WO2013085045A1 - プラズマ発生装置 - Google Patents

プラズマ発生装置 Download PDF

Info

Publication number
WO2013085045A1
WO2013085045A1 PCT/JP2012/081827 JP2012081827W WO2013085045A1 WO 2013085045 A1 WO2013085045 A1 WO 2013085045A1 JP 2012081827 W JP2012081827 W JP 2012081827W WO 2013085045 A1 WO2013085045 A1 WO 2013085045A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
opening end
electrodes
dielectric film
fluid circulation
Prior art date
Application number
PCT/JP2012/081827
Other languages
English (en)
French (fr)
Inventor
宮本 誠
一利 竹之下
山田 幸香
寺尾 芳孝
伸岳 平井
Original Assignee
三星電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子株式会社 filed Critical 三星電子株式会社
Priority to CN201280069371.4A priority Critical patent/CN104206026B/zh
Priority to EP12855583.6A priority patent/EP2790472A4/en
Priority to US14/363,481 priority patent/US9452236B2/en
Priority to KR20147013179A priority patent/KR20140109367A/ko
Publication of WO2013085045A1 publication Critical patent/WO2013085045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a plasma generator and a plasma generation method.
  • the conventional technology aiming at air quality control in the living environment is generally physical control represented by a filter.
  • Physical control can capture relatively large dust and dirt floating in the air and bacteria and viruses depending on the size of the filter hole.
  • innumerable adsorption sites such as activated carbon
  • malodorous odor molecules can be captured.
  • a so-called passive type plasma generator that reacts bacteria and viruses floating in the atmosphere (hereinafter referred to as floating bacteria) or malodorous substances (hereinafter referred to as odor) with ions and radicals within a limited volume in the device.
  • odor malodorous substances
  • Ions and radicals generated in the plasma generator are released into a closed space (for example, a living room, a toilet, or a passenger car) that has a larger volume than (1), and ions and radicals in the atmosphere and floating bacteria
  • active type plasma generator that reacts by collision with odors
  • the advantage of the passive plasma generator is that a high concentration of ions and radicals are generated by generating plasma in a small volume, so that a high sterilizing effect and deodorizing effect are expected.
  • the size of the device is increased, and ozone is likely to be generated as a by-product from the generation of plasma, so that ozone does not leak out of the device.
  • the advantage of the active plasma generator of (2) is that the device can be made relatively small.
  • bacteria attached to the surface of clothing and household goods hereinafter referred to as
  • sterilization of adhering bacteria and decomposition of odor adsorbed on the surface can be expected.
  • the disadvantage is that ions and radicals are diffused in a very large closed space compared to the volume of the device, so the concentration is low, so that only active species with a long life cannot be expected to be sterilized or deodorized. It is a point that does not get. As a result, a deodorizing effect can hardly be expected in a space with a high odor concentration (a concentration about 10,000 times higher than the active species concentration).
  • the inventor of the present application simultaneously performs two functions: a passive function that generates plasma to deodorize ions and radicals, and an active function that releases the ions and radicals to sterilize attached bacteria.
  • a passive function that generates plasma to deodorize ions and radicals
  • an active function that releases the ions and radicals to sterilize attached bacteria.
  • the present inventor has a pair of electrodes provided with a dielectric film on at least one of the opposing surfaces, and plasma discharge is performed by applying a predetermined voltage between the electrodes. Improvements have been made to plasma generators that are configured so that fluid flow holes are provided therethrough.
  • the inventor of the present application uses a material, structure or thickness of a dielectric film provided on the electrode, or a predetermined voltage in order to suppress the generation of ozone and increase the concentration of ions and radicals in the above plasma generator.
  • the voltage value or pulse width is examined as the pulse voltage.
  • ions and radicals are predominantly generated at the opening end of the fluid flow hole in each electrode, and in portions other than the opening end in each electrode. It has been found that ozone is generated predominantly.
  • the present invention has the function of increasing the amount of ions and radicals generated while suppressing the generation of ozone, and deodorizing with ions and radicals, and releasing the ions and radicals outside the apparatus to cause floating bacteria and adherent bacteria.
  • the main desired task is to have a function of sterilizing and sufficiently exerting the function.
  • the plasma generator according to the present invention has a pair of electrodes provided with a dielectric film on at least one of the opposing surfaces, and a plasma discharge is performed by applying a predetermined voltage between the electrodes. It is configured such that a fluid circulation hole is provided at each location and these are penetrated, and that plasma is generated only at an opening end portion that forms the fluid circulation hole between the pair of electrodes.
  • the corresponding part means that the fluid flow holes formed in both electrodes are substantially at the same position and are opposed to each other when viewed from the direction of the face plate of the electrode, and are orthogonal coordinates. In the system, when a pair of electrodes having an xy plane shape is viewed from the z-axis direction, the coordinate positions of both electrodes are substantially the same (x, y).
  • the plasma is generated only at the opening end portion that forms the fluid flow hole between the pair of electrodes, the plasma is generated only at the opening end portion to generate ions or radicals. Can be generated predominantly, and no plasma is generated in portions other than the open end where ozone is predominantly generated.
  • the amount of ions and radicals generated can be increased while suppressing the generation of ozone, the function of deodorizing the ions and radicals, and the ions and radicals released to the outside of the device to adhere to floating bacteria The function of sterilizing bacteria can be fully exhibited.
  • a spacer for forming a plasma forming gap between the electrodes 21 and 22 is not required, but a gap is provided between the opposing surfaces. Can be formed.
  • the opposing distance of the opening end portion forming the fluid circulation hole in the pair of electrodes is other than the opening end portion. It is configured to be smaller than the facing distance between the portions, and when a predetermined voltage is applied between the pair of electrodes, it is desirable to perform plasma discharge only at the opening end portion that forms the fluid circulation hole. If this is the case, the plasma is applied only to the opening end portion forming the fluid flow hole by simply adjusting the facing distance of the opening end portion forming the fluid flow hole in the pair of electrodes and the facing distance of the portion other than the opening end portion. Can be generated.
  • the dielectric film formed on the opening end portion forming the fluid circulation hole It is desirable that the thickness is larger than the thickness of the dielectric film formed in a portion other than the opening end. If this is the case, plasma can be generated only at the open end portion where the fluid circulation hole is formed by simply adjusting the film thickness of the dielectric film.
  • the dielectric film formed on the entire circumference of the opening end is formed with a dielectric formed on a portion other than the opening end. It is desirable that it is thicker than the film thickness.
  • the difference between the thickness of the dielectric film formed at the opening end and the thickness of the dielectric film formed at a portion other than the opening end is 1 ⁇ m or more and 500 ⁇ m or less. desirable.
  • a plasma generation preventing member for preventing the generation of plasma is provided in a portion other than the opening end portion forming the fluid circulation hole of each electrode.
  • the corresponding part means that the fluid flow holes formed in both electrodes are substantially at the same position and are opposed to each other when viewed from the direction of the face plate of the electrode, and are orthogonal coordinates. In the system, when a pair of electrodes having an xy plane shape is viewed from the z-axis direction, the coordinate positions of both electrodes are substantially the same (x, y).
  • the plasma generation preventing member is provided in a portion other than the opening end that forms the fluid flow hole, the plasma is generated in the opening end but generated in the portion other than the opening end. Plasma can be reduced. In the plasma at the opening end, ions and radicals are generated predominantly, and in the plasma other than the opening end, ozone is generated predominantly. In addition, the amount of ions and radicals generated can be increased, and the function of deodorizing the ions and radicals and the function of releasing the ions and radicals outside the device to sterilize the floating bacteria and adherent bacteria are fully demonstrated. become able to. By providing a dielectric film on at least one of the pair of electrodes, a gap is formed between the opposing surfaces while eliminating the need for a spacer for forming a plasma forming gap between the electrodes. be able to.
  • the plasma generation preventing member When the plasma generation preventing member is too far away from the opening end of the fluid circulation hole, ozone is generated predominantly. Therefore, it is desirable that the plasma generation preventing member is provided outside the range of 0 ⁇ m to 500 ⁇ m from the opening end that forms the fluid circulation hole.
  • the plasma generation preventing member includes It is desirable to be provided on the entire portion other than the opening end portion between the pair of electrodes.
  • the plasma generation preventing member is made of a low dielectric material having a relative dielectric constant of 30 or less.
  • plasma generation preventing member If there is a gap between the plasma generation preventing member and the opposing surface of each electrode or the dielectric film, plasma may be generated in the gap. For this reason, it is desirable that the plasma generation preventing member is in close contact with the opposing surface of each electrode or the dielectric film.
  • the pair of electrodes are bonded by the plasma generation preventing member. Is desirable.
  • the plasma generation preventing member is sandwiched and fixed between the pair of electrodes.
  • a fixing member for fixing the pair of electrodes facing each other is required.
  • a blower mechanism is provided upstream or downstream of the fluid circulation hole, It is desirable that the air flow is configured to flow through the fluid circulation hole by a blower mechanism.
  • the flow velocity of the wind passing through the fluid circulation hole by the air blowing mechanism is in a range of 0.1 m / s to 10 m / s.
  • the film thickness of the dielectric film can be easily controlled by forming the dielectric film by a thermal spraying method.
  • the voltage applied to each of the electrodes is pulsed, It is desirable that the peak value is in the range of 100 V to 5000 V and the pulse width is in the range of 0.1 ⁇ s to 300 ⁇ s.
  • another plasma generator according to the present invention for simultaneously realizing both sterilization and deodorization of adhering bacteria has a pair of electrodes provided with a dielectric film on at least one of the opposing surfaces, and a predetermined voltage between the electrodes.
  • plasma is discharged by providing a fluid flow hole at a corresponding position of each electrode so that they pass therethrough, and a through hole is provided in one electrode separately from the fluid flow hole.
  • the through hole is configured such that the opening on the opposite surface side is closed by the other electrode, and the thickness of the dielectric film formed at the opening end portion forming the fluid circulation hole and the through hole
  • the film thickness of the dielectric film formed at the opening end portion forming the film is larger than the film thickness of the dielectric film formed at the portion other than the opening end portion.
  • the fluid that has passed through the fluid circulation hole can be further brought into contact with the plasma through the through hole, or the fluid before passing through the fluid circulation hole can be brought into contact with the plasma through the through hole. Can be contacted in advance. Thereby, the production amount of ions and radicals can be increased.
  • the film thickness of the dielectric film formed at the opening end portion that forms the fluid circulation hole and the film thickness of the dielectric film formed at the opening end portion that forms the through hole are portions other than these opening end portions.
  • another plasma generator according to the present invention for simultaneously realizing both sterilization and deodorization of adhering bacteria has a pair of electrodes provided with a dielectric film on at least one of the opposing surfaces, and a predetermined voltage between the electrodes.
  • plasma is discharged by providing a fluid flow hole at a corresponding position of each electrode so that they pass therethrough, and a through hole is provided in one electrode separately from the fluid flow hole.
  • the through hole is configured so that the opening on the opposite surface side is closed by the other electrode, and an opening end portion that forms a fluid flow hole between the pair of electrodes and the through hole are formed.
  • a plasma generation preventing member is provided in a portion other than the opening end portion and the portion facing the opening end portion.
  • the fluid that has passed through the fluid circulation hole can be further brought into contact with the plasma through the through hole, or the fluid before passing through the fluid circulation hole can be brought into contact with the plasma through the through hole. Can be contacted in advance. Thereby, the production amount of ions and radicals can be increased.
  • the plasma generation preventing member is provided in the opening end portion that forms the fluid flow hole between the pair of electrodes, and the opening end portion that forms the through hole and the portion opposite to the opening end portion, While generating plasma at the opening end, plasma generated at portions other than the opening end can be reduced. In the plasma at the opening end, ions and radicals are generated predominantly, and in the plasma other than the opening end, ozone is generated predominantly.
  • the amount of ions and radicals generated can be increased, and the function of deodorizing the ions and radicals and the function of releasing the ions and radicals outside the device to sterilize the floating bacteria and adherent bacteria are fully demonstrated. become able to.
  • another plasma generator according to the present invention for realizing both sterilization and deodorization of adhering bacteria is provided with a pair of electrodes facing each other, and a plasma discharge is performed by applying a predetermined voltage between the electrodes.
  • Each electrode has an insulating substrate, a conductive film formed on the opposing surface of the insulating substrate, and a dielectric film formed on the conductive film.
