WO2013086762A1 - 从生物性油脂制备燃料的方法 - Google Patents

从生物性油脂制备燃料的方法 Download PDF

Info

Publication number
WO2013086762A1
WO2013086762A1 PCT/CN2012/000013 CN2012000013W WO2013086762A1 WO 2013086762 A1 WO2013086762 A1 WO 2013086762A1 CN 2012000013 W CN2012000013 W CN 2012000013W WO 2013086762 A1 WO2013086762 A1 WO 2013086762A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oil
hydrodeoxygenation
reaction
hydrogen
Prior art date
Application number
PCT/CN2012/000013
Other languages
English (en)
French (fr)
Inventor
梁长海
徐彬
萧锦诚
Original Assignee
易高环保能源研究院有限公司
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 易高环保能源研究院有限公司, 大连理工大学 filed Critical 易高环保能源研究院有限公司
Publication of WO2013086762A1 publication Critical patent/WO2013086762A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to the field of energy technology, and in particular to a method for preparing a fuel from a biological fat.
  • BACKGROUND OF THE INVENTION The increasing shortage of fossil fuels and the environmental pollution caused by combustion have forced people to seek renewable clean fuels.
  • clean fuels produced from regenerative bio-oils such as soybean oil, jatropha oil, lard, and food waste are considered green, renewable, and carbon-neutral.
  • Biological fats such as vegetable fats and oils are fats obtained by extracting plant seeds, pulp and other parts, and containing a large amount of long-chain carbon triglycerides and free fatty acids.
  • Biological fats and oils are divided into two categories according to their use. They are edible and industrial. Those that are liquid at normal temperature are called oils, and those that are solid and semi-solid are called fats. Biological oils and crude oils (waste oils) have great differences in composition. The main difference is that biological oils have high oxygen content, while sulfur, nitrogen and aromatics are low. Crude oil is the opposite. Contains high amounts of sulfur, nitrogen and aromatics with low oxygen content. Therefore, based on the difference in composition, the method of using crude oil as a raw material for fuel cannot be applied to a processing method using bio-oil as a raw material. There are a number of industrial applications and technologies for the preparation of biomass fuels (such as biodiesel) from bio-oils for industrial applications.
  • biomass fuels such as biodiesel
  • CN101230309A teaches a method for reducing the production of biodiesel from high acid value palm oil, which requires two esterifications, and the methanol required for esterification exchange is 6-9 times (molar ratio) of oil, and there is no methanol. Recycling, lack of environmental protection and economy.
  • the above prior art processes are cumbersome, have high operational complexity, and high energy consumption; and in the esterification exchange process, high use of alcohols such as methanol or ethanol is involved, resulting in a substantial increase in production costs.
  • Chinese Patent Publication No. CN101070483A teaches a method for producing biodiesel from soda ash seed oil, which requires washing with a large amount of water after the esterification exchange.
  • CN1412278A teaches a method for preparing biodiesel using a high acid value oil and palm oil using a strong acid as a catalyst, but this method generates a large amount of waste water and severely corrodes the reactor.
  • the above prior art processes all produce a large amount of waste water, which not only increases production costs, but also does not meet environmental protection objectives and economic benefits.
  • WO 2009/039347 teaches the treatment of biorenewable feedstocks to produce diesel fractions in a two-step process of hydrodeoxygenation and hydroisomerization.
  • US 2006/0207166 teaches techniques for simultaneous hydrodeoxygenation and hydroisomerization.
  • a common drawback of these techniques is the poor stability of the catalyst and the high hydrogen consumption of the process, especially in the processing of highly oxygenated vegetable oils and animal fats.
  • direct hydrogenation techniques are limited by the amount of free fatty acids in the feedstock.
  • the prior art literature only discloses the direct hydrotreating of up to 15% free fatty acids to produce hydrocarbon fuels (Yanyong Liu et al., Chem. Lett. 2009, 38, 552).
  • the transesterification technology is to produce biodiesel by esterification exchange, and a large amount of low-carbon alcohol must be consumed, which increases the production cost.
  • CN10101314748A discloses a catalytic conversion method of animal and vegetable oils, the product component is mainly C2-C4 olefin, and the total yield is only 45 wt%, and the obtained gasoline-diesel component is too small, and does not involve steam. Hydrotreating of diesel.
  • Chinese Patent Publication No. CN101475870A teaches a hydrocarbon catalytic cracking distillation technique for waste lubricating oil resources mainly composed of hydrocarbons. In this technology, the waste lubricating oil treated is mainly composed of hydrazine hydrocarbons, and the catalytic cracking is selective cleavage of carbon-carbon bonds (CC bonds). The main reactions are as follows:
  • the cleavage reaction does not form water (H 2 0), so that it is not necessary to consider the water resistance of the catalyst.
  • the waste lubricating oil is mainly composed of hydrazine hydrocarbons, which directly form alkanes and olefins after catalytic cracking.
  • the main components of biological oils and fats have high oxygen content.
  • the hydrothermal stability of the catalyst must be considered. Therefore, the technique taught by Chinese Patent Publication No.
  • CN101475870A cannot be applied to the processing of biological fats and oils.
  • the biodiesel obtained has a high density and cannot be blended with petroleum diesel components.
  • the biodiesel has a low calorific value, and the fuel economy blended with the petroleum diesel component is poor. Therefore, biodiesel is considered to be unreasonable.
  • the diesel blending component SUMMARY OF THE INVENTION
  • the present invention provides a novel bio-oil treatment technique capable of producing a high-quality biomass fuel, which is highly suitable as a diesel blending component.
  • the present invention provides a method for preparing a biomass fuel, which is a biomass oil as a raw material, and a biomass fuel equivalent to a fuel component obtained from a crude oil is produced by the following steps, the method comprising: (a) cleavage and deoxygenation of biological oils in the presence of a de-deoxidation catalyst and under heating; (b) mixing the product of step (a) with hydrogen; and (c) hydrogen dehydrogenation in force P
  • the mixture from step (b) is subjected to a catalytic hydrodeoxygenation reaction under heating in the presence of a catalyst.
  • the product obtained in step (c) can be further separated depending on the actual application requirements.
  • the hydrogen is mixed with the catalytic cracking deoxidation product before being injected into the reaction column to carry out the reaction of the step (c), but the hydrogen gas may be directly injected into the reaction tower for hydrogenation and then mixed with the catalytic cracking deoxidation product to Carry out the reaction of step (c).
  • the technical feature is that a double deoxidation step of catalytic cracking deoxygenation-catalytic hydrodeoxygenation is used, so that the large amount of exothermic and rapid deactivation of the catalyst caused by the direct hydrogenation technology in the prior art can be avoided. Disadvantages, but also significantly reduce hydrogen consumption.
  • the fuels which can be prepared by the present invention are generally referred to as biomass fuels, meaning solids, liquids, or gases composed or extracted from biomass, and the so-called biomass refers to the products of organic or organic living organisms.
  • biomass fuels meaning solids, liquids, or gases composed or extracted from biomass
  • biomass refers to the products of organic or organic living organisms.
  • the biodiesel is equivalent to the components of petroleum diesel refined from petrochemical feedstocks (eg, crude oil), which are highly compatible, fully blendable, and blended with the resulting diesel fuel and petroleum The considerable properties and applications of diesel.
  • the invention adopts a double deoxidation process of catalytic cracking deoxidation-catalytic hydrodeoxygenation.
  • the bio-oil is first treated by a combination of catalytic cracking and distillation.
  • R-CH 2 -COOH ⁇ R-CH 3 + C0 2 or R CH 2 + CO + H 2 0
  • This step also occurs some reactions such as secondary reaction CC bond cleavage which are not related to cracking and deoxidation. Since water is formed in this step, the selected cracking deoxygenation catalyst needs to have strong water resistance. In addition, the biochemical oil catalytic cracking reaction usually has both CC fracture and C-0 fracture. For this reason, the catalyst can be modified to make selective fracture, that is, C-0 bond fracture occurs, and CC Since the enthalpy after selective cleavage of the carbon-oxygen bond usually still contains oxygen, the deoxidation step is carried out.
  • the advantage of the present invention is that by catalysis
