WO2013088978A1 - Muffler having helical muffler element as alternative to oxidation catalyst - Google Patents

Muffler having helical muffler element as alternative to oxidation catalyst Download PDF

Info

Publication number
WO2013088978A1
WO2013088978A1 PCT/JP2012/081224 JP2012081224W WO2013088978A1 WO 2013088978 A1 WO2013088978 A1 WO 2013088978A1 JP 2012081224 W JP2012081224 W JP 2012081224W WO 2013088978 A1 WO2013088978 A1 WO 2013088978A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
helical
spiral
outer cylinder
stay
Prior art date
Application number
PCT/JP2012/081224
Other languages
French (fr)
Japanese (ja)
Inventor
勇 奥野
慎太郎 奥野
Original Assignee
Okuno Isamu
Okuno Shintaro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Isamu, Okuno Shintaro filed Critical Okuno Isamu
Publication of WO2013088978A1 publication Critical patent/WO2013088978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides

Definitions

  • the present invention reduces harmful substances that are not good for the human body and the environment contained in exhaust gas discharged from an internal combustion engine using gasoline or diesel as fuel, and also improves fuel efficiency by reducing the exhaust pressure of the engine and its own exhaust pressure.
  • the present invention relates to a muffler having a helical muffler element instead of the oxidation catalyst to be produced.
  • the exhaust gas from internal combustion engines contains harmful substances such as carbon dioxide (CO 2 ), hydrocarbons (HC), and nitrogen oxides (NOx).
  • CO carbon dioxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • CO carbon monoxide
  • O 2 oxygen
  • an oxidation catalyst is inserted into a muffler that leads to exhaust gas, and this is changed into CO 2 and discharged.
  • the principle of the catalyst is to generate oxygen at a high temperature of exhaust gas using rare metals such as platinum, palladium and rhodium and chemical substances such as potassium chlorate and manganese dioxide, and change CO to CO 2 based on this oxygen. .
  • CO is not changed to CO 2 by a chemical change caused by the catalyst, but is physically separated into C and O, so that the CO can be reduced without using the catalyst, and the amount of CO 2 is also consequently increased. It can be reduced.
  • the present invention has an outer cylinder that is inserted into the muffler of the internal combustion engine according to claim 1 and has an inlet hole formed on the upstream side and an outlet hole formed on the downstream side,
  • a tapered cone in the outer cylinder is fixed with a plurality of plate-like spiral stays that are twisted so that the starting end and the terminal end are radially directed between the outer cylinder and the middle toward the end side.
  • a muffler containing a spiral muffler element When the flow path partitioned by a spiral stay is viewed from the front, the end is twisted to the extent that it is hidden behind the adjacent spiral stay and cannot be seen.
  • the corner provides a muffler having a helical muffler element instead of an oxidation catalyst, characterized in that the outer end is set larger than the inner end of the helical stay.
  • the twisting degree described in claim 2 is a means in which the end of the outer end is shifted by about two phases from the starting end, and the maximum outer periphery of the cone according to claim 3 Means in which the total volume of the gap between the outer cylinder and the outer cylinder is larger than the volume of the entrance hole, eight or more spiral stays according to claim 4 are provided, and the cross-sectional area of the flow path goes downstream.
  • a means in which the gap between the inner periphery of the outer cylinder and the maximum outer diameter of the cone is set to about 15 mm ⁇ 3 mm.
  • the space defined by the spiral stay on the outer periphery of the conical body becomes an air flow path, and the flow path is considerably twisted, so that the exhaust gas flowing through the spiral muffler element becomes a donut-shaped spiral flow (torsional flow) and is discharged into the space behind the element.
  • the torsion of the spiral stay is very large, it receives a large twisting force.
  • the exhaust gas receives a centrifugal force, and by this centrifugal force, the coupling of CO is cut and separated into C and O, and the generated CO 2 emission can also be reduced.
  • the catalyst according to the first aspect is physically separated from the catalyst due to chemical change.
  • a catalyst is not required and the cost is low, and it functions even when the exhaust gas is at a low temperature.
  • the twist is preferably the extent of claim 2, and according to the configurations of claims 3 and 4, the exhaust gas expands toward the rear of the flow path, promotes circulation, and exhibits a suction effect. According to the structure of Claim 5, the number of flow paths increases and it can receive more venturi effects.
  • FIG. 1 is a side sectional view of a muffler (hereinafter referred to as muffler) having a spiral muffler element instead of an oxidation catalyst showing an example of the present invention
  • FIG. 2 is a sectional view of a spiral muffler element (hereinafter referred to as element) constituting the muffler.
  • 7 to 8 are perspective views of the element.
  • the element is inserted into a muffler relatively close to the engine exhaust port, and is composed of an inlet fitting 1, an outer cylinder 2, and an outlet fitting 3 from the upstream side.
  • the inlet fitting 1 has a cylindrical shape extending from the mounting flange 5 in which the inlet hole 4 is formed to the outer cylinder 2, and the outer cylinder 2 is formed from the inlet fitting 1 (entrance hole 4).
  • the outlet fitting 3 is connected to the downstream side of the outer cylinder 2 and has a mounting flange 8 in which an outlet 7 having a relatively large cross-sectional area is formed.
  • An element 9 is accommodated in the outer cylinder 2 immediately after the front wall 6.
  • the downstream side of the element 9 is a space 10 having a length that is at least equal to the width of the element 9.
  • 3 is a cross-sectional view taken along the line AA of FIG. 1, and FIG.
  • the element 9 becomes closer to the outer periphery of the cone 11 having a narrow upstream end and a large diameter on the downstream side.
  • a plurality of plate-shaped radial spiral stays (hereinafter referred to as stays) 12 that are twisted are attached and fixed to the center of the outer cylinder 2 (in this example, the element 9 is prevented from shifting to the downstream side. Therefore, the sleeve 13 is inserted on the inner periphery of the outer cylinder 2). Since the diameter of the outer cylinder 2 is constant, the length of the stay 12 becomes lower toward the downstream side.
  • a gap 14 is formed between the maximum outer circumference of the cone 11 and the outer cylinder 2, and the exhaust gas that has entered from the inlet 4 passes through the space 10 through the gap 10 and exits from the outlet 7. .
  • a flow path 15 separated by a stay 12 is formed between the outer periphery of the cone 11 and the outer cylinder 2, a flow path 15 separated by a stay 12 is formed.
  • the stay 12 that is, the flow path 15 is twisted as far as it goes to the end.
  • the stay 12 is applied to a small vehicle to be described later. It is out of phase. For this reason, when the start end of a certain flow path 15 is viewed from the front, the end is hidden behind the adjacent stay 12 and cannot be seen (FIG. 3).
  • the cross section of the stay 12 has a concave twisting direction.
  • the torsion angle of the stay 12 is ⁇ at the outer end 12a (portion that contacts the outer cylinder 2), ⁇ at the inner end 12b (portion that contacts the cone 11), and ⁇ > ⁇ . That is, the degree of twisting is larger at the outer end 12a having a higher height than the inner end 12b. In view of this, the larger the number of stays 12, the better.
  • the flow path 15 must have a certain width, about 8 to 12 is preferable.
  • the number of stays 12 is 10
  • the outer diameter is 110 mm
  • the width is 60 mm
  • the maximum outer circumference of the cone 11 is about 78 mm.
  • the stay 12 that is, the flow path 15 is largely twisted
  • the exhaust gas flowing through the flow path 15 is subjected to torsional rotation and receives centrifugal force. Due to this centrifugal force, CO in the exhaust gas is separated into C and O by weight difference, and is not discharged from the outlet 7 as CO. Separation by centrifugal force is promoted as the space 10 becomes longer.
  • the entire volume of the gap 14 is larger than the volume of the inlet hole 4, and the exhaust gas that has entered from the inlet hole 4 is expanded until it exceeds the cone 11. Furthermore, it is preferable that the volume of the flow path 15 increases toward the end. That is, it is preferable from the viewpoint of facilitating discharge that the exhaust gas is gradually expanded until it enters from the entrance hole 4 and flows through each flow path 15 to pass through the gap 14 and enter the space 10. As described above, the exhaust gas that has entered through the inlet hole 4 flows through the flow path 15. At this time, the stay 12 is largely twisted, and therefore the lengths of the stays are different on the front and back surfaces.
  • FIG. 5 is a plan sectional view showing another example of the muffler using this element 9. In this example, the start end of the stay 12 of the element 9 and the end of itself are continuous in the inlet fitting 1.
  • FIG. 6 shows the outer cylinder 2 connected from the element 9 to a metal-net (lass) exhaust cylinder 18 and continued to the outlet fitting 3.
  • This wire mesh is formed by cutting a thin iron plate and pulling it sideways to form a rhombus-shaped mesh.
  • FIG. 9 is a plan sectional view showing another example using this element 9.
  • the inlet fitting 1 and the outlet fitting 3 are each tapered with a large diameter on the outer cylinder 2 side. It is. According to this, the exhaust gas suction effect is high, and the discharge is performed smoothly. Particularly, the taper on the outlet side facilitates the discharge and is effective in reducing its own discharge pressure.
  • FIG. 10 is a graph showing the relationship between the pressure and the flow velocity when a pressure gauge is placed in front of the cone 11 in the above-described basic type spiral element (product of the present invention). ), The pressure of the present invention is reduced compared to the increase of the inflow pressure as the flow rate increases.
  • CO is zero in the conventional product that uses a catalyst, but this is the value when the warm-up operation is sufficiently performed and the exhaust gas becomes high temperature, and until then, a considerably high amount of CO Is presumed to be discharged.
  • this level is not a problem and is far below the national standard value above all. Therefore, the product of the present invention is not affected by the temperature of the exhaust gas and has a feature that a catalyst is not required.
  • the amount of CO 2 in the product of the present invention is reduced compared to the conventional product. This is also a proof of separating CO into C and O by the centrifugal force described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