  • Fluid flow holes are provided at corresponding locations, respectively, and are configured to pass therethrough, and the conductive film is selectively formed in a predetermined region where plasma discharge is performed on the opposing surface of the insulating substrate. It is characterized by being.
  • an insulating substrate such as a ceramic substrate is used, a region for plasma discharge is specified, and a conductive film is selectively applied to the region.
  • chemical species generated by plasma discharge can be selected, and active species such as ions and radicals can be generated predominantly or ozone can be generated predominantly.
  • the region where the conductive film is formed is changed according to the application, and the generation of active species such as ions and radicals and the generation of ozone are controlled to ensure sterilization while ensuring safety. The deodorizing effect can be improved.
  • the conductive film is a region (A) within 1 mm from the opening periphery of the fluid circulation hole on the opposing surface of the insulating substrate. It is preferable to be formed.
  • the conductive film is formed in a region (B) of the opposing surface of the insulating substrate that is more than 1 mm away from the opening periphery of the fluid circulation hole. Is preferred.
  • the said electrically conductive film is the area
  • the conductive film formed in the region (A) and the conductive film formed in the region (B) are electrically separated from each other, By selecting whether to flow, it is possible to switch between active species such as ions and plasma, and ozone, which are predominantly generated.
  • the present inventor changed the ratio of the region (A) and the region (B) using three types of electrodes having different through-hole arrangements, and caused plasma discharge under the following conditions to obtain the number of ions and Changes in ozone concentration were investigated.
  • Applied voltage 700V
  • Pulse width 5 ⁇ s
  • Frequency 1 kHz
  • Blower A fan is installed so that the wind speed of 2 m / s passes through the through hole of the electrode.
  • -Ion number measurement measured at a distance of 100 mm from the electrode with an air ion meter.
  • Ozone concentration measurement Measured by setting the sampling tube of the ozone concentration meter at a distance of 10 mm from the electrode.
  • the dielectric film should be formed only on and near the conductive film. preferable.
  • the surface roughness (Rz) of the dielectric layer is preferably 1 to 100 ⁇ m.
  • the insulating substrate is formed of a material containing at least one compound selected from the group consisting of CaO, Al 2 O 3 , SiO 2 , B 2 O 3 , ZrO 2 , and TiO 2. It is preferable that
  • the dielectric film is formed of a material containing at least one element selected from the group consisting of Ba, Ti, Ca, Zr, Sr, Y, and Mg as its constituent elements. Is preferred. Furthermore, as such a material, a material containing at least one compound selected from the group consisting of oxides, carbides, nitrides, and borides is suitably used.
  • the conductive film is formed of a material containing at least one element selected from the group consisting of Ag, Au, Cu, Ni, Pt, Pd, Ru, and Ir as its constituent elements. It is preferable.
  • dielectric film forming means examples include green sheet, screen printing, gravure printing, inkjet, dispenser, physical vapor deposition and the like.
  • Examples of the means for forming the insulating substrate include a green sheet and press molding.
  • Examples of means for forming the conductive film include screen printing, gravure printing, inkjet, dispenser, physical vapor deposition, and the like.
  • the manufacturing method of the plasma generator according to the present invention is also one aspect of the present invention.
  • the manufacturing method includes a step of applying a conductive paste on the insulating substrate to form a predetermined conductive pattern, a step of overlapping a material for forming the dielectric film on the conductive pattern, And forming the electrode by simultaneously heating and baking the insulating substrate, the conductive pattern, and the material of the dielectric film.
  • electrodes having various shapes and structures can be manufactured, so that the degree of freedom in selecting the shape and structure of the electrodes according to the application is increased.
  • the function of deodorizing with ions and radicals by increasing the amount of ions and radicals generated while suppressing the generation of ozone, and releasing the ions and radicals outside the apparatus. It can fully exhibit the function of sterilizing floating bacteria and adherent bacteria.
  • the perspective view which shows 1st Embodiment of the plasma generator of this invention The schematic diagram which shows the effect
  • the top view which shows the electrode part in 1st Embodiment.
  • Sectional drawing which shows the electrode part and explosion-proof mechanism in 1st Embodiment.
  • the expanded sectional view which shows the structure of the opposing surface of the electrode part in 1st Embodiment.
  • the partial expanded sectional view which shows typically the fluid circulation hole and through-hole in 1st Embodiment.
  • the expanded sectional view which shows typically the opening edge part which forms the fluid circulation hole in 1st Embodiment.
  • the perspective view which shows typically the opening edge part which forms the fluid circulation hole in 1st Embodiment.
  • FIG 3 is an enlarged cross-sectional view schematically illustrating an opening end portion that forms a through hole in the first embodiment.
  • the figure which shows the pulse width dependence of the ion number density and ozone concentration in 1st Embodiment.
  • the partial expanded sectional view which shows typically the fluid circulation hole and through-hole in 2nd Embodiment.
  • the expanded sectional view which shows typically the opening edge part which forms the fluid circulation hole in 2nd Embodiment.
  • the top view which shows typically the position which provided the plasma generation
  • transformation embodiment The partial expanded sectional view which shows typically the fluid circulation hole and through-hole of deformation
  • transformation embodiment The top view which shows typically the position which provided the plasma generation
  • the plasma generator 100 is used for home appliances such as a refrigerator, a washing machine, a clothes dryer, a vacuum cleaner, an air conditioner, or an air cleaner, and the inside or outside of the home appliance. It is intended to sterilize airborne odors and adhering bacteria inside or outside of these products.
  • the plasma electrode unit 2 for generating ions and radicals by microgap plasma (Micro-Gap-Plasma) and the outside of the plasma electrode unit 2 are provided.
  • an explosion-proof mechanism 4 that is provided outside the plasma electrode unit 2 and prevents a flame generated in the plasma electrode unit 2 from propagating to the outside.
  • a power source 5 for applying a high voltage to the electrode unit 2.
  • the plasma electrode unit 2 has a pair of electrodes 21 and 22 having dielectric films 21 a and 22 a provided on opposite surfaces, and a predetermined voltage is applied between the electrodes 21 and 22.
  • Plasma discharge As shown in FIG. 3 in particular, each of the electrodes 21 and 22 has a substantially rectangular shape in plan view (when viewed from the face plate direction of the electrodes 21 and 22), and is made of stainless steel such as SUS403, for example. Yes.
  • the application terminal 2T to which the voltage from the power supply 5 is applied is formed in the edge part of the electrodes 21 and 22 of the electrode part 2 (refer FIG. 3).
  • the voltage application method to the plasma electrode unit 2 by the power source 5 is such that the voltage applied to each of the electrodes 21 and 22 has a pulse shape, the peak value is in the range of 100 V to 5000 V, and the pulse width is 0.1 ⁇ m. It is within the range of not less than seconds and not more than 300 ⁇ sec.
  • the pulse width is 300 ⁇ sec or less, the ion number density is measured, and the ozone concentration is decreased.
  • the pulse width is decreased, the ion number is increased and the ozone concentration is decreased.
  • the amount of ozone generated is suppressed, and the active species generated in the plasma can be efficiently released without losing it with a filter or the like that is often found in the prior art. Can be realized in a short time.
  • dielectric films 21a and 22a are formed on the opposing surfaces of the electrodes 21 and 22 by applying a dielectric such as barium titanate.
  • the surface roughness (calculated average roughness Ra in the present embodiment) of the dielectric films 21a and 22a is not less than 0.1 ⁇ m and not more than 100 ⁇ m.
  • Other surface roughness may be defined using the maximum height Ry and the ten-point average roughness Rz.
  • the surface roughness of the dielectric films 21a and 22a can be controlled by a thin film forming method such as a thermal spraying method.
  • Dielectrics applied to the electrodes include aluminum oxide, titanium oxide, magnesium oxide, strontium titanate, silicon oxide, silver phosphate, lead zirconate titanate, silicon carbide, indium oxide, cadmium oxide, bismuth oxide, and zinc oxide. Iron oxide, carbon nanotubes, etc. may be used.
  • fluid flow holes 21b and 22b are provided in corresponding portions of the electrodes 21 and 22, respectively, so that they communicate with each other.
  • each of the fluid circulation holes 21b and 22b has a substantially circular shape when viewed from the face plate direction (in plan view), and corresponds to the electrodes 21 and 22.
  • the fluid through-holes 21b and 22b are formed so that the contours match.
  • the opening size (opening diameter) of the fluid circulation hole 21b formed in one electrode 21 is smaller than the opening size (opening diameter) of the fluid circulation hole 22b formed in the other electrode 22 (for example, It is conceivable that the opening diameter is 10 ⁇ m or smaller).
  • the plasma electrode portion 2 of the present embodiment is provided with a through hole 21c in one electrode 21 separately from the fluid circulation holes 21b and 22b, and this through hole 21c is the other.
  • the electrode 22 is configured to close the opening on the opposite surface side.
  • the blower mechanism 3 is disposed on the other electrode 22 side of the plasma electrode unit 2 and forcibly sends air toward the fluid circulation holes 21b and 22b (completely open portions) formed in the plasma electrode unit 2. It has a blower fan. Specifically, in this blower mechanism 3, the flow velocity of the wind passing through the fluid circulation holes 21b and 22b is set in the range of 0.1 m / s to 30 m / s.
  • the explosion-proof mechanism 4 has a protective cover 41 disposed outside the pair of electrodes 21, 22, and a flame generated by plasma when combustible gas flows into the fluid circulation holes 21 b, 22 b. However, it is configured not to propagate outside the protective cover 41.
  • the explosion-proof mechanism 4 has a protective cover 41 having a metal mesh 411 disposed outside the pair of electrodes 21 and 22, and the wire diameter of the metal mesh 411 is within a range of 1.5 mm or less. And the aperture ratio of the metal mesh 411 is 30% or more.
  • the plasma generating apparatus 100 of the present embodiment is opposed to the opening end 21x, 22x that forms the fluid circulation holes 21b, 22b and the opening end 21y that forms the through hole 21c between the pair of electrodes 21, 22.
  • the plasma is generated only in the portion where the heat is applied.
  • the open end portions 21x, 22x, and 21y are regions in which the generation of ozone is inferior to the generation of ions and radicals, and is, for example, in the range of about several tens of ⁇ m to about 1 mm from the open end.
  • the opposing distance L2 of the dielectric film 22a facing the opening end 21y are configured to be smaller than the opposing distance L3 of the portion other than the opening end.
  • the film thickness t2 of the dielectric film 21a at the opening end 21y that forms the hole 21c is made thicker than the film thickness t3 of the dielectric films 21a and 22a at portions other than the opening end on the facing surface.
  • the difference between the film thickness t1 of the dielectric films 21a and 22a at the opening end portions 21x and 22x and the film thickness t3 of the dielectric films 21a and 22a other than the opening end portions is 10 ⁇ m or more and 500 ⁇ m or less. .
  • the difference between the film thickness t2 of the dielectric film 21a at the opening end 21y that forms the through hole 21c on the opposing surface and the film thickness t3 of the dielectric film 21a at the portion other than the opening end is also 10 ⁇ m or more. 500 ⁇ m or less.
  • the difference in film thickness means an average film thickness considering the surface roughness.
  • the dielectric film is formed annularly over the entire circumference of the opening end portions 21x and 22x forming the fluid circulation holes 21b and 22b and the opening end portion 21y forming the through hole 21c.
  • the film thicknesses t1 and t2 of 21a and 22a are thicker than the film thickness t3 of the dielectric films 21a and 22a other than the opening end portions.
  • the pair of electrodes 21 and 22 configured as described above are overlapped so that the dielectric films 21a and 22a face each other, whereby the dielectric film 21a of the opening end portion 21x that forms the fluid flow hole 21b. And the dielectric film 22a of the open end 22x that forms the fluid circulation hole 22b are in contact with each other. At this time, a gap is formed between them by unevenness due to the surface roughness of the dielectric films 21a and 22a, and plasma is generated in the gap. 6 and 7 show the dielectric films 21a and 22a separated for convenience.
  • the facing distance between the facing dielectric films 21a and 22a is the distance at which plasma discharge does not occur. Therefore, plasma is not generated in portions other than the opening end portions.
  • the plasma is generated only at the opening end portion that forms the fluid circulation holes 21b and 22b between the pair of electrodes 21 and 22. Therefore, plasma can be generated only at the opening end portion to generate ions and radicals predominantly, and plasma is not generated at portions other than the opening end portion where ozone is generated predominantly. As a result, the amount of ions and radicals generated can be increased while suppressing the generation of ozone, the function of deodorizing the ions and radicals, and the ions and radicals released to the outside of the device to adhere to floating bacteria The function of sterilizing bacteria can be fully exhibited.
  • the contact area between the fluid flowing through the fluid circulation holes 21b and 22b and the plasma can be increased as much as possible. it can. Also by this, the production amount of ions and radicals can be increased.
  • the plasma generator 100 of the present embodiment forms opening end portions 21x and 22x that form fluid flow holes 21b and 22b in the pair of electrodes 21 and 22, and a through hole 21c.
  • a plasma generation preventing member 6 for preventing the generation of plasma is provided at a portion other than the opening end portion 21y.
  • the plasma generation preventing member 6 has a range of 0 ⁇ m to 500 ⁇ m between the pair of electrodes 21 and 22 from the opening end forming the fluid circulation holes 21b and 22b and the opening end forming the through hole 21c. It is provided outside.
  • the open end portions 21x, 21y, and 22x are regions from 0 ⁇ m to 500 ⁇ m from the open end that forms the fluid circulation holes 21b and 22b and the open end that forms the through hole 21c. In this region, ozone production is inferior to ions and radicals.
  • the plasma generation preventing member 6 is provided between the pair of electrodes 21 and 22 in the entire portion other than the opening end portions 21x, 21y, and 22x.