  • the decomposed and deoxidized fraction is subjected to hydrodeoxygenation reaction, the reaction condition is mild (low hydrogen partial pressure, low reaction temperature), the catalyst has good stability, low hydrogen consumption, and can also be used to produce the refinery existing equipment by halo.
  • the biomass fuel produced by the method of the invention can be directly used as a fuel, for example, as gasoline, diesel, aviation kerosene, etc., or as a blending component.
  • the main carbon chain component of the biomass fuel is C8-C24, which is hexadecane. Higher value than conventional petroleum diesel, with lower density and virtually no sulfur, nitrogen and aromatics.
  • the mass ratio of the cracking deoxygenation catalyst to the biological grease may be about 1:5 to 1:50, that is, 1:5, 1:10, 1:15, depending on the amount of the reaction. 1: 20, 1: 30, 1: 40, 1: 50, etc.
  • the mass ratio of the cleavage deoxidation catalyst to the biological grease is preferably 1:20.
  • the mass ratio of the cracking deoxygenation catalyst to the biological grease is preferably 1:10.
  • the hydrodeoxygenation catalyst used in the second reaction zone is, for example but not limited to, a supported metal catalyst.
  • a supported metal catalyst can be found in the Handbook of Industrial Catalysts (edited by Huang Zhongtao, Chemical Industry Press, 2004) and Hydrotreating (Director of the Morning, China Petrochemical Press, 2008) (here) Both are incorporated in the specification of the present application by reference.
  • the supported metal catalyst is composed of a support and a metal distributed on the support, and the metal contained may be a single metal, a mixture of metals, or an alloy.
  • the metal may be selected from transition metals in the periodic table of the elements, including metal elements of Group III, Group IVB, Group VB, Group VIB Group VIIB, Group VIII.
  • the ratio of the hydrodeoxygenation catalyst to the reactants introduced into the second reaction zone may be determined depending on actual operating conditions, and the ratio is not particularly limited.
  • the catalytic hydrodeoxygenation in the second reaction zone can be carried out in a heated environment of about 200 to 400 Torr, for example, about 200 ° C, 250 ° C, 300 ° C, 350 ° C, 400. °C or the temperature range defined by any two of the above Inside. In one embodiment, it is preferably about 300-400 °C.
  • the operating system can be integrated, and the exhaust gas and waste residue generated by the method can be used for heating, thereby reducing energy consumption, no secondary pollution, and achieving energy saving and environmental protection effects.
  • the distilled hydrazine is mixed with hydrogen through a feed crucible, and then introduced into a reaction column equipped with a hydrodeoxygenation catalyst to carry out a reaction, using a supported metal or sulfide as a hydrodeoxygenation catalyst.
  • the control temperature of the hydrodeoxygenation reaction tower is 200-400 ° C
  • the partial pressure of hydrogen is 1-6 MPa
  • the volumetric space velocity is 0.5-4.0 h" 1
  • the volume ratio of hydrogen to oil is 200-1200: 1.
  • the clean fuel derived from vegetable oil is divided into gasoline and diesel according to the temperature of the splitting.
  • the dry gas and the waste generated in the conversion process of the vegetable oil can be used for auxiliary heating.
  • Palmitic acid oil is solid at room temperature, free fatty acid The content is as high as 67%, because the fatty acid contains too high halo, it can not be processed by the prior art direct hydrogenation technology (as mentioned above, the prior art only teaches Up to 15% of free fatty acid produced directly hydrotreating a hydrocarbon fuel). However, palmitic acid oil can be processed using the method of the present invention.
  • the oxygen content in the feedstock oil can be removed in the form of water, thereby reducing the formation of water in the subsequent hydrogenation process and prolonging the hydrogenation catalyst. Life expectancy.
  • the gasoline and diesel oil yield is about 80%.
  • the gasoline-diesel fraction deoxygenated by catalytic cracking is mixed with hydrogen, and then introduced into a reaction tower equipped with a hydrodeoxygenation catalyst to carry out a reaction.
  • a supported metal or metal sulfide is used as the hydrodeoxygenation catalyst.
  • the rest of the reaction conditions are shown in Table 3, and the composition analysis of the obtained clean fuel is shown in Table 4. Table 3.
  • Hydrodeoxygenation conditions are shown in Table 3.
  • should be temperature °C 310
  • Jatropha curcas oil was used as a raw material for the method of the present invention. Jatropha curcas oil is liquid at room temperature, and its basic properties, composition analysis and distillation range are shown in Table 5. Table 5, base 2 characteristics of Jatropha curcas
  • the catalytic cracking deoxidation step of the method of the present invention can remove the oxygen content in the feedstock oil in the form of water, thereby reducing the formation of water in the subsequent hydrogenation process and prolonging the hydrogenation catalyst. Life expectancy.
  • the gasoline and diesel fraction yield is about 78%.
  • the gasoline-diesel portion deoxidized by catalytic cracking is mixed with hydrogen, and then introduced into a reaction column equipped with a hydrodeoxygenation catalyst to carry out a reaction.
  • a supported metal or metal sulfide is used as the hydrodeoxygenation catalyst.
  • the remaining reaction conditions are shown in Table 7, and the composition analysis of the obtained clean fuel is shown in Table 8. Table 7.
  • the final boiling point V 372.6 is shown in Table 8.
  • the acid value of the yttrium acid obtained from Jatropha curcas oil is much lower than the standard value of BD100; the sulfur content is also lower than the standard value of National III and Euro V diesel; Meets the national III diesel standard value.
  • Example 1 and Example 2 respectively provide examples of non-edible animal and vegetable fats and oils which are difficult to process and easiest to process, and by the method of the present invention, a stain-cleaning fuel excellent in properties can be obtained. It is reflected that the method of the present invention is not critical for biological oil raw materials, and can be applied to all biological fats and oils, and even the most difficult to process palmitic acid oil, can produce high quality clean fuel by the method of the present invention.
  • the clean fuel produced by the process of the present invention has a carbon chain composition of C8-C24, which has a higher hexadeciene value than conventional petroleum diesel, has a lower density, and is substantially free of sulfur, nitrogen and aromatics.
  • the clean fuel produced by the method of the present invention is an ideal high-quality diesel blending component, which can be blended with low-value catalytic light cycle oil hydrotreating to produce oil (low cetane number), thereby Production of ultra-low sulfur diesel that meets the relevant standards.
  • Example 3 An example of applying the method of the present invention to industrial grade production of clean fuel is provided. Referring to Fig.
  • a biological fat or oil raw material is injected into a distillation still 1 for heating, and then introduced into a catalytic distillation column 2, in which a cracking deoxidation catalyst is disposed, and a biodegradable solution is subjected to cracking and deoxidation under a certain temperature condition.
  • the gasoline-diesel fraction obtained from the catalytic distillation column 2 is passed to a hydrotreating reaction column 7.
  • the gasoline-diesel fraction produced by the catalytic distillation column 2 may be first mixed with hydrogen by a feed pump 5, and then heated into a hydrotreating reaction column 7 via a heat exchanger and a heating furnace 6.
  • the hydrotreating reaction column 7 is provided with a hydrodeoxygenation catalyst, which is steamed by the catalyst under a preset temperature condition.
  • the enthalpy of the turret 2 into the hydrorefining reaction column 7 is subjected to catalytic hydrodeoxygenation with hydrogen, and finally the obtained product can be passed to an atmospheric distillation column 9 for fractional distillation to obtain a clean fuel such as gasoline or diesel.
  • the method of the invention first utilizes catalytic cracking deoxidation treatment to break a large number of carbon-oxygen bonds contained in the biological oil and fat, and then undergoes catalytic hydrodeoxygenation to obtain a final clean fuel, thereby effectively reducing the hydrogen consumption necessary for the hydrogenation reaction.
  • the two-stage treatment of hydrodeoxygenation directly on the biological oil and then rehydroisomerization, or the prior art combines hydrodeoxygenation and hydroisomerization into one treatment.
  • the process of the invention can save up to 50% of hydrogen usage.
  • the method of the present invention does not require a lower alcohol and does not produce by-product glycerin, and the method is simple and can greatly reduce the cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

