiconductor compound according to the present invention is not limited to the above production method, and may be prepared by a conventional organic chemical reaction in addition to the above production method.
  • the diketopyrrolopyrrole polymer according to the present invention can be used as a material for forming an organic semiconductor layer of an organic electronic device, specific examples of the manufacturing method of the organic thin film transistor to which it is applied are as follows.
  • n-type silicon used in a conventional organic thin film transistor.
  • This substrate contains the function of the gate electrode.
  • a glass substrate or a transparent plastic substrate having excellent surface smoothness, ease of handling, and waterproofness may be used as the substrate.
  • a gate electrode must be added on the substrate.
  • Substances which can be employed as the substrate include glass, polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl alcohol (PVP), polyacrylate (Polyacrylate). , Polyimide, polynorbornene and polyethersulfone (PES).
  • an insulator having a high dielectric constant which is commonly used, may be used.
  • Ba 0.33 Sr 0.66 TiO 3 (BST), Al 2 O 3 , Ta 2 O 5 , and La 2 Ferroelectric insulators selected from the group consisting of O 5 , Y 2 O 3 and TiO 2 , PdZr 0.33 Ti 0.66 O 3 (PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (TaNb) 2 O 9 , Ba (ZrTi ) O 3 (BZT), BaTiO 3 , SrTiO 3 , Bi 4 Ti 3 O 12 , SiO 2 , SiN x and AlON, an inorganic insulator selected from the group consisting of polyimide, benzocyclobutene (BCB), parylene ( Organic leading bodies such as parylene, polyacrylate, polyvinylalcohol, and polyvinylphenol
  • the organic thin film transistor of the present invention is composed of the substrate 11, the gate electrode 16, the insulating layer 12, the organic base layer 13, the source 14, and the drain electrode 15. As shown in FIG. It includes both top-contact as well as bottom-contact types of substrate / gate electrode / insulation layer / source and drain electrode / derivative layer.
  • HMDS 1,1,1,3,3,3-hexamethyldisilazane
  • OTS octadecyltrichlorosilane
  • OTDS octadecyltrichlorosilane
  • the organic semiconductor layer employing the diketopyrrolopyrrole polymer according to the present invention may be formed into a thin film through vacuum deposition, screen printing, printing, spin casting, spin coating, dipping or ink spraying, At this time, the deposition of the organic semiconductor layer may be formed using a high temperature solution at 40 °C or more, the thickness is preferably about 500 kPa.
  • the gate electrode 16 and the source and drain electrodes 14 and 15 may be conductive materials, but gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and indium tin may be used. It is preferably formed of a material selected from the group consisting of oxides (ITOs).
  • FIG. 1-A cross-sectional view showing the structure of a general organic thin film transistor made of a substrate / gate / insulating layer (source, drain) / semiconductor layer.
  • TGA 11-Thermogravimetric Analysis
  • TGA 12-Thermogravimetric analysis
  • TGA 13-Thermogravimetric Analysis
  • Triphenylphosphine 60.56 g, 0.2308 mol was dissolved in methylene chloride (MC) in a 500 mL three-neck round bottom flask, and the temperature was lowered to 0 ° C. and bromine (35.67 g, 0.2231 mol) was dropped ( dropping) and stir for 10 minutes. Then, 2-dodecylhexadecane-1-ol (33.0 g, 0.0803 mol) dissolved in methylene chloride (MC) was dropped and stirred for 16 hours. Extracted with methylene chloride (MC), the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator.
  • MC methylene chloride
  • the polymer may be polymerized through a Stille coupling reaction.
  • the polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol), (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 3, 0.378 g, 0.0004 mmol ), Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) were used to obtain the title compound PDPPDBTE12 in the same manner as in Example 1 Yield: 90%).
  • the polymer may be polymerized through a Stille coupling reaction.
  • (E) -1,2-bis (4- (trimethylstannyl) phenyl) ethene Preparation Example 2, 0.202 g, 0.0004 mmol
  • Pd 2 (dba) 3 (0.008 mg, 2 mol%)
  • P (o-tol) 3 0.011 g, 8 mol%) were used to obtain the title compound PDPPBTPE in the same manner as in Example 1 (yield: 90%).
  • the polymer may be polymerized through a Stille coupling reaction.
  • (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 4, 0.39 g, 0.0004 mmol )
  • the title compound PDPPDTTE12 was obtained in the same manner as in Example 1 using Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) ( Yield: 75%).
  • the polymer may be polymerized through Suzuki coupling. Remove water from the flask and remove 2,5-bis (2-decyltetradecyl) -3,6-bis (5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane- 2-yl) thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (1.20 g, 0.0010 mol) and (E) -2,3-bis Add (5-bromothiophen-2-yl) acrylonitrile (0.367g, 0.0010 mmol), add 2M K 2 CO 3 (2.94 mL) and toluene (12 mL), and perform nitrogen bubbling for 30 minutes.
  • the polymer may be polymerized through Suzuki coupling. Remove water from the flask and remove 2,5-bis (2-decyltetradecyl) -3,6-bis (5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane- 2-yl) thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (0.5 g, 0.0004 mol), (Z) -2,3-bis (4-bromo-2,5-dimethylphenyl) acrylonitrile (0.367 g, 0.0004 mmol), 2M K 2 CO 3 (1.17 mL), toluene (5 mL), catalyst Pd (pph 3 ) 4 (0.023 mg, 5 mol%) was used to obtain the title compound PDPPBDTPA in the same manner as in Example 5 (yield: 80%).
  • the polymer may be polymerized through a Stille coupling reaction.
  • 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol)
  • 2- (4-((E) -2- (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) vinyl) -2,5-di Methylstyryl) -3-dodecyl-5- (trimethylstannyl) thiophene (0.39 g, 0.0004 mmol
  • Pd 2 (dba) 3 (0.008 mg, 2 mol%)
  • P (o-tol) 3 0.011 g, 8 mol%) was used to obtain the title compound PDPPDTDTEP (yield: 75%) in the same manner as in Example 1.
  • the polymer may be polymerized through a Stille coupling reaction.
  • 3,6-bis3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [3,4 -c] pyrrole-1,4 (2H, 5H) -dione (Preparation Example 6, 0.30 g, 0.92 mmol) and (E) -1,2-bis (5- (trimethylstannyl) thiophen-2- Il) ethene (Preparation Example 1, 0.13 g, 0.92 mmol) is dissolved in chlorobenzene (4.5 mL) and subjected to nitrogen substitution.
  • the polymer may be polymerized through a Stille coupling reaction.
  • the OTFT device was fabricated in a top-contact manner, 100 nm n-doped silicon was used as a gate, and SiO 2 was used as an insulator.
  • Surface treatment was performed by using a piranha cleaning solution (H 2 SO 4 : 2H 2 O 2 ) to wash the surface, Alfa's ODTS (octadecyltrichlorosilane) surface was used after SAM (Self Assemble Monolayer) treatment.
  • the organic semiconductor layer was coated with 0.2 wt% chloroform solution using a spin-coater for 1 minute at 2000 rpm.
  • PDPPDBTE As the organic semiconductor material, PDPPDBTE, P28DPP-TVT, or P32DPP-TVT synthesized in Examples 1, 8, and 9, respectively, were used.
  • the thickness of the organic semiconductor layer was confirmed as 50 nm using a surface profiler (Alpha Step 500, Tencor). Gold used as the source and drain was deposited at a thickness of 60 nm at 1 A / s. The channel is 100 ⁇ m long and 1000 ⁇ m wide.
  • Keithley 4800 was used to measure the properties of the OTFT.
  • the charge mobility of the organic electronic device manufactured in Example 10 was obtained from the slope of the graph with (I SD ) 1/2 and V G as variables from the following saturation region current equation.
  • I SD is the source-drain current
  • ⁇ or ⁇ FET is the charge mobility
  • C 0 is the oxide capacitance
  • W is the channel width
  • L is the channel length
  • V G is the gate voltage
  • V is T is the threshold voltage.
  • the cutoff leakage current I off is a current flowing in the off state, and is determined as the minimum current in the off state in the current ratio.
  • the light absorption regions of the organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, P32DPP-TVT) synthesized in Examples 1, 8, and 9 were measured in a solution state (solution: CHCl 3 ) and in a film state. 4 is shown.
  • a solution state solution: CHCl 3
  • a film state 4 is shown.
  • 50 mV / in a solvent (Acetonitrile) of Bu 4 NClO 4 (0.1 molarity) 5 to 7 show the results measured using cyclic voltammetry with a cycle under the condition of s. Voltage was applied through the coating using a carbon electrode during the measurement.
  • Table 1 below describes the optical and electrochemical properties of the organic semiconductor compounds synthesized in Examples 1, 8 and 9 (PDPPDBTE, P28DPP-TVT, P32DPP-TVT).
  • the HOMO value is a value calculated using the result value measured in FIGS. 5 to 7.
  • the band gap was obtained from the UV absorption wavelength in the film state. As shown in Table 1, the bandgap is similar and the oxidation stability is similar or slightly increased, the oxidation level is similar or slightly increased as the carbon number of the alkyl group is increased, the organic semiconductor compounds of Examples 1, 8 and 9 It can be seen that the oxidation stability is excellent.
  • thermal stability of the organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, and P32DPP-TVT) synthesized in Examples 1, 8, and 9 were measured.
  • PDPPDBTE the glass transition temperature was measured at 260 ° C.
  • the melting temperature was measured at 277 ° C. and the crystallization temperature was measured at 261 ° C., indicating that the crystal had a qualitative characteristic.
  • P28DPP-TVT the melting temperature value (T m ) was measured at 286 ° C. and the crystallization temperature value was measured at 258 ° C., indicating that the crystal had a qualitative characteristic.
  • P32DPP-TVT a melting peak was observed around 280 ° C, indicating that the thermal properties were excellent.
  • 11 to 13 illustrate results obtained by measuring decomposition temperatures of organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, and P32DPP-TVT) synthesized in Examples 1, 8, and 9 using TGA.
  • the temperature at which 5% decomposition of PDPPDBTE occurs was measured at 421 ° C
  • Both P28DPP-TVT and P32DPP-TVT have excellent thermal stability.
  • FIG. 14 a distribution state of electrons according to energy levels of molecules is illustrated through DFT calculation.
  • HOMO energy level of the organic semiconductor compound (PDPPDBTE) synthesized in Example 1 it can be seen that electrons are spread throughout the molecular structure.
  • LUMO energy level it can be seen that the electrons of the electron donor move toward the electron acceptor, and the result shows that the charge separation of the energy is performed well.
  • AFM images of the device fabricated in Example 10 using the organic semiconductor compound (PDPPDBTE) synthesized in Example 1 (a: at room temperature, b: annealed film at 200 ° C.), c: Fig. 1 shows the state of the film annealed at 250 ° C.), and the crystallinity of the molecule is increased after annealing.
  • PDPPDBTE organic semiconductor compound
  • 16 to 21 are diagrams showing the transfer curve of the device fabricated in Example 10 using the organic semiconductor compound (PDPPDBTE, P28DPP-TVT, P32DPP-TVT) synthesized in Examples 1, 8 and 9, the polymer material It is a figure showing the characteristics of the organic electronic device. As shown in FIGS. 16 to 21, the organic semiconductor compound synthesized in the present invention has excellent thermal stability, and it can be seen that the charge mobility increases when annealing is an excellent material.
  • the organic semiconductor compound synthesized in the present invention has excellent thermal stability, and it can be seen that the charge mobility increases when annealing is an excellent material.
  • Table 2 describes the characteristics of the device fabricated in Example 10 using the organic semiconductor compounds synthesized in Examples 1, 8, and 9 (PDPPDBTE, P28DPP-TVT, P32DPP-TVT).
  • the charge mobility increased from 1.32 ⁇ 2.62 ⁇ 2.65
  • the flashing ratio (1.53 ⁇ 10 4 ⁇ 2.78 ⁇ 10 4 ) are increased as the carbon number of the alkyl group substituted in the organic semiconductor compound is increased. ⁇ 7.54 x 10 4 )
  • a diketopyrrolopyrrole polymer having the following structure was used (J. Am. Chem. Soc. 2011, 133, 10364-10367).
  • Example 10 Using the comparative compound P (DPP-alt-QT) OTFT device was manufactured in the same top-contact manner as in Example 10.
  • alkyl having 24 or more carbon atoms is introduced at the nitrogen atom of the diketopyrrolopyrrole group, while the comparative compound P (DPP-alt-QT) is a diketopyrrole.
  • Alkyl having 20 carbon atoms is introduced into the nitrogen atom of the pyrrole group, and the charge mobility is only about 30 to 40%, which is significantly lower than the embodiment of the present invention, proving the superiority of the present invention.
  • the alkyl having 24 or more carbon atoms when introduced as in the present invention, it has a good solubility and has a relatively high molecular weight and is relatively well dissolved, so that the solution process is smoother than that of the comparative compound P (DPP-alt-QT). Will be lost.
  • the diketopyrrolopyrrole polymer of the present invention a vinylene group is necessarily introduced between thiophene and thiophene, while the comparative compound P (DPP-alt-QT) has a structure in which thiophene and thiophene are connected by a single bond. to be. Accordingly, the diketopyrrolopyrrole polymer of the present invention can form a longer conjugated structure due to the vinylene group, thereby making the intermolecular interaction relatively larger, thereby making the polymer more rich in electron density. Such a structure and the bonding with a substituent having 24 or more carbon atoms bonded to the nitrogen atom has the effect of having a remarkable charge mobility.
  • the present invention surprisingly improved in unexpected charge mobility, thermal stability, solubility characteristics, oxidation stability, threshold voltage and flashing ratio when the carbon number of the alkyl group substituted at the nitrogen atom of the diketopyrrolopyrrole group to 24 or more It was completed by confirming the effect for the first time, and furthermore, the cause is unknown.
  • the carbon number of the alkyl group is adjusted to 28 or more, the charge mobility, the flashing ratio, and the solubility characteristics of the alkyl group may be improved.
  • the charge mobility is improved by more than two times compared to the case of the alkyl group having 24 carbon atoms, the first recognition that the surprising effect was achieved.
  • the organic semiconductor compound according to the present invention that is, a diketopyrrolopyrrole polymer configured to alternately polymerize a compound containing a diketopyrrolopyrrole derivative as an electron acceptor compound and a vinylene group as an electron donor compound is mainly introduced by the introduction of a vinylene group.
  • the organic semiconductor compound according to the present invention is a polymer having 24 or more carbon atoms in the nitrogen atom of the diketopyrrolopyrrole group has excellent solubility characteristics and larger molecular weight, it is easily applied to the solution process.
  • the HOMO value decreases, that is, the electron density increases in the repeating unit, thereby having excellent charge mobility and oxidation stability, and thus may be used as an organic semiconductor layer of the organic thin film transistor. Therefore, the organic thin film transistor employing these devices improves the charge mobility and the flashing ratio, and when the organic thin film transistor is used, it is possible to make an electronic device having excellent efficiency and performance.
  • the organic thin film transistor can also be manufactured by a solution process such as vacuum deposition, spin coating, or printing, thereby reducing the manufacturing cost of an electronic device using the organic thin film transistor.

Abstract

The present invention relates to an organic semiconductor compound for an organic electronic element such as an organic thin film transistor (OTFT) and to the use thereof. More particularly, the present invention relates to a diketopyrrolopyrrole polymer as a novel organic semiconductor compound having high pi-electron overlap by introducing an electron donor compound into a diketopyrrolopyrrole derivative, and also relates to an organic electronic element of which the charge mobility and the on/off ratio are improved by using the diketopyrrolopyrrole polymer as an organic semiconductor layer.

