WO2013084804A1 - 円筒管の支持構造及び円筒管のシール方法 - Google Patents

円筒管の支持構造及び円筒管のシール方法 Download PDF

Info

Publication number
WO2013084804A1
WO2013084804A1 PCT/JP2012/081043 JP2012081043W WO2013084804A1 WO 2013084804 A1 WO2013084804 A1 WO 2013084804A1 JP 2012081043 W JP2012081043 W JP 2012081043W WO 2013084804 A1 WO2013084804 A1 WO 2013084804A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical tube
ring
tube
cylindrical
pressing
Prior art date
Application number
PCT/JP2012/081043
Other languages
English (en)
French (fr)
Inventor
田中 幸男
大空 弘幸
晴章 平山
肇 長野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2013084804A1 publication Critical patent/WO2013084804A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/069Tubular membrane modules comprising a bundle of tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/001Branching pipes; Joining pipes to walls the wall being a pipe plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe
    • F16L41/14Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe by screwing an intermediate part against the inside or outside of the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings

Definitions

  • the present invention relates to a cylindrical tube support structure used for a container including a cylindrical tube such as a hydrogen separator separation membrane.
  • hydrogen is purified by reacting fossil fuels such as natural gas with water vapor or oxygen, followed by separation with an adsorbent or separation using a separation membrane.
  • the reformed gas of fossil fuel contains hydrocarbons such as carbon monoxide, carbon dioxide, water and methane in addition to hydrogen, and hydrogen is selectively separated by a separation membrane capable of selectively separating hydrogen.
  • the vessel has a source gas supply port to which a reformed gas containing hydrogen is supplied at one end, an off-gas discharge port for discharging the gas from which hydrogen has been removed at the other end, and hydrogen separated separately. It has a structure having a hydrogen discharge port for discharging gas.
  • the separation membrane in the membrane separation device is provided so as to extend vertically so that a gas containing hydrogen can permeate, and is held by being sandwiched between O-rings on the upper and lower tube plates of the secondary side chamber. .
  • the reformed gas containing hydrogen is introduced into the primary side chamber in the separation membrane from the raw material gas supply port side, so that separation occurs as the reformed gas containing hydrogen rises. Hydrogen in the reformed gas is moved to the secondary side chamber under reduced pressure that accommodates the membrane, and purified hydrogen is obtained from the hydrogen outlet.
  • the upper tube plate and the lower tube plate provided at both ends of the shell portion with the shell portion standing vertically are cylindrical. Methods to support the tube are being considered.
  • a metal ring and an O-ring are provided between the pipe and the joint member at the upper end of the joint member, and a nut that covers the upper end of the joint member is provided.
  • a nut that is provided and tightened to the upper end of the joint member presses the O-ring against the tapered portion formed inside the joint member through the metal ring, and the inner peripheral surface side of the O-ring presses the pipe to the joint member.
  • an object of the present invention is to provide a cylindrical tube support structure and a cylindrical tube sealing method capable of stably supporting a cylindrical tube inside a vessel.
  • a first invention of the present invention for solving the above-described problem is provided in the inside of the shell portion, forming a fluid flow passage in the inside, and sealing the both ends of the cylindrical tube at both ends of the shell portion.
  • the tube plate includes a first groove portion and the first groove around the through-hole.
  • a second groove portion having a diameter larger than the second groove portion is provided, and the first groove portions at both ends of the cylindrical tube are in contact with the inner surface of the first groove portion on the tube plate side.
  • An O-ring holder having a first recess loaded with a first O-ring and a second recess loaded with a second O-ring contacting the cylindrical tube side; and the second groove
  • a pressing lid that is screwed to the wall surface of the cylindrical tube and presses the O-ring holder in the axial direction of the cylindrical tube, And a pressing means that is screwed into a slot provided in the lid and presses the O-ring holder in the axial direction of the cylindrical tube through the pressing lid. is there.
  • a second invention is a cylindrical tube support structure according to the first invention, wherein an O-ring pressing member is provided in an axial direction of the cylindrical tube between the O-ring holder and the pressing lid. .
  • a cylindrical tube provided inside the shell portion, forming a fluid flow passage inside, and sealed at both ends, and provided at both ends of the shell portion, and inserting the cylindrical tube
  • a first groove portion and a second groove portion having a larger diameter than the first groove portion are provided around the through hole of the tube plate.
  • an O-ring holder having a second recessed portion loaded with a second O-ring that comes into contact with the cylindrical tube side, and a wall surface of the second groove portion, and the O-ring holder is connected to the cylinder.
  • a pressing lid that presses in the axial direction of the tube, and is screwed into a slot provided in the pressing lid, And a pressing means for pressing the ring holder in the axial direction of the cylindrical tube through the pressing lid, and pressing the O-ring holder toward the tube plate by the pressing lid to push the first O-ring.
  • the O-ring holder is pressed against the tube plate by the pressing means through the pressing lid by the pressing means to press-bond the first O-ring to the tube plate, and the second O A sealing method for a cylindrical tube, comprising: pressing a ring toward the cylindrical tube side to pressure-bond the second O-ring against the cylindrical tube side, and supporting and sealing the cylindrical tube with the tube plate. .
  • a fourth invention is a sealing method for a cylindrical tube according to the third invention, wherein an O-ring pressing member is provided in an axial direction of the cylindrical tube between the O-ring holder and the pressing lid.
  • the cylindrical tube can be stably supported inside the vessel.
  • FIG. 1 is a cross-sectional view of a main part showing a membrane separation apparatus.
  • FIG. 2 is a partial cross-sectional view of a cylindrical tube.
  • 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a partial cross-sectional view of a cylindrical tube.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6 is a schematic view schematically showing a cylindrical tube support structure according to an embodiment of the present invention.
  • FIG. 7 is a view as seen from the AA direction in FIG.
  • FIG. 8 is a diagram simply showing another configuration of the cylindrical tube support structure according to the embodiment of the present invention.
  • FIG. 9 is a diagram simply showing another configuration of the cylindrical tube support structure according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an essential part of a membrane separation apparatus to which a cylindrical tube support structure according to this embodiment is applied.
  • a membrane separation apparatus 10 to which a cylindrical tube support structure according to this embodiment is applied includes a cylindrical tube 11, a shell portion 12, an upper tube plate 13A, a lower tube plate 13B, an upper end plate 14A, and a lower portion. It has an end plate 14B.
  • the shell portion 12, the upper tube plate 13A, the lower tube plate 13B, the upper end plate 14A, and the lower end plate 14B constitute a pressure vessel (vessel).
  • the cylindrical tube 11 is provided inside the shell portion 12.
  • a primary chamber (fluid passage) 21 for allowing fluid to pass through is formed in the cylindrical tube 11.
  • the primary chamber 21 extends vertically from the upper tube plate 13 ⁇ / b> A side to the lower tube plate 13 ⁇ / b> B side as a fluid flow path inside the cylindrical tube 11.
  • a secondary chamber (fluid chamber) 22 is formed between the outer periphery of the cylindrical tube 11 and the inner periphery of the shell portion 12.
  • the cylindrical tube 11 is formed using, for example, a material such as ceramics and is porous. Further, both ends of the cylindrical tube 11 are supported and sealed by tube plates (upper tube plate 13A and lower tube plate 13B).
  • the cylindrical tube 11 includes a hydrogen separation membrane part 23.
  • the hydrogen separation membrane unit 23 separates the fluid into off-gas and hydrogen.