提供了一种从生物性油脂制备燃料的方法,包括下列步骤:(a)在加热条件下,对生物性油脂进行催化裂解脱氧反应;(b)将步骤(a)的产物与氢气混合;(c)在加热条件下,对来自步骤(b)的混合物进行催化加氢脱氧反应。通过该方法,可由生物性油脂原料制造出与由原油精炼所得燃料组分相当的清洁燃料。

Description

从生物性油脂制备燃料的方法 技术领域 本发明涉及能源技术领域, 特别是涉及一种从生物性油脂制备燃料的方法。 背景技术 石化燃料日益短缺及其燃烧对环境产生的污染迫使人们寻求可再生的清洁燃料。在替 代石化燃料的方案中, 由再生性的生物性油脂(例如大豆油、 麻风树油、 猪油、 餐饮垃圾 油) 所生产的清洁燃料被认为是绿色的、 可再生的、 碳中性的技术路线。 生物性油脂例如植物油脂是从植物种子、果肉及其它部分提取所得的脂肪, 含有大量 长链碳的甘油三酸酯和游离脂肪酸。生物性油脂按用途分为两大类一食用和工业用, 在常 温下呈液体者称为油, 呈固体和半固体者称为脂。 生物性油脂与原油 (包 废润滑油)在 组成成分上有极大的差异, 最主要的区别在于生物性油脂的含氧量高, 而硫、 氮、 芳烃的 含量低; 而原油则相反, 含高量的硫、 氮及芳烃, 而含氧量很低。 因此, 基于组成成分的 差异, 以原油为原料 造燃料的方法无法适用于利用生物性油脂为原料的加工方法。 目前已存在一些工业应用和即将工业应用的由生物性油脂制备生物质燃料(例如生物 柴油 (biodiesel) ) 的技术, 这些技术大概可分为两类: 酯交换技术或直接加氢技术。 已 有许多的研究成果及报告探讨前述技术。 中国专利公开号 CN 101328418教导了利用植物油制造生物柴油的方法, 但该方法需 要先消耗大量乙醇与植物油作用形成油脂。中国专利公开号 CN1858161A教导了以棕榈油 制备生物柴油的方法, 在低碳醇酯化步骤前, 需要对原料棕榈油进行脱胶、 脱酸、 脱水等 工序。中国专利公开号 CN101230309A教导了降低高酸值棕榈油制备生物柴油的方法, 必 须进行两次酯化, 且酯化交换中所需甲醇为油的 6-9倍 (摩尔比) , 且没有对甲醇进行回 收利用, 缺乏环保及经济性。 上述现有技术的工序繁琐、 操作复杂度高、 能耗高; 且在酯化交换过程中涉及甲醇或 乙醇等醇类的高使用量, 致使生产成本大幅增加。 另外, 中国专利公开号 CN101070483A教导用碱蓬籽仁油生产生物柴油的方法, 在酯 化交换后需要用大量的水洗涤。 中国专利公开号 CN1412278A教导了以强酸作为催化剂, 利用高酸值油脂、棕榈油制备生物柴油的方法, 但采用该方法会产生大量废水并会严重腐 蚀反应器。 上述现有技术均产生大量废水, 不但提高了生产成本, 更不符合环保目的及经 济效益。 对于直接加氢技术, WO2009/039347 教导了对生物再生性原料 ( biorenewable feedstock) 进行处理生产柴油馏分的技术, 以加氢脱氧和加氢异构化的两步法进行。 US2006/0207166 教导了同时加氢脱氧和加氢异构化的技术。 这些技术的一个共同缺陷在 于催化剂的稳定性差, 且工艺的氢耗高, 尤其对于高含氧的植物油和动物脂肪的加工处理 上会产生问题。 特别地, 直接加氢技术受到原料中游离脂肪酸含量的限制, 至目前为止, 现有技术的 文献仅披露了最高至 15%游离脂肪酸的直接加氢处理制备烃类燃料 (Yanyong Liu et al., Chem. Lett. 2009, 38, 552) 。 总的来说, 目前常用于由生物性油脂制备柴油燃料的技术中, 酯交换技术是将生物性 油脂经酯化交换生产生物柴油, 必须消耗大量的低碳醇, 增加了生产成本。 酯化中采用强 酸作为催化剂, 对生产设备腐蚀严重, 同时产生大量的甘油副产 p , 需要进行后续分离。 酯化后对产品的洗涤产生大量废水, 部分方法涉及多次酯化交换处理, 方法操作繁琐。 另 一方面, 直接加氢技术则是直接对动植物 脂加氢脱氧生产柴油, 不仅氢耗高, 而且催化 剂失活快。 由于原料油中含氧 10%— 15%, 加氢会放出大量反应热, 控制反应温度而不使 催化剂很快失活是很难解.决的问题; 同时加工原料油消耗氢气较高, 为保持氢分压稳定, 过程中必须大量的补充氢和骤冷氢。 同时现有技术中还有其它用生物性油脂制备生物柴油的技术, 例如 US2006/0186020 揭露了植物油与原油共炼方法, 其中植物油含量在 1-75%之间, 此方法不是单纯使用植物 油。中国专利公开号 CN10101314748A则揭露了一种动植物油脂的催化转化方法, 产物成 分主要是 C2-C4烯烃, 而总收率仅达 45wt%, 所得汽柴油组分太少, 且并未涉及对汽柴油 的加氢精制。 中国专利公开号 CN101475870A 教导了针对主要由烃类组成的废润滑油资源的烃类 催化裂解蒸馏技术。 在该技术中, 所处理的废润滑油主要由垸烃类组成, 催化裂解是选择 性断裂碳碳键 (C-C键) , 主要反应示意如下:
R1-CH2-CH2-R2 ► RrCH3 + CH2=R2
该裂解反应并不形成水 (H20) , 因而不需要考虑催化剂的耐水性。 且废润滑油主要由垸 烃类组成, 催化裂解后直接形成烷烃及烯烃。 然而, 如前述, 生物性油脂与原油 (包括废 润滑油)在组成成分上有极大的差异, 生物性油脂的主要成分含氧量高, 若要进行裂解作 用必须考虑到碳氧键的断裂以及水生成等因素, 因此在催化作用机制上有极大差异, 且必 须要考虑催化剂的水热稳定性。所以, 中国专利公开号 CN101475870A所教导的技术无法 适用于生物性油脂的加工。 总而言之, 就现有技术而言, 虽然已有许多以生物性油脂为原料加工制造生物柴油的 路线与研究成果, 但由于所得到的生物柴油密度高, 与石油柴油组分调合时比例不能大, 且生物柴油热值低, 与石油柴油组分调合的燃料经济性差, 因此, 生物柴油被认为不是理 想的柴油调合组分。 发明内容 为了克服上述的问题, 本发明提供一种新颖的生物性油脂的处理技术, 可制造出优质 生物质燃料, 极适合作为柴油调合组分。 