Description

신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자Novel Diketopyrrolopyrrole Polymers and Organic Electronic Devices Using the Same
본 발명은 유기박막트랜지스터(organic thin film transistor: OTFT)등 유기 전자 소자용 유기반도체 화합물 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 다이케토피롤로피롤 유도체에 전자 주개 화합물을 도입하여 높은 파이전자 겹칩을 가지는 새로운 유기반도체 화합물로서 다이케토피롤로피롤 중합체 및 이를 유기반도체층으로 사용하는 유기 전자 소자에 관한 것이다. The present invention relates to an organic semiconductor compound for organic electronic device such as an organic thin film transistor (OTFT) and its use. More specifically, the present invention relates to a diketopyrrolopyrrole polymer and an organic electronic device using the same as an organic semiconductor layer as a novel organic semiconductor compound having a high pi electron stack by introducing an electron donor compound into a diketopyrrolopyrrole derivative. will be.
21세기 정보통신의 발달과 개인 휴대용 통신기기에 대한 욕구는 크기가 작고, 중량이 가볍고, 두께가 얇고, 사용하기 편리한 정보통신기기를 가능하게 하는 초미세 가공, 초고집적회로를 제작할 수 있는 고성능 전기전자재료, 신개념의 디스플레이를 가능케 하는 새로운 정보통신 재료를 필요로 하고 있다. 그 중에서도 유기 박막 트랜지스터(OTFT)는 휴대용 컴퓨터, 유기 EL소자, 스마트 카드(smart card), 전자 태그(electric tag), 호출기, 휴대전화 등의 디스플레이 구동기 및 현금 거래기, 인식표 등의 메모리 소자 등의 플라스틱 회로부의 중요한 구성요소로 사용될 수 있는 가능성으로 인하여 많은 연구의 대상이 되고 있다.The development of telecommunications in the 21st century and the desire for personal handheld communication devices are high performance electricity that can produce ultra-fine processing and ultra-high integrated circuits that enable information communication devices that are small in size, light in weight, thin and easy to use. There is a need for new information and communication materials that enable the display of electronic materials and new concepts. Among them, organic thin film transistors (OTFTs) are used for display drivers such as portable computers, organic EL devices, smart cards, electric tags, pagers, mobile phones, and memory devices such as cash machines and identification tags. The possibility of being used as an important component of plastic circuitry has been the subject of much research.
유기 반도체를 이용한 유기 박막 트랜지스터는 지금까지의 비정질 실리콘 및 폴리실리콘을 이용한 유기 박막 트랜지스터에 비해 제조공정이 간단하고, 저비용으로 생산할 수 있다는 장점을 가지고 있으며, 플렉서블 디스플레이의 구현을 위한 플라스틱 기판들과 호환성이 뛰어나다는 장점 등으로 인해 최근 많은 연구가 이루어지고 있는 실정이다. 특히, 고분자 유기반도체를 이용할 경우 용액공정으로 쉽게 박막을 형성할 수 있다는 장점 때문에 저분자 유기반도체 화합물에 비해 제조 원가가 절감 될 수 있다는 장점을 가지고 있다.The organic thin film transistor using the organic semiconductor has the advantages of simpler manufacturing process and lower cost production compared to the organic thin film transistor using amorphous silicon and polysilicon, and is compatible with the plastic substrates for implementing the flexible display. Due to this superior advantage, many researches are being made recently. In particular, the use of a polymer organic semiconductor has the advantage that the manufacturing cost can be reduced compared to the low molecular organic semiconductor compound because of the advantage that the thin film can be easily formed by the solution process.
현재까지 개발된 대표적인 고분자계 유기 박막 트랜지스터용 반도체 화합물로는 P3HT[폴리(3-헥실티오펜)]과 F8T2[폴리(9,9-디옥틸플루오렌-코-비티오펜)]이 있다. OTFT의 성능은 여러 가지가 있으나, 그 중 중요한 평가척도는 전하이동도와 점멸비(on/off ratio)이며, 가장 중요한 평가 척도는 전하이동도이다. 전하이동도는 반도체 재료의 종류, 박막형성방법(구조 및 형태학), 구동전압 등에 따라 다르게 나타난다.Representative semiconductor compounds for polymer-based organic thin film transistors developed to date include P3HT [poly (3-hexylthiophene)] and F8T2 [poly (9,9-dioctylfluorene-co-bithiophene)]. There are many performances of OTFT, but the most important evaluation scale is charge mobility and on / off ratio, and the most important evaluation scale is charge mobility. The charge mobility varies depending on the type of semiconductor material, thin film formation method (structure and morphology), driving voltage, and the like.
도 1은 기판/게이트/절연층/전극층(소스, 드레인)/유기반도체층으로 이루어지는 일반적인 유기 박막 트랜지스터의 구조를 나타내는 단면도로, 기판 상부에 게이트 전극이 형성되어 있다. 이 게이트 전극의 상부에는 절연층이 형성되어 있으며, 그 상부에 유기 반도체층 및 소스와 드레인 전극이 차례로 형성되어 있다. 상기 구조의 유기 박막 트랜지스터의 구동원리를 p-형 반도체의 예를 들어 설명하면 다음과 같다. 먼저, 소스와 드레인 사이에 전압을 인가하여 전류를 흘리면 낮은 전압하에서는 전압에 비례하는 전류가 흐르게 된다. 여기에 게이트에 양의 전압을 인가하면 이 인가된 전압에 의한 전기장에 의하여 양의 전하인 정공들은 모두 반도체층의 상부로 밀려 올라가게 된다. 따라서, 절연층에 가까운 부분은 전도 전하가 없는 공핍층(depletion layer)이 생기게 되고, 이런 상황에서는 소스와 드레인 사이에 전압을 인가해도 전도 가능한 전하 운반자가 줄어들었기 때문에 낮은 전류의 양이 흐르게 될 것이다. 반대로 게이트에 음의 전압을 인가하면, 이 인가된 전압에 의한 전기장의 효과로 절연층의 가까운 부분에 양의 전하가 유도된 축적층(accumulation layer)이 형성 된다. 이 때, 소스와 드레인 사이에는 전도 가능한 전하 운반자가 많이 존재하기 때문에, 더 많은 전류를 흘릴 수가 있다. 따라서, 소스와 드레인 사이에 전압을 인가한 상태에서 게이트에 양의 전압과 음의 전압을 교대로 인가하여 줌으로써 소스와 드레인 사이에 흐르는 전류를 제어할 수 가 있다.FIG. 1 is a cross-sectional view illustrating a structure of a general organic thin film transistor including a substrate, a gate, an insulating layer, an electrode layer (source, drain), and an organic conductive layer, and a gate electrode is formed on the substrate. An insulating layer is formed on the gate electrode, and an organic semiconductor layer, and a source and a drain electrode are formed in this order. The driving principle of the organic thin film transistor having the above structure will be described with reference to an example of a p-type semiconductor. First, when a current is applied by applying a voltage between the source and the drain, a current proportional to the voltage flows under a low voltage. When a positive voltage is applied to the gate, holes that are positive charges are all pushed up to the top of the semiconductor layer by the electric field by the applied voltage. Thus, the portion close to the insulating layer will have a depletion layer without conduction charge, and in such a situation, a low amount of current will flow due to the reduced number of conducting charge carriers even when a voltage is applied between the source and the drain. . On the contrary, when a negative voltage is applied to the gate, an accumulation layer in which positive charges are induced near the insulating layer is formed by the effect of the electric field caused by the applied voltage. At this time, since there are many conducting charge carriers between the source and the drain, more current can flow. Therefore, the current flowing between the source and the drain can be controlled by alternately applying a positive voltage and a negative voltage to the gate while a voltage is applied between the source and the drain.
상기와 같은 원리로 구성되는 유기 박막 트랜지스터에 사용되는 것으로서는 전극(소스, 드레인), 높은 열안정성이 요구되는 기판 및 게이트전극, 높은 절연성과 유전상수를 가져야 하는 절연체, 그리고 전하를 잘 이동시키는 반도체 등이 있으나, 이 중에서 가장 극복해야 할 문제점이 많으며, 핵심적인 재료는 유기반도체이다. 유기반도체는 분자량에 따라 저분자 유기반도체 및 고분자 유기반도체로 나눌 수 있으며, 전자 또는 정공전달 여부에 따라 n-형 유기반도체 또는 p-형 유기반도체로 분류한다. 일반적으로, 유기 반도체층 형성시 저분자 유기반도체를 이용하는 경우, 저분자 유기반도체는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전하이동특성이 우수하다, 그러나, 이러한 유기반도체는 스핀코팅 및 프린팅이 불가능하여 진공증착을 통해 박막을 제조해야 하므로, 고분자 유기반도체에 비해 제조공정이 복잡하고, 비용이 많이 드는 단점이 있다. 고분자 유기반도체의 경우, 고순도의 정제가 어려우나, 내열성이 우수하고, 스핀코팅 및 프린팅이 가능하여 제조공정 및 비용, 대량생산에 있어서 유리한 장점이 있다.The organic thin film transistors, which are constructed on the principle described above, include electrodes (source and drain), substrates and gate electrodes requiring high thermal stability, insulators having high dielectric properties and dielectric constants, and semiconductors that transfer charges well. There are many problems to overcome, and the core material is organic semiconductor. Organic semiconductors can be classified into low molecular organic semiconductors and high molecular organic semiconductors according to molecular weight, and are classified into n-type organic semiconductors or p-type organic semiconductors according to whether electrons or holes are transferred. In general, when a low molecular weight organic semiconductor is used in forming an organic semiconductor layer, the low molecular weight organic semiconductor is easy to purify and almost removes impurities, so the charge transfer characteristics are excellent. However, such organic semiconductors are not spin coated and printed. Therefore, since the thin film must be manufactured by vacuum deposition, the manufacturing process is complicated and expensive compared with the polymer organic semiconductor. In the case of the polymer organic semiconductor, it is difficult to purify the high purity, but excellent heat resistance, spin coating and printing is possible, there is an advantage in the manufacturing process, cost, mass production.
유기 반도체 재료의 개발을 위해서 많은 연구가 현재까지 이루어지고 있지만, 아직까지 고분자계 반도체 재료의 개발은 저분자계 반도체 재료의 개발에 못 미치고 있는 실정이다. 따라서, 유연하고, 제조원가가 낮은 유기 박막 트랜지스터를 이용한 전자장치의 개발을 위해서는 고분자계 반도체 재료의 개발이 시급한 실정이다. 일반적으로, 고분자의 전하이동도는 저분자에 비해 떨어진다고 알려져 있지만, 제조공정이나 비용면에서 충분히 이를 극복할 수 있는 재료라고 할 수 있다. Although many studies have been made to date for the development of organic semiconductor materials, the development of polymer semiconductor materials is still far from the development of low molecular weight semiconductor materials. Therefore, in order to develop an electronic device using a flexible, low-cost organic thin film transistor, it is urgent to develop a polymer semiconductor material. Generally, the charge mobility of a polymer is known to be inferior to that of a low molecule, but it can be said to be a material that can sufficiently overcome this in terms of manufacturing process and cost.
한국공개특허 제2011-0091711호에는 다이케토피롤로피롤기에 S 함유 헤테로 방향족 고리가 직접 결합된 중합체가 개시되어 있다. 그러나 아직까지 나온 재료에서는 충분한 파이 전자의 확장을 나타내지 못하므로 충분한 파이 전자겹침을 나타내는 고분자 반도체 재료의 개발이 필요하다.Korean Patent Publication No. 2011-0091711 discloses a polymer in which an S-containing heteroaromatic ring is directly bonded to a diketopyrrolopyrrole group. However, the materials that have emerged so far do not exhibit sufficient expansion of pi electrons, so it is necessary to develop a polymer semiconductor material exhibiting sufficient pi electron overlap.
또한, 한국공개특허 제2009-0024832호에는 S 함유 헤테로 방향족 고리가 직접 결합된 중합체가 개시되어있고 동시에 다이케토피롤로피롤기의 질소 원자에 탄소수 1 내지 25의 알킬이 치환될 수 있다고 기재되어 있으나, 상기 공개특허의 실시예에는 탄소수 8, 10 및 16개의 알킬만이 치환되어 있는 화합물만 기재하고 있다. 그러나 상기 공개특허에서 실시하고 있는 탄소수 8, 10 및 16개의 알킬만이 치환된 다이케토피롤로피롤 중합체의 경우 용해도가 좋지 않고 또한 전하이동도가 충분하지 않아 실제 유기박막트랜지스터에 적용하기 어려운 문제점이 있었다.In addition, Korean Patent Publication No. 2009-0024832 discloses a polymer in which an S-containing heteroaromatic ring is directly bonded, and at the same time, alkyl having 1 to 25 carbon atoms can be substituted for a nitrogen atom of a diketopyrrolopyrrole group. In the examples of the above-mentioned patent, only compounds in which only alkyl having 8, 10 and 16 carbon atoms are substituted are described. However, in the case of the diketopyrrolopyrrole polymer substituted with only 8, 10, and 16 alkyl carbon atoms, which are disclosed in the above-mentioned patents, the solubility is poor and the charge mobility is not sufficient, making it difficult to apply to the actual organic thin film transistor. there was.
본 발명의 S 함유 헤테로 방향족 고리가 직접 결합된 중합체로서, 매우 우수한 전하이동도를 가지는 새로운 다이케토피롤로피롤 중합체를 제조 가능함을 처음으로 인식하여 본 발명을 완성하게 되었다. The present invention has been completed for the first time to realize that a new diketopyrrolopyrrole polymer having a very good charge mobility as a polymer having an S-containing heteroaromatic ring of the present invention is directly bonded.
또한 본 발명의 목적은 전자 받개 물질 중 하나인 다이케토피롤로피롤 유도체와 비닐렌 결합이 도입된 방향족 재료인 전자 주개 물질을 교대 중합시켜 높은 공기 안정성을 가지며 주 사슬의 공면성(coplanarity)를 증가시키고 확장된 공액구조를 갖게 함으로서 충분한 파이 전자 확장을 나타낼 수 있는 이중결합을 포함하는 다이케토피롤로피롤 중합체로서, 용해도를 증가시키고 현저한 전하이동도 특성을 가지는 신규한 구조의 다이케토피롤로피롤 중합체를 제공하는 것이다.It is also an object of the present invention to alternately polymerize a diketopyrrolopyrrole derivative, one of the electron acceptor materials, and an electron donor material, an aromatic material in which a vinylene bond is introduced, to have high air stability and to increase coplanarity of the main chain. And diketopyrrolopyrrole polymers containing a double bond that can exhibit sufficient pi electron expansion by having an expanded conjugated structure, thereby increasing solubility and having significant charge mobility properties. To provide.
또한, 본 발명의 다른 목적은 상온에서의 스핀 코팅이 용이하여 용액공정이 가능케 하는 새로운 유기반도체 화합물인 다이케토피롤로피롤 중합체를 제공하는데 있다. In addition, another object of the present invention is to provide a diketopyrrolopyrrole polymer which is a novel organic semiconductor compound that is easy to spin coating at room temperature to enable a solution process.
또한, 본 발명의 다른 목적은 본 발명에 따른 높은 전하이동도와 스핀코팅 등의 상온 용액 공정이 가능한 신규한 다이케토피롤로피롤 중합체를 유기 반도체층에 포함하는 유기 박막 트랜지스터를 제공하는데 있다.In addition, another object of the present invention is to provide an organic thin film transistor including a novel diketopyrrolopyrrole polymer in the organic semiconductor layer capable of a high temperature solution process such as high charge mobility and spin coating according to the present invention.
본 발명은 유기박막트랜지스터(organic thin film transistor: OTFT)등 유기 전자 소자용 유기반도체 화합물 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 전자 받개 화합물인 다이케토피롤로피롤 유도체와 전자 주개 화합물인 비닐렌기를 포함하는 화합물이 교대로 중합되도록 구성된 유기박막트랜지스터의 활성층 재료로 사용되는 p타입 고분자 유기반도체 화합물인 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자에 관한 것이다.  The present invention relates to an organic semiconductor compound for organic electronic device such as an organic thin film transistor (OTFT) and its use. More specifically, the present invention relates to a p-type polymer organic semiconductor compound used as an active layer material of an organic thin film transistor configured to alternately polymerize a diketopyrrolopyrrole derivative as an electron acceptor compound and a compound containing a vinylene group as an electron donor compound. Dyketopyrrolopyrrole polymer and an organic electronic device using the same.
특히, 본 발명자들은 다이케토피롤로피롤기의 질소 원자에 치환되는 알킬기의 탄소수를 24개 이상으로 조절할 경우에 예상하지 못한 전하 이동도, 열적 안정성, 용해도 특성, 산화 안정성, 문턱전압 및 점멸비 등에서 놀라운 개선 효과를 처음으로 확인하여 본 발명을 완성하게 되었다. In particular, the inventors of the present invention have unexpected charge mobility, thermal stability, solubility characteristics, oxidation stability, threshold voltage and flashing ratio when the carbon number of the alkyl group substituted at the nitrogen atom of the diketopyrrolopyrrole group is adjusted to 24 or more. The surprising improvement effect was first confirmed to complete the present invention.
더욱이 원인을 알 수 없지만, 알킬기의 탄소수를 28개 이상으로 조절할 경우에 탄소수 24개 미만의 알킬기인 경우에 비해 전하 이동도 및 용해도 특성이 개선될 뿐만 아니라, 특히 탄소수 24개의 알킬기인 경우에 비해 전하 이동도는 1.5배 이상이나 2 배 이상으로 향상되는 놀라운 효과를 얻음을 처음으로 인식하여 본 발명을 완성하였다.Furthermore, the cause is unknown, but when the carbon number of the alkyl group is adjusted to 28 or more, the charge mobility and solubility characteristics are improved as compared to the alkyl group having less than 24 carbon atoms. The present invention has been completed for the first time to recognize that an amazing effect of improved mobility is 1.5 times or more or 2 times or more.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 유기 반도체 화합물은 하기 화학식 1로 표시되는 다이케토피롤로피롤 중합체로, 비닐렌 기(V)의 도입으로 주 사슬의 공면성(coplanarity)을 증가시키고 확장된 공액 구조를 갖게 함으로서 전자밀도를 향상시켜 분자간 상호작용을 높여주며 높은 이동도를 나타내게 한다.The organic semiconductor compound of the present invention is a diketopyrrolopyrrole polymer represented by the following formula (1), by introducing a vinylene group (V) increases the coplanarity of the main chain (electron density) by having an expanded conjugated structure Improves intermolecular interactions and high mobility.
[화학식 1][Formula 1]
Figure PCTKR2012010815-appb-I000001
Figure PCTKR2012010815-appb-I000001
[상기 화학식 1에서, [In Formula 1,
R1 및 R2는 각각 독립적으로 (C24-C50)알킬이고;R 1 and R 2 are each independently (C 24 -C 50) alkyl;
L1 및 L2 는 각각 독립적으로 하기 구조에서 선택되고;L 1 and L 2 are each independently selected from the following structures;
Figure PCTKR2012010815-appb-I000002
Figure PCTKR2012010815-appb-I000002
V 는
Figure PCTKR2012010815-appb-I000003
이고;
V is
Figure PCTKR2012010815-appb-I000003
ego;
A1 및 A2는 각각 독립적으로 수소, 시아노 또는 -COOR'이고;A 1 and A 2 are each independently hydrogen, cyano or -COOR ';
R'는 (C1-C50)알킬 또는 (C6-C50)아릴이고;R 'is (C1-C50) alkyl or (C6-C50) aryl;
R3 내지 R8은 각각 독립적으로 수소, 히드록시기, 아미노, (C1-C50)알킬, (C6-C50)아릴, (C1-C50)알콕시, 모노 또는 다이 (C1-C50)알킬아미노, (C1-C50)알콕시카보닐 또는 (C1-C50)알킬카보닐옥시이고;R 3 to R 8 are each independently hydrogen, hydroxy group, amino, (C1-C50) alkyl, (C6-C50) aryl, (C1-C50) alkoxy, mono or di (C1-C50) alkylamino, (C1- C50) alkoxycarbonyl or (C1-C50) alkylcarbonyloxy;
m 은 1 또는 2의 정수이고, m이 2인 경우 각각의 V 및 L2는 서로 동일하거나 상이할 수 있고; 및m is an integer of 1 or 2, and when m is 2, each of V and L 2 may be the same or different from each other; And
n은 1 내지 1,000의 정수이다.]n is an integer from 1 to 1,000.]
상기 화학식 1에서
Figure PCTKR2012010815-appb-I000004
는 하기 구조에서 선택된다.
In Chemical Formula 1