  • four hydrogen separation membrane parts 23 are installed in parallel in the shell part 12.
  • the hydrogen separation membrane unit 23 includes various forms and is commercially available.
  • the primary chamber (fluid passage) 21 inside the hydrogen separation membrane is connected to the primary side or supply side of the membrane.
  • the outside of the hydrogen separation membrane is called the secondary side or the permeate side of the membrane.
  • the hydrogen separation membrane part 23 is a tubular type
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the tubular hydrogen separation membrane portion 23 ⁇ / b> A has a hydrogen separation membrane portion 23 ⁇ / b> A formed in a cylindrical shape on the inner wall of the cylindrical tube 11, and has only one primary chamber (fluid passage) 21 inside. It is what you have.
  • the tubular cylindrical tube 11 for example, an outer diameter of 10 mm and an inner diameter of 7 mm, an outer diameter of 30 mm, and an inner diameter of 22 mm can be used.
  • the length of the tubular cylindrical tube 11 can be determined as appropriate according to the desired membrane performance, and for example, a length of 150 mm to 1 m can be used.
  • FIG. 4 is a partial cross-sectional view of the cylindrical tube 11
  • FIG. 5 is a cross-sectional view taken along line AA of FIG.
  • the monolithic hydrogen separation membrane part 23B is provided with a plurality of primary chambers (fluid passages) 21 extending vertically to allow fluid to pass through the cylindrical hydrogen separation membrane part 23B. .
  • the monolithic hydrogen separation membrane part 23B for example, a columnar hydrogen separation membrane having a diameter of 30 mm, a hydrogen separation membrane part having 30 holes with a diameter of 3 mm, and a columnar shape with a diameter of 150 to 200 mm.
  • a hydrogen separation membrane part for example, a hydrogen separation membrane part provided with 200 holes having a diameter of 2 mm can be used.
  • the length of the monolith-type cylindrical tube 11 can be appropriately determined according to the desired film performance, and for example, a length of 150 mm to 1 m can be used.
  • the material of the hydrogen separation membrane constituting the hydrogen separation membrane portion 23 it is possible to use a microporous porous membrane which is an inorganic material whose nano-order or smaller pore diameter is precisely controlled, or a separation membrane obtained by plating palladium on the ceramic surface. it can.
  • the microporous membrane exhibits a molecular sieving effect that allows small molecular gases to pass through and excludes large molecular gases, and shows a behavior of activated diffusion whose permeability coefficient increases with increasing temperature.
  • the form, size and material of the hydrogen separation membrane part 23 can be appropriately selected according to the purpose of use. Further, in the present embodiment, four hydrogen separation membrane parts 23 are provided in the shell part 12, but the membrane separation apparatus 10 is not limited to this, and a plurality of hydrogen separations are provided in the shell part 12. A plurality of film portions 23 may be provided in parallel.
  • Such hydrogen separation membrane parts 23A and 23B are preferably installed so that the direction of the flow path is parallel to the vertical direction.
  • the cylindrical tube 11 has a fluid inlet at the lower end side and an outlet at the upper end side. Then, a fluid is supplied from an inlet on the lower side in the vertical direction of the hydrogen separation membrane unit 23 and discharged from an outlet on the upper side in the vertical direction. At that time, hydrogen in the fluid is extracted from the side surface of the hydrogen separation membrane portion 23 to the permeate side. As a result, off-gas is recovered from the outlet side of the hydrogen separation membrane portion 23.
  • the hydrogen separation membrane portion 23 separates hydrogen contained in the fluid and improves the hydrogen permeation performance, so that the secondary chamber (fluid chamber) 22 is placed inside or outside the shell portion 12. You may make it provide one or more heating means for heating the inside of the decompression device for depressurizing, the secondary chamber (fluid chamber) 22, and the like.
  • the decompression device examples include a vacuum pump. It is preferable to reduce the pressure of the shell portion 12 so as to be, for example, about 10 to 500 torr.
  • the hydrogen permeation performance can be improved by the differential pressure between the primary chamber 21 on the supply side of the hydrogen separation membrane section 23 and the secondary chamber 22 on the permeate side.
  • the shell portion 12 has an upper flange 24A and a lower flange 24B at both ends thereof.
  • An upper tube plate 13A is provided above the upper flange 24A, and a lower tube plate 13B is provided below the lower flange 24B.
  • the upper end plate 14A is provided on the side opposite to the shell 12 side of the upper tube plate 13A.
  • the lower end plate 14B is provided on the side opposite to the shell 12 side of the lower tube plate 13B.
  • the upper end plate 14A and the upper end plate 14B have an upper flange 25A and a lower flange 25B at both ends thereof.
  • An upper chamber 27 is formed between the upper end plate 14A and the upper tube plate 13A, and a lower chamber 28 is formed between the lower end plate 14B and the lower tube plate 13B.
  • the upper tube plate 13A and the lower tube plate 13B are provided at both ends of the shell portion 12, and have through holes 30 into which the cylindrical tube 11 can be inserted.
  • the upper tube plate 13A is sandwiched between the upper flange 24A of the shell portion 12 and the upper flange 25A of the upper end plate 14A, and is fastened with three bolts using bolts 29.
  • the lower tube plate 13B is sandwiched between the lower flange 24B of the shell portion 12 and the lower flange 25B of the lower end plate 14B, and is fastened with three bolts using bolts 29. Thereby, the membrane separation apparatus 10 is assembled.
  • the reformed gas 31 which is a mixture of hydrocarbons such as hydrogen, carbon monoxide, carbon dioxide, methane, and water, is introduced into the lower chamber 28.
  • the hydrogen concentration of the reformed gas 31 is, for example, a reformed gas having a hydrogen concentration of about 50 vol%.
  • the reformed gas 31 is supplied to the primary chamber 21 in the cylindrical hydrogen separation membrane portion 23 and flows from the lower side to the upper side of the shell portion 12.
  • the hydrogen in the reformed gas 31 moves to the secondary chamber 22 under reduced pressure that houses the hydrogen separation membrane portion 23.
  • the dehydrogenated reformed gas 32 is discharged from the upper portion of the primary chamber 21 into the upper chamber 27.
  • FIG. 6 is a schematic view simply showing the cylindrical tube support structure according to the present embodiment, and is an enlarged view of a Z portion in FIG. 1.
  • FIG. 7 is a view as seen from the AA direction in FIG.
  • the cylindrical tube support structure 40 supports the cylindrical tube 11 with the upper tube plate 13 ⁇ / b> A and the lower tube plate 13 ⁇ / b> B.
  • a lid 42, a bolt (pressing means) 43, and an O-ring pressing member 44 are provided.
  • the upper tube plate 13A and the lower tube plate 13B are provided with a two-step groove portion 46 including a first groove portion 46A and a second groove portion 46B having a larger diameter than the first groove portion 46A around the through hole 30. It has been.
  • first O-rings 47 ⁇ / b> A that contact the inner surfaces of the first groove portions 46 ⁇ / b> A on the upper tube plate 13 ⁇ / b> A and lower tube plate 13 ⁇ / b> B side are loaded in the first groove portions 46 ⁇ / b> A at both ends of the cylindrical tube 11. It has the 1st hollow part 48A and the 2nd hollow part 48B with which the 2nd O-ring 47B which contacts the cylindrical tube 11 side is loaded.
  • the O-ring holder 41 is formed in an annular shape and is inserted into the first groove 46A.
  • the first recess 48A is loaded with the first O-ring 47A, and the lower tube plate 13B between the cylindrical tube 11 and the O-ring holder 41 is sealed in the planar direction.
  • the second recess 48B is provided on the lower inner peripheral side of the O-ring holder 41 and is formed in a triangular cross section.
  • a second O-ring 47B is incorporated in the second recess 48B.
  • the pressing lid 42 is screwed into the wall surface of the second groove 46B and presses the O-ring holder 41 in the axial direction of the cylindrical tube 11.
  • the pressing lid 42 is formed in an annular shape.
  • the bolt 43 is screwed into a slot 49 provided in the pressing lid 42 and presses the O-ring holder 41 and the O-ring pressing member 44 in the axial direction of the cylindrical tube 11 through the pressing lid 42.