具体而言, 本发明提供一种制备生物质燃料的方法, 是以生物性油脂为原料, 通过下 列步骤制造出与由原油精^ ^所得燃料组分相当的生物质燃料, 所述方法包括: (a) 在裂 ' 解脱氧催化剂的存在下并在加热条件下对生物性油脂进行 化裂解脱氧反应; (b) 将步 骤 (a) 的产物与氢气混合; 以及 (c) 在力 P氢脱氧催化剂的存在下在加热条件下对来自步 骤 (b) 的混合物进行催化加氢脱氧反应。 视实际应用需求, 可将步骤 (c) 所得产物进一 步分熘。 一般可以考虑先将氢气与催化裂解脱氧产物混合后才注入反应塔进行步骤 (c) 的反应, 但是也可以将氢气直接注入用于加氢的反应塔内后再与催化裂解脱氧产物混合, 以进行步骤 (c) 的反应。 就本发明方法而言,其技术特征在于使用了催化裂解脱氧一催化加氢脱氧的双重脱氧 步骤,如此可避免现有技术中使用直接加氢技术所造成的大量放热和催化剂快速失活的缺 点, 同时也大幅降低氢气消耗量。 另外, 本发明中的催化裂解脱氧与催化加氢脱氧灵活相 结合的方法不仅可以连续 .操作, 而且还能各自分开操作。 综合利用产生的废渣和废气来进 行加热, 使整个生产过程更为节能和环保。 附图说明 图 1描述了本发明方法的一个实施例。
:要组件符号说明-
1 蒸馏釜 6 加热炉
2 催化蒸熘塔 7 加氢精制反应塔
3 冷凝器 8 氢气增压机
4 汽液分离器 9 常压蒸熘塔
5 液体进料泵 具体实施方式 以下结合附图对本发明的具体实施例进行进一步的说明。
本发明所涉及的生物性油脂可包括动物性来源、 植物性来源、 微生物来源、 或前述的 混合物。 工业用或食用的生物性油脂均可被利用。 总的来讲, 生物性油脂为富含甘油三酸 酯及游离脂肪酸,脂肪酸链长通常为 C12— C24, 以 C16和 C18居多。生物性油脂的实例, 举例但非限制性地包括菜籽油、 豆油、 棕榈油、 葵花籽油、 棉籽油、 麻风树油、 橄榄油、 蓖麻油、 微藻油、 牛脂、 猪脂、 黄油、 家禽脂肪、 鱼油、 餐饮废油等。 于一实施例中, 以 植物油脂为优选的原料。 本发明所能制备的燃 ^1·通常被称为生物质燃料, 意指由生物质组成或萃取的固体、 液 体、 或气体, 而所谓的生物质是指有机活体或者有机活体新陈代谢的产物。 于一较佳实施 例中, 该生物柴油与经由石化原料(例如原油)精炼所得的石油柴油的组分相当, 两者具 有高度兼容性, 可充分调合, 且调合所得的柴油具有与石油柴油相当的性质与应用范围。 本发明采用了催化裂解脱氧一催化加氢脱氧的双重脱氧的工艺。首先采用催化裂解和 蒸馏相结合的技术, 对生物性油脂进行处理, 此过程可以脱除原料中部分氧元素, 然后再 通过催化加氢反应而脱除剩余的氧元素。 由于催化裂解脱氧的步骤中不需要使用氢气, 并 且脱除了大部分的氧元素, 所以在后续的準化加氢脱氧步骤中, 氢气消耗量耗可大幅度降 低。 在催化裂解脱氧的步骤中,游离脂肪酸通过脱羰基脱除部分氧, 或者脱羧基生成 CO、 H20和烯烃, 而甘油三酸酯通过裂解脱羰基。 脱羧基生成相应的长链垸烃和烯烃、 C02、 CO、 H20、 以及丙烯或丙垸。 化学反应式如下所示:
R-CH2-COOH ► R-CH3 + C02 或 R=CH2 + CO + H20
R-CH2-COOCH2
R'-CH2-COOCH2 ► R-CH=CH2 + R-H + CO + C02 + C3H6 + C3H8 + H20
R"-CH2-COOCH2 此步骤同时也发生一些与裂解脱氧无关的如副反应 C-C键断裂的反应。 由于此步骤中会形成水, 所以选用的裂解脱氧催化剂需要具有很强的耐水性。 另外, 生物性油脂催化裂解反应中通常既有 C-C断裂, 也有 C-0断裂, 为此, 可对催化剂进行 一定的调变, 以使得选择性的断裂, 即发生 C-0键断裂, 而 C-C不断裂。 由于选择性断 裂碳氧键后的熘分通常仍含有氧元素, 因此, 进行再次脱氧步骤。 在催化加氢脱氧的条件下, 甘油三酸酯经加氢饱和、 加氢脱羧基、 加氢脱羰基和加氢 脱氧反应后生成正构垸经。 所发生的化学反应如下所示: R-CH=CH2 + H R-CH.
R-COOH + H2 ► R-CH3 + H20 或 R-H + C02
R-CH2-COOCH2
R'-CH2-COOCH2 + H2 ► R-CH2CH3 + C02 + C3H8 + H20
R"-CH2-COOCH2 上述所有化学反应方程式中的 R为碳数 C10— C22的垸基。 同时也存在一些副反应, 主要是 C-C键的氢解反应, 生成较小的烃分子。 通过上述的加氢脱氧反应, 进一步脱除催化裂解脱氧过程中没有脱除的含氧熘分, 同 时使催化裂解过程中产生的烯烃饱和, 得到稳定性高的产品。 本发明的优点在于,通过催化裂解脱氧的馏分再进行加氢脱氧反应,反应条件温和(氢 分压低、 反应温度低) , 催化剂稳定度佳, 氢耗低, 而且还可以晕大限度利用炼油厂现有 设备进行生产。 依据本发明方法所生产的生物质燃料可以直接作为燃料, 例如作为汽油、 柴油、 航空 煤油等, 或者用以调和组分。 该生物质燃料所包含的主要碳链组成是 C8— C24, 其十六烷 值高于传统石油柴油, 具有较低密度, 且实质上几乎不含硫、 氮和芳烃。 基于上述特性, 依据本发明方法所生产的清洁燃料, 是理想的优质柴油调合组分, 可以与低价值的催化轻 循环油加氢处理生成油(十六烷值较低)调合,从而生产符合相关标准要求的超低硫柴油。 本发明主要由催化裂解脱氧与催化加氢脱氧两个步骤为基础, 两步骤的结合非常灵 活, 不仅可以连续操作, 而且还能各自分开操作。 具体的讲, 发生催化裂解脱氧作用的第 一反应区段和发生催化加氢脱氧作用的第二反应区段可视实际应用的操作条件,而分别进 行连续式或间歇式的操作。 就产业应用的方式而言, 第二反应区段中的加氢脱氧步骤以连续式操作为优选, 其优 点是反应条件稳定、产品稳定; 而第一反应区段中的催化裂解脱氧步骤则可采用间歇式操 作。 不过, 若满足加氢脱氧步骤的连续式操作, 催化裂解脱氧步骤则可采用多蒸熘釜循环 操作, 也可以采用连续式催化蒸馏操作。 于所述第一反应区段中所使用的裂解脱氧催化剂例如但非限制地是分子筛催化剂。其 它适合的裂解脱氧催化剂可参见《工业催化剂手册》 (黄仲涛编著,化学工业出版社, 2004 年出版, 在此以参考文献的方式将其纳入本申请说明书中) 。 