Figure PCTKR2012010815-appb-I000004
Is selected from the following structures.
Figure PCTKR2012010815-appb-I000005
Figure PCTKR2012010815-appb-I000005
[상기 A1, A2, R3, R4, R5, R6, R7 및 R8은 상기 화학식 1에서의 정의와 동일하다.][A 1 , A 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same as defined in Formula 1 above.]
보다 바람직하게, 상기
Figure PCTKR2012010815-appb-I000006
는 하기 구조에서 선택된다.
More preferably,
Figure PCTKR2012010815-appb-I000006
Is selected from the following structures.
Figure PCTKR2012010815-appb-I000007
Figure PCTKR2012010815-appb-I000007
또한, 상기 화학식 1에서 상기 R1 및 R2는 각각 독립적으로 (C28-C50)알킬인 것이 바람직하며, 상기 알킬은 직쇄 또는 분지쇄의 알킬을 포함한다.In addition, in Formula 1, R 1 and R 2 are each independently (C28-C50) alkyl, it is preferable that the alkyl includes a linear or branched alkyl.
본 발명의 다이케토피롤로피롤 중합체는 구체적으로 하기 화합물로부터 선택된다.The diketopyrrolopyrrole polymer of the present invention is specifically selected from the following compounds.
Figure PCTKR2012010815-appb-I000008
Figure PCTKR2012010815-appb-I000008
Figure PCTKR2012010815-appb-I000009
Figure PCTKR2012010815-appb-I000009
Figure PCTKR2012010815-appb-I000010
Figure PCTKR2012010815-appb-I000010
Figure PCTKR2012010815-appb-I000011
Figure PCTKR2012010815-appb-I000011
Figure PCTKR2012010815-appb-I000012
Figure PCTKR2012010815-appb-I000012
Figure PCTKR2012010815-appb-I000013
Figure PCTKR2012010815-appb-I000013
Figure PCTKR2012010815-appb-I000014
Figure PCTKR2012010815-appb-I000014
Figure PCTKR2012010815-appb-I000015
Figure PCTKR2012010815-appb-I000015
Figure PCTKR2012010815-appb-I000016
Figure PCTKR2012010815-appb-I000016
Figure PCTKR2012010815-appb-I000017
Figure PCTKR2012010815-appb-I000017
Figure PCTKR2012010815-appb-I000018
Figure PCTKR2012010815-appb-I000018
Figure PCTKR2012010815-appb-I000019
Figure PCTKR2012010815-appb-I000019
Figure PCTKR2012010815-appb-I000020
Figure PCTKR2012010815-appb-I000020
Figure PCTKR2012010815-appb-I000021
Figure PCTKR2012010815-appb-I000021
Figure PCTKR2012010815-appb-I000022
Figure PCTKR2012010815-appb-I000022
Figure PCTKR2012010815-appb-I000023
Figure PCTKR2012010815-appb-I000023
Figure PCTKR2012010815-appb-I000024
Figure PCTKR2012010815-appb-I000024
Figure PCTKR2012010815-appb-I000025
Figure PCTKR2012010815-appb-I000025
Figure PCTKR2012010815-appb-I000026
Figure PCTKR2012010815-appb-I000026
Figure PCTKR2012010815-appb-I000027
Figure PCTKR2012010815-appb-I000027
Figure PCTKR2012010815-appb-I000028
Figure PCTKR2012010815-appb-I000028
Figure PCTKR2012010815-appb-I000029
Figure PCTKR2012010815-appb-I000029
Figure PCTKR2012010815-appb-I000030
Figure PCTKR2012010815-appb-I000030
Figure PCTKR2012010815-appb-I000031
Figure PCTKR2012010815-appb-I000031
Figure PCTKR2012010815-appb-I000032
Figure PCTKR2012010815-appb-I000032
Figure PCTKR2012010815-appb-I000033
Figure PCTKR2012010815-appb-I000033
Figure PCTKR2012010815-appb-I000034
Figure PCTKR2012010815-appb-I000034
Figure PCTKR2012010815-appb-I000035
Figure PCTKR2012010815-appb-I000035
Figure PCTKR2012010815-appb-I000036
Figure PCTKR2012010815-appb-I000036
Figure PCTKR2012010815-appb-I000037
Figure PCTKR2012010815-appb-I000037
Figure PCTKR2012010815-appb-I000038
Figure PCTKR2012010815-appb-I000038
Figure PCTKR2012010815-appb-I000039
Figure PCTKR2012010815-appb-I000039
Figure PCTKR2012010815-appb-I000040
Figure PCTKR2012010815-appb-I000040
Figure PCTKR2012010815-appb-I000041
Figure PCTKR2012010815-appb-I000041
Figure PCTKR2012010815-appb-I000042
Figure PCTKR2012010815-appb-I000042
Figure PCTKR2012010815-appb-I000043
Figure PCTKR2012010815-appb-I000043
Figure PCTKR2012010815-appb-I000044
Figure PCTKR2012010815-appb-I000044
Figure PCTKR2012010815-appb-I000045
Figure PCTKR2012010815-appb-I000045
Figure PCTKR2012010815-appb-I000046
Figure PCTKR2012010815-appb-I000046
[상기 n은 1 내지 1,000의 정수이다.][Where n is an integer of 1 to 1,000.]
바람직하게, 본 발명의 다이케토피롤로피롤 중합체는 하기 화합물로부터 선택된다.Preferably, the diketopyrrolopyrrole polymer of the present invention is selected from the following compounds.
Figure PCTKR2012010815-appb-I000047
Figure PCTKR2012010815-appb-I000047
Figure PCTKR2012010815-appb-I000048
Figure PCTKR2012010815-appb-I000048
Figure PCTKR2012010815-appb-I000049
Figure PCTKR2012010815-appb-I000049
Figure PCTKR2012010815-appb-I000050
Figure PCTKR2012010815-appb-I000050
Figure PCTKR2012010815-appb-I000051
Figure PCTKR2012010815-appb-I000051
Figure PCTKR2012010815-appb-I000052
Figure PCTKR2012010815-appb-I000052
Figure PCTKR2012010815-appb-I000053
Figure PCTKR2012010815-appb-I000053
Figure PCTKR2012010815-appb-I000054
Figure PCTKR2012010815-appb-I000054
Figure PCTKR2012010815-appb-I000055
Figure PCTKR2012010815-appb-I000055
[상기 n은 1 내지 1,000의 정수이다.][Wherein n is an integer of 1 to 1,000.]
보다 바람직하게, 본 발명의 다이케토피롤로피롤 중합체는 하기 화합물로부터 선택된다.More preferably, the diketopyrrolopyrrole polymer of the present invention is selected from the following compounds.
Figure PCTKR2012010815-appb-I000056
Figure PCTKR2012010815-appb-I000056
Figure PCTKR2012010815-appb-I000057
Figure PCTKR2012010815-appb-I000057
[상기 n은 1 내지 1,000의 정수이다.][Where n is an integer of 1 to 1,000.]
본 발명에 따른 다이케토피롤로피롤 중합체를 제조하기 위한 방법으로, 알킬화 반응, 그리냐드 커플링 반응, 스즈키 커플링 반응, 스틸레 커플링 반응 등을 통하여 최종 화합물을 제조할 수 있다. 본 발명에 따른 유기반도체 화합물은 상기의 제조방법으로 한정하는 것은 아니며, 상기의 제조방법 이외에도 통상의 유기화학 반응에 의하여 제조될 수 있다.As a method for preparing the diketopyrrolopyrrole polymer according to the present invention, the final compound may be prepared through an alkylation reaction, a Grignard coupling reaction, a Suzuki coupling reaction, a Stiletto coupling reaction, and the like. The organic semiconductor compound according to the present invention is not limited to the above production method, and may be prepared by a conventional organic chemical reaction in addition to the above production method.
본 발명에 따른 다이케토피롤로피롤 중합체는 유기 전자 소자의 유기 반도체층 형성용 물질로 사용될 수 있으며, 이를 적용한 유기 박막 트랜지스터의 제조방법의 구체적인 예는 하기와 같다.The diketopyrrolopyrrole polymer according to the present invention can be used as a material for forming an organic semiconductor layer of an organic electronic device, specific examples of the manufacturing method of the organic thin film transistor to which it is applied are as follows.
기판(11)으로는 통상적인 유기박막트랜지스터에 사용하는 n-형 실리콘을 사용하는 것이 바람직하다. 이 기판에는 게이트 전극의 기능이 포함되어 있다. 기판으로 n-형 실리콘외에 표면 평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명한 플라스틱 기판을 사용할 수도 있다. 이 경우에는 게이트 전극이 기판위에 더해져야 한다. 기판으로서 채용가능한 물질로는 유리, 폴리에틸렌나프탈레이트(Polyethylenenaphthalate:PEN), 폴리에틸렌테레프탈레이트(Polyethylterephthalate:PET), 폴리카보네이트(Polycarbonate:PC), 폴리비닐알콜(Polyvinylalcohol:PVP), 폴리아크릴레이트(Polyacrylate), 폴리이미드(Polyimide), 폴리노르보넨(Polynorbornene) 및 폴리에테르설폰(Polyethersulfone: PES)로 예시될 수 있다.As the substrate 11, it is preferable to use n-type silicon used in a conventional organic thin film transistor. This substrate contains the function of the gate electrode. In addition to n-type silicon, a glass substrate or a transparent plastic substrate having excellent surface smoothness, ease of handling, and waterproofness may be used as the substrate. In this case, a gate electrode must be added on the substrate. Substances which can be employed as the substrate include glass, polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl alcohol (PVP), polyacrylate (Polyacrylate). , Polyimide, polynorbornene and polyethersulfone (PES).
상기 OTFT 소자를 구성하는 게이트 절연층(12)으로서는 통상적으로 사용되는 유전율이 큰 절연체를 사용할 수 있으며, 구체적으로 Ba0.33Sr0.66TiO3(BST), Al2O3, Ta2O5, La2O5, Y2O3 및 TiO2로 이루어진 군으로부터 선택된 강유전성 절연체, PdZr0.33Ti0.66O3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(TaNb)2O9, Ba(ZrTi)O3(BZT), BaTiO3, SrTiO3, Bi4Ti3O12, SiO2, SiNx 및 AlON로 이루어진 군으로부터 선택된 무기 절연체, 또는 폴리이미드(polyimide), BCB(benzocyclobutene), 파릴렌(parylene), 폴리아크릴레이트(polyacrylate), 폴리비닐알콜(polyvinylalcohol) 및 폴리비닐페놀(polyvinylphenol) 등의 유기 전연체를 사용할 수 있다.As the gate insulating layer 12 constituting the OTFT device, an insulator having a high dielectric constant, which is commonly used, may be used. Specifically, Ba 0.33 Sr 0.66 TiO 3 (BST), Al 2 O 3 , Ta 2 O 5 , and La 2 Ferroelectric insulators selected from the group consisting of O 5 , Y 2 O 3 and TiO 2 , PdZr 0.33 Ti 0.66 O 3 (PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (TaNb) 2 O 9 , Ba (ZrTi ) O 3 (BZT), BaTiO 3 , SrTiO 3 , Bi 4 Ti 3 O 12 , SiO 2 , SiN x and AlON, an inorganic insulator selected from the group consisting of polyimide, benzocyclobutene (BCB), parylene ( Organic leading bodies such as parylene, polyacrylate, polyvinylalcohol, and polyvinylphenol may be used.
본 발명의 유기 박막 트랜지스터의 구성은 도 1에 나타낸 바와 같이 기판(11)/게이트전극(16)/절연층(12)/유기반도체층(13)/소스(14), 드레인 전극(15)의 탑-컨택트(top-contact) 뿐만 아니라 기판/게이트전극/절연층/소스, 드레인 전극/유기반도체층의 바텀-컨택트(bottom-contact)의 형태를 모두 포함한다. 또한 소스(14) 및 드레인 전극(15)과 유기반도체층(13) 사이에 표면처리로서 HMDS(1,1,1,3,3,3-hexamethyldisilazane), OTS(octadecyltrichlorosilane) 또는 OTDS(octadecyltrichlorosilane)를 코팅하거나 하지 않을 수도 있다.As shown in FIG. 1, the organic thin film transistor of the present invention is composed of the substrate 11, the gate electrode 16, the insulating layer 12, the organic base layer 13, the source 14, and the drain electrode 15. As shown in FIG. It includes both top-contact as well as bottom-contact types of substrate / gate electrode / insulation layer / source and drain electrode / derivative layer. In addition, HMDS (1,1,1,3,3,3-hexamethyldisilazane), OTS (octadecyltrichlorosilane) or OTDS (octadecyltrichlorosilane) may be used as a surface treatment between the source 14 and the drain electrode 15 and the organic semiconductor layer 13. It may or may not be coated.
본 발명에 따른 다이케토피롤로피롤 중합체를 채용하는 유기반도체층은 진공 증착법, 스크린 인쇄법, 프린팅법, 스핀캐스팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성될 수 있으며, 이 때, 상기 유기반도체층의 증착은 40 ℃ 이상에서 고온 용액을 이용하여 형성될 수 있고, 그 두께는 500 Å내외가 바람직하다.The organic semiconductor layer employing the diketopyrrolopyrrole polymer according to the present invention may be formed into a thin film through vacuum deposition, screen printing, printing, spin casting, spin coating, dipping or ink spraying, At this time, the deposition of the organic semiconductor layer may be formed using a high temperature solution at 40 ℃ or more, the thickness is preferably about 500 kPa.
상기 게이트 전극(16) 및 소스 및 드레인 전극(14 및 15)은 전도성 물질이면 가능하나, 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질로 형성되는 것이 바람직하다.The gate electrode 16 and the source and drain electrodes 14 and 15 may be conductive materials, but gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and indium tin may be used. It is preferably formed of a material selected from the group consisting of oxides (ITOs).
도 1 - 기판/게이트/절연층(소스,드레인)/반도체 층으로 제조되는 일반적인 유기박막트랜지스터의 구조를 보여주는 단면도Fig. 1-A cross-sectional view showing the structure of a general organic thin film transistor made of a substrate / gate / insulating layer (source, drain) / semiconductor layer.
도 2 - 실시예 1에 따른 유기반도체 화합물(PDPPDBTE)의 용액상 및 필름상의 UV-vis 흡수 스펙트라FIG. 2-UV-vis absorption spectra of solution phase and film phase of organic semiconductor compound (PDPPDBTE) according to Example 1
도 3 - 실시예 8에 따른 유기반도체 화합물(P28DPP-TVT)의 용액상 및 필름상의 UV-vis 흡수 스펙트라3-UV-vis absorption spectra of the solution phase and the film phase of the organic semiconductor compound (P28DPP-TVT) according to Example 8
도 4 - 실시예 9에 따른 유기반도체 화합물(P32DPP-TVT)의 용액상 및 필름상의 UV-vis 흡수 스펙트라4-UV-vis absorption spectra of the solution phase and the film phase of the organic semiconductor compound (P32DPP-TVT) according to Example 9
도 5 - 실시예 1에 따른 유기반도체 화합물(PDPPDBTE)의 전기적 특성(cyclic voltammetry) 도면5-Cyclic voltammetry diagram of the organic semiconductor compound (PDPPDBTE) according to Example 1
도 6 - 실시예 8에 따른 유기반도체 화합물(P28DPP-TVT)의 전기적 특성(cyclic voltammetry) 도면6-Electrical property (cyclic voltammetry) diagram of organic semiconductor compound (P28DPP-TVT) according to Example 8
도 7 - 실시예 9에 따른 유기반도체 화합물(P32DPP-TVT)의 전기적 특성(cyclic voltammetry) 도면7-Electrical properties (cyclic voltammetry) of the organic semiconductor compound (P32DPP-TVT) according to Example 9
도 8 - 실시예 1에 따른 유기 반도체 화합물(PDPPDBTE)의 시차열량분석(DSC) 곡선8-Differential calorimetry (DSC) curve of organic semiconductor compound (PDPPDBTE) according to Example 1
도 9 - 실시예 8에 따른 유기반도체 화합물(P28DPP-TVT)의 시차열량분석(DSC) 곡선9-Differential calorimetry (DSC) curve of organic semiconductor compound (P28DPP-TVT) according to Example 8
도 10 - 실시예 9에 따른 유기반도체 화합물(P32DPP-TVT)의 시차열량분석(DSC) 곡선Figure 10-Differential calorimetry (DSC) curve of the organic semiconductor compound (P32DPP-TVT) according to Example 9
도 11 - 실시예 1에 따른 유기반도체 화합물(PDPPDBTE)의 열중량분석(TGA) 곡선11-Thermogravimetric Analysis (TGA) curve of organic semiconductor compound (PDPPDBTE) according to Example 1
도 12 - 실시예 8에 따른 유기반도체 화합물(P28DPP-TVT)의 열중량분석(TGA) 12-Thermogravimetric analysis (TGA) of organic semiconductor compound (P28DPP-TVT) according to Example 8
도 13 - 실시예 9에 따른 유기반도체 화합물(P32DPP-TVT)의 열중량분석(TGA) 곡선13-Thermogravimetric Analysis (TGA) curve of organic semiconductor compound (P32DPP-TVT) according to Example 9
도 14 - 컴퓨터 시뮬레이션(DFT)를 통해 실시예 1의 HOMO와 LUMO 구조를 예측한 도면14-Predicted HOMO and LUMO structure of Example 1 by computer simulation (DFT)
도 15 - 실시예 1에 따른 유기반도체 화합물(PDPPDBTE)를 이용하여 실시예 10의 방법으로 제작된 소자의 AFM images (a: 상온에서 필름, a: 200℃에서 풀림(annealing)한 필름상태, c) 250℃에서 풀림(annealing)한 필름상태)를 나타내는 도면15-AFM images of the device fabricated by the method of Example 10 using the organic semiconductor compound (PDPPDBTE) according to Example 1 (a: film at room temperature, a: film state annealed at 200 ° C., c ) Drawing showing the state of the film annealed at 250 ° C)
도 16 및 도 17 - 실시예 1에 따른 유기반도체 화합물(PDPPDBTE)를 이용하여 실시예 10의 방법으로 제작된 소자의 특성(Transfer curve, Output curve)을 나타내는 도면 16 and 17-a diagram showing the characteristics (transfer curve, output curve) of the device manufactured by the method of Example 10 using the organic semiconductor compound (PDPPDBTE) according to Example 1
도 18 및 도 19 - 실시예 8에 따른 유기반도체 화합물(P28DPP-TVT)를 이용하여 실시예 10의 방법으로 제작된 소자의 특성(Transfer curve, Output curve)을 나타내는 도면18 and 19-a diagram showing the characteristics (transfer curve, output curve) of the device manufactured by the method of Example 10 using the organic semiconductor compound (P28DPP-TVT) according to Example 8
도 20 및 도 21 - 실시예 9에 따른 유기반도체 화합물(P32DPP-TVT)를 이용하여 실시예 10의 방법으로 제작된 소자의 특성(Transfer curve, Output curve)을 나타내는 도면20 and 21-a diagram showing the characteristics (Transfer curve, Output curve) of the device manufactured by the method of Example 10 using the organic semiconductor compound (P32DPP-TVT) according to Example 9
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
11 : 기판 12 : 절연층(insulator)11 substrate 12 insulator
13 : 유기전자소자층(channel material) 14 : 소스(source)13: organic electronic device layer (channel material) 14: source
15 : 드레인(drain) 16 : 게이트(gate)15: drain 16: gate
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The present invention can be more clearly understood by the following examples, which are only intended to illustrate the present invention and are not intended to limit the scope of the invention.
[제조예 1] (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 ((E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성Preparation Example 1 (E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (5- (trimethylstannyl) thiophen-2- synthesis of yl) ethene)
Figure PCTKR2012010815-appb-I000058
Figure PCTKR2012010815-appb-I000058
(E)-1,2-비스(싸이오펜-2-일)에텐((E)-1,2-bis(thiophen-2-yl)ethene)의 합성Synthesis of (E) -1,2-bis (thiophen-2-yl) ethene ((E) -1,2-bis (thiophen-2-yl) ethene)
플라스크에 싸이오펜-2-카르발데하이드(5.6 g, 50 mmol)을 넣고 테트라하이드로류란(THF) (100 mL)에 녹인 후 -18℃로 온도를 낮추고 티타늄(IV)클로라이드(6.5 mL) 30분 동안 천천히 적하한다. 30분 동안 교반 후에 아연분말(7.8 g)을 30분에 걸쳐 투입한다. -18℃에서 30분 동안 교반 뒤에 상온으로 올리고 3시간 30분 동안 환류시킨다. 그 후 얼음물을 부어 반응종결 시킨 뒤 필터로 무기물을 필터하면서 메틸렌클로라이드로 씻어내려 추출하고 수분제거 후 헥산으로 재결정하여 노란색 고체로 목적화합물인 (E)-1,2-비스(싸이오펜-2-일)에텐을 얻었다(4.7 g, 수득률: 98%). 1H NMR(300MHz, CDCl3)[ppm] δ 7.18(d, 2H), 7.05(s, 2H), 7.04(d, 2H), 6.99(m, 2H). Add thiophene-2-carbaldehyde (5.6 g, 50 mmol) to the flask, dissolve in tetrahydrolyuran (THF) (100 mL), lower the temperature to -18 ° C and add titanium (IV) chloride (6.5 mL) 30 Drop off slowly for minutes. After stirring for 30 minutes, zinc powder (7.8 g) is added over 30 minutes. After stirring at −18 ° C. for 30 minutes, the temperature was raised to room temperature and refluxed for 3 hours 30 minutes. Then pour iced water to terminate the reaction, filter the inorganics with water, wash with methylene chloride, extract, remove the water and recrystallize with hexane to obtain the target compound (E) -1,2-bis (thiophen-2- Il) ethene was obtained (4.7 g, yield: 98%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.18 (d, 2H), 7.05 (s, 2H), 7.04 (d, 2H), 6.99 (m, 2H).