  • the bolt 43 may be anything that can be screwed into the slot 49, and for example, a bolt with a lock nut is preferably used.
  • the holding lid 42 is provided with a plurality of slots 49 in the circumferential direction.
  • the O-ring pressing member 44 is provided in the axial direction of the cylindrical tube 11 between the O-ring holder 41 and the pressing lid 42.
  • the O-ring pressing member 44 is provided so as to contact the lower surface of the O-ring holder 41. Therefore, the second O-ring 47B is pressed by the O-ring pressing member 44 at the second recess 48B. As a result, the second O-ring 47B seals between the cylindrical tube 11 and the O-ring holder 41 and seals the cylindrical tube 11 in the axial direction.
  • the first O-ring 47A is inserted into the first recess 48A and the second O-ring 47B is inserted into the second recess 48B.
  • the O-ring holder 41 is placed in the first groove 46A.
  • the pressing lid 42 is screwed into the second groove 46B while the O-ring pressing member 44 is sandwiched between the O-ring holder 41 and the pressing lid 42.
  • the O-ring holder 41 and the O-ring pressing member 44 are pressed in the axial direction of the cylindrical tube 11, and the first O-ring 47A is crimped to the lower tube plate 13B.
  • the second O-ring 47B is crimped to the outer periphery of the cylindrical tube 11.
  • the O-ring holder 41 and the O-ring pressing member 44 press the lower tube plate 13B, and the first O-ring. 47A pressure-bonds to the lower tube plate 13B to further seal the space between the secondary chamber (fluid chamber) 22 and the outside in a fluid tight manner.
  • the second O-ring 47B is further pressure-bonded to the outer periphery of the cylindrical tube 11 so as to further fluid-tightly seal between the secondary chamber (fluid chamber) 22 of the cylindrical tube 11 and the outside.
  • a gap A is formed in the planar direction of the lower tube plate 13B between the first groove portion 46A of the lower tube plate 13B and the O-ring holder 41.
  • a gap B is formed between the inner peripheral surface of the O-ring holder 41 and the outer peripheral surface of the cylindrical tube 11.
  • a gap C is formed in the planar direction between the O-ring pressing member 44 and the pressing lid 42.
  • the O-ring holder 41 and the O-ring pressing member 44 press the lower tube plate 13B in the axial direction of the cylindrical tube 11, and the first The O-ring 47A is crimped to the lower tube plate 13B, and the second O-ring 47B is crimped to the outer periphery of the cylindrical tube 11. Thereby, the space between the secondary chamber (fluid chamber) 22 and the outside is sealed in a fluid-tight manner. Further, by screwing the bolt 43 into the groove 49 of the holding lid 42 in the axial direction of the cylindrical tube 11, the O-ring holder 41 and the O-ring holding member 44 press the lower tube plate 13B, and the first O-ring.
  • the upper tube plate 13A is operated in the same manner. That is, after the cylindrical tube 11 is inserted into the through hole 30 of the upper tube plate 13A, the first O-ring 47A is inserted into the first recess 48A and the second O-ring 47B is inserted into the second recess 48B. The inserted O-ring holder 41 is put into the first groove 46A. Thereafter, while holding the O-ring pressing member 44 between the O-ring holder 41 and the pressing lid 42, the pressing lid 42 is turned in the circumferential direction, and the pressing lid 42 is screwed into the second groove portion 46B. Screw into the plate 13A in the axial direction of the cylindrical tube 11.
  • the O-ring holder 41 and the O-ring pressing member 44 press the upper tube plate 13A in the axial direction of the cylindrical tube 11, and the first O-ring 47A is pressure-bonded to the upper tube plate 13A and the second O-ring. 47B is crimped to the outer periphery of the cylindrical tube 11. Thereby, the space between the secondary chamber (fluid chamber) 22 and the outside is sealed in a fluid-tight manner.
  • the O-ring holder 41 and the O-ring holding member 44 press the upper tube plate 13A by screwing the bolt 43 into the groove 49 of the holding lid 42 in the axial direction, and the first O-ring 47A
  • the upper tube plate 13A is pressure-bonded to further seal the space between the secondary chamber (fluid chamber) 22 and the outside, and the second O-ring 47B is further pressure-bonded to the outer periphery of the cylindrical tube 11 to form the cylindrical tube 11.
  • the secondary chamber (fluid chamber) 22 and the outside are further fluid-tightly sealed.
  • the O-ring holder 41 and the O-ring holding member 44 are pressed toward the upper tube plate 13A and the lower tube plate 13B by the holding lid 42, so that the first O The ring 47A is crimped to the upper tube plate 13A and the lower tube plate 13B. Then, the O-ring holder 41 and the O-ring pressing member 44 are pressed by the bolt 43 through the pressing lid 42 toward the upper tube plate 13A and the lower tube plate 13B, and the first O-ring 47A is connected to the upper tube plate 13A and the lower tube.
  • the second O-ring 47B While being crimped to the plate 13B, the second O-ring 47B is pressed to the cylindrical tube 11 side to crimp the second O-ring 47B to the cylindrical tube 11 side. Thereby, the cylindrical tube 11 can be supported by the upper tube plate 13A and the lower tube plate 13B.
  • the second O-ring 47B is incorporated into a second recess 48B having a triangular cross section provided on the inner periphery of the O-ring holder 41, and is pressed by the O-ring holding member 44. Sealing with the outer periphery. Therefore, with respect to the roundness and diameter tolerance of each cylindrical tube 11, the O-ring holder 41 and the O-ring holder 41 are connected via bolts 43 by the bolts 43 according to the roundness and diameter tolerance of each cylindrical tube 11. The pressure of the O-ring pressing member 44 can be adjusted to cope with the elasticity of the second O-ring 47B. For this reason, the cylindrical tube 11 can be stably sealed in the axial direction without being affected by the roundness and diameter tolerance of the cylindrical tube 11.
  • the pressing of the O-ring holder 41 and the O-ring pressing member 44 is adjusted by the bolt 43 via the pressing lid 42, and the first O-ring 47 ⁇ / b> A is adjusted. Since it is possible to cope with elasticity, the upper tube plate 13A and the lower tube plate 13B can be stably sealed in the plane direction without being affected by the tolerance of the roundness of the cylindrical tube 11.
  • the cylindrical tube 11 is supported by the upper tube plate 13A and the lower tube plate 13B without being affected by the straightness, roundness, diameter tolerance, etc. of the cylindrical tube 11 installed in the shell portion 12, and Since the occurrence of defective sealing can be suppressed, the sealing performance can be improved.
  • the cylindrical tube 11 can be stably supported inside the vessel. This makes it possible to reliably and stably seal the space between the secondary chamber (fluid chamber) 22 of the cylindrical tube 11 and the outside.
  • the O-ring holder 41, the pressing lid 42 and the O-ring pressing member 44 can be attached to and disassembled from the upper tube plate 13A and the lower tube plate 13B as a set, assembly and disassembly operations can be performed. It can be done easily.
  • the tolerance of the roundness of the cylindrical tube 11 can be dealt with by the elasticity of the second O-ring 47B, the tolerance of the roundness of the cylindrical tube 11 is not affected by the tolerance of the roundness of the cylindrical tube 11 and is stable. Axial sealing can be performed.
  • the holding lid 42 is configured so that the inner diameter of the portion into which the bolt 43 is inserted substantially coincides with the outer periphery of the cylindrical tube 11, but the present embodiment is not limited to this.
  • the lower tube plate 13 ⁇ / b> B may be provided with a presser lid 51 in which the inner diameter of the portion where the bolt 43 is inserted extends inward from the outer periphery of the cylindrical tube 11.
  • the O-ring holder 41 and the O-ring pressing member 44 are provided between the inner periphery of the presser lid 42 and the upper tube plate 13A and the lower tube plate 13B.
  • the present invention is not limited to this, and as shown in FIG. 9, only the O-ring holder 41 may be provided between the inner periphery of the pressing lid 42 and the upper tube plate 13A and the lower tube plate 13B.
  • the present embodiment is not limited to this, and the cylindrical tube support structure 40 according to the present embodiment includes:
  • the present invention can be applied as a cylindrical tube support structure and a sealing method used for a container having a cylindrical tube requiring replacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gasket Seals (AREA)

Abstract

 本発明に係る円筒管の支持構造40は、内部に一次室21を形成すると共に両端部がシールされた円筒管11を、シェル部の両端部に設けられた上管板、下管板13Bで支持する円筒管の支持構造において、上管板、下管板13Bには、第1の溝部46Aと第2の溝部46Bとが設けられ、第1の溝部46Aと接触する第1のOリング47Aが装填される第1の窪み部48Aと、円筒管11と接触する第2のOリング47Bが装填される第2の窪み部48Bとを有するOリングホルダ41と、第2の溝部46Bと螺合され、Oリングホルダ41を円筒管11の軸方向に押圧する押さえ蓋42と、押さえ蓋42の溝穴49に螺合され、Oリングホルダ41を円筒管11の軸方向に押圧するボルト43と、を有する。

Description

円筒管の支持構造及び円筒管のシール方法
 本発明は、例えば水素セパレータの分離膜のような円筒管を含む容器に使用される円筒管の支持構造に関する。
 水素は工業的には、天然ガス等の化石燃料を水蒸気や酸素と反応させた後、吸着剤による分離や分離膜を用いての分離により精製される。
 化石燃料の改質ガスは、水素の他、一酸化炭素、二酸化炭素、水及びメタン等の炭化水素を含んでおり、水素を選択的に分離することのできる分離膜により水素を選択分離する。
 ベッセルは、一方の端に水素を含む改質ガスが供給される原料ガス供給口を有し、もう一方の端には水素が除かれたガスを排出するオフガス排出口を有すると共に別途分離した水素を排出する水素排出口を有する構造となっている。また、膜分離装置内の分離膜は、水素を含むガスが透過する上下に延びて設けられており、二次側室の上下両面の管板においてOリングを介して挟み込まれることにより保持されている。
 分離膜を圧力容器内に備えた膜分離装置では、水素を含む改質ガスを分離膜内の一次側室に原料ガス供給口側から導入することで、水素を含む改質ガスが上昇するにつれて分離膜を収納する減圧下の二次側室に改質ガス中の水素は移動され、水素排出口から精製された水素が得られる。
 分離膜を備えた円筒管を内蔵するベッセルを組み立てる際、まずシェル部を横置きにしてシェル部内に円筒管を複数充填し、円筒管を備えたシェル部の一端側に管板を水平方向に連結して円筒管を下部管板の貫通孔に挿入して円筒管の一端側を下部管板で支持する。その後、下部管板に下部鏡板を取り付ける。その後、シェル部、下部管板及び下部鏡板を垂直に立ててシェル部の他端側に上部管板を垂直方向に連結して円筒管を上部管板の貫通孔に挿入して円筒管の他端側を上部管板で支持する。その後、上部管板に上部鏡板を取り付ける。これにより、複数の円筒管を内蔵するベッセルが組み立てられる。
 従来のベッセルの組み立て方法では、円筒管の上部管板及び下部管板への挿入が困難である。また、円筒管の一端側を下部管板で支持した状態で水平方向から垂直方向に立てた場合、円筒管に設けた分離膜が破損する虞がある。
 そのため、こうした事情も考慮しつつベッセルの組み立ての作業性をより向上させるため、ベッセルを組み立てる際、シェル部を垂直に立てた状態でシェル部の両端に設けられる上部管板及び下部管板で円筒管を支持する方法が検討されている。
 その際、継手部材内に挿入される管を支持する方法として、例えば、継手部材の上端に管と継手部材との間に金属製リング及びOリングを設けると共に、継手部材の上端を覆うナットを設け、継手部材の上端に締め込まれたナットが金属製リングを介してOリングを継手部材の内部に形成されたテーパ部に押圧してOリングの内周面側が管を圧接して継手部材に垂直に挿入した管をOリングを用いて支持する方法が提案されている(例えば、特許文献2参照)。
特開平7-124444号公報 特開2003-294145号公報
 しかしながら、上述のような特許文献2に記載されているシール方法を、ベッセルの内部に内蔵する円筒管に適用しても円筒管は大きい管であることから、円筒管を管板で支持し、ベッセル内をシールするためには円筒管には大きな力を加える必要がある。そのため、手締めで円筒管をベッセルの内部に安定して支持してシールするのは困難である。
 本発明は、前記問題に鑑み、円筒管をベッセルの内部に安定して支持することができる円筒管の支持構造及び円筒管のシール方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、シェル部の内部に設けられ、内部に流体の流通通路を形成すると共に、両端部がシールされた円筒管を、シェル部の両端部に設けられ、前記円筒管が挿出可能な貫通孔を有する管板で支持する円筒管の支持構造において、前記管板には、前記貫通孔の周囲に、第1の溝部と該第1の溝部よりも大径の第2の溝部とからなる2段の溝部が設けられ、前記円筒管の両端部の前記第1の溝部に、前記管板側の前記第1の溝部内面と接触する第1のOリングが装填される第1の窪み部と、前記円筒管側と接触する第2のOリングが装填される第2の窪み部とを有するOリングホルダと、前記第2の溝部の壁面と螺合され、前記Oリングホルダを前記円筒管の軸方向に押圧する押さえ蓋と、前記押さえ蓋に設けられた溝穴に螺合され、前記Oリングホルダを前記押さえ蓋を介して前記円筒管の軸方向に押圧する押圧手段と、を有することを特徴とする円筒管の支持構造である。
 第2の発明は、第1の発明において、前記Oリングホルダと前記押さえ蓋との間の前記円筒管の軸方向にOリング押え部材が設けられることを特徴とする円筒管の支持構造である。
 第3の発明は、シェル部の内部に設けられ、内部に流体の流通通路を形成すると共に、両端部がシールされた円筒管を、シェル部の両端部に設けられ、前記円筒管が挿出可能な貫通孔を有する管板で支持する円筒管のシール方法において、前記管板の前記貫通孔の周囲に、第1の溝部と該第1の溝部よりも大径の第2の溝部とからなる2段の溝部が設けられ、前記円筒管の両端部の前記第1の溝部に、前記管板側の前記第1の溝部内面と接触する第1のOリングが装填される第1の窪み部と前記円筒管側と接触する第2のOリングが装填される第2の窪み部とを有するOリングホルダと、前記第2の溝部の壁面と螺合され、前記Oリングホルダを前記円筒管の軸方向に押圧する押さえ蓋と、前記押さえ蓋に設けられた溝穴に螺合され、前記Oリングホルダを前記押さえ蓋を介して前記円筒管の軸方向に押圧する押圧手段と、が設けられ、前記押さえ蓋により前記Oリングホルダを前記管板側に押圧して前記第1のOリングを前記管板に圧着し、前記押圧手段により前記押さえ蓋を介して前記Oリングホルダを前記管板側に押圧して前記第1のOリングを前記管板に圧着させると共に、前記第2のOリングを前記円筒管側に押圧して前記第2のOリングを前記円筒管側に圧着させ、前記円筒管を前記管板で支持してシールすることを特徴とする円筒管のシール方法である。
 第4の発明は、第3の発明において、前記Oリングホルダと前記押さえ蓋との間の前記円筒管の軸方向にOリング押え部材を設けることを特徴とする円筒管のシール方法である。
 本発明によれば、円筒管をベッセルの内部に安定して支持することができる。
図1は、膜分離装置を示す要部断面図である。 図2は、円筒管の部分断面図である。 図3は、図2のA-A断面図である。 図4は、円筒管の部分断面図である。 図5は、図4のA-A断面図である。 図6は、本発明の実施形態に係る円筒管の支持構造を簡略に示す概略図である。 図7は、図6中のA-A方向から見た図である。 図8は、本発明の実施形態に係る円筒管の支持構造の他の構成を簡略に示す図である。 図9は、本発明の実施形態に係る円筒管の支持構造の他の構成を簡略に示す図である。
 以下、本発明につき、図面を参照しつつ詳細に説明する。なお、本発明は下記の発明を実施するための形態(以下、実施形態という)により限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
 図1は、本実施形態に係る円筒管の支持構造が適用される膜分離装置の要部断面図である。図1に示すように、本実施形態に係る円筒管の支持構造が適用される膜分離装置10は、円筒管11、シェル部12、上管板13A、下管板13B、上部鏡板14A及び下部鏡板14Bを有している。なお、シェル部12、上管板13A、下管板13B、上部鏡板14A及び下部鏡板14Bにより圧力容器(ベッセル)が構成されている。
 円筒管11はシェル部12の内部に設けられている。円筒管11の内部に流体を通すための流体の一次室(流体通路)21が形成されている。一次室21は、円筒管11の内部に流体の流路として上管板13A側から下管板13B側に向かって上下に延びている。円筒管11の外周とシェル部12の内周との間には二次室(流体室)22が形成されている。円筒管11としては、例えば、セラミックス等の材料を用いて形成され、多孔質で形成されている。また、円筒管11の両端は管板(上管板13A、下管板13B)で支持され、シールされている。
 円筒管11は、水素分離膜部23を含んで構成されている。水素分離膜部23は、流体をオフガスと水素とに分離するものである。本実施形態においては、4つの水素分離膜部23がシェル部12内に平行に設置されている。水素分離膜部23は、様々な形態のものが挙げられ、市販されている。水素分離膜部23としては、例えば、一次室(流体通路)21が1つだけ設けられ、水素分離膜部23が膜で円筒状に形成されたチューブラ型のものや、一次室(流体通路)21が複数設けられ、水素分離膜部23が円柱状に形成されたモノリス型のものなどが挙げられる。なお、水素分離膜部23がチューブラ型やモノリス型のような形態の水素分離膜の場合においては、水素分離膜の内側である一次室(流体通路)21を、膜の一次側または供給側といい、水素分離膜の外側を、膜の二次側または透過側という。
 水素分離膜部23がチューブラ型の場合について説明する。図2は、円筒管11の部分断面図であり、図3は、図2のA-A断面図である。図2、3に示すように、チューブラ型の水素分離膜部23Aは、水素分離膜部23Aが円筒管11の内壁に円筒状に形成され、内部に一次室(流体通路)21を1つだけ有するものである。チューブラ型の円筒管11としては、例えば外径が10mmであり内径が7mmであるもの、外径が30mmであり内径が22mmであるものなどを用いることができる。チューブラ型の円筒管11の長さは、所望の膜性能に応じて適宜決定することができるが、例えば150mmから1mのものを用いることができる。
 水素分離膜部23がモノリス型の場合について説明する。図4は、円筒管11の部分断面図であり、図5は、図4のA-A断面図である。図4、5に示すように、モノリス型の水素分離膜部23Bは、円柱状の水素分離膜部23Bに流体を通すための上下に延びる一次室(流体通路)21を複数設けたものである。
 モノリス型の水素分離膜部23Bとしては、例えば直径が30mmの円柱状の水素分離膜に対して、直径が3mmの穴を30個設けた水素分離膜部、直径が150~200mmの円柱状の水素分離膜部に対して、直径が2mmの穴を200個設けた水素分離膜部などを用いることができる。モノリス型の円筒管11の長さは、所望の膜性能に応じて適宜決定することができるが、例えば150mmから1mのものを用いることができる。
 水素分離膜部23を構成する水素分離膜の材質としては、無機材でナノオーダーまたはそれより小さい孔径が精密に制御された微細孔多孔膜やセラミック表面にパラジウムをめっきした分離膜を用いることができる。微細孔多孔膜は、小分子ガスを通し、大分子ガスを排除する分子ふるい効果を発現し、その透過係数は温度上昇と共に増加する活性化拡散の挙動を示す。
 水素分離膜部23の形態、サイズ及び材質は、使用目的に応じて適宜選択することができる。また、本実施形態においては、4つの水素分離膜部23をシェル部12内に備えているが、膜分離装置10は、これに限定されるものではなく、シェル部12内に複数の水素分離膜部23を並列に複数備えるものであってもよい。
 このような水素分離膜部23A、23Bは、好ましくは流路の方向が鉛直方向と平行になるように設置することが好ましい。
 円筒管11は、下端側に流体の入口が設けられ、上端側に出口が設けられている。そして、水素分離膜部23の鉛直方向下側の入口から流体を供給し、鉛直方向上側の出口から流体を排出する。その際、流体中の水素は水素分離膜部23の側面から、透過側に引き抜かれる。これにより、水素分離膜部23の出口側からオフガスが回収される。
 本実施形態においては、水素分離膜部23が流体中に含まれる水素を分離し、水素の透過性能を向上させるため、シェル部12の内外の何れかに二次室(流体室)22内を減圧するための減圧装置、二次室(流体室)22内を加温するための加熱手段などを1つ以上設けるようにしてもよい。
 減圧装置としては、例えば、真空ポンプなどが挙げられる。シェル部12の圧力が、例えば、10~500torr程度となるように減圧することが好ましい。水素分離膜部23の供給側である一次室21と透過側である二次室22との差圧により、水素の透過性能を向上させることができる。
 シェル部12は、その両端に上フランジ24A、下フランジ24Bを有する。また、上フランジ24Aの上側には上管板13Aが設けられ、下フランジ24Bの下側には下管板13Bが設けられている。
 上部鏡板14Aは、上管板13Aのシェル部12側とは反対側に設けられている。下部鏡板14Bは、下管板13Bのシェル部12側とは反対側に設けられている。上部鏡板14A及び上部鏡板14Bは、その両端に上フランジ25A、下フランジ25Bを有する。
 上部鏡板14Aと上管板13Aとの間には上部室27が形成され、下部鏡板14Bと下管板13Bとの間には下部室28が形成されている。
 上管板13A、下管板13Bは、シェル部12の両端に設けられ、円筒管11が挿出可能な貫通孔30を有するものである。
 上管板13Aは、シェル部12の上フランジ24Aと上部鏡板14Aの上フランジ25Aとの間に挟み込まれ、ボルト29を用いて3枚締めで締付けられている。下管板13Bは、シェル部12の下フランジ24Bと下部鏡板14Bの下フランジ25Bとの間に挟み込まれ、ボルト29を用いて3枚締めで締付けられている。これにより、膜分離装置10が組み立てられている。
 膜分離装置10では、水素、一酸化炭素、二酸化炭素、メタン等の炭化水素及び水の混合物である改質ガス31が下部室28に導入される。改質ガス31の水素濃度は、例えば、水素濃度が約50vol%の改質ガスである。その後、改質ガス31は円筒状の水素分離膜部23内の一次室21に供給され、シェル部12の下部側から上部側に流れる。その際、改質ガス31が一次室内21を上昇するにつれて、水素分離膜部23を収納する減圧下の二次室22に改質ガス31中の水素は移動する。これにより、脱水素された改質ガス32が一次室21の上部から上部室27内に排出される。
 次に、膜分離装置内に設けられた本実施形態に係る円筒管の支持構造について説明する。図6は、本実施形態に係る円筒管の支持構造を簡略に示す概略図であり、図1のZ部分の拡大図である。図7は、図6中のA-A方向から見た図である。
 図6、7に示すように、本実施形態に係る円筒管の支持構造40は、円筒管11を、上管板13A、下管板13Bで支持するものであり、Oリングホルダ41と、押さえ蓋42と、ボルト(押圧手段)43と、Oリング押え部材44とを有する。
 上管板13A、下管板13Bには、貫通孔30の周囲に、第1の溝部46Aと第1の溝部46Aよりも大径の第2の溝部46Bとからなる2段の溝部46が設けられている。
 Oリングホルダ41は、円筒管11の両端部の第1の溝部46Aに、上管板13A、下管板13B側の第1の溝部46A内面と接触する第1のOリング47Aが装填される第1の窪み部48Aと円筒管11側と接触する第2のOリング47Bが装填される第2の窪み部48Bとを有するものである。
 Oリングホルダ41は、環状に形成されており、第1の溝部46Aに挿入されている。第1の窪み部48Aには第1のOリング47Aが装填され、円筒管11とOリングホルダ41との間の下管板13Bの平面方向のシールを行う。
 また、第2の窪み部48Bは、Oリングホルダ41の下部内周側に設けられ、断面三角形状に形成されている。第2の窪み部48B内には第2のOリング47Bが組み込まれている。
 押さえ蓋42は、第2の溝部46Bの壁面と螺合され、Oリングホルダ41を円筒管11の軸方向に押圧するものである。押さえ蓋42は、環状に形成されている。
 ボルト43は、押さえ蓋42に設けられた溝穴49に螺合され、Oリングホルダ41及びOリング押え部材44を押さえ蓋42を介して円筒管11の軸方向に押圧するものである。ボルト43は、溝穴49にねじ込むことができるものであればよく、例えば、ロックナット付ボルトが好適に用いられる。押さえ蓋42は、円周方向に複数の溝穴49が設けられている。ボルト43を下管板13Bの各溝穴49にねじ込むことにより、Oリングホルダ41及びOリング押え部材44を下管板13Bに押圧することができる。
 Oリング押え部材44は、Oリングホルダ41と押さえ蓋42との間の円筒管11の軸方向に設けられるものである。Oリング押え部材44は、Oリングホルダ41の下面に当接するように設けられている。そのため、第2のOリング47Bは、第2の窪み部48BでOリング押え部材44により押え付けられる。これにより、第2のOリング47Bは、円筒管11とOリングホルダ41との間をシールし、円筒管11の軸線方向のシールを行う。
 下管板13Bの貫通孔30に円筒管11を挿入した後、第1のOリング47Aを第1の窪み部48Aに挿入すると共に第2のOリング47Bを第2の窪み部48Bに挿入したOリングホルダ41を第1の溝部46Aに入れる。その後、Oリング押え部材44をOリングホルダ41と押さえ蓋42との間に挟みながら、押さえ蓋42を第2の溝部46Bに螺合させる。その後、押さえ蓋42を円周方向に回すことにより、Oリングホルダ41及びOリング押え部材44は円筒管11の軸方向に押圧され、第1のOリング47Aは下管板13Bに圧着する。また、第2のOリング47Bは円筒管11の外周と圧着する。
 その後、押さえ蓋42の溝穴49にボルト43を入れて円筒管11の軸方向にねじ込むことにより、Oリングホルダ41及びOリング押え部材44は下管板13Bを押圧し、第1のOリング47Aが下管板13Bに圧着して二次室(流体室)22と外部との間を更に流体密にシールする。また、第2のOリング47Bは円筒管11の外周に更に圧着して円筒管11の二次室(流体室)22と外部との間を更に流体密にシールする。
 このとき、下管板13Bの第1の溝部46AとOリングホルダ41との間の下管板13Bの平面方向には隙間Aが形成される。また、Oリングホルダ41の内周面と円筒管11の外周面との間には隙間Bが形成される。また、Oリング押え部材44と押さえ蓋42との間の平面方向には隙間Cが形成される。
 すなわち、押さえ蓋42を下管板13Bに円筒管11の軸方向にねじ込むことにより、Oリングホルダ41及びOリング押え部材44は下管板13Bを円筒管11の軸方向に押圧し、第1のOリング47Aが下管板13Bに圧着すると共に、第2のOリング47Bが円筒管11の外周と圧着する。これにより、二次室(流体室)22と外部との間が流体密にシールされることになる。そして、更に、ボルト43を押さえ蓋42の溝穴49に円筒管11の軸方向にねじ込むことにより、Oリングホルダ41及びOリング押え部材44は下管板13Bを押圧し、第1のOリング47Aが下管板13Bに圧着して二次室(流体室)22と外部との間を更に流体密にシールすると共に、第2のOリング47Bは円筒管11の外周に更に圧着して円筒管11の二次室(流体室)22と外部との間を更に流体密にシールする。
 また、上管板13Aも同様に操作される。すなわち、上管板13Aの貫通孔30に円筒管11を挿入した後、第1のOリング47Aを第1の窪み部48Aに挿入すると共に第2のOリング47Bを第2の窪み部48Bに挿入したOリングホルダ41を第1の溝部46Aに入れる。その後、Oリング押え部材44をOリングホルダ41と押さえ蓋42との間に挟みながら、押さえ蓋42を円周方向に回して、押さえ蓋42を第2の溝部46Bに螺合させ、上管板13Aに円筒管11の軸方向にねじ込む。これにより、Oリングホルダ41及びOリング押え部材44は上管板13Aを円筒管11の軸方向に押圧し、第1のOリング47Aが上管板13Aに圧着すると共に、第2のOリング47Bが円筒管11の外周と圧着する。これにより、二次室(流体室)22と外部との間が流体密にシールされることになる。その後、ボルト43を押さえ蓋42の溝穴49に円筒管11の軸方向にねじ込むことにより、Oリングホルダ41及びOリング押え部材44は上管板13Aを押圧し、第1のOリング47Aが上管板13Aに圧着して二次室(流体室)22と外部との間を更に流体密にシールすると共に、第2のOリング47Bは円筒管11の外周に更に圧着して円筒管11の二次室(流体室)22と外部との間を更に流体密にシールする。
 よって、本実施形態に係る円筒管の支持構造40によれば、押さえ蓋42によりOリングホルダ41及びOリング押え部材44が上管板13A、下管板13B側に押圧されて第1のOリング47Aを上管板13A、下管板13Bに圧着させる。そして、ボルト43により押さえ蓋42を介してOリングホルダ41及びOリング押え部材44が上管板13A、下管板13B側に押圧されて第1のOリング47Aを上管板13A、下管板13Bに圧着させると共に、第2のOリング47Bが円筒管11側に押圧して第2のOリング47Bを円筒管11側に圧着させる。これにより、円筒管11を上管板13A、下管板13Bで支持することができる。
 また、Oリングホルダ41の内周に設けた断面三角形状の第2の窪み部48B内に第2のOリング47Bを組み込み、Oリング押え部材44で押圧し、Oリングホルダ41と円筒管11の外周とのシールを行っている。そのため、個々の円筒管11の真円度、直径の公差に対しては、個々の円筒管11の真円度、直径の公差に応じてボルト43により押さえ蓋42を介してOリングホルダ41及びOリング押え部材44の押圧を調整し、第2のOリング47Bの弾性によって対処できる。このため、円筒管11の真円度、直径の公差に影響されることなく、安定して円筒管11の軸線方向のシールを行うことができる。
 また、個々の円筒管11の長さ方向の公差に対しては、ボルト43により押さえ蓋42を介してOリングホルダ41及びOリング押え部材44の押圧を調整し、第1のOリング47Aの弾性によって対処できるため、円筒管11の真円度の公差に影響されることなく、安定して上管板13A、下管板13Bの平面方向のシールを行うことができる。
 そのため、シェル部12の内部に設置された円筒管11の真直度、真円度及び直径公差等による影響を受けることなく、円筒管11を上管板13A、下管板13Bで支持すると共に、シール不良の発生を抑制することができるため、シール性能を向上させることができる。
 このように、本実施形態に係る円筒管の支持構造40によれば、円筒管11をベッセルの内部に安定して支持することができる。これにより、円筒管11の二次室(流体室)22と外部との間を確実に安定してシールすることが可能となる。
 また、Oリングホルダ41、押さえ蓋42及びOリング押え部材44は一組にして上管板13A、下管板13Bへの取り付け及び分解をすることが可能であるので、組立作業及び分解作業を容易に行うことができる。
 また、円筒管11の真円度の公差については、第2のOリング47Bの弾性によって対処できるため、円筒管11の真円度の公差に影響されることなく、安定して円筒管11の軸線方向のシールを行うことができる。
 なお、本実施形態においては、押さえ蓋42はボルト43が挿入される箇所の内径を円筒管11の外周と略一致するようにしているが、本実施形態はこれに限定されるものではなく、図8に示すように、下管板13Bには、ボルト43が挿入される箇所の内径が円筒管11の外周より内側に伸びた押さえ蓋51を用いるようにしてもよい。下管板13Bに押さえ蓋51を用いることで、押さえ蓋51で円筒管11をより安定して保持することができる。
 また、本実施形態においては、押さえ蓋42の内周と上管板13A、下管板13Bとの間にOリングホルダ41及びOリング押え部材44を設けるようにしているが、本実施形態はこれに限定されるものではなく、図9に示すように、押さえ蓋42の内周と上管板13A、下管板13Bとの間にOリングホルダ41のみを設けるようにしてもよい。
 また、本実施形態においては、分離される被処理流体として改質ガスの場合について説明したが、本実施形態はこれに限定されるものではなく、本実施形態に係る円筒管の支持構造40は、取替えを要する円筒管を有する容器などに用いられる円筒管の支持構造及びシール方法として適用できる。
 10 膜分離装置
 11 円筒管
 12 シェル部
 13A 上管板
 13B 下管板
 14A 上部鏡板
 14B 下部鏡板
 21 一次室(流体通路)
 22 二次室(流体室)
 23、23A、23B 水素分離膜部
 24A、25A 上フランジ
 24B、25B 下フランジ
 27 上部室 
 28 下部室
 29 ボルト
 30 貫通孔
 31 改質ガス
 32 脱水素された改質ガス
 40 円筒管の支持構造
 41 Oリングホルダ
 42、51 押さえ蓋
 43 ボルト(押圧手段)
 44 Oリング押え部材
 46 溝部
 46A 第1の溝部
 46B 第2の溝部
 47A 第1のOリング
 47B 第2のOリング
 48A 第1の窪み部
 48B 第2の窪み部
 49 溝穴
 A、B、C 隙間

Claims (4)

  1.  シェル部の内部に設けられ、内部に流体の流通通路を形成すると共に、両端部がシールされた円筒管を、シェル部の両端部に設けられ、前記円筒管が挿出可能な貫通孔を有する管板で支持する円筒管の支持構造において、
     前記管板には、前記貫通孔の周囲に、第1の溝部と該第1の溝部よりも大径の第2の溝部とからなる2段の溝部が設けられ、
     前記円筒管の両端部の前記第1の溝部に、前記管板側の前記第1の溝部内面と接触する第1のOリングが装填される第1の窪み部と、前記円筒管側と接触する第2のOリングが装填される第2の窪み部とを有するOリングホルダと、
     前記第2の溝部の壁面と螺合され、前記Oリングホルダを前記円筒管の軸方向に押圧する押さえ蓋と、
     前記押さえ蓋に設けられた溝穴に螺合され、前記Oリングホルダを前記押さえ蓋を介して前記円筒管の軸方向に押圧する押圧手段と、
    を有することを特徴とする円筒管の支持構造。
  2.  請求項1において、
     前記Oリングホルダと前記押さえ蓋との間の前記円筒管の軸方向にOリング押え部材が設けられることを特徴とする円筒管の支持構造。
  3.  シェル部の内部に設けられ、内部に流体の流通通路を形成すると共に、両端部がシールされた円筒管を、シェル部の両端部に設けられ、前記円筒管が挿出可能な貫通孔を有する管板で支持する円筒管のシール方法において、
     前記管板の前記貫通孔の周囲に、第1の溝部と該第1の溝部よりも大径の第2の溝部とからなる2段の溝部が設けられ、
     前記円筒管の両端部の前記第1の溝部に、前記管板側の前記第1の溝部内面と接触する第1のOリングが装填される第1の窪み部と前記円筒管側と接触する第2のOリングが装填される第2の窪み部とを有するOリングホルダと、
     前記第2の溝部の壁面と螺合され、前記Oリングホルダを前記円筒管の軸方向に押圧する押さえ蓋と、
     前記押さえ蓋に設けられた溝穴に螺合され、前記Oリングホルダを前記押さえ蓋を介して前記円筒管の軸方向に押圧する押圧手段と、
    が設けられ、
     前記押さえ蓋により前記Oリングホルダを前記管板側に押圧して前記第1のOリングを前記管板に圧着し、
     前記押圧手段により前記押さえ蓋を介して前記Oリングホルダを前記管板側に押圧して前記第1のOリングを前記管板に圧着させると共に、前記第2のOリングを前記円筒管側に押圧して前記第2のOリングを前記円筒管側に圧着させ、
     前記円筒管を前記管板で支持してシールすることを特徴とする円筒管のシール方法。
  4.  請求項3において、
     前記Oリングホルダと前記押さえ蓋との間の前記円筒管の軸方向にOリング押え部材を設けることを特徴とする円筒管のシール方法。
PCT/JP2012/081043 2011-12-07 2012-11-30 円筒管の支持構造及び円筒管のシール方法 WO2013084804A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268306A JP2013119914A (ja) 2011-12-07 2011-12-07 円筒管の支持構造及び円筒管のシール方法
JP2011-268306 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084804A1 true WO2013084804A1 (ja) 2013-06-13

Family

ID=48574173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081043 WO2013084804A1 (ja) 2011-12-07 2012-11-30 円筒管の支持構造及び円筒管のシール方法

Country Status (2)

Country Link
JP (1) JP2013119914A (ja)
WO (1) WO2013084804A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089854A (ja) * 2015-11-17 2017-05-25 三菱重工業株式会社 バルブブロック、流体機械及び再生可能エネルギー発電装置
CN106804105A (zh) * 2014-10-22 2017-06-06 陶氏环球技术有限责任公司 包含通过可旋转保持环紧固的过滤模块的过滤组合件
CN115466639A (zh) * 2022-11-02 2022-12-13 中国华能集团清洁能源技术研究院有限公司 脱氢变换炉

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592447B1 (ko) * 2014-06-11 2016-02-11 대모 엔지니어링 주식회사 하부밀폐 부재를 구비한 유압브레이커
US9303924B1 (en) * 2014-10-14 2016-04-05 Neptune-Benson, Llc Multi-segmented tube sheet
KR101690517B1 (ko) * 2016-03-25 2016-12-28 양경모 반도체 제조 설비용 히팅장치
US11538598B2 (en) * 2018-10-29 2022-12-27 Ge-Hitachi Nuclear Energy Americas Llc Flow restricting slip joint clamps and methods for use in a nuclear reactor jet pump
EP4085015A4 (en) 2020-01-02 2024-03-06 Entegris Inc BULK CONTAINER WITH STEEL OVERWRAPPING
CN112503263B (zh) * 2020-11-27 2022-09-20 中国航发四川燃气涡轮研究院 一种穿过机匣管路的防转结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094524A (ja) * 1973-12-12 1975-07-28
JPS56106041U (ja) * 1980-01-16 1981-08-18
JP2003269659A (ja) * 2002-03-12 2003-09-25 Corona Corp 貯湯缶体の熱交換器配管接続構造
WO2009118934A1 (ja) * 2008-03-25 2009-10-01 日立造船株式会社 分離膜モジュール
JP2009540221A (ja) * 2006-02-13 2009-11-19 キム ソク−ユン 断熱パイプの固定装置
WO2010137141A1 (ja) * 2009-05-27 2010-12-02 三菱重工業株式会社 円筒体のシール構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094524A (ja) * 1973-12-12 1975-07-28
JPS56106041U (ja) * 1980-01-16 1981-08-18
JP2003269659A (ja) * 2002-03-12 2003-09-25 Corona Corp 貯湯缶体の熱交換器配管接続構造
JP2009540221A (ja) * 2006-02-13 2009-11-19 キム ソク−ユン 断熱パイプの固定装置
WO2009118934A1 (ja) * 2008-03-25 2009-10-01 日立造船株式会社 分離膜モジュール
WO2010137141A1 (ja) * 2009-05-27 2010-12-02 三菱重工業株式会社 円筒体のシール構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106804105A (zh) * 2014-10-22 2017-06-06 陶氏环球技术有限责任公司 包含通过可旋转保持环紧固的过滤模块的过滤组合件
JP2017089854A (ja) * 2015-11-17 2017-05-25 三菱重工業株式会社 バルブブロック、流体機械及び再生可能エネルギー発電装置
CN115466639A (zh) * 2022-11-02 2022-12-13 中国华能集团清洁能源技术研究院有限公司 脱氢变换炉

Also Published As

Publication number Publication date
JP2013119914A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2013084804A1 (ja) 円筒管の支持構造及び円筒管のシール方法
JP5593000B2 (ja) 流体分離装置および混合流体の選択分離方法
CN107249718B (zh) 分离膜组件及其修补方法
JP2009226374A (ja) 分離膜モジュール
KR102549691B1 (ko) 가스 분리 디바이스
JP7459792B2 (ja) 分離膜モジュール
JP2008221177A (ja) 脱水用膜分離装置
JP2022093693A (ja) 分離膜モジュール
JP5250106B2 (ja) 円筒体のシール構造
WO2012157526A1 (ja) 分離膜モジュールにおける分離膜エレメントの取付装置
JP6467982B2 (ja) 分離膜モジュール
JP2023063385A (ja) 分離膜モジュール
JP6252377B2 (ja) 多管式分離膜モジュール
JP6682905B2 (ja) 分離膜モジュール
JP2011131148A (ja) 分離膜装置
JP2016155095A (ja) 分離膜モジュール
JP2016153115A (ja) 分離膜モジュール及び管状分離膜接続構造体
JP5135854B2 (ja) シェルフィード型ガス分離膜モジュール
JP2020049410A (ja) 分離膜モジュール
RU73339U1 (ru) Биполярный электролизер фильтр-прессного типа
JP2014111239A (ja) 水素分離装置
JP2004321867A (ja) 水素透過膜構造体および水素精製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856060

Country of ref document: EP

Kind code of ref document: A1