  • the entire portion other than the opening end portions 21x, 21y, and 22x is filled with the plasma generation preventing member between the pair of electrodes 21 and 22. Thereby, plasma is not generated in portions other than the opening end portions 21x, 21y, and 22x.
  • the plasma generation preventing member 6 is most preferably a low dielectric material having a relative dielectric constant of 10 or less, and is formed of a dielectric material having a relative dielectric constant of 30 or less.
  • the low dielectric material include alumina film, urethane, ABS resin, natural rubber, nylon, ethylene resin, vinyl chloride resin, urea resin, butyl rubber, silicon rubber, and quartz. This low dielectric material is provided in close contact with the dielectric films 21a and 22a provided on the opposing surfaces of the electrodes 21 and 22 with almost no gap.
  • the plasma generation preventing member 6 is made of a low dielectric material having adhesiveness, or by mixing an adhesive component with a relative dielectric material to form a low dielectric material having adhesiveness.
  • the pair of electrodes 21 and 22 can be bonded.
  • epoxy resin, phenol resin, fluororesin, polyester resin, silicon, vinyl acetate resin, methacrylic resin and the like for example, epoxy resin, phenol resin, fluororesin, polyester resin, silicon, vinyl acetate resin, methacrylic resin and the like.
  • another fixing member for fixing the pair of electrodes 21 and 22 in a state of facing each other can be made unnecessary.
  • the plasma generation preventing member 6 When the plasma generation preventing member 6 is made of a low dielectric material having no adhesiveness, the plasma generation preventing member 6 may be fixed by being sandwiched between the pair of electrodes 21 and 22. As another method of providing the plasma generation preventing member 6 between the pair of electrodes 21 and 22, a low dielectric material is applied on the dielectric films 21a and 22a of the electrodes 21 and 22 separated from each other, and then the pair of electrodes It is conceivable that 21 and 22 are overlapped so that the dielectric films 21a and 22a face each other.
  • the plasma generation preventing member 6 is provided in portions other than the opening end portions 21x, 21y, and 22b that form the fluid circulation holes 21b and 22b and the through holes 21c. Therefore, it is possible to reduce plasma generated at portions other than the opening end portions 21x, 21y, and 22b while generating plasma at the opening end portions 21x, 21y, and 22b. As a result, the amount of ions and radicals generated can be increased while suppressing the generation of ozone, the function of deodorizing the ions and radicals, and the ions and radicals released to the outside of the device to adhere to floating bacteria The function of sterilizing bacteria can be fully exhibited.
  • the plasma generator 100 is provided with conductive films 21 g and 22 g in regions where plasma discharge is performed on the opposing surfaces of the ceramic substrates 21 f and 22 f, and further includes the conductive films 21 g and 22 g. It has a pair of electrodes 21 and 22 provided with dielectric films 21a and 22a thereon.
  • the application part 2T to which a voltage is applied is formed at the edge of each electrode 21 and 22.
  • the electrodes 21 and 22 are provided with fluid circulation holes 21b and 22b at corresponding locations, respectively, and are configured to communicate with each other as a whole.
  • the ceramic substrates 21f and 22f for example, those made of CaO, Al 2 O 3 , SiO 2 , B 2 O 3 , ZrO 2 , TiO 2 or the like are used.
  • the ceramic substrates 21f and 22f made of such a material can be formed by a technique using, for example, a green sheet or press molding.
  • the conductive films 21g and 22g are made of, for example, a material containing Ag, Au, Cu, Ni, Pt, Pd, Ru, Ir, or the like as a constituent element, such as screen printing, gravure printing, inkjet, dispenser, physical vapor deposition, or the like. By the method, it forms in the opposing surface of ceramic substrate 21f, 22f.
  • a conductive paste containing the various elements described above is prepared, and this is applied onto the ceramic substrates 21f and 22f by a method such as screen printing, gravure printing, ink jetting, or dispenser to form a predetermined conductive pattern. Is preferred.
  • the conductive films 21g and 22g are annular conductive films 21g1 and 22g1 provided at the open ends 21x and 22x of the fluid circulation holes 21b and 22b, and linear conductive films 21g2 that electrically connect the annular conductive films 21g1 and 22g1. , 22g2, and these form a network.
  • the annular conductive films 21g1 and 22g1 are formed in a region within 1 mm, preferably within a region within 0.5 mm, from the peripheral edges of the fluid circulation holes 21b and 22b. Moreover, it is preferable that the width
  • dielectric films 21a and 22a examples include those formed of a material containing Ba, Ti, Ca, Zr, Sr, Y, Mg, or the like as its constituent elements.
  • examples of such materials include oxides, carbides, nitrides, borides, and the like.
  • a green sheet, screen printing, gravure printing, inkjet, dispenser, physical vapor deposition, or the like is used for 21a and 22a. Formed by law. Dielectric film 21a formed by these techniques, 22a is less likely to porous.
  • the dielectric films 21a and 22a preferably have a surface roughness (calculated average roughness Ra) of 5 to 50 ⁇ m. If the surface roughness of the dielectric films 21a and 22a is within this range, a gap is formed between the opposing surfaces of the electrodes 21 and 22 only by overlapping the electrodes, and plasma is generated in the gap. This eliminates the need for a spacer for forming a plasma forming gap between the electrodes 21 and 22.
  • Such electrodes 21 and 22 can be manufactured through the following steps, for example. (1) First, a conductive paste is applied on the ceramic substrates 21f and 22f to form a predetermined conductive pattern. (2) Next, the materials of the dielectric films 21a and 22a are overlaid on the conductive pattern. (3) The electrodes 21 and 22 are formed by simultaneously heating and firing the ceramic substrates 21f and 22f and the conductive pattern and the materials of the dielectric films 21a and 22a.
  • More specific electrode fabrication methods include, for example, (A) a low temperature co-fired ceramic (LTC) method and (B) a press substrate / printing method.
  • LTC low temperature co-fired ceramic
  • an electrode is produced by the following procedure. (1) An appropriate binder, a sintering aid, a plasticizer, a dispersant, an organic solvent, and the like are blended with the ceramic powder to prepare a slurry for a green sheet for a ceramic substrate. (2) The obtained slurry is formed to a predetermined thickness by a doctor blade method, a printing method or the like and dried to produce a green sheet for a ceramic substrate. (3) Conductive paste is screen-printed in a predetermined pattern on the obtained green sheet for a ceramic substrate to form a conductive pattern and dried. A commercially available paste (for example, DD-1141A manufactured by Kyoto Elex Co.) may be used as the conductive paste.
  • a commercially available paste for example, DD-1141A manufactured by Kyoto Elex Co.
  • the dielectric powder is mixed with an appropriate binder, sintering aid, plasticizer, dispersant, organic solvent, etc. to prepare a slurry for a dielectric film green sheet.
  • the obtained slurry is formed into a predetermined thickness and shape by a doctor blade method, a printing method or the like to produce a dielectric sheet green sheet.
  • the dielectric film green sheet obtained in (5) is stacked on the ceramic substrate green sheet on which the conductive pattern obtained in (3) is formed, and is adhered by pressing, a calender roll, or the like.
  • an electrode is produced by the following procedure.
  • Ceramic substrates 21f and 22f are manufactured by putting ceramic powder into a mold of a predetermined size and pressing it.
  • the obtained ceramic substrates 21f and 22f are punched at predetermined positions by a laser, a press, or the like, and cut into element sizes.
  • a conductive pattern is formed on the cut ceramic substrates 21f and 22f by screen printing or the like in a predetermined pattern, and dried.
  • the dielectric powder and the binder are mixed and dispersed with a three-roll, and then diluted to a viscosity that allows easy printing with a solvent or the like to prepare a dielectric paste.
  • the dielectric paste obtained in (4) is printed on the predetermined portions of the ceramic substrates 21f and 22f on which the conductive pattern obtained in (3) is formed, and the dielectric films 21a and 22a are printed. After forming, it is fired.
  • the plasma generating apparatus 100 generates plasma in a region where the conductive films 21g and 22g are formed in a gap between two opposing electrodes 21 and 22, and blows a mechanism to the fluid circulation holes 21b and 22b.
  • the wind is sent by 3 and deodorization is performed in the vicinity of the electrodes 21, 22, and active species generated in the plasma are released into the closed space to sterilize the attached bacteria.
  • ⁇ Effect of the third embodiment> According to the plasma generating apparatus 100 according to the present embodiment configured in this way, active species such as ions and radicals are selectively generated by performing plasma discharge selectively at the open end portions 21x and 22x of the fluid circulation holes 21b and 22b. The amount of ozone generated can be reduced by generating it predominantly.
  • the ceramic substrates 21f and 22f for electrodes are produced from the ceramic powder, so that the electrodes can be formed into various shapes, and the degree of freedom in electrode design according to the application. Can be secured.
  • the electrodes 21 and 22 can be produced by a single baking process, so that the electrodes can be produced more easily and with fewer processes, and the manufacturing cost is reduced. be able to.
  • plasma is generated only at the opening end by controlling the film thickness of the dielectric films 21a and 22a.
  • the annular protrusions 21p and 22p may be integrally provided on the opening end portions 21x, 21y, and 22x on the 22 opposing surfaces.
  • the opposing distance L1 of the opening end portions 21x and 22x forming the fluid flow holes 21b and 22b facing each other, and the through hole 21c are formed.
  • the opening end 21y to be formed and the facing distance L2 of the dielectric film 22a facing the opening end 21y can be configured to be smaller than the facing distance L3 of the portion other than the opening end.
  • annular ring members 21r and 22r are provided at the open end portions 21x, 21y and 22x on the opposing surfaces of the electrodes 21 and 22, and the dielectric film 21a is provided on the opposing surfaces of the electrodes 21 and 22. , 22a may be provided. If it is this, processing cost can be reduced compared with the case where an electrode is cut etc. and a protrusion part is provided integrally.
  • the plasma generation preventing member 6 may be provided not only on the entire portion other than the opening end but also partially on the portion other than the opening end as shown in FIG. Also by this, plasma generated in a portion other than the opening end can be reduced, and as a result, the amount of ozone generated can be reduced.
  • the plasma generation preventing member 6 is formed in an annular shape so as to cover the periphery of the opening end portions 21x and 22x of the fluid circulation holes 21b and 22b and the opening end portion 21y of the through hole 21c. May be.
  • the annular plasma generation preventing member 6 formed so as to cover the periphery of the open end portions 21x, 21y, and 22x releases ozone generated inside the electrodes from the fluid circulation holes 21b and 22b and the through holes 21c. It also has a function to prevent this. If it is this, the usage-amount of the low dielectric material which comprises the plasma generation
  • the conductive films 21g and 22g may be formed in a planar shape in a region separated by more than 1 mm from the opening periphery of the fluid circulation holes 21b and 22b.
  • ozone having a longer lifetime can be generated predominantly compared to active species such as ions and radicals.
  • the plasma generator 100 according to the present embodiment has a high odor concentration, a high concentration of airborne bacteria or adherent bacteria, or a case where the device is used in a space where humans or pets are not nearby. Suitable for
  • the conductive films 21g and 22g electrically connect the annular conductive films 21g1 and 22g1 formed at the open ends 21x and 22x of the fluid circulation holes 21b and 22b, and the annular conductive films 21g1 and 22g1, respectively.
  • the linear conductive films 21g2 and 22g2 that communicate with each other and the planar conductive films 21g3 and 22g3 formed in a planar shape in the region excluding the peripheral edge of the fluid circulation holes 21b and 22b may be used. .
  • the network composed of the annular conductive films 21g1 and 22g1 and the linear conductive films 21g2 and 22g2 and the planar conductive films 21g3 and 22g3 are electrically separated.
  • ozone When a voltage is applied to the network composed of the membranes 21g2 and 22g2 to generate active species such as ions and radicals predominantly, when the odor concentration is high, or when floating bacteria or adherent bacteria are present at a high concentration Or, when it is used in a space where humans or pets are not nearby, ozone can be generated predominantly.
  • the dielectric films 21a and 22a do not have to be formed on the entire surface of the opposing surfaces of the ceramic substrates 21f and 22f, and may be formed only on the conductive films 21g and 22g.
  • the generation region of active species such as ions and radicals and ozone can be controlled with higher accuracy. This is effective when it is desired to suppress the generation and generate predominantly active species such as ions and radicals. Further, by limiting the formation regions of the dielectric films 21a and 22a in this way, the manufacturing cost can be suppressed.
  • the thickness of the dielectric film is made thicker than the thickness of the dielectric film in the other portions over the entire periphery of the opening end portion.
  • the film thickness of the body film may be larger than the film thickness of the other dielectric film.
  • the coating film is provided on the dielectric film of each electrode.
  • the coating film is provided on any one of the dielectric films, there is an effect.
  • the plurality of fluid circulation holes 21b of the electrode 21 have the same shape, and the plurality of fluid circulation holes 22b of the electrode 22 have the same shape, but each has a different shape. May be.
  • the through hole is formed in either the one electrode 21 or the other electrode 22, but a through hole (half opening) may be formed in both.
  • the fluid circulation hole has an equal cross-sectional shape, but in addition, the fluid circulation hole formed in each electrode has a tapered surface, a mortar shape or a bowl shape, that is, The diameter may be reduced or increased from one opening to the other opening.
  • the fluid flow hole may be elliptical, rectangular, linear slit, concentric slit, corrugated slit, crescent, comb, honeycomb, or star, in addition to a circular shape. .
  • the plasma generator of the present invention while suppressing the generation of ozone, the function of deodorizing with ions and radicals by increasing the amount of ions and radicals generated, and the ions and radicals outside the device. It can be fully exerted with the function of releasing and sterilizing floating bacteria and adherent bacteria.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