In order to separate CO contained in exhaust gas in an internal combustion engine into C and O not by a chemical change caused by a catalyst but physically, a muffler comprises an external cylinder which is inserted in the muffler of an internal combustion engine and has an inlet hole formed on the upstream side and an outlet hole formed on the downstream side, and houses, within the external cylinder, a helical muffler element which is configured by securing a tapered conical body by a plurality of plate-shaped helical stays with the starting end and ending end thereof facing a radial direction and the middle part thereof twisted more strongly toward the peripheral end thereof between the conical body and the external cylinder. When flow paths separated by the helical stays are viewed from the front, the flow paths are each twisted to such a degree that the ending end thereof is hidden by the helical stay adjacent thereto and cannot be viewed, and the twist angle is set larger at the outer end of the helical stay than the inner end thereof.

Description

酸化触媒に代わる螺旋形マフラーエレメントを有するマフラーA muffler with a helical muffler element instead of an oxidation catalyst
 本発明は、ガソリンやディーゼルを燃料とする内燃機関から排出される排ガス中に含まれる人体や環境によくない有害物質を低減させるとともに、エンジンの排圧及び自身の排圧を減じて燃費も向上させる酸化触媒に代わる螺旋形マフラーエレメントを有するマフラーに関するものである。 The present invention reduces harmful substances that are not good for the human body and the environment contained in exhaust gas discharged from an internal combustion engine using gasoline or diesel as fuel, and also improves fuel efficiency by reducing the exhaust pressure of the engine and its own exhaust pressure. The present invention relates to a muffler having a helical muffler element instead of the oxidation catalyst to be produced.
 ガソリンやディーゼル等を燃焼させる内燃機関(以下、エンジン)の排ガスには二酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有害物質が含まれており、さらに、わずかではあるが一酸化炭素(CO)や酸素(O)も含まれている。このうち、COは毒性が非常に強いから、排ガスを導くマフラー中に酸化触媒(以下、触媒)を挿設し、これをCOに変化させて排出させている。触媒の原理は、プラチナ、パラジウム、ロジウムといった稀少金属や塩素酸カリウムや二酸化マンガンといった化学物質を用いて排ガスの高温で酸素を発生させ、この酸素を元にCOをCOに変化させるものである。
 ところが、酸素を発生させるには熱が必要であり、そのためには、エンジンがある程度暖まって排ガスが高温にならなければならない。したがって、エンジンが暖まるまでは有効に作用せず、COをそのまま排出していた。一方で、エンジンが暖まり、COをCOに変化させたとしても、今度は、COの排出量が増え、これは昨今問題となっている地球温暖化の原因となる。さらに、触媒は高価であるという問題もある。
 そこで、触媒を使わずにこれら有害物質を減らせるとすれば、限りある資源や化学物質を使わずにすむ。そこで、本発明者はこの課題に取り組み、下記特許文献1及び2を提案し、それ相応の効果を上げている。さらに、排ガスの排出を促進させてエンジンの排圧を下げると、出力が上がって燃費が改善するとともに、結果的には有害物質を減らすことができるのも知られており、下記特許文献3のようなものも提案されている。
The exhaust gas from internal combustion engines (hereinafter referred to as engines) that burn gasoline, diesel, etc. contains harmful substances such as carbon dioxide (CO 2 ), hydrocarbons (HC), and nitrogen oxides (NOx). However, carbon monoxide (CO) and oxygen (O 2 ) are also included. Among these, since CO is very toxic, an oxidation catalyst (hereinafter referred to as catalyst) is inserted into a muffler that leads to exhaust gas, and this is changed into CO 2 and discharged. The principle of the catalyst is to generate oxygen at a high temperature of exhaust gas using rare metals such as platinum, palladium and rhodium and chemical substances such as potassium chlorate and manganese dioxide, and change CO to CO 2 based on this oxygen. .
However, heat is required to generate oxygen, and for this purpose, the engine must be warmed to some extent and the exhaust gas must be hot. Therefore, it did not act effectively until the engine warmed up, and CO was discharged as it was. On the other hand, the engine warms, even changing the CO to CO 2, in turn, increased emissions of CO 2, which causes global warming has become a recent problem. Furthermore, there is a problem that the catalyst is expensive.
Therefore, if these harmful substances can be reduced without using a catalyst, it is not necessary to use limited resources and chemical substances. Therefore, the present inventor has tackled this problem, proposed the following Patent Documents 1 and 2, and has achieved the corresponding effects. Furthermore, it is known that when exhaust gas emission is promoted to reduce engine exhaust pressure, output is increased and fuel efficiency is improved, and as a result, harmful substances can be reduced. Something like this has also been proposed.
特許第2551516号公報Japanese Patent No. 25551516 特許第3344968号公報Japanese Patent No. 3344968 米国特許5962822明細書US Pat. No. 5,962,822
 本発明は、COを触媒による化学変化によってCOに変化させるのではなく、物理的にCとOに分離させることで触媒を使わずにCOを減らせるとともに、結果的にCOの量も減らせるようにしたものである。 In the present invention, CO is not changed to CO 2 by a chemical change caused by the catalyst, but is physically separated into C and O, so that the CO can be reduced without using the catalyst, and the amount of CO 2 is also consequently increased. It can be reduced.