(E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 ((E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성(E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene) synthesis
플라스크에 (E)-1,2-비스(싸이오펜-2-일)에텐 (1.78 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 50 mL)에 녹인 후 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol)을 -78℃에서 천천히 가하고 30분간 교반시킨다. 상온으로 올려 1시간동안 환류시킨 후 다시 반응물을 -78℃로 온도를 내린다. 동온도에서 상기 반응물에 1몰의 트리메틸틴 클로라이드가 용해되어 있는 테트라하이드로퓨란(22 mL, 22 mmol)천천히 적하시키고, 2시간 동안 상온에서 교반시킨다. 에테르로 추출하고, 무수황산마그네슘으로 수분을 제거하고, 용매를 농축한 후 에탄올로 재결정하여 하얀색의 바늘모양의 목적 화합물인 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐을 얻었다(3.88 g, 수득률: 80%). 1H NMR (300MHz, CDCl3)[ppm] δ 7.11(d, 2H), 7.08(s, 2H), 7.07(d, 2H), 0.36(s, 18H). Dissolve (E) -1,2-bis (thiophen-2-yl) ethene (1.78 g, 9.6 mmol) in a mixed solvent of tetrahydrofuran / hexane (volume ratio 2/1, 50 mL) in a flask and 2 moles. Of cyclohexane with n-butyllithium (11 ml, 22 mmol) was slowly added at -78 ° C and stirred for 30 minutes. After raising to room temperature to reflux for 1 hour, the reaction was again cooled to -78 ℃. Tetrahydrofuran (22 mL, 22 mmol) in which 1 mol of trimethyltin chloride is dissolved is slowly added dropwise to the reaction at the same temperature, and the mixture is stirred at room temperature for 2 hours. Extract with ether, remove water with anhydrous magnesium sulfate, concentrate the solvent and recrystallize with ethanol to give (E) -1,2-bis (5- (trimethylstannyl) thiophene, the target compound of white needle shape. 2-yl) ethene was obtained (3.88 g, yield: 80%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.11 (d, 2H), 7.08 (s, 2H), 7.07 (d, 2H), 0.36 (s, 18H).
[제조예 2] (E)-1,2-비스(4-(트리메틸스탠닐)페닐)에텐 ((E)-1,2-bis(4-(trimethylstannyl)phenyl)ethene)의 합성Preparation Example 2 Synthesis of (E) -1,2-bis (4- (trimethylstannyl) phenyl) ethene ((E) -1,2-bis (4- (trimethylstannyl) phenyl) ethene)
Figure PCTKR2012010815-appb-I000059
Figure PCTKR2012010815-appb-I000059
플라스크에 (E)-1,2-비스(4-브로모페닐)에텐 (3 g, 8.7 mmol)을 테트라하이드로퓨란 (90 mL)에 녹인 후 2몰의 n-부틸리튬이 있는 시클로헥산(7.1 mL, 17.75 mmol)을 -78℃에서 천천히 가하고 30분간 교반시킨다. 동온도에서 상기 반응물에 트리메틸틴 클로라이드를 (3.53 g, 17.75 mmol)천천히 적하시키고, 2시간 동안 상온에서 교반시킨다. 에테르로 추출하고, 무수황산마그네슘으로 수분을 제거하고, 용매를 농축한 후 에틸알콜으로 재결정하여 하얀색 분말의 목적 화합물인 (E)-1,2-비스(4-(트리메틸스탠닐)페닐)에텐을 얻었다(3.2 g, 수득률: 80%). 1H NMR (300MHz, CDCl3)[ppm] δ 7.50-7.48(m, 4H), 6.968(s, 2H), 0.36(s, 18H). In a flask, (E) -1,2-bis (4-bromophenyl) ethene (3 g, 8.7 mmol) was dissolved in tetrahydrofuran (90 mL), followed by 2 moles of n-butyllithium cyclohexane (7.1 mL, 17.75 mmol) was added slowly at −78 ° C. and stirred for 30 minutes. Trimethyltin chloride (3.53 g, 17.75 mmol) was slowly added dropwise to the reaction at the same temperature and stirred at room temperature for 2 hours. Extract with ether, remove water with anhydrous magnesium sulfate, concentrate the solvent and recrystallize with ethyl alcohol to give (E) -1,2-bis (4- (trimethylstannyl) phenyl) ethene, the target compound as a white powder. Was obtained (3.2 g, yield: 80%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.50-7.48 (m, 4H), 6.968 (s, 2H), 0.36 (s, 18H).
[제조예 3] (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성Preparation Example 3 (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (3-dodecyl- Synthesis of 5- (trimethylstannyl) thiophen-2-yl) ethene)
Figure PCTKR2012010815-appb-I000060
Figure PCTKR2012010815-appb-I000060
(E)-1,2-비스(3-도데실싸이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecylthiophen-2-yl)ethene)의 합성Synthesis of (E) -1,2-bis (3-dodecylthiophen-2-yl) ethene ((E) -1,2-bis (3-dodecylthiophen-2-yl) ethene)
3-도데실싸이오펜-2-카르발데하이드(14 g, 50 mmol), 테트라하이드로퓨란(THF) (250 mL), 티타늄(IV)클로라이드(6.5 mL), 아연분말(7.8 g)을 사용하여 제조예 1과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실싸이오펜-2-일)에텐을 얻었다(10 g, 수득률: 75%). 1H NMR(300MHz, CDCl3)[ppm] δ 7.18(d, 2H), 7.05(d, 2H), 6.99(s, 2H), 2.67(m, 4H), 1.54(m, 4H), 1.23(m, 36H), 0.88(m, 6H) 3-dodecylthiophen-2-carbaldehyde (14 g, 50 mmol), tetrahydrofuran (THF) (250 mL), titanium (IV) chloride (6.5 mL), zinc powder (7.8 g) In the same manner as in Preparation Example 1, the target compound (E) -1,2-bis (3-dodecylthiophen-2-yl) ethene was obtained (10 g, yield: 75%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.18 (d, 2H), 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 ( m, 36H), 0.88 (m, 6H)
(E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성(E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) Synthesis of thiophen-2-yl) ethene)
(E)-1,2-비스(3-도데실싸이오펜-2-일)에텐 (5 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 100 mL), 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol), 트리메틸틴 클로라이드(4.38g, 22 mmol) 제조예 2과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐을 얻었다(5.2 g, 수득률: 63%). 1H NMR (300MHz, CDCl3)[ppm] δ 7.05(d, 2H), 6.99(s, 2H), 2.67(m, 4H), 1.54(m, 4H), 1.23(m, 36H), 0.88(m, 6H), 0.36(s, 18H).(E) -1,2-bis (3-dodecylthiophen-2-yl) ethene (5 g, 9.6 mmol) in a mixed solvent of tetrahydrofuran / hexane (volume ratio 2/1, 100 mL), 2 mol Cyclohexane with n-butyllithium (11 ml, 22 mmol), trimethyltin chloride (4.38 g, 22 mmol) in the same manner as in Preparation Example 2 (E) -1,2-bis (3-dode Sil-5- (trimethylstannyl) thiophen-2-yl) ethene was obtained (5.2 g, yield: 63%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 (m, 36H), 0.88 ( m, 6H), 0.36 (s, 18H).
[제조예 4] (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)ethene)의 합성Preparation Example 4 (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (3-dodecyl- Synthesis of 5- (trimethylstannyl) thieno [3,2-b] thiophen-2-yl) ethene)
Figure PCTKR2012010815-appb-I000061
Figure PCTKR2012010815-appb-I000061
(E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecylthieno[3,2-b]thiophen-2-yl)ethene)의 합성(E) -1,2-bis (3-dodecylthieno [3,2-b] thiophen-2-yl) ethene ((E) -1,2-bis (3-dodecylthieno [3,2 -b] thiophen-2-yl) ethene)
3-도데실싸이에노[3,2-b]싸이오펜-2-카르발데하이드(17 g, 50 mmol), 테트라하이드로퓨란(THF) (250 mL), 티타늄(IV)클로라이드(6.5 mL), 아연분말(7.8 g)을 사용하여 제조예 1과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐을 얻었다(24 g, 수득률: 75%). 1H NMR(300MHz, CDCl3)[ppm] δ 7.18(d, 2H), 7.05(d, 2H), 6.99(s, 2H), 2.67(m, 4H), 1.54(m, 4H), 1.23(m, 36H), 0.88(m, 6H) 3-dodecylthieno [3,2- b ] thiophene-2-carbaldehyde (17 g, 50 mmol), tetrahydrofuran (THF) (250 mL), titanium (IV) chloride (6.5 mL) , (E) -1,2-bis (3-dodecylthieno [3,2-b] thiophen-2-yl as the target compound in the same manner as in Preparation Example 1 using zinc powder (7.8 g) ) Ethene was obtained (24 g, yield: 75%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.18 (d, 2H), 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 ( m, 36H), 0.88 (m, 6H)
(E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)ethene)의 합성(E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene ((E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thieno [3,2-b] thiophen-2-yl) ethene)
(E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐 (5 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 100 mL), 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol), 트리메틸틴 클로라이드(4.38g, 22 mmol) 제조예 2과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐을 얻었다(5.2 g, 수득률: 63%). 1H NMR (300MHz, CDCl3)[ppm] δ 7.05(d, 2H), 6.99(s, 2H), 2.67(m, 4H), 1.54(m, 4H), 1.23(m, 36H), 0.88(m, 6H), 0.36(s, 18H).(E) -1,2-bis (3-dodecylthioeno [3,2-b] thiophen-2-yl) ethene (5 g, 9.6 mmol) in a mixed solvent of tetrahydrofuran / hexane (volume ratio 2/1, 100 mL), cyclohexane with 2 moles of n-butyllithium (11 ml, 22 mmol), trimethyltin chloride (4.38 g, 22 mmol) in the same manner as in Preparation Example 2 (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene was obtained (5.2 g, yield: 63%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] δ 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 (m, 36H), 0.88 ( m, 6H), 0.36 (s, 18H).
[제조예 5] 13-브로모메틸-헵타코산(13-Bromomethyl-heptacosane)의 합성Preparation Example 5 Synthesis of 13-Bromomethyl-heptacosane
Figure PCTKR2012010815-appb-I000062
Figure PCTKR2012010815-appb-I000062
500 mL 삼구 둥근 바닥 플라스크에 트리페닐포스핀 (60.56 g, 0.2308 mol)을 메틸렌클로라이드 (MC)에 넣고 녹여 준 후 온도를 0℃로 낮추고 브로민 (Bromine; 35.67 g, 0.2231 mol)을 드랍핑(dropping) 해주고 10분정도 교반한다. 그리고, 메틸렌클로라이드 (MC)에 녹인 2-도데실헥사데칸-1-올 (33.0 g, 0.0803 mol)을 드랍핑 해주고 16시간동안 교반한다. 메틸렌클로라이드(MC)로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. 남아있는 유기물층을 헥산에 충분히 녹여서 필터로 걸러낸 걸러낸 부분을 계속 핵산으로 씻어 최대한 물질을 녹인다. 헥산에 녹아나온 물질을 회전식 증발기를 사용하여 용매를 제거하였다 n-헥산 용매를 사용하여 컬럼 크로마토그래피로 분리 후 목적화합물인 13-브로모메틸-헵타코산을 얻었다(15.56 g, 17.22%). 1H-NMR (300MHz, CDCl3): δ 3.47-3.45(m, 2H), 1.61-156(d, 1H), 1.44-1.2 (m, 49H), 0.92-0.87(t, 6H); EI, MS m/z (%): 473.6 (100, M+)Triphenylphosphine (60.56 g, 0.2308 mol) was dissolved in methylene chloride (MC) in a 500 mL three-neck round bottom flask, and the temperature was lowered to 0 ° C. and bromine (35.67 g, 0.2231 mol) was dropped ( dropping) and stir for 10 minutes. Then, 2-dodecylhexadecane-1-ol (33.0 g, 0.0803 mol) dissolved in methylene chloride (MC) was dropped and stirred for 16 hours. Extracted with methylene chloride (MC), the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. Dissolve the remaining organic layer in hexane and filter the filtered part with nucleic acid continuously to dissolve the material as much as possible. The solvent dissolved in hexane was removed using a rotary evaporator. After separation by column chromatography using n -hexane solvent, the target compound 13-bromomethyl-heptacoic acid was obtained (15.56 g, 17.22%). 1 H-NMR (300 MHz, CDCl 3 ): δ 3.47-3.45 (m, 2H), 1.61-156 (d, 1H), 1.44-1.2 (m, 49H), 0.92-0.87 (t, 6H); EI, MS m / z (%): 473.6 (100, M +)
[제조예 6] 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-도데실헥사데실)-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (3,6-Bis-(5-bromo-thiophen-2-yl)-2,5-bis-(2-dodecylhexadecyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione)의 합성Production Example 6 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [3,4 -c] pyrrole-1,4 (2H, 5H) -dione (3,6-Bis- (5-bromo-thiophen-2-yl) -2,5-bis- (2-dodecylhexadecyl) -2,5 -dihydro-pyrrolo [3,4-c] pyrrole-1,4-dione)
Figure PCTKR2012010815-appb-I000063
Figure PCTKR2012010815-appb-I000063
2,5-비스(2-도데실헥사데실)-3,6-디-싸이오펜-2-일-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4-다이온(2,5-Bis-(2-dodecylhexadecyl)-3,6-di-thiophen-2-yl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione)의 합성2,5-bis (2-dodecylhexadecyl) -3,6-di-thiophen-2-yl-2,5-dihydro-pyrrolo [3,4-c] pyrrole-1,4-da Synthesis of ions (2,5-Bis- (2-dodecylhexadecyl) -3,6-di-thiophen-2-yl-2,5-dihydro-pyrrolo [3,4-c] pyrrole-1,4-dione)
플라스크에 3,6-디(싸이오펜-2-일)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (3.38 g, 0.011 mol)와 K2CO3 (6.22 g, 0.045 mol)을 넣고, DMF (70 ml)에 녹이고, 온도를 155℃로 올리고, 6시간동안 교반한다. 그리고 13-브로모메틸-헵타코산 (제조예 2, 32.0 g, 0.067 mol)를 나눠서 넣어주고, 질소 기류 하에서 16 시간동안 교반한다. 다이에틸에테르(Diehtyl ether)로 추출한 후 황산마그네슘(MgSO4)를 넣어 수분을 제거한 후 여과한다. 핵산(Hexane) /메틸렌 클로라이드(MC) (1:3) 용매를 사용하여 컬럼 크로마토그래피로 분리 후 목적화합물인 2,5-비스(2-도데실헥사데실)-3,6-디-싸이오펜-2-일-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4-다이온을 얻었다(1.2 g, 수득률: 10.6 %). 1HNMR (CDCl3, 300 MHz) [ppm] : δ 8.89-8.88(d, 2H), 8.65-8.64(d, 2H), 7.29-7.28(d, 2H), 3.96-3.93(d, 4H), 1.91-186(m, 2H), 1.31-1.25(m, 96H), 0.92-0.90(t, 12H); EI, MS m/z (%): 1085.84 (100, M+).In a flask, 3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (3.38 g, 0.011 mol) and K 2 CO 3 ( Add 6.22 g, 0.045 mol), dissolve in DMF (70 ml), raise the temperature to 155 ° C. and stir for 6 hours. Then 13-bromomethyl-heptacoic acid (Preparation Example 2, 32.0 g, 0.067 mol) was added in portions and stirred for 16 hours under a stream of nitrogen. Extract with diethyl ether and then add magnesium sulfate (MgSO 4 ) to remove water and filter. Separation by column chromatography using Hexane / Methylene Chloride (MC) (1: 3) solvent and target compound 2,5-bis (2-dodecylhexadecyl) -3,6-di-thiophene 2-yl-2,5-dihydro-pyrrolo [3,4-c] pyrrole-1,4-dione was obtained (1.2 g, yield: 10.6%). 1 HNMR (CDCl 3 , 300 MHz) [ppm]: δ 8.89-8.88 (d, 2H), 8.65-8.64 (d, 2H), 7.29-7.28 (d, 2H), 3.96-3.93 (d, 4H), 1.91-186 (m, 2H), 1.31-1.25 (m, 96H), 0.92-0.90 (t, 12H); EI, MS m / z (%): 1085.84 (100, M &lt; + &gt;).
3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-도데실헥사데실)-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (3,6-Bis-(5-bromo-thiophen-2-yl)-2,5-bis-(2-dodecylhexadecyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione)의 합성3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [3,4-c] pyrrole- 1,4 (2H, 5H) -dione (3,6-Bis- (5-bromo-thiophen-2-yl) -2,5-bis- (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [ 3,4-c] pyrrole-1,4-dione)
플라스크에 2,5-비스(2-도데실헥사데실)-3,6-디-싸이오펜-2-일-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4-다이온 (1.0 g, 0.92 mmol)을 클로로폼 (60mL)을 넣고 녹여 준 후 알루미늄 호일로 빛을 차단한다. 그리고 NBS (N-bromosuccinimide; 0.34 g. 1.88 mmol)을 천천히 적가해주고 8시간동안 교반한다. MC로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. n-Hexane/ EA (15:1) 용매를 사용하여 컬럼 크로마토그래피로 분리 후 MC와 Hexane으로 재결정하여 목적화합물인 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-도데실헥사데실)-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4(2H,5H)-다이온을 얻었다(0.75 g, 수득률: 65 %). 1HNMR (CDCl2, 300 MHz) [ppm] : δ 8.65-8.64(d, 2H), 7.29-7.28(d, 2H), 3.96-3.93(d, 4 H), 1.91-186(m, 2 H), 1.31-1.25(m, 96 H), 0.92-0.90(t, 12H); EI, MS m/z (%): 1243.64 (100, M+). 2,5-bis (2-dodecylhexadecyl) -3,6-di-thiophen-2-yl-2,5-dihydro-pyrrolo [3,4-c] pyrrole-1,4 in the flask -Dione (1.0 g, 0.92 mmol) is dissolved in chloroform (60mL) and the light is blocked with aluminum foil. Then slowly add dropwise NBS (N-bromosuccinimide; 0.34 g. 1.88 mmol) and stir for 8 hours. Extraction with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. Separation by column chromatography using n- Hexane / EA (15: 1) solvent and recrystallization with MC and Hexane to obtain the target compound 3,6-bis (5-bromothiophen-2-yl) -2,5 Obtain Bis (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (0.75 g, Yield: 65% ). 1 HNMR (CDCl 2 , 300 MHz) [ppm]: δ 8.65-8.64 (d, 2H), 7.29-7.28 (d, 2H), 3.96-3.93 (d, 4H), 1.91-186 (m, 2H ), 1.31-1.25 (m, 96H), 0.92-0.90 (t, 12H); EI, MS m / z (%): 1243.64 (100, M &lt; + &gt;).
[실시예 1] PDPPDBTE의 합성Example 1 Synthesis of PDPPDBTE
Figure PCTKR2012010815-appb-I000064
Figure PCTKR2012010815-appb-I000064
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-데실테트라데실)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.50 g, 0.0004 mol)과 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 (제조예 1, 0.229 g, 0.0004 mmol)을 클로로벤젠 (5 mL)에 녹이고 질소 치환을 실시한다. 그 후에 촉매로 Pd2(dba)3 (0.008 mg, 2 mol%)와 P(o-tol)3(0.011 g, 8 mol%)을 넣고 100℃에서 48시간 동안 환류시킨다. 그런 다음, 상기 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러낸다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검녹색 고체의 표제 화합물인 PDPPDBTE를 얻었다(수득률 90%). Mn = 34,000, 다분산도 1.78, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 6.99-6.83(broad, 6H), 3.88(broad, 4H), 2.11(m 2H), 1.31-1.25(m, 76H), 1.04-0.88(m, 12H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol) and (E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 1, 0.229 g, 0.0004 mmol) were added to chlorobenzene ( 5 mL) and carry out nitrogen substitution. After that, Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) were added as a catalyst and refluxed at 100 ° C. for 48 hours. The reaction solution is then slowly precipitated in methanol (300 mL) and the resulting solids are filtered off. The filtered solid is purified in the order of methanol, hexane, toluene and chloroform through soxxlet. The down liquid was precipitated again in methanol, filtered through a filter and dried to give PDPPDBTE, the title compound as a dark green solid (90% yield). Mn = 34,000, polydispersity 1.78, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 6.99-6.83 (broad, 6H), 3.88 (broad, 4H), 2.11 (m 2H), 1.31-1.25 (m, 76H), 1.04-0.88 (m, 12H).
[실시예 2] PDPPDBTE12의 합성Example 2 Synthesis of PDPPDBTE12
Figure PCTKR2012010815-appb-I000065
Figure PCTKR2012010815-appb-I000065
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-데실테트라데실)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.50 g, 0.0004 mol), (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 (제조예 3, 0.378 g, 0.0004 mmol), Pd2(dba)3 (0.008 mg, 2 mol%)와 P(o-tol)3 (0.011 g, 8 mol%)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PDPPDBTE12를 수득하였다(수득률: 90%). Mn = 90,000, 다분산도 1.8, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 7.1-6.99(broad, 4H), 3.88(broad, 4H), 2.11(m 2H), 1.40-1.25(m, 120H), 1.04-0.88(m, 18H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol), (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 3, 0.378 g, 0.0004 mmol ), Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) were used to obtain the title compound PDPPDBTE12 in the same manner as in Example 1 Yield: 90%). Mn = 90,000, polydispersity 1.8, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 7.1-6.99 (broad, 4H), 3.88 (broad, 4H), 2.11 (m 2H), 1.40-1.25 (m, 120H), 1.04-0.88 (m, 18H).
[실시예 3] PDPPBTPE의 합성Example 3 Synthesis of PDPPBTPE
Figure PCTKR2012010815-appb-I000066
Figure PCTKR2012010815-appb-I000066
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-데실테트라데실)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.50 g, 0.0004 mol), (E)-1,2-비스(4-(트리메틸스탠닐)페닐)에텐 (제조예 2, 0.202 g, 0.0004 mmol), Pd2(dba)3 (0.008 mg, 2 mol%)와 P(o-tol)3 (0.011 g, 8 mol%)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PDPPBTPE를 수득하였다(수득률: 90%). Mn = 90,000, 다분산도 1.8, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 7.7(broad, 8H), 6.99(S, 2H), 3.88(broad, 4H), 2.11(m 2H), 1.31-1.25(m, 76H), 1.04-0.88(m, 12H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol), (E) -1,2-bis (4- (trimethylstannyl) phenyl) ethene (Preparation Example 2, 0.202 g, 0.0004 mmol), Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) were used to obtain the title compound PDPPBTPE in the same manner as in Example 1 (yield: 90%). Mn = 90,000, polydispersity 1.8, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 7.7 (broad, 8H), 6.99 (S, 2H), 3.88 (broad, 4H ), 2.11 (m 2 H), 1.31-1.25 (m, 76H), 1.04-0.88 (m, 12H).
[실시예 4] PDPPDTTE12의 합성Example 4 Synthesis of PDPPDTTE12
Figure PCTKR2012010815-appb-I000067
Figure PCTKR2012010815-appb-I000067
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-데실테트라데실)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.50 g, 0.0004 mol), (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐 (제조예 4, 0.39 g, 0.0004 mmol), Pd2(dba)3 (0.008 mg, 2 mol%)와 P(o-tol)3 (0.011 g, 8 mol%)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PDPPDTTE12를 수득하였다(수득률: 75%). Mn = 45,000, 다분산도 1.7, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 7.1-6.99(broad, 4H), 3.88(broad, 4H), 2.11(m 2H), 1.40-1.25(m, 120H), 1.04-0.88(m, 18H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol), (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 4, 0.39 g, 0.0004 mmol ), The title compound PDPPDTTE12 was obtained in the same manner as in Example 1 using Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 (0.011 g, 8 mol%) ( Yield: 75%). Mn = 45,000, polydispersity 1.7, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 7.1-6.99 (broad, 4H), 3.88 (broad, 4H), 2.11 (m 2H), 1.40-1.25 (m, 120H), 1.04-0.88 (m, 18H).
[실시예 5] PDPPDBTA의 합성Example 5 Synthesis of PDPPDBTA
Figure PCTKR2012010815-appb-I000068
Figure PCTKR2012010815-appb-I000068
상기 고분자는 스즈키(Suzuki) 커플링을 통해 중합할 수 있다. 플라스크에 수분을 제거하고 2,5-비스(2-데실테트라데실)-3,6-비스(5-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)싸이오펜-2-일)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (1.20 g, 0.0010 mol)과 (E)-2,3-비스(5-브로모싸이오펜-2-일)아크릴로나이트릴 (0.367g, 0.0010 mmol)을 넣은 다음 2M K2CO3 (2.94 mL)와 톨루엔(12 mL)를 넣고 30분간 질소 버블링을 실시한다. 촉매 Pd(pph3)4 (0.057 mg, 5 mol%)를 넣고 100℃에서 48시간 동안 환류시킨다. 그 후 용액을 메탄올 (300 mL) 에 천천히 침전시키고 고체를 걸러낸다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 침전을 시켜 검녹색 고체의 표제 화합물인 PDPPDBTA를 얻었다(수득률: 90%). Mn = 20,000, 다분산도 1.68, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 6.99-6.83(broad, 5H), 3.88(broad, 4H), 2.11(m 2H), 1.31-1.25(m, 76H), 1.04-0.88(m, 12H).The polymer may be polymerized through Suzuki coupling. Remove water from the flask and remove 2,5-bis (2-decyltetradecyl) -3,6-bis (5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane- 2-yl) thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (1.20 g, 0.0010 mol) and (E) -2,3-bis Add (5-bromothiophen-2-yl) acrylonitrile (0.367g, 0.0010 mmol), add 2M K 2 CO 3 (2.94 mL) and toluene (12 mL), and perform nitrogen bubbling for 30 minutes. do. Add catalyst Pd (pph 3 ) 4 (0.057 mg, 5 mol%) and reflux at 100 ° C. for 48 hours. The solution is then slowly precipitated in methanol (300 mL) and the solids are filtered off. The filtered solid is purified in the order of methanol, hexane, toluene and chloroform through soxxlet. The down liquid was precipitated again in methanol, filtered through a filter and dried to precipitate to obtain PDPPDBTA, the title compound as a dark green solid (yield: 90%). Mn = 20,000, polydispersity 1.68, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 6.99-6.83 (broad, 5H), 3.88 (broad, 4H), 2.11 (m 2H), 1.31-1.25 (m, 76H), 1.04-0.88 (m, 12H).
[실시예 6] PDPPBDTPA의 합성Example 6 Synthesis of PDPPBDTPA
Figure PCTKR2012010815-appb-I000069
Figure PCTKR2012010815-appb-I000069
상기 고분자는 스즈키(Suzuki) 커플링을 통해 중합할 수 있다. 플라스크에 수분을 제거하고 2,5-비스(2-데실테트라데실)-3,6-비스(5-(4,4,5,5-테트라메틸-1,3,2-다이옥사보로란-2-일)싸이오펜-2-일)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.5 g, 0.0004 mol), (Z)-2,3-비스(4-브로모-2,5-다이메틸페닐)아크릴로나이트릴 (0.367g, 0.0004 mmol), 2M K2CO3 (1.17 mL), 톨루엔(5 mL),촉매 Pd(pph3)4 (0.023 mg, 5 mol%)을 사용하여 실시예 5와 동일한 방법으로 표제 화합물인 PDPPBDTPA를 얻었다(수득률: 80%). Mn = 18,000, 다분산도 1.87, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 7.2-6.83(broad, 5H), 3.88(broad, 2H), 2.34-2.11(m 16H), 1.31-1.25(m, 124H), 1.04-0.88(m, 24H).The polymer may be polymerized through Suzuki coupling. Remove water from the flask and remove 2,5-bis (2-decyltetradecyl) -3,6-bis (5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane- 2-yl) thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (0.5 g, 0.0004 mol), (Z) -2,3-bis (4-bromo-2,5-dimethylphenyl) acrylonitrile (0.367 g, 0.0004 mmol), 2M K 2 CO 3 (1.17 mL), toluene (5 mL), catalyst Pd (pph 3 ) 4 (0.023 mg, 5 mol%) was used to obtain the title compound PDPPBDTPA in the same manner as in Example 5 (yield: 80%). Mn = 18,000, polydispersity 1.87, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 7.2-6.83 (broad, 5H), 3.88 (broad, 2H), 2.34-2.11 (m 16H), 1.31-1.25 (m, 124H), 1.04-0.88 (m, 24H).
[실시예 7] PDPPDTDTEP의 합성Example 7 Synthesis of PDPPDTDTEP
Figure PCTKR2012010815-appb-I000070
Figure PCTKR2012010815-appb-I000070
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-데실테트라데실)피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.50 g, 0.0004 mol), 2-(4-((E)-2-(3-도데실-5-(트리메틸스탠닐)싸이오펜-2-일)비닐)-2,5-다이메틸스티릴)-3-도데실-5-(트리메틸스탠닐)싸이오펜 (0.39 g, 0.0004 mmol), Pd2(dba)3 (0.008 mg, 2 mol%)와 P(o-tol)3 (0.011 g, 8 mol%)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PDPPDTDTEP를 수득하였다(수득률: 75%). Mn = 55,000, 다분산도 1.7, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 7.1-6.99(broad, 4H), 3.88(broad, 4H), 2.11(m 2H), 1.40-1.25(m, 120H), 1.04-0.88(m, 18H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-decyltetradecyl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H)- Dione (0.50 g, 0.0004 mol), 2- (4-((E) -2- (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) vinyl) -2,5-di Methylstyryl) -3-dodecyl-5- (trimethylstannyl) thiophene (0.39 g, 0.0004 mmol), Pd 2 (dba) 3 (0.008 mg, 2 mol%) and P (o-tol) 3 ( 0.011 g, 8 mol%) was used to obtain the title compound PDPPDTDTEP (yield: 75%) in the same manner as in Example 1. Mn = 55,000, polydispersity 1.7, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 7.1-6.99 (broad, 4H), 3.88 (broad, 4H), 2.11 (m 2H), 1.40-1.25 (m, 120H), 1.04-0.88 (m, 18H).
[실시예 8] P28DPP-TVT의 합성Example 8 Synthesis of P28DPP-TVT
Figure PCTKR2012010815-appb-I000071
Figure PCTKR2012010815-appb-I000071
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-도데실헥사데실)-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (제조예 6, 0.30 g, 0.92 mmol)과 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 (제조예 1, 0.13 g, 0.92 mmol)을 클로로벤젠 (4.5 mL)에 녹이고 질소 치환을 실시한다. 그 후에 촉매로 Pd2(dba)3 (0.004 g, 2 mol%)와 P(o-tol)3 (0.0061 g, 8 mol%)을 넣고 100℃에서 48시간 동안 환류시킨다. 그런 다음, 상기 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러낸다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검녹색 고체의 표제 화합물인 P28DPP-TVT를 얻었다(수득률 83%). Mn = 83,800, Mw = 110,300, 다분산도 1.31, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 6.99-6.83(broad, 6H), 3.98-3.93(broad, 4H), 2.05-1.86(m 2H), 1.31-1.26(m, 96H), 0.99-0.90(m, 12H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-dodecylhexadecyl) -2,5-dihydro-pyrrolo [3,4 -c] pyrrole-1,4 (2H, 5H) -dione (Preparation Example 6, 0.30 g, 0.92 mmol) and (E) -1,2-bis (5- (trimethylstannyl) thiophen-2- Il) ethene (Preparation Example 1, 0.13 g, 0.92 mmol) is dissolved in chlorobenzene (4.5 mL) and subjected to nitrogen substitution. Thereafter, Pd 2 (dba) 3 (0.004 g, 2 mol%) and P (o-tol) 3 (0.0061 g, 8 mol%) were added as a catalyst and refluxed at 100 ° C. for 48 hours. The reaction solution is then slowly precipitated in methanol (300 mL) and the resulting solids are filtered off. The filtered solid is purified in the order of methanol, hexane, toluene and chloroform through soxxlet. The down liquid was precipitated again in methanol, filtered through a filter and dried to give the title compound P28DPP-TVT as a dark green solid (83% yield). Mn = 83,800, Mw = 110,300, polydispersity 1.31, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 6.99-6.83 (broad, 6H), 3.98-3.93 (broad, 4H), 2.05-1.86 (m 2H), 1.31-1.26 (m, 96H), 0.99-0.90 (m, 12H).
[실시예 9] P32DPP-TVT의 합성Example 9 Synthesis of P32DPP-TVT
Figure PCTKR2012010815-appb-I000072
Figure PCTKR2012010815-appb-I000072
상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 3,6-비스3,6-비스(5-브로모싸이오펜-2-일)-2,5-비스(2-테트라데실옥타데실)-2,5-다이하이드로-피롤로[3,4-c]피롤-1,4(2H,5H)-다이온 (0.40 g, 0.29 mmol)과 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 (제조예 1, 0.15 g, 0.29 mmol)을 클로로벤젠 (6 mL)에 녹이고 질소 치환을 실시한다. 그 후에 촉매로 Pd2(dba)3 (0.004 g, 2 mol%)와 P(o-tol)3 (0.0071 g, 8 mol%)을 넣고 100℃에서 48시간 동안 환류시킨다. 그런 다음, 상기 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러낸다. 걸러낸 고체는 속실렛(sohxlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검녹색 고체의 표제 화합물인 P32DPP-TVT를 얻었다(수득률 73%). Mn = 97,000, Mw = 128,500, 다분산도 1.32, 1H NMR (300 MHz, CDCl3)[ppm]: δ 8.93(broad, 4H), 6.99-6.83(broad, 6H), 3.98-3.93(broad, 4H), 2.05-1.86(m 2H), 1.31-1.22(m, 104H), 0.96-0.90(m, 12H).The polymer may be polymerized through a Stille coupling reaction. 3,6-bis3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-tetradecyloctadecyl) -2,5-dihydro-pyrrolo [3,4 -c] pyrrole-1,4 (2H, 5H) -dione (0.40 g, 0.29 mmol) and (E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene ( Preparation Example 1, 0.15 g, 0.29 mmol) was dissolved in chlorobenzene (6 mL) and subjected to nitrogen substitution. After that, Pd 2 (dba) 3 (0.004 g, 2 mol%) and P (o-tol) 3 (0.0071 g, 8 mol%) were added as a catalyst and refluxed at 100 ° C. for 48 hours. The reaction solution is then slowly precipitated in methanol (300 mL) and the resulting solids are filtered off. The filtered solid is purified in the order of methanol, hexane, toluene and chloroform through soxxlet. The down liquid was precipitated again in methanol, filtered through a filter and dried to give the title compound P32DPP-TVT as a dark green solid (73% yield). Mn = 97,000, Mw = 128,500, polydispersity 1.32, 1 H NMR (300 MHz, CDCl 3 ) [ppm]: δ 8.93 (broad, 4H), 6.99-6.83 (broad, 6H), 3.98-3.93 (broad, 4H), 2.05-1.86 (m 2H), 1.31-1.22 (m, 104H), 0.96-0.90 (m, 12H).
[실시예 10] 유기전자소자 제작Example 10 Fabrication of Organic Electronic Device
OTFT 소자는 탑-컨택 방식으로 제작하였으며, 100nm의 n-doped silicon 을 게이트로 사용하였으며 SiO2를 절연체로 사용하였다. 표면처리는 piranha cleaning solution(H2SO4:2H2O2)을 사용하여 표면세척을 한 다음, Alfa사의 ODTS(octadecyltrichlorosilane)을 이용해 표면을 SAM(Self Assemble Monolayer)처리 한 후 사용하였다. 유기반도체층은 0.2 wt% chloroform solution을 spin-coater를 사용하여 2000 rpm의 속도로 1분간 코팅하였다. 유기 반도체 물질로는 상기 실시예 1, 8 및 9에서 각각 합성된 PDPPDBTE, P28DPP-TVT 또는 P32DPP-TVT를 사용하였다. 유기반도체층의 두께는 surface profiler (Alpha Step 500, Tencor)를 사용하여 50 nm로 확인하였다. 소스와 드레인으로 사용된 gold는 1 A/s로 60 nm의 두께로 증착하였다. 채널의 길이는 100μm 이며 폭은 1000 μm이다. OTFT의 특성의 측정은 Keithley 4800을 사용하였다. The OTFT device was fabricated in a top-contact manner, 100 nm n-doped silicon was used as a gate, and SiO 2 was used as an insulator. Surface treatment was performed by using a piranha cleaning solution (H 2 SO 4 : 2H 2 O 2 ) to wash the surface, Alfa's ODTS (octadecyltrichlorosilane) surface was used after SAM (Self Assemble Monolayer) treatment. The organic semiconductor layer was coated with 0.2 wt% chloroform solution using a spin-coater for 1 minute at 2000 rpm. As the organic semiconductor material, PDPPDBTE, P28DPP-TVT, or P32DPP-TVT synthesized in Examples 1, 8, and 9, respectively, were used. The thickness of the organic semiconductor layer was confirmed as 50 nm using a surface profiler (Alpha Step 500, Tencor). Gold used as the source and drain was deposited at a thickness of 60 nm at 1 A / s. The channel is 100 μm long and 1000 μm wide. Keithley 4800 was used to measure the properties of the OTFT.
상기 실시예 10에서 제작된 유기전자소자의 전하이동도는 하기 포화영역(saturation region) 전류식으로부터 (ISD)1/2 과 VG를 변수로 한 그래프를 얻고 그 기울기로부터 구하였다. The charge mobility of the organic electronic device manufactured in Example 10 was obtained from the slope of the graph with (I SD ) 1/2 and V G as variables from the following saturation region current equation.
Figure PCTKR2012010815-appb-I000073
Figure PCTKR2012010815-appb-I000073
상기 식에서, ISD는 소스-드레인 전류이고, μ 또는 μFET는 전하 이동도이며, C0는 산화막 정전용략이고, W는 채널 폭이며, L은 채널 길이이고, VG는 게이트 전압이며, VT는 문턱전압이다. 또한 차단 누설전류(Ioff)는 오프 상태일 때 흐르는 전류로서, 전류비에서 오프 상태에서 최소전류로 구하였다.Where I SD is the source-drain current, μ or μ FET is the charge mobility, C 0 is the oxide capacitance, W is the channel width, L is the channel length, V G is the gate voltage, and V is T is the threshold voltage. In addition, the cutoff leakage current I off is a current flowing in the off state, and is determined as the minimum current in the off state in the current ratio.
상기 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)의 광 흡수영역을 용액상태(용액 : CHCl3)와 필름상태에서 측정하여 결과를 도 2 내지 도 4에 도시하였다. 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)의 전기화학적 특성을 분석하기 위해서 Bu4NClO4(0.1 몰농도)의 용매(Acetonitrile) 에서 50 mV/s의 조건에서 싸이클로 볼타메트리(cyclic voltammetry)를 이용하여 측정한 결과를 도 5 내지 도 7에 도시하였으며, 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. The light absorption regions of the organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, P32DPP-TVT) synthesized in Examples 1, 8, and 9 were measured in a solution state (solution: CHCl 3 ) and in a film state. 4 is shown. To analyze the electrochemical properties of the organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, P32DPP-TVT) synthesized in Examples 1, 8 and 9, 50 mV / in a solvent (Acetonitrile) of Bu 4 NClO 4 (0.1 molarity) 5 to 7 show the results measured using cyclic voltammetry with a cycle under the condition of s. Voltage was applied through the coating using a carbon electrode during the measurement.
하기 표 1에 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)의 광학적 및 전기화학적 성질을 기재하였다. 여기서 HOMO값은 도 5 내지 도 7에서 측정한 결과값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. 하기 표 1에 기재된 바와 같이, 밴드갭은 유사하며 산화안정성은 유사하거나 다소 증가하는 정도로, 알킬기의 탄소수가 증가함에 따라 산화준위가 유사하거나 다소 증가하고 있어 실시예 1, 8 및 9의 유기반도체 화합물은 산화안정성이 우수함을 알 수 있다.Table 1 below describes the optical and electrochemical properties of the organic semiconductor compounds synthesized in Examples 1, 8 and 9 (PDPPDBTE, P28DPP-TVT, P32DPP-TVT). Here, the HOMO value is a value calculated using the result value measured in FIGS. 5 to 7. In addition, the band gap was obtained from the UV absorption wavelength in the film state. As shown in Table 1, the bandgap is similar and the oxidation stability is similar or slightly increased, the oxidation level is similar or slightly increased as the carbon number of the alkyl group is increased, the organic semiconductor compounds of Examples 1, 8 and 9 It can be seen that the oxidation stability is excellent.
표 1
고분자 광학적 특성 전기화학적 특성
UVλmax sol(nm) UVλmax film(nm) UV-edge(nm) Band gap(optical)(eV) Oxidation onset(eV) EHOMO (eV) ELUMO (eV)
PDPPDBTE (실시예 1) 780 796 968 1.28 0.85 -5.31 -4.03
P28DPP-TVT(실시예 8) 778 802 955 1.29 0.86 -5.32 -4.03
P32DPP-TVT(실시예 9) 799 799 952 1.30 0.88 -5.34 -4.04
Table 1
Polymer Optical properties Electrochemical properties
UVλmax sol(nm) UVλmax film(nm) UV-edge (nm) Band gap (optical) (eV) Oxidation onset (eV) EHOMO (eV) ELUMO (eV)
PDPPDBTE (Example 1) 780 796 968 1.28 0.85 -5.31 -4.03
P28DPP-TVT (Example 8) 778 802 955 1.29 0.86 -5.32 -4.03
P32DPP-TVT (Example 9) 799 799 952 1.30 0.88 -5.34 -4.04
            
도 8 내지 도 10에서는 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)에 대한 열적 안정성을 측정한 것으로, PDPPDBTE에서는 유리전이온도값이 260℃로 측정되었고 용융온도값이 277℃로 측정되었으며 결정화 온도값은 261℃로 측정되어 정질의 특성을 가지는 것을 알 수 있다. 또한, P28DPP-TVT에서는 용융온도값(Tm)이 286 ℃로 측정되었으며 결정화 온도값은 258 ℃로 측정되어 정질의 특성을 가지는 것을 알 수 있다. 또한, P32DPP-TVT에서는280 ℃ 부근에서 용융 피크가 관찰되어 열적 성질이 우수함을 알 수있다. 8 to 10, thermal stability of the organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, and P32DPP-TVT) synthesized in Examples 1, 8, and 9 were measured. In PDPPDBTE, the glass transition temperature was measured at 260 ° C. The melting temperature was measured at 277 ° C. and the crystallization temperature was measured at 261 ° C., indicating that the crystal had a qualitative characteristic. In addition, in P28DPP-TVT, the melting temperature value (T m ) was measured at 286 ° C. and the crystallization temperature value was measured at 258 ° C., indicating that the crystal had a qualitative characteristic. In addition, in P32DPP-TVT, a melting peak was observed around 280 ° C, indicating that the thermal properties were excellent.
도 11 내지 도 13에서는 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)의 분해온도를 TGA를 이용하여 측정한 결과를 도시한 것이다. PDPPDBTE의 5% 분해가 일어나는 온도는 421℃로 측정되고, P28DPP-TVT의 5% 분해가 일어나는 온도는 433℃로 측정되었고, P32DPP-TVT의 5% 분해가 일어나는 온도는 391℃로 측정되어 PDPPDBTE, P28DPP-TVT 및 P32DPP-TVT는 모두 열적안정성이 우수하다고 할 수 있다. 11 to 13 illustrate results obtained by measuring decomposition temperatures of organic semiconductor compounds (PDPPDBTE, P28DPP-TVT, and P32DPP-TVT) synthesized in Examples 1, 8, and 9 using TGA. The temperature at which 5% decomposition of PDPPDBTE occurs was measured at 421 ° C, the temperature at which 5% decomposition of P28DPP-TVT occurs at 433 ° C, and the temperature at which 5% decomposition of P32DPP-TVT occurs at 391 ° C. Both P28DPP-TVT and P32DPP-TVT have excellent thermal stability.
도 14에서는 분자의 에너지 준위에 따른 전자의 분포상태를 DFT계산을 통해 도시하였다. 실시예 1에서 합성된 유기 반도체 화합물(PDPPDBTE)의 HOMO 에너지 준위에서는 분자구조 전반에 걸쳐 전자가 퍼져있는 것을 볼 수 있다. LUMO 에너지 준위상태에서는 전자주개의 전자가 전자받개쪽으로 이동한 것을 알 수 있으며 이러한 결과를 통해 에너지의 전하 분리가 잘 이루어진다는 것을 알 수가 있다.In FIG. 14, a distribution state of electrons according to energy levels of molecules is illustrated through DFT calculation. In the HOMO energy level of the organic semiconductor compound (PDPPDBTE) synthesized in Example 1, it can be seen that electrons are spread throughout the molecular structure. In the LUMO energy level, it can be seen that the electrons of the electron donor move toward the electron acceptor, and the result shows that the charge separation of the energy is performed well.
도 15에서는 실시예 1에서 합성된 유기 반도체 화합물(PDPPDBTE)를 이용하여 실시예 10에서 제작된 소자의 AFM images (a: 상온상태, b: 200°C의 풀림(annealing)한 필름상태, c: 250°C에서 풀림(annealing)한 필름상태)를 나타내는 도면으로 풀림(annealing)한 후 분자의 결정성이 증가하는 그림을 나타내고 있다. In FIG. 15, AFM images of the device fabricated in Example 10 using the organic semiconductor compound (PDPPDBTE) synthesized in Example 1 (a: at room temperature, b: annealed film at 200 ° C.), c: Fig. 1 shows the state of the film annealed at 250 ° C.), and the crystallinity of the molecule is increased after annealing.
도 16 내지 도 21은 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)를 이용하여 실시예 10에서 제작된 소자의 transfer curve를 나타내는 도면으로, 고분자 재료의 유기 전자 소자 특성을 나타내는 그림이다. 도 16 내지 도 21에 도시된 바와 같이, 본 발명에서 합성된 유기 반도체 화합물은 열적안정성이 우수하며 풀림(annealing)을 하였을 때 전하이동도가 증가함을 알 수 있어 우수한 재료임을 알 수 있다. 16 to 21 are diagrams showing the transfer curve of the device fabricated in Example 10 using the organic semiconductor compound (PDPPDBTE, P28DPP-TVT, P32DPP-TVT) synthesized in Examples 1, 8 and 9, the polymer material It is a figure showing the characteristics of the organic electronic device. As shown in FIGS. 16 to 21, the organic semiconductor compound synthesized in the present invention has excellent thermal stability, and it can be seen that the charge mobility increases when annealing is an excellent material.
하기 표 2에 실시예 1, 8 및 9에서 합성된 유기 반도체 화합물(PDPPDBTE, P28DPP-TVT, P32DPP-TVT)를 이용하여 실시예 10에서 제작된 소자의 특성을 기재하였다. 풀림(annealing)의 온도 200℃에서, 유기 반도체 화합물에 치환된 알킬기의 탄소수가 증가함에 따라 전하이동도(1.32→2.62→2.65 로 증가하고 있음) 및 점멸비(1.53 x 104→2.78 x 104→7.54 x 104 로 증가하고 있음)가 증가하는 것을 확인하였으며, 특히 알킬기의 탄소수가 28개인 경우와 32개인 경우는 유사하거나 다소 향상된 전하이동도 및 향상된 점멸비를 나타내는 것을 확인하였다. Table 2 below describes the characteristics of the device fabricated in Example 10 using the organic semiconductor compounds synthesized in Examples 1, 8, and 9 (PDPPDBTE, P28DPP-TVT, P32DPP-TVT). At annealing temperature of 200 ° C., the charge mobility (increased from 1.32 → 2.62 → 2.65) and the flashing ratio (1.53 × 10 4 → 2.78 × 10 4 ) are increased as the carbon number of the alkyl group substituted in the organic semiconductor compound is increased. → 7.54 x 10 4 )), and especially when the alkyl group of 28 and 32 carbon atoms, it was confirmed that the similar or somewhat improved charge mobility and improved flashing ratio.
표 2
고분자 열처리 표면개질 이동도(cm2/(V s)) 점멸비on/off 비율
PDPPDBTE(실시예 1) 200℃ ODTS 1.32 1.53 x 104
P28DPP-TVT(실시예 8) 200℃ ODTS 2.62 2.78 x 104
P32DPP-TVT(실시예 9) 200℃ ODTS 2.65 7.54 x 104
TABLE 2
Polymer Heat treatment Surface modification Mobility (cm 2 / (V s)) Flashing ratio on / off ratio
PDPPDBTE (Example 1) 200 ℃ ODTS 1.32 1.53 x 10 4
P28DPP-TVT (Example 8) 200 ℃ ODTS 2.62 2.78 x 10 4
P32DPP-TVT (Example 9) 200 ℃ ODTS 2.65 7.54 x 10 4
비교화합물로 하기 구조의 다이케토피롤로피롤 중합체를 사용하였다(J. Am. Chem. Soc. 2011, 133, 10364 - 10367).As a comparative compound, a diketopyrrolopyrrole polymer having the following structure was used (J. Am. Chem. Soc. 2011, 133, 10364-10367).
Figure PCTKR2012010815-appb-I000074
Figure PCTKR2012010815-appb-I000074
상기 비교화합물 P(DPP-alt-QT)를 사용하여 상기 실시예 10과 동일한 탑-컨택 방식으로 OTFT 소자를 제작하였다.Using the comparative compound P (DPP-alt-QT) OTFT device was manufactured in the same top-contact manner as in Example 10.
Figure PCTKR2012010815-appb-I000075
Figure PCTKR2012010815-appb-I000075
즉, 본원발명의 다이케토피롤로피롤 중합체는 다이케토피롤로피롤기의 질소 원자에 탄소수가 24개 이상인 알킬이 도입되어 있는 반면, 비교화합물인 P(DPP-alt-QT)는 다이케토피롤로피롤기의 질소 원자에 탄소수 20개의 알킬이 도입된 구조로, 전하 이동도가 본 발명의 실시예에 비하여 현저히 낮은 약 30~40%정도 수준에 불과하여 본 발명의 우수성을 입증하고 있다. 더구나 본원발명에서와 같이 탄소수 24개 이상의 알킬이 도입되면 우수한 용해도를 가짐과 동시에 더 큰 분자량을 가진 고분자로서 상대적으로 잘 용해되어 비교화합물인 P(DPP-alt-QT)에 비해 용액공정이 더 원활해지게 된다.That is, in the diketopyrrolopyrrole polymer of the present invention, alkyl having 24 or more carbon atoms is introduced at the nitrogen atom of the diketopyrrolopyrrole group, while the comparative compound P (DPP-alt-QT) is a diketopyrrole. Alkyl having 20 carbon atoms is introduced into the nitrogen atom of the pyrrole group, and the charge mobility is only about 30 to 40%, which is significantly lower than the embodiment of the present invention, proving the superiority of the present invention. In addition, when the alkyl having 24 or more carbon atoms is introduced as in the present invention, it has a good solubility and has a relatively high molecular weight and is relatively well dissolved, so that the solution process is smoother than that of the comparative compound P (DPP-alt-QT). Will be lost.
또한, 본원발명의 다이케토피롤로피롤 중합체는 티오펜과 티오펜 사이에 비닐렌기가 반드시 도입되는 반면, 비교화합물인 P(DPP-alt-QT)는 티오펜과 티오펜이 단일결합으로 연결된 구조이다. 따라서 본원발명의 다이케토피롤로피롤 중합체는 비닐렌기로 인하여 보다 긴 공액 구조를 형성할 수 있고, 이로 인해 분자간의 상호작용을 상대적으로 더 크게 하여 중합체가 가지는 전자밀도를 더욱 더 풍부하게 할 수 있어서 이와 같은 구조와 질소원자에 결합된 탄소수 24이상의 치환기와의 결합에 의해 현저한 전하이동도를 가지는 효과를 가진다.In addition, in the diketopyrrolopyrrole polymer of the present invention, a vinylene group is necessarily introduced between thiophene and thiophene, while the comparative compound P (DPP-alt-QT) has a structure in which thiophene and thiophene are connected by a single bond. to be. Accordingly, the diketopyrrolopyrrole polymer of the present invention can form a longer conjugated structure due to the vinylene group, thereby making the intermolecular interaction relatively larger, thereby making the polymer more rich in electron density. Such a structure and the bonding with a substituent having 24 or more carbon atoms bonded to the nitrogen atom has the effect of having a remarkable charge mobility.
본 발명은 다이케토피롤로피롤기의 질소 원자에 치환되는 알킬기의 탄소수를 24개 이상으로 조절할 경우에 예상하지 못한 전하 이동도, 열적 안정성, 용해도 특성, 산화 안정성, 문턱전압 및 점멸비 등에서 놀라운 개선 효과를 처음으로 확인하여 완성된 것으로, 더욱이 원인을 알 수 없지만, 알킬기의 탄소수를 28개 이상으로 조절할 경우에 탄소수 24개 미만의 알킬기인 경우에 비해 전하 이동도, 점멸비 및 용해도 특성이 개선될 뿐만 아니라, 특히 탄소수 24개의 알킬기인 경우에 비해 전하 이동도는 2배 이상 향상되어 놀라운 효과를 얻음을 처음으로 인식하여 완성된 것이다.The present invention surprisingly improved in unexpected charge mobility, thermal stability, solubility characteristics, oxidation stability, threshold voltage and flashing ratio when the carbon number of the alkyl group substituted at the nitrogen atom of the diketopyrrolopyrrole group to 24 or more It was completed by confirming the effect for the first time, and furthermore, the cause is unknown. However, when the carbon number of the alkyl group is adjusted to 28 or more, the charge mobility, the flashing ratio, and the solubility characteristics of the alkyl group may be improved. In addition, the charge mobility is improved by more than two times compared to the case of the alkyl group having 24 carbon atoms, the first recognition that the surprising effect was achieved.
본 발명에 따른 유기 반도체 화합물, 즉 전자 받개 화합물인 다이케토피롤로피롤 유도체와 전자 주개 화합물인 비닐렌기를 포함하는 화합물이 교대로 중합되도록 구성된 다이케토피롤로피롤 중합체는 비닐렌 그룹의 도입으로 주 사슬의 공면성(coplanarity)을 증가시키고 확장된 공액 구조를 갖게 함으로서 전자밀도를 향상시켜 분자간 상호작용을 높여주며 우수한 열적 안정성을 나타내게 된다. 또한, 본 발명에 따른 유기 반도체 화합물은 다이케토피롤로피롤기의 질소 원자에 탄소수 24개 이상의 알킬기가 도입되어 있어 우수한 용해도 특성 및 더 큰 분자량을 가진 고분자로, 용액 공정에 용이하게 적용된다. 또한, HOMO값이 낮아지는 특성, 즉 반복단위체 내에서 전자 밀도가 증가하여 우수한 전하이동도와 산화안정성을 가지게 되어 유기 박막 트랜지스터의 유기 반도체층으로 활용할 수 있다. 따라서 이들을 채용한 유기 박막 트랜지스터는 전하이동도 및 점멸비가 개선되며, 이러한 유기 박막 트랜지스터를 사용할 경우 우수한 효율 및 성능을 갖는 전자장치를 만드는 것이 가능하다. 이러한 유기박막트랜지스터는 진공증착이나 스핀코팅이나 프린팅 같은 용액 공정으로도 제조할 수 있어, 유기박막트랜지스터를 이용한 전자장치의 제조 비용을 절감할 수 있다.The organic semiconductor compound according to the present invention, that is, a diketopyrrolopyrrole polymer configured to alternately polymerize a compound containing a diketopyrrolopyrrole derivative as an electron acceptor compound and a vinylene group as an electron donor compound is mainly introduced by the introduction of a vinylene group. By increasing the coplanarity of the chain and having an expanded conjugated structure, the electron density is improved, thereby increasing the intermolecular interaction and showing excellent thermal stability. In addition, the organic semiconductor compound according to the present invention is a polymer having 24 or more carbon atoms in the nitrogen atom of the diketopyrrolopyrrole group has excellent solubility characteristics and larger molecular weight, it is easily applied to the solution process. In addition, the HOMO value decreases, that is, the electron density increases in the repeating unit, thereby having excellent charge mobility and oxidation stability, and thus may be used as an organic semiconductor layer of the organic thin film transistor. Therefore, the organic thin film transistor employing these devices improves the charge mobility and the flashing ratio, and when the organic thin film transistor is used, it is possible to make an electronic device having excellent efficiency and performance. The organic thin film transistor can also be manufactured by a solution process such as vacuum deposition, spin coating, or printing, thereby reducing the manufacturing cost of an electronic device using the organic thin film transistor.

Claims (8)

  1. 하기 화학식 1로 표시되는 다이케토피롤로피롤 중합체.Diketopyrrolopyrrole polymer represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2012010815-appb-I000076
    Figure PCTKR2012010815-appb-I000076
    [상기 화학식 1에서, [In Formula 1,
    R1 및 R2는 각각 독립적으로 (C24-C50)알킬이고;R 1 and R 2 are each independently (C 24 -C 50) alkyl;
    L1 및 L2 는 각각 독립적으로 하기 구조에서 선택되고;L 1 and L 2 are each independently selected from the following structures;
    Figure PCTKR2012010815-appb-I000077
    Figure PCTKR2012010815-appb-I000077
    V 는
    Figure PCTKR2012010815-appb-I000078
    이고;
    V is
    Figure PCTKR2012010815-appb-I000078
    ego;
    A1 및 A2는 각각 독립적으로 수소, 시아노 또는 -COOR'이고;A 1 and A 2 are each independently hydrogen, cyano or -COOR ';
    R'는 (C1-C50)알킬 또는 (C6-C50)아릴이고;R 'is (C1-C50) alkyl or (C6-C50) aryl;
    R3 내지 R8은 각각 독립적으로 수소, 히드록시기, 아미노, (C1-C50)알킬, (C6-C50)아릴, (C1-C50)알콕시, 모노 또는 다이 (C1-C50)알킬아미노, (C1-C50)알콕시카보닐 또는 (C1-C50)알킬카보닐옥시이고;R 3 to R 8 are each independently hydrogen, hydroxy group, amino, (C1-C50) alkyl, (C6-C50) aryl, (C1-C50) alkoxy, mono or di (C1-C50) alkylamino, (C1- C50) alkoxycarbonyl or (C1-C50) alkylcarbonyloxy;
    m 은 1 또는 2의 정수이고, m이 2인 경우 각각의 V 및 L2는 서로 동일하거나 상이할 수 있고; 및m is an integer of 1 or 2, and when m is 2, each of V and L 2 may be the same or different from each other; And
    n은 1 내지 1,000의 정수이다.]n is an integer from 1 to 1,000.]
  2. 제 1항에 있어서,The method of claim 1,
    상기
    Figure PCTKR2012010815-appb-I000079
    는 하기 구조에서 선택되는 것을 특징으로 하는 다이케토피롤로피롤 중합체.
    remind
    Figure PCTKR2012010815-appb-I000079
    Is a diketopyrrolopyrrole polymer, characterized in that selected from the following structure.
    Figure PCTKR2012010815-appb-I000080
    Figure PCTKR2012010815-appb-I000080
    [상기 A1, A2, R3, R4, R5, R6, R7 및 R8은 청구항 제1항에서의 정의와 동일하다.][The above A 1 , A 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same as defined in claim 1.]
  3. 제 2항에 있어서,The method of claim 2,
    상기
    Figure PCTKR2012010815-appb-I000081
    는 하기 구조에서 선택되는 것을 특징으로 하는 다이케토피롤로피롤 중합체.
    remind
    Figure PCTKR2012010815-appb-I000081
    Is a diketopyrrolopyrrole polymer, characterized in that selected from the following structure.
    Figure PCTKR2012010815-appb-I000082
    Figure PCTKR2012010815-appb-I000082
  4. 제 1항에 있어서,The method of claim 1,
    상기 R1 및 R2는 각각 독립적으로 (C28-C50)알킬인 것을 특징으로 하는 다이케토피롤로피롤 중합체.R 1 and R 2 are each independently (C 28 -C 50) alkyl diketopyrrolopyrrole polymer.
  5. 제 1항에 있어서,The method of claim 1,
    하기 화합물에서 선택되는 것을 특징으로 하는 다이케토피롤로피롤 중합체.Diketopyrrolopyrrole polymer, characterized in that selected from the following compounds.
    Figure PCTKR2012010815-appb-I000083
    Figure PCTKR2012010815-appb-I000083
    Figure PCTKR2012010815-appb-I000084
    Figure PCTKR2012010815-appb-I000084
    Figure PCTKR2012010815-appb-I000085
    Figure PCTKR2012010815-appb-I000085
    Figure PCTKR2012010815-appb-I000086
    Figure PCTKR2012010815-appb-I000086
    Figure PCTKR2012010815-appb-I000087
    Figure PCTKR2012010815-appb-I000087
    Figure PCTKR2012010815-appb-I000088
    Figure PCTKR2012010815-appb-I000088
    Figure PCTKR2012010815-appb-I000089
    Figure PCTKR2012010815-appb-I000089
    Figure PCTKR2012010815-appb-I000090
    Figure PCTKR2012010815-appb-I000090
    Figure PCTKR2012010815-appb-I000091
    Figure PCTKR2012010815-appb-I000091
    Figure PCTKR2012010815-appb-I000092
    Figure PCTKR2012010815-appb-I000092
    Figure PCTKR2012010815-appb-I000093
    Figure PCTKR2012010815-appb-I000093
    Figure PCTKR2012010815-appb-I000094
    Figure PCTKR2012010815-appb-I000094
    Figure PCTKR2012010815-appb-I000095
    Figure PCTKR2012010815-appb-I000095
    Figure PCTKR2012010815-appb-I000096
    Figure PCTKR2012010815-appb-I000096
    Figure PCTKR2012010815-appb-I000097
    Figure PCTKR2012010815-appb-I000097
    Figure PCTKR2012010815-appb-I000098
    Figure PCTKR2012010815-appb-I000098
    Figure PCTKR2012010815-appb-I000099
    Figure PCTKR2012010815-appb-I000099
    Figure PCTKR2012010815-appb-I000100
    Figure PCTKR2012010815-appb-I000100
    Figure PCTKR2012010815-appb-I000101
    Figure PCTKR2012010815-appb-I000101
    Figure PCTKR2012010815-appb-I000102
    Figure PCTKR2012010815-appb-I000102
    Figure PCTKR2012010815-appb-I000103
    Figure PCTKR2012010815-appb-I000103
    Figure PCTKR2012010815-appb-I000104
    Figure PCTKR2012010815-appb-I000104
    Figure PCTKR2012010815-appb-I000105
    Figure PCTKR2012010815-appb-I000105
    Figure PCTKR2012010815-appb-I000106
    Figure PCTKR2012010815-appb-I000106
    Figure PCTKR2012010815-appb-I000107
    Figure PCTKR2012010815-appb-I000107
    Figure PCTKR2012010815-appb-I000108
    Figure PCTKR2012010815-appb-I000108
    Figure PCTKR2012010815-appb-I000109
    Figure PCTKR2012010815-appb-I000109
    Figure PCTKR2012010815-appb-I000110
    Figure PCTKR2012010815-appb-I000110
    Figure PCTKR2012010815-appb-I000111
    Figure PCTKR2012010815-appb-I000111
    Figure PCTKR2012010815-appb-I000112
    Figure PCTKR2012010815-appb-I000112
    Figure PCTKR2012010815-appb-I000113
    Figure PCTKR2012010815-appb-I000113
    Figure PCTKR2012010815-appb-I000114
    Figure PCTKR2012010815-appb-I000114
    Figure PCTKR2012010815-appb-I000115
    Figure PCTKR2012010815-appb-I000115
    Figure PCTKR2012010815-appb-I000116
    Figure PCTKR2012010815-appb-I000116
    Figure PCTKR2012010815-appb-I000117
    Figure PCTKR2012010815-appb-I000117
    Figure PCTKR2012010815-appb-I000118
    Figure PCTKR2012010815-appb-I000118
    Figure PCTKR2012010815-appb-I000119
    Figure PCTKR2012010815-appb-I000119
    Figure PCTKR2012010815-appb-I000120
    Figure PCTKR2012010815-appb-I000120
    Figure PCTKR2012010815-appb-I000121
    Figure PCTKR2012010815-appb-I000121
    [상기 n은 1 내지 1,000의 정수이다.][Wherein n is an integer of 1 to 1,000.]
  6. 제 5항에 있어서,The method of claim 5,
    하기 화합물에서 선택되는 것을 특징으로 하는 다이케토피롤로피롤 중합체.Diketopyrrolopyrrole polymer, characterized in that selected from the following compounds.
    Figure PCTKR2012010815-appb-I000122
    Figure PCTKR2012010815-appb-I000122
    Figure PCTKR2012010815-appb-I000123
    Figure PCTKR2012010815-appb-I000123
    Figure PCTKR2012010815-appb-I000124
    Figure PCTKR2012010815-appb-I000124
    Figure PCTKR2012010815-appb-I000125
    Figure PCTKR2012010815-appb-I000125
    Figure PCTKR2012010815-appb-I000126
    Figure PCTKR2012010815-appb-I000126
    Figure PCTKR2012010815-appb-I000127
    Figure PCTKR2012010815-appb-I000127
    Figure PCTKR2012010815-appb-I000128
    Figure PCTKR2012010815-appb-I000128
    Figure PCTKR2012010815-appb-I000129
    Figure PCTKR2012010815-appb-I000129
    Figure PCTKR2012010815-appb-I000130
    Figure PCTKR2012010815-appb-I000130
    [상기 n은 1 내지 1,000의 정수이다.][Wherein n is an integer of 1 to 1,000.]
  7. 제 6항에 있어서,The method of claim 6,
    하기 화합물에서 선택되는 것을 특징으로 하는 다이케토피롤로피롤 중합체.Diketopyrrolopyrrole polymer, characterized in that selected from the following compounds.
    Figure PCTKR2012010815-appb-I000131
    Figure PCTKR2012010815-appb-I000131
    Figure PCTKR2012010815-appb-I000132
    Figure PCTKR2012010815-appb-I000132
    [상기 n은 1 내지 1,000의 정수이다.][Wherein n is an integer of 1 to 1,000.]
  8. 제 1항 내지 제 7항에서 선택되는 어느 한 항에 따른 다이케토피롤로피롤 중합체를 유기반도체층에 포함하는 유기 박막 트랜지스터.An organic thin film transistor comprising the diketopyrrolopyrrole polymer according to any one of claims 1 to 7 in an organic semiconductor layer.
PCT/KR2012/010815 2011-12-15 2012-12-13 Novel diketopyrrolopyrrole polymer and organic electronic element using same WO2013089443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0135814 2011-12-15
KR20110135814 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013089443A1 true WO2013089443A1 (en) 2013-06-20

Family

ID=48612747

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2012/002870 WO2013089323A1 (en) 2011-12-15 2012-04-16 Novel diketopyrrolopyrrole polymer and organic electronic element using same
PCT/KR2012/010815 WO2013089443A1 (en) 2011-12-15 2012-12-13 Novel diketopyrrolopyrrole polymer and organic electronic element using same
PCT/KR2012/010816 WO2013089444A2 (en) 2011-12-15 2012-12-13 Novel diketopyrrolopyrrole polymer and organic electronic element using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002870 WO2013089323A1 (en) 2011-12-15 2012-04-16 Novel diketopyrrolopyrrole polymer and organic electronic element using same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010816 WO2013089444A2 (en) 2011-12-15 2012-12-13 Novel diketopyrrolopyrrole polymer and organic electronic element using same

Country Status (2)

Country Link
KR (2) KR101443189B1 (en)
WO (3) WO2013089323A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837799A (en) * 2016-04-19 2016-08-10 中国科学院化学研究所 Dicarbonyl bridged pyrrolo-pyrrole-dione polymer as well as preparation method and application thereof
CN109897168A (en) * 2019-02-26 2019-06-18 中国科学院化学研究所 The not isotactic polymer and the preparation method and application thereof of one kind based on Dithiophene acrylonitrile

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547843B1 (en) * 2013-11-11 2015-08-27 경상대학교산학협력단 Novel alkylhalide compounds and method for preparing the same
KR101630173B1 (en) * 2014-01-17 2016-06-24 경상대학교산학협력단 Asymmetric heterocycle-vinylene-heterocycle based diketopyrrolopyrrole polymer, organic electronic device using the same and monomer for preparing the same
WO2015108360A1 (en) * 2014-01-17 2015-07-23 경상대학교산학협력단 Asymmetric heterocycle-vinylene-heterocyclic-based diketopyrrolopyrrole polymer, organic electronic device adopting same, and monomer for preparing same
KR101600031B1 (en) * 2014-03-24 2016-03-07 경상대학교산학협력단 Asymmetric diketopyrrolopyrrole polymer and organic electronic device using the same
KR102143429B1 (en) * 2014-03-25 2020-08-11 경상대학교산학협력단 Diketopyrrolopyrrole polymer and organic electronic device using the same
CN104774319B (en) * 2015-04-08 2017-02-01 中国科学院化学研究所 Bis(benzothiophene) ethylene polymers and preparation method and application thereof
US10734131B2 (en) * 2016-06-08 2020-08-04 Lg Chem, Ltd. Organic transistor and gas sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050067381A (en) * 2002-07-10 2005-07-01 클라리안트 게엠베하 Novel diketopyrrolopyrrole pigments
KR20080093125A (en) * 2006-02-18 2008-10-20 클라리언트 인터내셔널 리미티드 Diketopyrrolopyrrole pigments having heightened fastness and process for preparing them
KR20090122207A (en) * 2007-02-19 2009-11-26 클라리언트 파이넌스 (비브이아이)리미티드 Diketopyrrolopyrrole cocrystals with high transparency
KR20100014913A (en) * 2007-03-07 2010-02-11 클라리언트 파이넌스 (비브이아이)리미티드 Pigment preparation based on diketopyrrolopyrroles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290164B (en) * 1999-08-26 2007-11-21 Ciba Sc Holding Ag DPP-containing conjugated polymers and electroluminescent devices
ES2387304T3 (en) * 2003-10-28 2012-09-20 Basf Se New dicetopyrrolopyrrole polymers
KR100890145B1 (en) * 2006-06-15 2009-03-20 주식회사 엘지화학 Thiazolothiazole derivatives and organic electronic devices using the same
KR101235353B1 (en) * 2011-01-21 2013-02-20 광주과학기술원 Copolymer containing thienylenevinylene unit and organic electronic devices using the copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050067381A (en) * 2002-07-10 2005-07-01 클라리안트 게엠베하 Novel diketopyrrolopyrrole pigments
KR20080093125A (en) * 2006-02-18 2008-10-20 클라리언트 인터내셔널 리미티드 Diketopyrrolopyrrole pigments having heightened fastness and process for preparing them
KR20090122207A (en) * 2007-02-19 2009-11-26 클라리언트 파이넌스 (비브이아이)리미티드 Diketopyrrolopyrrole cocrystals with high transparency
KR20100014913A (en) * 2007-03-07 2010-02-11 클라리언트 파이넌스 (비브이아이)리미티드 Pigment preparation based on diketopyrrolopyrroles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837799A (en) * 2016-04-19 2016-08-10 中国科学院化学研究所 Dicarbonyl bridged pyrrolo-pyrrole-dione polymer as well as preparation method and application thereof
CN109897168A (en) * 2019-02-26 2019-06-18 中国科学院化学研究所 The not isotactic polymer and the preparation method and application thereof of one kind based on Dithiophene acrylonitrile

Also Published As

Publication number Publication date
WO2013089444A2 (en) 2013-06-20
WO2013089444A3 (en) 2013-08-08
KR101443189B1 (en) 2014-09-22
KR101463397B1 (en) 2014-11-19
KR20130069446A (en) 2013-06-26
KR20130069445A (en) 2013-06-26
WO2013089323A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2013089443A1 (en) Novel diketopyrrolopyrrole polymer and organic electronic element using same
KR101855051B1 (en) High performance solution processable seminconductor based on dithieno [2,3-d:2&#39;,3&#39;-d&#39;]benzo[1,2-b:4,5-b&#39;]dithiophene
WO2014077590A1 (en) Polymer comprising novel naphthalene diimide and organic electronic device using same
KR20080054553A (en) Heteroacenes, organic thin film comprising the compounds and electronic device comprising the thin film
KR20080100982A (en) Heteroacenes, organic thin film comprising the same and electronic device comprising the thin film
KR101928125B1 (en) Dithienophthalimide semiconductor polymers
US20140217374A1 (en) Organic semiconductor material
WO2011068305A2 (en) Conducting polymer to which pyrene compounds are introduced, and organic solar cell using same
CA2613719A1 (en) Thiophene electronic devices
KR20130050266A (en) Fused polyheteroaromatic compound, organic thin film including the compound and electronic device including the organic thin film
WO2013066065A1 (en) Organic semiconductor compound, method for manufacturing same, and organic solar cell using same
WO2021118238A1 (en) Novel polymer and organic electronic device using same
US9508936B2 (en) Organic semiconductor material
WO2014181910A1 (en) Diketopyrrolopyrrole polymer and organic electronic device containing same
KR101956970B1 (en) Thieno[2,3-c]pyrrole-dione derivatives and their use for organic semiconductors
WO2014204082A1 (en) Organic semiconductor compound, method for preparing same, and organic solar cell employing same
KR101888617B1 (en) Organic Semiconductor Compound, Organic Thin Film Including the Organic Semiconductor Compound Electronic Device Including the Organic Thin Film and Method of Manufacturing the Organic Thin Film
WO2015182973A1 (en) Organic semiconductor compound containing phosphine oxide group, and organic solar cell using same
KR101589048B1 (en) Novel organic semiconductor compound and organic electronic device using the same
WO2012148185A2 (en) Organic semiconductor compound, method for preparing same, and organic semiconductor device employing same
JP2012193316A (en) ELECTRONIC DEVICE INK COMPOSITION USING π ELECTRON CONJUGATED COMPOUND PRECURSOR, AND USE THEREOF
WO2021118242A1 (en) Novel polymer and organic electronic device including same
WO2021107674A1 (en) Novel compound and organic electronic device using same
KR102143429B1 (en) Diketopyrrolopyrrole polymer and organic electronic device using the same
KR101238183B1 (en) Alternating copolymers containing alkylthiophene and organic thin film transistor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858019

Country of ref document: EP

Kind code of ref document: A1