 本発明は、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させて、脱臭機能及び殺菌機能を十分に発揮できるようにするものであり、誘電体膜21a、22aを設けた一対の電極21、22を有し、それら電極21、22間に所定電圧が印加されてプラズマ放電するものにおいて、各電極21、22の対応する箇所にそれぞれ流体流通孔21b、22bを設けてこれらが貫通するように構成されており、前記一対の電極21、22間において前記流体流通孔21b、22bを形成する開口端部21x、22xのみにプラズマが発生するように構成している。

Description

プラズマ発生装置
 本発明は、プラズマ発生装置及びプラズマ発生方法に関するものである。
 近年のアトピー、ぜんそく、アレルギー症状保有者の増大や新型インフルエンザの爆発流行などにみられる感染性のリスク増大などによって、殺菌や脱臭など生活環境の空気質制御ニーズが高まっている。また生活が豊かになるにつれて、保管食品の量の増大や食べ残し食品の保管機会が増加しており、冷蔵庫に代表される保管機器内の環境制御も重要性を増している。
 生活環境の空気質制御を目的とする従来技術は、フィルターに代表されるような物理的制御が一般的である。物理的制御は、空気中に浮遊する比較的大きな埃や塵、フィルター孔の大きさによっては、細菌やウィルスなども捕獲できる。また、活性炭のように無数の吸着サイトがある場合は、悪臭の臭気分子も捕獲可能である。しかし、捕獲するためには制御対象の空間内の空気を満遍なくフィルターに通す必要があり、装置が大型化し、フィルター交換等の維持コストもかさむという難点があるうえに、付着物に対しては効果が無い。そこで、付着物に対し殺菌や脱臭を可能とする手段として、化学的活性種を殺菌や脱臭を行いたい空間に放出することがあげられる。薬品の散布や芳香剤、消臭剤の放出では、あらかじめ活性種を用意する必要があり、定期的な補充が不可欠である。それに対し、大気中にプラズマを発生させそこで生成される化学的活性種を利用し、殺菌や脱臭を試みる手段が近年増えてきている。
 大気中にプラズマを放電により発生させ、そこで生成されたイオンやラジカルによって殺菌や脱臭を行う技術は、次の2つの形式に分類できる。
(1)大気中に浮遊する菌やウィルス(以下、浮遊菌)、もしくは悪臭物質(以下、臭気)を装置内の限られた容積内でイオンやラジカルと反応させる、いわゆる受動型のプラズマ発生装置(例えば、特許文献1)
(2)プラズマ発生部で生成されたイオンやラジカルを(1)よりも容積の大きな閉空間(例えば、居室、トイレ、乗用車の車内等)へ放出し、大気中でのイオンやラジカルと浮遊菌や臭気との衝突により反応させる、いわゆる能動型のプラズマ発生装置(例えば、特許文献2)
 (1)の受動型のプラズマ発生装置の利点は、小容積内でプラズマを発生させて高濃度のイオンやラジカルが生成されるため、高い殺菌効果及び脱臭効果が期待される。一方、欠点としては浮遊菌や臭気を装置内に導入する必要があるため、装置が大型化し、またプラズマ発生から副生成物としてオゾンが発生しやすく、オゾンを装置外に漏洩させないために、吸着もしくは分解するフィルターを別途設置する必要がある。
 次に、(2)の能動型のプラズマ発生装置の利点は、装置を比較的小さくでき、浮遊菌の殺菌や空気中の臭気の分解に加え、衣類や生活用品の表面に付着した菌(以下、付着菌)の殺菌や表面に吸着した臭気の分解も期待できる点である。一方、欠点としては、イオンやラジカルが装置の体積に比べて非常に大きな閉空間内に拡散されることから濃度が低くなるため、寿命の長い活性種のみに殺菌や脱臭の効果を期待せざるを得ない点である。その結果、臭気濃度の高い空間(活性種濃度に対して1万倍程度高い濃度)においてはほとんど脱臭効果が期待できないことになる。
 以上のことから、受動型のプラズマ発生装置では、当該装置に流入する空気流に含まれる浮遊菌や臭気に対してのみ効果が限定され、能動型のプラズマ発生装置では濃度の低い浮遊菌、付着菌、臭気に対しての効果しか期待できない。即ち、従来技術を利用し実現できることは、「浮遊菌の殺菌と脱臭」、あるいは「濃度の低い浮遊菌、付着菌の殺菌および付着臭気の脱臭」のどちらかに限定されることになる。
 ところが、日常生活環境内で高濃度の付着菌の殺菌と高濃度臭気の脱臭を同時に行いたい状況がいくつかある。最も典型的な例は冷蔵庫の冷蔵室内であり、食品表面や保管容器等の表面に付着した菌が多く存在し、食品そのものや腐敗した食べ残し等から発生する臭気も同時に存在する。
特開2002-224211号公報 特開2003-79714号公報
 このようなことから本願発明者は、プラズマを発生させてイオンやラジカルにより脱臭する受動型の機能と、そのイオンやラジカルを放出して付着菌を殺菌する能動型の機能との二つを同時に兼ね備えさせるためにイオンやラジカルの生成量を増やすことを考えている。このため本願発明者は、対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、それら電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成したプラズマ発生装置の改良を行っている。
 本願発明者は、上記のプラズマ発生装置において、オゾンの発生を抑制するとともに、イオンやラジカルを高濃度化するために、電極に設けられる誘電体膜の材料、構造又は厚さ、或いは所定電圧をパルス電圧としてその電圧値又はパルス幅等を検討している。そして、本願発明者が上記プラズマ発生装置について更なる検討を行った結果、各電極における流体流通孔の開口端部でイオンやラジカルが優勢的に発生し、各電極における開口端部以外の部分でオゾンが優勢的に発生することを見出した。
 そこで本発明は、オゾンの発生を抑制しつつも、イオンやラジカルの生成量を増加させて、イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能と十分に発揮できることをその主たる所期課題とするものである。
 すなわち本発明に係るプラズマ発生装置は、対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、それら電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成されており、前記一対の電極間において前記流体流通孔を形成する開口端部のみにプラズマが発生するように構成されていることを特徴とする。なお、本明細書でいう対応する箇所とは、電極の面板方向から視て、双方の電極に形成された各流体流通孔が実質的に同じ位置にあり、互いに対向することをいい、直交座標系においてz軸方向よりxy平面状の一対の電極を見たときに、双方の電極において略同じ(x、y)の座標位置であることをいう。
 このようなものであれば、一対の電極間において前記流体流通孔を形成する開口端部のみにプラズマが発生するように構成されているので、開口端部でのみプラズマを発生させてイオンやラジカルを優勢的に生成することができるとともに、オゾンが優勢的に生成される開口端部以外の部分ではプラズマが発生しない。これにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。なお、前記一対の電極のうち少なくとも一方に誘電体膜を設けていることにより、各電極21、22間にプラズマ形成用の空隙を形成するためのスペーサを不要としながらも、対向面間に空隙が形成することができる。
 流体流通孔の開口端部のみでプラズマを発生させるための具体的な実施の態様としては、前記一対の電極において前記流体流通孔を形成する開口端部の対向距離が、前記開口端部以外の部分の対向距離よりも小さくなるように構成されており、前記一対の電極間に所定電圧を印加した場合に、前記流体流通孔を形成する開口端部のみでプラズマ放電することが望ましい。これならば、一対の電極において流体流通孔を形成する開口端部の対向距離と開口端部以外の部分の対向距離とを調節するだけで、流体流通孔を形成する開口端部のみにプラズマを発生させることができる。
 流体流通孔を形成する開口端部の対向距離を、開口端部以外の部分の対向距離よりも小さくするためには、前記流体流通孔を形成する開口端部に形成された誘電体膜の膜厚が、前記開口端部以外の部分に形成された誘電体膜の膜厚よりも厚いことが望ましい。これならば誘電体膜の膜厚を調節するだけで、流体流通孔を形成する開口端部のみにプラズマを発生させることができる。
 流体流通孔の開口全周に亘ってプラズマを発生させるためには、前記開口端部の全周に形成された誘電体膜の膜厚が、前記開口端部以外の部分に形成された誘電体膜の膜厚よりも厚いことが望ましい。
 具体的には、前記開口端部に形成された誘電体膜の膜厚と前記開口端部以外の部分に形成された誘電体膜の膜厚との差が、1μm以上500μm以下であることが望ましい。
 また、前記各電極の前記流体流通孔を形成する開口端部以外の部分に、プラズマの発生を防止するプラズマ発生防止部材が設けられていることが望ましい。なお、本明細書でいう対応する箇所とは、電極の面板方向から視て、双方の電極に形成された各流体流通孔が実質的に同じ位置にあり、互いに対向することをいい、直交座標系においてz軸方向よりxy平面状の一対の電極を見たときに、双方の電極において略同じ(x、y)の座標位置であることをいう。
 このようなものであれば、流体流通孔を形成する開口端部以外の部分にプラズマ発生防止部材を設けているので、開口端部でプラズマを発生させながらも、開口端部以外の部分で発生するプラズマを低減することができる。開口端部のプラズマではイオンやラジカルを優勢的に生成され、開口端部以外の部分のプラズマではオゾンが優勢的に生成されることから、上記構成とすることにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。なお、前記一対の電極のうち少なくとも一方に誘電体膜を設けていることにより、各電極間にプラズマ形成用の空隙を形成するためのスペーサを不要としながらも、対向面間に空隙が形成することができる。
 プラズマ発生防止部材を流体流通孔の開口端から離し過ぎるとオゾンが優勢的に生成されるようになる。このため、前記プラズマ発生防止部材が、前記流体流通孔を形成する開口端から0μm~500μmの範囲外に設けられていることが望ましい。
 開口端部以外の部分でプラズマを発生しないようにするとともに、開口端部のみでプラズマを発生させることで、オゾンの生成を可及的に抑制するためには、前記プラズマ発生防止部材が、前記一対の電極間において前記開口端部以外の部分全体に設けられていることが望ましい。
 一対の電極間の絶縁性を保つためには、前記プラズマ発生防止部材が、比誘電率が30以下の低誘電材料から形成されていることが望ましい。
 プラズマ発生防止部材と各電極の対向面又は誘電体膜との間に隙間があるとその隙間でプラズマが発生する恐れがある。このため、前記プラズマ発生防止部材が、各電極の対向面又は誘電体膜に密着していることが望ましい。
 一対の電極を互いに対向した状態で固定するための別の固定部材を不要としてプラズマ発生装置の構成を簡略化するためには、前記一対の電極が、前記プラズマ発生防止部材により接着されていることが望ましい。
 プラズマ発生防止部材の固定を簡単化するためには、前記プラズマ発生防止部材が、前記一対の電極に挟まれて固定されていることが望ましい。なお、この場合は、一対の電極を互いに対向した状態で固定するための固定部材が必要となる。
 流体が効率的に流体流通孔を通過するようにしてイオンやラジカルの発生を促進すると共に、脱臭効果を増大させるためには、前記流体流通孔の上流側又は下流側に送風機構を設け、当該送風機構により前記流体流通孔に風が流れるように構成されていることが望ましい。ここで、前記送風機構により前記流体流通孔を通過させる風の流速を0.1m/s以上10m/s以下の範囲内としていることが望ましい。
 前記誘電体膜を溶射法によって形成することにより、誘電体膜の膜厚を制御し易くすることができる。
 流体流通孔を形成する開口端部におけるプラズマにおいて、イオンやラジカルの活性種の生成量を増大させながらもオゾン発生量を抑制するためには、前記各電極に印加する電圧をパルス形状とし、そのピーク値を100V以上5000V以下の範囲内とし、且つパルス幅を0.1μ秒以上かつ300μ秒以下の範囲内としていることが望ましい。
 また付着菌の殺菌と脱臭の両方を同時に実現するための別の本発明に係るプラズマ発生装置は、対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成するとともに、前記流体流通孔とは別に、一方の電極に貫通孔を設けてこの貫通孔が他方の電極によってその対向面側の開口が塞がれるように構成しており、前記流体流通孔を形成する開口端部に形成された誘電体膜の膜厚及び前記貫通孔を形成する開口端部に形成された誘電体膜の膜厚が、それら開口端部以外の部分に形成された誘電体膜の膜厚よりも厚いことを特徴とする。
 このようなものであれば、流体流通孔を通過した流体を、貫通孔を介してプラズマにさらに接触させることができ、或いは、流体流通孔を通過する前の流体を、貫通孔を介してプラズマに予め接触させることができる。これにより、イオン及びラジカルの生成量を増加させることができる。このとき、流体流通孔を形成する開口端部に形成された誘電体膜の膜厚及び貫通孔を形成する開口端部に形成された誘電体膜の膜厚が、それら開口端部以外の部分に形成された誘電体膜の膜厚よりも厚いので、それら開口端部でのみプラズマを発生させてイオンやラジカルを優勢的に生成することができるとともに、オゾンが優勢的に生成される開口端部以外の部分ではプラズマが発生しない。これにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。
 また付着菌の殺菌と脱臭の両方を同時に実現するための別の本発明に係るプラズマ発生装置は、対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成するとともに、前記流体流通孔とは別に、一方の電極に貫通孔を設けてこの貫通孔が他方の電極によってその対向面側の開口が塞がれるように構成されており、前記一対の電極間において流体流通孔を形成する開口端部、並びに、前記貫通孔を形成する開口端部及びこれに対向する部分以外の部分にプラズマ発生防止部材が設けられていることを特徴とする。
 このようなものであれば、流体流通孔を通過した流体を、貫通孔を介してプラズマにさらに接触させることができ、或いは、流体流通孔を通過する前の流体を、貫通孔を介してプラズマに予め接触させることができる。これにより、イオン及びラジカルの生成量を増加させることができる。このとき、一対の電極間において流体流通孔を形成する開口端部、並びに、前記貫通孔を形成する開口端部及びこれに対向する部分以外の部分にプラズマ発生防止部材が設けられているので、開口端部でプラズマを発生させながらも、開口端部以外の部分で発生するプラズマを低減することができる。開口端部のプラズマではイオンやラジカルを優勢的に生成され、開口端部以外の部分のプラズマではオゾンが優勢的に生成されることから、上記構成とすることにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。
 また付着菌の殺菌と脱臭の両方を同時に実現するための別の本発明に係るプラズマ発生装置は、対向する一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するプラズマ発生装置であって、各電極が、それぞれ、絶縁性基板と、前記絶縁性基板の対向面に形成された導電膜と、前記導電膜上に形成された誘電体膜とを有するとともに、前記各電極の対応する箇所にそれぞれ流体流通孔が設けられ、これらが貫通するように構成してあり、前記導電膜が、前記絶縁性基板の対向面のうちプラズマ放電する所定の領域に選択的に形成してあることを特徴とする。
 このようなものであれば、従来用いられている金属等からなる導電性基板に代えて、セラミック基板等の絶縁性基板を用い、プラズマ放電する領域を特定して当該領域に選択的に導電膜を形成することにより、プラズマ放電により発生する化学種を選択することができ、イオンやラジカル等の活性種を優勢に発生させたり、オゾンを優勢に発生させたりすることが可能となる。このため、本発明によれば、用途に応じて導電膜を形成する領域を変えて、イオンやラジカル等の活性種の発生とオゾンの発生とを制御して、安全性を確保しつつ殺菌及び脱臭効果を向上することができる。