于一实施例中, 使用氧化铝 和分子筛的混合物作为裂解催化剂。分子筛.可选自 ΗΥ、 Ηβ、 SAPO-31、 HZSM-5、 HZSM-22、 或上述成分任意组合的混合物, 分子筛含量可为约 5-70 wt%。 将氧化铝和分子筛混合后, 可添加粘结剂(例如田菁粉)挤条成型。 戍型裂解脱氧催化剂的尺寸根据该第一反应区段 的实际条件而决定, 例如, 根据催化蒸熘塔的直径。 于一实施例中, 成型裂解脱氧催化剂 的等效直径与催化蒸馏塔的直径比应小于 ί).1。 可依据实际操作条件来决定裂解脱氧催化剂与通入第一反应区段的原料的比例,该比 例无须特别限制。 于一实施例中, 根据反应的处理量, 裂解脱氧催化剂与生物性油脂的质 量比可为约 1 :5至 1 :50, 亦即, 可为 1 : 5、 1: 10、 1: 15、 1: 20、 1: 30、 1: 40、 1: 50 等。 于一实施例中, 裂解脱氧催化剂与生物性油脂的质量比以 1 : 20为优选。 于另一实施 例中, 裂解脱氧催化剂与生物性油脂的质量比以 1 : 10为优选。 于实施例中, 第一反应区段中的裂解脱氧催化作用可在约 100至 600Ό的加热环境下 、 进行, 进而获得裂解脱氧产物例如烯烃、 垸烃、 一氧化碳、 二氧化碳、 水等。 于一实施例 中, 裂解脱氧催化作用可于温度条件为约 100°C、 200°C、 250°C、 300°C、 350°C、 400'C、 450V , 500°C、 600°C、 或上述任两点所羿定出的温度范围内进行, 此时原料油的构成会 影响温度的选择, 一般裂解脱氧反应温度根据原料油的流程决定。 于一实施例中, 以约 30Q-600°C为优选。 将来自第一反应区段的产物与氢气充分混合, 接着, 导入含有加氢脱氧催化剂的第二 反应区段进行催化加氢脱氧作用。 于所述第二反应区段中所使用的加氢脱氧催化剂例如但非限制地是负载型金属催化 剂。 其它适合的加氢脱氧催化剂可参见《工业催化剂手册》 (黄仲涛编著, 化学工业出版 社, 2004年出版) 及 《加氢精制》 (方向晨主编, 中国石化出版社, 2008年出版) (在 此以参考文献的方式将二者纳入本申请说明书中) 。 于一实施例中, 该负载型金属催化剂 系由载体及分布于载体上之金属所构成, 所包含的金属可为单一金属、 多种金属混合物、 或合金。 该金属可选自元素周期表中的过渡金属, 包括第 ΠΙΒ族、 第 IVB族、 第 VB族、 第 VIB族第 VIIB族、 第 VIII族的金属元素。 于一实施例中, 以第 VIII族为优选, 可选自 Fe、 Co、 Ni、 Ru、 RH、 Pd、 Os、 Ir、 Pt等。 于另一实施例中, 可选自 Ni、 Co、 Mo、 W、 Cu、 Pd、 Ru、 Pt等。 金属含量可为 0.1 -30 wt%。 载体可选自具有双中孔复合结构的氧化 物载体或炭材料。 于一实施例中, 氧化物载体可选自 Si02、 A1203、 Ti02、 Si02-Al203、 Al203-Ti02或 Si02-Al203-Ti02。 可依据实际操作条件来决定加氢脱氧催化剂与通入第二反应区段的反应物的比例,该 比例无须特别限制。 于一实施例中, 第二反应区段中的催化加氢脱氧作用可在约 200至 400Ό的加热环境 下进行, 例如, 约 200°C、 250°C、 300°C、 350°C、 400°C或上述任两点所界定出的温度范 围内。 于一实施例中, 以约 300-400°C为优选。 针对前述的温度条件, 可整合操作系统, 利用本方法产生的废气和废渣来进行加热, 因此可降低能耗, 无二次污染, 达到节能和环保的效果。 于一具体实施例中, 将植物油注入蒸馏釜内加热气化后, 在催化蒸熘塔内进行催化裂 解脱氧反应, 蒸馏釜温度控制在 100-600Ό之间, 以氧化铝-分子筛混合物作为裂解脱氧催 化剂, 剂油比控制在 1 : 5- 1: 20之间。 ±述反应步骤可以间歇进行, 也可以通过蒸馏釜 间的切换, 实行连续化操作。 接着, 将蒸馏出来的熘分通过进料荥与氢气混合, 然后通入 配置加氢脱氧催化剂的反应塔中进行反应, 以负载型金属或硫化物作为加氢脱氧催化剂。 加氢脱氧的反应塔的控制进料温度在 200-400°C, 氢气分压 1-6 MPa, 体积空速 0.5-4.0 h"1 和氢油体积比为 200-1200: 1。 最后可获得来源于植物油的清洁燃料, 根据熘分温度分成 汽油和柴油。 在本发明中, 可利用植物油的转化过程中产生的干气和废渣进行辅助加热。 依据本发明方法所生产的生物质燃料, 例如可再生柴油 (renewable diesel) , 可以视 需要进一步加工, 异构化降低凝点, 生产具有良好的低温特性的燃料。 以下提供实施例详细说明本发明,应理解该等实施例为例示性实施例而非用以限制本 发明。 实施例 1 以棕榈酸化油作为本发明方法的原料。 棕榈酸化油的基本性质、 组分分析及馏程如表 1所示。 棕榈酸化油在室温下为固体, 游离脂肪酸含量高达 67%, 由于脂肪酸含暈过高, 故无法架用现有技术的直接加氢技术进 行加工(如前述,现有技术仅教导最高至 15%游离脂肪酸的直接加氢处理生产烃类燃料)。 然而, 可以采用本发明方法对棕榈酸化油进行加工。
表 1、 棕榈酸化油基本特性
外观 棕色
水分 % (m/m) 1.18
密度 @15.6°C g/cm 0.9285 硫含量 mg/kg ' <50
游离脂肪酸含量 % 67.1
月旨肪含量 % 98.0
碘值 gl2/100g 51.6
脂 十二酸 % 11.49
肪 十六酸 % 24.97
酸 十八酸 % 17.99
油酸 % 31.02
成 其它 % 14.53
馏程
初馏点 。C 309
50%回收温度 V 387.6
90%回收温度 。C 546.5
95%回收温度 。C 581.1
终馏点 。C 587.4 将棕榈酸化油注入蒸輝釜内加热气化后, 在催化蒸馏塔内进行催化裂解脱氧反应, 蒸 熘釜温度控制在 100-600 °C之间, 以氧化铝 -分子筛混合物作为裂解脱氧催化剂, 剂油比 控制在 1-20之间。 根据馏分温度分出汽柴油馏分 (<360 V ) , 结果如表 2所示。 表 2、 裂解脱氧产物分布
Figure imgf000010_0001
由上表 1及 2比较可知, 藉由本发明方法的催化裂解脱氧步骤, 可以以水的形式脱除 原料油中的含氧量, 从而降低了后续加氢过程中水的生成, 延长加氢催化剂的寿命。 同时 汽柴油熘分收率约 80%。 接着, 将催化裂解脱氧分出来的汽柴油馏分与氢气混合, 然后通入配置加氢脱氧催化 剂的反应塔中进行反应。 以负载型金属或金属硫化物作为加氢脱氧催化剂。其余反应条件 如表 3所示, 而所得清洁燃料的组分分析如表 4所示。 表 3、 加氢脱氧条件
氢分压 MPa 5.0
体积空速 h"1 1
氢油体积比 800
^应温度 °C 310
液体收率 % 97 表 4、 清洁燃料的组分分析
外观 无色透明
凝点 。C -3
硫化氢 mg/kg . 5.74
酸度 mgKOH/g 0.06
密度 (20°C ) kg/m3 763.0
十六垸指数 64
馏程
初馏点 V . 66.8
50%回收温度 . 215.2
90%回收温度 V . 258.1
95:%回收温度 。C 267.5
终馏点 °c - 273.7 如表 4所示, 棕榈酸化油经催化裂解 氧的馏分进行加氢脱氧处理后, 所得到的馏分 酸值为 0.06 mgKOH/g, 远低于中国的生物柴油标准, (下称 BD100) 的标准值。 硫含量低 于中国柴油 (III) 标准 G_B 19147-2009 (下称国 III柴油) 以及欧犟 (V) 标准 EN590:2004 (下称欧 V柴油) 的标准值。 十六烷值远高于国 III柴油和、欧 V柴油标准值。 依据本发明 方法, 由棕榈酸化油所得的清洁燃料确实是一种优良的柴坤调配 分。 实施例 2 以麻疯树油作为本发明方法的原料。 麻疯树油在室温 为液体, 其基本性质、 组分分 析及馏程如表 5所示。 表 5、 麻疯树油的基 2特性
外观 黄色透明 水分 % (m/m) <0.05
密度 @15.6°C g/cm 0.9193
硫含量 mg/kg . <50
游离脂肪酸含量 % 1.9
脂肪含量 % 99.6
碘值 gi2/ioog 103
馏程
初馏点 。C 405.6
50%回收温度 V 573.9
90%回收温度 V 591.7
95%回收温度 V 593.3
'终馏点 °C 603.5 将麻疯树油注入蒸熘釜内加热气化后, 在催化蒸馏塔内进行催化裂解脱氧反应, 蒸馏 釜温度控制在 100-600 °C之间, 以氧化铝-分子筛混合物作为裂解脱氧催化剂, 剂油比控 制在 1-20之间。 根据馏分温度分出汽柴油馏分 (<360 V ) , 结果如表 6所示。 表 6、 裂解脱氧产物分布
Figure imgf000012_0001
由上表 5及 6比较可知, 藉由本发明方法的催化裂解脱氧步骤, 可以以水的形式脱除 原料油中的含氧量, 从而降低了后续加氢过程中水的生成, 延长加氢催化剂的寿命。 同时 汽柴油馏分收率约 78%。 接着, 将催化裂解脱氧出来的汽柴油镏分与氢气混合, 然后通入配置加氢脱氧催化剂 的反应塔中进行反应。 以负载型金属或金属硫化物作为加氢脱氧催化剂。 其余反应条件如 表 7所示, 而所得清洁燃料的组分分析如表 8所示。 表 7、 加氢脱氧条件
氢分压 MPa 5.0
体积空速 h"1 1
氢油体积比 800
反应温度 °C 310
液体收率 % 98 表 8、 清洁燃料的组分分析
外观 无色透明 凝点 V -15
硫化氢 mg/kg ' 7.7
酸度 mgKOH/g 0.04
密度 (20Ό ) kg/m3 783.7
十六垸指数 43.4
馏程
初熘点 °C 101.2
50%回收温度 。C 250.1
90%回收温度 V 323.9
95%回收温度 。C 350.2
终馏点 V 372.6 如表 8所示, 由麻疯树油所得到的熘分酸值远低于 BD100的标准值; 硫含量亦低于 国 III以及欧 V柴油的标准值; 且十六垸值符合国 III柴油标准值。 实施例 1及实施例 2分别提供了非食用动植物油脂中零难加工和最容易加工的实例, 通过本发明的方法, 皆可获得性质优异的漬洁燃料。 反映了本发明方法对于生物性油脂 原料并不挑剔, 可以应用在所有的生物性油脂, 即使是最难加工的棕榈酸化油, 亦可通过 本发明的方法而产生高质量的清洁燃料。 通过本发明方法而产生的清洁燃料, 丰要碳链组成是 C8— C24, 其十六垸值高于传统 石油柴油, 具有较低密度, 且实质上几乎不含硫、 氮和芳烃。 基于上述特性, 依据本发明 方法所生产的清洁燃料, 是理想的优质柴油调合组分, 可以与低价值的催化轻循环油加氢 处理生成油 (十六烷值较低) 调合, 从而生产符合相关标准要求的超低硫柴油。 实施例 3 提供将本发明方法应用于工业层次生产清洁燃料的实例。 参照图 1, 将生物性油脂原料注入蒸馏釜 1进行加热, 接着导入催化蒸馏塔 2, 该催 化蒸馏塔 2中配置了裂解脱氧催化剂, 在一定的温度条件下, 对生物性油脂进行裂解脱氧 作用。 将由该催化蒸馏塔 2所得汽柴油馏分通入加氢精制反应塔 7。 其中, 由该催化蒸熘 塔 2所产生的汽柴油馏分, 可先通过进料泵 5与氢气混合, 然后经换热器和加热炉 6加热 进入加氢精制反应塔 7。 该加氢精制反应塔 7中配置了加氢脱氧催化剂, 在预设的温度条件下, 将由该催化蒸 熘塔 2通入加氢精制反应塔 7的熘分与氢气进行催化加氢脱氧作用,最后可再将获得的产 物通入常压蒸馏塔 9进行分馏, 而获得汽油、 柴油等清洁燃料。 本发明方法是先利用催化裂解脱氧处理而使生物性油脂所包含的大量碳氧键断裂,接 着再进行催化加氢脱氧而获得最终的清洁燃料, 有效降低了加氢反应所必须的氢耗。 与现 有技术采用直接对生物性油脂进行加氢脱氧, 然后再加氢异构化的两段处理、 或者现有技 术将加氢脱氧与加氢异构化合并成一段处理的技术相比,本发明方法可节省高达 50%的氢 气使用量。 与现有技术的酯交换技术相比, 本发明方法不需要低碳醇且不会产生副产品甘 油, 方法简单, 可大幅降低成本。 前面对本发明的优选实施例的描述意在解释、 说明而不是限制本发明的内容。 本发明 的范围以权利要求书的范围为准。本领域的普通技术人员在阅读所述描述后能够进行适当 的修改或变动, 所述修改或变动也处于本发明的范围之内。

Claims

权利要求
1. 一种使用生物性油脂制备燃料的方法, 包括: '
(a) 在裂解脱氧催化剂的存在下并在加热条件下对所述生物性油脂进行催化裂解脱 氧反应;
(b) 将步骤 (a) 的产物与氢气混合; 以及
(c) 在加氢脱氧催化剂的存在下并在加热条件下, 对来自步骤 (b) 的混合物进行 催化加氢脱氧反应。
2. 如权利要求 1所述的方法, 其中所述步骤(a)能够进行连续式操作或间歇式操作。
3. 如权利要求 1所述的方法, 其中, 步骤 (a) 采用多蒸馏釜循环操作或采用连续式 催化蒸熘操作, 并且步骤 (c) 采用连续式操作。
4. 如权利要求 1所述的方法, 其中所述生物性油脂是动物性来源、 植物性来源、 微 生物来源、 或前述的混合物。 '
5. 如权利要求 1所述的方法, 其中所述裂解脱氧催化剂选自氧化铝、 分子筛或其混 合物。
6.如权利要求 5所述的方法,其中所述分子筛系选自由 ΗΥ、 Ηβ、 SAPO-31、 HZSM-5、 HZSM-22所成群组中的一种或多种。
7. 如权利要求 5所述的方法, 其中所述裂解脱氧催化剂是氧化铝和分子筛的混合物, 分子筛的含量是 5-70wt%。
8. 如权利要求 1所述的方法, 其中步骤 (a) 发生在催化蒸馏塔中, 所述裂解脱氧催 化剂是成型的, 其等效直径与所述催化蒸馏塔的直径之比小于 0J。
9. 如权利要求 1所述的方法, 其中步骤(a) 中所述裂解脱氧催化剂与该步骤的反应 物的质量比选自 1 :5、 1 :10、 1 :15、 1 :20、 1:30、 1 :40、 1 :50构成的组。
10. 如权利要求 1所述的方法, 其中所述裂解脱氧催化剂具有耐水性。
11. 如权利要求 1所述的方法, 其中所述步骤 (a) 的加热条件为 100至 600°C。
12. 如权利要求 1 所述的方法, 其中步骤 (a) 的产物包括烯烃、 垸烃、 一氧化碳、 二氧化碳、 水、 或前述的组合。
13. 如权利要求 1所述的方法, 其中步骤 (a) 包括下列反应:
R-CH2-COOH ► R-CH3 + C02 或 R=CH2 + CO + Ή20
R-CH2-COOCH2
R'-CH2-COOCH2 一 ► R-CH=CH2 + R-H + CO + C02 + C3H6 + C3H8 + H20
R"-CH2-COOCH2 其中, R为 C10.22烷基。
14. 如权利要求 1所述的方法, 其中所述加氢脱氧催化剂包括负载型金属催化剂, 且 所述金属选自由第 ΠΙΒ族至第 VIII族的金属元素及其合金所成群组中的一种或多种。
15. 如权利要求 1所述的方法, 其中所述步骤 (c) 的加热条件为 200至 400。C。
16. 如权利要求 1所述的方法, 其中步骤 (c) 包括下列反应:
R-CH=CH, + H, ► R-CH2-CH3
R-COOH + H2 ► R-CH3 + H20 或 R-H + C02
R-CH2-COOCH2
R'-CH2-COOCH2 + H2 ► R-CH2CH3 + C02 + C3H8 + H20
R"-CH2-COOCH2
其中, R为 C 10-22院基 o
17. 如权利要求 1所述的方法, 还包括:
(d) 分馏步骤 (c) 的产物, 得到汽油和柴油。
18. 如权利要求 1所述的方法, 其中所述方法产生的干气用于步骤 (a) 和 (c) 的辅 助加热。
19. 如权利要求 1所述的方法, 其中步骤 (a) 的产物先通过进料泵后再在步骤 (b) 中与氢气混合, 然后经过换热器进入用于加氢精制的反应塔, 并在该反应塔中进行步骤 (c) 。
20. 如权利要求 1所述的方法, 其中步骤 (a) 还包括蒸馏操作。 '
21. 如权利要求 1 所述的方法, 其中所述步骤 (&) 在蒸馏釜和催化蒸馏塔中进行, 该蒸馏釜加热条件在 100-600Ό之间, 所述裂解脱氧催化剂是氧化铝-分子筛混合物, 所述 裂解脱氧催化剂与步骤 (a) 的反应物的质量比在 1:5-1 :20之间。
22. 如权利要求 1所述的方法, 其中所述步骤(c)在用于加氢精制的反应塔中进行, 所述加氢脱氧催化剂是负载型金属催化剂, 所述反应塔中的加热条件在 200-40(TC, 氢气 分压 l-6 MPa, 体积空速为 0.5-4.0 h—1和氢油体积比为 200-1200:1。
PCT/CN2012/000013 2011-12-16 2012-01-05 从生物性油脂制备燃料的方法 WO2013086762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110425819.9 2011-12-16
CN2011104258199A CN102492455A (zh) 2011-12-16 2011-12-16 从生物性油脂制备燃料的方法

Publications (1)

Publication Number Publication Date
WO2013086762A1 true WO2013086762A1 (zh) 2013-06-20

Family

ID=46184319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000013 WO2013086762A1 (zh) 2011-12-16 2012-01-05 从生物性油脂制备燃料的方法

Country Status (2)

Country Link
CN (1) CN102492455A (zh)
WO (1) WO2013086762A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210355393A1 (en) * 2019-02-01 2021-11-18 ECO Environment Energy Research Institute Limited Method and System for Preparing Fuel by Using High Acid Value Biological Oil and Fat
US12006484B2 (en) * 2019-02-01 2024-06-11 Eco Environmental Energy Research Institute Limited Method and system for preparing fuel by using high acid value biological oil and fat

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816144B2 (en) * 2012-10-04 2014-08-26 Gas Technology Institute Direct production of fractionated and upgraded hydrocarbon fuels from biomass
KR102047893B1 (ko) * 2013-04-23 2019-11-22 에스케이이노베이션 주식회사 드릴링 유체 및 이의 제조방법
CN103320153A (zh) * 2013-07-17 2013-09-25 天津南开大学蓖麻工程科技有限公司 一种蓖麻基生物航空燃料的制备方法
MY189099A (en) * 2016-05-25 2022-01-25 Shell Int Research Conversion of biomass into a liquid hydrocarbon material
CN109913256B (zh) * 2019-02-01 2021-07-02 易高环保能源研究院有限公司 利用高酸值生物性油脂制备燃料的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294091A (zh) * 2007-04-27 2008-10-29 周鼎力 从含油植物中提取汽油柴油的方法和设备
CN101423451A (zh) * 2007-10-31 2009-05-06 中国石油化工股份有限公司 一种从生物油脂制取低碳烯烃和芳烃的催化转化方法
CN101842465A (zh) * 2007-06-15 2010-09-22 纳幕尔杜邦公司 将可再生资源转化成石蜡以用作柴油调合料的催化方法
US20110011721A1 (en) * 2009-07-16 2011-01-20 Champagne Gary E Vacuum Pyrolytic Gasification And Liquefaction To Produce Liquid And Gaseous Fuels From Biomass
WO2011031320A2 (en) * 2009-09-09 2011-03-17 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
CN102250634A (zh) * 2011-06-13 2011-11-23 大连理工大学 一种利用植物油生产可再生汽柴油的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294091A (zh) * 2007-04-27 2008-10-29 周鼎力 从含油植物中提取汽油柴油的方法和设备
CN101842465A (zh) * 2007-06-15 2010-09-22 纳幕尔杜邦公司 将可再生资源转化成石蜡以用作柴油调合料的催化方法
CN101423451A (zh) * 2007-10-31 2009-05-06 中国石油化工股份有限公司 一种从生物油脂制取低碳烯烃和芳烃的催化转化方法
US20110011721A1 (en) * 2009-07-16 2011-01-20 Champagne Gary E Vacuum Pyrolytic Gasification And Liquefaction To Produce Liquid And Gaseous Fuels From Biomass
WO2011031320A2 (en) * 2009-09-09 2011-03-17 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
CN102250634A (zh) * 2011-06-13 2011-11-23 大连理工大学 一种利用植物油生产可再生汽柴油的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210355393A1 (en) * 2019-02-01 2021-11-18 ECO Environment Energy Research Institute Limited Method and System for Preparing Fuel by Using High Acid Value Biological Oil and Fat
US12006484B2 (en) * 2019-02-01 2024-06-11 Eco Environmental Energy Research Institute Limited Method and system for preparing fuel by using high acid value biological oil and fat

Also Published As

Publication number Publication date
CN102492455A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
TWI551548B (zh) 從生物性油脂製備燃料的方法
Phimsen et al. Oil extracted from spent coffee grounds for bio-hydrotreated diesel production
Ameen et al. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production
Xu et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels
Sousa et al. Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel
Hongloi et al. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts
Sugami et al. Renewable diesel production from rapeseed oil with hydrothermal hydrogenation and subsequent decarboxylation
EP2990462A1 (en) Process for the manufacture of diesel range hydrocarbons
JP2012530149A (ja) 植物油または脂肪酸誘導体を用いるディーゼル燃料の調製方法
Krár et al. Bio gas oils with improved low temperature properties
Li et al. Recent advances for the production of hydrocarbon biofuel via deoxygenation progress
AU2006264899A1 (en) Process for the manufacture of diesel range hydrocarbons
WO2013086762A1 (zh) 从生物性油脂制备燃料的方法
Long et al. Thermochemical conversion of waste acidic oil into hydrocarbon products over basic composite catalysts
CN104250558A (zh) 一种脂肪酸酯加氢生产正构烷烃的方法
da Costa et al. Recent advances on catalytic deoxygenation of residues for bio-oil production: An overview
Oi et al. Mesoporous and other types of catalysts for conversion of non-edible oil to biogasoline via deoxygenation
Azreena et al. Hydrodeoxygenation of fatty acid over La-modified HZSM5 for premium quality renewable diesel production
CN109294613A (zh) 一种油脂类原料制备烃燃料的方法
US9745522B2 (en) Method of obtaining paraffinic hydrocarbons from natural fat
US12006484B2 (en) Method and system for preparing fuel by using high acid value biological oil and fat
US20210355393A1 (en) Method and System for Preparing Fuel by Using High Acid Value Biological Oil and Fat
Baladincz et al. Investigation of the hydroconversion of lard and lard-gas oil mixture on PtPd/USY catalyst
Dragomir et al. Renewable Diesel Production by Co-processing of Rapeseed Oil Mixed with Straight Run Gas Oil
Yotsomnuk et al. production of biofuel by hydroconversion of waste virgin coconut oil over HZSM-5 zeolite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858457

Country of ref document: EP

Kind code of ref document: A1