WO2013084659A1 - Radiography device - Google Patents

Radiography device Download PDF

Info

Publication number
WO2013084659A1
WO2013084659A1 PCT/JP2012/079020 JP2012079020W WO2013084659A1 WO 2013084659 A1 WO2013084659 A1 WO 2013084659A1 JP 2012079020 W JP2012079020 W JP 2012079020W WO 2013084659 A1 WO2013084659 A1 WO 2013084659A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image
subject
grating
ray
Prior art date
Application number
PCT/JP2012/079020
Other languages
French (fr)
Japanese (ja)
Inventor
温之 橋本
村越 大
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013084659A1 publication Critical patent/WO2013084659A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a radiation imaging apparatus.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In general X-ray imaging, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector.
  • an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity.
  • a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image (hereinafter referred to as a G1 image) that exhibits a periodic intensity distribution due to the Talbot interference effect.
  • a G1 image self-image
  • the moiré fringes generated by the superposition of the G1 image and the second diffraction grating are detected, and the phase of the subject is analyzed by analyzing the modulation of the periodic pattern appearing in the image corresponding to the moire fringes.
  • a fringe scanning method is known as a method for analyzing a periodic pattern appearing in an image.
  • the second diffraction grating is arranged with respect to the first diffraction grating in a direction substantially parallel to the plane of the first diffraction grating and substantially parallel to the grating pitch direction of the first diffraction grating.
  • the X-ray imaging apparatuses described in Patent Documents 1 and 2 support an X-ray source, a first diffraction grating, a second diffraction grating, a detector, and a subject table arranged in a vertical direction by an arm member.
  • the subject table is arranged between the X-ray source and the first diffraction grating, or between the first diffraction grating and the second diffraction grating.
  • the phase derivative acquired by the fringe scanning method is related to the grating period direction of the first diffraction grating, and the phase contrast image obtained based on this phase derivative includes each object of the subject that intersects the grating period direction.
  • the edge of the part is depicted, and in particular, the edge substantially perpendicular to the lattice period direction is clearly depicted. In other words, the arrangement of the subject is restricted by the lattice period direction.
  • the region of interest of the subject When the subject is photographed under the above conditions, the region of interest of the subject often overlaps the non-interest region.
  • cartilage of a joint such as an interphalangeal joint, an elbow joint, or a knee joint
  • these regions often overlap with a bone that is a non-region of interest. This is because the joint gap where the cartilage exists does not necessarily exist in a direction perpendicular to the long axis direction of the bone.
  • the region of interest overlaps with the non-region of interest, the non-region of interest not only becomes a shadow shadow, but bones that are generally hard tissue greatly attenuate X-rays, making it difficult to obtain a clear phase contrast image. .
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a radiation imaging apparatus capable of obtaining a clear phase contrast image by causing radiation to enter a subject from an appropriate direction.
  • a radiation irradiation unit a first grating having a periodic structure in at least one direction, and a detection unit including a radiation image detector, wherein the first grating is caused by radiation passing through the first grating.
  • a radiographic image including a periodic intensity distribution is formed, and the detection unit detects the radiographic image to acquire radiographic image data, and a relative incident direction of central radiation with respect to the subject passes through the subject and the first A radiation imaging apparatus configured to be changeable in a plane parallel to the periodic direction of the periodic structure of the grating.
  • radiation can be incident on the subject from an appropriate direction, and a clear phase contrast image can be obtained.
  • FIG. 1 It is a schematic diagram for demonstrating the other modification of the production
  • FIG. 2 is a schematic diagram illustrating a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 1.
  • FIG. 6 is a schematic diagram illustrating another example of a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 1. It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. It is a control block diagram of the radiography apparatus of FIG.
  • FIG. 21 is a schematic diagram illustrating a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 20.
  • It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention.
  • FIG. 1 shows a configuration of an example of a radiographic apparatus for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiographic apparatus of FIG.
  • the X-ray imaging apparatus 1 is roughly divided into an X-ray imaging apparatus main body 2 and a console 3.
  • the X-ray imaging apparatus body 2 includes an X-ray irradiation unit 11 that irradiates the subject H with X-rays, and an imaging unit that detects X-rays emitted from the X-ray irradiation unit 11 and transmitted through the subject H, and generates image data.
  • 12 and a structure 13 that supports the X-ray irradiation unit 11 and the imaging unit 12.
  • the console 3 controls the operation of each part of the X-ray imaging apparatus body 2 such as the exposure operation of the X-ray irradiation unit 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and is acquired by the imaging unit 12.
  • the processed image data is processed to generate a phase contrast image.
  • the structure 13 is connected to the stand 61 so as to be rotatable around a base 60 fixed to the floor, a stand 61 installed on the base 60, and a turning shaft 62 held in the stand 61 (in the direction of arrow a in the figure). And an arm member 63.
  • the X-ray irradiation unit 11 is attached to one end portion of the arm member 63
  • the imaging unit 12 is attached to the other end portion of the arm member 63 and is disposed to face the X-ray irradiation unit 11. Yes.
  • the stand 61 is installed on the base 60 so as to be capable of translational movement in a horizontal direction (in the direction of arrow b in the figure) in a plane orthogonal to the turning shaft 62, and the stand 61 has a translational drive unit for performing the translational movement. 64 is provided.
  • the stand 61 includes a plurality of support columns 61a, and is configured to be extendable / contractable in the vertical direction (the direction of arrow c in the figure).
  • the stand 61 is provided with an expansion / contraction driving unit 65 for performing expansion / contraction. ing.
  • the stand 61 is provided with a rotation drive unit 66 for turning the arm member 63.
  • the X-ray irradiation unit 11 includes an X-ray tube 18 as an X-ray source and a collimator unit 19.
  • the X-ray tube 18 is of an anode rotating type, and is a filament (not shown) as an electron emission source (cathode) according to a high voltage applied from the high voltage generator 16 based on the control of the X-ray source control unit 17.
  • X-rays are generated by emitting an electron beam from the motor and causing it to collide with the rotating anode 18a rotating at a predetermined speed. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the collimator unit 19 has a movable collimator 19 a that limits the irradiation field so as to shield a portion of the X-rays emitted from the X-ray tube 18 that does not contribute to the inspection area of the subject H.
  • the imaging unit 12 includes an X-ray image formed by a first absorption type grating 31 for detecting an X-ray phase change (angle change) caused by the subject H and an X-ray that has passed through the first absorption type grating 31. And a detection unit 14 that detects (hereinafter, this X-ray image is referred to as a G1 image).
  • the first absorption type grating 31 and the detection unit 14 are housed in a housing and configured as one unit.
  • the X-ray imaging apparatus 1 generates a phase contrast image using a fringe scanning method.
  • the detection unit 14 includes a second absorption grating 32 superimposed on the G1 image, An X-ray image detector 30 that detects the G1 image on which the second absorption type grating 32 is superimposed, and a scanning mechanism 33 that translates the second absorption type grating 32 at a predetermined pitch are provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • the X-ray imaging apparatus main body 2 is provided with a subject table 15 on which the subject H is placed.
  • the subject table 15 is supported by a pedestal 67 installed on the base 60, and more specifically between the X-ray irradiation unit 11 and the imaging unit 12, more specifically, the X-ray irradiation unit 11 and the first absorption grating 31. It is arranged between.
  • the console 3 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging apparatus 1 are connected via a bus 26. .
  • a switch, a touch panel, a mouse, a keyboard, or the like can be used as the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the first absorption type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b (high radiation absorption portions) disposed on the substrate 31a.
  • the second absorption grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b (high radiation absorption portions) arranged on the substrate 32a.
  • the substrates 31a and 32a are each formed of an X-ray transmissive member such as silicon, glass, resin, or the like that transmits X-rays.
  • the X-ray shielding part 31b is configured by a linear member extending in one direction in a plane orthogonal to the optical axis (the locus of the central X-ray) C of the X-ray bundle emitted from the X-ray irradiation part 11.
  • a material of each X-ray shielding part 31b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b can be formed by a metal plating method or a vapor deposition method.
  • the X-ray shielding portion 31b is in a plane perpendicular to the optical axis C of the X-ray, the direction (hereinafter, x and direction) orthogonal to the one direction at a constant grating pitch p 1 to each other a predetermined distance d 1 is arranged with a gap.
  • the X-ray shielding part 32b is also composed of a linear member extending in one direction in a plane orthogonal to the optical axis C of the X-ray bundle emitted from the X-ray irradiation part 11.
  • a material of each X-ray shielding part 32b a material having excellent X-ray absorption such as heavy metals such as gold and platinum is preferable, and these X-ray shielding parts 32b can be formed by a metal plating method or a vapor deposition method. is there.
  • X-ray shielding portion 32b in the plane orthogonal to the optical axis C of the X-ray, at a constant grating pitch p 2 in the direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged.
  • the first and second absorption gratings 31 and 32 configured as described above do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
  • the slit portions (low radiation absorbing portions) that are the regions of the distances d 1 and d 2 may not be voids.
  • the gaps may be filled with an X-ray low absorbing material such as a polymer or a light metal. Good.
  • the first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray irradiation unit 11, most of the X-rays included in the irradiation X-rays are slit portions. It is configured to pass through while maintaining straightness without diffracting. For example, when tungsten is used as the rotary anode 18a and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted at the slit portion.
  • the G1 image is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the slits of the second absorption type grating 32 are determined so as to substantially match the pattern of the periodic intensity distribution of the G1 image at the position of the second absorption type grating 32.
  • the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the first absorption grating 31 projects the incident X-rays without diffracting, and the G1 image is present at all positions behind the first absorption grating 31. because similarly obtained, the distance L 2, can be set independently of the Talbot distance.
  • the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the grating pitch p of the first absorption type grating 31. 1 , using the grating pitch p 2 of the second absorption grating 32, the X-ray wavelength (effective wavelength) ⁇ , and a positive integer m, the following expression (2).
  • Expression (2) is an expression representing the Talbot interference distance when the X-ray emitted from the X-ray irradiation unit 11 is a cone beam, “Timm ⁇ Weitkamp, et al., Proc. Of SPIE, Vol. 6318, It is known from “2006 63180S-1”.
  • Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray irradiation unit 11 can be regarded as substantially parallel beams, a distance L 2, the value of the range that satisfies the following equation (5) Set to.
  • the distance L 2 does not necessarily satisfy the expressions (3) to (5), and deviates from the expressions (3) to (5), for example, when there is no request for thinning of the photographing unit 12. Range values can also be taken.
  • FIG. 5 schematically shows the configuration of the X-ray image detector 30.
  • the X-ray image detector 30 uses a flat panel detector (FPD: Flat Panel Detector) based on a thin film transistor (TFT: Thin Film Transistor) panel, and converts a plurality of pixels 40 by converting X-rays into electric charges.
  • FPD Flat Panel Detector
  • TFT Thin Film Transistor
  • a scanning circuit 42 for controlling the charge readout timing from the image receiver 41, the charges accumulated in each pixel 40 are read out, and the charges are converted into image data.
  • a data transmission circuit 44 that transmits the image data to the arithmetic processing unit 22 via the I / F 25 of the console 3.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode.
  • the X-ray detection element can be configured.
  • a TFT switch (not shown) is connected to each pixel 40, and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
  • Each pixel 40 can also be configured as an indirect conversion type X-ray detection element that uses a scintillator that converts X-rays into visible light, and converts visible light converted by the scintillator into electric charge and accumulates it. It is.
  • the phosphor forming the scintillator include terbium activated gadolinium oxide (Gd 2 O 2 S: Tb) and thallium activated cesium iodide (CsI: Tl).
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory.
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise (for example, TFT) depending on the control conditions (drive frequency and readout period) of the X-ray image detector 30 are performed. Correction of the leak signal of the switch) may be included.
  • the X-ray image detector 30 is arranged so that the image receiving surface thereof is orthogonal to the optical axis C of the X-ray bundle.
  • the row direction or the column direction in the array of the pixels 40 of the image receiving unit 41 is the first.
  • the one absorption type grating 31 is arranged so as to be parallel to the grating pitch direction (x direction).
  • a G1 image exhibiting a periodic intensity distribution reflecting the lattice structure of the first absorption type grating 31 is formed by the X-rays that have passed through the first absorption type grating 31.
  • the G1 image is intensity-modulated by being superimposed on the second absorption grating 32, and the intensity-modulated G1 image is captured by the X-ray image detector 30.
  • the pattern period p 1 ′ of the periodic intensity distribution of the G1 image at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 (substantial pitch after manufacture) Is slightly different due to manufacturing errors and placement errors.
  • the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • the image contrast on the X-ray image detector 30 includes moire fringes.
  • the period T in the x direction of the moire fringes is expressed by the following equation (6), where L is the distance from the X-ray focal point 18b to the X-ray image detector 30.
  • the arrangement pitch P of the pixels 40 in the x direction needs to satisfy at least the following equation (7), and further satisfies the following equation (8).
  • n is a positive integer.
  • Expression (7) means that the arrangement pitch P of the pixels 40 is not an integral multiple of the period T of the moire fringes, and the moire fringes can be detected in principle even when n ⁇ 2. is there.
  • Expression (8) means that the arrangement pitch P of the pixels 40 is made smaller than 1 ⁇ 2 of the period T of moire fringes.
  • the arrangement pitch P of the pixels 40 is a value determined in terms of design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P of the pixels 40 and the period T of moire fringes is shown.
  • the positions of the first and second absorption gratings 31 and 32 are adjusted, and at least one of the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′ of the second absorption grating 32 is set. It is preferable to change the period T of moire fringes by changing one.
  • FIG. 6 schematically shows a method of changing the period T of moire fringes.
  • the change of the moire fringe period T can be performed by relatively rotating one of the first and second absorption gratings 31 and 32 about the optical axis C.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis C is provided.
  • the substantial grating pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” ⁇ “p 2 ′”. / Cos ⁇ ”, and as a result, the period T of moire fringes changes (FIG. 6A).
  • the change in the period T of the moire fringes is performed by centering one of the first and second absorption gratings 31 and 32 on an axis perpendicular to the optical axis C and along the y direction.
  • This can be done by relatively inclining.
  • a relative inclination mechanism 51 that inclines the second absorption type grating 32 relative to the first absorption type grating 31 about the axis in the direction orthogonal to the optical axis C and along the y direction.
  • the period T of the moire fringes can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis C. it can.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis C is provided.
  • the imaging unit 12 does not constitute a Talbot interferometer as described above, and therefore the distance L 2 can be freely set.
  • a mechanism for changing the period T of moire fringes by changing 2 can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the period T of the moiré fringes is a piezoelectric element or the like. It can be configured by an actuator.
  • the periodic intensity distribution of the G1 image is modulated by the subject H, and the G1 image And the moire fringes due to the superposition of the second absorption type grating 32 are also modulated.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H.
  • the image acquired by the X-ray image detector 30 includes a periodic pattern corresponding to moire fringes, and a phase contrast image of the subject H can be generated by analyzing the periodic pattern.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that goes straight when the subject H does not exist.
  • the X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and is an X-ray image.
  • the light enters the detector 30.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following formula (9), where n (x, z) is the refractive index distribution of the subject H and z is the direction in which the X-ray travels.
  • the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
  • This displacement amount ⁇ x is approximately expressed by the following equation (10) based on the fact that the refraction angle ⁇ of X-rays is very small.
  • the refraction angle ⁇ is expressed by Expression (11) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • This displacement amount ⁇ x is related to the phase shift amount ⁇ of the signal of each pixel of the image data (the signal phase difference between when the subject H is present and when it is not present) as shown in the following equation (12). Yes.
  • the phase shift amount ⁇ of the signal of each pixel is obtained from the equation (12), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (11).
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner with respect to the other grating in the grating pitch direction of the grating, and the G1 image is periodically generated. Imaging is performed while changing the phase of the periodic arrangement of the X-ray shielding portions 32b of the second absorption type grating 32 with respect to the intensity distribution.
  • the second absorption type grating 32 is moved by the scanning mechanism 33 (see FIG. 1), but the first absorption type grating 31 may be moved.
  • the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions. Pixel changes such moire fringes, while the grating pitch p 2 moves the second absorption-type grating 32 by an integral fraction, captured by the X-ray image detector 30, a plurality of obtained image data A plurality of signal values are acquired every time, and the arithmetic processing unit 22 performs arithmetic processing to obtain a phase shift amount ⁇ of the signal of each pixel.
  • FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
  • the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
  • I k (x) is expressed by the following equation (13).
  • x is a coordinate in the x direction of each pixel
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal (where n is a positive integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the pixel coordinate x.
  • arg [] means extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel. Therefore, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel from the M signal values obtained for each pixel based on the equation (15).
  • FIG. 9 shows the signal waveform of one pixel that changes with the fringe scanning.
  • the M signal values obtained for each pixel periodically change with the period of the grating pitch p 2 with respect to the position k of the second absorption type grating 32.
  • a broken line in FIG. 9 indicates a signal waveform when the subject H does not exist, and a solid line in FIG. 9 indicates a signal waveform when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel.
  • the refraction angle ⁇ (x) corresponds to the differentiation of the phase shift distribution ⁇ (x) as shown in the above equation (11), the refraction angle ⁇ (x) is integrated along the x axis. A phase shift distribution ⁇ (x) is obtained.
  • the y-coordinate regarding the y-direction of the pixel is not taken into consideration. However, by performing the same calculation for each y-coordinate, a two-dimensional phase shift distribution ⁇ (x, y) is obtained. The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase shift distribution ⁇ (x, y) in the storage unit 23 as a phase contrast image.
  • FIG. 10 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 1.
  • a plurality of pixels arranged in a direction intersecting with the moire fringe are analyzed as a unit, and the phase shift amount ⁇ of the signal of each pixel is calculated from one image data.
  • the first and second absorption type gratings 31 and 32 are arranged so as to be relatively rotated by an angle ⁇ about the optical axis C, and the G1 image and the second absorption type grating are arranged. 32 is relatively rotated by an angle ⁇ , and moire fringes having periodicity in the y direction are generated. Therefore, the analysis is performed with a plurality of pixels arranged in the y direction intersecting the moire fringes as one unit U. In the example shown in FIG. 10, five pixels arranged in the y direction are set as one unit U.
  • the G1 image is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to the refraction of X-rays at the subject H, and the moire fringes are displaced in the y direction as the G1 image is displaced in the x direction.
  • the phase of the signal waveform formed by interpolating the signal value of the pixel group constituting the unit changes for each unit with the displacement of the moire fringes.
  • the phase difference between the waveform of the signal waveform (FIG. 11A) when the subject H is not present and the signal waveform (FIG. 11B) when the subject H is present is the phase of the pixel signal included in the unit. This corresponds to the displacement amount ⁇ .
  • the phase shift amount ⁇ of the signal of each pixel can be obtained by performing the above analysis for each unit while shifting the unit of the pixel group to be analyzed, for example, by one pixel in the y direction. That is, the phase shift amount ⁇ of the k-th pixel 40 of the signal at the row of the y direction of pixels 40, the signal value of the k-th pixel 40 as I k, [I k, I k + 1, I k + 2, I k + 3, 5 signal values of I k + 4 ] and 5 signal values of [I k + 1 , I k + 2 , I k + 3 , I k + 4 , I k + 5 ] are used as the phase shift amount ⁇ of the signal of the (k + 1) th pixel 40.
  • the above analysis can be performed for each unit while shifting the unit of the pixel group by a plurality of pixels in the y direction within a range of 5 pixels or less as one unit.
  • the phase shift amount ⁇ of the signal of each of the kth and k + 1th pixels 40 uses five signal values of [I k , I k + 1 , I k + 2 , I k + 3 , I k + 4 ].
  • K + 2 and k + 3 pixels 40 can be obtained by using five signal values of [I k + 2 , I k + 3 , I k + 4 , I k + 5 , I k + 6 ]. .
  • the refraction angle ⁇ is obtained from the phase shift amount ⁇ of the signal of each pixel using the equation (12), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (11), and this is integrated with respect to x.
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H is generated.
  • the number of pixels as a unit is preferably the number of pixels over which at least one period of the moire period T in the y direction is arranged.
  • the moire period T in the y direction is set to be approximately M times the arrangement pitch P of the pixels 40 in the y direction (M is an integer), and the M pixels 40 are taken as one unit, the pixel 40
  • the signal values of the k-th pixel 40 in the y-direction array are I k
  • the M signal values of I k to I k + M ⁇ 1 are the first and second absorption gratings 31 in the fringe scanning method described above.
  • 32 is equivalent to M signal values acquired for the kth pixel 40 when the grid pitch is moved in the grid pitch direction at a scan pitch obtained by dividing the grid pitch into M pieces. .
  • FIG. 12 shows a modification of the analysis method of FIG.
  • the grating pitch p 2 of the second absorption grating 32 is different from the pitch p 1 ′ of the G1 image, and moire fringes having periodicity in the x direction are generated.
  • one of the first and second absorption gratings 31 and 32 is set in the direction of the optical axis C. May be moved relative to each other, or the grating pitch of each of the first and second absorption gratings 31 and 32 may be adjusted.
  • the above analysis is performed with a plurality of pixels arranged in the x direction intersecting the moire fringes as one unit U.
  • four pixels arranged in the x direction are set as one unit U.
  • the above analysis can be performed by resolving moire fringes using three or more pixels arranged in the x direction as one unit.
  • the relationship to be satisfied between the period T of moire fringes in the x direction and the pitch P of the pixels 40 is expressed by the following equation (18).
  • FIG. 13 shows another modification of the analysis method of FIG.
  • the grating pitch p 2 of the second absorption grating 32 is different from the pitch p 1 ′ of the G1 image, and the second absorption grating 32 rotates relative to the G1 image.
  • Moire fringes having periodicity are generated in the direction intersecting the x direction and the y direction.
  • the analysis can be performed with a plurality of pixels of 3 pixels or more arranged in the x direction as one unit U (FIG. 13A), or a plurality of pixels of 3 pixels or more arranged in the y direction can be analyzed. Analysis can also be performed as one unit U (FIG. 13B).
  • FIG. 14 shows another modification of the analysis method of FIG.
  • the pattern period direction (x direction) of the periodic intensity distribution of the G1 image matches the row direction or the column direction in the array of the pixels 40 in the X-ray image detector 30.
  • the first absorption type grating 31 and the X-ray image detector 30 are disposed so as to be relatively rotated with the optical axis C as the center, whereby the periodic intensity distribution pattern of the G1 image is obtained. Both the row direction and the column direction in the arrangement of the pixels 40 intersect with the periodic direction (x direction).
  • the moire fringe is resolved with a plurality of pixels of three or more pixels arranged in the direction intersecting the moire fringe as a unit, the signal of the pixel included in the unit for each unit.
  • the phase shift amount ⁇ can be calculated.
  • a phase contrast image can be generated from one periodic pattern image, and thus only one imaging is required. Therefore, the first absorption type grating 31 or the second between multiple imagings. Therefore, the movement of the absorption type grating 32 and the scanning mechanism 33 that requires high accuracy are not required. Therefore, it is possible to improve the shooting workflow and simplify the apparatus. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing.
  • FIG. 15 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 1.
  • the periodic pattern of the image corresponding to the moire fringe is analyzed using Fourier transform and inverse Fourier transform instead of the above-described fringe scanning method, and a phase contrast image is generated.
  • the apparatus configuration in the examples shown in FIGS. 10 to 14 described above can be suitably used.
  • the periodic pattern of the image corresponding to the moire fringes formed by superimposing the G1 image and the second absorption type grating 32 can be expressed by the following equation (19), and the equation (19) is expressed by the following equation (20). Can be rewritten.
  • a (x, y) represents the background
  • b (x, y) represents the amplitude of the spatial frequency component corresponding to the basic period of the periodic pattern
  • (f 0x, f 0y ) represents the period. Represents the basic period of the pattern.
  • c (x, y) is represented by the following formula (21).
  • equation (20) becomes the following equation (22) by Fourier transform.
  • F (f x , f y), A (f x, f y), C (f x, f y) respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
  • the spatial frequency spectrum of the image has at least A (f x , f y ) as shown in FIG. a peak derived from, C (f x, f y ) and C * (f x, f y ) 3 peaks and the peak of the spatial frequency component corresponding to the fundamental period of the periodic pattern from the results across this .
  • a (f x, f y) peak derived from the origin also, C (f x, f y ) and C * (f x, f y ) peak derived from the ( ⁇ f 0x, ⁇ f 0y ) It occurs at the position of (combined same order).
  • the refraction angle ⁇ (x, y) In order to obtain the refraction angle ⁇ (x, y) from the spatial frequency spectrum of the image, a region including the peak frequency of the spatial frequency component corresponding to the basic period of the periodic pattern is cut out so that the peak frequency overlaps the origin of the frequency space. Move the clipped area and perform inverse Fourier transform. Then, the refraction angle ⁇ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform.
  • the method for generating the phase contrast image from the refraction angle ⁇ (x, y) is the same as the above-described fringe scanning method.
  • a phase contrast image can be generated from one periodic pattern image, and thus only one imaging is required. Therefore, the first absorption type grating 31 or the second between multiple imagings. Therefore, the movement of the absorption type grating 32 and the scanning mechanism 33 that requires high accuracy are not required. Therefore, it is possible to improve the shooting workflow and simplify the apparatus. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing.
  • the differential of the refraction angle ⁇ with respect to the x direction which is the grating pitch direction of the first absorption type grating 31, that is, the differential of the phase shift distribution ⁇ is obtained.
  • the edge of the subject H that intersects the grating pitch direction of the first absorption grating 31 is depicted, and particularly in the grating pitch direction of the first absorption grating 31.
  • the edge of the subject H that is substantially orthogonal is clearly depicted. That is, the arrangement of the subject H is restricted by the lattice pitch direction of the first absorption-type lattice 31.
  • the legs are preferably arranged substantially along the lattice pitch direction (x direction) of the first absorption type lattice 31.
  • the joint generally has a convex joint head and a concave glenoid fossa that receives the joint head. Accordingly, in many cases, the cartilage portion that is the region of interest and the bone portion that is the non-region of interest overlap each other when viewed in the traveling direction of the X-rays that pass through the region of interest.
  • the relative incident direction of the center X-ray with respect to the subject is reduced so that the non-interesting region overlaps the region of interest of the subject H under the above-described restrictions on the placement of the subject H.
  • FIG. 16 shows a mechanism for changing the relative incident direction of the central X-ray with respect to the subject.
  • an arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 is connected to a stand 61 so as to be able to turn around a turning shaft 62, and the arm member 63 is turned. As a result, the incident direction of the center X-ray C with respect to the subject H placed on the subject table 15 is changed.
  • the turning shaft 62 of the arm member 63 is parallel to the extending direction (y direction) of the X-ray shielding part 31b of the first absorption type grating 31.
  • the imaging unit 12 including the first absorption type grating 31 is attached to the arm member 63 so that the extending direction of the X-ray shielding part 31 b of the first absorption type grating 31 is parallel to the turning shaft 62. It has been.
  • the incident direction of the center X-ray with respect to the subject H placed on the subject table 15 is rotated in a plane orthogonal to the turning shaft 62 as the arm member 63 turns around the turning shaft 62.
  • a C-arm can be used as the arm member 63, and the plane on which the incident direction of the central X-ray is rotated can be appropriately inclined in the y direction.
  • FIG. 17 shows X-rays passing through the region of interest of the subject H in relation to the incident direction of the central X-ray C.
  • FIG. 17 shows a case where the knee joint is the subject H and the cartilage portion is the region of interest.
  • the femur and tibia constituting the knee joint are arranged in the lattice pitch direction (x direction) of the first absorptive lattice 31 on the placement surface of the substantially horizontal subject table 15 in accordance with the above-described restrictions on the placement of the subject. ).
  • the cartilage part as the region of interest and the bone part (femur or tibia) as the non-interest region are overlapped, the oblique direction inclined by the angle ⁇ around the turning axis 62 from the vertical direction is seen.
  • the overlap is less than the overlap when viewed in the vertical direction. Therefore, when the incident direction of the central X-ray is the oblique direction of the incident angle ⁇ , it is possible to obtain an image in which the obstruction shadow and the attenuation of the X-ray caused by the non-interest area are suppressed.
  • the oblique angle ⁇ is set by, for example, setting an optimum oblique angle for each subject type in advance and inputting the subject type or the oblique angle corresponding to the subject type in the input device 21 of the console 3. Can do. Based on the oblique angle set here, the control device 20 of the console 3 controls the drive unit 66, and the arm member 63 is turned by the drive unit 66.
  • the oblique insertion angle ⁇ can be set based on a fluoroscopic image obtained by performing fluoroscopy while turning the arm member 63. For example, in a fluoroscopic image, it is possible to select and set an oblique insertion angle at which the cartilage portion (joint space) as a region of interest is the widest. Alternatively, in the fluoroscopic image, it is possible to select and set an oblique angle at which the intensity of the X-ray transmitted through the cartilage portion as the region of interest is highest.
  • the selection / setting of the oblique insertion angle may be performed by, for example, an operator, or the calculation processing unit 22 of the console 3 detects a region of interest using an appropriate image processing technique such as image recognition, and automatically It can also be configured to be performed.
  • FIG. 18 shows a mechanism for correcting a change in the relative positional relationship between the region of interest of the subject H and the X-ray irradiation unit 11 and the imaging unit 12.
  • the subject H is typically arranged so that the region of interest is positioned on the optical axis C where the extension of the pivot shaft 62 of the arm member 63 intersects, but the region of interest is related to the subject thickness. May be off the extension of the. In addition, for a patient whose limb position change is difficult, it may be difficult to place the region of interest on the optical axis C. When the region of interest is located off the extension of the turning shaft 62, the relative positional relationship between the X-ray irradiating unit 11 and the imaging unit 12 and the region of interest of the subject H varies with the turning of the arm member 63. Change.
  • the position of the region of interest of the subject H changes, and the magnification of the region of interest changes.
  • the arm member 63 is translated in a plane orthogonal to the turning shaft 62 of the arm member 63 in conjunction with the turning of the arm member 63, and X-ray irradiation accompanying the turning of the arm member 63 is performed. Changes in the relative positional relationship between the unit 11 and the imaging unit 12 and the region of interest of the subject H are corrected.
  • the subject table 15 is disposed below the pivot shaft 62 in the vertical direction, and the region of interest of the subject H placed on the subject table 15 is disposed below the pivot shaft 62 in the vertical direction. And located on the optical axis C (FIG. 18A).
  • this state is referred to as an initial state.
  • the region of interest ROI deviates from the optical axis C. Thereby, the region of interest ROI of the subject H in the image acquired by the X-ray image detector 30 moves to the edge of the image (FIG. 18B).
  • the translation drive unit 64 moves the arm member 63 against the change in the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest that cause the movement of the region of interest ROI in the image. It can be corrected by moving it horizontally and repositioning the region of interest ROI on the optical axis C (FIG. 18C).
  • an arm member is formed by the expansion / contraction drive unit 65 (see FIG. 2). It can be corrected by moving 63 in the vertical direction and making the distance L ROI equal to the initial state (FIG. 18D).
  • the translational movement of the arm member 63 described above is performed by the translational movement of the stand 61 in the horizontal direction and the vertical extension of the stand 61.
  • the control device 20 of the console 3 controls the drive units 64 and 65 (see FIG. 2) according to the set oblique insertion angle ⁇ , translates the stand 61 in the horizontal direction, and expands and contracts in the vertical direction. .
  • the subject table 15 is supported by the pedestal 67 so as to be able to translate in the horizontal and vertical directions, and the pedestal 67 that supports the subject table 15.
  • the pedestal 67 that supports the subject table 15.
  • a translation drive unit for performing horizontal translation of the subject table 15
  • a lift drive unit for performing translational movement in the vertical direction.
  • the subject table 15 is moved in the horizontal and vertical directions. It is good also as a structure made to translate.
  • the refraction of the X-ray generated by passing through the subject H is only a few ⁇ rad, and the modulation of the moire fringe caused by this refraction and the phase change of the signal obtained by analyzing the moire fringe by the above-described fringe scanning method are also slight. is there.
  • the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 affects the detection accuracy of the phase information of the subject H.
  • X-rays can be incident on the subject H from an appropriate direction, and a clear phase contrast image can be obtained.
  • the photographing unit 12 can be downsized (thinned).
  • the first and second gratings are both absorption type gratings.
  • the present invention is not limited to this.
  • the present invention is also useful when the Moire fringes are generated by superimposing the second grating on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the phase shift distribution ⁇ is obtained by integrating the differential amount of the phase shift distribution ⁇ obtained from the refraction angle ⁇ .
  • the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the X-ray phase change by the subject. Therefore, an image of the refraction angle ⁇ and an image of the differential amount of the phase shift are also included in the phase contrast image.
  • phase contrast image generation processing may be performed on the moire fringes obtained by photographing (pre-photographing) in the absence of a subject, and the phase contrast image may be obtained.
  • This phase contrast image reflects, for example, phase unevenness (initial phase shift) caused by non-uniformity of the first and second absorption gratings 31 and 32.
  • FIG. 20 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention
  • FIG. 21 shows a control block of the radiation imaging apparatus of FIG.
  • Elements common to the X-ray imaging apparatus 1 shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
  • the X-ray imaging apparatus 1 shown in FIG. 1 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12.
  • the incident direction of the central X-ray with respect to the subject H is relatively changed by tilting the subject table 15. Accordingly, in the X-ray imaging apparatus main body 72, the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 is fixed in a state of being arranged along the vertical direction (z direction).
  • the subject table 15 is supported by a pedestal 73 installed on the base 60, and more specifically between the X-ray irradiation unit 11 and the imaging unit 12, more specifically, the X-ray irradiation unit 11 and the first absorption grating 31. It is arranged between.
  • the pedestal 73 supports the subject table 15 so that the subject table 15 can be tilted around the tilting shaft 74 parallel to the extending direction (y direction) of the X-ray shielding part 31 b of the first absorption grating 31.
  • the pedestal 73 supports the subject table 15 so as to be able to translate in the horizontal direction (x direction) in a plane orthogonal to the raising and lowering shaft 74 and to be able to move up and down in the vertical direction.
  • a translation drive unit 76 for performing translational movement of the table 15 and an elevation drive unit 77 for performing elevation movement are provided.
  • the relative incident direction of the center X-ray with respect to the subject is changed so that the overlap of the non-interest region with the region of interest of the subject H is reduced.
  • the incident direction of the central X-ray with respect to the subject H placed on the subject table 15 is changed by raising and lowering the subject table 15.
  • the raising / lowering axis 74 of the subject table 15 is parallel to the extending direction (y direction) of the X-ray shielding part 31b of the first absorption type grating 31.
  • the incident direction of the central X-ray with respect to the subject H placed on the subject table 15 is rotated in a plane orthogonal to the tilting shaft 74 as the subject table 15 is tilted.
  • FIG. 22 shows the space occupied by the apparatus main body 72 of the X-ray imaging apparatus 71 and the apparatus main body 2 of the X-ray imaging apparatus 1 described above.
  • the distance L from the X-ray irradiation unit 11 to the X-ray image detector 30, that is, the length of the arm member 63 is typically 1 to 2 m.
  • the width W of the subject table 15 when the subject is a joint such as an interphalangeal joint, an elbow joint, or a knee joint is typically larger than the length of the arm member 63 described above. Is much smaller. Therefore, when the incident angle ⁇ is obtained, according to the configuration (FIG. 22A) in which the subject table 15 of the X-ray imaging apparatus 71 is tilted to change the incident direction of the central X-ray, FIG.
  • the space A occupied by the apparatus main body can be reduced as compared with the configuration (FIG. 22B) in which the arm member 63 is turned to change the incident direction of the central X-ray.
  • the inclination of the X-ray irradiation unit 11 and the imaging unit 12 supported by the arm member 63 can be increased. Vibration can be prevented or suppressed. Thereby, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed, and the detection accuracy of the phase information of the subject H can be improved.
  • FIG. 23 shows a mechanism for correcting a change in the relative positional relationship between the region of interest of the subject H and the X-ray irradiation unit 11 and the imaging unit 12.
  • the region of interest of the subject H When the region of interest of the subject H is located away from the tilting axis 74 of the subject table 15, the region of interest of the subject H with the X-ray irradiating unit 11 and the imaging unit 12 as the subject table 15 is tilted. The relative positional relationship between and changes. Then, with the change in the relative positional relationship, for example, in the image acquired by the X-ray image detector 30, the position of the region of interest of the subject H changes, and the magnification of the region of interest changes.
  • the subject table 15 is translated in a plane orthogonal to the tilting axis 74 of the subject table 15 in conjunction with the tilting of the subject table 15, and accompanying the tilting of the subject table 15. The change in the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest of the subject H is corrected.
  • the region of interest ROI of the subject H placed on the placement surface on the substantially horizontal subject table 15 and the raising / lowering axis 74 of the subject table 15 are both located on the optical axis C.
  • the raising / lowering shaft 74 is located below the region of interest ROI in the vertical direction (FIG. 23A).
  • this state is referred to as an initial state.
  • the region of interest ROI deviates from the optical axis C when the subject table 15 is tilted from the horizontal by an angle ⁇ from the above initial state. Thereby, the region of interest of the subject H in the image acquired by the X-ray image detector 30 moves to the edge of the image (FIG. 23B).
  • the subject table 15 is moved in the horizontal direction to thereby display the region of interest ROI. Can be corrected by positioning it again on the optical axis C (FIG. 23C).
  • the distance from the X-ray irradiation unit 11 along the optical axis C to the region of interest of the subject H becomes longer. Thereby, the enlargement ratio of the region of interest ROI of the subject H is reduced (FIG. 23B).
  • the subject table 15 is moved in the vertical direction, and the distance Correction can be made by making L ROI equal to the distance in the initial state (FIG. 23D).
  • the relative position relationship between the region of interest and the X-ray irradiation unit 11 and the imaging unit 12 in the initial state is formed. It is also possible to correct both movement and change in magnification.
  • the translational movement of the subject table 15 is performed by the horizontal translational movement and the vertical movement of the pedestal 73.
  • the control device 20 of the console 3 controls the drive units 76 and 77 (see FIG. 21) according to the set oblique insertion angle ⁇ , and translates the subject table 15 in the horizontal and vertical directions.
  • the subject table 15 is corrected by translational movement in the horizontal direction and the vertical direction.
  • FIG. 24 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
  • the first absorption type grating 31 is a one-dimensional grating in which X-ray shielding portions 31b are arranged in the x direction
  • the absorption type grating 32 is also assumed to be a one-dimensional grating, but the first and second absorption type gratings 31 and 32 are not limited to the one-dimensional grating.
  • the first and second absorption type gratings 31 and 32 are configured as two-dimensional gratings.
  • One of the first and second absorption-type gratings 31 and 32 is a two-dimensional mesh having a linear X-ray shielding portion arranged in the x direction and the y direction, respectively.
  • the lattice is a checkered two-dimensional lattice.
  • the first absorption type grating 31 is configured as a mesh-like two-dimensional grating
  • the second absorption type grating 32 is configured as a checkered two-dimensional grating.
  • the pivot shaft 62 (see FIG. 1) of the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 extends a plurality of X-ray shielding units 31b arranged in the x direction of the first absorption grating 31.
  • the incident direction of the center X-ray with respect to the subject H placed on the subject table 15 is orthogonal to the pivot axis 62 as the arm member 63 pivots around the pivot axis 62. It is rotated in the plane to be
  • the differential of the phase shift distribution ⁇ with respect to the two directions of the x direction and the y direction which are the grating pitch directions of the first absorption grating 31 Is obtained.
  • the edge of the subject H intersecting with the x direction is depicted, and the phase shift distribution ⁇ with respect to the y direction is differentiated.
  • the edge of the subject H that intersects in the y direction is depicted in the phase contrast image obtained based on this, and a clearer phase contrast image of the subject H can be obtained by combining these two phase contrast images. .
  • the example shown in FIG. 24 changes the incident direction of the center X-ray with respect to the subject H by turning the arm member 63.
  • the incident direction of the central X-ray with respect to the subject H can be relatively changed by tilting the subject table 15. .
  • FIG. 25 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
  • the X-ray imaging apparatus 81 shown in FIG. 25 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the first absorption grating 31 is disposed between the X-ray irradiation unit 11 and the subject table 15. ing.
  • the first absorption type lattice 31 is held by the holding member 34 and is attached to the arm member 63 via the holding member 34. Since the holding member 34 is supported by the arm member 63 in a cantilever shape, it is preferable that the holding member 34 has high rigidity. For example, a member having higher rigidity than the substrate 31a of the first absorption type lattice 31 is used. preferable. Thereby, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed, and the detection accuracy of the phase information of the subject H can be improved.
  • the subject H is disposed between the first absorption type grating 31 and the second absorption type grating 32, but the first object formed at the position of the second absorption type grating 32.
  • the G1 image of the absorption type grating 31 is modulated by the subject H. Similar to the X-ray imaging apparatus 1 described above, the G1 image is intensity-modulated by superimposition with the second absorption grating 32, and the intensity-modulated G1 image is captured by the X-ray image detector 30. . Therefore, also in this X-ray imaging apparatus, a phase contrast image of the subject H can be obtained based on the principle described above.
  • the subject H is irradiated with X-rays whose dose is almost halved by the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject H is set to the X-ray described above. It can be reduced to about half that of the photographing apparatus 1.
  • Arranging the subject between the first absorption type grating 31 and the second absorption type grating 32 can be applied to any of the X-ray imaging apparatuses described above.
  • FIG. 26 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
  • the 26 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the multi-slit 35 is provided in the X-ray irradiation unit 11.
  • the X-ray imaging apparatus 1 when the distance from the X-ray irradiation unit 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) as set in a general hospital imaging room,
  • the blur of the G1 image due to the focal size of the X-ray focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 35 is disposed immediately after the X-ray focal point 18b.
  • the multi slit 35 is an absorption type grating (third absorption type grating) having the same configuration as that of the first and second absorption type gratings 31 and 32, and a plurality of X-ray shielding portions extending in one direction are provided in the first slit.
  • the first and second absorption type gratings 31 and 32 are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b.
  • the purpose of the multi-slit 35 is to form small focal light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b.
  • the lattice pitch p 3 of the multi-slit 35 needs to be set to satisfy the following formula (23), where L 3 is the distance from the multi-slit 35 to the first absorption-type lattice 31.
  • Expression (23) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 35 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
  • the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (24).
  • the G1 images based on the plurality of small focus light sources formed by the multi-slit 35 are superimposed, so that the image quality of the phase contrast image is reduced without reducing the X-ray intensity. Can be improved.
  • the analysis method of the periodic pattern of the image acquired by the X-ray image detector 30 any of the analysis methods 1 to 4 described above can be applied, but the first absorption type centering on the optical axis C is used.
  • the multi-slit 35 can also be rotated together with the first absorption type grating 31 so that the grating pitch direction thereof coincides with the grating pitch direction of the first absorption type grating 31. preferable.
  • the multi slit 35 can be applied to any of the X-ray imaging apparatuses described above.
  • FIG. 27 shows the configuration of another example of a radiation imaging apparatus for explaining an embodiment of the present invention. Elements common to the example of the X-ray imaging apparatus shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
  • An X-ray imaging apparatus 101 shown in FIG. 27 is roughly divided into an X-ray imaging apparatus main body 102 and a console 3.
  • the X-ray imaging apparatus main body 102 includes an X-ray irradiation unit 11, an imaging unit 112, and a subject table 15. And.
  • the X-ray irradiation unit 11 and the imaging unit 112 are supported by the arm member 63 of the structure 13.
  • the subject table 15 is supported by a pedestal 67.
  • the imaging unit 112 includes a first absorption grating 31 and an X-ray image detector 130 that detects a G1 image formed by X-rays that have passed through the first absorption grating 31.
  • the X-ray image detector 130 includes an image receiving unit 41 in which a plurality of pixels 40 that convert and store X-rays into electric charges are two-dimensionally arranged. To be sent to the console 3.
  • the plurality of pixels 40 are arranged at an arrangement pitch capable of resolving the periodic intensity distribution of the G1 image formed on the image receiving surface of the X-ray image detector 130.
  • the arrangement pitch P of the pixels 40 is set to a pitch of 1/2 or less, preferably 1/5 or less of the pattern period p 1 ′ of the periodic intensity distribution of the G1 image, which is generally several ⁇ m.
  • the image receiving unit 41 in which a plurality of pixels are arranged at such a minute arrangement pitch is a CCD sensor or CMOS in which a readout circuit for reading out the electric charge accumulated in each pixel 40 is formed on a semiconductor substrate made of single crystal silicon or the like.
  • a solid-state image sensor such as a sensor can be used as a base.
  • an image receiving portion 41 configured based on a TFT panel can also be used.
  • the G1 image is formed on the X-ray image detector 130. Then, when the subject H is arranged on the subject table 15 arranged between the X-ray irradiation unit 11 and the imaging unit 112, more specifically between the X-ray irradiation unit 11 and the first absorption type grating 31.
  • the periodic intensity distribution of the G1 image is modulated by the subject H.
  • the image acquired by capturing the G1 image by the X-ray image detector 130 includes a periodic pattern corresponding to the periodic intensity distribution of the G1 image. By analyzing this periodic pattern, the phase contrast of the subject H is analyzed. An image can be generated.
  • the analysis of the periodic pattern of the image can be performed, for example, by the above-described fringe scanning method.
  • the G1 image projected from the first absorption-type grating 31 to the position of the X-ray image detector 130 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. It will be.
  • This displacement amount ⁇ x is approximately expressed by the following equation (25) based on the small X-ray refraction angle ⁇ .
  • L 4 indicates the distance from the first absorption type grating 31 to the X-ray image detector 130.
  • Equation (26) the refraction angle ⁇ is expressed by Equation (26) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • This displacement amount ⁇ x is related to the phase shift amount ⁇ of the signal of each pixel of the image data as shown in the following equation (27).
  • the phase shift amount ⁇ of the signal of each pixel is obtained from the equation (27), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26).
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method.
  • the first absorption type grating 31 is translated in a stepwise manner relative to the X-ray image detector 130 in the grating pitch direction (x direction) of the grating, and the period of the pixel 40 with respect to the periodic intensity distribution of the G1 image. Shooting while relatively changing the phase of the target array.
  • the movement of the first absorption type grating 31 can be performed by the scanning mechanism 33.
  • the G1 image moves, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the first absorption type grating 31 (grating pitch p 1 ). (Ie, when the phase change reaches 2 ⁇ ), the G1 image returns to its original position. Such a change in the G1 image is picked up by the X-ray image detector 130 while moving the first absorption grating 31 by a distance of an integer of the grating pitch p 1 , and a plurality of image data obtained. A plurality of signal values are obtained from each pixel, and the arithmetic processing unit 22 performs arithmetic processing to obtain a phase shift amount ⁇ of the signal of each pixel.
  • the refraction angle ⁇ is obtained from the phase shift amount ⁇ of the signal of each pixel using the equation (27), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26).
  • the phase shift distribution ⁇ (x) of the subject H ie, the phase contrast image of the subject H is generated.
  • FIG. 28 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 101.
  • a plurality of pixels arranged in a direction corresponding to the lattice pitch direction (x direction) of the first absorption type lattice 31 is used as a unit, and for each unit, signal values I of a plurality of pixels constituting the unit are interpolated.
  • signal values of a plurality of pixels are interpolated by a sine curve, and at least three points are sufficient for interpolation by the sine curve, and therefore three adjacent pixels are used as a unit.
  • the G1 image is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H.
  • the phase of the signal waveform formed by interpolating the signal values I of a plurality of pixels constituting the unit changes for each unit.
  • the phase difference between the waveform of the signal waveform (FIG. 28A) when the subject H is not present and the signal waveform (FIG. 28B) when the subject H is present is the phase of the signal of the pixel included in the unit. This corresponds to the displacement amount ⁇ .
  • the refraction angle ⁇ is obtained from the phase shift amount ⁇ of the signal of each pixel using the equation (27) and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26), and this is integrated with respect to x.
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H is generated.
  • the first absorption-type grating is assumed that the grating pitch direction (x-direction) of the first absorption-type grating 31 coincides with the row direction or the column direction in the arrangement of the pixels 40 in the X-ray image detector 130.
  • the description has been made assuming that three pixels arranged in the lattice pitch direction of 31, that is, the pattern periodic direction of the periodic intensity distribution of the G1 image, are taken as one unit, the direction intersecting the periodic intensity distribution pattern of the G1 image If the periodic intensity distribution of the G1 image is resolved with a plurality of pixels of three or more arranged in a unit as a unit, the phase shift amount ⁇ of the signal of the pixel included in the unit can be calculated for each unit.
  • the first absorption grating 31 and the X-ray image detector 130 are arranged such that the row direction and the column direction in the arrangement of the pixels 40 intersect with the pattern period direction of the periodic intensity distribution of the G1 image.
  • the optical axis C may be relatively rotated around the optical axis C.
  • the X-ray imaging apparatus 101 can also generate a phase contrast image by analyzing a periodic pattern of an image using Fourier transform and inverse Fourier transform.
  • the periodic pattern of the image corresponds to moire fringes formed by superimposing the G1 image and the second absorption grating 32 in the X-ray imaging apparatus 1.
  • 101 corresponds to the periodic intensity distribution of the G1 image.
  • the periodic intensity distribution of the G1 image is detected using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the G1 image, and this is analyzed to obtain phase information. Since the pixel pitch is small, the spatial resolution is excellent. Since the second absorption grating 32 is not interposed, the accuracy of the phase information can be improved.
  • the X-ray imaging apparatus 101 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63. However, like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
  • the first absorption type grating 31 can be configured as a two-dimensional grating.
  • the first absorption type grating 31 can be disposed between the X-ray irradiation unit 11 and the subject table 15.
  • the multi-slit 35 (see FIG. 26) described above can be provided in the X-ray irradiation unit 11.
  • the multi-slit lattice pitch p 3 is set to satisfy the following expression (28), where L 3 is the distance from the multi-slit to the first absorption-type lattice 31.
  • Expression (28) indicates that the projection image (G1 image) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slits by the first absorption grating 31 coincides with the position of the X-ray image detector 130. It is a geometrical condition for doing (overlapping).
  • FIG. 29 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention. Note that elements common to the above-described X-ray imaging apparatuses 1 and 101 are denoted by common reference numerals, and description thereof is omitted or simplified.
  • An X-ray imaging apparatus 201 shown in FIG. 29 is roughly divided into an X-ray imaging apparatus main body 202 and a console 3.
  • the X-ray imaging apparatus main body 202 includes an X-ray irradiation unit 11, an imaging unit 212, and a subject table 15. And.
  • the X-ray irradiation unit 11 and the imaging unit 112 are supported by the arm member 63 of the structure 13.
  • the subject table 15 is supported by a pedestal 67.
  • the imaging unit 212 includes a first absorption grating 31 and an X-ray image detector 230 that detects a G1 image formed by X-rays that have passed through the first absorption grating 31.
  • the X-ray image detector 230 includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them are two-dimensionally arranged, read out the electric charges accumulated in each pixel 40, and read them out as image data. To be sent to the console 3.
  • the plurality of pixels 40 are arranged at an arrangement pitch that causes moiré in relation to the period of the periodic intensity distribution of the G1 image formed on the image receiving surface of the X-ray image detector 230.
  • the arrangement pitch P of the pixels 40 is an arrangement pitch that is substantially the same as the period of the periodic intensity distribution of the G1 image, which is generally several ⁇ m.
  • the arrangement pitch P of the pixels 40 is a value determined by design and is difficult to change, the relationship between the arrangement pitch P of the pixels 40 and the pattern period p 1 ′ of the G1 image in generating moire. Is adjusted by adjusting the position of the first absorption grating 31 and changing the pattern period p 1 ′ of the G1 image.
  • a mechanism for changing the pattern period of the G1 image a mechanism similar to the above-described relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52 (all refer to FIG. 6) can be used.
  • moire generated in an image acquired by the X-ray image detector 230 is modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, a phase contrast image of the subject H can be generated by analyzing this moire.
  • the analysis of the periodic pattern of the image can be performed, for example, by the above-described fringe scanning method.
  • the G1 image projected from the first absorption type grating 31 to the position of the X-ray image detector 230 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. It will be.
  • This displacement amount ⁇ x is related to the phase shift distribution ⁇ (x) of the subject H, as is apparent from the above equations (25) and (26).
  • the moire is also displaced in the x direction.
  • the displacement amount ⁇ x of the G1 image reaches the period p 1 ′, the moire returns to the original state. Is expressed by the following equation (30) using the displacement amount ⁇ x of the G1 image.
  • the displacement amount ⁇ X is related to the phase shift amount ⁇ of the signal of each pixel of the image data as shown in the following equation (31).
  • the phase shift amount ⁇ of the signal of each pixel is obtained from the equation (27), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26).
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method.
  • the first absorption type grating 31 is translated in a stepwise manner relative to the X-ray image detector 230 in the grating pitch direction (x direction) of the grating, and the period of the pixel 40 with respect to the periodic intensity distribution of the G1 image. Shooting while relatively changing the phase of the target array.
  • the movement of the first absorption type grating 31 can be performed by the scanning mechanism 33.
  • the moire As the first absorption type grating 31 moves, the moire also moves, and the translation distance (amount of movement in the x direction) reaches one period (grating pitch p 1 ) of the grating period of the first absorption type grating 31. Then (ie, when the phase change reaches 2 ⁇ ), the moire returns to the original state.
  • the phase shift amount ⁇ of the signal of each pixel is obtained by obtaining and performing arithmetic processing in the arithmetic processing unit 22.
  • the refraction angle ⁇ is obtained from the phase shift amount ⁇ of the signal of each pixel using the equation (27), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26).
  • the phase shift distribution ⁇ (x) of the subject H ie, the phase contrast image of the subject H is generated.
  • the moire moves as a whole with the relative movement between the first absorption grating 31 and the X-ray image detector 230, so the moire cycle is set to the image size. It is applicable even if it is longer than that.
  • FIG. 30 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 201.
  • a plurality of pixels adjacent to each other in the direction corresponding to the lattice pitch direction (x direction) of the first absorption type lattice 31 is used as a unit, and the signal value I of the plurality of pixels constituting the unit is interpolated for each unit.
  • signal values of a plurality of pixels are interpolated by a sine curve, and at least three points are sufficient for interpolation by the sine curve, and therefore, three adjacent pixels are used as a unit.
  • the signal values I of a plurality of pixels constituting the unit are interpolated for each unit.
  • the period of the signal waveform is a moire period T.
  • the G1 image is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H.
  • the moire is also displaced by ⁇ X in the x direction, and the phase of the signal waveform changes.
  • the phase difference between the waveform of the signal waveform (FIG. 30A) when the subject H is not present and the signal waveform (FIG. 30B) when the subject H is present is the phase of the signal of the pixel included in the unit. This corresponds to the displacement amount ⁇ .
  • the refraction angle ⁇ is obtained from the phase shift amount ⁇ of the signal of each pixel using the equation (27) and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (26), and this is integrated with respect to x.
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H is generated.
  • the first absorption-type grating is assumed that the grating pitch direction (x-direction) of the first absorption-type grating 31 coincides with the row direction or the column direction in the arrangement of the pixels 40 in the X-ray image detector 230.
  • the description has been made assuming that the three pixels arranged in the lattice pitch direction of 31, that is, the pattern period direction of the periodic intensity distribution of the G1 image, are taken as one unit, with respect to the pattern period direction of the periodic intensity distribution of the G1 image,
  • the first absorption type grating 31 and the X-ray image detector 230 are relatively rotated around the optical axis C so that both the row direction and the column direction in the arrangement of the pixels 40 intersect. May be.
  • the present X-ray imaging apparatus 201 can also analyze the periodic pattern of an image using Fourier transform and inverse Fourier transform to generate a phase contrast image.
  • the periodic pattern of the image corresponds to the periodic intensity distribution of the G1 image in the X-ray imaging apparatus 101 described above, but the periodic intensity distribution of the G1 image and the X in the X-ray imaging apparatus 201 described above. This corresponds to moire caused by interference with the periodic arrangement of the pixels 40 of the line image detector 230.
  • the X-ray imaging apparatus 201 it is acquired by the X-ray image detector 230 due to interference between the pattern period p 1 ′ of the G1 image and the pixel pitch P of the X-ray image detector 230.
  • a moire is generated in the image, and a phase contrast image is generated based on the moire modulation caused by the subject H.
  • the S / N tends to decrease as the pixel 40 in the X-ray image detector 230 becomes smaller.
  • the pixel arrangement pitch in the X-ray image detector is such that the periodic intensity distribution of a fine G1 image can be detected. There is no need to reduce the S / N, and the S / N can be secured to improve the accuracy of the phase information.
  • the X-ray imaging apparatus 201 has a configuration in which the incident direction of the central X-ray with respect to the subject H is changed by turning the arm member 63, but like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
  • the first absorption type grating 31 can be configured as a two-dimensional grating.
  • the first absorption type grating 31 can be disposed between the X-ray irradiation unit 11 and the subject table 15.
  • the multi-slit 35 can be provided in the X-ray irradiation unit 11.
  • FIG. 31 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention. Elements common to the X-ray imaging apparatus 1 shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
  • the X-ray imaging apparatus 301 shown in FIG. 1 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the subject table 15 is separated from the X-ray imaging apparatus main body 2.
  • the subject table 15 is attached to an appropriate pedestal.
  • the pedestal is configured separately from the structure 13 that supports the X-ray irradiation unit 11 and the imaging unit 12 (the first and second absorption type gratings 31 and 32 and the X-ray image detector 30).
  • the table 15 is separated from the X-ray imaging apparatus main body 2.
  • the X-ray irradiating unit 11 and the imaging unit are affected by the impact when the subject H is placed on the subject table 15 and the vibration caused by the movement (body movement) of the subject H during or during imaging.
  • the displacement of the relative positions of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed.
  • the detection accuracy of the phase information of the subject H can be improved.
  • the configuration in which the subject table 15 is separated from the X-ray imaging apparatus main body 2 can be applied to any of the X-ray imaging apparatuses described above.
  • FIG. 32 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
  • description is abbreviate
  • the above-described X-ray imaging apparatus 1 irradiates X-rays substantially vertically downward, and basically performs imaging in a supine position or a sitting position when imaging a human, as shown in FIG.
  • the X-ray imaging apparatus 401 is different from the X-ray imaging apparatus 1 described above in that X-rays are irradiated in a substantially horizontal direction, and performs imaging in a standing position when imaging a human.
  • the X-ray irradiation unit 11, the first absorption type grating 31, the second absorption type grating 32, and the X-ray image detector 30 are arranged in this order in the substantially horizontal direction, and the arm member 63.
  • the subject table 15 is provided such that the subject H placed thereon is disposed between the X-ray irradiation unit 11 and the first absorption type grating 31.
  • the subject table 15 is vertically below the extension of the pivot shaft 62 of the arm member 63, and the region of interest of the subject H placed thereon (the cartilaginous portion of the knee joint in the illustrated example) extends the pivot shaft 62. It is preferable to arrange at a height located above. According to this, the region of interest does not deviate from the irradiation field even when the arm member 63 rotates, and the enlargement ratio does not change.
  • the arm member 63 and the subject table 15 are moved horizontally and in conjunction with the turning of the arm member 63. You may make it translate in a perpendicular direction.
  • a standing type apparatus such as the X-ray imaging apparatus 401 is preferable.
  • the X-ray imaging apparatus 401 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63. However, like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
  • the first absorption type grating 31 can be configured as a two-dimensional grating.
  • the first absorption grating 31 can be disposed between the X-ray irradiation unit 11 and the subject H placed on the subject table 15.
  • the multi-slit 35 can be provided in the X-ray irradiation unit 11.
  • the second absorption grating 32 is omitted, and the interference between the pattern period of the G1 image and the pixel pitch of the X-ray image detector.
  • the phase contrast image can be generated based on the modulation caused by the moiré subject H generated by the above.
  • the subject table 15 can be separated from the X-ray imaging apparatus main body.
  • the rotation plane of the relative incident direction of the center X-ray with respect to the subject is not limited to a plane completely parallel to the grating pitch direction of the first absorption type grating 31, and includes a substantially parallel plane.
  • the center X-ray associated with the turning of the arm member 63 or the tilting of the subject table 15 The rotation plane in the relative incident direction is inclined by the rotation angle ⁇ of the first absorption grating 31 with respect to the grating pitch direction of the first absorption grating 31, but the rotation angle ⁇ of the first absorption grating 31. Is actually a minute angle of about 1 to 2 degrees or less, and the rotation plane of the relative incident direction of the center X-ray is substantially parallel to the grating pitch direction of the first absorption type grating 31.
  • the first grating is not limited to the absorption type grating but can be a phase-type grating as in the X-ray imaging apparatus 1.
  • the present specification discloses the following radiographic apparatuses (1) to (21), and includes an oblique insertion mechanism that allows X-rays to enter the subject from an appropriate direction. Accordingly, it is possible to suppress obstacle shadows and X-ray attenuation caused by the non-interest region, and a clear phase contrast image can be obtained.
  • a radiation image including a periodic intensity distribution is formed by the radiation to be generated, and the detection unit detects the radiation image to acquire radiation image data, and a relative incident direction of the central radiation with respect to the subject passes through the subject.
  • a radiation imaging apparatus configured to be changeable in a plane parallel to a periodic direction of the periodic structure of the first grating.
  • a radiation imaging apparatus comprising: a rotation driving unit that rotates the rotation unit. (3) The radiographic apparatus according to (2), further including a translational drive unit that translates the structural unit in the plane. (4) The radiographic apparatus according to (3), wherein the translation drive unit is controlled so that the central radiation passes through the same region of the subject before and after the change of the incident direction of the central radiation. Radiation imaging apparatus comprising a unit. (5) The radiographic apparatus according to (3) or (4), wherein the distance from the radiation irradiation unit to the subject along the central radiation is the same before and after the change of the incident direction of the central radiation. A radiation imaging apparatus comprising a control unit that controls the translation drive unit.
  • the radiation imaging apparatus according to (2) wherein the rotation axis passes through the arrangement position of the subject.
  • the radiographic apparatus according to (1) wherein the radiographic apparatus is disposed between the radiation irradiating unit and the first grating or between the first grating and the detecting unit, and the subject is placed thereon
  • a radiation imaging apparatus comprising: a subject table to be moved; and a tilt drive unit that tilts the subject table about a tilt axis orthogonal to the plane.
  • the radiation imaging apparatus according to (7) further including a translation drive unit that translates the subject table in the plane.
  • the radiographic apparatus according to any one of (1) to (11), further including a setting unit that sets an incident direction of the central radiation, wherein the setting unit changes an incident direction of the central radiation.
  • a radiation imaging apparatus that performs fluoroscopy while setting the incident direction of the central radiation based on fluoroscopic image data acquired by the radiographic image detector.
  • the setting unit monitors the size of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and the size of the image region is the largest.
  • a radiation imaging apparatus that sets the incident direction of the central radiation in a large incident direction.
  • the setting unit monitors a contrast value of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and the contrast value of the image region is the highest.
  • a radiation imaging apparatus that sets the incident direction of the central radiation in a high incident direction.
  • the first grating is an absorption grating, and the period is obtained by geometrically projecting incident radiation.
  • Radiography apparatus for forming a radiographic image including a spatial intensity distribution.
  • the first grating is an absorption type grating or a phase type grating, and causes a Talbot effect on incident radiation.
  • a radiation imaging apparatus that forms a radiation image including a periodic intensity distribution.
  • the detection unit further includes a second grating superimposed on the radiographic image, and the radiographic image detector includes: A radiation imaging apparatus for detecting the radiation image on which the second grating is superimposed.
  • the radiographic apparatus according to any one of (1) to (17), wherein the radiographic image detector has a resolution capable of resolving the periodic intensity distribution of the radiographic image, and A radiation imaging device that detects a radiation image.
  • the radiographic apparatus according to any one of (1) to (17), wherein the radiological image detector has a resolution that causes moiré in relation to a period of the periodic intensity distribution of the radiographic image.
  • a radiation imaging apparatus including an arithmetic processing unit for generation.
  • a radiation imaging apparatus capable of obtaining a clear phase contrast image by making radiation incident on an object from an appropriate direction.

Abstract

A radiography device (1) is provided with a radiation delivery unit (11), a first grid (31) having a periodic structure in at least one direction, and a detection unit (14) which includes a radiation image detector (30). The first grid forms a radiation image including a periodic intensity distribution by radiation that passes through the first grid. The detection unit detects the radiation image and acquires radiation image data, and is configured so that a relative incidence direction of central radiation with respect to the subject can be changed in a plane that passes through the subject and is parallel to the periodic direction of the periodic structure of the first grid.

Description

放射線撮影装置Radiography equipment
 本発明は、放射線撮影装置に関する。 The present invention relates to a radiation imaging apparatus.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影では、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In general X-ray imaging, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができ、例えば手や足の指節間関節、肘関節、膝関節といった関節の軟骨部の可視化に有用である。 Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in X-ray phase imaging using a phase difference, it is possible to obtain a high-contrast image even for a weakly absorbing object having a low X-ray absorption ability, for example, an interphalangeal joint of a hand or a foot, an elbow joint, This is useful for visualizing the cartilage of joints such as knee joints.
 このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影装置が考案されている(例えば、特許文献1、2参照)。 As a kind of such X-ray phase imaging, in recent years, an X-ray imaging apparatus using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase type grating and absorption type grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Documents 1 and 2).
 X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって、周期的強度分布を呈する自己像(以下、G1像という)を形成する距離であり、このG1像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。 In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image (hereinafter referred to as a G1 image) that exhibits a periodic intensity distribution due to the Talbot interference effect. And modulated by the interaction (phase change) between the subject and the X-rays disposed between the X-ray source and the first diffraction grating.
 X線タルボ干渉計では、G1像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、モアレ縞に対応して画像に現れる周期パターンの被写体による変調を解析することによって被写体の位相情報を取得する。画像に現れる周期パターンの解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子ピッチ方向にほぼ平行な方向に、第2の回折格子の格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、得られる複数の画像データ間で対応する画素毎の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。 In the X-ray Talbot interferometer, the moiré fringes generated by the superposition of the G1 image and the second diffraction grating are detected, and the phase of the subject is analyzed by analyzing the modulation of the periodic pattern appearing in the image corresponding to the moire fringes. Get information. For example, a fringe scanning method is known as a method for analyzing a periodic pattern appearing in an image. According to this fringe scanning method, the second diffraction grating is arranged with respect to the first diffraction grating in a direction substantially parallel to the plane of the first diffraction grating and substantially parallel to the grating pitch direction of the first diffraction grating. , Taking multiple shots while translating the grating pitch of the second diffraction grating at equal scan pitches, and refracting the subject from the change in the corresponding signal value for each pixel between the obtained multiple image data An X-ray angular distribution (phase shift differential image) is obtained, and a phase contrast image of the subject can be obtained based on the angular distribution.
国際公開第08/102598号International Publication No. 08/102598 国際公開第08/102685号International Publication No. 08/102685
 特許文献1、2に記載されたX線撮影装置は、鉛直方向に並べられたX線源、第1の回折格子、第2の回折格子、検出器、及び被写体台をアーム部材によって支持してなる、いわゆる縦型のX線撮影装置であり、被写体台は、X線源と第1の回折格子との間、あるいは第1の回折格子と第2の回折格子との間に配置される。 The X-ray imaging apparatuses described in Patent Documents 1 and 2 support an X-ray source, a first diffraction grating, a second diffraction grating, a detector, and a subject table arranged in a vertical direction by an arm member. The subject table is arranged between the X-ray source and the first diffraction grating, or between the first diffraction grating and the second diffraction grating.
 そして、縞走査法によって取得される位相微分は、第1の回折格子の格子周期方向に関するものであり、この位相微分に基づいて得られる位相コントラスト画像には、格子周期方向に交差する被写体の各部位の縁部が描出され、特に格子周期方向に略直交する縁部が明瞭に描出される。即ち、被写体の配置は格子周期方向の制約を受けることとなる。例えば、指節間関節、肘関節、膝関節といった関節の位相コントラスト画像において関節の軟骨を明瞭に描出するには、指や腕や脚は格子周期方向に略沿って配置することが好ましい。 The phase derivative acquired by the fringe scanning method is related to the grating period direction of the first diffraction grating, and the phase contrast image obtained based on this phase derivative includes each object of the subject that intersects the grating period direction. The edge of the part is depicted, and in particular, the edge substantially perpendicular to the lattice period direction is clearly depicted. In other words, the arrangement of the subject is restricted by the lattice period direction. For example, in order to clearly depict the cartilage of a joint in a phase contrast image of a joint such as an interphalangeal joint, an elbow joint, or a knee joint, it is preferable to arrange fingers, arms, and legs substantially along the lattice period direction.
 以上の条件の下で被写体の撮影を行うと、被写体の関心領域は非関心領域と重なりを有することが多い。例えば、指節間関節、肘関節、膝関節といった関節の軟骨が関心領域である場合、それらの領域は非関心領域である骨などと重なりあってしまうことが多い。なぜなら、軟骨が存在する関節の隙間が、必ずしも骨の長軸方向に関して垂直方向に存在するわけではないからである。関心領域が非関心領域と重なりを有すると、非関心領域が障害陰影となるばかりでなく、一般に硬組織である骨がX線を大きく減衰させてしまい、明瞭な位相コントラスト画像を得ることが難しい。 When the subject is photographed under the above conditions, the region of interest of the subject often overlaps the non-interest region. For example, when cartilage of a joint such as an interphalangeal joint, an elbow joint, or a knee joint is a region of interest, these regions often overlap with a bone that is a non-region of interest. This is because the joint gap where the cartilage exists does not necessarily exist in a direction perpendicular to the long axis direction of the bone. If the region of interest overlaps with the non-region of interest, the non-region of interest not only becomes a shadow shadow, but bones that are generally hard tissue greatly attenuate X-rays, making it difficult to obtain a clear phase contrast image. .
 本発明は、上述した事情に鑑みなされたものであり、被写体に対して適切な方向から放射線を入射させ、明瞭な位相コントラスト画像を得ることのできる放射線撮影装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a radiation imaging apparatus capable of obtaining a clear phase contrast image by causing radiation to enter a subject from an appropriate direction.
 放射線照射部と、少なくとも一方向に周期的構造を有する第1の格子と、放射線画像検出器を含む検出部と、を備え、上記第1の格子は、この第1の格子を通過する放射線によって周期的強度分布を含む放射線像を形成し、上記検出部は、上記放射線像を検出して放射線画像データを取得し、被写体に対する中心放射線の相対的な入射方向が、上記被写体を通り上記第1の格子の上記周期的構造の周期方向に平行な平面内において変更可能に構成されている放射線撮影装置。 A radiation irradiation unit, a first grating having a periodic structure in at least one direction, and a detection unit including a radiation image detector, wherein the first grating is caused by radiation passing through the first grating. A radiographic image including a periodic intensity distribution is formed, and the detection unit detects the radiographic image to acquire radiographic image data, and a relative incident direction of central radiation with respect to the subject passes through the subject and the first A radiation imaging apparatus configured to be changeable in a plane parallel to the periodic direction of the periodic structure of the grating.
 本発明によれば、被写体に対して適切な方向から放射線を入射させることができ、明瞭な位相コントラスト画像を得ることができる。 According to the present invention, radiation can be incident on the subject from an appropriate direction, and a clear phase contrast image can be obtained.
本発明の実施形態を説明するための、放射線撮影装置の一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of a radiography apparatus for describing embodiment of this invention. 図1の放射線撮影装置の制御ブロック図である。It is a control block diagram of the radiography apparatus of FIG. 図1の放射線撮影装置の撮影部の構成を示す斜視図である。It is a perspective view which shows the structure of the imaging | photography part of the radiography apparatus of FIG. 図1の放射線撮影装置の撮影部の構成を示す側面図である。It is a side view which shows the structure of the imaging | photography part of the radiography apparatus of FIG. 図3の放射線撮影装置に含まれる放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector contained in the radiography apparatus of FIG. 図5の放射線画像検出器によって取得される画像の周期パターンを変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the periodic pattern of the image acquired by the radiographic image detector of FIG. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 図1の放射線撮影装置における縞走査法による位相コントラスト画像の生成方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the production | generation method of the phase contrast image by the fringe scanning method in the radiography apparatus of FIG. 図8の位相コントラスト画像の生成方法によって得られる画像データの画素の信号波形を示すグラフである。It is a graph which shows the signal waveform of the pixel of the image data obtained by the production | generation method of the phase contrast image of FIG. 図1の放射線撮影装置における位相コントラスト画像の生成方法の他の例を説明するための模式図である。It is a schematic diagram for demonstrating the other example of the production | generation method of the phase contrast image in the radiography apparatus of FIG. 図10の位相コントラスト画像の生成方法によって得られる画像データの画素の信号波形を示すグラフである。It is a graph which shows the signal waveform of the pixel of the image data obtained by the production | generation method of the phase contrast image of FIG. 図10の位相コントラスト画像の生成方法の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the production | generation method of the phase contrast image of FIG. 図10の位相コントラスト画像の生成方法の他の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the other modification of the production | generation method of the phase contrast image of FIG. 図10の位相コントラスト画像の生成方法の他の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the other modification of the production | generation method of the phase contrast image of FIG. 図1の放射線撮影装置における位相コントラスト画像の生成方法の他の例を説明するための模式図である。It is a schematic diagram for demonstrating the other example of the production | generation method of the phase contrast image in the radiography apparatus of FIG. 図1の放射線撮影装置において被写体に対する中心放射線の相対的な入射方向を変更する機構を示す模式図である。It is a schematic diagram which shows the mechanism which changes the relative incident direction of the central radiation with respect to a to-be-photographed object in the radiography apparatus of FIG. 被写体の関心領域を通過するX線を中心X線の入射方向との関係において示す模式図である。It is a schematic diagram showing the X-ray passing through the region of interest of the subject in relation to the incident direction of the central X-ray. 図1の放射線撮影装置において被写体の関心領域と放射線照射部及び第1の格子並びに検出部との相対位置関係の変化を補正する機構を示す模式図である。FIG. 2 is a schematic diagram illustrating a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 1. 図1の放射線撮影装置において被写体の関心領域と放射線照射部及び第1の格子並びに検出部との相対位置関係の変化を補正する機構の他の例を示す模式図である。FIG. 6 is a schematic diagram illustrating another example of a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 1. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. 図20の放射線撮影装置の制御ブロック図である。It is a control block diagram of the radiography apparatus of FIG. 図1の放射線撮影装置及び図20の放射線撮影装置の占有スペースを示す模式図である。It is a schematic diagram which shows the occupation space of the radiography apparatus of FIG. 1 and the radiography apparatus of FIG. 図20の放射線撮影装置において被写体の関心領域と放射線照射部及び第1の格子並びに検出部との相対位置関係の変化を補正する機構を示す模式図である。FIG. 21 is a schematic diagram illustrating a mechanism for correcting a change in relative positional relationship between a region of interest of a subject, a radiation irradiation unit, a first lattice, and a detection unit in the radiographic apparatus of FIG. 20. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography apparatus for describing embodiment of this invention. 図27の放射線撮影装置における位相コントラスト画像の生成方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the production | generation method of the phase contrast image in the radiography apparatus of FIG. 本発明の実施形態を説明するための放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography apparatus for describing embodiment of this invention. 図29の放射線撮影装置における位相コントラスト画像の生成方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the production | generation method of the phase contrast image in the radiography apparatus of FIG. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention. 本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of a radiography apparatus for describing embodiment of this invention.
 図1は、本発明の実施形態を説明するための放射線撮影装置の一例の構成を示し、図2は、図1の放射線撮影装置の制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiographic apparatus for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiographic apparatus of FIG.
 X線撮影装置1は、X線撮影装置本体2と、コンソール3とに大別される。X線撮影装置本体2は、被写体HにX線を照射するX線照射部11と、X線照射部11から放射されて被写体Hを透過したX線を検出し、画像データを生成する撮影部12と、これらX線照射部11及び撮影部12を支持する構造体13とを備えている。コンソール3は、操作者の操作に基づいてX線照射部11の曝射動作や撮影部12の撮影動作などのX線撮影装置本体2の各部の動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成する。 The X-ray imaging apparatus 1 is roughly divided into an X-ray imaging apparatus main body 2 and a console 3. The X-ray imaging apparatus body 2 includes an X-ray irradiation unit 11 that irradiates the subject H with X-rays, and an imaging unit that detects X-rays emitted from the X-ray irradiation unit 11 and transmitted through the subject H, and generates image data. 12 and a structure 13 that supports the X-ray irradiation unit 11 and the imaging unit 12. The console 3 controls the operation of each part of the X-ray imaging apparatus body 2 such as the exposure operation of the X-ray irradiation unit 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and is acquired by the imaging unit 12. The processed image data is processed to generate a phase contrast image.
 構造体13は、床に固定されるベース60と、ベース60に設置されたスタンド61と、スタンド61に保持された旋回軸62まわり(図中矢印a方向)に旋回可能にスタンド61に連結されたアーム部材63とで構成されている。X線照射部11は、アーム部材63の一方の端部に取り付けられており、撮影部12は、アーム部材63の他方の端部に取り付けられ、X線照射部11に対向して配置されている。 The structure 13 is connected to the stand 61 so as to be rotatable around a base 60 fixed to the floor, a stand 61 installed on the base 60, and a turning shaft 62 held in the stand 61 (in the direction of arrow a in the figure). And an arm member 63. The X-ray irradiation unit 11 is attached to one end portion of the arm member 63, and the imaging unit 12 is attached to the other end portion of the arm member 63 and is disposed to face the X-ray irradiation unit 11. Yes.
 スタンド61は、旋回軸62に直交する面内における水平方向(図中矢印b方向)に並進移動可能にベース60に設置されており、スタンド61には、その並進移動を行うための並進駆動部64が設けられている。また、スタンド61は、複数の支柱部61aからなり、鉛直方向(図中矢印c方向)に伸縮可能に構成されており、スタンド61には、その伸縮を行うための伸縮駆動部65が設けられている。また、スタンド61には、アーム部材63を旋回させる回転駆動部66が設けられている。 The stand 61 is installed on the base 60 so as to be capable of translational movement in a horizontal direction (in the direction of arrow b in the figure) in a plane orthogonal to the turning shaft 62, and the stand 61 has a translational drive unit for performing the translational movement. 64 is provided. The stand 61 includes a plurality of support columns 61a, and is configured to be extendable / contractable in the vertical direction (the direction of arrow c in the figure). The stand 61 is provided with an expansion / contraction driving unit 65 for performing expansion / contraction. ing. In addition, the stand 61 is provided with a rotation drive unit 66 for turning the arm member 63.
 X線照射部11は、X線源としてのX線管18と、コリメータユニット19とを備えている。X線管18は、陽極回転型であり、X線源制御部17の制御に基づいて高電圧発生器16から印加される高電圧に応じて、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出し、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。コリメータユニット19は、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを有している。 The X-ray irradiation unit 11 includes an X-ray tube 18 as an X-ray source and a collimator unit 19. The X-ray tube 18 is of an anode rotating type, and is a filament (not shown) as an electron emission source (cathode) according to a high voltage applied from the high voltage generator 16 based on the control of the X-ray source control unit 17. X-rays are generated by emitting an electron beam from the motor and causing it to collide with the rotating anode 18a rotating at a predetermined speed. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b. The collimator unit 19 has a movable collimator 19 a that limits the irradiation field so as to shield a portion of the X-rays emitted from the X-ray tube 18 that does not contribute to the inspection area of the subject H.
 撮影部12は、被写体HによるX線の位相変化(角度変化)を検出するための第1の吸収型格子31と、第1の吸収型格子31を通過したX線によって形成されるX線像(以下、このX線像をG1像と称する)を検出する検出部14とを備えている。第1の吸収型格子31及び検出部14は、筐体に収納され、一つのユニットとして構成されている。 The imaging unit 12 includes an X-ray image formed by a first absorption type grating 31 for detecting an X-ray phase change (angle change) caused by the subject H and an X-ray that has passed through the first absorption type grating 31. And a detection unit 14 that detects (hereinafter, this X-ray image is referred to as a G1 image). The first absorption type grating 31 and the detection unit 14 are housed in a housing and configured as one unit.
 本X線撮影装置1は、詳細は後述するが、縞走査法を用いて位相コントラスト画像を生成するものであり、検出部14には、G1像に重ね合わされる第2の吸収型格子32と、第2の吸収型格子32が重ね合わされたG1像を検出するX線画像検出器30と、第2の吸収型格子32を所定のピッチで並進移動させる走査機構33とが設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。 Although the details will be described later, the X-ray imaging apparatus 1 generates a phase contrast image using a fringe scanning method. The detection unit 14 includes a second absorption grating 32 superimposed on the G1 image, An X-ray image detector 30 that detects the G1 image on which the second absorption type grating 32 is superimposed, and a scanning mechanism 33 that translates the second absorption type grating 32 at a predetermined pitch are provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
 また、X線撮影装置本体2には、被写体Hが載置される被写体台15が設けられている。被写体台15は、ベース60に設置された台座67に支持されており、X線照射部11と撮影部12との間、より詳細には、X線照射部11と第1の吸収型格子31との間に配置されている。 The X-ray imaging apparatus main body 2 is provided with a subject table 15 on which the subject H is placed. The subject table 15 is supported by a pedestal 67 installed on the base 60, and more specifically between the X-ray irradiation unit 11 and the imaging unit 12, more specifically, the X-ray irradiation unit 11 and the first absorption grating 31. It is arranged between.
 コンソール3には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影装置1の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 3 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging apparatus 1 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, and the like. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 図3及び図4は、撮影部12の構成を模式的に示す。 3 and 4 schematically show the configuration of the photographing unit 12.
 第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31b(高放射線吸収部)とから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32b(高放射線吸収部)とから構成されている。基板31a,32aは、いずれもX線を透過させるシリコン、ガラス、樹脂、等のX線透過性部材により形成されている。 The first absorption type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b (high radiation absorption portions) disposed on the substrate 31a. Similarly, the second absorption grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b (high radiation absorption portions) arranged on the substrate 32a. The substrates 31a and 32a are each formed of an X-ray transmissive member such as silicon, glass, resin, or the like that transmits X-rays.
 X線遮蔽部31bは、X線照射部11から放射されるX線束の光軸(中心X線の軌跡)Cに直交する面内の一方向に延伸した線状の部材で構成される。各X線遮蔽部31bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31bは、金属メッキ法や蒸着法によって形成することが可能である。そして、X線遮蔽部31bは、X線の光軸Cに直交する面内において、上記一方向と直交する方向(以後、x方向とする)に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。 The X-ray shielding part 31b is configured by a linear member extending in one direction in a plane orthogonal to the optical axis (the locus of the central X-ray) C of the X-ray bundle emitted from the X-ray irradiation part 11. As a material of each X-ray shielding part 31b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b can be formed by a metal plating method or a vapor deposition method. Then, the X-ray shielding portion 31b is in a plane perpendicular to the optical axis C of the X-ray, the direction (hereinafter, x and direction) orthogonal to the one direction at a constant grating pitch p 1 to each other a predetermined distance d 1 is arranged with a gap.
 X線遮蔽部32bもまた、X線照射部11から放射されるX線束の光軸Cに直交する面内の一方向に延伸した線状の部材で構成される。各X線遮蔽部32bの材料としては、金、白金等の重金属といったX線吸収性に優れるものが好ましく、これらのX線遮蔽部32bは、金属メッキ法や蒸着法によって形成することが可能である。そして、X線遮蔽部32bは、X線の光軸Cに直交する面内において、上記一方向と直交する方向(x方向)に一定の格子ピッチpで、互いに所定の間隔dを空けて配列されている。 The X-ray shielding part 32b is also composed of a linear member extending in one direction in a plane orthogonal to the optical axis C of the X-ray bundle emitted from the X-ray irradiation part 11. As a material of each X-ray shielding part 32b, a material having excellent X-ray absorption such as heavy metals such as gold and platinum is preferable, and these X-ray shielding parts 32b can be formed by a metal plating method or a vapor deposition method. is there. Then, X-ray shielding portion 32b, in the plane orthogonal to the optical axis C of the X-ray, at a constant grating pitch p 2 in the direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged.
 以上のように構成される第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、上記間隔d,dの領域であるスリット部(低放射線吸収部)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。 Since the first and second absorption gratings 31 and 32 configured as described above do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. The slit portions (low radiation absorbing portions) that are the regions of the distances d 1 and d 2 may not be voids. For example, the gaps may be filled with an X-ray low absorbing material such as a polymer or a light metal. Good.
 第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔d,dを、X線照射部11から放射されるX線の実効波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過させるように構成する。例えば、回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔d,dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。 The first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray irradiation unit 11, most of the X-rays included in the irradiation X-rays are slit portions. It is configured to pass through while maintaining straightness without diffracting. For example, when tungsten is used as the rotary anode 18a and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 μm, most of the X-rays are geometrically projected without being diffracted at the slit portion.
 X線照射部11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、G1像は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32は、そのスリット部が、第2の吸収型格子32の位置におけるG1像の周期的強度分布のパターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、格子ピッチpは、次式(1)の関係を満たすように決定される。 Since the X-ray radiated from the X-ray irradiation unit 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emitting point, the G1 image is enlarged in proportion to the distance from the X-ray focal point 18b. The The slits of the second absorption type grating 32 are determined so as to substantially match the pattern of the periodic intensity distribution of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影装置2では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、G1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. In the present X-ray imaging apparatus 2, the first absorption grating 31 projects the incident X-rays without diffracting, and the G1 image is present at all positions behind the first absorption grating 31. because similarly obtained, the distance L 2, can be set independently of the Talbot distance.
 撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折すると仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(実効波長)λ、及び正の整数mを用いて、次式(2)で表される。 Although the imaging unit 12 does not constitute a Talbot interferometer, the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the grating pitch p of the first absorption type grating 31. 1 , using the grating pitch p 2 of the second absorption grating 32, the X-ray wavelength (effective wavelength) λ, and a positive integer m, the following expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、X線照射部11から放射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Timm Weitkamp, et al., Proc. of SPIE, Vol. 6318, 2006年 63180S-1項」により知られている。 Expression (2) is an expression representing the Talbot interference distance when the X-ray emitted from the X-ray irradiation unit 11 is a cone beam, “Timm 、 Weitkamp, et al., Proc. Of SPIE, Vol. 6318, It is known from “2006 63180S-1”.
 本X線撮影装置2では、撮影部12の薄型化を目的とし、距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定する。すなわち、距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging apparatus 2, the distance L 2 is set to a value shorter than the minimum Talbot interference distance Z when m = 1 for the purpose of reducing the thickness of the imaging unit 12. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、X線照射部11から放射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、距離Lを、次式(5)を満たす範囲の値に設定する。 Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray irradiation unit 11 can be regarded as substantially parallel beams, a distance L 2, the value of the range that satisfies the following equation (5) Set to.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、距離Lは、必ずしも式(3)ないし式(5)を満たす必要はなく、例えば撮影部12の薄型化の要請がない場合などには、式(3)ないし式(5)から外れる範囲の値も採り得る。 However, the distance L 2 does not necessarily satisfy the expressions (3) to (5), and deviates from the expressions (3) to (5), for example, when there is no request for thinning of the photographing unit 12. Range values can also be taken.
 図5は、X線画像検出器30の構成を模式的に示す。 FIG. 5 schematically shows the configuration of the X-ray image detector 30.
 X線画像検出器30は、薄膜トランジスタ(TFT:Thin Film Transistor)パネルをベースとした平面型検出器(FPD:Flat Panel Detector)が用いられ、X線を電荷に変換して蓄積する複数の画素40がTFTアクティブマトリクス基板上に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール3のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。 The X-ray image detector 30 uses a flat panel detector (FPD: Flat Panel Detector) based on a thin film transistor (TFT: Thin Film Transistor) panel, and converts a plurality of pixels 40 by converting X-rays into electric charges. Are two-dimensionally arranged on the TFT active matrix substrate, a scanning circuit 42 for controlling the charge readout timing from the image receiver 41, the charges accumulated in each pixel 40 are read out, and the charges are converted into image data. And a data transmission circuit 44 that transmits the image data to the arithmetic processing unit 22 via the I / F 25 of the console 3. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型のX線検出素子として構成することができる。各画素40には、TFTスイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode. The X-ray detection element can be configured. A TFT switch (not shown) is connected to each pixel 40, and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、X線を可視光に変換するシンチレータを併用し、シンチレータにて変換された可視光を電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。シンチレータを形成する蛍光体としては、例えばテルビウム賦活酸化ガドリニウム(Gd2S:Tb)やタリウム賦活ヨウ化セシウム(CsI:Tl)などが用いられる。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 Each pixel 40 can also be configured as an indirect conversion type X-ray detection element that uses a scintillator that converts X-rays into visible light, and converts visible light converted by the scintillator into electric charge and accumulates it. It is. Examples of the phosphor forming the scintillator include terbium activated gadolinium oxide (Gd 2 O 2 S: Tb) and thallium activated cesium iodide (CsI: Tl). The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリにより構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、X線画像検出器30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory. The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise (for example, TFT) depending on the control conditions (drive frequency and readout period) of the X-ray image detector 30 are performed. Correction of the leak signal of the switch) may be included.
 X線画像検出器30は、その受像面がX線束の光軸Cに直交するように配置されており、典型的には、その受像部41の画素40の配列における行方向又は列方向が第1の吸収型格子31の格子ピッチ方向(x方向)と平行となるように配置される。 The X-ray image detector 30 is arranged so that the image receiving surface thereof is orthogonal to the optical axis C of the X-ray bundle. Typically, the row direction or the column direction in the array of the pixels 40 of the image receiving unit 41 is the first. The one absorption type grating 31 is arranged so as to be parallel to the grating pitch direction (x direction).
 以上のように構成された撮影部12では、第1の吸収型格子31を通過したX線によって、第1の吸収型格子31の格子構造を反映した周期的強度分布を呈するG1像が形成される。そして、このG1像は、第2の吸収型格子32との重ね合わせにより強度変調され、強度変調されたG1像がX線画像検出器30によって撮像される。第2の吸収型格子32の位置におけるG1像の周期的強度分布のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the imaging unit 12 configured as described above, a G1 image exhibiting a periodic intensity distribution reflecting the lattice structure of the first absorption type grating 31 is formed by the X-rays that have passed through the first absorption type grating 31. The The G1 image is intensity-modulated by being superimposed on the second absorption grating 32, and the intensity-modulated G1 image is captured by the X-ray image detector 30. The pattern period p 1 ′ of the periodic intensity distribution of the G1 image at the position of the second absorption type grating 32 and the substantial grating pitch p 2 ′ of the second absorption type grating 32 (substantial pitch after manufacture) Is slightly different due to manufacturing errors and placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 G1像のパターン周期p’と第2の吸収型格子32の格子ピッチp’との微小な差異により、X線画像検出器30上における像コントラストはモアレ縞を含む。このモアレ縞のx方向に関する周期Tは、X線焦点18bからX線画像検出器30までの距離をLとして、次式(6)で表される。 Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′ of the second absorption type grating 32, the image contrast on the X-ray image detector 30 includes moire fringes. The period T in the x direction of the moire fringes is expressed by the following equation (6), where L is the distance from the X-ray focal point 18b to the X-ray image detector 30.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このモアレ縞をX線画像検出器30で検出するには、画素40のx方向に関する配列ピッチPは、少なくとも次式(7)を満たす必要があり、更には、次式(8)を満たすことが好ましい(ここで、nは正の整数である)。 In order to detect the moire fringes by the X-ray image detector 30, the arrangement pitch P of the pixels 40 in the x direction needs to satisfy at least the following equation (7), and further satisfies the following equation (8). Are preferred (where n is a positive integer).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(7)は、画素40の配列ピッチPがモアレ縞の周期Tの整数倍でないことを意味しており、n≧2の場合であっても原理的にモアレ縞を検出することが可能である。式(8)は、画素40の配列ピッチPをモアレ縞の周期Tの1/2より小さくすることを意味している。 Expression (7) means that the arrangement pitch P of the pixels 40 is not an integral multiple of the period T of the moire fringes, and the moire fringes can be detected in principle even when n ≧ 2. is there. Expression (8) means that the arrangement pitch P of the pixels 40 is made smaller than ½ of the period T of moire fringes.
 画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、画素40の配列ピッチPとモアレ縞の周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p’と第2の吸収型格子32の格子ピッチp’との少なくともいずれか一方を変更することによりモアレ縞の周期Tを変更することが好ましい。 Since the arrangement pitch P of the pixels 40 is a value determined in terms of design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P of the pixels 40 and the period T of moire fringes is shown. For the adjustment, the positions of the first and second absorption gratings 31 and 32 are adjusted, and at least one of the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′ of the second absorption grating 32 is set. It is preferable to change the period T of moire fringes by changing one.
 図6に、モアレ縞の周期Tを変更する方法を模式的に示す。 FIG. 6 schematically shows a method of changing the period T of moire fringes.
 モアレ縞の周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Cを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Cを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、第2の吸収型格子32のx方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ縞の周期Tが変化する(FIG.6A)。 The change of the moire fringe period T can be performed by relatively rotating one of the first and second absorption gratings 31 and 32 about the optical axis C. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis C is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” → “p 2 ′”. / Cos θ ”, and as a result, the period T of moire fringes changes (FIG. 6A).
 別の例として、モアレ縞の周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Cに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Cに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、第2の吸収型格子32のx方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ縞の周期Tが変化する(FIG.6B)。 As another example, the change in the period T of the moire fringes is performed by centering one of the first and second absorption gratings 31 and 32 on an axis perpendicular to the optical axis C and along the y direction. This can be done by relatively inclining. For example, a relative inclination mechanism 51 that inclines the second absorption type grating 32 relative to the first absorption type grating 31 about the axis in the direction orthogonal to the optical axis C and along the y direction. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction of the second absorption type grating 32 is changed from “p 2 ′” → “p 2 ′”. X cos α ”, and as a result, the period T of moire fringes changes (FIG. 6B).
 更に別の例として、モアレ縞の周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Cの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Cの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Cに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ縞の周期Tが変化する(FIG.6C)。 As another example, the period T of the moire fringes can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis C. it can. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis C is provided. When the second absorption type grating 32 is moved by the movement amount δ to the optical axis C by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected on the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the period T of moire fringes changes (FIG. 6C). ).
 本X線撮影装置2において、撮影部12は、上述のようにタルボ干渉計を構成するものではなく、従って距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ縞の周期Tを変更する機構を好適に採用することができる。モアレ縞の周期Tを変更するための第1及び第2の吸収型格子31,32の上記の変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。 In the present X-ray imaging apparatus 2, the imaging unit 12 does not constitute a Talbot interferometer as described above, and therefore the distance L 2 can be freely set. A mechanism for changing the period T of moire fringes by changing 2 can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the period T of the moiré fringes is a piezoelectric element or the like. It can be configured by an actuator.
 X線照射部11と第1の吸収型格子31との間に配置された被写体台15に被写体Hを配置した場合に、G1像の周期的強度分布は、被写体Hにより変調を受け、G1像と第2の吸収型格子32との重ね合わせによるモアレ縞もまた変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。X線画像検出器30によって取得される画像には、モアレ縞に対応する周期パターンが含まれ、この周期パターンを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is arranged on the subject table 15 arranged between the X-ray irradiation unit 11 and the first absorption type grating 31, the periodic intensity distribution of the G1 image is modulated by the subject H, and the G1 image And the moire fringes due to the superposition of the second absorption type grating 32 are also modulated. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. The image acquired by the X-ray image detector 30 includes a periodic pattern corresponding to moire fringes, and a phase contrast image of the subject H can be generated by analyzing the periodic pattern.
 以下、画像の周期パターンの解析方法について説明する。 Hereinafter, a method for analyzing a periodic pattern of an image will be described.
〔解析方法1〕
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。
[Analysis method 1]
FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してX線画像検出器30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that goes straight when the subject H does not exist. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and is an X-ray image. The light enters the detector 30. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(9)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following formula (9), where n (x, z) is the refractive index distribution of the subject H and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(10)で表される。 The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This displacement amount Δx is approximately expressed by the following equation (10) based on the fact that the refraction angle φ of X-rays is very small.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(11)で表される。 Here, the refraction angle φ is expressed by Expression (11) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、画像データの各画素の信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの信号の位相差)に、次式(12)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. This displacement amount Δx is related to the phase shift amount ψ of the signal of each pixel of the image data (the signal phase difference between when the subject H is present and when it is not present) as shown in the following equation (12). Yes.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 したがって、各画素の信号の位相ズレ量ψを求めることにより、式(12)から屈折角φが求まり、式(11)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影装置1では、上記の位相ズレ量ψを、以下に説明する縞走査法を用いて算出する。 Accordingly, by obtaining the phase shift amount ψ of the signal of each pixel, the refraction angle φ is obtained from the equation (12), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (11). By integrating with respect to x, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H can be generated. In the X-ray imaging apparatus 1, the phase shift amount ψ is calculated using a fringe scanning method described below.
 縞走査法では、第1及び第2の吸収型格子31,32のうちの一方の格子を、その格子の格子ピッチ方向に他方の格子に対してステップ的に並進移動させ、G1像の周期的強度分布に対する第2の吸収型格子32のX線遮蔽部32bの周期的配列の位相を変化させながら撮影を行う。本X線撮影装置2では、走査機構33(図1参照)により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。 In the fringe scanning method, one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner with respect to the other grating in the grating pitch direction of the grating, and the G1 image is periodically generated. Imaging is performed while changing the phase of the periodic arrangement of the X-ray shielding portions 32b of the second absorption type grating 32 with respect to the intensity distribution. In the present X-ray imaging apparatus 2, the second absorption type grating 32 is moved by the scanning mechanism 33 (see FIG. 1), but the first absorption type grating 31 may be moved.
 第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチpを整数分の1ずつ第2の吸収型格子32を移動させながら、X線画像検出器30で撮像し、得られた複数の画像データから画素毎に複数個の信号値を取得し、演算処理部22で演算処理することによって各画素の信号の位相ズレ量ψを得る。 As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. Pixel changes such moire fringes, while the grating pitch p 2 moves the second absorption-type grating 32 by an integral fraction, captured by the X-ray image detector 30, a plurality of obtained image data A plurality of signal values are acquired every time, and the arithmetic processing unit 22 performs arithmetic processing to obtain a phase shift amount ψ of the signal of each pixel.
 図8は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。 FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。 The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。k=0,1,2,・・・,M-1の各位置においてX線画像検出器30で撮像すると、画素毎にM個の信号値が得られる。以下に、このM個の信号値から各画素の信号の位相ズレ量ψを算出する方法を説明する。 First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases. When images are taken by the X-ray image detector 30 at each position of k = 0, 1, 2,..., M−1, M signal values are obtained for each pixel. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel from the M signal values will be described.
 第2の吸収型格子32が位置kにあるときの各画素の信号値をI(x)とすると、I(x)は、次式(13)で表される。 When the signal value of each pixel when the second absorption type grating 32 is at the position k is I k (x), I k (x) is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、xは、各画素のx方向に関する座標であり、Aは入射X線の強度であり、Aは信号のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、屈折角φを画素の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of each pixel, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal (where n is a positive integer). ). Φ (x) represents the refraction angle φ as a function of the pixel coordinate x.
 次いで、次式(14)の関係式を用いると、屈折角φ(x)は、次式(15)のように表される。 Next, using the relational expression of the following expression (14), the refraction angle φ (x) is expressed as the following expression (15).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素の信号の位相ズレ量ψに対応する。したがって、画素毎に得られたM個の信号値から、式(15)に基づいて各画素の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。 Here, arg [] means extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel. Therefore, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel from the M signal values obtained for each pixel based on the equation (15).
 図9は、縞走査に伴って変化する一つの画素の信号波形を示す。 FIG. 9 shows the signal waveform of one pixel that changes with the fringe scanning.
 画素毎に得られるM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号波形を示しており、図9中の実線は、被写体Hが存在する場合の信号波形を示している。この両者の波形の位相差が各画素の信号の位相ズレ量ψに対応する。 The M signal values obtained for each pixel periodically change with the period of the grating pitch p 2 with respect to the position k of the second absorption type grating 32. A broken line in FIG. 9 indicates a signal waveform when the subject H does not exist, and a solid line in FIG. 9 indicates a signal waveform when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel.
 そして、屈折角φ(x)は、上記式(11)で示したように位相シフト分布Φ(x)の微分に対応するため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。以上の演算は、演算処理部22により行われ、演算処理部22は、位相シフト分布Φ(x,y)を位相コントラスト画像として記憶部23に記憶させる。 Since the refraction angle φ (x) corresponds to the differentiation of the phase shift distribution Φ (x) as shown in the above equation (11), the refraction angle φ (x) is integrated along the x axis. A phase shift distribution Φ (x) is obtained. In the above description, the y-coordinate regarding the y-direction of the pixel is not taken into consideration. However, by performing the same calculation for each y-coordinate, a two-dimensional phase shift distribution Φ (x, y) is obtained. The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase shift distribution Φ (x, y) in the storage unit 23 as a phase contrast image.
〔解析方法2〕
 図10は、X線撮影装置1における位相コントラスト画像の生成方法の他の例を示す。
[Analysis method 2]
FIG. 10 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 1.
 以下に説明する方法においては、モアレ縞に対して交差する方向に並ぶ複数の画素を一単位として解析を行い、一つの画像データから各画素の信号の位相ズレ量ψを算出する。 In the method described below, a plurality of pixels arranged in a direction intersecting with the moire fringe are analyzed as a unit, and the phase shift amount ψ of the signal of each pixel is calculated from one image data.
 図10に示す例において、第1及び第2の吸収型格子31,32が、光軸Cを中心として角度θだけ相対的に回転して配置されており、G1像及び第2の吸収型格子32が角度θだけ相対的に回転され、y方向に周期性を有するモアレ縞が生じている。そこで、モアレ縞に対して交差するy方向に並ぶ複数の画素を一単位Uとして解析を行う。図10に示す例においては、y方向に並ぶ5つの画素を一単位Uとしている。 In the example shown in FIG. 10, the first and second absorption type gratings 31 and 32 are arranged so as to be relatively rotated by an angle θ about the optical axis C, and the G1 image and the second absorption type grating are arranged. 32 is relatively rotated by an angle θ, and moire fringes having periodicity in the y direction are generated. Therefore, the analysis is performed with a plurality of pixels arranged in the y direction intersecting the moire fringes as one unit U. In the example shown in FIG. 10, five pixels arranged in the y direction are set as one unit U.
 上述した通り、G1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位し、G1像のx方向の変位に伴ってモアレ縞はy方向に変位することになる。図11に示すように、モアレ縞の変位に伴い、単位毎に、その単位を構成する画素群の信号値を補間してなる信号波形の位相が変化する。被写体Hが存在しない場合の信号波形(FIG.11A)と、被写体Hが存在する場合の信号波形(FIG.11B)との両者の波形の位相差が、その単位に含まれる画素の信号の位相ズレ量ψに対応する。 As described above, the G1 image is displaced in the x direction by an amount corresponding to the refraction angle φ due to the refraction of X-rays at the subject H, and the moire fringes are displaced in the y direction as the G1 image is displaced in the x direction. Will do. As shown in FIG. 11, the phase of the signal waveform formed by interpolating the signal value of the pixel group constituting the unit changes for each unit with the displacement of the moire fringes. The phase difference between the waveform of the signal waveform (FIG. 11A) when the subject H is not present and the signal waveform (FIG. 11B) when the subject H is present is the phase of the pixel signal included in the unit. This corresponds to the displacement amount ψ.
 そして、解析を行う画素群の単位を例えばy方向に1画素ずつずらしながら、単位毎に上記の解析を行うことによって、各画素の信号の位相ズレ量ψを得ることができる。即ち、画素40のy方向の並びにおけるk番目の画素40の信号の位相ズレ量ψは、k番目の画素40の信号値をIとして、[I,Ik+1,Ik+2,Ik+3,Ik+4]の5個の信号値を用い、k+1番目の画素40の信号の位相ズレ量ψは、[Ik+1,Ik+2,Ik+3,Ik+4,Ik+5]の5個の信号値を用いて、それぞれ得ることができる。なお、画素群の単位を、一単位とする5画素以下の範囲でy方向に複数画素ずつずらしながら、単位毎に上記の解析を行うこともできる。例えば2画素ずつずらすものとして、k番目及びk+1番目の各画素40の信号の位相ズレ量ψは、[I,Ik+1,Ik+2,Ik+3,Ik+4]の5個の信号値を用い、k+2番目及びk+3番目の各画素40の信号の位相ズレ量ψは、[Ik+2,Ik+3,Ik+4,Ik+5,Ik+6]の5個の信号値を用いて、それぞれ得ることができる。 Then, the phase shift amount ψ of the signal of each pixel can be obtained by performing the above analysis for each unit while shifting the unit of the pixel group to be analyzed, for example, by one pixel in the y direction. That is, the phase shift amount ψ of the k-th pixel 40 of the signal at the row of the y direction of pixels 40, the signal value of the k-th pixel 40 as I k, [I k, I k + 1, I k + 2, I k + 3, 5 signal values of I k + 4 ] and 5 signal values of [I k + 1 , I k + 2 , I k + 3 , I k + 4 , I k + 5 ] are used as the phase shift amount ψ of the signal of the (k + 1) th pixel 40. Can be obtained respectively. Note that the above analysis can be performed for each unit while shifting the unit of the pixel group by a plurality of pixels in the y direction within a range of 5 pixels or less as one unit. For example, assuming that each pixel is shifted by two pixels, the phase shift amount ψ of the signal of each of the kth and k + 1th pixels 40 uses five signal values of [I k , I k + 1 , I k + 2 , I k + 3 , I k + 4 ]. , K + 2 and k + 3 pixels 40 can be obtained by using five signal values of [I k + 2 , I k + 3 , I k + 4 , I k + 5 , I k + 6 ]. .
 各画素の信号の位相ズレ量ψから式(12)を用いて屈折角φが求まり、そして式(11)を用いて位相シフト分布Φ(x)の微分量が求まり、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成する。 The refraction angle φ is obtained from the phase shift amount ψ of the signal of each pixel using the equation (12), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (11), and this is integrated with respect to x. Thus, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H is generated.
 なお、y方向に並ぶ3画素以上を一単位としてモアレ縞を解像すれば、上記の解析は可能である。よって、y方向に関するモアレ周期Tとy方向に関する画素40のピッチPとの満たすべき関係は、G1像を回転させる場合には次式(16)となり、第2の吸収型格子32を回転させる場合には次式(17)となる。 It should be noted that the above analysis is possible if the moire fringes are resolved with 3 pixels or more arranged in the y direction as a unit. Therefore, the relationship to be satisfied between the moire period T in the y direction and the pitch P of the pixels 40 in the y direction is expressed by the following expression (16) when the G1 image is rotated, and the second absorption type grating 32 is rotated. Is given by the following equation (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 なお、一単位とする画素数は、それらの画素の並びがy方向に関するモアレ周期Tの少なくとも一周期の区間に亘る画素数とすることが好ましい。ここで、y方向に関するモアレ周期Tがy方向に関する画素40の配列ピッチPのほぼM倍(Mは整数)になるように設定し、M個の画素40を一単位とした場合に、画素40のy方向の並びにおけるk番目の画素40の信号値をIとして、I~Ik+M-1のM個の信号値は、上述した縞走査法において第1及び第2の吸収型格子31,32のうちの一方の格子を、その格子ピッチをM個に分割した走査ピッチで格子ピッチ方向に移動させた際に、k番目の画素40について取得されるM個の信号値と等価である。 Note that the number of pixels as a unit is preferably the number of pixels over which at least one period of the moire period T in the y direction is arranged. Here, when the moire period T in the y direction is set to be approximately M times the arrangement pitch P of the pixels 40 in the y direction (M is an integer), and the M pixels 40 are taken as one unit, the pixel 40 The signal values of the k-th pixel 40 in the y-direction array are I k , and the M signal values of I k to I k + M−1 are the first and second absorption gratings 31 in the fringe scanning method described above. , 32 is equivalent to M signal values acquired for the kth pixel 40 when the grid pitch is moved in the grid pitch direction at a scan pitch obtained by dividing the grid pitch into M pieces. .
 図12は、図10の解析方法の変形例を示す。 FIG. 12 shows a modification of the analysis method of FIG.
 図12に示す例においては、第2の吸収型格子32の格子ピッチpがG1像のピッチp´と異なり、x方向に周期性を有するモアレ縞が生じている。第2の吸収型格子32の格子ピッチpとG1像のピッチp´とを異ならせるにあたっては、例えば第1及び第2の吸収型格子31,32のいずれか一方を光軸Cの方向に沿って相対的に移動させてもよいし、第1及び第2の吸収型格子31,32の各々の格子ピッチを調整してもよい。 In the example shown in FIG. 12, the grating pitch p 2 of the second absorption grating 32 is different from the pitch p 1 ′ of the G1 image, and moire fringes having periodicity in the x direction are generated. In order to make the grating pitch p 2 of the second absorption grating 32 different from the pitch p 1 ′ of the G1 image, for example, one of the first and second absorption gratings 31 and 32 is set in the direction of the optical axis C. May be moved relative to each other, or the grating pitch of each of the first and second absorption gratings 31 and 32 may be adjusted.
 そして、モアレ縞に対して交差するx方向に並ぶ複数の画素を一単位Uとして上記の解析を行う。図12に示す例においては、x方向に並ぶ4つの画素を一単位Uとしているが、本例においても、x方向に並ぶ3画素以上を一単位としてモアレ縞を解像すれば上記の解析は可能であり、x方向に関するモアレ縞の周期Tと画素40のピッチPとの満たすべき関係は、次式(18)となる。 Then, the above analysis is performed with a plurality of pixels arranged in the x direction intersecting the moire fringes as one unit U. In the example shown in FIG. 12, four pixels arranged in the x direction are set as one unit U. However, in this example, the above analysis can be performed by resolving moire fringes using three or more pixels arranged in the x direction as one unit. The relationship to be satisfied between the period T of moire fringes in the x direction and the pitch P of the pixels 40 is expressed by the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 図13は、図10の解析方法の他の変形例を示す。 FIG. 13 shows another modification of the analysis method of FIG.
 図13に示す例では、第2の吸収型格子32の格子ピッチpがG1像のピッチp´と異なり、更に、G1像に対して第2の吸収型格子32が相対的に回転して配置され、x方向及びy方向と交差する方向に周期性を有するモアレ縞が生じている。 In the example shown in FIG. 13, the grating pitch p 2 of the second absorption grating 32 is different from the pitch p 1 ′ of the G1 image, and the second absorption grating 32 rotates relative to the G1 image. Moire fringes having periodicity are generated in the direction intersecting the x direction and the y direction.
 上述の通り、モアレ縞に対して交差する方向に並ぶ3画素以上を一単位としてモアレ縞を解像すれば、単位毎に、その単位に含まれる画素の信号の位相ズレ量ψを算出することができるので、本例においては、x方向に並ぶ3画素以上の複数の画素を一単位Uとして解析を行うこともできるし(FIG.13A)、y方向に並ぶ3画素以上の複数の画素を一単位Uとして解析を行うこともできる(FIG.13B)。 As described above, if the moire fringe is resolved with three or more pixels arranged in the direction intersecting the moire fringe as a unit, the phase shift amount ψ of the signal of the pixel included in the unit is calculated for each unit. Therefore, in this example, the analysis can be performed with a plurality of pixels of 3 pixels or more arranged in the x direction as one unit U (FIG. 13A), or a plurality of pixels of 3 pixels or more arranged in the y direction can be analyzed. Analysis can also be performed as one unit U (FIG. 13B).
 図14は、図10の解析方法の他の変形例を示す。 FIG. 14 shows another modification of the analysis method of FIG.
 図10に示す例では、G1像の周期的強度分布のパターン周期方向(x方向)とX線画像検出器30における画素40の配列における行方向又は列方向とが一致しているが、図15に示す例においては、第1の吸収型格子31とX線画像検出器30とが、光軸Cを中心として相対的に回転して配置されることにより、G1像の周期的強度分布のパターン周期方向(x方向)に対して、画素40の配列における行方向及び列方向がいずれも交差している。この場合にも、上述の通り、モアレ縞に対して交差する方向に並ぶ3画素以上の複数の画素を一単位としてモアレ縞を解像すれば、単位毎に、その単位に含まれる画素の信号の位相ズレ量ψを算出することができる。 In the example shown in FIG. 10, the pattern period direction (x direction) of the periodic intensity distribution of the G1 image matches the row direction or the column direction in the array of the pixels 40 in the X-ray image detector 30. In the example shown in FIG. 4, the first absorption type grating 31 and the X-ray image detector 30 are disposed so as to be relatively rotated with the optical axis C as the center, whereby the periodic intensity distribution pattern of the G1 image is obtained. Both the row direction and the column direction in the arrangement of the pixels 40 intersect with the periodic direction (x direction). Also in this case, as described above, if the moire fringe is resolved with a plurality of pixels of three or more pixels arranged in the direction intersecting the moire fringe as a unit, the signal of the pixel included in the unit for each unit. The phase shift amount ψ can be calculated.
 以上の解析方法2によれば、一つの周期パターン画像から位相コントラスト画像を生成することができ、よって一度の撮影で済むため、複数回の撮影の間の第1の吸収型格子31又は第2の吸収型格子32の移動、及び高精度が要求されるその走査機構33が不要となる。そのため、撮影ワークフローの向上と装置の簡易化が可能になる。また、各撮影間の被写体の移動に起因する画質低下を解消することができる。 According to the analysis method 2 described above, a phase contrast image can be generated from one periodic pattern image, and thus only one imaging is required. Therefore, the first absorption type grating 31 or the second between multiple imagings. Therefore, the movement of the absorption type grating 32 and the scanning mechanism 33 that requires high accuracy are not required. Therefore, it is possible to improve the shooting workflow and simplify the apparatus. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing.
〔解析方法3〕
 図15は、X線撮影装置1における位相コントラスト画像の生成方法の他の例を示す。
[Analysis method 3]
FIG. 15 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 1.
 以下に説明する方法においては、上述した縞走査法に替えて、フーリエ変換及び逆フーリエ変換を用いて、モアレ縞に対応する画像の周期パターンの解析を行い、位相コントラスト画像を生成する。なお、モアレ縞を生じさせるに際しては、上述した図10~図14に示す例における装置構成を好適に用いることができる。 In the method described below, the periodic pattern of the image corresponding to the moire fringe is analyzed using Fourier transform and inverse Fourier transform instead of the above-described fringe scanning method, and a phase contrast image is generated. It should be noted that when generating moire fringes, the apparatus configuration in the examples shown in FIGS. 10 to 14 described above can be suitably used.
 G1像と第2の吸収型格子32との重ね合わせによって形成されるモアレ縞に対応した画像の周期パターンは次式(19)で表すことができ、式(19)は次式(20)に書き換えることができる。 The periodic pattern of the image corresponding to the moire fringes formed by superimposing the G1 image and the second absorption type grating 32 can be expressed by the following equation (19), and the equation (19) is expressed by the following equation (20). Can be rewritten.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 式(19)において、a(x,y)はバックグラウンドを表し、b(x,y)は周期パターンの基本周期に対応した空間周波数成分の振幅を表し、(f0x、0y)は周期パターンの基本周期を表す。また式(20)において、c(x,y)は次式(21)で表される。 In Expression (19), a (x, y) represents the background, b (x, y) represents the amplitude of the spatial frequency component corresponding to the basic period of the periodic pattern, and (f 0x, f 0y ) represents the period. Represents the basic period of the pattern. In the formula (20), c (x, y) is represented by the following formula (21).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 従って、c(x,y)又はc(x,y)の成分を取り出すことによって屈折角φ(x,y)の情報を得ることができる。ここで、式(20)はフーリエ変換によって次式(22)となる。 Therefore, information on the refraction angle φ (x, y) can be obtained by extracting the component of c (x, y) or c * (x, y). Here, equation (20) becomes the following equation (22) by Fourier transform.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 式(22)において、F(f,f)、A(f,f)、C(f,f)は、それぞれf(x,y)、a(x,y)、c(x,y)に対する2次元のフーリエ変換である。 In the formula (22), F (f x , f y), A (f x, f y), C (f x, f y) , respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
 第1及び第2の吸収型格子31,32のような1次元格子を使用した場合に、画像の空間周波数スペクトルには、図15に示すように、少なくとも、A(f,f)に由来するピークと、これを挟んでC(f,f)及びC(f,f)に由来する周期パターンの基本周期に対応した空間周波数成分のピークとの3つのピークが生じる。A(f,f)に由来するピークは原点に、また、C(f,f)及びC(f,f)に由来するピークは(±f0x,±f0y)(複合同順)の位置に生じる。 When one-dimensional gratings such as the first and second absorption gratings 31 and 32 are used, the spatial frequency spectrum of the image has at least A (f x , f y ) as shown in FIG. a peak derived from, C (f x, f y ) and C * (f x, f y ) 3 peaks and the peak of the spatial frequency component corresponding to the fundamental period of the periodic pattern from the results across this . A (f x, f y) peak derived from the origin, also, C (f x, f y ) and C * (f x, f y ) peak derived from the (± f 0x, ± f 0y ) It occurs at the position of (combined same order).
 画像の空間周波数スペクトルから屈折角φ(x、y)を得るには、周期パターンの基本周期に対応する空間周波数成分のピーク周波数を含む領域を切り出し、ピーク周波数が周波数空間の原点に重なるように切り出した領域を移動させ、逆フーリエ変換を行う。そして、逆フーリエ変換によって得られる複素数情報から屈折角φ(x,y)を得ることができる。屈折角φ(x,y)から位相コントラスト画像を生成する方法については、上述した縞走査法と同様である。 In order to obtain the refraction angle φ (x, y) from the spatial frequency spectrum of the image, a region including the peak frequency of the spatial frequency component corresponding to the basic period of the periodic pattern is cut out so that the peak frequency overlaps the origin of the frequency space. Move the clipped area and perform inverse Fourier transform. Then, the refraction angle φ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform. The method for generating the phase contrast image from the refraction angle φ (x, y) is the same as the above-described fringe scanning method.
 以上の解析方法3によれば、一つの周期パターン画像から位相コントラスト画像を生成することができ、よって一度の撮影で済むため、複数回の撮影の間の第1の吸収型格子31又は第2の吸収型格子32の移動、及び高精度が要求されるその走査機構33が不要となる。そのため、撮影ワークフローの向上と装置の簡易化が可能になる。また、各撮影間の被写体の移動に起因する画質低下を解消することができる。 According to the analysis method 3 described above, a phase contrast image can be generated from one periodic pattern image, and thus only one imaging is required. Therefore, the first absorption type grating 31 or the second between multiple imagings. Therefore, the movement of the absorption type grating 32 and the scanning mechanism 33 that requires high accuracy are not required. Therefore, it is possible to improve the shooting workflow and simplify the apparatus. In addition, it is possible to eliminate the deterioration in image quality caused by the movement of the subject between each photographing.
 上述した画像の周期パターンの解析方法1~3において、第1の吸収型格子31の格子ピッチ方向であるx方向に関する屈折角φ、つまりは位相シフト分布Φの微分が得られ、この位相シフト分布Φの微分に基づいて得られる位相コントラスト画像には、第1の吸収型格子31の格子ピッチ方向に交差する被写体Hの縁部が描出され、特に第1の吸収型格子31の格子ピッチ方向に略直交する被写体Hの縁部が明瞭に描出される。即ち、被写体Hの配置は、第1の吸収型格子31の格子ピッチ方向の制約を受けることとなる。そのため、指節間関節、肘関節、膝関節といった関節を被写体とし、これらの関節の軟骨部(関節裂隙)を関心領域とする場合に、軟骨部を明瞭に描出するために、指や腕や脚は、第1の吸収型格子31の格子ピッチ方向(x方向)に略沿って配置されることが好ましい。 In the above-described methods 1 to 3 for analyzing the periodic pattern of the image, the differential of the refraction angle φ with respect to the x direction which is the grating pitch direction of the first absorption type grating 31, that is, the differential of the phase shift distribution Φ is obtained. In the phase contrast image obtained based on the differentiation of Φ, the edge of the subject H that intersects the grating pitch direction of the first absorption grating 31 is depicted, and particularly in the grating pitch direction of the first absorption grating 31. The edge of the subject H that is substantially orthogonal is clearly depicted. That is, the arrangement of the subject H is restricted by the lattice pitch direction of the first absorption-type lattice 31. Therefore, when taking joints such as interphalangeal joints, elbow joints, and knee joints as subjects and using the cartilage parts (joint space) of these joints as the region of interest, in order to clearly depict the cartilage part, The legs are preferably arranged substantially along the lattice pitch direction (x direction) of the first absorption type lattice 31.
 そして、関節は、一般に、凸の関節頭と、関節頭を受容する凹の関節窩とを有して構成される。従って、関心領域を通過するX線の進行方向にみて、関心領域とする軟骨部と、非関心領域である骨部とは、多くの場合に重なりを有する。 The joint generally has a convex joint head and a concave glenoid fossa that receives the joint head. Accordingly, in many cases, the cartilage portion that is the region of interest and the bone portion that is the non-region of interest overlap each other when viewed in the traveling direction of the X-rays that pass through the region of interest.
 そこで、本X線撮影装置1においては、被写体Hの配置に関する上記の制約の下で、被写体Hの関心領域に対する非関心領域の重なりが少なくなるよう、被写体に対する中心X線の相対的な入射方向を変更する。 Therefore, in the present X-ray imaging apparatus 1, the relative incident direction of the center X-ray with respect to the subject is reduced so that the non-interesting region overlaps the region of interest of the subject H under the above-described restrictions on the placement of the subject H. To change.
 図16は、被写体に対する中心X線の相対的な入射方向を変更する機構を示す。 FIG. 16 shows a mechanism for changing the relative incident direction of the central X-ray with respect to the subject.
 本X線撮影装置1においては、X線照射部11及び撮影部12を支持するアーム部材63が、旋回軸62まわりに旋回可能にスタンド61に連結されており、このアーム部材63を旋回させることによって、被写体台15に載置された被写体Hに対する中心X線Cの入射方向が変更される。 In the present X-ray imaging apparatus 1, an arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 is connected to a stand 61 so as to be able to turn around a turning shaft 62, and the arm member 63 is turned. As a result, the incident direction of the center X-ray C with respect to the subject H placed on the subject table 15 is changed.
 アーム部材63の旋回軸62は、第1の吸収型格子31のX線遮蔽部31bの延在方向(y方向)と平行となっている。換言すれば、第1の吸収型格子31を含む撮影部12は、第1の吸収型格子31のX線遮蔽部31bの延在方向が旋回軸62と平行となるようにアーム部材63に取り付けられている。かかる構成において、被写体台15に載置された被写体Hに対する中心X線の入射方向は、旋回軸62まわりのアーム部材63の旋回に伴って、旋回軸62に直交する面内において回転される。なお、アーム部材63としてCアームを用い、中心X線の入射方向が回転される面をy方向に適宜傾斜させるように構成することもできる。 The turning shaft 62 of the arm member 63 is parallel to the extending direction (y direction) of the X-ray shielding part 31b of the first absorption type grating 31. In other words, the imaging unit 12 including the first absorption type grating 31 is attached to the arm member 63 so that the extending direction of the X-ray shielding part 31 b of the first absorption type grating 31 is parallel to the turning shaft 62. It has been. In such a configuration, the incident direction of the center X-ray with respect to the subject H placed on the subject table 15 is rotated in a plane orthogonal to the turning shaft 62 as the arm member 63 turns around the turning shaft 62. Note that a C-arm can be used as the arm member 63, and the plane on which the incident direction of the central X-ray is rotated can be appropriately inclined in the y direction.
 図17は、被写体Hの関心領域を通過するX線を中心X線Cの入射方向との関係において示す。 FIG. 17 shows X-rays passing through the region of interest of the subject H in relation to the incident direction of the central X-ray C.
 図17には、膝関節を被写体Hとし、その軟骨部を関心領域とした場合が示されている。膝関節は、被写体の配置に関する上記の制約に則り、略水平な被写体台15の載置面上において、これを構成する大腿骨及び脛骨が第1の吸収型格子31の格子ピッチ方向(x方向)に略沿うように配置されている。 FIG. 17 shows a case where the knee joint is the subject H and the cartilage portion is the region of interest. In the knee joint, the femur and tibia constituting the knee joint are arranged in the lattice pitch direction (x direction) of the first absorptive lattice 31 on the placement surface of the substantially horizontal subject table 15 in accordance with the above-described restrictions on the placement of the subject. ).
 図示の例において、関心領域とする軟骨部と、非関心領域である骨部(大腿骨や脛骨)との重なりに関して、鉛直方向から旋回軸62まわりに角度θだけ傾斜した斜入方向にみた場合の重なりは、鉛直方向にみた場合の重なりに比べて少なくなっている。よって、中心X線の入射方向を入射角度θの斜入方向とした場合に、非関心領域に起因する障害陰影やX線の減衰が抑制された画像を得ることができる。 In the illustrated example, when the cartilage part as the region of interest and the bone part (femur or tibia) as the non-interest region are overlapped, the oblique direction inclined by the angle θ around the turning axis 62 from the vertical direction is seen. The overlap is less than the overlap when viewed in the vertical direction. Therefore, when the incident direction of the central X-ray is the oblique direction of the incident angle θ, it is possible to obtain an image in which the obstruction shadow and the attenuation of the X-ray caused by the non-interest area are suppressed.
 斜入角度θは、例えば、被写体種別毎に最適な斜入角度を予め定めておき、コンソール3の入力装置21において、被写体種別ないし被写体種別に応じた斜入角度を入力することによって設定することができる。ここで設定された斜入角度に基づいて、コンソール3の制御装置20が駆動部66を制御し、駆動部66によってアーム部材63が旋回される。 The oblique angle θ is set by, for example, setting an optimum oblique angle for each subject type in advance and inputting the subject type or the oblique angle corresponding to the subject type in the input device 21 of the console 3. Can do. Based on the oblique angle set here, the control device 20 of the console 3 controls the drive unit 66, and the arm member 63 is turned by the drive unit 66.
 また、斜入角度θは、アーム部材63を旋回させながら透視を行い、得られる透視画像に基づいて設定することもできる。例えば、透視画像において、関心領域とする軟骨部(関節裂隙)が最も広くなる斜入角度を選択し、設定することができる。あるいは、透視画像において、関心領域とする軟骨部を透過したX線の強度が最も高くなる斜入角度を選択し、設定することができる。斜入角度の選択・設定は、例えば操作者によって行われてもよいし、コンソール3の演算処理部22において、画像認識等の適宜な画像処理技術を用いて関心領域を検出し、自動的に行われるように構成することもできる。 Further, the oblique insertion angle θ can be set based on a fluoroscopic image obtained by performing fluoroscopy while turning the arm member 63. For example, in a fluoroscopic image, it is possible to select and set an oblique insertion angle at which the cartilage portion (joint space) as a region of interest is the widest. Alternatively, in the fluoroscopic image, it is possible to select and set an oblique angle at which the intensity of the X-ray transmitted through the cartilage portion as the region of interest is highest. The selection / setting of the oblique insertion angle may be performed by, for example, an operator, or the calculation processing unit 22 of the console 3 detects a region of interest using an appropriate image processing technique such as image recognition, and automatically It can also be configured to be performed.
 図18は、被写体Hの関心領域とX線照射部11及び撮影部12との相対位置関係の変化を補正する機構を示す。 FIG. 18 shows a mechanism for correcting a change in the relative positional relationship between the region of interest of the subject H and the X-ray irradiation unit 11 and the imaging unit 12.
 被写体Hは、典型的には、その関心領域がアーム部材63の旋回軸62の延長と交わる光軸C上に位置するように配置されるが、被写体厚みとの関係で関心領域が旋回軸62の延長上から外れる場合がある。また、肢位変更が難しい患者にあっては、光軸C上に関心領域を配置することが困難な場合もある。関心領域が、旋回軸62の延長上から外れて位置している場合に、アーム部材63の旋回に伴って、X線照射部11及び撮影部12と被写体Hの関心領域との相対位置関係が変化する。そして、相対位置関係の変化に伴って、例えばX線画像検出器30によって取得される画像において、被写体Hの関心領域の位置が変化し、また、関心領域の拡大率が変化する。本X線撮影装置1においては、アーム部材63の旋回に連動して、アーム部材63の旋回軸62に直交する平面内においてアーム部材63を並進移動させ、アーム部材63の旋回に伴うX線照射部11及び撮影部12と被写体Hの関心領域との相対位置関係の変化を補正する。 The subject H is typically arranged so that the region of interest is positioned on the optical axis C where the extension of the pivot shaft 62 of the arm member 63 intersects, but the region of interest is related to the subject thickness. May be off the extension of the. In addition, for a patient whose limb position change is difficult, it may be difficult to place the region of interest on the optical axis C. When the region of interest is located off the extension of the turning shaft 62, the relative positional relationship between the X-ray irradiating unit 11 and the imaging unit 12 and the region of interest of the subject H varies with the turning of the arm member 63. Change. Then, with the change in the relative positional relationship, for example, in the image acquired by the X-ray image detector 30, the position of the region of interest of the subject H changes, and the magnification of the region of interest changes. In the present X-ray imaging apparatus 1, the arm member 63 is translated in a plane orthogonal to the turning shaft 62 of the arm member 63 in conjunction with the turning of the arm member 63, and X-ray irradiation accompanying the turning of the arm member 63 is performed. Changes in the relative positional relationship between the unit 11 and the imaging unit 12 and the region of interest of the subject H are corrected.
 図示の例において、被写体台15は、鉛直方向に旋回軸62の下側に配置されており、被写体台15に載置された被写体Hの関心領域は、鉛直方向に旋回軸62の下側にあって、光軸C上に位置している(FIG.18A)。以下、この状態を初期状態というものとする。 In the example shown in the figure, the subject table 15 is disposed below the pivot shaft 62 in the vertical direction, and the region of interest of the subject H placed on the subject table 15 is disposed below the pivot shaft 62 in the vertical direction. And located on the optical axis C (FIG. 18A). Hereinafter, this state is referred to as an initial state.
 上記の初期状態からアーム部材63が角度θだけ旋回されると、関心領域ROIは光軸Cから外れる。それにより、X線画像検出器30によって取得される画像において被写体Hの関心領域ROIは、画像の縁部に移動する(FIG.18B)。 When the arm member 63 is turned by the angle θ from the above initial state, the region of interest ROI deviates from the optical axis C. Thereby, the region of interest ROI of the subject H in the image acquired by the X-ray image detector 30 moves to the edge of the image (FIG. 18B).
 画像における関心領域ROIの移動を生じさせるX線照射部11及び撮影部12と関心領域との相対位置関係の変化に対しては、例えば、並進駆動部64(図2参照)によってアーム部材63を水平方向に移動させ、関心領域ROIを再び光軸C上に位置させることによって補正することができる(FIG.18C)。 For example, the translation drive unit 64 (see FIG. 2) moves the arm member 63 against the change in the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest that cause the movement of the region of interest ROI in the image. It can be corrected by moving it horizontally and repositioning the region of interest ROI on the optical axis C (FIG. 18C).
 また、上記の初期状態からアーム部材63が角度θだけ旋回されると、光軸Cに沿ったX線照射部11から被写体Hの関心領域ROIまでの距離LROIは短くなる。それにより、被写体Hの関心領域の拡大率が大きくなる(FIG.18B)。 When the arm member 63 is turned by the angle θ from the initial state, the distance L ROI from the X-ray irradiation unit 11 to the region of interest ROI of the subject H along the optical axis C is shortened. Thereby, the enlargement ratio of the region of interest of the subject H is increased (FIG. 18B).
 画像における関心領域の拡大率の変化を生じさせるX線照射部11及び撮影部12と関心領域との相対位置関係の変化に対しては、例えば、伸縮駆動部65(図2参照)によってアーム部材63を鉛直方向に移動させ、距離LROIを上記の初期状態に等しくすることによって補正することができる(FIG.18D)。 In response to a change in the relative positional relationship between the region of interest and the X-ray irradiation unit 11 and the imaging unit 12 that cause a change in the enlargement ratio of the region of interest in the image, for example, an arm member is formed by the expansion / contraction drive unit 65 (see FIG. 2). It can be corrected by moving 63 in the vertical direction and making the distance L ROI equal to the initial state (FIG. 18D).
 上記のアーム部材63の水平及び鉛直方向の並進移動を適宜組み合わせることにより、上記の初期状態におけるX線照射部11及び撮影部12と関心領域との相対位置関係を形成し、画像における関心領域の移動、及び拡大率の変化の両方を補正することもできる。 By appropriately combining the horizontal and vertical translational movements of the arm member 63, a relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 in the initial state and the region of interest is formed, and the region of interest in the image is displayed. It is also possible to correct both movement and change in magnification.
 以上のアーム部材63の並進移動は、スタンド61の水平方向の並進移動、及びスタンド61の鉛直方向の伸縮によって行われる。コンソール3の制御装置20は、設定された斜入角度θに応じて、駆動部64,65(図2参照)を制御し、スタンド61を水平方向に並進移動させ、また、鉛直方向に伸縮させる。 The translational movement of the arm member 63 described above is performed by the translational movement of the stand 61 in the horizontal direction and the vertical extension of the stand 61. The control device 20 of the console 3 controls the drive units 64 and 65 (see FIG. 2) according to the set oblique insertion angle θ, translates the stand 61 in the horizontal direction, and expands and contracts in the vertical direction. .
 なお、上記のようにアーム部材63を水平及び鉛直方向に並進移動させる構成に替えて、被写体台15を水平及び鉛直方向に並進移動可能に台座67によって支持し、被写体台15を支持する台座67に、被写体台15の水平方向の並進移動を行うための並進駆動部、及び鉛直方向の並進移動を行うための昇降駆動部を設け、図19に示すように被写体台15を水平及び鉛直方向に並進移動させる構成としてもよい。被写体Hを透過することで生じるX線の屈折は僅か数μradであり、この屈折によって生じるモアレ縞の変調、及び上述した縞走査法によってモアレ縞を解析して得られる信号の位相変化も僅かである。このような僅かな変化を計測する場合に、X線焦点18bや第1及び第2の吸収型格子31,32の相対位置のずれは、被写体Hの位相情報の検出精度に影響する。アーム部材63に替えて被写体台15を並進移動させる構成とすることによって、アーム部材63に支持されるX線照射部11及び撮影部12の傾きや振動を防止ないし抑制することができる。それにより、X線焦点18bや第1及び第2の吸収型格子31,32の相対位置のずれを防止ないし抑制することができ、被写体Hの位相情報の検出精度を高めることができる。 Instead of the configuration in which the arm member 63 is translated in the horizontal and vertical directions as described above, the subject table 15 is supported by the pedestal 67 so as to be able to translate in the horizontal and vertical directions, and the pedestal 67 that supports the subject table 15. Are provided with a translation drive unit for performing horizontal translation of the subject table 15 and a lift drive unit for performing translational movement in the vertical direction. As shown in FIG. 19, the subject table 15 is moved in the horizontal and vertical directions. It is good also as a structure made to translate. The refraction of the X-ray generated by passing through the subject H is only a few μrad, and the modulation of the moire fringe caused by this refraction and the phase change of the signal obtained by analyzing the moire fringe by the above-described fringe scanning method are also slight. is there. When such a slight change is measured, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 affects the detection accuracy of the phase information of the subject H. By adopting a configuration in which the subject table 15 is translated in place of the arm member 63, the tilt and vibration of the X-ray irradiation unit 11 and the imaging unit 12 supported by the arm member 63 can be prevented or suppressed. Thereby, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed, and the detection accuracy of the phase information of the subject H can be improved.
 以上、X線撮影装置1によれば、被写体Hに対して適切な方向からX線を入射させ、明瞭な位相コントラスト画像を得ることができる。 As described above, according to the X-ray imaging apparatus 1, X-rays can be incident on the subject H from an appropriate direction, and a clear phase contrast image can be obtained.
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、被写体Hの位相情報の検出感度を向上させることができる。 Further, since most of the X-rays are not diffracted by the first absorption type grating 31 and geometrically projected onto the second absorption type grating 32, high spatial coherence is required for the irradiated X-rays. Instead, a general X-ray source used in the medical field can be used. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is set smaller than the minimum Talbot interference distance in the Talbot interferometer. Therefore, the photographing unit 12 can be downsized (thinned). Further, almost all wavelength components of the irradiated X-ray contribute to the projection image (G1 image) from the first absorption type grating 31 and the contrast of the moire fringe is improved. Therefore, the detection sensitivity of the phase information of the subject H is detected. Can be improved.
 なお、第1の格子の投影像に対して第2の格子を重ね合わせてモアレ縞を生じさるものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して第2の格子を重ね合わせてモアレ縞を生じさせる場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。 It is assumed that the second grating is superimposed on the projected image of the first grating to generate moire fringes, and therefore the first and second gratings are both absorption type gratings. However, the present invention is not limited to this. As described above, the present invention is also useful when the Moire fringes are generated by superimposing the second grating on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
 また、位相シフト分布Φを画像化したものを位相コントラスト画像として記憶ないし表示するものとして説明したが、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像化したもの、また、位相シフトの微分量を画像化したものも位相コントラスト画像に含まれる。 In addition, although the image obtained by imaging the phase shift distribution Φ is described as being stored or displayed as a phase contrast image, the phase shift distribution Φ is obtained by integrating the differential amount of the phase shift distribution Φ obtained from the refraction angle φ. Thus, the differential amount of the refraction angle φ and the phase shift distribution Φ is also related to the X-ray phase change by the subject. Therefore, an image of the refraction angle φ and an image of the differential amount of the phase shift are also included in the phase contrast image.
 また、被写体がない状態で撮影(プレ撮影)して取得されるモアレ縞に対して、上述の位相コントラスト画像の生成処理を行い、位相コントラスト画像を取得するようにしてもよい。この位相コントラスト画像は、例えば第1及び第2の吸収型格子31,32の不均一性等によって生じる位相ムラ(初期位相のズレ)を反映している。このプレ撮影における位相コントラスト画像を、被写体がある状態で撮影(メイン撮影)して取得される位相コントラスト画像から減算することで、撮影部12の位相ムラを補正した位相コントラスト画像を得ることが出来る。 Further, the above-described phase contrast image generation processing may be performed on the moire fringes obtained by photographing (pre-photographing) in the absence of a subject, and the phase contrast image may be obtained. This phase contrast image reflects, for example, phase unevenness (initial phase shift) caused by non-uniformity of the first and second absorption gratings 31 and 32. By subtracting the phase contrast image in the pre-photographing from the phase contrast image obtained by photographing (main photographing) in the presence of the subject, a phase contrast image in which the phase unevenness of the photographing unit 12 is corrected can be obtained. .
 図20は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示し、図21は、図20の放射線撮影装置の制御ブロックを示す。なお、図1に示すX線撮影装置1と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。 FIG. 20 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention, and FIG. 21 shows a control block of the radiation imaging apparatus of FIG. Elements common to the X-ray imaging apparatus 1 shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
 図1に示すX線撮影装置1においては、X線照射部11及び撮影部12を支持するアーム部材63を旋回させることによって、被写体Hに対する中心X線の入射方向を変化させる構成であるが、図20に示すX線撮影装置71においては、被写体台15を起倒させることによって、被写体Hに対する中心X線の入射方向を相対的に変化させる。従って、X線撮影装置本体72において、X線照射部11及び撮影部12を支持するアーム部材63は鉛直方向(z方向)に沿って配置された状態に固定されている。 The X-ray imaging apparatus 1 shown in FIG. 1 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12. In the X-ray imaging apparatus 71 shown in FIG. 20, the incident direction of the central X-ray with respect to the subject H is relatively changed by tilting the subject table 15. Accordingly, in the X-ray imaging apparatus main body 72, the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 is fixed in a state of being arranged along the vertical direction (z direction).
 被写体台15は、ベース60に設置された台座73に支持されており、X線照射部11と撮影部12との間、より詳細には、X線照射部11と第1の吸収型格子31との間に配置されている。 The subject table 15 is supported by a pedestal 73 installed on the base 60, and more specifically between the X-ray irradiation unit 11 and the imaging unit 12, more specifically, the X-ray irradiation unit 11 and the first absorption grating 31. It is arranged between.
 台座73は、第1の吸収型格子31のX線遮蔽部31bの延在方向(y方向)と平行な起倒軸74まわりに被写体台15を起倒可能に支持しており、台座73には、被写体台15の起倒を行うための起倒駆動部75が設けられている。また、台座73は、起倒軸74に直交する面内における水平方向(x方向)に並進移動可能に、かつ鉛直方向に昇降可能に被写体台15を支持しており、台座73には、被写体台15の並進移動を行うための並進駆動部76、及び昇降移動を行うための昇降駆動部77が設けられている。 The pedestal 73 supports the subject table 15 so that the subject table 15 can be tilted around the tilting shaft 74 parallel to the extending direction (y direction) of the X-ray shielding part 31 b of the first absorption grating 31. Is provided with a raising / lowering drive unit 75 for raising and lowering the subject table 15. The pedestal 73 supports the subject table 15 so as to be able to translate in the horizontal direction (x direction) in a plane orthogonal to the raising and lowering shaft 74 and to be able to move up and down in the vertical direction. A translation drive unit 76 for performing translational movement of the table 15 and an elevation drive unit 77 for performing elevation movement are provided.
 本X線撮影装置71においても、被写体Hの関心領域に対する非関心領域の重なりが少なくなるよう、被写体に対する中心X線の相対的な入射方向を変更する。本X線撮影装置71においては、被写体台15を起倒させることによって、被写体台15に載置された被写体Hに対する中心X線の入射方向が変更される。 Also in the present X-ray imaging apparatus 71, the relative incident direction of the center X-ray with respect to the subject is changed so that the overlap of the non-interest region with the region of interest of the subject H is reduced. In the present X-ray imaging apparatus 71, the incident direction of the central X-ray with respect to the subject H placed on the subject table 15 is changed by raising and lowering the subject table 15.
 被写体台15の起倒軸74は、第1の吸収型格子31のX線遮蔽部31bの延在方向(y方向)と平行となっている。かかる構成において、被写体台15に載置された被写体Hに対する中心X線の入射方向は、被写体台15の起倒に伴って、起倒軸74に直交する面内において回転される。 The raising / lowering axis 74 of the subject table 15 is parallel to the extending direction (y direction) of the X-ray shielding part 31b of the first absorption type grating 31. In such a configuration, the incident direction of the central X-ray with respect to the subject H placed on the subject table 15 is rotated in a plane orthogonal to the tilting shaft 74 as the subject table 15 is tilted.
 図22は、X線撮影装置71の装置本体72、及び上述したX線撮影装置1の装置本体2の占有スペースを示す。 FIG. 22 shows the space occupied by the apparatus main body 72 of the X-ray imaging apparatus 71 and the apparatus main body 2 of the X-ray imaging apparatus 1 described above.
 一般的な病院の撮影室での使用を想定した場合に、X線照射部11からX線画像検出器30までの距離L、即ちアーム部材63の長さは、典型的には、1m~2mに設定される。一方、被写体Hの種別にもよるが、指節間関節、肘関節、膝関節といった関節を被写体とする場合の被写体台15の幅Wは、典型的には、上記のアーム部材63の長さよりも遥かに小さい。従って、入射角度θを得るに際して、本X線撮影装置71の被写体台15を起倒させて中心X線の入射方向を変化させる構成(FIG.22A)によれば、上述したX線撮影装置1のアーム部材63を旋回さて中心X線の入射方向を変化させる構成(FIG.22B)に比べて、装置本体によって占有されるスペースAを減少させることができる。 When assuming use in a general hospital radiographing room, the distance L from the X-ray irradiation unit 11 to the X-ray image detector 30, that is, the length of the arm member 63 is typically 1 to 2 m. Set to On the other hand, although depending on the type of the subject H, the width W of the subject table 15 when the subject is a joint such as an interphalangeal joint, an elbow joint, or a knee joint is typically larger than the length of the arm member 63 described above. Is much smaller. Therefore, when the incident angle θ is obtained, according to the configuration (FIG. 22A) in which the subject table 15 of the X-ray imaging apparatus 71 is tilted to change the incident direction of the central X-ray, FIG. The space A occupied by the apparatus main body can be reduced as compared with the configuration (FIG. 22B) in which the arm member 63 is turned to change the incident direction of the central X-ray.
 また、本X線撮影装置71の被写体台15を起倒させて中心X線の入射方向を変化させる構成によれば、アーム部材63に支持されるX線照射部11及び撮影部12の傾きや振動を防止ないし抑制することができる。それにより、X線焦点18bや第1及び第2の吸収型格子31,32の相対位置のずれを防止ないし抑制することができ、被写体Hの位相情報の検出精度を高めることができる。 Further, according to the configuration in which the subject table 15 of the X-ray imaging apparatus 71 is tilted and the incident direction of the central X-ray is changed, the inclination of the X-ray irradiation unit 11 and the imaging unit 12 supported by the arm member 63 can be increased. Vibration can be prevented or suppressed. Thereby, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed, and the detection accuracy of the phase information of the subject H can be improved.
 図23は、被写体Hの関心領域と、X線照射部11及び撮影部12との相対位置関係の変化を補正する機構を示す。 FIG. 23 shows a mechanism for correcting a change in the relative positional relationship between the region of interest of the subject H and the X-ray irradiation unit 11 and the imaging unit 12.
 被写体Hの関心領域が被写体台15の起倒軸74から外れて位置している場合には、被写体台15の起倒に伴って、X線照射部11及び撮影部12と被写体Hの関心領域との相対位置関係が変化する。そして、相対位置関係の変化に伴って、例えばX線画像検出器30によって取得される画像において、被写体Hの関心領域の位置が変化し、また、関心領域の拡大率が変化する。本X線撮影装置71においては、被写体台15の起倒に連動して、被写体台15の起倒軸74に直交する平面内において被写体台15を並進移動させ、被写体台15の起倒に伴うX線照射部11及び撮影部12と被写体Hの関心領域との相対位置関係の変化を補正する。 When the region of interest of the subject H is located away from the tilting axis 74 of the subject table 15, the region of interest of the subject H with the X-ray irradiating unit 11 and the imaging unit 12 as the subject table 15 is tilted. The relative positional relationship between and changes. Then, with the change in the relative positional relationship, for example, in the image acquired by the X-ray image detector 30, the position of the region of interest of the subject H changes, and the magnification of the region of interest changes. In the present X-ray imaging apparatus 71, the subject table 15 is translated in a plane orthogonal to the tilting axis 74 of the subject table 15 in conjunction with the tilting of the subject table 15, and accompanying the tilting of the subject table 15. The change in the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest of the subject H is corrected.
 図示の例において、略水平な被写体台15に載置面に載置された被写体Hの関心領域ROI、及び被写体台15の起倒軸74は、いずれも光軸C上に位置しているが、起倒軸74は、鉛直方向に関心領域ROIの下側に位置している(FIG.23A)。以下、この状態を初期状態というものとする。 In the illustrated example, the region of interest ROI of the subject H placed on the placement surface on the substantially horizontal subject table 15 and the raising / lowering axis 74 of the subject table 15 are both located on the optical axis C. The raising / lowering shaft 74 is located below the region of interest ROI in the vertical direction (FIG. 23A). Hereinafter, this state is referred to as an initial state.
 上記の初期状態から被写体台15が水平から角度θだけ起倒されると、関心領域ROIは光軸Cから外れる。それにより、X線画像検出器30によって取得される画像において被写体Hの関心領域は、画像の縁部に移動する(FIG.23B)。 The region of interest ROI deviates from the optical axis C when the subject table 15 is tilted from the horizontal by an angle θ from the above initial state. Thereby, the region of interest of the subject H in the image acquired by the X-ray image detector 30 moves to the edge of the image (FIG. 23B).
 画像における関心領域ROIの移動を生じさせるX線照射部11及び撮影部12と関心領域ROIとの相対位置関係の変化に対しては、例えば、被写体台15を水平方向に移動させ、関心領域ROIを再び光軸C上に位置させることによって補正することができる(FIG.23C)。 In order to change the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest ROI that cause the movement of the region of interest ROI in the image, for example, the subject table 15 is moved in the horizontal direction to thereby display the region of interest ROI. Can be corrected by positioning it again on the optical axis C (FIG. 23C).
 また、上記の初期状態から被写体台15が水平から角度θだけ起倒されると、光軸Cに沿ったX線照射部11から被写体Hの関心領域までの距離は長くなる。それにより、被写体Hの関心領域ROIの拡大率が小さくなる(FIG.23B)。 Also, when the subject table 15 is tilted from the horizontal by the angle θ from the above initial state, the distance from the X-ray irradiation unit 11 along the optical axis C to the region of interest of the subject H becomes longer. Thereby, the enlargement ratio of the region of interest ROI of the subject H is reduced (FIG. 23B).
 画像における関心領域ROIの拡大率の変化を生じさせるX線照射部11及び撮影部12と関心領域との相対位置関係の変化に対しては、例えば、被写体台15を鉛直方向に移動させ、距離LROIを上記の初期状態における距離に等しくすることによって補正することができる(FIG.23D)。 For the change in the relative positional relationship between the X-ray irradiation unit 11 and the imaging unit 12 and the region of interest that cause a change in the enlargement ratio of the region of interest ROI in the image, for example, the subject table 15 is moved in the vertical direction, and the distance Correction can be made by making L ROI equal to the distance in the initial state (FIG. 23D).
 上記の被写体台15の水平及び鉛直方向の並進移動を適宜組み合わせることにより、上記の初期状態におけるX線照射部11及び撮影部12と関心領域との相対位置関係を形成し、画像における関心領域の移動、及び拡大率の変化の両方を補正することもできる。 By appropriately combining the horizontal and vertical translational movements of the subject table 15, the relative position relationship between the region of interest and the X-ray irradiation unit 11 and the imaging unit 12 in the initial state is formed. It is also possible to correct both movement and change in magnification.
 以上の被写体台15の並進移動は、台座73の水平方向の並進移動及び昇降移動によって行われる。コンソール3の制御装置20は、設定された斜入角度θに応じて、駆動部76,77(図21参照)を制御し、被写体台15を水平及び鉛直方向に並進移動させる。 The translational movement of the subject table 15 is performed by the horizontal translational movement and the vertical movement of the pedestal 73. The control device 20 of the console 3 controls the drive units 76 and 77 (see FIG. 21) according to the set oblique insertion angle θ, and translates the subject table 15 in the horizontal and vertical directions.
 なお、上述したX線撮影装置1のようにアーム部材63を水平方向及び鉛直方向に並進移動させて補正する構成とすることもできるが、アーム部材63に支持されるX線照射部11及び撮影部12の傾きや振動を防止ないし抑制する観点から、被写体台15を水平方向及び鉛直方向に並進移動させて補正する構成とすることが好ましい。 In addition, although it can also be set as the structure which translates and moves the arm member 63 to a horizontal direction and a perpendicular direction like the X-ray imaging apparatus 1 mentioned above, the X-ray irradiation part 11 supported by the arm member 63, and imaging | photography. From the viewpoint of preventing or suppressing the inclination and vibration of the unit 12, it is preferable that the subject table 15 is corrected by translational movement in the horizontal direction and the vertical direction.
 図24は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。 FIG. 24 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
 図1に示すX線撮影装置1及び図20に示すX線撮影装置71において、第1の吸収型格子31は、X線遮蔽部31bがx方向に配列された一次元格子であり、第2の吸収型格子32もまた、同様に一次元格子であるものとして説明したが、第1及び第2の吸収型格子31,32は、一次元格子に限られるものではない。図24に示す例において、第1及び第2の吸収型格子31,32は、二次元格子として構成されている。なお、第1及び第2の吸収型格子31,32のうち一方の格子は、線状のX線遮蔽部がx方向及びy方向にそれぞれ配列される網目状の二次元格子とされ、他方の格子は市松状の二次元格子とされる。図示の例においては、第1の吸収型格子31が網目状の二次元格子とされ、第2の吸収型格子32が市松状の二次元格子として構成されている。 In the X-ray imaging apparatus 1 shown in FIG. 1 and the X-ray imaging apparatus 71 shown in FIG. 20, the first absorption type grating 31 is a one-dimensional grating in which X-ray shielding portions 31b are arranged in the x direction, and the second Similarly, the absorption type grating 32 is also assumed to be a one-dimensional grating, but the first and second absorption type gratings 31 and 32 are not limited to the one-dimensional grating. In the example shown in FIG. 24, the first and second absorption type gratings 31 and 32 are configured as two-dimensional gratings. One of the first and second absorption- type gratings 31 and 32 is a two-dimensional mesh having a linear X-ray shielding portion arranged in the x direction and the y direction, respectively. The lattice is a checkered two-dimensional lattice. In the illustrated example, the first absorption type grating 31 is configured as a mesh-like two-dimensional grating, and the second absorption type grating 32 is configured as a checkered two-dimensional grating.
 X線照射部11及び撮影部12を支持するアーム部材63の旋回軸62(図1参照)は、第1の吸収型格子31のx方向に配列された複数のX線遮蔽部31bの延在方向(y方向)と平行となっており、被写体台15に載置された被写体Hに対する中心X線の入射方向は、旋回軸62まわりのアーム部材63の旋回に伴って、旋回軸62に直交する面内において回転される。 The pivot shaft 62 (see FIG. 1) of the arm member 63 that supports the X-ray irradiation unit 11 and the imaging unit 12 extends a plurality of X-ray shielding units 31b arranged in the x direction of the first absorption grating 31. The incident direction of the center X-ray with respect to the subject H placed on the subject table 15 is orthogonal to the pivot axis 62 as the arm member 63 pivots around the pivot axis 62. It is rotated in the plane to be
 第1及び第2の吸収型格子31,32を二次元格子とすることにより、第1の吸収型格子31の格子ピッチ方向であるx方向、及びy方向の二方向に関する位相シフト分布Φの微分が得られる。上記の通り、x方向に関する位相シフト分布Φの微分に基づいて得られる位相コントラスト画像には、x方向に交差する被写体Hの縁部が描出され、また、y方向に関する位相シフト分布Φの微分に基づいて得られる位相コントラスト画像には、y方向に交差する被写体Hの縁部が描出され、これら二つの位相コントラスト画像を合成することにより、被写体Hのより明瞭な位相コントラスト画像を得ることができる。 By making the first and second absorption gratings 31 and 32 into a two-dimensional grating, the differential of the phase shift distribution Φ with respect to the two directions of the x direction and the y direction which are the grating pitch directions of the first absorption grating 31 Is obtained. As described above, in the phase contrast image obtained based on the differentiation of the phase shift distribution Φ with respect to the x direction, the edge of the subject H intersecting with the x direction is depicted, and the phase shift distribution Φ with respect to the y direction is differentiated. The edge of the subject H that intersects in the y direction is depicted in the phase contrast image obtained based on this, and a clearer phase contrast image of the subject H can be obtained by combining these two phase contrast images. .
 なお、第1及び第2の吸収型格子31,32を二次元格子とする場合において、図24に示す例は、アーム部材63を旋回させることによって、被写体Hに対する中心X線の入射方向を変化させる構成であるが、図20に示すX線撮影装置71のように、被写体台15を起倒させることによって、被写体Hに対する中心X線の入射方向を相対的に変化させるよう構成することもできる。 When the first and second absorption type gratings 31 and 32 are two-dimensional gratings, the example shown in FIG. 24 changes the incident direction of the center X-ray with respect to the subject H by turning the arm member 63. However, like the X-ray imaging apparatus 71 shown in FIG. 20, the incident direction of the central X-ray with respect to the subject H can be relatively changed by tilting the subject table 15. .
 図25は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。 FIG. 25 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
 図25に示すX線撮影装置81は、第1の吸収型格子31が、X線照射部11と被写体台15との間に配置されている点で図1に示すX線撮影装置1と異なっている。 The X-ray imaging apparatus 81 shown in FIG. 25 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the first absorption grating 31 is disposed between the X-ray irradiation unit 11 and the subject table 15. ing.
 第1の吸収型格子31は、保持部材34に保持されており、保持部材34を介してアーム部材63に取り付けられている。保持部材34は、片持ち梁状にアーム部材63に支持されることになるため、剛性が高い程好ましく、例えば、第1の吸収型格子31の基板31aよりも剛性の高い部材を用いることが好ましい。それにより、X線焦点18bや第1及び第2の吸収型格子31,32の相対位置のずれを防止ないし抑制することができ、被写体Hの位相情報の検出精度を高めることができる。 The first absorption type lattice 31 is held by the holding member 34 and is attached to the arm member 63 via the holding member 34. Since the holding member 34 is supported by the arm member 63 in a cantilever shape, it is preferable that the holding member 34 has high rigidity. For example, a member having higher rigidity than the substrate 31a of the first absorption type lattice 31 is used. preferable. Thereby, the relative position shift of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed, and the detection accuracy of the phase information of the subject H can be improved.
 以上の構成において、被写体Hは第1の吸収型格子31と第2の吸収型格子32との間に配置されることになるが、第2の吸収型格子32の位置に形成される第1の吸収型格子31のG1像は被写体Hにより変調を受ける。そして、上述したX線撮影装置1と同様に、第2の吸収型格子32との重ね合わせにより、G1像は強度変調され、強度変調されたG1像がX線画像検出器30によって撮像される。従って、本X線撮影装置においても、上述した原理で被写体Hの位相コントラスト画像を得ることができる。 In the configuration described above, the subject H is disposed between the first absorption type grating 31 and the second absorption type grating 32, but the first object formed at the position of the second absorption type grating 32. The G1 image of the absorption type grating 31 is modulated by the subject H. Similar to the X-ray imaging apparatus 1 described above, the G1 image is intensity-modulated by superimposition with the second absorption grating 32, and the intensity-modulated G1 image is captured by the X-ray image detector 30. . Therefore, also in this X-ray imaging apparatus, a phase contrast image of the subject H can be obtained based on the principle described above.
 そして、本X線撮影装置では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被写体Hに照射されることになるため、被写体Hの被曝量を、上述したX線撮影装置1の場合の約半分に低減することができる。 In this X-ray imaging apparatus, the subject H is irradiated with X-rays whose dose is almost halved by the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject H is set to the X-ray described above. It can be reduced to about half that of the photographing apparatus 1.
 第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、上述したX線撮影装置のいずれにも適用することが可能である。 Arranging the subject between the first absorption type grating 31 and the second absorption type grating 32 can be applied to any of the X-ray imaging apparatuses described above.
 図26は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。 FIG. 26 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention.
 図26に示すX線撮影装置91は、X線照射部11に、マルチスリット35が配設されている点で図1に示すX線撮影装置1と異なる。 26 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the multi-slit 35 is provided in the X-ray irradiation unit 11.
 上述したX線撮影装置1において、X線照射部11からX線画像検出器30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影装置91においては、この課題を解決するために、X線焦点18bの直後にマルチスリット35を配置する。 In the X-ray imaging apparatus 1 described above, when the distance from the X-ray irradiation unit 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) as set in a general hospital imaging room, The blur of the G1 image due to the focal size of the X-ray focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is degraded. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging apparatus 91, in order to solve this problem, the multi-slit 35 is disposed immediately after the X-ray focal point 18b.
 マルチスリット35は、第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット35は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列された小焦点光源(分散光源)を形成することを目的としている。 The multi slit 35 is an absorption type grating (third absorption type grating) having the same configuration as that of the first and second absorption type gratings 31 and 32, and a plurality of X-ray shielding portions extending in one direction are provided in the first slit. The first and second absorption type gratings 31 and 32 are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b. The purpose of the multi-slit 35 is to form small focal light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b.
 このマルチスリット35の格子ピッチpは、マルチスリット35から第1の吸収型格子31までの距離をLとして、次式(23)を満たすように設定する必要がある。 The lattice pitch p 3 of the multi-slit 35 needs to be set to satisfy the following formula (23), where L 3 is the distance from the multi-slit 35 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 式(23)は、マルチスリット35により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (23) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 35 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
 また、実質的にマルチスリット35の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチpは、次式(24)の関係を満たすように決定される。 In addition, since the position of the multi-slit 35 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (24).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このように、本X線撮影装置91においては、マルチスリット35により形成される複数の小焦点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。 As described above, in the present X-ray imaging apparatus 91, the G1 images based on the plurality of small focus light sources formed by the multi-slit 35 are superimposed, so that the image quality of the phase contrast image is reduced without reducing the X-ray intensity. Can be improved.
 なお、X線画像検出器30によって取得される画像の周期パターンの解析方法としては、上述した解析方法1~4のいずれも適用可能であるが、光軸Cを中心とする第1の吸収型格子31の回転を伴う場合に、マルチスリット35もまた、その格子ピッチ方向が第1の吸収型格子31の格子ピッチ方向に一致するように、第1の吸収型格子31とともに回転されることが好ましい。 Note that as the analysis method of the periodic pattern of the image acquired by the X-ray image detector 30, any of the analysis methods 1 to 4 described above can be applied, but the first absorption type centering on the optical axis C is used. When the grating 31 is rotated, the multi-slit 35 can also be rotated together with the first absorption type grating 31 so that the grating pitch direction thereof coincides with the grating pitch direction of the first absorption type grating 31. preferable.
 また、マルチスリット35は、上述したX線撮影装置のいずれにも適用することが可能である。 The multi slit 35 can be applied to any of the X-ray imaging apparatuses described above.
 図27は、本発明の実施形態を説明するための放射線撮影装置の他の例の構成を示す。なお、図1に示すX線撮影装置1例と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。 FIG. 27 shows the configuration of another example of a radiation imaging apparatus for explaining an embodiment of the present invention. Elements common to the example of the X-ray imaging apparatus shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
 図27に示すX線撮影装置101は、X線撮影装置本体102と、コンソール3とに大別され、X線撮影装置本体102は、X線照射部11と、撮影部112と、被写体台15とを備えている。X線照射部11及び撮影部112は、構造体13のアーム部材63によって支持されている。被写体台15は台座67によって支持されている。 An X-ray imaging apparatus 101 shown in FIG. 27 is roughly divided into an X-ray imaging apparatus main body 102 and a console 3. The X-ray imaging apparatus main body 102 includes an X-ray irradiation unit 11, an imaging unit 112, and a subject table 15. And. The X-ray irradiation unit 11 and the imaging unit 112 are supported by the arm member 63 of the structure 13. The subject table 15 is supported by a pedestal 67.
 撮影部112は、第1の吸収型格子31、及び第1の吸収型格子31を通過したX線によって形成されるG1像を検出するX線画像検出器130を備えている。X線画像検出器130は、X線を電荷に変換して蓄積する複数の画素40が2次元配列されてなる受像部41を備え、各画素40に蓄積された電荷を読み出し、これを画像データに変換してコンソール3に送信する。 The imaging unit 112 includes a first absorption grating 31 and an X-ray image detector 130 that detects a G1 image formed by X-rays that have passed through the first absorption grating 31. The X-ray image detector 130 includes an image receiving unit 41 in which a plurality of pixels 40 that convert and store X-rays into electric charges are two-dimensionally arranged. To be sent to the console 3.
 複数の画素40は、X線画像検出器130の受像面上に形成されるG1像の周期的強度分布を解像可能な配列ピッチで配列されている。具体的には、画素40の配列ピッチPは、一般に数μmであるG1像の周期的強度分布のパターン周期p’の1/2以下、好ましくは1/5以下のピッチとされる。そのような微小な配列ピッチに複数の画素が配列される受像部41は、各画素40に蓄積された電荷を読み出す読み出し回路が単結晶シリコン等からなる半導体基板に形成される、CCDセンサやCMOSセンサなどの固体撮像素子をベースに構成することができる。なお、受像部41には、上記の画素40の配列ピッチPを満たす限りにおいて、TFTパネルをベースに構成されたものを用いることもできる。 The plurality of pixels 40 are arranged at an arrangement pitch capable of resolving the periodic intensity distribution of the G1 image formed on the image receiving surface of the X-ray image detector 130. Specifically, the arrangement pitch P of the pixels 40 is set to a pitch of 1/2 or less, preferably 1/5 or less of the pattern period p 1 ′ of the periodic intensity distribution of the G1 image, which is generally several μm. The image receiving unit 41 in which a plurality of pixels are arranged at such a minute arrangement pitch is a CCD sensor or CMOS in which a readout circuit for reading out the electric charge accumulated in each pixel 40 is formed on a semiconductor substrate made of single crystal silicon or the like. A solid-state image sensor such as a sensor can be used as a base. In addition, as long as the image receiving portion 41 satisfies the arrangement pitch P of the pixels 40 described above, an image receiving portion 41 configured based on a TFT panel can also be used.
 以上の構成において、G1像がX線画像検出器130上に形成される。そして、X線照射部11と撮影部112との間、より詳細にはX線照射部11と第1の吸収型格子31との間に配置された被写体台15に被写体Hを配置した場合に、G1像の周期的強度分布は、被写体Hにより変調を受ける。G1像をX線画像検出器130によって撮像して取得される画像には、G1像の周期的強度分布に対応する周期パターンが含まれ、この周期パターンを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 In the above configuration, the G1 image is formed on the X-ray image detector 130. Then, when the subject H is arranged on the subject table 15 arranged between the X-ray irradiation unit 11 and the imaging unit 112, more specifically between the X-ray irradiation unit 11 and the first absorption type grating 31. The periodic intensity distribution of the G1 image is modulated by the subject H. The image acquired by capturing the G1 image by the X-ray image detector 130 includes a periodic pattern corresponding to the periodic intensity distribution of the G1 image. By analyzing this periodic pattern, the phase contrast of the subject H is analyzed. An image can be generated.
 以下、X線撮影装置101における画像の周期パターンの解析方法について説明する。 Hereinafter, a method for analyzing a periodic pattern of an image in the X-ray imaging apparatus 101 will be described.
〔解析方法1〕
 画像の周期パターンの解析は、例えば上述した縞走査法によって行うことができる。まず、第1の吸収型格子31からX線画像検出器130の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(25)で表される。なお、Lは、第1の吸収型格子31からX線画像検出器130までの距離を示す。
[Analysis method 1]
The analysis of the periodic pattern of the image can be performed, for example, by the above-described fringe scanning method. First, the G1 image projected from the first absorption-type grating 31 to the position of the X-ray image detector 130 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. It will be. This displacement amount Δx is approximately expressed by the following equation (25) based on the small X-ray refraction angle φ. L 4 indicates the distance from the first absorption type grating 31 to the X-ray image detector 130.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(26)で表される。 Here, the refraction angle φ is expressed by Equation (26) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、画像データの各画素の信号の位相ズレ量ψに、次式(27)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. This displacement amount Δx is related to the phase shift amount ψ of the signal of each pixel of the image data as shown in the following equation (27).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 したがって、各画素の信号の位相ズレ量ψを求めることにより、式(27)から屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。上記の位相ズレ量ψを、縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel, the refraction angle φ is obtained from the equation (27), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26). By integrating with respect to x, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H can be generated. The phase shift amount ψ is calculated using a fringe scanning method.
 すなわち、第1の吸収型格子31を、その格子の格子ピッチ方向(x方向)にX線画像検出器130に対してステップ的に並進移動させ、G1像の周期的強度分布に対する画素40の周期的配列の位相を相対的に変化させながら撮影を行う。第1の吸収型格子31の移動は、走査機構33により行うことができる。 That is, the first absorption type grating 31 is translated in a stepwise manner relative to the X-ray image detector 130 in the grating pitch direction (x direction) of the grating, and the period of the pixel 40 with respect to the periodic intensity distribution of the G1 image. Shooting while relatively changing the phase of the target array. The movement of the first absorption type grating 31 can be performed by the scanning mechanism 33.
 第1の吸収型格子31の移動に伴って、G1像が移動し、並進距離(x方向への移動量)が、第1の吸収型格子31の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、G1像は元の位置に戻る。このようなG1像の変化を、格子ピッチpの整数分の1の距離ずつ第1の吸収型格子31を移動させながら、X線画像検出器130で撮像し、得られた複数の画像データから画素毎に複数個の信号値を取得し、演算処理部22で演算処理することによって各画素の信号の位相ズレ量ψを得る。そして、各画素の信号の位相ズレ量ψから式(27)を用いて屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成する。 As the first absorption type grating 31 moves, the G1 image moves, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the first absorption type grating 31 (grating pitch p 1 ). (Ie, when the phase change reaches 2π), the G1 image returns to its original position. Such a change in the G1 image is picked up by the X-ray image detector 130 while moving the first absorption grating 31 by a distance of an integer of the grating pitch p 1 , and a plurality of image data obtained. A plurality of signal values are obtained from each pixel, and the arithmetic processing unit 22 performs arithmetic processing to obtain a phase shift amount ψ of the signal of each pixel. Then, the refraction angle φ is obtained from the phase shift amount ψ of the signal of each pixel using the equation (27), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26). By integrating, the phase shift distribution Φ (x) of the subject H, ie, the phase contrast image of the subject H is generated.
〔解析方法2〕
 図28は、X線撮影装置101における位相コントラスト画像の生成方法の他の例を示す。
[Analysis method 2]
FIG. 28 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 101.
 第1の吸収型格子31の格子ピッチ方向(x方向)に対応する方向に並ぶ複数の画素を単位とし、単位毎に、その単位を構成する複数の画素の信号値Iを補間する。図示の例では、複数の画素の信号値を正弦曲線により補間したものであり、正弦曲線による補間は少なくとも3点あれば足りるため、互いに隣り合う3つの画素を単位としている。 A plurality of pixels arranged in a direction corresponding to the lattice pitch direction (x direction) of the first absorption type lattice 31 is used as a unit, and for each unit, signal values I of a plurality of pixels constituting the unit are interpolated. In the example shown in the figure, signal values of a plurality of pixels are interpolated by a sine curve, and at least three points are sufficient for interpolation by the sine curve, and therefore three adjacent pixels are used as a unit.
 上述した通り、G1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。G1像の変位に伴い、単位毎に、その単位を構成する複数の画素の信号値Iを補間してなる信号波形の位相が変化する。被写体Hが存在しない場合の信号波形(FIG.28A)と、被写体Hが存在する場合の信号波形(FIG.28B)との両者の波形の位相差が、その単位に含まれる画素の信号の位相ズレ量ψに対応する。各画素の信号の位相ズレ量ψから式(27)を用いて屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成する。 As described above, the G1 image is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. Along with the displacement of the G1 image, the phase of the signal waveform formed by interpolating the signal values I of a plurality of pixels constituting the unit changes for each unit. The phase difference between the waveform of the signal waveform (FIG. 28A) when the subject H is not present and the signal waveform (FIG. 28B) when the subject H is present is the phase of the signal of the pixel included in the unit. This corresponds to the displacement amount ψ. The refraction angle φ is obtained from the phase shift amount ψ of the signal of each pixel using the equation (27) and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26), and this is integrated with respect to x. Thus, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H is generated.
 なお、第1の吸収型格子31の格子ピッチ方向(x方向)とX線画像検出器130における画素40の配列における行方向又は列方向とが一致しているものとして、第1の吸収型格子31の格子ピッチ方向、つまりはG1像の周期的強度分布のパターン周期方向に並ぶ3つの画素を一単位とするものとして説明したが、G1像の周期的強度分布のパターンに対して交差する方向に並ぶ3画素以上の複数の画素を一単位としてG1像の周期的強度分布を解像すれば、単位毎に、その単位に含まれる画素の信号の位相ズレ量ψを算出することができる。従って、G1像の周期的強度分布のパターン周期方向に対して、画素40の配列における行方向及び列方向がいずれも交差するように、第1の吸収型格子31とX線画像検出器130とが、光軸Cを中心として相対的に回転して配置されていてもよい。 Note that the first absorption-type grating is assumed that the grating pitch direction (x-direction) of the first absorption-type grating 31 coincides with the row direction or the column direction in the arrangement of the pixels 40 in the X-ray image detector 130. Although the description has been made assuming that three pixels arranged in the lattice pitch direction of 31, that is, the pattern periodic direction of the periodic intensity distribution of the G1 image, are taken as one unit, the direction intersecting the periodic intensity distribution pattern of the G1 image If the periodic intensity distribution of the G1 image is resolved with a plurality of pixels of three or more arranged in a unit as a unit, the phase shift amount ψ of the signal of the pixel included in the unit can be calculated for each unit. Therefore, the first absorption grating 31 and the X-ray image detector 130 are arranged such that the row direction and the column direction in the arrangement of the pixels 40 intersect with the pattern period direction of the periodic intensity distribution of the G1 image. However, the optical axis C may be relatively rotated around the optical axis C.
〔解析方法3〕
 本X線撮影装置101においても、上述したX線撮影装置1と同様に、フーリエ変換及び逆フーリエ変換を用いて画像の周期パターンを解析し、位相コントラスト画像を生成することもできる。なお、この場合に、画像の周期パターンは、X線撮影装置1においては、G1像と第2の吸収型格子32との重ね合わせによって形成されるモアレ縞に対応するが、本X線撮影装置101においては、G1像の周期的強度分布に対応する。
[Analysis method 3]
Similarly to the X-ray imaging apparatus 1 described above, the X-ray imaging apparatus 101 can also generate a phase contrast image by analyzing a periodic pattern of an image using Fourier transform and inverse Fourier transform. In this case, the periodic pattern of the image corresponds to moire fringes formed by superimposing the G1 image and the second absorption grating 32 in the X-ray imaging apparatus 1. 101 corresponds to the periodic intensity distribution of the G1 image.
 以上、本X線撮影装置101によれば、G1像の周期的強度分布の周期よりも小さい画素ピッチの検出器を用いてG1像の周期的強度分布を検出し、これを解析して位相情報を取得しており、画素ピッチが小さいことから空間分解能に優れる。そして、第2の吸収型格子32を介さないことから位相情報の精度の向上が図られる。 As described above, according to the X-ray imaging apparatus 101, the periodic intensity distribution of the G1 image is detected using a detector having a pixel pitch smaller than the period of the periodic intensity distribution of the G1 image, and this is analyzed to obtain phase information. Since the pixel pitch is small, the spatial resolution is excellent. Since the second absorption grating 32 is not interposed, the accuracy of the phase information can be improved.
 なお、本X線撮影装置101においては、アーム部材63を旋回させることによって、被写体Hに対する中心X線の入射方向を変化させる構成であるが、図20に示すX線撮影装置71のように、被写体台15を起倒させることによって、被写体Hに対する中心X線の入射方向を相対的に変化させるように構成することもできる。 The X-ray imaging apparatus 101 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63. However, like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
 また、本X線撮影装置101において、第1の吸収型格子31を、二次元格子として構成することもできる。 In the X-ray imaging apparatus 101, the first absorption type grating 31 can be configured as a two-dimensional grating.
 また、本X線撮影装置101において、第1の吸収型格子31を、X線照射部11と被写体台15との間に配置することもできる。 Further, in the X-ray imaging apparatus 101, the first absorption type grating 31 can be disposed between the X-ray irradiation unit 11 and the subject table 15.
 また、本X線撮影装置101においても、そのX線照射部11に、上述したマルチスリット35(図26参照)を設けることができる。この場合に、マルチスリットの格子ピッチpは、マルチスリットから第1の吸収型格子31までの距離をLとして、次式(28)を満たすように設定される。 Also in the X-ray imaging apparatus 101, the multi-slit 35 (see FIG. 26) described above can be provided in the X-ray irradiation unit 11. In this case, the multi-slit lattice pitch p 3 is set to satisfy the following expression (28), where L 3 is the distance from the multi-slit to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 式(28)は、マルチスリットにより分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、X線画像検出器130の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (28) indicates that the projection image (G1 image) of the X-rays emitted from the small focus light sources dispersedly formed by the multi-slits by the first absorption grating 31 coincides with the position of the X-ray image detector 130. It is a geometrical condition for doing (overlapping).
 図29は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。なお、上述したX線撮影装置1,101と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。 FIG. 29 shows the configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention. Note that elements common to the above-described X-ray imaging apparatuses 1 and 101 are denoted by common reference numerals, and description thereof is omitted or simplified.
 図29に示すX線撮影装置201は、X線撮影装置本体202と、コンソール3とに大別され、X線撮影装置本体202は、X線照射部11と、撮影部212と、被写体台15とを備えている。X線照射部11及び撮影部112は、構造体13のアーム部材63によって支持されている。被写体台15は台座67によって支持されている。 An X-ray imaging apparatus 201 shown in FIG. 29 is roughly divided into an X-ray imaging apparatus main body 202 and a console 3. The X-ray imaging apparatus main body 202 includes an X-ray irradiation unit 11, an imaging unit 212, and a subject table 15. And. The X-ray irradiation unit 11 and the imaging unit 112 are supported by the arm member 63 of the structure 13. The subject table 15 is supported by a pedestal 67.
 撮影部212は、第1の吸収型格子31、及び第1の吸収型格子31を通過したX線によって形成されるG1像を検出するX線画像検出器230を備えている。X線画像検出器230は、X線を電荷に変換して蓄積する複数の画素40が2次元配列されてなる受像部41を備え、各画素40に蓄積された電荷を読み出し、これを画像データに変換してコンソール3に送信する。 The imaging unit 212 includes a first absorption grating 31 and an X-ray image detector 230 that detects a G1 image formed by X-rays that have passed through the first absorption grating 31. The X-ray image detector 230 includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them are two-dimensionally arranged, read out the electric charges accumulated in each pixel 40, and read them out as image data. To be sent to the console 3.
 複数の画素40は、X線画像検出器230の受像面上に形成されるG1像の周期的強度分布の周期との関係においてモアレを生じる配列ピッチで配列されている。具体的には、画素40の配列ピッチPは、一般に数μmであるG1像の周期的強度分布の周期と略同程度の配列ピッチとされる。 The plurality of pixels 40 are arranged at an arrangement pitch that causes moiré in relation to the period of the periodic intensity distribution of the G1 image formed on the image receiving surface of the X-ray image detector 230. Specifically, the arrangement pitch P of the pixels 40 is an arrangement pitch that is substantially the same as the period of the periodic intensity distribution of the G1 image, which is generally several μm.
 以上の構成において、G1像の周期的強度分布のx方向に関するパターン周期p’と画素40のx方向に関する配列ピッチPに微小な差異(設計上の差異に限らず、製造誤差や配置誤差に起因する差異も含む)があると、X線画像検出器230によって取得される画像にはモアレが生じる。本X線撮影装置201においては、このモアレを解析することによって、被写体Hの位相コントラスト画像が生成される。 In the above configuration, there is a slight difference between the pattern period p 1 ′ in the x direction of the periodic intensity distribution of the G1 image and the arrangement pitch P in the x direction of the pixels 40 (not limited to design differences, but manufacturing errors and arrangement errors). If there is a difference due to this, moire occurs in the image acquired by the X-ray image detector 230. The X-ray imaging apparatus 201 generates a phase contrast image of the subject H by analyzing the moire.
 画素40の配列ピッチPは、設計的に定められた値であり変更することが困難であるため、モアレを生じさせるにあたって、画素40の配列ピッチPとG1像のパターン周期p’との関係を調整するには、第1の吸収型格子31の位置調整を行い、G1像のパターン周期p’を変更することにより調整することが好ましい。G1像のパターン周期を変更するための機構には、上述した相対回転機構50や相対傾斜機構51や相対移動機構52(いずれも図6参照)と同様の機構を用いることができる。 Since the arrangement pitch P of the pixels 40 is a value determined by design and is difficult to change, the relationship between the arrangement pitch P of the pixels 40 and the pattern period p 1 ′ of the G1 image in generating moire. Is adjusted by adjusting the position of the first absorption grating 31 and changing the pattern period p 1 ′ of the G1 image. As a mechanism for changing the pattern period of the G1 image, a mechanism similar to the above-described relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52 (all refer to FIG. 6) can be used.
 画素40の配列ピッチPと、G1像のパターン周期p’との関係において、画像に生じるモアレのx方向に関する周期Tは、次式(29)で表される。 In the relationship between the arrangement pitch P of the pixels 40 and the pattern period p 1 ′ of the G1 image, the period T in the x direction of moire generated in the image is expressed by the following equation (29).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 X線照射部11と吸収型格子31との間に被写体Hを配置すると、X線画像検出器230により取得される画像に生じるモアレは、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、このモアレを解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is arranged between the X-ray irradiation unit 11 and the absorption grating 31, moire generated in an image acquired by the X-ray image detector 230 is modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, a phase contrast image of the subject H can be generated by analyzing this moire.
 以下、X線撮影装置201における画像のモアレの解析方法について説明する。 Hereinafter, an analysis method of image moire in the X-ray imaging apparatus 201 will be described.
〔解析方法1〕
 画像の周期パターンの解析は、例えば上述した縞走査法によって行うことができる。まず、第1の吸収型格子31からX線画像検出器230の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、上記の式(25)及び式(26)から明らかなように、被写体Hの位相シフト分布Φ(x)に関連している。
[Analysis method 1]
The analysis of the periodic pattern of the image can be performed, for example, by the above-described fringe scanning method. First, the G1 image projected from the first absorption type grating 31 to the position of the X-ray image detector 230 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. It will be. This displacement amount Δx is related to the phase shift distribution Φ (x) of the subject H, as is apparent from the above equations (25) and (26).
 そして、G1像のx方向の変位に伴ってモアレもまたx方向に変位し、G1像の変位量Δxが周期p’に達するとモアレは元の状態にもどることから、モアレの変位量ΔXは、G1像の変位量Δxを用いて、次式(30)で表される。 As the G1 image is displaced in the x direction, the moire is also displaced in the x direction. When the displacement amount Δx of the G1 image reaches the period p 1 ′, the moire returns to the original state. Is expressed by the following equation (30) using the displacement amount Δx of the G1 image.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 この変位量ΔXは、画像データの各画素の信号の位相ズレ量ψに、次式(31)のように関連している。 The displacement amount ΔX is related to the phase shift amount ψ of the signal of each pixel of the image data as shown in the following equation (31).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 したがって、各画素の信号の位相ズレ量ψを求めることにより、式(27)から屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。上記の位相ズレ量ψを、縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel, the refraction angle φ is obtained from the equation (27), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26). By integrating with respect to x, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H can be generated. The phase shift amount ψ is calculated using a fringe scanning method.
 すなわち、第1の吸収型格子31を、その格子の格子ピッチ方向(x方向)にX線画像検出器230に対してステップ的に並進移動させ、G1像の周期的強度分布に対する画素40の周期的配列の位相を相対的に変化させながら撮影を行う。第1の吸収型格子31の移動は走査機構33により行うことができる。 That is, the first absorption type grating 31 is translated in a stepwise manner relative to the X-ray image detector 230 in the grating pitch direction (x direction) of the grating, and the period of the pixel 40 with respect to the periodic intensity distribution of the G1 image. Shooting while relatively changing the phase of the target array. The movement of the first absorption type grating 31 can be performed by the scanning mechanism 33.
 第1の吸収型格子31の移動に伴ってモアレもまた移動し、並進距離(x方向への移動量)が第1の吸収型格子31の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレは元の状態に戻る。このようなモアレの変化を伴う吸収型格子31の移動を格子ピッチpの整数分の1の走査ピッチで行いながら撮影し、得られた複数の画像データから画素毎に複数個の信号値を取得し、演算処理部22で演算処理することによって各画素の信号の位相ズレ量ψを得る。そして、各画素の信号の位相ズレ量ψから式(27)を用いて屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成する。 As the first absorption type grating 31 moves, the moire also moves, and the translation distance (amount of movement in the x direction) reaches one period (grating pitch p 1 ) of the grating period of the first absorption type grating 31. Then (ie, when the phase change reaches 2π), the moire returns to the original state. Such movement of the absorption-type grating 31 with a change in the moiré taken while one scan pitch of an integral fraction of the grating pitch p 1, a plurality of signal values from a plurality of image data for each pixel obtained The phase shift amount ψ of the signal of each pixel is obtained by obtaining and performing arithmetic processing in the arithmetic processing unit 22. Then, the refraction angle φ is obtained from the phase shift amount ψ of the signal of each pixel using the equation (27), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26). By integrating, the phase shift distribution Φ (x) of the subject H, ie, the phase contrast image of the subject H is generated.
 なお、上述した縞走査法によるモアレの解析においては、第1の吸収型格子31とX線画像検出器230との相対移動に伴ってモアレが全体として移動するため、モアレの周期が画像サイズに比べて長くとも適用可能である。 In the above-described moire analysis by the fringe scanning method, the moire moves as a whole with the relative movement between the first absorption grating 31 and the X-ray image detector 230, so the moire cycle is set to the image size. It is applicable even if it is longer than that.
〔解析方法2〕
 図30は、X線撮影装置201における位相コントラスト画像の生成方法の他の例を示す。
[Analysis method 2]
FIG. 30 shows another example of a method for generating a phase contrast image in the X-ray imaging apparatus 201.
 第1の吸収型格子31の格子ピッチ方向(x方向)に対応する方向に隣り合う複数の画素を単位とし、単位毎に、その単位を構成する複数の画素の信号値Iを補間する。図示の例では、複数の画素の信号値を正弦曲線により補間したものであり、正弦曲線による補間は少なくとも3点あれば足りるため、互いに隣り合う3つの画素を単位としている。G1像のパターン周期p’と画素40の配列ピッチPとが画像にモアレを生じさせる関係にある場合に、単位毎に、その単位を構成する複数の画素の信号値Iを補間してなる信号波形の周期は、モアレ周期Tとなる。 A plurality of pixels adjacent to each other in the direction corresponding to the lattice pitch direction (x direction) of the first absorption type lattice 31 is used as a unit, and the signal value I of the plurality of pixels constituting the unit is interpolated for each unit. In the illustrated example, signal values of a plurality of pixels are interpolated by a sine curve, and at least three points are sufficient for interpolation by the sine curve, and therefore, three adjacent pixels are used as a unit. When the pattern period p 1 ′ of the G1 image and the arrangement pitch P of the pixels 40 are in a relationship that causes moiré in the image, the signal values I of a plurality of pixels constituting the unit are interpolated for each unit. The period of the signal waveform is a moire period T.
 上述した通り、G1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。そして、G1像がx方向にΔxだけ変位すると、それに伴って、モアレもまたx方向にΔXだけ変位し、信号波形の位相が変化する。被写体Hが存在しない場合の信号波形(FIG.30A)と、被写体Hが存在する場合の信号波形(FIG.30B)との両者の波形の位相差が、その単位に含まれる画素の信号の位相ズレ量ψに対応する。各画素の信号の位相ズレ量ψから式(27)を用いて屈折角φが求まり、式(26)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成する。 As described above, the G1 image is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. When the G1 image is displaced by Δx in the x direction, the moire is also displaced by ΔX in the x direction, and the phase of the signal waveform changes. The phase difference between the waveform of the signal waveform (FIG. 30A) when the subject H is not present and the signal waveform (FIG. 30B) when the subject H is present is the phase of the signal of the pixel included in the unit. This corresponds to the displacement amount ψ. The refraction angle φ is obtained from the phase shift amount ψ of the signal of each pixel using the equation (27) and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (26), and this is integrated with respect to x. Thus, the phase shift distribution Φ (x) of the subject H, that is, the phase contrast image of the subject H is generated.
 なお、第1の吸収型格子31の格子ピッチ方向(x方向)とX線画像検出器230における画素40の配列における行方向又は列方向とが一致しているものとして、第1の吸収型格子31の格子ピッチ方向、つまりはG1像の周期的強度分布のパターン周期方向に並ぶ3つの画素を一単位とするものとして説明したが、G1像の周期的強度分布のパターン周期方向に対して、画素40の配列における行方向及び列方向がいずれも交差するように、第1の吸収型格子31とX線画像検出器230とが、光軸Cを中心として相対的に回転して配置されていてもよい。 Note that the first absorption-type grating is assumed that the grating pitch direction (x-direction) of the first absorption-type grating 31 coincides with the row direction or the column direction in the arrangement of the pixels 40 in the X-ray image detector 230. Although the description has been made assuming that the three pixels arranged in the lattice pitch direction of 31, that is, the pattern period direction of the periodic intensity distribution of the G1 image, are taken as one unit, with respect to the pattern period direction of the periodic intensity distribution of the G1 image, The first absorption type grating 31 and the X-ray image detector 230 are relatively rotated around the optical axis C so that both the row direction and the column direction in the arrangement of the pixels 40 intersect. May be.
〔解析方法3〕
 本X線撮影装置201においても、上述したX線撮影装置101と同様に、フーリエ変換及び逆フーリエ変換を用いて画像の周期パターンを解析し、位相コントラスト画像を生成することもできる。なお、この場合に、画像の周期パターンは、上述したX線撮影装置101においてはG1像の周期的強度分布に対応するが、本X線撮影装置201においてはG1像の周期的強度分布とX線画像検出器230の画素40の周期的配列との干渉に起因するモアレに対応する。
[Analysis method 3]
Similarly to the X-ray imaging apparatus 101 described above, the present X-ray imaging apparatus 201 can also analyze the periodic pattern of an image using Fourier transform and inverse Fourier transform to generate a phase contrast image. In this case, the periodic pattern of the image corresponds to the periodic intensity distribution of the G1 image in the X-ray imaging apparatus 101 described above, but the periodic intensity distribution of the G1 image and the X in the X-ray imaging apparatus 201 described above. This corresponds to moire caused by interference with the periodic arrangement of the pixels 40 of the line image detector 230.
 以上、説明したように、X線撮影装置201によれば、G1像のパターン周期p’とX線画像検出器230の画素ピッチPとの干渉によって、X線画像検出器230によって取得される画像にモアレを生じさせ、被写体Hに起因するモアレの変調に基づいて位相コントラスト画像を生成する。一般にX線画像検出器230における画素40が小さくなるほどにS/Nが低下する傾向にあるところ、微細なG1像の周期的強度分布を検出可能なほどにX線画像検出器における画素の配列ピッチを小さくする必要がなく、S/Nを確保して位相情報の精度を高めることができる。 As described above, according to the X-ray imaging apparatus 201, it is acquired by the X-ray image detector 230 due to interference between the pattern period p 1 ′ of the G1 image and the pixel pitch P of the X-ray image detector 230. A moire is generated in the image, and a phase contrast image is generated based on the moire modulation caused by the subject H. In general, the S / N tends to decrease as the pixel 40 in the X-ray image detector 230 becomes smaller. However, the pixel arrangement pitch in the X-ray image detector is such that the periodic intensity distribution of a fine G1 image can be detected. There is no need to reduce the S / N, and the S / N can be secured to improve the accuracy of the phase information.
 なお、本X線撮影装置201においては、アーム部材63を旋回させることによって、被写体Hに対する中心X線の入射方向を変化させる構成であるが、図20に示すX線撮影装置71のように、被写体台15を起倒させることによって、被写体Hに対する中心X線の入射方向を相対的に変化させるように構成することもできる。 The X-ray imaging apparatus 201 has a configuration in which the incident direction of the central X-ray with respect to the subject H is changed by turning the arm member 63, but like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
 また、本X線撮影装置201においても、第1の吸収型格子31を、二次元格子として構成することができる。 Also in the X-ray imaging apparatus 201, the first absorption type grating 31 can be configured as a two-dimensional grating.
 また、本X線撮影装置201においても、第1の吸収型格子31を、X線照射部11と被写体台15との間に配置することができる。 Also in the X-ray imaging apparatus 201, the first absorption type grating 31 can be disposed between the X-ray irradiation unit 11 and the subject table 15.
 また、本X線撮影装置201においても、上述したX線撮影装置101と同様に、そのX線照射部11にマルチスリット35(図26参照)を設けることができる。 Also in the X-ray imaging apparatus 201, similarly to the X-ray imaging apparatus 101 described above, the multi-slit 35 (see FIG. 26) can be provided in the X-ray irradiation unit 11.
 図31は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。なお、図1に示すX線撮影装置1と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。 FIG. 31 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention. Elements common to the X-ray imaging apparatus 1 shown in FIG. 1 are denoted by common reference numerals, and description thereof is omitted or simplified.
 図31に示すX線撮影装置301においては、被写体台15が、X線撮影装置本体2から分離されている点で、図1に示すX線撮影装置1と異なっている。 31 differs from the X-ray imaging apparatus 1 shown in FIG. 1 in that the subject table 15 is separated from the X-ray imaging apparatus main body 2. The X-ray imaging apparatus 301 shown in FIG.
 被写体台15は、適宜な台座に取り付けられている。台座は、X線照射部11及び撮影部12(第1及び第2の吸収型格子31,32、X線画像検出器30)を支持する構造体13とは別体に構成されており、被写体台15は、X線撮影装置本体2から分離されている。 The subject table 15 is attached to an appropriate pedestal. The pedestal is configured separately from the structure 13 that supports the X-ray irradiation unit 11 and the imaging unit 12 (the first and second absorption type gratings 31 and 32 and the X-ray image detector 30). The table 15 is separated from the X-ray imaging apparatus main body 2.
 以上の構成によれば、被写体Hが被写体台15に載置された際の衝撃や、撮影中あるいは撮影間における被写体Hの動き(体動)による振動などが、X線照射部11及び撮影部12を支持する構造体13に伝達されることを防止し、上記の通り、X線焦点18bや第1及び第2の吸収型格子31,32の相対位置のずれを防止ないし抑制することができ、被写体Hの位相情報の検出精度を高めることができる。 According to the above configuration, the X-ray irradiating unit 11 and the imaging unit are affected by the impact when the subject H is placed on the subject table 15 and the vibration caused by the movement (body movement) of the subject H during or during imaging. As described above, the displacement of the relative positions of the X-ray focal point 18b and the first and second absorption gratings 31 and 32 can be prevented or suppressed. Thus, the detection accuracy of the phase information of the subject H can be improved.
 被写体台15をX線撮影装置本体2から分離する構成は、上述したX線撮影装置のいずれにも適用することが可能である。 The configuration in which the subject table 15 is separated from the X-ray imaging apparatus main body 2 can be applied to any of the X-ray imaging apparatuses described above.
 図32は、本発明の実施形態を説明するための、放射線撮影装置の他の例の構成を示す。なお、上述したX線撮影装置1と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。 FIG. 32 shows a configuration of another example of the radiation imaging apparatus for explaining the embodiment of the present invention. In addition, description is abbreviate | omitted or simplified by attaching | subjecting a common code | symbol to the element which is common in the X-ray imaging apparatus 1 mentioned above.
 上述したX線撮影装置1は、X線を略鉛直下方に向けて照射しており、ヒトを撮影する場合に基本的に臥位又は座位にて撮影を行うものであるが、図32に示すX線撮影装置401は、X線を略水平方向に照射する点で上述したX線撮影装置1と異なり、ヒトを撮影する場合に立位にて撮影を行うものである。 The above-described X-ray imaging apparatus 1 irradiates X-rays substantially vertically downward, and basically performs imaging in a supine position or a sitting position when imaging a human, as shown in FIG. The X-ray imaging apparatus 401 is different from the X-ray imaging apparatus 1 described above in that X-rays are irradiated in a substantially horizontal direction, and performs imaging in a standing position when imaging a human.
 X線撮影装置401では、X線照射部11、第1の吸収型格子31、第2の吸収型格子32、及びX線画像検出器30がこの順に略水平方向に並んで配置され、アーム部材63によって支持されている。被写体台15は、そこに載置される被写体Hが、X線照射部11と第1の吸収型格子31との間に配置されるように設けられている。 In the X-ray imaging apparatus 401, the X-ray irradiation unit 11, the first absorption type grating 31, the second absorption type grating 32, and the X-ray image detector 30 are arranged in this order in the substantially horizontal direction, and the arm member 63. The subject table 15 is provided such that the subject H placed thereon is disposed between the X-ray irradiation unit 11 and the first absorption type grating 31.
 被写体台15は、アーム部材63の旋回軸62の延長の鉛直下方にあって、その上に載置される被写体Hの関心領域(図示の例では膝関節の軟骨部)が旋回軸62の延長上に位置する高さに配置されることが好ましい。それによれば、アーム部材63の旋回に対しても関心領域が照射野から外れず、また拡大率も変わらない。 The subject table 15 is vertically below the extension of the pivot shaft 62 of the arm member 63, and the region of interest of the subject H placed thereon (the cartilaginous portion of the knee joint in the illustrated example) extends the pivot shaft 62. It is preferable to arrange at a height located above. According to this, the region of interest does not deviate from the irradiation field even when the arm member 63 rotates, and the enlargement ratio does not change.
 なお、アーム部材63の旋回に伴って被写体Hの関心領域が照射野から外れ、また、拡大率が変化する場合に、アーム部材63の旋回に連動してアーム部材63や被写体台15を水平・鉛直方向に並進移動するようにしてもよい。 In addition, when the region of interest of the subject H deviates from the irradiation field with the turning of the arm member 63 and the enlargement ratio changes, the arm member 63 and the subject table 15 are moved horizontally and in conjunction with the turning of the arm member 63. You may make it translate in a perpendicular direction.
 膝関節の撮影では、立位にて荷重が作用した状態での撮影ニーズが高いため、本X線撮影装置401のような立位型装置(横型装置)が好ましい。 In imaging of knee joints, there is a high need for imaging in a state where a load is applied in an upright position, and thus a standing type apparatus (horizontal apparatus) such as the X-ray imaging apparatus 401 is preferable.
 なお、本X線撮影装置401においては、アーム部材63を旋回させることによって、被写体Hに対する中心X線の入射方向を変化させる構成であるが、図20に示すX線撮影装置71のように、被写体台15を起倒させることによって、被写体Hに対する中心X線の入射方向を相対的に変化させるように構成することもできる。 The X-ray imaging apparatus 401 is configured to change the incident direction of the central X-ray with respect to the subject H by turning the arm member 63. However, like the X-ray imaging apparatus 71 shown in FIG. It is also possible to configure such that the incident direction of the center X-ray with respect to the subject H is relatively changed by raising and lowering the subject table 15.
 また、本X線撮影装置401においても、第1の吸収型格子31を二次元格子として構成することができる。 Also in this X-ray imaging apparatus 401, the first absorption type grating 31 can be configured as a two-dimensional grating.
 また、本X線撮影装置401においても、第1の吸収型格子31をX線照射部11と被写体台15に載置される被写体Hとの間に配置することができる。 Also in the present X-ray imaging apparatus 401, the first absorption grating 31 can be disposed between the X-ray irradiation unit 11 and the subject H placed on the subject table 15.
 また、本X線撮影装置401においても、上述したX線撮影装置101と同様に、そのX線照射部11にマルチスリット35(図26参照)を設けることができる。 Also in the X-ray imaging apparatus 401, similarly to the X-ray imaging apparatus 101 described above, the multi-slit 35 (see FIG. 26) can be provided in the X-ray irradiation unit 11.
 また、本X線撮影装置401においても、上述したX線撮影装置201と同様に、第2の吸収型格子32を省略し、G1像のパターン周期とX線画像検出器の画素ピッチとの干渉によって生じるモアレの被写体Hに起因する変調に基づいて位相コントラス画像を生成することができる。 Also in the present X-ray imaging apparatus 401, as in the X-ray imaging apparatus 201 described above, the second absorption grating 32 is omitted, and the interference between the pattern period of the G1 image and the pixel pitch of the X-ray image detector. The phase contrast image can be generated based on the modulation caused by the moiré subject H generated by the above.
 また、本X線撮影装置401においても、被写体台15をX線撮影装置本体から分離することができる。 Also in the X-ray imaging apparatus 401, the subject table 15 can be separated from the X-ray imaging apparatus main body.
 以上の説明においては、放射線として一般的なX線を用いる場合について説明したが、本発明はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In the above description, the case where general X-rays are used as radiation has been described, but the present invention is not limited to X-rays, and radiation other than X-rays such as α-rays and γ-rays can also be used. It is.
 また、本発明において、被写体に対する中心X線の相対的な入射方向の回転面は、第1の吸収型格子31の格子ピッチ方向に完全に平行な平面に限らず、略平行な平面も含む。例えば、図10や図13に示す例において、光軸Cを中心に第1の吸収型格子31を回転させた場合に、アーム部材63の旋回や被写体台15の起倒に伴う中心X線の相対的な入射方向の回転面は、第1の吸収型格子31の格子ピッチ方向に対して第1の吸収型格子31の回転角度θだけ傾くが、第1の吸収型格子31の回転角度θは、実際は1~2度程度以下の微小角度であり、中心X線の相対的な入射方向の回転面は、第1の吸収型格子31の格子ピッチ方向に略平行である。 In the present invention, the rotation plane of the relative incident direction of the center X-ray with respect to the subject is not limited to a plane completely parallel to the grating pitch direction of the first absorption type grating 31, and includes a substantially parallel plane. For example, in the example shown in FIGS. 10 and 13, when the first absorption type grating 31 is rotated around the optical axis C, the center X-ray associated with the turning of the arm member 63 or the tilting of the subject table 15 The rotation plane in the relative incident direction is inclined by the rotation angle θ of the first absorption grating 31 with respect to the grating pitch direction of the first absorption grating 31, but the rotation angle θ of the first absorption grating 31. Is actually a minute angle of about 1 to 2 degrees or less, and the rotation plane of the relative incident direction of the center X-ray is substantially parallel to the grating pitch direction of the first absorption type grating 31.
 また、上述したX線撮影装置1以外の他のX線撮影装置についても、X線撮影装置1と同様に、第1の格子は吸収型格子に限らず位相型格子とすることもできる。 As for the X-ray imaging apparatus other than the X-ray imaging apparatus 1 described above, the first grating is not limited to the absorption type grating but can be a phase-type grating as in the X-ray imaging apparatus 1.
 以上、説明したように、本明細書には、下記(1)~(21)の放射線撮影装置が開示されており、被写体に対して適切な方向からX線を入射させる斜入機構を備えることにより、非関心領域に起因する障害陰影やX線の減衰を抑制することができ、明瞭な位相コントラスト画像を得ることができる。 As described above, the present specification discloses the following radiographic apparatuses (1) to (21), and includes an oblique insertion mechanism that allows X-rays to enter the subject from an appropriate direction. Accordingly, it is possible to suppress obstacle shadows and X-ray attenuation caused by the non-interest region, and a clear phase contrast image can be obtained.
 (1) 放射線照射部と、少なくとも一方向に周期的構造を有する第1の格子と、放射線画像検出器を含む検出部と、を備え、上記第1の格子は、この第1の格子を通過する放射線によって周期的強度分布を含む放射線像を形成し、上記検出部は、上記放射線像を検出して放射線画像データを取得し、被写体に対する中心放射線の相対的な入射方向が、上記被写体を通り上記第1の格子の上記周期的構造の周期方向に平行な平面内において変更可能に構成されている放射線撮影装置。
 (2) 上記(1)の放射線撮影装置であって、上記放射線照射部、及び上記第1の格子、並びに上記検出部を支持する構造部と、上記平面に直交する回転軸まわりに上記構造部を回転させる回転駆動部と、を備える放射線撮影装置。
 (3) 上記(2)の放射線撮影装置であって、上記構造部を、上記平面内において並進移動させる並進駆動部を備える放射線撮影装置。
 (4) 上記(3)の放射線撮影装置であって、上記中心放射線の入射方向の変更の前後において、上記中心放射線が上記被写体の同じ領域を通過するように、上記並進駆動部を制御する制御部を備える放射線撮影装置。
 (5) 上記(3)又は(4)の放射線撮影装置であって、上記中心放射線の入射方向の変更の前後において、上記中心放射線に沿った上記放射線照射部から上記被写体までの距離が同じとなるように、上記並進駆動部を制御する制御部を備える放射線撮影装置。
 (6) 上記(2)の放射線撮影装置であって、上記回転軸は、上記被写体の配置位置を通る放射線撮影装置。
 (7) 上記(1)の放射線撮影装置であって、上記放射線照射部と上記第1の格子との間又は上記第1の格子と上記検出部との間に配置され、上記被写体が載置される被写体台と、上記平面に直交する起倒軸まわりに上記被写体台を起倒させる起倒駆動部と、を備える放射線撮影装置。
 (8) 上記(7)の放射線撮影装置であって、上記被写体台を、上記平面内において並進移動させる並進駆動部を備える放射線撮影装置。
 (9) 上記(8)の放射線撮影装置であって、上記中心放射線の入射方向の変更の前後において、上記中心放射線が上記被写体の同じ領域を通過するように、上記並進駆動部を制御する制御部を備える放射線撮影装置。
 (10) 上記(8)又は(9)の放射線撮影装置であって、上記中心放射線の入射方向の変更の前後において、上記中心放射線に沿った上記放射線照射部から上記被写体までの距離が同じとなるように、上記並進駆動部を制御する制御部を備える放射線撮影装置。
 (11) 上記(7)の放射線撮影装置であって、上記起倒軸は、上記被写体の配置位置を通る放射線撮影装置。
 (12) 上記(1)~(11)のいずれか一つの放射線撮影装置であって、上記中心放射線の入射方向を設定する設定部を備え、上記設定部は、上記中心放射線の入射方向を変化させながら透視を行って上記放射線画像検出器により取得される透視画像データに基づいて、上記中心放射線の入射方向を設定する放射線撮影装置。
 (13) 上記(12)の放射線撮影装置であって、上記設定部は、上記透視画像データにおいて上記被写体の関心領域に対応する画像領域の大きさをモニタし、この画像領域の大きさが最も大きい入射方向に上記中心放射線の入射方向を設定する放射線撮影装置。
 (14) 上記(12)の放射線撮影装置であって、上記設定部は、上記透視画像データにおいて上記被写体の関心領域に対応する画像領域のコントラスト値をモニタし、この画像領域のコントラスト値が最も高い入射方向に上記中心放射線の入射方向を設定する放射線撮影装置。
 (15) 上記(1)~(14)のいずれか一つの放射線撮影装置であって、上記第1の格子は、吸収型格子であり、入射した放射線を幾何学的に投影することにより上記周期的強度分布を含む放射線像を形成する放射線撮影装置。
 (16) 上記(1)~(14)のいずれか一つの放射線撮影装置であって、上記第1の格子は、吸収型格子又は位相型格子であり、入射した放射線にタルボ効果を生じさせ上記周期的強度分布を含む放射線像を形成する放射線撮影装置。
 (17) 上記(1)~(16)のいずれか一つの放射線撮影装置であって、上記放射線照射部は、放射線源と、上記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットとを有する放射線撮影装置。
 (18) 上記(1)~(17)のいずれか一つの放射線撮影装置であって、上記検出部は、上記放射線像に重ね合わされる第2の格子を更に有し、上記放射線画像検出器は、上記第2の格子が重ね合わされた上記放射線像を検出する放射線撮影装置。
 (19) 上記(1)~(17)のいずれか一つの放射線撮影装置であって、上記放射線画像検出器は、上記放射線像の上記周期的強度分布を解像可能な解像度を有し、上記放射線像を検出する放射線撮影装置。
 (20) 上記(1)~(17)のいずれか一つの放射線撮影装置であって、上記放射線画像検出器は、上記放射線像の上記周期的強度分布の周期との関係でモアレを生じる解像度を有し、上記放射線像を検出する放射線撮影装置。
 (21) 上記(1)~(20)のいずれか一つの放射線撮影装置であって、上記放射線撮影装置の検出部によって取得された少なくとも一つの放射線画像データに基づいて、被写体の位相コントラスト画像を生成する演算処理部を備えた放射線撮影装置。
(1) A radiation irradiation unit, a first grating having a periodic structure in at least one direction, and a detection unit including a radiation image detector, wherein the first grating passes through the first grating. A radiation image including a periodic intensity distribution is formed by the radiation to be generated, and the detection unit detects the radiation image to acquire radiation image data, and a relative incident direction of the central radiation with respect to the subject passes through the subject. A radiation imaging apparatus configured to be changeable in a plane parallel to a periodic direction of the periodic structure of the first grating.
(2) The radiographic apparatus according to (1), wherein the radiation irradiating unit, the first grating, a structural unit supporting the detecting unit, and the structural unit around a rotation axis orthogonal to the plane. A radiation imaging apparatus comprising: a rotation driving unit that rotates the rotation unit.
(3) The radiographic apparatus according to (2), further including a translational drive unit that translates the structural unit in the plane.
(4) The radiographic apparatus according to (3), wherein the translation drive unit is controlled so that the central radiation passes through the same region of the subject before and after the change of the incident direction of the central radiation. Radiation imaging apparatus comprising a unit.
(5) The radiographic apparatus according to (3) or (4), wherein the distance from the radiation irradiation unit to the subject along the central radiation is the same before and after the change of the incident direction of the central radiation. A radiation imaging apparatus comprising a control unit that controls the translation drive unit.
(6) The radiation imaging apparatus according to (2), wherein the rotation axis passes through the arrangement position of the subject.
(7) The radiographic apparatus according to (1), wherein the radiographic apparatus is disposed between the radiation irradiating unit and the first grating or between the first grating and the detecting unit, and the subject is placed thereon A radiation imaging apparatus comprising: a subject table to be moved; and a tilt drive unit that tilts the subject table about a tilt axis orthogonal to the plane.
(8) The radiation imaging apparatus according to (7), further including a translation drive unit that translates the subject table in the plane.
(9) The radiographic apparatus according to (8), wherein the translation drive unit is controlled so that the central radiation passes through the same region of the subject before and after the change of the incident direction of the central radiation. Radiation imaging apparatus comprising a unit.
(10) In the radiographic apparatus according to (8) or (9), the distance from the radiation irradiation unit to the subject along the central radiation is the same before and after the change of the incident direction of the central radiation. A radiation imaging apparatus comprising a control unit that controls the translation drive unit.
(11) The radiation imaging apparatus according to (7), wherein the tilting shaft passes through the position where the subject is disposed.
(12) The radiographic apparatus according to any one of (1) to (11), further including a setting unit that sets an incident direction of the central radiation, wherein the setting unit changes an incident direction of the central radiation. A radiation imaging apparatus that performs fluoroscopy while setting the incident direction of the central radiation based on fluoroscopic image data acquired by the radiographic image detector.
(13) The radiographic apparatus according to (12), wherein the setting unit monitors the size of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and the size of the image region is the largest. A radiation imaging apparatus that sets the incident direction of the central radiation in a large incident direction.
(14) In the radiographic apparatus according to (12), the setting unit monitors a contrast value of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and the contrast value of the image region is the highest. A radiation imaging apparatus that sets the incident direction of the central radiation in a high incident direction.
(15) In the radiographic apparatus according to any one of (1) to (14), the first grating is an absorption grating, and the period is obtained by geometrically projecting incident radiation. Radiography apparatus for forming a radiographic image including a spatial intensity distribution.
(16) In the radiographic apparatus according to any one of (1) to (14), the first grating is an absorption type grating or a phase type grating, and causes a Talbot effect on incident radiation. A radiation imaging apparatus that forms a radiation image including a periodic intensity distribution.
(17) The radiation imaging apparatus according to any one of (1) to (16), wherein the radiation irradiating unit partially shields a radiation source and radiation emitted from the radiation source to focus the radiation source. A radiation imaging apparatus having a multi-slit for dispersion.
(18) In the radiographic apparatus according to any one of (1) to (17), the detection unit further includes a second grating superimposed on the radiographic image, and the radiographic image detector includes: A radiation imaging apparatus for detecting the radiation image on which the second grating is superimposed.
(19) The radiographic apparatus according to any one of (1) to (17), wherein the radiographic image detector has a resolution capable of resolving the periodic intensity distribution of the radiographic image, and A radiation imaging device that detects a radiation image.
(20) The radiographic apparatus according to any one of (1) to (17), wherein the radiological image detector has a resolution that causes moiré in relation to a period of the periodic intensity distribution of the radiographic image. A radiation imaging apparatus for detecting the radiation image;
(21) The radiographic apparatus according to any one of (1) to (20), wherein a phase contrast image of a subject is obtained based on at least one radiographic image data acquired by a detection unit of the radiographic apparatus. A radiation imaging apparatus including an arithmetic processing unit for generation.
 本発明によれば、被写体に対して適切な方向から放射線を入射させ、明瞭な位相コントラスト画像を得ることのできる放射線撮影装置を提供することができる。 According to the present invention, it is possible to provide a radiation imaging apparatus capable of obtaining a clear phase contrast image by making radiation incident on an object from an appropriate direction.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年12月5日出願の日本特許出願(特願2011-266165)、2012年10月26日出願の日本特許出願(特願2012-236817)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 5, 2011 (Japanese Patent Application No. 2011-266165) and a Japanese patent application filed on October 26, 2012 (Japanese Patent Application No. 2012-236817). Incorporated herein by reference.
1 X線撮影装置
2 X線撮影装置本体
3 コンソール
11 X線照射部
12 撮影部
13 構造体
14 検出部
15 被写体台
18 X線管
20 制御装置
21 入力装置
22 演算処理部
23 記憶部
24 モニタ
26 バス
30 X線画像検出器
31 第1の吸収型格子
31a 基板
31b X線遮蔽部
32 第2の吸収型格子
32a 基板
32b X線遮蔽部
60 ベース
61 スタンド
62 旋回軸
63 アーム部材
64 並進駆動部
65 伸縮駆動部
66 回転駆動部
71 X線撮影装置
72 X線撮影装置本体
72 装置本体
73 台座
74 起倒軸
75 起倒駆動部
76 並進駆動部
77 昇降駆動部
DESCRIPTION OF SYMBOLS 1 X-ray imaging apparatus 2 X-ray imaging apparatus main body 3 Console 11 X-ray irradiation part 12 Imaging part 13 Structure 14 Detection part 15 Subject stand 18 X-ray tube 20 Control apparatus 21 Input device 22 Arithmetic processing part 23 Storage part 24 Monitor 26 Bus 30 X-ray image detector 31 First absorption type grating 31a Substrate 31b X-ray shielding part 32 Second absorption type grating 32a Substrate 32b X-ray shielding part 60 Base 61 Stand 62 Rotating shaft 63 Arm member 64 Translation drive part 65 Telescopic drive unit 66 Rotation drive unit 71 X-ray imaging device 72 X-ray imaging device main body 72 Device main body 73 Base 74 Erecting shaft 75 Elevating drive unit 76 Translation drive unit 77 Elevating drive unit

Claims (21)

  1.  放射線照射部と、
     少なくとも一方向に周期的構造を有する第1の格子と、
     放射線画像検出器を含む検出部と、
     を備え、
     前記第1の格子は、該第1の格子を通過する放射線によって周期的強度分布を含む放射線像を形成し、
     前記検出部は、前記放射線像を検出して放射線画像データを取得し、
     被写体に対する中心放射線の相対的な入射方向が、前記被写体を通り前記第1の格子の前記周期的構造の周期方向に平行な平面内において変更可能に構成されている放射線撮影装置。
    A radiation irradiation unit;
    A first grating having a periodic structure in at least one direction;
    A detector including a radiation image detector;
    With
    The first grating forms a radiation image including a periodic intensity distribution by radiation passing through the first grating;
    The detection unit detects the radiographic image to acquire radiographic image data;
    A radiation imaging apparatus configured such that a relative incident direction of central radiation with respect to a subject can be changed in a plane passing through the subject and parallel to a periodic direction of the periodic structure of the first grating.
  2.  請求項1に記載の放射線撮影装置であって、
     前記放射線照射部、及び前記第1の格子、並びに前記検出部を支持する構造部と、
     前記平面に直交する回転軸まわりに前記構造部を回転させる回転駆動部と、
     を備える放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    A structure that supports the radiation irradiator, the first grating, and the detector;
    A rotation drive unit that rotates the structure unit around a rotation axis orthogonal to the plane;
    A radiographic apparatus comprising:
  3.  請求項2に記載の放射線撮影装置であって、
     前記構造部を、前記平面内において並進移動させる並進駆動部を備える放射線撮影装置。
    The radiographic apparatus according to claim 2,
    A radiation imaging apparatus comprising a translation drive unit that translates the structure unit in the plane.
  4.  請求項3に記載の放射線撮影装置であって、
     前記中心放射線の入射方向の変更の前後において、前記中心放射線が前記被写体の同じ領域を通過するように、前記並進駆動部を制御する制御部を備える放射線撮影装置。
    The radiographic apparatus according to claim 3,
    A radiation imaging apparatus comprising: a control unit that controls the translation drive unit so that the central radiation passes through the same region of the subject before and after the change of the incident direction of the central radiation.
  5.  請求項3に記載の放射線撮影装置であって、
     前記中心放射線の入射方向の変更の前後において、前記中心放射線に沿った前記放射線照射部から前記被写体までの距離が同じとなるように、前記並進駆動部を制御する制御部を備える放射線撮影装置。
    The radiographic apparatus according to claim 3,
    A radiation imaging apparatus comprising: a control unit that controls the translation drive unit so that a distance from the radiation irradiation unit to the subject along the central radiation is the same before and after the change of the incident direction of the central radiation.
  6.  請求項2に記載の放射線撮影装置であって、
     前記回転軸は、前記被写体の配置位置を通る放射線撮影装置。
    The radiographic apparatus according to claim 2,
    The rotation shaft is a radiation imaging apparatus that passes through the arrangement position of the subject.
  7.  請求項1に記載の放射線撮影装置であって、
     前記放射線照射部と前記第1の格子との間又は前記第1の格子と前記検出部との間に配置され、前記被写体が載置される被写体台と、
     前記平面に直交する起倒軸まわりに前記被写体台を起倒させる起倒駆動部と、
     を備える放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    A subject table placed between the radiation irradiating unit and the first grating or between the first grating and the detecting unit and on which the subject is placed;
    A tilting drive unit for tilting the subject table about a tilting axis perpendicular to the plane;
    A radiographic apparatus comprising:
  8.  請求項7に記載の放射線撮影装置であって、
     前記被写体台を、前記平面内において並進移動させる並進駆動部を備える放射線撮影装置。
    The radiographic apparatus according to claim 7,
    A radiation imaging apparatus comprising a translation drive unit that translates the subject table in the plane.
  9.  請求項8に記載の放射線撮影装置であって、
     前記中心放射線の入射方向の変更の前後において、前記中心放射線が前記被写体の同じ領域を通過するように、前記並進駆動部を制御する制御部を備える放射線撮影装置。
    The radiographic apparatus according to claim 8,
    A radiation imaging apparatus comprising: a control unit that controls the translation drive unit so that the central radiation passes through the same region of the subject before and after the change of the incident direction of the central radiation.
  10.  請求項8に記載の放射線撮影装置であって、
     前記中心放射線の入射方向の変更の前後において、前記中心放射線に沿った前記放射線照射部から前記被写体までの距離が同じとなるように、前記並進駆動部を制御する制御部を備える放射線撮影装置。
    The radiographic apparatus according to claim 8,
    A radiation imaging apparatus comprising: a control unit that controls the translation drive unit so that a distance from the radiation irradiation unit to the subject along the central radiation is the same before and after the change of the incident direction of the central radiation.
  11.  請求項7に記載の放射線撮影装置であって、
     前記起倒軸は、前記被写体の配置位置を通る放射線撮影装置。
    The radiographic apparatus according to claim 7,
    The raising / lowering axis is a radiation imaging apparatus passing through the arrangement position of the subject.
  12.  請求項1に記載の放射線撮影装置であって、
     前記中心放射線の入射方向を設定する設定部を備え、
     前記設定部は、前記中心放射線の入射方向を変化させながら透視を行って前記放射線画像検出器により取得される透視画像データに基づいて、前記中心放射線の入射方向を設定する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    A setting unit for setting the incident direction of the central radiation;
    The radiographic apparatus that sets the incident direction of the central radiation based on fluoroscopic image data acquired by the radiological image detector by performing fluoroscopy while changing the incident direction of the central radiation.
  13.  請求項12に記載の放射線撮影装置であって、
     前記設定部は、前記透視画像データにおいて前記被写体の関心領域に対応する画像領域の大きさをモニタし、該画像領域の大きさが最も大きい入射方向に前記中心放射線の入射方向を設定する放射線撮影装置。
    The radiographic apparatus according to claim 12,
    The setting unit monitors the size of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and sets the incident direction of the central radiation in an incident direction in which the size of the image region is the largest. apparatus.
  14.  請求項12に記載の放射線撮影装置であって、
     前記設定部は、前記透視画像データにおいて前記被写体の関心領域に対応する画像領域のコントラスト値をモニタし、該画像領域のコントラスト値が最も高い入射方向に前記中心放射線の入射方向を設定する放射線撮影装置。
    The radiographic apparatus according to claim 12,
    The setting unit monitors a contrast value of an image region corresponding to the region of interest of the subject in the fluoroscopic image data, and sets the incident direction of the central radiation to an incident direction having the highest contrast value of the image region. apparatus.
  15.  請求項1に記載の放射線撮影装置であって、
     前記第1の格子は、吸収型格子であり、入射した放射線を幾何学的に投影することにより前記周期的強度分布を含む放射線像を形成する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The first grating is an absorption grating, and forms a radiation image including the periodic intensity distribution by geometrically projecting incident radiation.
  16.  請求項1に記載の放射線撮影装置であって、
     前記第1の格子は、吸収型格子又は位相型格子であり、入射した放射線にタルボ効果を生じさせ前記周期的強度分布を含む放射線像を形成する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The first grating is an absorption grating or a phase grating, and generates a Talbot effect on incident radiation to form a radiation image including the periodic intensity distribution.
  17.  請求項1に記載の放射線撮影装置であって、
     前記放射線照射部は、放射線源と、前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットとを有する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The radiation irradiating unit includes a radiation source and a multi-slit that partially shields the radiation emitted from the radiation source and disperses the focal point.
  18.  請求項1に記載の放射線撮影装置であって、
     前記検出部は、前記放射線像に重ね合わされる第2の格子を更に有し、
     前記放射線画像検出器は、前記第2の格子が重ね合わされた前記放射線像を検出する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The detection unit further includes a second grating superimposed on the radiation image,
    The radiation image detector is a radiation imaging apparatus that detects the radiation image on which the second grating is superimposed.
  19.  請求項1に記載の放射線撮影装置であって、
     前記放射線画像検出器は、前記放射線像の前記周期的強度分布を解像可能な解像度を有し、前記放射線像を検出する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The radiation image detector has a resolution capable of resolving the periodic intensity distribution of the radiation image and detects the radiation image.
  20.  請求項1に記載の放射線撮影装置であって、
     前記放射線画像検出器は、前記放射線像の前記周期的強度分布の周期との関係でモアレを生じる解像度を有し、前記放射線像を検出する放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    The radiographic image detector has a resolution for generating moire in relation to a period of the periodic intensity distribution of the radiographic image, and detects the radiographic image.
  21.  請求項1に記載の放射線撮影装置であって、
     前記放射線撮影装置の検出部によって取得された少なくとも一つの放射線画像データに基づいて、被写体の位相コントラスト画像を生成する演算処理部を備えた放射線撮影装置。
    The radiation imaging apparatus according to claim 1,
    A radiation imaging apparatus comprising: an arithmetic processing unit that generates a phase contrast image of a subject based on at least one radiation image data acquired by the detection unit of the radiation imaging apparatus.
PCT/JP2012/079020 2011-12-05 2012-11-08 Radiography device WO2013084659A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011266165 2011-12-05
JP2011-266165 2011-12-05
JP2012-236817 2012-10-26
JP2012236817A JP2013138835A (en) 2011-12-05 2012-10-26 Radiographic apparatus

Publications (1)

Publication Number Publication Date
WO2013084659A1 true WO2013084659A1 (en) 2013-06-13

Family

ID=48574038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079020 WO2013084659A1 (en) 2011-12-05 2012-11-08 Radiography device

Country Status (2)

Country Link
JP (1) JP2013138835A (en)
WO (1) WO2013084659A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045412A (en) * 2017-09-06 2019-03-22 株式会社島津製作所 Radiation phase contrast imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215929A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Radiography method and radiographic device
WO2008102685A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiological image picking-up device and radiological image picking-up system
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
JP2008237631A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Radiographic imaging apparatus
JP2009201730A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Radiological image detecting device
JP2010279433A (en) * 2009-06-02 2010-12-16 Canon Inc Radiation imaging apparatus, method for controlling radiation imaging apparatus, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215929A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Radiography method and radiographic device
WO2008102685A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiological image picking-up device and radiological image picking-up system
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
JP2008237631A (en) * 2007-03-28 2008-10-09 Fujifilm Corp Radiographic imaging apparatus
JP2009201730A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Radiological image detecting device
JP2010279433A (en) * 2009-06-02 2010-12-16 Canon Inc Radiation imaging apparatus, method for controlling radiation imaging apparatus, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045412A (en) * 2017-09-06 2019-03-22 株式会社島津製作所 Radiation phase contrast imaging device

Also Published As

Publication number Publication date
JP2013138835A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5548085B2 (en) Adjustment method of diffraction grating
JP5783987B2 (en) Radiography equipment
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP5238786B2 (en) Radiography apparatus and radiation imaging system
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2012090944A (en) Radiographic system and radiographic method
JP2012024339A (en) Radiation imaging system and collimator unit
JP2012120715A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
JP2012095865A (en) Radiographic apparatus and radiographic system
JP2012200567A (en) Radiographic system and radiographic method
JP2011224330A (en) Radiation imaging system and offset correction method therefor
WO2012057047A1 (en) Radiation imaging system
WO2012169426A1 (en) Radiography system
JP2011206490A (en) Radiographic system and radiographic method
WO2012169427A1 (en) Radiography system
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
JP2014012029A (en) Radiographic system and image processing method
WO2012057278A1 (en) Radiation imaging system and radiation imaging method
WO2013084659A1 (en) Radiography device
WO2012147749A1 (en) Radiography system and radiography method
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
WO2013084657A1 (en) Radiation imaging device
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
WO2012133553A1 (en) Radiography system and radiography method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855061

Country of ref document: EP

Kind code of ref document: A1