 具体的には、イオンやプラズマ等の活性種を優勢に発生させたいときは、前記導電膜が、前記絶縁性基板の対向面のうち前記流体流通孔の開口周縁より1mm以内の領域(A)に形成されていることが好ましい。
 一方、オゾンを優勢に発生させたいときは、前記導電膜が、前記絶縁性基板の対向面のうち前記流体流通孔の開口周縁より1mmを超えて離れた領域(B)に形成されていることが好ましい。
 そして、前記導電膜が、前記絶縁性基板の対向面のうち、前記流体流通孔の開口周縁より1mm以内の領域(A)と前記流体流通孔の開口周縁より1mmを超えて離れた領域(B)とに形成されており、前記領域(A)に形成された導電膜と前記領域(B)に形成された導電膜とが電気的に分離している場合は、いずれの導電膜に電気を流すかを選択することにより、イオンやプラズマ等の活性種とオゾンとのいずれを優勢に発生させるかを相互に切り替えることができる。
 本発明者は、貫通孔の配置が異なる3種類の電極を用いて、前記領域(A)と前記領域(B)との割合を変えて、以下の条件下でプラズマ放電させて、イオン数及びオゾン濃度の変化を調べた。
・印加電圧:700V
・パルス幅:5μ秒
・周波数:1kHz
・送風:電極の貫通孔に風速2m/sの風が通るようにファンを設置。
・イオン数測定:空気イオン測定器にて、電極から100mmの距離で測定。
・オゾン濃度測定:オゾン濃度計のサンプリングチューブを、電極から10mmの距離に設置し測定。
 その結果、図22及び図23に示すように、印加する電圧、パルス幅、周波数を変化させても、領域(A)の割合が大きくなるほど(すなわち、領域(B)の割合が小さくなるほど)、イオン数が多くなり、オゾン濃度が小さくなる傾向が観察された。
 イオンやプラズマ等の活性種とオゾンとのいずれを優勢に発生させるかを高い精度で制御するためには、前記誘電体膜が、前記導電膜の上及びその近傍のみに形成されていることが好ましい。
 プラズマを発生させるための電極間の空隙を、スペーサを用いずに形成するためには、前記誘電体層の表面粗さ(Rz)が、1~100μmであることが好ましい。
 前記絶縁性基板は、CaO、Al、SiO、B、ZrO、及び、TiOからなる群より選択される少なくとも1種の化合物を含有する材料から形成されてなるものであることが好ましい。
 前記誘電体膜は、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、及び、Mgからなる群より選択される少なくとも1種の元素を含む材料から形成されてなるものであることが好ましい。更に、このような材料としては、酸化物、炭化物、窒化物、及び、ホウ化物からなる群より選択される少なくとも1種の化合物を含有するものが好適に用いられる。
 前記導電膜は、その構成元素として、Ag、Au、Cu、Ni、Pt、Pd、Ru、及び、Irからなる群より選択される少なくとも1種の元素を含む材料から形成されてなるものであることが好ましい。
 前記誘電体膜の形成手段としては、例えば、グリーンシート、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、物理蒸着等が挙げられる。
 前記絶縁性基板の形成手段としては、例えば、グリーンシート、プレス成形等が挙げられる。
 前記導電膜の形成手段としては、例えば、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、物理蒸着等が挙げられる。
 本発明に係るプラズマ発生装置の製造方法もまた、本発明の1つである。当該製造方法は、前記絶縁性基板上に導電性ペーストを塗布して所定の導電性パターンを形成する工程と、前記導電性パターン上に前記誘電体膜を形成するための材料を重ねる工程と、前記絶縁性基板と前記導電性パターン及び前記誘電体膜の材料とを同時に加温して焼成することにより前記電極を形成する工程と、を備えることを特徴とする。
 このようものであれば、従来の技術より、容易に、かつ、少ない工程で電極を作製することができるので、製造コストの低減を図ることができる。また、本発明によれば、多様な形状や構造の電極を作製することが可能となるため、用途に応じた電極の形状や構造の選択の自由度が増す。
 このように構成した本発明によれば、オゾンの発生を抑制しつつも、イオンやラジカルの生成量を増加させて、イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能と十分に発揮できる。
本発明のプラズマ発生装置の第1実施形態を示す斜視図。 第1実施形態におけるプラズマ発生装置の作用を示す模式図。 第1実施形態における電極部を示す平面図。 第1実施形態における電極部及び防爆機構を示す断面図。 第1実施形態における電極部の対向面の構成を示す拡大断面図。 第1実施形態における流体流通孔及び貫通孔を模式的に示す部分拡大断面図。 第1実施形態における流体流通孔を形成する開口端部を模式的に示す拡大断面図。 第1実施形態における流体流通孔を形成する開口端部を模式的に示す斜視図。 第1実施形態における貫通孔を形成する開口端部を模式的に拡大断面図。 第1実施形態におけるイオン数密度とオゾン濃度とのパルス幅依存性を示す図。 第2実施形態における流体流通孔及び貫通孔を模式的に示す部分拡大断面図。 第2実施形態における流体流通孔を形成する開口端部を模式的に示す拡大断面図。 第2実施形態におけるプラズマ発生防止部材を設けた位置を模式的に示す平面図。 第3実施形態における電極を対向面側から示した平面図である。 第3実施形態におけるプラズマ電極部のAA線断面図である。 変形実施形態の流体流通孔及び貫通孔を模式的に示す部分拡大断面図。 変形実施形態の流体流通孔及び貫通孔を模式的に示す部分拡大断面図。 変形実施形態のプラズマ発生防止部材を設けた位置を模式的に示す平面図。 変形実施形態のプラズマ発生防止部材を設けた位置を模式的に示す平面図。 変形実施形態における電極を対向面側から示した平面図である。 変形実施形態における電極を対向面側から示した平面図である。 貫通孔の配置が異なる3種類の電極にプラズマ放電させた際のイオン数を示すグラフである。 貫通孔の配置が異なる3種類の電極にプラズマ放電させた際のオゾン濃度を示すグラフである。
100・・・プラズマ発生装置
21・・・一方の電極
22・・・他方の電極
21a、22a・・・誘電体膜
21b、22b・・・流体流通孔
21x、22x・・・流体流通孔を形成する開口端部
21c・・・貫通孔
21y・・・貫通孔を形成する開口端部
L1・・・流体流通孔を形成する開口端部の対向距離
L3・・・開口端部以外の部分の対向距離
t1・・・開口端部の誘電体膜の膜厚
t3・・・開口端部以外の部分の誘電体膜の膜厚
3・・・送風機構
6・・・プラズマ発生防止部材
21f、22f・・・セラミック基板
21g、22g・・・導電膜
<1.第1実施形態>
 以下に本発明の一実施形態について図面を参照して説明する。
 本実施形態に係るプラズマ発生装置100は、例えば冷蔵庫、洗濯機、衣類乾燥機、掃除機、空調機又は空気清浄機等の家庭電化製品に用いられるものであり、当該家庭電化製品の内部又は外部の空気の脱臭やそれら製品内部又は外部の浮遊菌又は付着菌を殺菌するものである。
 具体的にこのものは、図1及び図2に示すように、マイクロギャッププラズマ(Micro Gap Plasma)によりイオンやラジカルを生成させるプラズマ電極部2と、当該プラズマ電極部2の外部に設けられて当該プラズマ電極部2に強制的に風(空気流)を送る送風機構3と、前記プラズマ電極部2の外部に設けられてプラズマ電極部2で生じる火炎が外部に伝播しないようにする防爆機構4、および電極部2に高電圧を印加するための電源5とを備えている。
 以下、各部2~5について各図を参照して説明する。
 プラズマ電極部2は、図2~図6に示すように、対向面に誘電体膜21a、22aを設けた一対の電極21、22を有し、それら電極21、22間に所定電圧が印加されてプラズマ放電するものである。各電極21、22は、特に図3に示すように、平面視において(電極21、22の面板方向から見たときに)概略矩形状をなすものであり、例えばSUS403といったステンレス鋼から形成されている。なお、電極部2の電極21、22の縁部には、電源5からの電圧が印加される印加端子2Tが形成されている(図3参照)。
 ここで電源5によるプラズマ電極部2への電圧印加方法は、各電極21、22に印加する電圧をパルス形状とし、そのピーク値を100V以上5000V以下の範囲内とし、且つパルス幅を0.1μ秒以上かつ300μ秒以下の範囲内としている。図10に示すように、パルス幅が300μ秒以下において、イオン数密度が測定され、かつオゾン濃度が低くなり、パルス幅が小さくなるに従って、イオン数は増加し、オゾン濃度は減少する。これにより、オゾン発生量を抑制し、プラズマで生成された活性種を、従来技術に良く見られるようなフィルター等で失うことなく、効率的に放出することができ、その結果、付着菌の殺菌を短時間で実現することが可能となる。
 また、図5に示すように、電極21、22の対向面には、例えばチタン酸バリウム等の誘電体が塗布されて誘電体膜21a、22aが形成されている。この誘電体膜21a、22aの表面粗さ(本実施形態では算出平均粗さRa)は0.1μm以上100μm以下である。この他表面粗さとしては、最大高さRy、十点平均粗さRzを用いて規定しても良い。このように誘電体膜21a、22aの平面粗さを上記範囲内の値にすることによって、各電極21、22を重ね合わせるだけで、対向面間に空隙が形成されて、当該空隙内にプラズマが発生することになる。なお、前記誘電体膜21a、22aの表面粗さは、溶射法などの薄膜形成方法によって制御することが考えられる。また、電極に塗布する誘電体としては、酸化アルミニウム、酸化チタン、酸化マグネシウム、チタン酸ストロンチウム、酸化シリコン、燐酸銀、チタン酸ジルコン酸鉛、シリコンカーバイド、酸化インジウム、酸化カドミニウム、酸化ビスマス、酸化亜鉛、酸化鉄、カーボンナノチューブなどを用いてもよい。
 さらに図3、図4及び図6に示すように、各電極21、22の対応する箇所にそれぞれ流体流通孔21b、22bを設けてこれらが連通して貫通するように構成されている。本実施形態では、図3などに示すように、各流体流通孔21b、22bは、面板方向から視たときに(平面視において)概略円形状をなすものであり、電極21、22の対応する各流体貫通孔21b、22bの輪郭が一致するように形成している。
 なお、電極21、22の面板方向から視たときに(平面視において)、対応する各流体貫通孔21b、22bの輪郭の少なくとも一部が互いに異なる位置となるように構成しても良い。具体的には、一方の電極21に形成された流体流通孔21bの開口サイズ(開口径)が、他方の電極22に形成された流体流通孔22bの開口サイズ(開口径)よりも小さく(例えば開口径が10μm以上小さく)形成することが考えられる。
 また、本実施形態のプラズマ電極部2は、図3及び図6に示すように、流体流通孔21b、22bとは別に、一方の電極21に貫通孔21cを設けてこの貫通孔21cが他方の電極22によってその対向面側の開口が塞がれるように構成している。
 送風機構3は、前記プラズマ電極部2の他方の電極22側に配置されており、プラズマ電極部2に形成された流体流通孔21b、22b(完全開口部)に向かって強制的に風を送る送風ファンを有するものである。具体的にこの送風機構3は、流体流通孔21b、22bを通過させる風の流速を0.1m/s以上30m/s以下の範囲内としている。
 防爆機構4は、図4に示すように、一対の電極21、22の外側に配置された保護カバー41を有し、可燃性ガスが流体流通孔21b、22bに流入してプラズマによって生じた火炎が、保護カバー41を越えて外部に伝播しないように構成されたものである。具体的に防爆機構4は、その保護カバー41が、一対の電極21、22の外側に配置された金属メッシュ411を有し、当該金属メッシュ411の線径が1.5mm以下の範囲内であり、且つ金属メッシュ411の開口率が30%以上である。
 しかして本実施形態のプラズマ発生装置100は、一対の電極21、22間において流体流通孔21b、22bを形成する開口端部21x、22x及び貫通孔21cを形成する開口端部21y及びこれに対向する部分のみにプラズマが発生するように構成されている。なお、開口端部21x、22x、21yとは、オゾンの生成がイオンやラジカルの生成よりも劣勢である領域であり、例えば開口端から数10μm程度から1mm程度の範囲である。
 具体的には、図6及び図7に示すように、一対の電極21、22において、互いに対向する流体流通孔21b、22bを形成する開口端部21x、22xの対向距離L1と、貫通孔21cを形成する開口端部21y及びこれに対向する誘電体膜22aの対向距離L2とが、開口端部以外の部分の対向距離L3よりも小さくなるように構成されており、上述したパルス電圧を一対の電極21、22間に印加した場合に、互いに対向する流体流通孔21b、22bを形成する開口端部21x、22xと、貫通孔21cを形成する開口端部21y及びこれに対向する誘電体膜22aとのみでプラズマ放電する。
 より詳細には、図7及び図8に示すように、対向面における流体流通孔21b、22bを形成する開口端部21x、22xの誘電体膜21a、22aの膜厚t1と、対向面における貫通孔21cを形成する開口端部21yの誘電体膜21aの膜厚t2とが、対向面におけるそれら開口端部以外の部分の誘電体膜21a、22aの膜厚t3よりも厚くしている。ここで、開口端部21x、22xの誘電体膜21a、22aの膜厚t1と、開口端部以外の部分の誘電体膜21a、22aの膜厚t3との差は、10μm以上500μm以下である。また、対向面における貫通孔21cを形成する開口端部21yの誘電体膜21aの膜厚t2と、開口端部以外の部分の誘電体膜21aの膜厚t3との差も同様に、10μm以上500μm以下である。なお、ここでの膜厚の差とは、表面粗さを考慮した平均的な膜の厚さのことをいう。本実施形態では、図9に示すように、流体流通孔21b、22bを形成する開口端部21x、22x及び貫通孔21cを形成する開口端部21yの全周に亘って環状に、誘電体膜21a、22aの膜厚t1、t2が、それら開口端部以外の部分の誘電体膜21a、22aの膜厚t3よりも厚くしている。
 本実施形態では、このように構成された一対の電極21、22を誘電体膜21a、22aが対向するように重ね合わせることにより、流体流通孔21bを形成する開口端部21xの誘電体膜21aと流体流通孔22bを形成する開口端部22xの誘電体膜22aとが接触する。このとき、それらの間には、誘電体膜21a、22aの表面粗さによる凹凸によって空隙が形成されて、当該空隙内にプラズマが発生することになる。なお、図6及び図7においては便宜上誘電体膜21a、22aが離間した図を示している。一方、流体流通孔21b、22bを形成する開口端部21x、22x及び貫通孔21cを形成する開口端部21y以外の部分においては、対向する誘電体膜21a、22aの対向距離がプラズマ放電しない距離となるため、それら開口端部以外の部分ではプラズマは発生しない。
 <第1実施形態の効果>
 このように構成した本実施形態に係るプラズマ発生装置100によれば、一対の電極21、22間において前記流体流通孔21b、22bを形成する開口端部のみにプラズマが発生するように構成されているので、開口端部でのみプラズマを発生させてイオンやラジカルを優勢的に生成することができるとともに、オゾンが優勢的に生成される開口端部以外の部分ではプラズマが発生しない。これにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。なお、対応する各流体貫通孔21b、22bの輪郭の少なくとも一部が互いに異なる位置としていることから、流体流通孔21b、22bを流れる流体とプラズマとの接触面積を可及的に大きくすることができる。これによっても、イオン及びラジカルの生成量を増加させることができる。
<2.第2実施形態>
 次に、本発明の第2実施形態について説明する。
 本実施形態のプラズマ発生装置100は、図11及び図12に示すように、一対の電極21、22において流体流通孔21b、22bを形成する開口端部21x、22x、並びに、貫通孔21cを形成する開口端部21y以外の部分にプラズマの発生を防止するプラズマ発生防止部材6が設けられている。
 このプラズマ発生防止部材6は、図13に示すように、一対の電極21、22間において、流体流通孔21b、22bを形成する開口端及び貫通孔21cを形成する開口端から0μm~500μmの範囲外に設けられている。言い換えれば、開口端部21x、21y、22xは、流体流通孔21b、22bを形成する開口端及び貫通孔21cを形成する開口端から0μm~500μmの領域である。この領域においては、オゾンの生成がイオンやラジカルの生成よりも劣勢である。また、本実施形態では、このプラズマ発生防止部材6は、一対の電極21、22間において、開口端部21x、21y、22x以外の部分全体に設けられている。つまり、一対の電極21、22間において、開口端部21x、21y、22x以外の部分全体が、プラズマ発生防止部材により充填されている。これにより、開口端部21x、21y、22x以外の部分ではプラズマが発生しない。
 プラズマ発生防止部材6は、比誘電率が10以下の低誘電材料が最も望ましく、少なくとも比誘電率30以下の誘電体材料で形成されている。この低誘電材料としては、例えば、アルミナ皮膜、ウレタン、ABS樹脂、天然ゴム、ナイロン、エチレン樹脂、塩化ビニル樹脂、尿素樹脂、ブチルゴム、シリコンゴム、石英などである。この低誘電材料は、各電極21、22の対向面に設けられた誘電体膜21a、22aに略隙間なく密着して設けられている。このとき、プラズマ発生防止部材6を接着性を有する低誘電材料としたり、あるいは比誘電体材料に接着成分を混合させて接着性を有する低誘電体材料とすることで、当該プラズマ発生防止部材6により一対の電極21、22を接着させることができる。例えば、エポキシ樹脂、フェノール樹脂、フッ素樹脂、ポリエステル樹脂、シリコン、酢酸ビニル樹脂、メタクリル樹脂などである。これにより、一対の電極21、22を互いに対向した状態で固定するための別の固定部材を不要にすることができる。
 なお、プラズマ発生防止部材6を接着性を有さない低誘電材料とする場合等においては、当該プラズマ発生防止部材6を一対の電極21、22により挟むことにより固定しても良い。その他、プラズマ発生防止部材6を一対の電極間21、22に設ける方法としては、互いに分離された各電極21、22の誘電体膜21a、22a上に低誘電材料を塗布した後に、一対の電極21、22を誘電体膜21a、22aが対向するように重ね合わせることが考えられる。
 <第2実施形態の効果>
 このように構成した本実施形態に係るプラズマ発生装置100によれば、流体流通孔21b、22b、貫通孔21cを形成する開口端部21x、21y、22b以外の部分にプラズマ発生防止部材6を設けているので、開口端部21x、21y、22bでプラズマを発生させながらも、開口端部21x、21y、22b以外の部分で発生するプラズマを低減することができる。これにより、オゾンの生成を抑制しつつも、イオンやラジカルの生成量を増加させることができ、当該イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能とを十分に発揮できるようになる。
<3.第3実施形態>
 次に、本発明の第3実施形態について説明する。
 本実施形態のプラズマ発生装置100は、図14及び図15に示すように、セラミック基板21f、22fの対向面のうちプラズマ放電する領域に導電膜21g、22gを設け、更に導電膜21g、22gの上に誘電体膜21a、22aを設けた一対の電極21、22を有するものである。
 各電極21、22の縁部には、電圧が印加される印加部2Tが形成されている。各電極21、22には対応する箇所にそれぞれ流体流通孔21b、22bが設けられており、これらが連通して全体として貫通するように構成されている。
 セラミック基板21f、22fとしては、例えば、CaO、Al、SiO、B、ZrO、TiO等を材料とするものが用いられる。このような材料からなるセラミック基板21f、22fは、例えば、グリーンシート、プレス成形等を用いた手法により形成することができる。
 導電膜21g、22gは、例えば、構成元素として、Ag、Au、Cu、Ni、Pt、Pd、Ru、Ir等を含む材料を用いて、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、物理蒸着等の手法により、セラミック基板21f、22fの対向面に形成される。なかでも、前記の各種元素を含む導電性ペーストを調製し、これをスクリーン印刷、グラビア印刷、インクジェット、ディスペンサー等の手法によりセラミック基板21f、22f上に塗布して所定の導電性パターンを形成するのが好ましい。
 導電膜21g、22gは、流体流通孔21b、22bの開口端部21x、22xに設けられた環状導電膜21g1、22g1と、当該環状導電膜21g1、22g1を電気的に連絡する線状導電膜21g2、22g2とからなり、これらがネットワークを形成している。
 環状導電膜21g1、22g1は、流体流通孔21b、22bの開口周縁より1mm以内の領域、好ましくは0.5mm以内の領域に形成されている。また、線状導電膜21g2、22g2の幅は、0.5mm以下であることが好ましい。
 誘電体膜21a、22aは、例えば、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、Mg等を含む材料から形成されるものが挙げられる。このような材料としては、例えば、酸化物、炭化物、窒化物、ホウ化物等が挙げられ、より具体的には、BaO、TiO、CaO、ZrO、Sr、Y、MgO、BaTiO、SrTiO、BCTZ(チタン酸ジルコン酸バリウムカルシウム(BaO、TiO、CaO、及び、ZrOの混合物))、BTZ(チタン酸ジルコン酸バリウム(BaO、TiO、及び、ZrOの混合物)、Zr、SrB、CaB、MgB、BN、TiN、ZrN、Ca、Si4、SiC、TiC、CaC2、ZrC等が挙げられる。このような誘電体膜21a、22aは、例えば、グリーンシート、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、物理蒸着等を用いた手法により形成される。これらの手法により形成された誘電体膜21a、22aは、多孔質になりにくい。
 誘電体膜21a、22aは、その表面粗さ(算出平均粗さRa)が5~50μmであることが好ましい。誘電体膜21a、22aの表面粗さがこの範囲内であれば、各電極を重ね合わせるだけで、電極21、22の対向面間に空隙が形成されて、当該空隙内にプラズマを発生させることができ、各電極21、22間にプラズマ形成用の空隙を形成するためのスペーサが不要となる。
 このような電極21、22は、例えば、次のような工程を経て作製することができる。(1)まず、セラミック基板21f、22f上に導電性ペーストを塗布して所定の導電性パターンを形成する。(2)次いで、導電性パターン上に誘電体膜21a、22aの材料を重ねる。(3)セラミック基板21f、22fと導電性パターン及び誘電体膜21a、22aの材料とを同時に加温して焼成することにより電極21、22を形成する。
 より具体的な電極作製法として、例えば、(A)低温同時焼成セラミック(Low Temperature Co-Fired Ceramic:LTCC)法や、(B)プレス基板/印刷法が挙げられる。
 (A)低温同時焼成セラミック法では、以下のような手順で電極を作製する。
(1)セラミック粉末に、適当なバインダ、焼結助剤、可塑剤、分散剤、有機溶媒等を配合して、セラミック基板用グリーンシート用スラリーを調製する。
(2)得られたスラリーを、ドクターブレード法、印刷法等により所定の厚さに形成し乾燥させてセラミック基板用グリーンシートを作製する。
(3)得られたセラミック基板用グリーンシートに導電性ペーストを所定のパターンでスクリーン印刷等して導電性パターンを形成し、乾燥させる。なお、導電性ペーストとしては市販のもの(例えば、京都エレックス社製DD-1141A)を使用してもよい。
(4)誘電体粉末に、適当なバインダ、焼結助剤、可塑剤、分散剤、有機溶媒等を配合して、誘電体膜用グリーンシート用スラリーを調製する。
(5)得られたスラリーを、ドクターブレード法、印刷法等により所定の厚さ及び形状に形成して誘電体膜用グリーンシートを作製する。
(6)(5)で得られた誘電体膜用グリーンシートを、(3)で得られた導電性パターンが形成されたセラミック基板用グリーンシートの上に積層し、プレス、カレンダーロール等で密着させる。
(7)得られた積層体に対し、所定の位置に穴をあけ、素子サイズにカットし、焼成する。
 (B)プレス基板/印刷法では、以下のような手順で電極を作製する。
(1)セラミック粉末を所定の大きさの型に入れ、プレスすることにより、セラミック基板21f、22fを作製する。
(2)得られたセラミック基板21f、22fに対し、レーザー、プレス等により、所定の位置に穴をあけ、素子サイズにカットする。
(3)カットされたセラミック基板21f、22fに導電性ペーストを所定のパターンにスクリーン印刷等して導電性パターンを形成し、乾燥させる。
(4)誘電体粉末とバインダを混合し、三本ロールで分散した後、溶剤等で印刷しやすい粘度に希釈して、誘電体ペーストを調製する。
(5)(4)で得られた誘電体ペーストを、(3)で得られた導電性パターンが形成されたセラミック基板21f、22fの所定の箇所に印刷して、誘電体膜21a、22aを形成後、焼成する。
 本実施形態に係るプラズマ発生装置100は、2枚の対向した電極21、22の隙間のうち導電膜21g、22gが形成されている領域にプラズマを発生させ、流体流通孔21b、22bに送風機構3によって風を送り込み、電極21、22近傍で脱臭を行い、プラズマ中で生成された活性種を閉空間に放出し付着菌の殺菌を行う。
 <第3実施形態の効果>
 このように構成した本実施形態に係るプラズマ発生装置100によれば、流体流通孔21b、22bの開口端部21x、22xで選択的にプラズマ放電を行うことにより、イオンやラジカル等の活性種を優勢に発生させて、オゾンの発生量を低減することができる。
 また、本実施形態に係るプラズマ発生装置100では、セラミック粉末から電極用のセラミック基板21f、22fを作製するので、電極を多様な形状に成形することができ、用途に応じた電極設計の自由度を担保することができる。
 更に、本実施形態に係るプラズマ発生装置100では、一度の焼成工程で電極21、22を作製することができるので、従来より容易に、かつ少ない工程で電極を作製でき、製造コストの低減を図ることができる。
 <その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 例えば、前記第1実施形態では、誘電体膜21a、22aの膜厚を制御することにより開口端部のみにプラズマが発生するように構成しているが、図16に示すように、電極21、22の対向面における開口端部21x、21y、22xに環状の突条部21p、22pを一体に設けても良い。この場合、電極21、22の対向面に誘電体膜21a、22aを設けることにより、互いに対向する流体流通孔21b、22bを形成する開口端部21x、22xの対向距離L1と、貫通孔21cを形成する開口端部21y及びこれに対向する誘電体膜22aの対向距離L2とが、開口端部以外の部分の対向距離L3よりも小さくなるように構成することができる。
 また、図17に示すように、電極21、22の対向面における開口端部21x、21y、22xに環状のリング部材21r、22rを設けて、その電極21、22の対向面に誘電体膜21a、22aを設けるようにしても良い。これならば、電極を切削加工等して一体に突条部を設ける場合に比べて加工コストを低減することができる。
 また、前記実施形態ではプラズマ発生防止部材6は、開口端部以外の部分全体に設ける他、図18に示すように、開口端部以外の部分に部分的に設けるようにしても良い。これによっても、開口端部以外の部分で発生するプラズマを低減することができ、その結果オゾンの生成量を低減することができる。
 また、図19に示すように、プラズマ発生防止部材6を流体流通孔21b、22bの開口端部21x、22x及び貫通孔21cの開口端部21yの周囲を覆うように環状に形成したものであっても良い。このとき、開口端部21x、21y、22xの周囲を覆うように形成した環状のプラズマ発生防止部材6は、電極内部で発生したオゾンを流体流通孔21b、22b及び貫通孔21cから外部に放出されることを防止する機能も有する。これならば、プラズマ発生防止部材6を構成する低誘電材料の使用量を減らすことができ、材料コストを低減することができる。
 図20に示すように、導電膜21g、22gが流体流通孔21b、22bの開口周縁から1mmを超えて離れた領域に面状に形成されているものでも良い。これならば、イオンやラジカル等の活性種に比べて、より寿命が長いオゾンを優勢に発生させることができる。このため、本実施形態に係るプラズマ発生装置100は、臭気濃度が高い場合や、浮遊菌又は付着菌が高濃度で存在する場合、又は、ヒトやペット等が近くにいない空間で使用する場合等に適している。
 また、図21に示すように、導電膜21g、22gが、流体流通孔21b、22bの開口端部21x、22xに形成された環状導電膜21g1、22g1と、当該環状導電膜21g1、22g1を電気的に連絡する線状導電膜21g2、22g2と、流体流通孔21b、22bの開口周縁部を除いた領域に面状に形成された面状導電膜21g3、22g3とから構成されているものでも良い。なお、環状導電膜21g1、22g1と線状導電膜21g2、22g2とから構成されるネットワークと、面状導電膜21g3、22g3とは、電気的に分離してある。これならば、環状導電膜21g1、22g1と線状導電膜21g2、22g2とから構成されるネットワークと、面状導電膜21g3、22g3とのいずれに電圧を印加するかを制御することにより、イオンやラジカル等の活性種とオゾンとのいずれを優勢に発生させるかを適宜選択して制御することができる。このため、臭気濃度が低い場合や、浮遊菌又は付着菌が低濃度で存在する場合、又は、ヒトやペット等が近くいる空間で使用する場合等は、環状導電膜21g1、22g1と線状導電膜21g2、22g2とから構成されるネットワークに電圧を印加して、イオンやラジカル等の活性種を優勢に発生させる一方、臭気濃度が高い場合や、浮遊菌又は付着菌が高濃度で存在する場合、又は、ヒトやペット等が近くにいない空間で使用する場合等は、オゾンを優勢に発生させることができる。
 誘電体膜21a、22aは、セラミック基板21f、22fの対向面の全面に形成されていなくともよく、導電膜21g、22g上のみに形成してあればよい。誘電体膜21a、22aの形成領域を導電膜21g、22g上のみに限定することにより、イオンやラジカル等の活性種とオゾンとの発生領域をより高精度に制御することができ、とりわけ、オゾン発生を抑制して、イオンやラジカル等の活性種を優勢に発生させたい場合に有効である。また、このように誘電体膜21a、22aの形成領域を限定することにより、製造コストを抑制することもできる。
 また、前記実施形態では、開口端部の全周に亘って誘電体膜の膜厚をそれ以外の部分の誘電体膜の膜厚よりも厚くしているが、開口端部の一部の誘電体膜の膜厚をそれ以外の誘電体膜の膜厚よりも厚くしても良い。
 例えば前記実施形態では、コーティング膜を各電極の誘電体膜に設けたが、いずれか一方の誘電体膜に設けた場合であっても効果を奏する。
 また、前記実施形態では電極21の複数の流体流通孔21bが同一形状をなし、また電極22の複数の流体流通孔22bが同一形状をなすものであったが、それぞれ異なる形状をなすものであっても良い。
 さらに、前記実施形態では一方の電極21又は他方の電極22のいずれかに貫通孔が形成されているが、両方に貫通孔(半開口部)を形成するようにしても良い。
 その上、前記実施形態では流体流通孔は等断面形状をなすものであったが、その他、各電極に形成される流体流通孔にテーパ面を有するもの、すり鉢状またはお椀状の形状、つまり一方の開口から他方の開口に行くに従って縮径又は拡径するものであっても良い。
 加えて、流体流通孔は、円形状の他、楕円形状、矩形状、直線状スリット形状、同心円状スリット形状、波形状スリット形状、三日月形状、櫛形状、ハニカム形状又は星形状であっても良い。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 このように本発明のプラズマ発生装置によれば、オゾンの発生を抑制しつつも、イオンやラジカルの生成量を増加させて、イオンやラジカルにより脱臭する機能と、そのイオンやラジカルを装置外部に放出して浮遊菌及び付着菌を殺菌する機能と十分に発揮できる。

Claims (33)

  1.  対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、それら電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成されており、前記一対の電極間において前記流体流通孔を形成する開口端部のみでプラズマが発生するように構成されているプラズマ発生装置。
  2.  前記一対の電極において前記流体流通孔を形成する開口端部の対向距離が、前記開口端部以外の部分の対向距離よりも小さくなるように構成されており、
     前記一対の電極間に所定電圧を印加した場合に、前記流体流通孔を形成する開口端部のみでプラズマ放電する請求項1記載のプラズマ発生装置。
  3.  前記流体流通孔を形成する開口端部の誘電体膜の膜厚が、前記開口端部以外の部分の誘電体膜の膜厚よりも厚いことを特徴とする請求項2記載のプラズマ発生装置。
  4.  前記開口端部においてその全周に形成された誘電体膜の膜厚が、前記開口端部以外の部分の誘電体膜の膜厚よりも厚いことを特徴とする請求項3記載のプラズマ発生装置。
  5.  前記開口端部の誘電体膜の膜厚と前記開口端部以外の部分の誘電体膜の膜厚との差が、1μm以上500μm以下である請求項3記載のプラズマ発生装置。
  6.  前記各電極の前記流体流通孔を形成する開口端部以外の部分に、プラズマの発生を防止するプラズマ発生防止部材が設けられている請求項1記載のプラズマ発生装置。
  7.  前記プラズマ発生防止部材が、前記流体流通孔を形成する開口端から0μm~500μmの範囲外に設けられている請求項6記載のプラズマ発生装置。
  8.  前記プラズマ発生防止部材が、前記一対の電極間において前記開口端部以外の部分全体に設けられている請求項6記載のプラズマ発生装置。
  9.  前記プラズマ発生防止部材が、比誘電率が30以下の低誘電材料から形成されている請求項6記載のプラズマ発生装置。
  10.  前記プラズマ発生防止部材が、各電極の対向面又は誘電体膜に密着している請求項6記載のプラズマ発生装置。
  11.  前記一対の電極が、前記プラズマ発生防止部材により接着されている請求項6記載のプラズマ発生装置。
  12.  前記プラズマ発生防止部材が、前記一対の電極に挟まれて固定されている請求項6記載のプラズマ発生装置。
  13.  前記対向面における流体流通孔を形成する開口端部に環状の突条部が形成されており、この突条部が形成された対向面に誘電体膜が設けられている請求項1記載のプラズマ発生装置。
  14.  前記対向面における流体流通孔を形成する開口端部のみに誘電体膜が形成されている請求項1記載のプラズマ発生装置。
  15.  前記流体流通孔の上流側又は下流側に送風機構を設け、当該送風機構により前記流体流通孔に風が流れるように構成されている請求項1記載のプラズマ発生装置。
  16.  前記誘電体膜が、溶射法によって形成されている請求項1記載のプラズマ発生装置。
  17.  前記各電極に印加する電圧をパルス形状とし、そのピーク値を100V以上5000V以下の範囲内とし、且つパルス幅を0.1μ秒以上かつ300μ秒以下の範囲内としている請求項1記載のプラズマ発生装置。
  18.  対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成するとともに、前記流体流通孔とは別に、一方の電極に貫通孔を設けてこの貫通孔が他方の電極によってその対向面側の開口が塞がれるように構成しており、
     前記一対の電極間において流体流通孔を形成する開口端部、並びに、前記貫通孔を形成する開口端部及びこれに対向する部分のみでプラズマが発生するように構成されているプラズマ発生装置。
  19.  対向面の少なくとも一方に誘電体膜を設けた一対の電極を有し、電極間に所定電圧が印加されてプラズマ放電するものにおいて、各電極の対応する箇所にそれぞれ流体流通孔を設けてこれらが貫通するように構成するとともに、前記流体流通孔とは別に、一方の電極に貫通孔を設けてこの貫通孔が他方の電極によってその対向面側の開口が塞がれるように構成されており、
     前記一対の電極間において流体流通孔を形成する開口端部、並びに、前記貫通孔を形成する開口端部及びこれに対向する部分以外の部分にプラズマ発生防止部材が設けられているプラズマ発生装置。
  20.  対向する一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するプラズマ発生装置であって、
     各電極が、それぞれ、絶縁性基板と、前記絶縁性基板の対向面に形成された導電膜と、前記導電膜上に形成された誘電体膜とを有するとともに、前記各電極の対応する箇所にそれぞれ流体流通孔が設けられ、これらが貫通するように構成してあり、
     前記導電膜が、前記絶縁性基板の対向面のうちプラズマ放電する所定の領域に選択的に形成してあることを特徴とするプラズマ発生装置。
  21.  前記導電膜が、前記絶縁性基板の対向面のうち前記流体流通孔の開口周縁から1mm以内の領域(A)に形成されている請求項20記載のプラズマ発生装置。
  22.  前記導電膜が、前記絶縁性基板の対向面のうち前記流体流通孔の開口周縁から1mmを超えて離れた領域(B)に形成されている請求項20記載のプラズマ発生装置。
  23.  前記導電膜が、前記絶縁性基板の対向面のうち、前記流体流通孔の開口周縁より1mm以内の領域(A)と前記流体流通孔の開口周縁より1mmを超えて離れた領域(B)とに形成されており、前記領域(A)に形成された導電膜と前記領域(B)に形成された導電膜とは電気的に分離している請求項20記載のプラズマ発生装置。
  24.  前記誘電体膜が、前記導電膜の上及びその近傍のみに形成されている請求項20記載のプラズマ発生装置。
  25.  前記誘電体層の表面粗さ(Rz)が、1~100μmである請求項20記載のプラズマ発生装置。
  26.  前記絶縁性基板が、CaO、Al、SiO、B、ZrO、及び、TiOからなる群より選択される少なくとも1種の化合物を含有する材料から形成されてなるものである請求項20記載のプラズマ発生装置。
  27.  前記誘電体膜が、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、及び、Mgからなる群より選択される少なくとも1種の元素を含む材料から形成されてなるものである請求項20記載のプラズマ発生装置。
  28.  前記誘電体膜の材料が、酸化物、炭化物、窒化物、及び、ホウ化物からなる群より選択される少なくとも1種の化合物を含有するものである請求項27記載のプラズマ発生装置。
  29.  前記導電膜が、その構成元素として、Ag、Au、Cu、Ni、Pt、Pd、Ru、及び、Irからなる群より選択される少なくとも1種の元素を含む材料から形成されてなるものである請求項20記載のプラズマ発生装置。
  30.  前記誘電体膜が、グリーンシート、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、又は、物理蒸着により形成されてなるものである請求項20記載のプラズマ発生装置。
  31.  前記絶縁性基板が、グリーンシート、又は、プレス成形により形成されてなるものである請求項20記載のプラズマ発生装置。
  32.  前記導電膜が、スクリーン印刷、グラビア印刷、インクジェット、ディスペンサー、又は、物理蒸着により形成されてなるものである請求項20記載のプラズマ発生装置。
  33.  請求項20記載のプラズマ発生装置の製造方法であって、
     前記絶縁性基板上に導電性ペーストを塗布して所定の導電性パターンを形成する工程と、
     前記導電性パターン上に前記誘電体膜を形成するための材料を重ねる工程と、
     前記絶縁性基板と前記導電性パターン及び前記誘電体膜の材料とを同時に加温して焼成することにより前記電極を形成する工程と、を備えることを特徴とするプラズマ発生装置の製造方法。
PCT/JP2012/081827 2011-12-08 2012-12-07 プラズマ発生装置 WO2013085045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280069371.4A CN104206026B (zh) 2011-12-08 2012-12-07 等离子体发生装置
EP12855583.6A EP2790472A4 (en) 2011-12-08 2012-12-07 PLASMA GENERATOR
US14/363,481 US9452236B2 (en) 2011-12-08 2012-12-07 Plasma generating apparatus
KR20147013179A KR20140109367A (ko) 2011-12-08 2012-12-07 플라즈마 발생 장치 및 플라즈마 발생 장치의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-268605 2011-12-08
JP2011268605 2011-12-08
JP2011-270445 2011-12-09
JP2011270445 2011-12-09
JP2011-270503 2011-12-09
JP2011270503 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085045A1 true WO2013085045A1 (ja) 2013-06-13

Family

ID=48574396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081827 WO2013085045A1 (ja) 2011-12-08 2012-12-07 プラズマ発生装置

Country Status (6)

Country Link
US (1) US9452236B2 (ja)
EP (1) EP2790472A4 (ja)
JP (1) JPWO2013085045A1 (ja)
KR (1) KR20140109367A (ja)
CN (1) CN104206026B (ja)
WO (1) WO2013085045A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955258A (zh) * 2014-03-25 2015-09-30 Lg电子株式会社 等离子体电极装置及其制造方法
JP2019017538A (ja) * 2017-07-13 2019-02-07 日本特殊陶業株式会社 プラズマリアクタ、空気清浄器
JP2022127786A (ja) * 2021-02-22 2022-09-01 株式会社豊田中央研究所 プラズマ装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102076660B1 (ko) * 2012-06-21 2020-02-12 엘지전자 주식회사 공기 조화기 및 그 제어방법
KR102259353B1 (ko) * 2014-07-16 2021-06-02 엘지전자 주식회사 살균 탈취 장치
US11102877B2 (en) 2015-09-30 2021-08-24 Chiscan Holdings, L.L.C. Apparatus and methods for deactivating microorganisms with non-thermal plasma
EP3407684B8 (en) * 2016-01-18 2021-01-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Activated gas generation device and film-formation treatment device
CN109310461B (zh) * 2016-07-18 2023-04-04 智像控股有限责任公司 非热等离子体发射器和用于控制的设备
CN106390712A (zh) * 2016-10-18 2017-02-15 苏州超等医疗科技有限公司 一种湿式等离子脱硝处理工艺
US12059689B2 (en) * 2019-09-23 2024-08-13 Korea Institute Of Science And Technology Filter for trapping particulate matter including vertical nano-gap electrode with plurality of holes and air conditioning apparatus having the same
US12069793B2 (en) 2020-04-09 2024-08-20 Chiscan Holdings Pte. Ltd. Treatment of infectious diseases using non-thermal plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224211A (ja) 2000-05-18 2002-08-13 Sharp Corp 殺菌方法、イオン発生装置及び空気調節装置
JP2003079714A (ja) 2001-09-14 2003-03-18 Matsushita Electric Works Ltd 空気清浄機
JP2005123159A (ja) * 2003-05-27 2005-05-12 Matsushita Electric Works Ltd プラズマ処理装置、プラズマ生成用の反応器の製造方法、及びプラズマ処理方法
JP2010149053A (ja) * 2008-12-25 2010-07-08 Kyocera Corp 誘電性構造体、誘電性構造体を用いた放電装置、流体改質装置、および反応システム
JP2012212640A (ja) * 2011-03-30 2012-11-01 Plasma Ion Assist Co Ltd バリア放電イオナイザ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314751A (ja) * 2000-05-12 2001-11-13 Hokushin Ind Inc プラズマ反応容器
JP2001321633A (ja) * 2000-05-18 2001-11-20 Asahi Lite Optical Co Ltd 異臭を除去する方法とその装置
JP2002273156A (ja) * 2001-03-15 2002-09-24 Canon Inc ガス処理装置及びガス処理方法
US7543546B2 (en) * 2003-05-27 2009-06-09 Matsushita Electric Works, Ltd. Plasma processing apparatus, method for producing reaction vessel for plasma generation, and plasma processing method
WO2008013820A2 (en) * 2006-07-26 2008-01-31 The Board Of Trustees Of University Of Illinois Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
KR101450551B1 (ko) * 2008-02-21 2014-10-15 엘지전자 주식회사 조리기기의 냄새제거장치 및 상기 냄새제거장치를 포함하는조리기기.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224211A (ja) 2000-05-18 2002-08-13 Sharp Corp 殺菌方法、イオン発生装置及び空気調節装置
JP2003079714A (ja) 2001-09-14 2003-03-18 Matsushita Electric Works Ltd 空気清浄機
JP2005123159A (ja) * 2003-05-27 2005-05-12 Matsushita Electric Works Ltd プラズマ処理装置、プラズマ生成用の反応器の製造方法、及びプラズマ処理方法
JP2010149053A (ja) * 2008-12-25 2010-07-08 Kyocera Corp 誘電性構造体、誘電性構造体を用いた放電装置、流体改質装置、および反応システム
JP2012212640A (ja) * 2011-03-30 2012-11-01 Plasma Ion Assist Co Ltd バリア放電イオナイザ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790472A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955258A (zh) * 2014-03-25 2015-09-30 Lg电子株式会社 等离子体电极装置及其制造方法
EP2923752A1 (en) * 2014-03-25 2015-09-30 LG Electronics Inc. Plasma electrode device and method for manufacturing the same
US9646806B2 (en) 2014-03-25 2017-05-09 Lg Electronics Inc. Plasma electrode device and method for manufacturing the same
JP2019017538A (ja) * 2017-07-13 2019-02-07 日本特殊陶業株式会社 プラズマリアクタ、空気清浄器
JP2022127786A (ja) * 2021-02-22 2022-09-01 株式会社豊田中央研究所 プラズマ装置
JP7276367B2 (ja) 2021-02-22 2023-05-18 株式会社豊田中央研究所 プラズマ装置

Also Published As

Publication number Publication date
US20150125356A1 (en) 2015-05-07
KR20140109367A (ko) 2014-09-15
JPWO2013085045A1 (ja) 2015-04-27
EP2790472A4 (en) 2015-07-29
EP2790472A1 (en) 2014-10-15
US9452236B2 (en) 2016-09-27
CN104206026A (zh) 2014-12-10
CN104206026B (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
WO2013085045A1 (ja) プラズマ発生装置
EP2462954B1 (en) Plasma generation method and apparatus for biocidal and deodorising air treatment
US20140219894A1 (en) Device and method for gas treatment using non-thermal plasma and catalyst medium
EP2923752B1 (en) Plasma electrode device and method for manufacturing the same
US20110180149A1 (en) SINGLE DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS WITH IN-PLASMA catalysts AND METHOD OF FABRICATING THE SAME
JP2006210178A (ja) プラズマ発生用電極装置
JP2012120768A (ja) 脱臭殺菌装置及び脱臭殺菌方法
JPWO2012063856A1 (ja) プラズマ発生装置、プラズマ発生方法及びオゾン発生抑制方法
WO2013051730A1 (ja) プラズマ発生装置
WO2007077897A1 (ja) 集塵電極及び集塵機
KR101954850B1 (ko) 플라즈마 발생 장치 및 플라즈마 발생 방법
JP2013258137A (ja) 低電圧プラズマ発生用電極
KR101572156B1 (ko) 플라즈마 발생 장치 및 플라즈마 발생 방법
US20140294681A1 (en) Non-thermal plasma cell
JP2014029821A (ja) 放電ユニットおよびこれを用いた空気清浄装置
KR20130135338A (ko) 플라즈마 발생 장치
JP5614755B2 (ja) 空気清浄機
JP2014110161A (ja) プラズマ発生装置
JP2012187225A (ja) プラズマ発生装置及びプラズマ発生方法
JP2005038616A (ja) イオン発生装置及びこれを備えた電気機器
JP4322153B2 (ja) イオン発生装置及びこれを備えた電気機器
JP2005327696A (ja) イオン発生装置及びこれを備えた電気機器
KR20150121279A (ko) 친환경 기능성 필름 및 이를 부착한 친환경 기능성 물품
JP2006278181A (ja) イオン発生装置
JP2007134208A (ja) イオン発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548318

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147013179

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14363481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE