WO2013086780A1 - 动力电源 - Google Patents

动力电源 Download PDF

Info

Publication number
WO2013086780A1
WO2013086780A1 PCT/CN2012/001564 CN2012001564W WO2013086780A1 WO 2013086780 A1 WO2013086780 A1 WO 2013086780A1 CN 2012001564 W CN2012001564 W CN 2012001564W WO 2013086780 A1 WO2013086780 A1 WO 2013086780A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power source
condenser
power
fan
Prior art date
Application number
PCT/CN2012/001564
Other languages
English (en)
French (fr)
Inventor
梁全顺
农谷珍
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Publication of WO2013086780A1 publication Critical patent/WO2013086780A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device, and more particularly to a safety-type new power supply for transportation equipment and other large equipment.
  • lithium batteries have been widely used for pure because of their high energy density, high average output voltage, and low self-discharge.
  • the internal pressure of the monomer will break the monomer shell, causing the internal materials to come into contact with the oxygen in the air, causing deflagration and fire, which brings serious safety. problem.
  • the temperature is lower than o°c, the energy storage performance of the power module is degraded, and the life is shortened.
  • the use of the lithium battery in the prior art has the above-mentioned safety hazard, the use of the lithium battery and the similar power source in the pure electric vehicle and the hybrid electric vehicle is limited, and the pure electric vehicle, the hybrid electric vehicle, and the large power equipment are also limited. Widespread use.
  • the object of the present invention is to provide a safe new power source that can effectively overcome the safety problems caused by excessively high temperature and excessive pressure.
  • the present invention provides a novel power source, comprising: a power module for at least partially supplying current to a transportation device; a case for the power module to be external Isolation; The power module is filled with inert gas between the cabinet.
  • the power source further includes a heat transfer device located inside or outside the tank and surrounded by an inert gas.
  • the heat transfer device is an evaporator or condenser of an air conditioning system.
  • the power supply further includes a temperature sensor for measuring the temperature of the power module and being coupled to the heat transfer device.
  • the power source further includes a fan located inside the casing for generating a gas flow inside the casing.
  • the power supply further includes a pressure feedback device for measuring the internal air pressure value of the cabinet.
  • the pressure feedback device is coupled to a one-way valve, and the inert gas flows out of the tank through the one-way W gate when the one-way valve is opened.
  • the one-way wide door is an explosion-proof single-exhalation valve.
  • the power supply device for transportation equipment places all the power supply units and the electronic components and wires in the cabinet in a closed box and is in an inert atmosphere protection state, so that Isolation of oxygen around the power supply unit, eliminating the possibility of power explosion; and the inside (or outside) of the cabinet is provided with an evaporator (or condenser), and the evaporator (or condenser) is connected to the external air conditioning system, when the power supply unit
  • the temperature sensor inside the box can control the fan inside the box and the external air conditioning system, so that the evaporator (or condenser) can cool the power supply unit, avoiding excessive temperature and causing internal short circuit or electrolyte of the power supply unit.
  • the fan in the box and the evaporator (or condenser) of the air conditioning system can warm the power supply unit to ensure its normal operation.
  • the electric feedback pressure device will send a signal to cut off the power supply. If the air pressure in the closed box is still rising, the case or cover The explosion-proof single-hook on the upper part will be automatically opened, and the gas in the box will be discharged instantaneously. Once the air pressure falls to the safe pressure range, the explosion-proof single-hook is quickly closed, thereby blocking the outside air (oxygen) from entering the box, which further Minimize the risk of deflagration of the entire power module.
  • FIG. 1 is a schematic structural view of a first embodiment of a power supply device for a transportation device shown in the present invention
  • FIG. 2 is a partial structure of a second embodiment of a power supply device for a transportation device shown in the present invention
  • 3 is a schematic structural view of a third embodiment of a power supply device for a transportation device shown in the present invention.
  • An object of the present invention is to provide a safe power supply device for a transportation device that can effectively overcome safety problems caused by excessively high temperature and excessive pressure.
  • the most important solution in the prior art is how to prevent the deflagration and fire problems caused by internal short circuit and overcharge during the use of the lithium battery.
  • the present invention provides a power supply for a transportation device, comprising: a battery module for at least partially supplying current to the transportation device; a case for the The battery module is isolated from the outside; an inert gas is filled between the battery module and the case.
  • FIG. 1 is a schematic structural view of a first embodiment of a power supply device for a transportation device shown in the present invention.
  • the electric vehicle power supply specifically includes the following structure:
  • the sealed box 1 is used for placing the power source unit 5, and the power source unit is a single lithium battery pack.
  • An evaporator (or condenser) 10 of an air conditioning system is placed (or externally) inside the sealed enclosure.
  • a fan 11 is also placed inside the sealed casing.
  • the cover 2 seals the entire sealed case 1.
  • the power supply unit 5 further includes a temperature sensor 4, which can timely feedback the temperature of the power supply unit and control the operating state of the evaporator (or condenser) 10 of the air conditioning system and the fan 11.
  • An explosion-proof single-exhalation valve 3 is mounted on the sealed casing 1 or the cover 2. There is a reversal in the external connection of the tank 1
  • the pressure device 7, a gate valve 8 and an inert gas source 9 are filled with an inert gas 6.
  • the gate valve 8 is opened, and the gas in the inert gas source 9 is filled into the sealed casing 1, and the casing 1 is filled with the inert gas 6.
  • the brake chamber 8 is closed and the inert gas source 9 is withdrawn.
  • the power source unit 5 and the sealed case 1 are filled with the inert gas 6 to ensure isolation from oxygen, and even if the electrolyte of the power source unit 5 leaks, it does not react with oxygen, thereby causing a fire. , deflagration phenomenon.
  • the circulating air in the sealed casing 1 is a vertical circulation.
  • the temperature sensor 4 will feedback the temperature of the power supply unit 5 and control to turn on the built-in air conditioning system evaporator (or condenser) 10 and the fan 11,
  • the refrigerant directly enters the sealed casing 1.
  • the gas circulation direction after cooling is a vertical circulation.
  • the condenser 10 is located inside the casing, and placed near the condenser 10 is a fan 11.
  • the condenser 10 and the fan 11 are activated.
  • the gas cooled by the condenser 10 is sent by the fan, and sequentially passes through a plurality of power supply cells 5 arranged in a neat manner, so that heat is transferred from the power source unit 5 to the end, and heat is transferred to the condenser 10 through an air flow passage to cool down.
  • the temperature sensor 4 feeds back the temperature of the power source unit 5 and controls to turn off the evaporator (or condenser) 10 and the fan 11 of the air conditioning system.
  • the temperature sensor 4 will feed back the temperature of the power source unit 5 and control the condenser (or evaporator) 10 and the fan 11 that turn on the air conditioning system to heat the power source unit 5.
  • the temperature sensor 4 feeds back the temperature of the power source unit 5 and controls to turn off the condenser (or evaporator) 10 and the fan 11 of the air conditioning system.
  • the tank 1 Since the tank 1 is filled with an inert gas and is insulated from oxygen, even if the power source unit 5 leaks, there is no occurrence of fire or deflagration; and if the power source unit 5 leaks or the air pressure in the tank 1 exceeds due to an unexpected factor Safety limit value, at this time, the pressure gauge 7 with electric feedback will send a signal to cut off the power supply main gate 12. If the air pressure in the closed box 1 is still rising continuously, the explosion-proof sheet installed on the box body 1 or the box cover 2 The valve 3 will be automatically opened, and the gas in the tank 1 will be instantaneously discharged. When the pressure in the tank 1 falls to the safe pressure range, the explosion-proof single-call valve 3 is quickly and automatically closed, thereby blocking the outside air (oxygen) from entering. In the casing 1, the risk of gas explosion in the casing 1 is further eliminated.
  • FIG. 2 is a partial structural schematic view of a second embodiment of a power supply device for a transportation device shown in the present invention.
  • the power supply device includes a structure similar to that of the first embodiment, and the difference is that: the gas circulation mode in the closed casing 1 is a planar circulation, and the condenser (or evaporator) 10 of the air conditioning system is disposed in the power supply list.
  • the other parts of the power module work as described in Embodiment 1.
  • a plurality of power supply units 5 in FIG. 2 are arranged in a horizontal row, and NX M is set inside one power supply unit (N and M are both equal to or greater than 1).
  • Natural number a power supply unit 5. Similar to the first embodiment, the air conditioner evaporator (or condenser) 10 and the fan 11 are disposed in the sealed casing 1, and the refrigerant directly enters the sealed casing 1. As shown in Fig. 2, the condenser (or evaporator) 10 of the air conditioning system is placed in the middle of the NX M power supply units 5, and a plurality of fans 11 are placed at the remaining spaced positions. When the temperature sensor 4 detects that the power source unit 5 exceeds a predetermined value, the condenser 10 and the fan 11 are activated. The gas cooled by the condenser 10 is sent by the fan, and the cold air flows from the middle to the both ends, and the condenser 10 carries the heat out of the inside of the sealed casing 1.
  • Fig. 3 is a schematic structural view of a third embodiment of a power supply device for a transportation apparatus shown in the present invention.
  • the power supply unit comprises a structure similar to that of the first embodiment, except that: the evaporator (or condenser) 10 of the air conditioning system is placed in the cabinet 1 through the evaporator of the air conditioning system ( Or condenser) 10 The gas after cooling (or heating) enters directly from one side of the power module housing 1, and the cooled (or heated) gas is then cooled (or warmed) by the fan 11 to the power supply unit 5, after that, The gas is again discharged from the other side of the power module housing 1 and flows into the evaporator (or condenser) 10 of the air conditioning system, and is circulated until the temperature reaches the set value of the power source unit 5.
  • the electric feedback pressure device 7 is connected to an ordinary pressure gauge 13 with an electric feedback circuit.
  • the working principle is as follows: When the pressure indicated by the electric feedback pressure 13 is lower than the safe value, the brake 14 will be closed and signaled. It is suggested that manual maintenance and tank tightness inspection should be carried out; when the pressure indicated by the electric feedback pressure 13 is higher than the safety limit value, the gate width 14 is closed and a signal is sent to cut off the power supply main gate 12.
  • the working principle of other parts of the power module is the same as that in Embodiment 1.
  • An electric vehicle power supply module of the present invention places all the power supply units and the electronic components and wires in the cabinet in a sealed box and is in an inert atmosphere protection state, thereby isolating the oxygen around the power supply unit and eliminating The possibility of power explosion; and the inside (or outside) of the cabinet is provided with an evaporator (or condenser), and the evaporator (or condenser) is connected to the external air conditioning system.
  • the temperature sensor inside the box The fan and the external air conditioning system in the box can be controlled to be turned on, so that the evaporator (or condenser) can cool the power supply unit to avoid internal temperature short circuit or electrolyte decomposition of the power supply unit; in the lower temperature winter, the box
  • the internal fan and the evaporator (or condenser) of the air conditioning system can also heat up the power supply unit to ensure its normal operation.
  • the electric feedback pressure device will send a signal to cut off the power supply.
  • the explosion-proof single-excitation valve installed on the valve will automatically open, and the gas in the box will be discharged instantaneously. Once the air pressure falls to the safe pressure range, the explosion-proof single-exhalation valve will be quickly closed, thereby blocking the outside air (oxygen) from entering the box, which further Minimize the risk of deflagration of the entire power module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种动力电源,包括:电源模块(5),用于至少部分地为交通运输设备提供电流;箱体(1),用于将电源模块(5)与外部隔离;电源模块(5)与箱体(1)之间填充惰性气体(6)。该动力电源能有效克服因温度过高过低、压力过大所导致的安全问题。

Description

动力电源
技术领域
本发明涉及一种电源装置, 尤其涉及一种用于交通运输设备和其它大型设备的安全型新 型动力电源。
背景技术
随着石油资源的日益枯竭, 混合动力和纯电动汽车应运而生, 并越来越受到人们的青睐。 近年来锂电池因其具有能量密度高、 平均输出电压高、 自放电低等特点, 而被广泛的用于纯 说
电动汽车和混合电动汽车。 然而, 锂电池的安全问题却是不容忽视的, 是锂电池电动车大规 模使用的瓶颈。 若在锂电池的使用过程中, 发生内部短路、 过充等, 易导致锂电池单体内部 书
急剧升温, 从而使电解液分解成易燃气体, 单体内部压力升高又会将单体外壳撑破, 导致其 内部物质与空气中的氧气接触, 发生爆燃、 起火, 带来很严重的安全问题。 此外, 当使用温 度低于 o°c时, 会使电源模块的储能性能下降、 寿命缩短等。
因此, 由于现有技术中锂电池的使用具有上述的安全隐患, 限制了锂电池及类似电源在 纯电动汽车和混合电动汽车中的使用, 也限制了纯电动汽车、 混合电动汽车和大型动力设备 的广泛运用。
发明内容
为了克服现有技术中存在的技术缺陷,本发明的目的在于提供一种安全的新型动力电源, 该电源装置能有效克服因温度过高过低, 压力过大所导致的安全问题。
为了实现上述发明目的, 本发明提供一种新型动力电源, 包括: 电源模块, 该电源模块 用于至少部分地为交通运输设备提供电流; 一箱体, 该箱体用于将该电源模块与外部隔离; 该电源模块与该箱体之间填充惰性气体。
该电源进一步包括一热传导装置, 该热传导装置位于该箱体内部或外部, 且被惰性气体 所包围。 该热传导装置是一空调系统的蒸发器或冷凝器。
该电源进一步包括一温度传感器, 该温度传感器用于测量该电源模块的温度, 并与该热 传导装置连接。
该电源进一步包括一风机, 该风机位于该箱体内部, 用于使该箱体内部产生气体流动。 电源进一步包括一压力反馈装置, 用于测量该箱体内部气压值。 该压力反馈装置与一单 向阀门连接, 该单向阀门开启时, 该惰性气体经该单向 W门从该箱体中流出。 该单向阔门是 一防爆单呼阀。 与现有技术相比较, 本发明所提供的用于交通运输设备的电源装置将所有的电源单体和 箱体内的电子元器件、 电线都置于密闭箱体内并处于惰性气氛保护状态, 这样就隔绝了电源 单体周围的氧气, 消除电源燃爆的可能; 且箱体内部(或外部)设有蒸发器(或冷凝器), 蒸 发器 (或冷凝器) 连接外部空调系统, 当电源单体温度过高时, 箱内的温度传感器可控制开 启箱内风机和外部空调系统, 让蒸发器 (或冷凝器) 给电源单体降温, 避免温度过高而使电 源单体发生内部短路或电解液分解;在温度较低的冬天,箱内的风机和空调系统的蒸发器(或 冷凝器) 又可使电源单体升温, 以保证其能正常工作。 此外, 一旦有意外情况导致箱体内气 压升高且高于安全极限值时, 电反馈压力装置将发出信号切断电源总闸, 若此时密闭箱体内 的气压仍不断上升, 则箱体或箱盖上装有的防爆单呼阔将自动开启, 瞬间将箱体内的气体排 出, 一旦气压降至安全压力范围后防爆单呼阔又迅速关闭, 从而阻断外界空气 (氧气)进入 箱体内, 这就进一步将整个电源模块的爆燃危险性降到最低。
附图说明
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。
图 1是本发明所示出的用于交通运输设备的电源装置的第一实施方式的结构示意图; 图 2本发明所示出的用于交通运输设备的电源装置的第二实施方式的局部结构示意图; 图 3是本发明所示出的用于交通运输设备的电源装置的第三实施方式的结构示意图。 具体实施方式
下面结合附图详细说明本发明的具体实施例。
本发明的目的在于提供一种安全的用于交通运输设备的电源装置, 该电源装置能有效克 服因温度过高过低, 压力过大所导致的安全问题。 而现有技术中最需要解决是如何防止锂电 池在使用过程中, 因为发生内部短路、 过充, 所导致的爆燃、 起火问题。
为了实现上述发明目的, 本发明提供一种用于交通运输设备的电源, 包括: 电池模块, 该电池模块用于至少部分地为该交通运输设备提供电流; 一箱体, 该箱体用于将该电池模块 与外部隔离; 该电池模块与该箱体之间填充惰性气体。
如图 1中所示, 图 1是本发明所示出的用于交通运输设备的电源装置的第一实施方式的 结构示意图。 该电动车辆电源具体所包含的结构如下: 密闭箱体 1, 用于放置电源单体 5, 电 源单体即单个的锂电池组。 在该密封箱体的内部放置 (或外置) 一空调系统的蒸发器 (或冷 凝器) 10。 在该密封箱体的内部还放置风机 11。 箱盖 2, 将整个密闭箱体 1密封。 电源单体 5还包括温度传感器 4,可以及时反馈电源单体温度和控制空调系统的蒸发器(或冷凝器) 10、 风机 11的工作状态。 密闭箱体 1或箱盖 2上装有一防爆单呼阀 3。 箱体 1管路外接有一电反 馈压力装置 7, 一闸阀 8和一惰性气源 9, 箱体内 1内充满惰性气体 6。
如图 1中所示, 在整个电源工作之前, 先开启闸阀 8, 将惰性气源 9中的气体充入密封 箱体 1内,让箱体 1内充满惰性气体 6。当密封箱体 1内气体压力达到工艺值时,关闭闸陶 8, 并将惰性气源 9撤走。 至此, 该电源单体 5与密封箱体 1之间被填充入惰性气体 6, 保证了 与氧气隔绝, 即使电源单体 5发生电解液泄露, 也不会进一歩与氧气发生反应, 进而导致起 火、 爆燃现象。
密封箱体 1内的循环风为垂直环流。 在电源单体 5工作的过程中, 若温度升高达到某一 警示值, 温度传感器 4将反馈电源单体 5的温度并控制开启内置的空调系统蒸发器 (或冷凝 器) 10和风机 11, 制冷剂直接进入密封箱体 1。 通过蒸发器 (或冷凝器) 10, 制冷后的气体 循环方向为垂直环流。 如图 1中所示, 该冷凝器 10位于箱体内部, 放置于该冷凝器 10附近 的是风机 11。 当温度传感器 4探测到电源单体 5超出一预设值时, 启动冷凝器 10和风机 11。 经冷凝器 10制冷后的气体由风机输送, 依次经过整齐排列的若干电源单体 5, 使热量自电源 单体 5被传输至末端,再通过一气流通道将热量传递至冷凝器 10降温。当达到电源单体 5的 设定温度时,温度传感器 4反馈电源单体 5的温度并控制关闭空调系统的蒸发器(或冷凝器) 10和风机 11。
反之, 若在温度较低的冬天, 温度过低将影响电源单体 5的储能性能。 此时, 温度传感 器 4将反馈电源单体 5的温度并控制开启空调系统的冷凝器(或蒸发器) 10和风机 11, 给电 源单体 5加热。 当达到电源单体 5的设定温度时, 温度传感器 4反馈电源单体 5的温度并控 制关闭空调系统的冷凝器(或蒸发器) 10和风机 11。由于箱体 1充满惰性气体, 隔绝了氧气, 即使电源单体 5发生泄露也不会发生起火、 爆燃的现象; 且若电源单体 5发生漏气或因意外 因素导致箱体 1内的气压超过安全极限值, 此时带有电反馈的压力表 7将发出信号切断电源 总闸 12, 若此时密闭箱体 1内的气压仍不断上升, 则箱体 1或箱盖 2上装有的防爆单呼阀 3 将自动开启, 瞬间将箱体 1内的气体排出, 当箱体 1内的压力降至安全压力范围后, 防爆单 呼阀 3又迅速自动关闭, 从而阻断外界空气 (氧气) 进入箱体 1内, 进一步杜绝了箱体 1内 气体发生燃爆的危险。
如图 2中所示, 图 2本发明所示出的用于交通运输设备的电源装置的第二实施方式的局 部结构示意图。在第二实施方式中, 该电源装置所包含的结构与实施方式一类似, 区别在于: 密闭箱体 1内气体循环方式为平面环流, 空调系统的冷凝器(或蒸发器) 10设置于电源单体 5的中心部位。 电源模块其它部分的工作原理同实施例 1所述。 如图 2中所示, 图 2中若干 电源单体 5呈横排纵列的方式布置, 在一个电源装置内部设置 NX M (N、 M均为大于等于 1的 自然数)个电源单体 5。 如实施方式一类似, 该空调系统蒸发器(或冷凝器) 10和风机 11设 置于密封箱体 1内, 制冷剂直接进入密封箱体 1。 如图 2中所示, 空调系统的冷凝器 (或蒸 发器) 10放置于 NX M个电源单体 5的中间, 其余间隔位置处放置若干风机 11。 当温度传感 器 4探测到电源单体 5超出一预设值时, 启动冷凝器 10和风机 11。 经冷凝器 10制冷后的气 体由风机输送, 冷风从中间向两端流动, 冷凝器 10将热量携带出密封箱体 1内部。
如图 3中所示, 图 3是本发明所示出的用于交通运输设备的电源装置的第三实施方式的 结构示意图。在第三种实施方式中, 该电源装置所包含的结构与实施方式一类似, 区别在于: 空调系统的蒸发器(或冷凝器) 10置于箱体 1夕卜, 通过空调系统的蒸发器(或冷凝器) 10制 冷 (或加热) 后的气体直接从电源模块箱体 1的一侧进入, 制冷 (或加热) 后的气体再通过 风机 11给电源单体 5降温 (或升温), 之后, 气体再从电源模块箱体 1的另一侧排出, 流入 空调系统的蒸发器 (或冷凝器) 10, 如此循环直至温度达到电源单体 5的设定值。 电反馈压 力装置 7为一普通压力表 13连接有电反馈线路, 如图 4所示, 其工作原理为: 当电反馈压力 13显示的压力低于安全值时, 闸阅 14将关闭并发出信号提示应进行人工维护和箱体密闭性 检查; 当电反馈压力 13显示的压力高于安全极限值时, 闸阔 14关闭并发出信号切断电源总 闸 12。 其电源模块其它部分的工作原理同实施例 1所述。
本发明的一种电动车辆电源模块, 将所有的电源单体和箱体内的电子元器件、 电线都置 于密闭箱体内并处于惰性气氛保护状态, 这样就隔绝了电源单体周围的氧气, 消除电源燃爆 的可能; 且箱体内部(或外部)设有蒸发器(或冷凝器), 蒸发器(或冷凝器)连接外部空调 系统, 当电源单体温度过高时, 箱内的温度传感器可控制开启箱内风机和外部空调系统, 让 蒸发器 (或冷凝器)给电源单体降温, 避免温度过高而使电源单体发生内部短路或电解液分 解; 在温度较低的冬天, 箱内的风机和空调系统的蒸发器(或冷凝器)又可使电源单体升温, 以保证其能正常工作。 此外, 一旦有意外情况导致箱体内气压升高且高于安全极限值时, 电 反馈压力装置将发出信号切断电源总闸, 若此时密闭箱体内的气压仍不断上升, 则箱体或箱 盖上装有的防爆单呼阀将自动开启, 瞬间将箱体内的气体排出, 一旦气压降至安全压力范围 后防爆单呼阀又迅速关闭, 从而阻断外界空气 (氧气) 进入箱体内, 这就进一步将整个电源 模块的爆燃危险性降到最低。
本说明书中所述的只是本发明的较佳具体实施例, 以上实施例仅用以说明本发明的技术 方案而非对本发明的限制。 凡本领域技术人员依本发明的构思通过逻辑分析、 推理或者有限 的实验可以得到的技术方案, 皆应在本发明的范围之内。

Claims

权 利 要 求 书 、 一种新型动力电源, 其特征在于, 包括- 一电源模块, 所述电源模块用于至少部分地为交通运输设备提供电流;
一箱体, 所述箱体用于将所述电池模块与外部隔离;
所述电池模块与所述箱体之间填充惰性气体。
、 如权利要求 1所述的新型动力电源, 其特征在于, 所述电源进一步包括一热传导装置, 所 述热传导装置位于所述箱体内部或外部, 且被惰性气体所包围。
、 如权利要求 2所述的新型动力电源, 其特征在于, 所述电源进一步包括一温度传感器, 所 述温度传感器用于测量所述电源模块的温度, 并与所述热传导装置连接。
、 如权利要求 1所述的新型动力电源, 其特征在于, 所述电源进一步包括一风机, 所述风机 位于所述箱体内部, 用于使所述箱体内部产生气体流动。
、 如权利要求 1所述的新型动力电源, 其特征在于, 所述电源进一步包括一压力反馈装置, 用于测量所述箱体内部气压值。
、 如权利要求 5所述的新型动力电源, 其特征在于, 所述压力反馈装置与一单向阀门连接, 所述单向阀门开启时, 所述气体经所述单向阀门从所述箱体中流出。
、 如权利要求 6所述的新型动力电源, 其特征在于, 所述单向陶门是一防爆单呼陶。
、 如权利要求 2所述的新型动力电源,其特征在于,所述热传导装置是一空调系统的蒸发器 或冷凝器。
PCT/CN2012/001564 2011-12-16 2012-11-19 动力电源 WO2013086780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110422872.3 2011-12-16
CN2011104228723A CN102437300A (zh) 2011-12-16 2011-12-16 一种新型动力电源

Publications (1)

Publication Number Publication Date
WO2013086780A1 true WO2013086780A1 (zh) 2013-06-20

Family

ID=45985267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001564 WO2013086780A1 (zh) 2011-12-16 2012-11-19 动力电源

Country Status (2)

Country Link
CN (1) CN102437300A (zh)
WO (1) WO2013086780A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394064A (zh) * 2017-07-12 2017-11-24 浙江谷神能源科技股份有限公司 锂电池安全箱
CN116885340A (zh) * 2023-09-06 2023-10-13 成都沃飞天驭科技有限公司 浸没式电池模组及其热管理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437300A (zh) * 2011-12-16 2012-05-02 上海奥威科技开发有限公司 一种新型动力电源
CN102745091B (zh) * 2012-07-11 2015-10-07 潍柴动力股份有限公司 一种新能源汽车用动力电池箱装置及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978549A (zh) * 2008-03-24 2011-02-16 三洋电机株式会社 电池装置和电池单元
CN201773872U (zh) * 2010-07-01 2011-03-23 广东德豪润达电气股份有限公司 一种电池装置
WO2011067697A1 (en) * 2009-12-04 2011-06-09 Brusa Elektronik Ag Battery having temperature regulation
CN102148397A (zh) * 2011-02-12 2011-08-10 昆明五威科工贸有限公司 一种锂离子电池组安全应用防护系统
CN102324465A (zh) * 2011-08-31 2012-01-18 浙江谷神能源科技股份有限公司 防爆阻燃的锂离子电池安全箱
CN102437300A (zh) * 2011-12-16 2012-05-02 上海奥威科技开发有限公司 一种新型动力电源
CN202282390U (zh) * 2011-08-31 2012-06-20 浙江谷神能源科技股份有限公司 防爆阻燃的锂离子电池安全箱

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101573A (ja) * 2000-09-20 2002-04-05 Toshiba Battery Co Ltd 無停電電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978549A (zh) * 2008-03-24 2011-02-16 三洋电机株式会社 电池装置和电池单元
WO2011067697A1 (en) * 2009-12-04 2011-06-09 Brusa Elektronik Ag Battery having temperature regulation
CN201773872U (zh) * 2010-07-01 2011-03-23 广东德豪润达电气股份有限公司 一种电池装置
CN102148397A (zh) * 2011-02-12 2011-08-10 昆明五威科工贸有限公司 一种锂离子电池组安全应用防护系统
CN102324465A (zh) * 2011-08-31 2012-01-18 浙江谷神能源科技股份有限公司 防爆阻燃的锂离子电池安全箱
CN202282390U (zh) * 2011-08-31 2012-06-20 浙江谷神能源科技股份有限公司 防爆阻燃的锂离子电池安全箱
CN102437300A (zh) * 2011-12-16 2012-05-02 上海奥威科技开发有限公司 一种新型动力电源

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394064A (zh) * 2017-07-12 2017-11-24 浙江谷神能源科技股份有限公司 锂电池安全箱
CN116885340A (zh) * 2023-09-06 2023-10-13 成都沃飞天驭科技有限公司 浸没式电池模组及其热管理系统
CN116885340B (zh) * 2023-09-06 2023-11-28 成都沃飞天驭科技有限公司 浸没式电池模组及其热管理系统

Also Published As

Publication number Publication date
CN102437300A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2017152843A1 (zh) 一种电池系统、具有该电池系统的电动汽车及储能系统
CN208352492U (zh) 预制舱中用于储能系统的通风散热装置
CN105206895A (zh) 电池组的冷却方法及带有冷却装置的电池组
CN106876626B (zh) 一种电池箱
WO2013086780A1 (zh) 动力电源
CN105070959A (zh) 动力电池包热平衡管理装置及其管理方法
US20240072327A1 (en) Battery box, battery module, energy storage system, and electric vehicle
CN113659237A (zh) 一种防止自燃的惰性气体保护的电池储能系统
CN104409794A (zh) 一种电动汽车动力电池包温度管理装置及其制造方法和使用方法
CN110828937A (zh) 用于动力蓄电池装置的温控系统及方法
CN105932187A (zh) 一种可快速充电的电动汽车电池系统
CN205621778U (zh) 一种电池系统、具有该电池系统的电动汽车及储能系统
CN210443640U (zh) 一种用于电池包的气冷系统
CN219498021U (zh) 动力电池包及用电设备
CN208173642U (zh) 电池箱、电池包和电动汽车
CN113437398B (zh) 一种电池热失控处理方法、装置、车辆和介质
CN216624401U (zh) 液冷储能系统
CN205670553U (zh) 一种可快速充电的电动汽车电池系统
CN113422125B (zh) 一种电池保护系统和车辆
CN206076454U (zh) 无人机电池用温度调节装置
CN113764755A (zh) 储能锂电池组强迫循环冷却散热装置及其安装控制方法
CN204809354U (zh) 动力电池包热平衡管理装置
CN204303947U (zh) 一种车载锂离子电池组散热装置
CN114204178A (zh) 一种集空调通风与消防排烟于一体的船用锂电池箱柜
CN107240734A (zh) 一种可双向温度控制的车载电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857562

Country of ref document: EP

Kind code of ref document: A1