 以上の課題の下、本発明は、請求項1に記載した、内燃機関のマフラーに挿設され、上流側に入孔が形成され、下流側に出孔が形成された外筒を有し、外筒内に先細になった円錐体を外筒との間で始端と終端とが径方向に向いて途中を終端側に行くほど捩じらせた板状の複数の螺旋形ステーで固定した螺旋形マフラーエレメントを収容したマフラーであり、螺旋形ステーで区切られた流路を正面から見た場合、終端は隣の螺旋形ステーで隠れて見えないぐらいに捩じられており、捩じり角は螺旋形ステーの内端よりも外端の方が大きく設定されていることを特徴とする酸化触媒に代わる螺旋形マフラーエレメントを有するマフラーを提供したものである。
 また、本発明は以上のマフラーにおいて、請求項2に記載した、捩じりの程度は外端の終端は始端より二位相程度ずれている手段、請求項3に記載した、円錐体の最大外周と外筒との間の間隙の全体容積が入孔の容積よりも大きい手段、請求項4に記載した、螺旋形ステーが8枚以上設けられており、流路の断面積が下流側に行くほど漸大している手段、請求項5に記載した、外筒の内周と円錐体の最大外径との間隙が15mm±3mm程度に設定される手段を提供する。
Under the above problems, the present invention has an outer cylinder that is inserted into the muffler of the internal combustion engine according to claim 1 and has an inlet hole formed on the upstream side and an outlet hole formed on the downstream side, A tapered cone in the outer cylinder is fixed with a plurality of plate-like spiral stays that are twisted so that the starting end and the terminal end are radially directed between the outer cylinder and the middle toward the end side. A muffler containing a spiral muffler element. When the flow path partitioned by a spiral stay is viewed from the front, the end is twisted to the extent that it is hidden behind the adjacent spiral stay and cannot be seen. The corner provides a muffler having a helical muffler element instead of an oxidation catalyst, characterized in that the outer end is set larger than the inner end of the helical stay.
According to the present invention, in the above-described muffler, the twisting degree described in claim 2 is a means in which the end of the outer end is shifted by about two phases from the starting end, and the maximum outer periphery of the cone according to claim 3 Means in which the total volume of the gap between the outer cylinder and the outer cylinder is larger than the volume of the entrance hole, eight or more spiral stays according to claim 4 are provided, and the cross-sectional area of the flow path goes downstream. According to a fifth aspect of the present invention, there is provided a means in which the gap between the inner periphery of the outer cylinder and the maximum outer diameter of the cone is set to about 15 mm ± 3 mm.
 請求項1の発明によれば、円錐体の外周で螺旋形ステーで区切られた空間が空気の流路となり、この流路がかなり大きく捩じられているから、螺旋形マフラーエレメントを流通する排ガスはドーナツ状の螺旋流(捩回流)となって当該エレメントの後方の空間に排出される。このとき、螺旋形ステーの捩じりが非常に大きいことから、大きな捩回力を受ける。これにより、排ガスは遠心力を受け、この遠心力でCOの結合が切断されてCとOに分離されるとともに、生成されたCOの排出量も減らせることができる。いわば、触媒が化学変化によるものに対して請求項1の発明では物理的分離をするものになる。この点で、触媒が不要になって安価になるし、排ガスが低温であっても機能する。
 捩じりは請求項2の程度が好ましいし、請求項3及び4の構成によれば、排ガスは流路の後方に行くほど膨張し、流通を促進し、吸引効果を奏する。請求項5の構成によれば、流路の数が増えてベンチュリ効果をより多く受けることができる。
According to the first aspect of the present invention, the space defined by the spiral stay on the outer periphery of the conical body becomes an air flow path, and the flow path is considerably twisted, so that the exhaust gas flowing through the spiral muffler element Becomes a donut-shaped spiral flow (torsional flow) and is discharged into the space behind the element. At this time, since the torsion of the spiral stay is very large, it receives a large twisting force. As a result, the exhaust gas receives a centrifugal force, and by this centrifugal force, the coupling of CO is cut and separated into C and O, and the generated CO 2 emission can also be reduced. In other words, the catalyst according to the first aspect is physically separated from the catalyst due to chemical change. In this respect, a catalyst is not required and the cost is low, and it functions even when the exhaust gas is at a low temperature.
The twist is preferably the extent of claim 2, and according to the configurations of claims 3 and 4, the exhaust gas expands toward the rear of the flow path, promotes circulation, and exhibits a suction effect. According to the structure of Claim 5, the number of flow paths increases and it can receive more venturi effects.
螺旋形マフラーエレメントの側面断面図である。It is side surface sectional drawing of a helical muffler element. 円錐体及びステーの関係を示す側面断面図である。It is side surface sectional drawing which shows the relationship between a cone and a stay. 図1のA−Aである。It is AA of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 螺旋形マフラーエレメントの他の例の側面断面図である。It is side surface sectional drawing of the other example of a helical muffler element. 螺旋形マフラーエレメントの他の例の側面断面図である。It is side surface sectional drawing of the other example of a helical muffler element. 螺旋形マフラーエレメントの斜視図である。It is a perspective view of a spiral muffler element. 螺旋形マフラーエレメントの斜視図である。It is a perspective view of a spiral muffler element. 螺旋形マフラーエレメントの他の例の側面断面図である。It is side surface sectional drawing of the other example of a helical muffler element. 本発明の螺旋形マフラーエレメントと触媒を使用する従来例のマフラーの圧力と流速の関係を示すグラフである。It is a graph which shows the relationship between the pressure and flow velocity of the muffler of the conventional example which uses the helical muffler element of this invention, and a catalyst.
 以下、本発明の実施の形態を図面を参照して説明する。図1は本発明の一例を示す酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー(以下、マフラー)の側面断面図、図2はマフラーを構成する螺旋形マフラーエレメント(以下、エレメント)の断面図、図7~図8はエレメントの斜視図であるが、エレメントはエンジンの排気口の比較的近くのマフラー内に挿設され、上流側から入口金具1、外筒2、出口金具3で構成されるが、このうち、入口金具1は入孔4が形成された取付用のフランジ5から外筒2まで続く筒状をしているものであり、外筒2は入口金具1(入孔4)よりも径の大きなパイプ状のものである(6は前壁)。出口金具3は外筒2の下流側に接続され、比較的断面積の大きな出孔7が形成された同じく取付用のフランジ8を有するものである。
 外筒2の内部で前壁6の直後にはエレメント9が収容される。なお、エレメント9の下流側は少なくともエレメント9の幅以上の長さを有する空間10となっている。図3は図1のA−A断面図、図4はB−B断面図であるが、このエレメント9は上流端が細くて下流側が径大になった円錐体11の外周に終端に行くほど捩じらせている板状の複数の放射状の螺旋形ステー(以下、ステー)12を取り付けて外筒2の中心に固定される(本例では、エレメント9が下流側にずれるのを防止するためにスリーブ13を外筒2の内周に挿設している)。なお、外筒2の径は一定しているから、ステー12は下流側ほどその丈が低くなる。このとき、円錐体11の最大外周と外筒2との間には間隙14が形成され、入孔4から入った排ガスはこの間隙14を超えて空間10を通って出孔7から出て行く。
 円錐体11の外周と外筒2との間はステー12で区切られた流路15を形成している。本発明では、このステー12、つまり、流路15が終端に行くほど大きく捩じられていることであり、具体的には、後述する小型車に適用するもので外端12aの終端は始端より二位相程度ずれている。このため、ある流路15の始端を正面から見た場合、その終端は隣のステー12の陰に隠れて見えない位である(図3)。ただ、ステー12の始端と終端とは中心方向(径方向)に向いているため、ステー12の断面は捩じりの方向を凹面としている。このとき、ステー12の捩じり角は外端12a(外筒2に接する部分)がα、内端12b(円錐体11に接する部分)がβであり、α>βとなっている。つまり、捩じりの程度は内端12bよりも高い丈を有する外端12aの方が大きくなっている。このことからいえば、ステー12の数は多いほど好ましいが、流路15もある程度の幅が確保されなければならないから、8~12程度が好ましい。一例を上げると、小形車に適用するものは、ステー12の数が10であり、外径が110mm、幅が60mm、円錐体11の最大外周は78mm程度である。この他、中型・大形車に適用するものとしてステー12の数が12、外径が136mmのものもある(他のサイズも相応に大きくなっている)。
 ステー12、すなわち、流路15が大きく捩じられていることから、流路15を流通する排ガスは捩回回転を与えられ、遠心力を受ける。この遠心力により、排ガス中のCOは重量差でCとOに分離され、COとしては出孔7から排出されない。遠心力による分離は空間10が長いほど促進されることになる。加えて、間隙14の全体容積は入孔4の容積よりも大きく、入孔4から入った排ガスは円錐体11を超えるまで膨張させられるようになっている。さらに、流路15は終端に行くほど容積が大きくなっているのが好ましい。つまり、入孔4から入って各流路15を流通して間隙14を超えて空間10に入るまで排ガスは漸次膨張させられるのが排出を容易にする点で好ましい。
 以上により、入孔4から入った排ガスは流路15を流通して行くが、このとき、ステー12は大きく捩じられているから、その表裏面で長さが異なる。具体的には、本例では正面から見て左に捩じってあるので、右側面の方が左側面よりも長く、排ガスの流速が速く、減圧される。したがって、流路15でベンチュリ効果を受け、排ガスの流通を促進するとともに、結果的には、排ガスを吸引することになる。
 なお、排ガスは最後には間隙14を超えることになるが、このときの、間隙14の全体容積は入孔4の容積よりも大きいし、加えて、流路15の下流側ほど断面積が漸大していることから、この吸引効果を更に助長させる。ただ、間隙14の長さにはある範囲があり、発明者がテストした結果、15mm±3mm程度、最適には17mm程度が適することを確認している。間隙14があまり大きいと、排ガスの広がりが悪くて十分な遠心力が働かないし、あまり小さいと、間隙17の絶対的な断面積が減じて詰まりが生じたりするからである。さらに、この寸法は外筒2の径によってもほとんど変わらないことも確認している。
 図5はこのエレメント9を使用したマフラーの他の例を示す平面断面図であるが、本例のものは、入口金具1の中にエレメント9のステー12の始端と自身の終端が連続した状態で捩じられているステー16で固定された(中心には細い芯材が設けられる)エレメント17を設けたものである。これによると、捩じりの程度も大きくなり、流路長も長くなるから、より大きなベンチュリ効果を受けることができる。
 図6は外筒2の中でエレメント9から金網(ラス)状の排気筒18を接続し、出口金具3まで連続させたものである。この金網は薄い鉄板に切れ目を入れ、これを側方に引っ張って菱形状の網目を形成するものであるが、このときの引張の方向や力を調整することで、網目に凹凸が生じ、凸側を出孔7側に配置すると、この凸の部分で排ガスを積極的に中に取り込み、排出を促進する。同時に凸の部分にHCが付着し、これが排ガスの高温で燃焼し、結果的にHCの排出量を減らせる。
 図9はこのエレメント9を使用した他の例を示す平面断面図であるが、本例のものは、入口金具1と出口金具3とがそれぞれ外筒2側が径大なテーパとなっているものである。これによると、排ガスの吸込み効果も高く、排出もスムーズに行われる。特に、出口側のテーパは排出を容易にし、自身の排圧を減らすのに効果がある。
 図10は上記した基本型の螺旋エレメント(本発明品)において、円錐体11の前方に圧力計を置いての圧力と流速との関係を示すグラフであるが、従来の触媒によるマフラー(従来品)が流速が速くなるに伴って流入圧力が増すのに比べて本発明のものは逆に圧力が下がっている。このことは、本発明のエレメント9を使用したマフラーによれば、エンジンの排ガスの吸引効果があり、エンジンの排圧を減らして出力の低下を防ぎ、燃費も向上することを証明するものともいえる(上記した容量の大きな空間10もこの吸引効果に貢献している)。
 以下は、中型のガソリン車でアイドリング時における本発明品と触媒による従来品についてマフラーの後端から排出されるの排ガス中のCOとCOを財団法人日本自動車輸送技術協会が測定した表である。
Figure JPOXMLDOC01-appb-I000001
 これを見ると、触媒を使用する従来品ではCOは零になっているが、これは暖気運転を十分に行い、排ガスが高温になった場合の値であり、それまではかなり高い量のCOが排出されているものと推察される。一方、本発明品ではCOがわずかに排出されているが、この程度は何ら問題ないし、何よりも国の基準値を大幅に下回っている。したがって、本発明品では排ガスの温度に左右されないし、触媒を不要とする特徴がある。
 また、本発明品では従来品に比べてCOの量も減っている。このことは、上記した遠心力によってCOをCとOに分離することの証左でもある。本発明品ではわずかにCOが排出されることは上記したが、この量を加えたとしても、従来品のCOよりも減っているのがわかる。このCOの違いは一つの車両のアイドリング時のわずかな時間で測定したものにすぎないが、車両が所定の速度、距離で走行すると、トータルでの違いは膨大なものとなる。
 本発明者が中型車でテストした結果、本発明品によるものはCOが従来品に比べて1Kmで1.25g減少した結果が得られており、仮に、20万Km走行すると、総額で2.5t減ることになる。さらに、地球上では数多くのエンジンを装備した車両を始めとする走行体が走行しており、これら全部に本発明を適用し、その違いをトータルすると天文学的な数値になる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of a muffler (hereinafter referred to as muffler) having a spiral muffler element instead of an oxidation catalyst showing an example of the present invention, and FIG. 2 is a sectional view of a spiral muffler element (hereinafter referred to as element) constituting the muffler. 7 to 8 are perspective views of the element. The element is inserted into a muffler relatively close to the engine exhaust port, and is composed of an inlet fitting 1, an outer cylinder 2, and an outlet fitting 3 from the upstream side. However, among these, the inlet fitting 1 has a cylindrical shape extending from the mounting flange 5 in which the inlet hole 4 is formed to the outer cylinder 2, and the outer cylinder 2 is formed from the inlet fitting 1 (entrance hole 4). Is a pipe with a large diameter (6 is the front wall). The outlet fitting 3 is connected to the downstream side of the outer cylinder 2 and has a mounting flange 8 in which an outlet 7 having a relatively large cross-sectional area is formed.
An element 9 is accommodated in the outer cylinder 2 immediately after the front wall 6. The downstream side of the element 9 is a space 10 having a length that is at least equal to the width of the element 9. 3 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 4 is a cross-sectional view taken along the line BB. However, the element 9 becomes closer to the outer periphery of the cone 11 having a narrow upstream end and a large diameter on the downstream side. A plurality of plate-shaped radial spiral stays (hereinafter referred to as stays) 12 that are twisted are attached and fixed to the center of the outer cylinder 2 (in this example, the element 9 is prevented from shifting to the downstream side. Therefore, the sleeve 13 is inserted on the inner periphery of the outer cylinder 2). Since the diameter of the outer cylinder 2 is constant, the length of the stay 12 becomes lower toward the downstream side. At this time, a gap 14 is formed between the maximum outer circumference of the cone 11 and the outer cylinder 2, and the exhaust gas that has entered from the inlet 4 passes through the space 10 through the gap 10 and exits from the outlet 7. .
Between the outer periphery of the cone 11 and the outer cylinder 2, a flow path 15 separated by a stay 12 is formed. In the present invention, the stay 12, that is, the flow path 15 is twisted as far as it goes to the end. Specifically, the stay 12 is applied to a small vehicle to be described later. It is out of phase. For this reason, when the start end of a certain flow path 15 is viewed from the front, the end is hidden behind the adjacent stay 12 and cannot be seen (FIG. 3). However, since the start end and the end of the stay 12 are directed in the center direction (radial direction), the cross section of the stay 12 has a concave twisting direction. At this time, the torsion angle of the stay 12 is α at the outer end 12a (portion that contacts the outer cylinder 2), β at the inner end 12b (portion that contacts the cone 11), and α> β. That is, the degree of twisting is larger at the outer end 12a having a higher height than the inner end 12b. In view of this, the larger the number of stays 12, the better. However, since the flow path 15 must have a certain width, about 8 to 12 is preferable. As an example, what is applied to a small vehicle is that the number of stays 12 is 10, the outer diameter is 110 mm, the width is 60 mm, and the maximum outer circumference of the cone 11 is about 78 mm. In addition, there are also those with 12 stays 12 and an outer diameter of 136 mm that are applicable to medium-sized and large-sized vehicles (other sizes are correspondingly larger).
Since the stay 12, that is, the flow path 15 is largely twisted, the exhaust gas flowing through the flow path 15 is subjected to torsional rotation and receives centrifugal force. Due to this centrifugal force, CO in the exhaust gas is separated into C and O by weight difference, and is not discharged from the outlet 7 as CO. Separation by centrifugal force is promoted as the space 10 becomes longer. In addition, the entire volume of the gap 14 is larger than the volume of the inlet hole 4, and the exhaust gas that has entered from the inlet hole 4 is expanded until it exceeds the cone 11. Furthermore, it is preferable that the volume of the flow path 15 increases toward the end. That is, it is preferable from the viewpoint of facilitating discharge that the exhaust gas is gradually expanded until it enters from the entrance hole 4 and flows through each flow path 15 to pass through the gap 14 and enter the space 10.
As described above, the exhaust gas that has entered through the inlet hole 4 flows through the flow path 15. At this time, the stay 12 is largely twisted, and therefore the lengths of the stays are different on the front and back surfaces. Specifically, in this example, since it is twisted to the left when viewed from the front, the right side is longer than the left side, the exhaust gas flow rate is high, and the pressure is reduced. Therefore, the venturi effect is received in the flow path 15 and the circulation of the exhaust gas is promoted. As a result, the exhaust gas is sucked.
The exhaust gas will eventually exceed the gap 14, but the total volume of the gap 14 at this time is larger than the volume of the inlet hole 4, and in addition, the cross-sectional area gradually decreases toward the downstream side of the flow path 15. Since it is large, this suction effect is further promoted. However, the length of the gap 14 has a certain range, and as a result of testing by the inventor, it has been confirmed that about 15 mm ± 3 mm and optimally about 17 mm are suitable. If the gap 14 is too large, the exhaust gas spreads poorly and sufficient centrifugal force does not work. If it is too small, the absolute cross-sectional area of the gap 17 decreases and clogging occurs. Furthermore, it has been confirmed that this dimension hardly changes depending on the diameter of the outer cylinder 2.
FIG. 5 is a plan sectional view showing another example of the muffler using this element 9. In this example, the start end of the stay 12 of the element 9 and the end of itself are continuous in the inlet fitting 1. The element 17 is provided which is fixed by a stay 16 that is twisted by (a thin core material is provided at the center). According to this, since the degree of twisting becomes large and the flow path length becomes long, a larger venturi effect can be received.
FIG. 6 shows the outer cylinder 2 connected from the element 9 to a metal-net (lass) exhaust cylinder 18 and continued to the outlet fitting 3. This wire mesh is formed by cutting a thin iron plate and pulling it sideways to form a rhombus-shaped mesh. When the side is arranged on the outlet 7 side, exhaust gas is actively taken into the convex portion and the discharge is promoted. At the same time, HC adheres to the convex portion and burns at a high temperature of the exhaust gas. As a result, the amount of HC emission can be reduced.
FIG. 9 is a plan sectional view showing another example using this element 9. In this example, the inlet fitting 1 and the outlet fitting 3 are each tapered with a large diameter on the outer cylinder 2 side. It is. According to this, the exhaust gas suction effect is high, and the discharge is performed smoothly. Particularly, the taper on the outlet side facilitates the discharge and is effective in reducing its own discharge pressure.
FIG. 10 is a graph showing the relationship between the pressure and the flow velocity when a pressure gauge is placed in front of the cone 11 in the above-described basic type spiral element (product of the present invention). ), The pressure of the present invention is reduced compared to the increase of the inflow pressure as the flow rate increases. This proves that according to the muffler using the element 9 of the present invention, there is an exhaust effect of the exhaust gas of the engine, the exhaust pressure of the engine is reduced to prevent the output from being lowered, and the fuel consumption is also improved. (The above-described large-capacity space 10 also contributes to this suction effect).
The following is a table in which the Japan Automobile Transport Technology Association measured CO and CO 2 in the exhaust gas discharged from the rear end of the muffler for the present invention product and the conventional product using the catalyst when idling in a medium-sized gasoline vehicle. .
Figure JPOXMLDOC01-appb-I000001
Looking at this, CO is zero in the conventional product that uses a catalyst, but this is the value when the warm-up operation is sufficiently performed and the exhaust gas becomes high temperature, and until then, a considerably high amount of CO Is presumed to be discharged. On the other hand, although CO is slightly emitted in the product of the present invention, this level is not a problem and is far below the national standard value above all. Therefore, the product of the present invention is not affected by the temperature of the exhaust gas and has a feature that a catalyst is not required.
In addition, the amount of CO 2 in the product of the present invention is reduced compared to the conventional product. This is also a proof of separating CO into C and O by the centrifugal force described above. In the present inventions it slightly CO is discharged has been described above, even when added to this amount, it can be seen that has decreased than conventional product CO 2. This difference in CO 2 is only measured in a short time during idling of one vehicle, but when the vehicle travels at a predetermined speed and distance, the total difference becomes enormous.
As a result of the test conducted by the inventor on a medium-sized vehicle, the product according to the present invention has a result that CO 2 is reduced by 1.25 g at 1 Km compared to the conventional product. It will be reduced by 5t. Furthermore, traveling bodies such as vehicles equipped with a large number of engines are running on the earth, and the present invention is applied to all of them.
 以上は、自動車のマフラーを主体に説明したものであるが、本発明は、これらに限らず、ガソリン、ディーゼル等の炭化水素を燃料とするエンジンを装備した船舶、航空機、トラクタ等の農業機械、その他の走行体に適用される内燃機関のエンジンすべてのマフラーに適用できる。 The above is mainly described with respect to automobile mufflers, but the present invention is not limited to these, and agricultural machinery such as ships, aircraft, tractors, etc. equipped with engines fueled with hydrocarbons such as gasoline and diesel, It can be applied to all mufflers of internal combustion engines applied to other traveling bodies.

Claims (5)

  1.  内燃機関のマフラーに挿設され、上流側に入孔が形成され、下流側に出孔が形成された外筒を有し、外筒内に先細になった円錐体を外筒との間で始端と終端とが径方向に向いて途中を周端側に行くほど捩じらせた板状の複数の螺旋形ステーで固定した螺旋形マフラーエレメントを収容したマフラーであり、螺旋形ステーで区切られた流路を正面から見た場合、終端は隣の螺旋形ステーで隠れて見えないぐらいに捩じられており、捩じり角は螺旋形ステーの内端よりも外端の方が大きく設定されていることを特徴とする酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー。 Inserted into the muffler of the internal combustion engine, has an outer cylinder with an inlet hole formed on the upstream side and an outlet hole formed on the downstream side, and a tapered cone in the outer cylinder between the outer cylinder A muffler that accommodates a spiral muffler element fixed by a plurality of plate-like helical stays that are twisted as the start and end points in the radial direction and go to the peripheral side in the middle, separated by a helical stay When the flow path is viewed from the front, the end is twisted so that it is hidden behind the adjacent spiral stay, and the torsion angle is larger at the outer end than at the inner end of the spiral stay. A muffler having a helical muffler element instead of an oxidation catalyst characterized by being set.
  2.  捩じりの程度は外端の終端は始端に対して二位相程度である請求項1の酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー。 The muffler having a spiral muffler element instead of the oxidation catalyst according to claim 1, wherein the degree of twisting is about two phases at the end of the outer end with respect to the start end.
  3.  円錐体の最大外周と外筒との間の間隙の全体容積が入孔の容積よりも大きい請求項1又は2の酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー。 3. A muffler having a spiral muffler element instead of the oxidation catalyst according to claim 1 or 2, wherein the entire volume of the gap between the maximum outer periphery of the cone and the outer cylinder is larger than the volume of the inlet.
  4.  螺旋形ステーが8枚以上設けられており、流路の断面積が下流側に行くほど漸大している請求項1~3いずれかの酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー。 A muffler having a spiral muffler element instead of the oxidation catalyst according to any one of claims 1 to 3, wherein eight or more helical stays are provided, and the cross-sectional area of the flow path gradually increases toward the downstream side.
  5.  外筒の内周と円錐体の最大外径との間隙が15mm±3mm程度に設定される請求項1~4いずれかの酸化触媒に代わる螺旋形マフラーエレメントを有するマフラー。 5. A muffler having a spiral muffler element in place of the oxidation catalyst according to any one of claims 1 to 4, wherein a gap between the inner periphery of the outer cylinder and the maximum outer diameter of the cone is set to about 15 mm ± 3 mm.
PCT/JP2012/081224 2011-12-12 2012-11-26 Muffler having helical muffler element as alternative to oxidation catalyst WO2013088978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011271478A JP2015038324A (en) 2011-12-12 2011-12-12 Wing-like muffler substituted for oxidation catalyst
JP2011-271478 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013088978A1 true WO2013088978A1 (en) 2013-06-20

Family

ID=48612432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081224 WO2013088978A1 (en) 2011-12-12 2012-11-26 Muffler having helical muffler element as alternative to oxidation catalyst

Country Status (2)

Country Link
JP (1) JP2015038324A (en)
WO (1) WO2013088978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140721A (en) * 2020-01-17 2020-05-12 浙江大学 Spiral noise reduction device and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074098B1 (en) * 2016-06-13 2017-02-01 増山 征男 Exhaust accelerating device using exhaust from heat engine and combustion equipment
KR101834543B1 (en) * 2016-09-19 2018-03-05 (주)효우 exhaust improvement unit for car

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551516B2 (en) * 1992-06-11 1996-11-06 勇 奥野 Vehicle exhaust emission promotion device
US5962822A (en) * 1998-06-23 1999-10-05 May; Daniel A. Muffler/exhaust extractor and method
JP3344968B2 (en) * 1999-05-13 2002-11-18 勇 奥野 Automotive exhaust pipe system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551516B2 (en) * 1992-06-11 1996-11-06 勇 奥野 Vehicle exhaust emission promotion device
US5962822A (en) * 1998-06-23 1999-10-05 May; Daniel A. Muffler/exhaust extractor and method
JP3344968B2 (en) * 1999-05-13 2002-11-18 勇 奥野 Automotive exhaust pipe system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140721A (en) * 2020-01-17 2020-05-12 浙江大学 Spiral noise reduction device and method thereof

Also Published As

Publication number Publication date
JP2015038324A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
US8826649B2 (en) Assembly for mixing liquid within gas flow
US7490467B2 (en) Gas flow enhancer for combustion engines
EP3235714A1 (en) Saddle-ride vehicle
JP5114219B2 (en) Exhaust gas purification device for internal combustion engine
US7331422B2 (en) Vortex muffler
US10954841B2 (en) Diesel exhaust fluid mixing
CN101802356A (en) Exhaust purification apparatus
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
US20090095556A1 (en) Exhaust temperature reduction device for aftertreatment devices
WO2015145498A1 (en) Exhaust gas purification system of internal combustion engine having turbocharger
WO2013088978A1 (en) Muffler having helical muffler element as alternative to oxidation catalyst
US11828214B2 (en) Configurable aftertreatment systems including a housing
US10941692B1 (en) Mixer assembly for exhaust aftertreatment system
KR200466707Y1 (en) Sub-muffler for automobile exhaust system
US10605139B2 (en) Catalytic converter for classic cars
KR101365892B1 (en) Air intake duct apparatus capable of improving efficiency of air intake in vehicle
KR200484057Y1 (en) Sub-muffler for cars
US11655747B2 (en) Outlet passage for aftertreatment sensor
JP2006336496A (en) Exhaust emission control muffler for diesel engine
JP4477371B2 (en) Exhaust gas purification device for internal combustion engine
KR101022499B1 (en) Exhaust pipe for vehicle
JP5023149B2 (en) Automotive exhaust pipe equipment
KR20220146257A (en) Fluid duct device for vehicle capable of reducing air flow resistance
JP2005061393A (en) Exhaust gas flow rate increasing device incorporating exhaust pipe
JP5983516B2 (en) Engine exhaust pipe structure with catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857825

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP