WO2013084362A1 - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
WO2013084362A1
WO2013084362A1 PCT/JP2011/078605 JP2011078605W WO2013084362A1 WO 2013084362 A1 WO2013084362 A1 WO 2013084362A1 JP 2011078605 W JP2011078605 W JP 2011078605W WO 2013084362 A1 WO2013084362 A1 WO 2013084362A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
magnetic bearing
electromagnet
pair
Prior art date
Application number
PCT/JP2011/078605
Other languages
French (fr)
Japanese (ja)
Inventor
筒井 幸雄
大戸 基道
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to CN201190001181.XU priority Critical patent/CN203879931U/en
Priority to PCT/JP2011/078605 priority patent/WO2013084362A1/en
Publication of WO2013084362A1 publication Critical patent/WO2013084362A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Definitions

  • the present invention relates to a magnetic bearing, and more particularly, to a magnetic bearing provided with an electromagnet and a permanent magnet.
  • a magnetic bearing provided with an electromagnet and a permanent magnet is known.
  • Such a magnetic bearing is disclosed, for example, in JP-A-11-101235.
  • Japanese Patent Application Laid-Open No. 11-101235 discloses a magnetic bearing including an electromagnet made of an electromagnetic steel sheet laminate (electromagnet core) around which an exciting coil is wound, and a permanent magnet attached to the electromagnetic steel sheet laminate. ing.
  • both the electromagnet and the permanent magnet generate a magnetic field in a plane extending along the axial direction of the rotating shaft (rotating shaft portion), thereby making the rotating shaft non-contact in the radial direction by magnetic attraction. It is configured to support.
  • a permanent magnet is arranged so as to intersect with a magnetic circuit constituted by a magnetic field generated from an electromagnet.
  • the permanent magnet is disposed so as to intersect the magnetic circuit constituted by the magnetic field generated from the electromagnet, so that the magnetic field generated from the electromagnet is permanent.
  • the permanent magnet may be applied in a direction opposite to the magnetized direction of the magnet. For this reason, there is a problem that irreversible demagnetization of the permanent magnet is likely to occur.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a magnetic bearing capable of suppressing the occurrence of irreversible demagnetization of a permanent magnet. That is.
  • a magnetic bearing includes an electromagnet including an electromagnet core and a coil, and a permanent magnet that is attached to the electromagnet core and supports the rotating shaft portion in a non-contact manner together with the electromagnet by magnetic attraction.
  • the electromagnet core has a magnetoresistive change portion arranged in a path through which the magnetic field generated from the coil of the electromagnet passes, and the permanent magnet passes the magnetoresistive change portion generated by the permanent magnet.
  • the electromagnet core is disposed at a portion corresponding to the magnetoresistance change portion.
  • the electromagnet core is provided with the magnetoresistance change portion arranged in the path through which the magnetic field generated from the electromagnet coil passes, and the magnetic field generated from the permanent magnet is magnetic.
  • the permanent magnet is disposed in a portion corresponding to the magnetoresistance change portion of the electromagnet core so as not to pass through the resistance change portion. Accordingly, the magnetic field generated from the coil passes through the magnetoresistive change portion without passing through the permanent magnet to form a magnetic circuit, so that the magnetic circuit formed by the magnetic field generated from the coil intersects with the permanent magnet. There is nothing. As a result, since the magnetic field generated from the coil is not applied to the permanent magnet in the direction opposite to the magnetization direction of the permanent magnet, the occurrence of irreversible demagnetization of the permanent magnet can be suppressed.
  • a pair of magnetic bearings 10 are provided on both sides in the axial direction (axial direction: direction in which the rotating shaft 21 extends) of the motor 20 having the rotating shaft 21.
  • Each of the pair of magnetic bearings 10 is along a straight line extending radially from the rotation center O of the rotation shaft 21 (see FIG. 2) in the radial direction (radial direction: plane orthogonal to the rotation shaft 21) with respect to the rotation shaft 21. ) In a predetermined direction (a gap 30 having a gap length L1 (see FIG. 3)).
  • the rotating shaft 21 is an example of the “rotating shaft portion” in the present invention.
  • the magnetic bearing 10 includes an electromagnet 11 and a permanent magnet 12. Both the electromagnet 11 and the permanent magnet 12 generate a magnetic field (see the one-dot chain line and the two-dot chain line in FIG. 3) in a plane orthogonal to the rotation shaft 21 and extending in the radial direction (radial direction).
  • the rotary shaft 21 is configured to be supported in a non-contact manner in the radial direction by force.
  • the electromagnet 11 includes an electromagnet core 13 made of a plurality of electromagnetic steel plates (see FIG. 1) stacked in the axial direction (axial direction), and a coil 14 wound around a first portion 16a (to be described later) of the electromagnet core 13. It is comprised so that it may contain.
  • the permanent magnet 12 is composed of a rare earth magnet or a ferrite magnet.
  • the permanent magnet 12 does not require a current to flow in order to generate a magnetic field. Therefore, in the first embodiment in which the rotating shaft 21 is supported using both the electromagnet 11 and the permanent magnet 12, the power consumption can be reduced unlike the case where the rotating shaft 21 is supported using only the electromagnet 11. It is.
  • the electromagnet core 13 surrounds the outer peripheral surface of the rotating shaft 21 in a circumferential shape and is arranged in four substantially U-shapes arranged adjacent to each other in the circumferential direction (the rotating direction of the rotating shaft 21).
  • the part 15 is comprised. These four substantially U-shaped portions 15 are arranged so as to sandwich the rotating shaft 21 from both sides in the vertical direction and the horizontal direction. That is, a pair of substantially U-shaped portions 15 are provided on both sides of the rotating shaft 21 in the vertical direction, and a pair is also provided on both sides of the rotating shaft 21 in the left-right direction.
  • each of the four substantially U-shaped portions 15 constituting the electromagnet core 13 has a gap length L2 of about several hundred ⁇ m (see FIG. 3).
  • a void 40 is provided.
  • the permanent magnet 12 is arrange
  • FIG. The air gap 40 is an example of the “magnetic resistance changing portion” in the present invention.
  • the gap 40 is provided in the vicinity of the central portion of the substantially U-shaped portion 15 in the circumferential direction so as to separate the substantially U-shaped portion 15 in the circumferential direction.
  • the gap 40 is in a direction orthogonal to the direction in which the magnetic field generated from the coil 14 (see the dashed line in FIG. 3) passes through the gap 40 in the vicinity of the central portion in the circumferential direction of the substantially U-shaped portion 15. It is formed so as to extend along (radial direction).
  • the substantially U-shaped portion 15 is completely separated into a pair of substantially L-shaped portions 16 that face each other with the gap 40 therebetween.
  • the end faces facing each other through the gap 40 of the pair of substantially L-shaped portions 16 are formed in parallel to each other. That is, the air gap 40 extends along the radial direction so that the gap length L2 (see FIG. 3) is equal between the rotating shaft 21 side and the permanent magnet 12 side.
  • the substantially L-shaped portion 16 is an example of the “core portion” in the present invention.
  • the pair of substantially L-shaped portions 16 are disposed so as to face each other with the gap 40 interposed therebetween.
  • the pair of substantially L-shaped portions 16 includes a first portion 16a extending along the radial direction and a gap 40 along the circumferential direction from the end of the first portion 16a opposite to the rotating shaft 21. And a second portion 16b extending to the side.
  • the coil 14 is wound around the first portion 16a.
  • the flat surface 16c is provided in the surface on the opposite side to the rotating shaft 21 of the 2nd part 16b.
  • the plate-shaped permanent magnet 12 which has thickness t1 (refer FIG. 3) is arrange
  • the permanent magnet 12 is disposed across two flat surfaces 16 c of a pair of substantially L-shaped portions 16 constituting the substantially U-shaped portion 15 of the electromagnet core 13. Further, the vicinity of the surface 12a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 12 is magnetized so as to have different polarities (N polarity or S polarity) on one side and the other side. Further, the vicinity of the surface 12b of the permanent magnet 12 on the side opposite to the pair of substantially L-shaped portions 16 has a polarity opposite to the vicinity of the surface 12a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 12. Is so magnetized.
  • the left region has S polarity and the right region has N polarity. Is so magnetized.
  • the region in the vicinity of the surface 12b opposite to the substantially L-shaped portion 16 of the permanent magnet 12 is magnetized so that the left region has N polarity and the right region has S polarity.
  • the surface 12 b of the permanent magnet 12 opposite to the substantially L-shaped portion 16 is covered with a block-like or plate-like yoke 17.
  • the yoke 17 is formed in a plate shape having a thickness t2 (see FIG. 3) smaller than the thickness t1 (see FIG. 3) of the permanent magnet 12. Further, the yoke 17 and the permanent magnet 12 are bonded by an adhesive or the like.
  • the gap length L ⁇ b> 2 of the air gap 40 is set to be smaller than the thickness t ⁇ b> 1 of the permanent magnet 12.
  • the magnetic field generated from the coil 14 passes through the gap 40 without passing through the permanent magnet 12 and forms a magnetic circuit. That is, in general, the permeability of air constituting the gap 40 is substantially equal to the permeability of the permanent magnet 12 made of a rare earth magnet, a ferrite magnet, or the like, and therefore the gap length L2 of the gap 40 is smaller than the thickness t1 of the permanent magnet 12.
  • the magnetic resistance of the air gap 40 becomes smaller than the magnetic resistance of the permanent magnet 12.
  • the gap length L2 of the gap 40 is set such that the magnetic field generated from the coil 14 (see the one-dot chain line in FIG. 3) and the magnetic field generated from the permanent magnet 12 (two in FIG. 3). It is set to be larger than the total (2 ⁇ L1) of the gap lengths L1 of the two gaps 30 through which the dotted line (see FIG. 2) passes. Thereby, the magnetic field generated from the permanent magnet 12 passes through the air gap 30 without passing through the air gap 40 to form a magnetic circuit.
  • the air gap 40 and the air gap 30 are composed of air having the same magnetic permeability, if the gap length L2 of the air gap 40 is set to be larger than twice the gap length L1 of the air gap 30, the air gap 40 The magnetic resistance is larger than the total magnetic resistance of the two gaps 30.
  • the magnetic field generated from the coil 14 passes through the rotating shaft 21 and the magnetic field generated from the permanent magnet 12 (FIG. 3).
  • the regions where the two-dot chain line) passes through the rotation shaft 21 are substantially coincident with each other.
  • the gap 40 disposed in the path through which the magnetic field generated from the coil 14 of the electromagnet 11 (see the alternate long and short dash line in FIG. 3) passes is provided in the electromagnet core 13.
  • the permanent magnet 12 is disposed in a portion corresponding to the gap 40 of the electromagnet core 13 so that the generated magnetic field (see the two-dot chain line in FIG. 3) does not pass through the gap 40.
  • the magnetic field generated from the coil 14 passes through the gap 40 without passing through the permanent magnet 12 to form a magnetic circuit, so that the magnetic circuit formed by the magnetic field generated from the coil 14 is combined with the permanent magnet 12.
  • the magnetic field generated from the coil 14 is not applied to the permanent magnet 12 in the direction opposite to the magnetization direction of the permanent magnet 12, the occurrence of irreversible demagnetization of the permanent magnet 12 can be suppressed. it can.
  • the air gap 40 is configured to have a magnetic resistance smaller than the magnetic resistance of the permanent magnet 12.
  • the gap 40 is formed so as to have a gap length L1 (see FIG. 3) smaller than the thickness t1 (see FIG. 3) of the permanent magnet 12. Thereby, the magnetic resistance of the air gap 40 can be easily made smaller than the magnetic resistance of the permanent magnet 12.
  • the void 40 is formed so as to have (see FIG. 3).
  • the substantially U-shaped part 15 of the electromagnet core 13 may be isolate
  • the air gap 40 is formed so as to extend along the direction (radial direction) intersecting the magnetic field (see the dashed line in FIG. 3).
  • the pair of substantially L-shaped portions 16 facing each other through the gap 40 are connected in part, magnetic flux leakage of the permanent magnet 12 occurs through the connected portions. The amount of magnetic flux passing through the gap 30 from the permanent magnet 12 is reduced.
  • the substantially U-shaped portion 15 is completely separated into the pair of substantially L-shaped portions 16 by the gap 40, the magnetic flux leakage of the permanent magnet 12 occurs. Since it can suppress, it can suppress that the quantity of the magnetic flux which passes the space
  • the permanent magnet 12 is disposed across the pair of substantially L-shaped portions 16. Thereby, since a pair of substantially L-shaped part 16 separated completely is joined via permanent magnet 12, intensity of electromagnet core 13 containing a pair of approximately L-shaped part 16 can be raised. .
  • the vicinity of the surface 12a of the permanent magnet 12 on the side of the pair of substantially L-shaped portions 16 is divided between one side and the other side of the pair of substantially L-shaped portions 16.
  • the magnets are magnetized so as to have different polarities (N polarity or S polarity), and a pair of substantially L of the permanent magnet 12 is disposed in the vicinity of the surface 12b opposite to the pair of substantially L-shaped portions 16 of the permanent magnet 12. Magnetization is performed so as to have a polarity opposite to the vicinity of the surface 12a on the side of the letter-shaped portion 16 side.
  • the magnetic field entering and exiting the surface 12a of the permanent magnet 12 on the side of the pair of substantially L-shaped portions 16 and the surface 12b on the opposite side of the pair of substantially L-shaped portions 16 of the permanent magnet 12 can be obtained.
  • the entrance / exit directions can be easily changed between one side and the other side of the pair of substantially L-shaped portions 16.
  • the magnetic field generated by the permanent magnet 12 (see the two-dot chain line in FIG. 3) can be smoothly flowed from one side to the other side of the pair of substantially L-shaped portions 16 or from the other side to the one side. it can.
  • the yoke 17 that covers the surface of the permanent magnet 12 opposite to the pair of substantially L-shaped portions 16 is provided. Accordingly, the magnetic field generated from the surface of the permanent magnet 12 on the side opposite to the pair of substantially L-shaped portions 16 can be prevented from leaking into the air by the yoke 17.
  • the magnetic field generated from the coil 14 of the electromagnet 11 passes through the rotating shaft 21 and the magnetic field generated from the permanent magnet 12 (FIG. 3).
  • the magnetic bearing 10 is configured so that the regions passing through the rotating shaft 21 substantially coincide with each other. Thereby, since the area
  • the flat surface 16c is provided on the surface of the portion corresponding to the gap 40 of the electromagnet core 13, and the permanent magnet 12 is disposed on the flat surface 16c.
  • the permanent magnet 12 can be attached to the electromagnet core 13 in a stable state by the flat surface 16c.
  • the electromagnet core 13 having the gap 40 is arranged so as to surround the outer peripheral surface of the rotating shaft 21, and the electromagnet 11 and the permanent magnet 12 intersect the rotating shaft 21.
  • the rotating shaft 21 is supported in the radial direction in a non-contact manner by a magnetic attractive force.
  • a magnetic attractive force in order to prevent the rotating shaft from being deformed by the magnetic attractive force of the electromagnet and the permanent magnet, the axial length of the portion of the rotating shaft that is supported in a non-contact manner by the electromagnet and the permanent magnet.
  • the electromagnet 11 and the permanent magnet 12 are configured so as to generate a magnetic field in a plane intersecting the rotation axis 21 (in a plane orthogonal to the axial direction).
  • the rotation shaft is supported by the electromagnet 11 and the permanent magnet 12 in a non-contact manner.
  • the length in the axial direction of the portion 21 (the length in the axial direction of the region of the rotating shaft 21 through which the magnetic field generated from the electromagnet 11 and the permanent magnet 12 passes) can be shortened. Thereby, it can suppress that the rotating shaft 21 deform
  • the pair of substantially L-shaped portions 16 having the first portions 16 a extending in the radial direction are arranged to face each other with the gap 40 therebetween.
  • the electromagnet core 13 is configured so as to include the substantially U-shaped portion 15.
  • a pair of substantially U-shaped portions 15 are provided so as to sandwich the rotating shaft 21 from both sides in the radial direction.
  • the magnetic bearing 110 by 2nd Embodiment of this invention is demonstrated.
  • the electromagnet core 113 includes four substantially T-shaped portions 115, unlike the first embodiment in which the electromagnet core 13 includes four approximately U-shaped portions 15.
  • the electromagnet core 113 is composed of four substantially T-shaped portions 115 arranged so as to surround the outer peripheral surface of the rotating shaft 21 in a circumferential shape. These four substantially T-shaped portions 115 are arranged so as to be adjacent to each other along the circumferential direction via the gap 40a.
  • bonded along the circumferential direction (The several substantially T-shaped part adjacent along the circumferential direction) Conventionally, an electromagnet core having no gap between them has been generally used.
  • each of the four substantially T-shaped portions 115 extends to both sides in the circumferential direction from a first portion 115a extending along the radial direction and an end portion of the first portion 115a opposite to the rotating shaft 21. And a second portion 115b.
  • the coil 14 is wound around the first portion 115a.
  • a flat surface 115c is provided on the surface of the second portion 115b opposite to the rotation shaft 21.
  • the permanent magnet 12 is arrange
  • FIG. A yoke 17 is bonded to the surface 12 b of the permanent magnet 12 on the side opposite to the substantially T-shaped portion 115.
  • the magnetic field (refer the dashed-dotted line of FIG. 4) which generate
  • the magnetic circuit is configured to pass through 30a (the space between the second portion 115b and the rotary shaft 21), the gap 40, and the rotary shaft 21. Further, the magnetic field generated by the permanent magnet 12 (see the two-dot chain line in FIG. 4) passes through the first portion 115a and the second portion 115b, the gap 30a, and the rotating shaft 21 adjacent in the circumferential direction without passing through the gap 40a. Pass through to form a magnetic circuit.
  • the gap length L2a of the gap 40a provided in the electromagnet core 113 is smaller than the thickness t1 (see FIG. 4) of the permanent magnet 12, and the electromagnet It is set larger than the total (2 ⁇ L1a) of the gap length L1a (see FIG. 4) of the two gaps 30a between the core 113 and the rotating shaft 21.
  • the electromagnet core 113 is separated from the first portion 115a extending along the radial direction and the end of the first portion 115a extending along the radial direction on the side opposite to the rotating shaft 21.
  • a substantially T-shaped portion 115 having second portions 115b extending on both sides in the circumferential direction is included.
  • four substantially T-shaped portions 115 are provided so as to be adjacent to each other along the circumferential direction via the gap 40.
  • an electromagnet core that has been generally used conventionally an electromagnet core that is configured by integrally joining a plurality of electromagnet cores having a substantially T-shape along the circumferential direction (along the circumferential direction).
  • an electromagnet core 113 capable of supporting the above can be configured.
  • a mold resin may be used as the magnetoresistance change portion. That is, the air gaps of the first and second embodiments may be filled with a mold resin having a magnetic resistance smaller than that of the permanent magnet. In this case, if the magnetic path length of the mold resin is smaller than the thickness of the permanent magnet and larger than the gap length of the gap between the electromagnet core and the rotating shaft, the magnetic resistance of the mold resin can be easily increased. It can be made smaller than the magnetic resistance of the permanent magnet.
  • gap of an electromagnet core is shown.
  • the present invention is not limited to this. In this invention, you may arrange
  • the gap length L2 of the air gap 40 is equal on the rotating shaft 21 side and the permanent magnet 12 side.
  • the present invention is not limited to this.
  • the gap length of the air gap 41 may be different between the rotating shaft 21 side and the permanent magnet 12 side.
  • the air gap 41 is an example of the “magnetic resistance changing portion” in the present invention.
  • the gap 41 is formed so that the gap length gradually increases from the rotating shaft 21 side toward the permanent magnet 12 side. That is, the end surfaces of the pair of substantially L-shaped portions 216 facing each other through the gap 41 are formed so as to be gradually separated from the rotating shaft 21 side toward the permanent magnet 12 side.
  • the average gap length L3 of the air gap 41 (the average of the gap length L4 at the end portion on the rotating shaft 21 side and the gap length L5 at the end portion on the permanent magnet 12 side) is The thickness is set to be smaller than the thickness t1 and larger than the total (2 ⁇ L1) of the gap length L1 of the two gaps 30 between the electromagnet core 213 and the rotating shaft 21.
  • the substantially L-shaped portion 216 is an example of the “core portion” in the present invention.
  • the gap length L5 of the end portion of the air gap 41 on the permanent magnet 12 side is larger than the gap length L4 of the end portion on the rotating shaft 21 side, so that the magnetic field generated from the permanent magnet 12 is Further, it is possible to further suppress leakage through the portion of the air gap 41 on the permanent magnet 12 side without passing through the air gap 30.
  • the present invention is not limited to this.
  • the electromagnet cores 313a, 313b, and 313c are connected by the thin portions 18a, 18b, and 18c.
  • Such voids 42a, 42b and 42c may be provided.
  • the air gaps 42a to 42c are examples of the “magnetic resistance changing portion” in the present invention.
  • the opposed end surfaces of the pair of substantially L-shaped portions 316a opposed via the gap 42a are connected to each other by the narrow portion 18a at the end on the permanent magnet 12 side. ing.
  • the opposing end surfaces of the pair of substantially L-shaped portions 316 b that are opposed to each other through the gap 42 b are mutually connected by the narrow portion 18 b at the end on the rotating shaft 21 side. It is connected.
  • the opposing end surfaces of the pair of substantially L-shaped portions 316 c that are opposed via the gap 42 c are the end portions on the permanent magnet 12 side and the rotating shaft 21 side.
  • the thickness of the thin portions 18a, 18b, and 18c is used in order to suppress the magnetic flux leakage of the permanent magnet 12 through the thin portions 18a, 18b, and 18c. It is preferable that t3 (see FIG. 6), t4 (see FIG. 7), and t5 (see FIG. 8) be thinned to the processing limit of the steel plate.
  • the substantially L-shaped portions 316a to 316c are examples of the “core portion” in the present invention.
  • the gaps 42a to 42c are provided so that the electromagnet cores 313a to 313c are connected by the thin portions 18a to 18c.
  • the pair of substantially L-shaped portions 316a to 316c constituting the electromagnet cores 313a to 313c are integrally connected to each other by the thin portions 18a to 18c.
  • Electromagnet cores 313a to 313c can be manufactured as parts, and the number of parts can be reduced.
  • the surface 12a vicinity of the pair of substantially L-shaped part 16 side of the permanent magnet 12, and a pair of substantially L-shaped part 16 of the permanent magnet 12 Shows an example in which both the vicinity of the surface 12b on the opposite side is magnetized so as to have N polarity or S polarity, but the present invention is not limited to this.
  • the present invention as in the fifth modification shown in FIG. 9, only the vicinity of the surface 112 a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 112 is arranged on one side of the pair of substantially L-shaped portions 16. And the other side may be magnetized so as to have different polarities (N polarity and S polarity).
  • the permanent magnet 112 is disposed over the flat surface 16 c provided in the pair of substantially L-shaped portions 16.
  • the vicinity of the surface 112a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 112 is magnetized so as to have S polarity in the left region of FIG. 9, and N polarity in the right region of FIG. It is magnetized to have
  • the yoke 17 and the pair of substantially L-shaped part 16 were shown as another components, this invention is shown to this. Not exclusively.
  • the yoke 417 and the pair of substantially L-shaped portions 416 may be provided as an integral part.
  • both end portions of the yoke 417 of the electromagnet core 413 in the left-right direction and the pair of substantially L-shaped portions 416 of the electromagnet core 413 are formed by the thin-walled connecting portion 19. Are connected to each other.
  • the connecting portion 19 is provided so as to cover both end surfaces of the permanent magnet 12 in the left-right direction.
  • the thickness t6 (see FIG. 10) of the connecting portion 19 is reduced to the processing limit of the steel plate. It is preferable to do this.
  • the substantially L-shaped portion 416 is an example of the “core portion” in the present invention.
  • the yoke 417 and the pair of substantially L-shaped portions 416 of the electromagnet core 413 are connected to each other by the thin connecting portion 19.
  • the yoke 417 and the pair of substantially L-shaped portions 416 can be manufactured as an integral part that can be easily manufactured by processing a steel plate, and the number of parts can be reduced.
  • the permanent magnet 212a is disposed on the flat surface 16c of the substantially L-shaped portion 16 disposed on the left side of FIG.
  • the permanent magnet 212a is magnetized so that the vicinity of the surface on the substantially L-shaped portion 16 side has S polarity, and is magnetized so that the vicinity of the surface on the yoke 17 side has N polarity.
  • the permanent magnet 212b is disposed on the flat surface 16c of the substantially L-shaped portion 16 disposed on the right side of FIG.
  • the permanent magnet 212b is magnetized so that the vicinity of the surface on the substantially L-shaped portion 16 side has N polarity, and the vicinity of the surface on the yoke 17 side is magnetized so as to have S polarity.
  • a pair of magnetic bearings 510 including an electromagnet 511 including an electromagnet core 513 and a coil 514 and a permanent magnet 512 are provided on both sides in the radial direction of the rotary shaft 21.
  • Each of the pair of magnetic bearings 510 is provided so as to sandwich the plate-like member 22 that intersects the rotating shaft 21 from both sides in the axial direction.
  • both the electromagnet 511 and the permanent magnet 512 are rotated by a magnetic attractive force by generating a magnetic field (refer to a one-dot chain line and a two-dot chain line in FIG. 12) in a plane along the rotation axis 21.
  • the shaft 21 is configured to be supported in a non-contact manner in the axial direction.
  • the plate-like member 22 is an example of the “rotary shaft portion” in the present invention.
  • the electromagnet core 513 of the electromagnet 111 is provided with a gap 40b through which a magnetic field generated from the coil 514 of the electromagnet 511 (see the dashed line in FIG. 12) passes.
  • the permanent magnet 512 is arrange
  • a yoke 517 is provided on the surface of the permanent magnet 512 opposite to the electromagnet core 513.
  • the air gap 40b is an example of the “magnetic resistance changing portion” in the present invention.
  • the gap length L2b of the gap 40b provided in the electromagnet core 513 is smaller than the thickness t7 (see FIG. 12) of the permanent magnet 512, and the electromagnet
  • the gap length L1b (see FIG. 12) of the two gaps 30b between the core 513 and the rotating shaft 21 is set to be larger than the sum (2 ⁇ L1b).

Abstract

This magnetic bearing (10) is provided with electromagnets (11) which include electromagnet cores (13) and coils (14) and permanent magnets (12) which, together with the electromagnets, support without contact a rotating shaft portion (21) by a magnetic attraction force. The electromagnet cores have magnetic resistance change sections (40) disposed in paths through which magnetic fields generated from the coils of the electromagnets pass. The permanent magnets are disposed at portions corresponding to the magnetic resistance change sections of the electromagnet cores. This is in order to prevent magnetic fields generated from the permanent magnets from passing through the magnetic resistance change sections.

Description

磁気軸受Magnetic bearing
 この発明は、磁気軸受に関し、特に、電磁石と永久磁石とを備えた磁気軸受に関する。 The present invention relates to a magnetic bearing, and more particularly, to a magnetic bearing provided with an electromagnet and a permanent magnet.
 従来、電磁石と永久磁石とを備えた磁気軸受が知られている。このような磁気軸受は、たとえば、特開平11-101235号公報に開示されている。 Conventionally, a magnetic bearing provided with an electromagnet and a permanent magnet is known. Such a magnetic bearing is disclosed, for example, in JP-A-11-101235.
 上記特開平11-101235号公報には、励磁コイルが巻回された電磁鋼板積層体(電磁石コア)からなる電磁石と、電磁鋼板積層体に取り付けられた永久磁石とを備えた磁気軸受が開示されている。この磁気軸受では、電磁石および永久磁石は、共に、回転シャフト(回転軸部分)の軸線方向に沿って延びる面内で磁界を発生させることによって、磁気吸引力により回転シャフトを半径方向に非接触で支持するように構成されている。また、この磁気軸受では、電磁石から発生する磁界によって構成される磁気回路と交差するように永久磁石が配置されている。 Japanese Patent Application Laid-Open No. 11-101235 discloses a magnetic bearing including an electromagnet made of an electromagnetic steel sheet laminate (electromagnet core) around which an exciting coil is wound, and a permanent magnet attached to the electromagnetic steel sheet laminate. ing. In this magnetic bearing, both the electromagnet and the permanent magnet generate a magnetic field in a plane extending along the axial direction of the rotating shaft (rotating shaft portion), thereby making the rotating shaft non-contact in the radial direction by magnetic attraction. It is configured to support. In this magnetic bearing, a permanent magnet is arranged so as to intersect with a magnetic circuit constituted by a magnetic field generated from an electromagnet.
特開平11-101235号公報JP-A-11-101235
 しかしながら、上記特開平11-101235号公報に開示された磁気軸受では、電磁石から発生する磁界によって構成される磁気回路と交差するように永久磁石が配置されているため、電磁石から発生する磁界が永久磁石の着磁方向とは逆方向に永久磁石に印加される場合がある。このため、永久磁石の不可逆減磁が発生しやすいという問題点がある。 However, in the magnetic bearing disclosed in Japanese Patent Application Laid-Open No. 11-101235, the permanent magnet is disposed so as to intersect the magnetic circuit constituted by the magnetic field generated from the electromagnet, so that the magnetic field generated from the electromagnet is permanent. The permanent magnet may be applied in a direction opposite to the magnetized direction of the magnet. For this reason, there is a problem that irreversible demagnetization of the permanent magnet is likely to occur.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、永久磁石の不可逆減磁が発生するのを抑制することが可能な磁気軸受を提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is to provide a magnetic bearing capable of suppressing the occurrence of irreversible demagnetization of a permanent magnet. That is.
 上記目的を達成するために、この発明の一の局面による磁気軸受は、電磁石コアおよびコイルを含む電磁石と、電磁石コアに取り付けられ、電磁石と共に磁気吸引力により回転軸部分を非接触で支持する永久磁石とを備え、電磁石コアは、電磁石のコイルから発生する磁界が通過する経路中に配置される磁気抵抗変化部を有し、永久磁石は、永久磁石から発生する磁界が磁気抵抗変化部を通過しないように、電磁石コアの磁気抵抗変化部に対応する部分に配置されている。 In order to achieve the above object, a magnetic bearing according to one aspect of the present invention includes an electromagnet including an electromagnet core and a coil, and a permanent magnet that is attached to the electromagnet core and supports the rotating shaft portion in a non-contact manner together with the electromagnet by magnetic attraction. The electromagnet core has a magnetoresistive change portion arranged in a path through which the magnetic field generated from the coil of the electromagnet passes, and the permanent magnet passes the magnetoresistive change portion generated by the permanent magnet. In order to avoid this, the electromagnet core is disposed at a portion corresponding to the magnetoresistance change portion.
 この発明の一の局面による磁気軸受では、上記のように、電磁石のコイルから発生する磁界が通過する経路中に配置される磁気抵抗変化部を電磁石コアに設け、永久磁石から発生する磁界が磁気抵抗変化部を通過しないように、永久磁石を電磁石コアの磁気抵抗変化部に対応する部分に配置する。これにより、コイルから発生する磁界は、永久磁石を通過することなく、磁気抵抗変化部を通過して磁気回路を構成するので、コイルから発生する磁界によって構成される磁気回路が永久磁石と交差することがない。その結果、コイルから発生する磁界が永久磁石の着磁方向とは逆方向に永久磁石に印加されることがないので、永久磁石の不可逆減磁が発生するのを抑制することができる。 In the magnetic bearing according to one aspect of the present invention, as described above, the electromagnet core is provided with the magnetoresistance change portion arranged in the path through which the magnetic field generated from the electromagnet coil passes, and the magnetic field generated from the permanent magnet is magnetic. The permanent magnet is disposed in a portion corresponding to the magnetoresistance change portion of the electromagnet core so as not to pass through the resistance change portion. Accordingly, the magnetic field generated from the coil passes through the magnetoresistive change portion without passing through the permanent magnet to form a magnetic circuit, so that the magnetic circuit formed by the magnetic field generated from the coil intersects with the permanent magnet. There is nothing. As a result, since the magnetic field generated from the coil is not applied to the permanent magnet in the direction opposite to the magnetization direction of the permanent magnet, the occurrence of irreversible demagnetization of the permanent magnet can be suppressed.
本発明の第1実施形態による磁気軸受のアキシャル方向に沿った模式的な断面図である。It is typical sectional drawing along the axial direction of the magnetic bearing by 1st Embodiment of this invention. 本発明の第1実施形態による磁気軸受の全体構成を示した図である。It is the figure which showed the whole structure of the magnetic bearing by 1st Embodiment of this invention. 本発明の第1実施形態による磁気軸受の電磁石および永久磁石から発生する磁界の流れを説明するための部分拡大図である。It is the elements on larger scale for demonstrating the flow of the magnetic field generated from the electromagnet and permanent magnet of the magnetic bearing by 1st Embodiment of this invention. 本発明の第2実施形態による磁気軸受の全体構成を示した図である。It is the figure which showed the whole structure of the magnetic bearing by 2nd Embodiment of this invention. 本発明の第1実施形態の第1変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 1st modification of 1st Embodiment of this invention. 本発明の第1実施形態の第2変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第3変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 3rd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第4変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 4th modification of 1st Embodiment of this invention. 本発明の第1実施形態の第5変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 5th modification of 1st Embodiment of this invention. 本発明の第1実施形態の第6変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 6th modification of 1st Embodiment of this invention. 本発明の第1実施形態の第7変形例による磁気軸受の構成を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the structure of the magnetic bearing by the 7th modification of 1st Embodiment of this invention. 本発明の第1実施形態の第8変形例による磁気軸受のアキシャル方向に沿った模式的な断面図である。It is typical sectional drawing along the axial direction of the magnetic bearing by the 8th modification of 1st Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 まず、図1~図3を参照して、本発明の第1実施形態による磁気軸受10の構成について説明する。
(First embodiment)
First, the configuration of the magnetic bearing 10 according to the first embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、磁気軸受10は、回転軸21を有するモータ20の軸線方向(アキシャル方向:回転軸21の延びる方向)の両側に一対設けられている。これら一対の磁気軸受10は、それぞれ、回転軸21に対して半径方向(ラジアル方向:回転軸21に直交する面内で回転軸21の回転中心O(図2参照)から放射状に延びる直線に沿った方向)に所定の空間(ギャップ長L1(図3参照)を有する空隙30)を隔てて配置されている。なお、回転軸21は、本発明の「回転軸部分」の一例である。 As shown in FIG. 1, a pair of magnetic bearings 10 are provided on both sides in the axial direction (axial direction: direction in which the rotating shaft 21 extends) of the motor 20 having the rotating shaft 21. Each of the pair of magnetic bearings 10 is along a straight line extending radially from the rotation center O of the rotation shaft 21 (see FIG. 2) in the radial direction (radial direction: plane orthogonal to the rotation shaft 21) with respect to the rotation shaft 21. ) In a predetermined direction (a gap 30 having a gap length L1 (see FIG. 3)). The rotating shaft 21 is an example of the “rotating shaft portion” in the present invention.
 また、図2に示すように、磁気軸受10は、電磁石11と、永久磁石12とを備えている。これら電磁石11および永久磁石12は、共に、回転軸21に直交するとともにラジアル方向(半径方向)に延びる面内で磁界(図3の一点鎖線および二点鎖線参照)を発生させることによって、磁気吸引力により回転軸21をラジアル方向に非接触で支持するように構成されている。なお、電磁石11は、アキシャル方向(軸線方向)に積層された複数の電磁鋼板(図1参照)からなる電磁石コア13と、電磁石コア13の後述する第1部分16aに巻回されたコイル14とを含むように構成されている。また、永久磁石12は、希土類磁石やフェライト磁石などにより構成されている。ここで、永久磁石12は、電磁石11と異なり、磁界を発生させるために電流を流す必要がない。このため、電磁石11および永久磁石12の両方を用いて回転軸21を支持する第1実施形態では、電磁石11のみを用いて回転軸21を支持する場合と異なり、電力消費を低減することが可能である。 Further, as shown in FIG. 2, the magnetic bearing 10 includes an electromagnet 11 and a permanent magnet 12. Both the electromagnet 11 and the permanent magnet 12 generate a magnetic field (see the one-dot chain line and the two-dot chain line in FIG. 3) in a plane orthogonal to the rotation shaft 21 and extending in the radial direction (radial direction). The rotary shaft 21 is configured to be supported in a non-contact manner in the radial direction by force. The electromagnet 11 includes an electromagnet core 13 made of a plurality of electromagnetic steel plates (see FIG. 1) stacked in the axial direction (axial direction), and a coil 14 wound around a first portion 16a (to be described later) of the electromagnet core 13. It is comprised so that it may contain. The permanent magnet 12 is composed of a rare earth magnet or a ferrite magnet. Here, unlike the electromagnet 11, the permanent magnet 12 does not require a current to flow in order to generate a magnetic field. Therefore, in the first embodiment in which the rotating shaft 21 is supported using both the electromagnet 11 and the permanent magnet 12, the power consumption can be reduced unlike the case where the rotating shaft 21 is supported using only the electromagnet 11. It is.
 図2に示すように、電磁石コア13は、回転軸21の外周面を周状に取り囲むとともに周方向(回転軸21の回転方向)に沿って隣接するように配置された4つの略U字形状の部分15により構成されている。これら4つの略U字形状の部分15は、回転軸21を上下方向および左右方向の両側から挟み込むように配置されている。すなわち、略U字形状の部分15は、回転軸21の上下方向の両側に一対設けられているとともに、回転軸21の左右方向の両側にも一対設けられている。 As shown in FIG. 2, the electromagnet core 13 surrounds the outer peripheral surface of the rotating shaft 21 in a circumferential shape and is arranged in four substantially U-shapes arranged adjacent to each other in the circumferential direction (the rotating direction of the rotating shaft 21). The part 15 is comprised. These four substantially U-shaped portions 15 are arranged so as to sandwich the rotating shaft 21 from both sides in the vertical direction and the horizontal direction. That is, a pair of substantially U-shaped portions 15 are provided on both sides of the rotating shaft 21 in the vertical direction, and a pair is also provided on both sides of the rotating shaft 21 in the left-right direction.
 ここで、第1実施形態では、図2に示すように、電磁石コア13を構成する4つの略U字形状の部分15には、それぞれ、数百μm程度のギャップ長L2(図3参照)を有する空隙40が設けられている。そして、これら4つの略U字形状の部分15の各々の空隙40に対応する部分に、永久磁石12が配置されている。なお、空隙40は、本発明の「磁気抵抗変化部」の一例である。 Here, in the first embodiment, as shown in FIG. 2, each of the four substantially U-shaped portions 15 constituting the electromagnet core 13 has a gap length L2 of about several hundred μm (see FIG. 3). A void 40 is provided. And the permanent magnet 12 is arrange | positioned in the part corresponding to each space | gap 40 of these four substantially U-shaped parts 15. FIG. The air gap 40 is an example of the “magnetic resistance changing portion” in the present invention.
 図2および図3に示すように、空隙40は、略U字形状の部分15を周方向に分離するように、略U字形状の部分15の周方向の中央部近傍に設けられている。具体的には、空隙40は、略U字形状の部分15の周方向の中央部近傍において、コイル14から発生する磁界(図3の一点鎖線参照)が空隙40を通過する方向と直交する方向(ラジアル方向)に沿って延びるように形成されている。これにより、略U字形状の部分15は、空隙40を介して対向する一対の略L字形状の部分16に完全に分離されている。ここで、一対の略L字形状の部分16の空隙40を介して対向する端面は、互いに平行に形成されている。すなわち、空隙40は、そのギャップ長L2(図3参照)が回転軸21側と永久磁石12側とで等しくなるようにラジアル方向に沿って延びている。なお、略L字形状の部分16は、本発明の「コア部分」の一例である。 As shown in FIGS. 2 and 3, the gap 40 is provided in the vicinity of the central portion of the substantially U-shaped portion 15 in the circumferential direction so as to separate the substantially U-shaped portion 15 in the circumferential direction. Specifically, the gap 40 is in a direction orthogonal to the direction in which the magnetic field generated from the coil 14 (see the dashed line in FIG. 3) passes through the gap 40 in the vicinity of the central portion in the circumferential direction of the substantially U-shaped portion 15. It is formed so as to extend along (radial direction). As a result, the substantially U-shaped portion 15 is completely separated into a pair of substantially L-shaped portions 16 that face each other with the gap 40 therebetween. Here, the end faces facing each other through the gap 40 of the pair of substantially L-shaped portions 16 are formed in parallel to each other. That is, the air gap 40 extends along the radial direction so that the gap length L2 (see FIG. 3) is equal between the rotating shaft 21 side and the permanent magnet 12 side. The substantially L-shaped portion 16 is an example of the “core portion” in the present invention.
 図2および図3に示すように、一対の略L字形状の部分16は、空隙40を介して互いに対向するように配置されている。また、一対の略L字形状の部分16は、それぞれ、ラジアル方向に沿って延びる第1部分16aと、第1部分16aの回転軸21とは反対側の端部から周方向に沿って空隙40側に延びる第2部分16bとを有している。なお、第1部分16aには、コイル14が巻回されている。また、第2部分16bの回転軸21とは反対側の表面には、平坦面16cが設けられている。そして、この平坦面16c上に、厚みt1(図3参照)を有する板状の永久磁石12が配置されている。 2 and 3, the pair of substantially L-shaped portions 16 are disposed so as to face each other with the gap 40 interposed therebetween. The pair of substantially L-shaped portions 16 includes a first portion 16a extending along the radial direction and a gap 40 along the circumferential direction from the end of the first portion 16a opposite to the rotating shaft 21. And a second portion 16b extending to the side. The coil 14 is wound around the first portion 16a. Moreover, the flat surface 16c is provided in the surface on the opposite side to the rotating shaft 21 of the 2nd part 16b. And the plate-shaped permanent magnet 12 which has thickness t1 (refer FIG. 3) is arrange | positioned on this flat surface 16c.
 図3に示すように、永久磁石12は、電磁石コア13の略U字形状の部分15を構成する一対の略L字形状の部分16の2つの平坦面16c上に跨って配置されている。また、永久磁石12の一対の略L字形状の部分16側の表面12a近傍は、一方側と他方側とで互いに異なる極性(N極性またはS極性)を有するように着磁されている。また、永久磁石12の一対の略L字形状の部分16とは反対側の表面12b近傍は、永久磁石12の一対の略L字形状の部分16側の表面12a近傍とは反対の極性を有するように着磁されている。 As shown in FIG. 3, the permanent magnet 12 is disposed across two flat surfaces 16 c of a pair of substantially L-shaped portions 16 constituting the substantially U-shaped portion 15 of the electromagnet core 13. Further, the vicinity of the surface 12a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 12 is magnetized so as to have different polarities (N polarity or S polarity) on one side and the other side. Further, the vicinity of the surface 12b of the permanent magnet 12 on the side opposite to the pair of substantially L-shaped portions 16 has a polarity opposite to the vicinity of the surface 12a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 12. Is so magnetized.
 具体的には、図3に示すように、永久磁石12の略L字形状の部分16側の表面12a近傍の領域は、左側の領域がS極性を有するとともに、右側の領域がN極性を有するように着磁されている。また、永久磁石12の略L字形状の部分16とは反対側の表面12b近傍の領域は、左側の領域がN極性を有するとともに、右側の領域がS極性を有するように着磁されている。なお、永久磁石12の略L字形状の部分16とは反対側の表面12bは、ブロック状または板状のヨーク17によって覆われている。このヨーク17は、永久磁石12の厚みt1(図3参照)よりも小さい厚みt2(図3参照)を有する板状に形成されている。また、ヨーク17と永久磁石12とは、接着剤などにより接着されている。 Specifically, as shown in FIG. 3, in the region near the surface 12a on the substantially L-shaped portion 16 side of the permanent magnet 12, the left region has S polarity and the right region has N polarity. Is so magnetized. Further, the region in the vicinity of the surface 12b opposite to the substantially L-shaped portion 16 of the permanent magnet 12 is magnetized so that the left region has N polarity and the right region has S polarity. . The surface 12 b of the permanent magnet 12 opposite to the substantially L-shaped portion 16 is covered with a block-like or plate-like yoke 17. The yoke 17 is formed in a plate shape having a thickness t2 (see FIG. 3) smaller than the thickness t1 (see FIG. 3) of the permanent magnet 12. Further, the yoke 17 and the permanent magnet 12 are bonded by an adhesive or the like.
 ここで、第1実施形態では、図3に示すように、空隙40のギャップ長L2は、永久磁石12の厚みt1よりも小さくなるように設定されている。これにより、コイル14から発生する磁界(図3の一点鎖線参照)は、永久磁石12を通過することなく、空隙40を通過して磁気回路を構成する。すなわち、一般に、空隙40を構成する空気の透磁率は、希土類磁石やフェライト磁石などからなる永久磁石12の透磁率と略等しいため、空隙40のギャップ長L2を永久磁石12の厚みt1よりも小さく設定すると、空隙40の磁気抵抗が永久磁石12の磁気抵抗よりも小さくなる。これにより、略L字形状の部分16の第1部分16aに巻回されたコイル14から発生した磁界が第1部分16aから第2部分16b側に流れる場合において、その磁界は、永久磁石12側に流れることなく、空隙40側に流れる。 Here, in the first embodiment, as shown in FIG. 3, the gap length L <b> 2 of the air gap 40 is set to be smaller than the thickness t <b> 1 of the permanent magnet 12. As a result, the magnetic field generated from the coil 14 (see the alternate long and short dash line in FIG. 3) passes through the gap 40 without passing through the permanent magnet 12 and forms a magnetic circuit. That is, in general, the permeability of air constituting the gap 40 is substantially equal to the permeability of the permanent magnet 12 made of a rare earth magnet, a ferrite magnet, or the like, and therefore the gap length L2 of the gap 40 is smaller than the thickness t1 of the permanent magnet 12. When set, the magnetic resistance of the air gap 40 becomes smaller than the magnetic resistance of the permanent magnet 12. Thereby, when the magnetic field generated from the coil 14 wound around the first portion 16a of the substantially L-shaped portion 16 flows from the first portion 16a to the second portion 16b side, the magnetic field is on the permanent magnet 12 side. Without flowing to the gap 40 side.
 また、第1実施形態では、図3に示すように、空隙40のギャップ長L2は、コイル14から発生する磁界(図3の一点鎖線参照)および永久磁石12から発生する磁界(図3の二点鎖線参照)が通過する2つの空隙30のギャップ長L1の合計(2×L1)よりも大きくなるように設定されている。これにより、永久磁石12から発生する磁界は、空隙40を通過することなく、空隙30を通過して磁気回路を構成する。すなわち、空隙40と空隙30とは、互いに等しい透磁率を有する空気により構成されているため、空隙40のギャップ長L2を、空隙30のギャップ長L1の2倍よりも大きく設定すると、空隙40の磁気抵抗が2箇所の空隙30の合計の磁気抵抗よりも大きくなる。これにより、永久磁石12から発生した磁界が略L字形状の部分16の第2部分16b側に流れる場合において、その磁界は、空隙40側に流れることなく、第1部分16aを介して空隙30側に流れる。 Further, in the first embodiment, as shown in FIG. 3, the gap length L2 of the gap 40 is set such that the magnetic field generated from the coil 14 (see the one-dot chain line in FIG. 3) and the magnetic field generated from the permanent magnet 12 (two in FIG. 3). It is set to be larger than the total (2 × L1) of the gap lengths L1 of the two gaps 30 through which the dotted line (see FIG. 2) passes. Thereby, the magnetic field generated from the permanent magnet 12 passes through the air gap 30 without passing through the air gap 40 to form a magnetic circuit. That is, since the air gap 40 and the air gap 30 are composed of air having the same magnetic permeability, if the gap length L2 of the air gap 40 is set to be larger than twice the gap length L1 of the air gap 30, the air gap 40 The magnetic resistance is larger than the total magnetic resistance of the two gaps 30. Thereby, when the magnetic field generated from the permanent magnet 12 flows to the second portion 16b side of the substantially L-shaped portion 16, the magnetic field does not flow to the gap 40 side and passes through the first portion 16a. Flows to the side.
 なお、第1実施形態では、図3に示すように、コイル14から発生する磁界(図3の一点鎖線参照)が回転軸21を通過する領域と、永久磁石12から発生する磁界(図3の二点鎖線参照)が回転軸21を通過する領域とは、互いに略一致している。 In the first embodiment, as shown in FIG. 3, the magnetic field generated from the coil 14 (see the alternate long and short dash line in FIG. 3) passes through the rotating shaft 21 and the magnetic field generated from the permanent magnet 12 (FIG. 3). The regions where the two-dot chain line) passes through the rotation shaft 21 are substantially coincident with each other.
 第1実施形態では、上記のように、電磁石11のコイル14から発生する磁界(図3の一点鎖線参照)が通過する経路中に配置される空隙40を電磁石コア13に設け、永久磁石12から発生する磁界(図3の二点鎖線参照)が空隙40を通過しないように、永久磁石12を電磁石コア13の空隙40に対応する部分に配置する。これにより、コイル14から発生する磁界は、永久磁石12を通過することなく、空隙40を通過して磁気回路を構成するので、コイル14から発生する磁界によって構成される磁気回路が永久磁石12と交差することがない。その結果、コイル14から発生する磁界が永久磁石12の着磁方向とは逆方向に永久磁石12に印加されることがないので、永久磁石12の不可逆減磁が発生するのを抑制することができる。 In the first embodiment, as described above, the gap 40 disposed in the path through which the magnetic field generated from the coil 14 of the electromagnet 11 (see the alternate long and short dash line in FIG. 3) passes is provided in the electromagnet core 13. The permanent magnet 12 is disposed in a portion corresponding to the gap 40 of the electromagnet core 13 so that the generated magnetic field (see the two-dot chain line in FIG. 3) does not pass through the gap 40. Thereby, the magnetic field generated from the coil 14 passes through the gap 40 without passing through the permanent magnet 12 to form a magnetic circuit, so that the magnetic circuit formed by the magnetic field generated from the coil 14 is combined with the permanent magnet 12. Never cross. As a result, since the magnetic field generated from the coil 14 is not applied to the permanent magnet 12 in the direction opposite to the magnetization direction of the permanent magnet 12, the occurrence of irreversible demagnetization of the permanent magnet 12 can be suppressed. it can.
 また、第1実施形態では、上記のように、永久磁石12の磁気抵抗よりも小さい磁気抵抗を有するように空隙40を構成する。これにより、容易に、電磁石11のコイル14から発生する磁界(図3の一点鎖線参照)を、永久磁石12側ではなく、空隙40側に流すことができる。 In the first embodiment, as described above, the air gap 40 is configured to have a magnetic resistance smaller than the magnetic resistance of the permanent magnet 12. Thereby, the magnetic field (refer to the one-dot chain line in FIG. 3) generated from the coil 14 of the electromagnet 11 can be easily flowed not to the permanent magnet 12 side but to the gap 40 side.
 また、第1実施形態では、上記のように、永久磁石12の厚みt1(図3参照)よりも小さいギャップ長L1(図3参照)を有するように空隙40を形成する。これにより、容易に、空隙40の磁気抵抗を永久磁石12の磁気抵抗よりも小さくすることができる。 In the first embodiment, as described above, the gap 40 is formed so as to have a gap length L1 (see FIG. 3) smaller than the thickness t1 (see FIG. 3) of the permanent magnet 12. Thereby, the magnetic resistance of the air gap 40 can be easily made smaller than the magnetic resistance of the permanent magnet 12.
 また、第1実施形態では、上記のように、電磁石コア13と回転軸21との間の空隙30のギャップ長L1(図3参照)の2倍(2×L1)よりも大きいギャップ長L2(図3参照)を有するように空隙40を形成する。これにより、空隙40の磁気抵抗を2箇所の空隙30の合計の磁気抵抗よりも大きくすることができるので、容易に、永久磁石12から発生する磁界(図3の二点鎖線参照)を、空隙40側ではなく、空隙30側に流すことができる。 In the first embodiment, as described above, a gap length L2 (2 × L1) larger than twice the gap length L1 (see FIG. 3) of the gap 30 between the electromagnet core 13 and the rotating shaft 21 (see FIG. 3). The void 40 is formed so as to have (see FIG. 3). Thereby, since the magnetic resistance of the air gap 40 can be made larger than the total magnetic resistance of the air gaps 30 at two locations, the magnetic field generated from the permanent magnet 12 (see the two-dot chain line in FIG. 3) can be easily generated. It can flow not to the 40 side but to the gap 30 side.
 また、第1実施形態では、上記のように、電磁石コア13の略U字形状の部分15を一対の略L字形状の部分16に完全に分離するように、電磁石11のコイル14から発生する磁界(図3の一点差線参照)と交差する方向(ラジアル方向)に沿って空隙40を延長形成する。ここで、空隙40を介して対向する一対の略L字形状の部分16が一部で連結されている場合には、その連結された部分を介して永久磁石12の磁束漏れが発生するため、永久磁石12から空隙30を通過する磁束の量が減少する。その一方、第1実施形態では、空隙40によって略U字形状の部分15が一対の略L字形状の部分16に完全に分離されていることにより、永久磁石12の磁束漏れが発生するのを抑制することができるので、永久磁石12から空隙30を通過する磁束の量が減少するのを抑制することができる。 Moreover, in 1st Embodiment, as mentioned above, it generate | occur | produces from the coil 14 of the electromagnet 11 so that the substantially U-shaped part 15 of the electromagnet core 13 may be isolate | separated into a pair of substantially L-shaped part 16 completely. The air gap 40 is formed so as to extend along the direction (radial direction) intersecting the magnetic field (see the dashed line in FIG. 3). Here, when the pair of substantially L-shaped portions 16 facing each other through the gap 40 are connected in part, magnetic flux leakage of the permanent magnet 12 occurs through the connected portions. The amount of magnetic flux passing through the gap 30 from the permanent magnet 12 is reduced. On the other hand, in the first embodiment, since the substantially U-shaped portion 15 is completely separated into the pair of substantially L-shaped portions 16 by the gap 40, the magnetic flux leakage of the permanent magnet 12 occurs. Since it can suppress, it can suppress that the quantity of the magnetic flux which passes the space | gap 30 from the permanent magnet 12 reduces.
 また、第1実施形態では、上記のように、永久磁石12を、一対の略L字形状の部分16に跨って配置する。これにより、完全に分離された一対の略L字形状の部分16が永久磁石12を介して結合されるので、一対の略L字形状の部分16を含む電磁石コア13の強度を高めることができる。 In the first embodiment, as described above, the permanent magnet 12 is disposed across the pair of substantially L-shaped portions 16. Thereby, since a pair of substantially L-shaped part 16 separated completely is joined via permanent magnet 12, intensity of electromagnet core 13 containing a pair of approximately L-shaped part 16 can be raised. .
 また、第1実施形態では、上記のように、永久磁石12の一対の略L字形状の部分16側の表面12a近傍を、一対の略L字形状の部分16の一方側と他方側とで互いに異なる極性(N極性またはS極性)を有するように着磁するとともに、永久磁石12の一対の略L字形状の部分16とは反対側の表面12b近傍を、永久磁石12の一対の略L字形状の部分16側の表面12a近傍とは反対の極性を有するように着磁する。これにより、永久磁石12の一対の略L字形状の部分16側の表面12a、および、永久磁石12の一対の略L字形状の部分16とは反対側の表面12bを介して出入する磁界の出入方向を、一対の略L字形状の部分16の一方側と他方側とで容易に異ならせることができる。その結果、永久磁石12から発生する磁界(図3の二点鎖線参照)を、一対の略L字形状の部分16の一方側から他方側、または、他方側から一方側にスムーズに流すことができる。 In the first embodiment, as described above, the vicinity of the surface 12a of the permanent magnet 12 on the side of the pair of substantially L-shaped portions 16 is divided between one side and the other side of the pair of substantially L-shaped portions 16. The magnets are magnetized so as to have different polarities (N polarity or S polarity), and a pair of substantially L of the permanent magnet 12 is disposed in the vicinity of the surface 12b opposite to the pair of substantially L-shaped portions 16 of the permanent magnet 12. Magnetization is performed so as to have a polarity opposite to the vicinity of the surface 12a on the side of the letter-shaped portion 16 side. As a result, the magnetic field entering and exiting the surface 12a of the permanent magnet 12 on the side of the pair of substantially L-shaped portions 16 and the surface 12b on the opposite side of the pair of substantially L-shaped portions 16 of the permanent magnet 12 can be obtained. The entrance / exit directions can be easily changed between one side and the other side of the pair of substantially L-shaped portions 16. As a result, the magnetic field generated by the permanent magnet 12 (see the two-dot chain line in FIG. 3) can be smoothly flowed from one side to the other side of the pair of substantially L-shaped portions 16 or from the other side to the one side. it can.
 また、第1実施形態では、上記のように、永久磁石12の一対の略L字形状の部分16とは反対側の表面を覆うヨーク17を設ける。これにより、ヨーク17によって、永久磁石12の一対の略L字形状の部分16とは反対側の表面から発生する磁界が空気中に漏れるのを抑制することができる。 In the first embodiment, as described above, the yoke 17 that covers the surface of the permanent magnet 12 opposite to the pair of substantially L-shaped portions 16 is provided. Accordingly, the magnetic field generated from the surface of the permanent magnet 12 on the side opposite to the pair of substantially L-shaped portions 16 can be prevented from leaking into the air by the yoke 17.
 また、第1実施形態では、上記のように、電磁石11のコイル14から発生する磁界(図3の一点鎖線参照)が回転軸21を通過する領域と、永久磁石12から発生する磁界(図3の二点鎖線参照)が回転軸21を通過する領域とが互いに略一致するように磁気軸受10を構成する。これにより、電磁石11および永久磁石12による磁気吸引力が発生する回転軸21の領域を略一致させることができるので、回転軸21を非接触で支持するための支持力(磁気吸引力)の制御を容易に行うことができる。 In the first embodiment, as described above, the magnetic field generated from the coil 14 of the electromagnet 11 (see the one-dot chain line in FIG. 3) passes through the rotating shaft 21 and the magnetic field generated from the permanent magnet 12 (FIG. 3). The magnetic bearing 10 is configured so that the regions passing through the rotating shaft 21 substantially coincide with each other. Thereby, since the area | region of the rotating shaft 21 in which the magnetic attraction force by the electromagnet 11 and the permanent magnet 12 generate | occur | produces can be substantially corresponded, control of the support force (magnetic attraction force) for supporting the rotating shaft 21 non-contactingly. Can be easily performed.
 また、第1実施形態では、上記のように、電磁石コア13の空隙40に対応する部分の表面に平坦面16cを設け、永久磁石12を平坦面16c上に配置する。これにより、平坦面16cによって、永久磁石12を安定した状態で電磁石コア13に取り付けることができる。 In the first embodiment, as described above, the flat surface 16c is provided on the surface of the portion corresponding to the gap 40 of the electromagnet core 13, and the permanent magnet 12 is disposed on the flat surface 16c. Thereby, the permanent magnet 12 can be attached to the electromagnet core 13 in a stable state by the flat surface 16c.
 また、第1実施形態では、上記のように、空隙40を有する電磁石コア13を、回転軸21の外周面を取り囲むように配置し、電磁石11および永久磁石12を、回転軸21と交差するとともに回転軸21のラジアル方向に沿って延びる面内で磁界(図3の一点鎖線および二点鎖線参照)を発生させることによって、磁気吸引力により回転軸21をラジアル方向に非接触で支持するように構成する。ここで、一般に、磁気軸受では、電磁石および永久磁石の磁気吸引力によって回転軸が変形するのを抑制するために、回転軸の電磁石および永久磁石によって非接触で支持される部分のアキシャル方向の長さ(電磁石および永久磁石から発生する磁界が通過する回転軸の領域のアキシャル方向の長さ)を短くするのが好ましい。この場合において、第1実施形態では、回転軸21と交差する面内(アキシャル方向と直交する面内)で磁界を発生させるように電磁石11および永久磁石12を構成しているので、回転軸21に沿った面内(アキシャル方向に沿った面内)で磁界を発生させるように電磁石11および永久磁石12を構成する場合に比べて、電磁石11および永久磁石12によって非接触で支持される回転軸21の部分のアキシャル方向の長さ(電磁石11および永久磁石12から発生する磁界が通過する回転軸21の領域のアキシャル方向の長さ)を短くすることができる。これにより、電磁石11および永久磁石12の磁気吸引力によって回転軸21が変形するのを抑制することができる。 In the first embodiment, as described above, the electromagnet core 13 having the gap 40 is arranged so as to surround the outer peripheral surface of the rotating shaft 21, and the electromagnet 11 and the permanent magnet 12 intersect the rotating shaft 21. By generating a magnetic field (see the alternate long and short dash line in FIG. 3) in a plane extending along the radial direction of the rotating shaft 21, the rotating shaft 21 is supported in the radial direction in a non-contact manner by a magnetic attractive force. Constitute. Here, in general, in a magnetic bearing, in order to prevent the rotating shaft from being deformed by the magnetic attractive force of the electromagnet and the permanent magnet, the axial length of the portion of the rotating shaft that is supported in a non-contact manner by the electromagnet and the permanent magnet. It is preferable to shorten the length (the length in the axial direction of the region of the rotating shaft through which the magnetic field generated from the electromagnet and the permanent magnet passes). In this case, in the first embodiment, the electromagnet 11 and the permanent magnet 12 are configured so as to generate a magnetic field in a plane intersecting the rotation axis 21 (in a plane orthogonal to the axial direction). Compared to the case where the electromagnet 11 and the permanent magnet 12 are configured to generate a magnetic field in a plane along the axis (in a plane along the axial direction), the rotation shaft is supported by the electromagnet 11 and the permanent magnet 12 in a non-contact manner. The length in the axial direction of the portion 21 (the length in the axial direction of the region of the rotating shaft 21 through which the magnetic field generated from the electromagnet 11 and the permanent magnet 12 passes) can be shortened. Thereby, it can suppress that the rotating shaft 21 deform | transforms with the magnetic attraction force of the electromagnet 11 and the permanent magnet 12. FIG.
 また、第1実施形態では、上記のように、ラジアル方向に沿って延びる第1部分16aを有する一対の略L字形状の部分16が空隙40を介して対向して配置されることによって構成された略U字形状の部分15を含むように電磁石コア13を構成する。これにより、電磁石11のコイル14から発生する磁界(図3の一点鎖線参照)は、電磁石コア13の略U字形状の部分15の部分に沿って流れることによって、回転軸21を通過する磁気回路を容易に構成することができる。その結果、回転軸21を支持するための支持力(磁気吸引力)を容易に発生させることができる。 In the first embodiment, as described above, the pair of substantially L-shaped portions 16 having the first portions 16 a extending in the radial direction are arranged to face each other with the gap 40 therebetween. The electromagnet core 13 is configured so as to include the substantially U-shaped portion 15. Thereby, the magnetic circuit (refer to the one-dot chain line in FIG. 3) generated from the coil 14 of the electromagnet 11 flows along the substantially U-shaped portion 15 of the electromagnet core 13, thereby passing the rotating shaft 21. Can be configured easily. As a result, a support force (magnetic attraction force) for supporting the rotating shaft 21 can be easily generated.
 また、第1実施形態では、上記のように、略U字形状の部分15を、回転軸21をラジアル方向の両側から挟み込むように一対設ける。これにより、回転軸21を挟み込む方向のみに一対の略U字形状の部分15による磁気吸引力が働くので、回転軸21を挟み込む方向の磁気吸引力の制御を容易に行うことができる。 Also, in the first embodiment, as described above, a pair of substantially U-shaped portions 15 are provided so as to sandwich the rotating shaft 21 from both sides in the radial direction. Thereby, since the magnetic attraction force by the pair of substantially U-shaped portions 15 acts only in the direction in which the rotating shaft 21 is sandwiched, the magnetic attraction force in the direction in which the rotating shaft 21 is sandwiched can be easily controlled.
 (第2実施形態)
 次に、図4を参照して、本発明の第2実施形態による磁気軸受110について説明する。この第2実施形態では、電磁石コア13が4つの略U字形状の部分15からなる上記第1実施形態と異なり、電磁石コア113が4つの略T字形状の部分115からなる例について説明する。
(Second Embodiment)
Next, with reference to FIG. 4, the magnetic bearing 110 by 2nd Embodiment of this invention is demonstrated. In the second embodiment, an example will be described in which the electromagnet core 113 includes four substantially T-shaped portions 115, unlike the first embodiment in which the electromagnet core 13 includes four approximately U-shaped portions 15.
 第2実施形態では、図4に示すように、電磁石コア113は、回転軸21の外周面を周状に取り囲むように配置された4つの略T字形状の部分115により構成されている。これら4つの略T字形状の部分115は、空隙40aを介して周方向に沿って隣接するように配置されている。なお、このような略T字形状を有する複数の電磁石コアが周方向に沿って一体的に結合されることによって構成された電磁石コア(周方向に沿って隣接する複数の略T字形状の部分の間に空隙を有しない電磁石コア)は、従来から一般的に用いられている。 In the second embodiment, as shown in FIG. 4, the electromagnet core 113 is composed of four substantially T-shaped portions 115 arranged so as to surround the outer peripheral surface of the rotating shaft 21 in a circumferential shape. These four substantially T-shaped portions 115 are arranged so as to be adjacent to each other along the circumferential direction via the gap 40a. In addition, the electromagnet core comprised by the several electromagnet core which has such a substantially T shape integrally couple | bonded along the circumferential direction (The several substantially T-shaped part adjacent along the circumferential direction) Conventionally, an electromagnet core having no gap between them has been generally used.
 ここで、4つの略T字形状の部分115は、それぞれ、ラジアル方向に沿って延びる第1部分115aと、第1部分115aの回転軸21とは反対側の端部から周方向の両側に延びる第2部分115bとを有している。なお、第1部分115aには、コイル14が巻回されている。また、第2部分115bの回転軸21とは反対側の表面には、平坦面115cが設けられている。そして、隣接する2つの略T字形状の部分115の第2部分115bに設けられた2つの平坦面115c上に跨って、永久磁石12が配置されている。また、永久磁石12の略T字形状の部分115とは反対側の表面12bには、ヨーク17が接着されている。 Here, each of the four substantially T-shaped portions 115 extends to both sides in the circumferential direction from a first portion 115a extending along the radial direction and an end portion of the first portion 115a opposite to the rotating shaft 21. And a second portion 115b. The coil 14 is wound around the first portion 115a. In addition, a flat surface 115c is provided on the surface of the second portion 115b opposite to the rotation shaft 21. And the permanent magnet 12 is arrange | positioned ranging over the two flat surfaces 115c provided in the 2nd part 115b of the two adjacent substantially T-shaped parts 115. FIG. A yoke 17 is bonded to the surface 12 b of the permanent magnet 12 on the side opposite to the substantially T-shaped portion 115.
 これにより、第2実施形態では、コイル14から発生する磁界(図4の一点鎖線参照)は、永久磁石12を通過することなく、周方向に隣接する第1部分115aおよび第2部分115b、空隙30a(第2部分115bと回転軸21との間の空間)、空隙40、および回転軸21を通過して磁気回路を構成する。また、永久磁石12から発生する磁界(図4の二点鎖線参照)は、空隙40aを通過することなく、周方向に隣接する第1部分115aおよび第2部分115b、空隙30aおよび回転軸21を通過して磁気回路を構成する。 Thereby, in 2nd Embodiment, the magnetic field (refer the dashed-dotted line of FIG. 4) which generate | occur | produces from the coil 14 does not pass the permanent magnet 12, but the 1st part 115a and 2nd part 115b which adjoin the circumferential direction, air gap | interval The magnetic circuit is configured to pass through 30a (the space between the second portion 115b and the rotary shaft 21), the gap 40, and the rotary shaft 21. Further, the magnetic field generated by the permanent magnet 12 (see the two-dot chain line in FIG. 4) passes through the first portion 115a and the second portion 115b, the gap 30a, and the rotating shaft 21 adjacent in the circumferential direction without passing through the gap 40a. Pass through to form a magnetic circuit.
 この第2実施形態においても、上記第1実施形態と同様に、電磁石コア113に設けられた空隙40aのギャップ長L2aは、永久磁石12の厚みt1(図4参照)よりも小さく、かつ、電磁石コア113と回転軸21との間の2つの空隙30aのギャップ長L1a(図4参照)の合計(2×L1a)よりも大きく設定されている。 Also in the second embodiment, similarly to the first embodiment, the gap length L2a of the gap 40a provided in the electromagnet core 113 is smaller than the thickness t1 (see FIG. 4) of the permanent magnet 12, and the electromagnet It is set larger than the total (2 × L1a) of the gap length L1a (see FIG. 4) of the two gaps 30a between the core 113 and the rotating shaft 21.
 第2実施形態では、上記のように、電磁石コア113を、ラジアル方向に沿って延びる第1部分115aと、ラジアル方向に沿って延びる第1部分115aの回転軸21とは反対側の端部から周方向の両側に延びる第2部分115bとを有する略T字形状の部分115を含むように構成する。そして、略T字形状の部分115を、空隙40を介して周方向に沿って隣接するように4つ設ける。これにより、従来から一般的に用いられている電磁石コア(略T字形状を有する複数の電磁石コアが周方向に沿って一体的に結合されることによって構成された電磁石コア(周方向に沿って隣接する複数の略T字形状の部分の間に空隙を有しない電磁石コア))に空隙40を設けるだけで、容易に、空隙40によって永久磁石12の不可逆減磁が発生するのを抑制することが可能な電磁石コア113を構成することができる。 In the second embodiment, as described above, the electromagnet core 113 is separated from the first portion 115a extending along the radial direction and the end of the first portion 115a extending along the radial direction on the side opposite to the rotating shaft 21. A substantially T-shaped portion 115 having second portions 115b extending on both sides in the circumferential direction is included. Then, four substantially T-shaped portions 115 are provided so as to be adjacent to each other along the circumferential direction via the gap 40. Thus, an electromagnet core that has been generally used conventionally (an electromagnet core that is configured by integrally joining a plurality of electromagnet cores having a substantially T-shape along the circumferential direction (along the circumferential direction). It is possible to easily suppress the occurrence of irreversible demagnetization of the permanent magnet 12 by the air gap 40 simply by providing the air gap 40 in the electromagnet core having no air gap between a plurality of adjacent substantially T-shaped portions)). Thus, an electromagnet core 113 capable of supporting the above can be configured.
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1および第2実施形態では、本発明の磁気抵抗変化部として、空気からなる空隙を用いた例を示したが、本発明はこれに限らない。本発明では、磁気抵抗変化部として、モールド樹脂を用いてもよい。すなわち、上記第1および第2実施形態の空隙に、永久磁石の磁気抵抗よりも小さい磁気抵抗を有するモールド樹脂を充填してもよい。この場合において、モールド樹脂の磁路長を、永久磁石の厚みよりも小さく、かつ、電磁石コアと回転軸との間の空隙のギャップ長よりも大きくすれば、容易に、モールド樹脂の磁気抵抗を永久磁石の磁気抵抗よりも小さくすることができる。 For example, in the first and second embodiments described above, an example in which a gap made of air is used as the magnetoresistance change portion of the present invention is shown, but the present invention is not limited to this. In the present invention, a mold resin may be used as the magnetoresistance change portion. That is, the air gaps of the first and second embodiments may be filled with a mold resin having a magnetic resistance smaller than that of the permanent magnet. In this case, if the magnetic path length of the mold resin is smaller than the thickness of the permanent magnet and larger than the gap length of the gap between the electromagnet core and the rotating shaft, the magnetic resistance of the mold resin can be easily increased. It can be made smaller than the magnetic resistance of the permanent magnet.
 また、上記第1および第2実施形態では、電磁石コアの空隙に対応する部分の回転軸とは反対側の表面に設けられた平坦面(ラジアル方向端面)上に永久磁石を配置した例を示したが、本発明はこれに限らない。本発明では、電磁石コアの空隙に対応する部分のラジアル方向端面と直交するアキシャル方向端面上に永久磁石を配置してもよい。 Moreover, in the said 1st and 2nd embodiment, the example which has arrange | positioned the permanent magnet on the flat surface (radial direction end surface) provided in the surface on the opposite side to the rotating shaft of the part corresponding to the space | gap of an electromagnet core is shown. However, the present invention is not limited to this. In this invention, you may arrange | position a permanent magnet on the axial direction end surface orthogonal to the radial direction end surface of the part corresponding to the space | gap of an electromagnet core.
 また、上記第1実施形態では、図3に示すように、空隙40のギャップ長L2が回転軸21側と永久磁石12側とで等しい例を示したが、本発明はこれに限らない。本発明では、図5に示した第1変形例のように、空隙41のギャップ長が回転軸21側と永久磁石12側とで異なっていてもよい。なお、空隙41は、本発明の「磁気抵抗変化部」の一例である。 In the first embodiment, as shown in FIG. 3, the gap length L2 of the air gap 40 is equal on the rotating shaft 21 side and the permanent magnet 12 side. However, the present invention is not limited to this. In the present invention, as in the first modification shown in FIG. 5, the gap length of the air gap 41 may be different between the rotating shaft 21 side and the permanent magnet 12 side. The air gap 41 is an example of the “magnetic resistance changing portion” in the present invention.
 図5に示すように、第1変形例では、空隙41は、そのギャップ長が回転軸21側から永久磁石12側に向かって徐々に大きくなるように形成されている。すなわち、一対の略L字形状の部分216の空隙41を介して対向する端面は、回転軸21側から永久磁石12側に向かって互いに徐々に離間するように形成されている。ここで、第1変形例では、空隙41の平均ギャップ長L3(回転軸21側の端部のギャップ長L4と永久磁石12側の端部のギャップ長L5との平均)が、永久磁石12の厚みt1よりも小さく、かつ、電磁石コア213と回転軸21との間の2つの空隙30のギャップ長L1の合計(2×L1)よりも大きく設定されている。なお、略L字形状の部分216は、本発明の「コア部分」の一例である。 As shown in FIG. 5, in the first modification, the gap 41 is formed so that the gap length gradually increases from the rotating shaft 21 side toward the permanent magnet 12 side. That is, the end surfaces of the pair of substantially L-shaped portions 216 facing each other through the gap 41 are formed so as to be gradually separated from the rotating shaft 21 side toward the permanent magnet 12 side. Here, in the first modification, the average gap length L3 of the air gap 41 (the average of the gap length L4 at the end portion on the rotating shaft 21 side and the gap length L5 at the end portion on the permanent magnet 12 side) is The thickness is set to be smaller than the thickness t1 and larger than the total (2 × L1) of the gap length L1 of the two gaps 30 between the electromagnet core 213 and the rotating shaft 21. The substantially L-shaped portion 216 is an example of the “core portion” in the present invention.
 第1変形例では、上記のように、空隙41の永久磁石12側の端部のギャップ長L5が回転軸21側の端部のギャップ長L4よりも大きいので、永久磁石12から発生する磁界が、空隙30を通過せずに、空隙41の永久磁石12側の部分を通過して漏れるのをより抑制することができる。 In the first modification, as described above, the gap length L5 of the end portion of the air gap 41 on the permanent magnet 12 side is larger than the gap length L4 of the end portion on the rotating shaft 21 side, so that the magnetic field generated from the permanent magnet 12 is Further, it is possible to further suppress leakage through the portion of the air gap 41 on the permanent magnet 12 side without passing through the air gap 30.
 また、上記第1実施形態では、図2および図3に示すように、電磁石コア13を完全に分離する空隙40を設けた例を示したが、本発明はこれに限らない。本発明では、電磁石コアを完全に分離せずに実質的に分離する空隙を設けてもよい。たとえば、図6、図7および図8にそれぞれ示した第2、第3および第4変形例のように、電磁石コア313a、313bおよび313cを細い部分18a、18bおよび18cで連結された状態とするような空隙42a、42bおよび42cを設けてもよい。なお、空隙42a~42cは、本発明の「磁気抵抗変化部」の一例である。 In the first embodiment, as shown in FIGS. 2 and 3, the example in which the gap 40 for completely separating the electromagnet core 13 is provided is shown, but the present invention is not limited to this. In this invention, you may provide the space | gap which isolate | separates substantially, without separating an electromagnet core completely. For example, as in the second, third, and fourth modifications shown in FIGS. 6, 7, and 8, respectively, the electromagnet cores 313a, 313b, and 313c are connected by the thin portions 18a, 18b, and 18c. Such voids 42a, 42b and 42c may be provided. The air gaps 42a to 42c are examples of the “magnetic resistance changing portion” in the present invention.
 図6に示すように、第2変形例では、空隙42aを介して対向する一対の略L字形状の部分316aの対向する端面が、永久磁石12側の端部において細い部分18aで互いに連結されている。また、図7に示すように、第3変形例では、空隙42bを介して対向する一対の略L字形状の部分316bの対向する端面が、回転軸21側の端部において細い部分18bで互いに連結されている。また、図8に示すように、第4変形例では、空隙42cを介して対向する一対の略L字形状の部分316cの対向する端面が、永久磁石12側の端部および回転軸21側の端部の両方において細い部分18cで互いに連結されている。ここで、第2、第3および第4変形例では、細い部分18a、18bおよび18cを介して永久磁石12の磁束漏れが発生するのを抑制するために、細い部分18a、18bおよび18cの厚みt3(図6参照)、t4(図7参照)およびt5(図8参照)を、鋼板の加工限界まで薄くするのが好ましい。なお、略L字形状の部分316a~316cは、本発明の「コア部分」の一例である。 As shown in FIG. 6, in the second modified example, the opposed end surfaces of the pair of substantially L-shaped portions 316a opposed via the gap 42a are connected to each other by the narrow portion 18a at the end on the permanent magnet 12 side. ing. Further, as shown in FIG. 7, in the third modified example, the opposing end surfaces of the pair of substantially L-shaped portions 316 b that are opposed to each other through the gap 42 b are mutually connected by the narrow portion 18 b at the end on the rotating shaft 21 side. It is connected. Further, as shown in FIG. 8, in the fourth modification, the opposing end surfaces of the pair of substantially L-shaped portions 316 c that are opposed via the gap 42 c are the end portions on the permanent magnet 12 side and the rotating shaft 21 side. Both ends are connected to each other by a thin portion 18c. Here, in the second, third, and fourth modified examples, the thickness of the thin portions 18a, 18b, and 18c is used in order to suppress the magnetic flux leakage of the permanent magnet 12 through the thin portions 18a, 18b, and 18c. It is preferable that t3 (see FIG. 6), t4 (see FIG. 7), and t5 (see FIG. 8) be thinned to the processing limit of the steel plate. The substantially L-shaped portions 316a to 316c are examples of the “core portion” in the present invention.
 第2~第4変形例では、上記のように、電磁石コア313a~313cを細い部分18a~18cで連結された状態とするような空隙42a~42cを設ける。これにより、電磁石コア313a~313cを構成する一対の略L字形状の部分316a~316cが細い部分18a~18cによって互いに一体的に連結された状態となるので、鋼板の加工によって製造しやすい一体の部品として電磁石コア313a~313cを製造することができるとともに、部品点数を削減することができる。 In the second to fourth modifications, as described above, the gaps 42a to 42c are provided so that the electromagnet cores 313a to 313c are connected by the thin portions 18a to 18c. As a result, the pair of substantially L-shaped portions 316a to 316c constituting the electromagnet cores 313a to 313c are integrally connected to each other by the thin portions 18a to 18c. Electromagnet cores 313a to 313c can be manufactured as parts, and the number of parts can be reduced.
 また、上記第1実施形態では、図3に示すように、永久磁石12の一対の略L字形状の部分16側の表面12a近傍と、永久磁石12の一対の略L字形状の部分16とは反対側の表面12b近傍との両方がN極性またはS極性を有するように着磁された例を示したが、本発明はこれに限らない。本発明では、図9に示した第5変形例のように、永久磁石112の一対の略L字形状の部分16側の表面112a近傍のみを、一対の略L字形状の部分16の一方側と他方側とで互いに異なる極性(N極性およびS極性)を有するように着磁してもよい。 Moreover, in the said 1st Embodiment, as shown in FIG. 3, the surface 12a vicinity of the pair of substantially L-shaped part 16 side of the permanent magnet 12, and a pair of substantially L-shaped part 16 of the permanent magnet 12 and Shows an example in which both the vicinity of the surface 12b on the opposite side is magnetized so as to have N polarity or S polarity, but the present invention is not limited to this. In the present invention, as in the fifth modification shown in FIG. 9, only the vicinity of the surface 112 a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 112 is arranged on one side of the pair of substantially L-shaped portions 16. And the other side may be magnetized so as to have different polarities (N polarity and S polarity).
 図9に示すように、第5変形例では、永久磁石112は、一対の略L字形状の部分16に設けられた平坦面16c上に跨って配置されている。この永久磁石112の一対の略L字形状の部分16側の表面112a近傍は、図9の左側の領域においてS極性を有するように着磁されているとともに、図9の右側の領域においてN極性を有するように着磁されている。 As shown in FIG. 9, in the fifth modification, the permanent magnet 112 is disposed over the flat surface 16 c provided in the pair of substantially L-shaped portions 16. The vicinity of the surface 112a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 112 is magnetized so as to have S polarity in the left region of FIG. 9, and N polarity in the right region of FIG. It is magnetized to have
 第5変形例では、上記のように、永久磁石112の一対の略L字形状の部分16側の表面112a近傍のみを着磁する。これにより、永久磁石12の一対の略L字形状の部分16側の表面12a近傍と、永久磁石12の一対の略L字形状の部分16とは反対側の表面12b近傍との両方が着磁された上記第1実施形態(図3参照)と異なり、永久磁石112の一対の略L字形状の部分16とは反対側の表面112bに、永久磁石112から発生する磁界の経路となる部材(上記第1実施形態のヨーク17に対応する部材)を設ける必要がないので、部品点数を削減することができる。 In the fifth modified example, as described above, only the vicinity of the surface 112a of the permanent magnet 112 on the side of the pair of substantially L-shaped portions 16 is magnetized. Thereby, both the vicinity of the surface 12a on the side of the pair of substantially L-shaped portions 16 of the permanent magnet 12 and the vicinity of the surface 12b on the side opposite to the pair of substantially L-shaped portions 16 of the permanent magnet 12 are magnetized. Unlike the above-described first embodiment (see FIG. 3), a member (on the surface 112b opposite to the pair of substantially L-shaped portions 16 of the permanent magnet 112, which becomes a path of a magnetic field generated from the permanent magnet 112) Since it is not necessary to provide a member corresponding to the yoke 17 of the first embodiment, the number of parts can be reduced.
 また、上記第1実施形態では、図2および図3に示すように、ヨーク17と一対の略L字形状の部分16とが別部品として設けられた例を示したが、本発明はこれに限らない。本発明では、図10に示した第6変形例のように、ヨーク417と一対の略L字形状の部分416とを一体の部品として設けてもよい。 Moreover, in the said 1st Embodiment, as shown in FIG.2 and FIG.3, although the yoke 17 and the pair of substantially L-shaped part 16 were shown as another components, this invention is shown to this. Not exclusively. In the present invention, as in the sixth modification shown in FIG. 10, the yoke 417 and the pair of substantially L-shaped portions 416 may be provided as an integral part.
 図10に示すように、第6変形例では、電磁石コア413のヨーク417の左右方向の両端部と、電磁石コア413の一対の略L字形状の部分416とが、薄肉状の連結部19により互いに連結されている。この連結部19は、永久磁石12の左右方向の両端面を覆うように設けられている。ここで、第6変形例では、連結部19を介して永久磁石12の磁束漏れが発生するのを抑制するために、連結部19の厚みt6(図10参照)を、鋼板の加工限界まで薄くするのが好ましい。なお、略L字形状の部分416は、本発明の「コア部分」の一例である。 As shown in FIG. 10, in the sixth modification, both end portions of the yoke 417 of the electromagnet core 413 in the left-right direction and the pair of substantially L-shaped portions 416 of the electromagnet core 413 are formed by the thin-walled connecting portion 19. Are connected to each other. The connecting portion 19 is provided so as to cover both end surfaces of the permanent magnet 12 in the left-right direction. Here, in the sixth modification, in order to suppress the occurrence of magnetic flux leakage of the permanent magnet 12 through the connecting portion 19, the thickness t6 (see FIG. 10) of the connecting portion 19 is reduced to the processing limit of the steel plate. It is preferable to do this. The substantially L-shaped portion 416 is an example of the “core portion” in the present invention.
 第6変形例では、上記のように、電磁石コア413のヨーク417および一対の略L字形状の部分416を薄肉状の連結部19により互いに連結する。これにより、ヨーク417および一対の略L字形状の部分416を、鋼板の加工によって製造しやすい一体の部品として製造することができるとともに、部品点数を削減することができる。 In the sixth modified example, as described above, the yoke 417 and the pair of substantially L-shaped portions 416 of the electromagnet core 413 are connected to each other by the thin connecting portion 19. As a result, the yoke 417 and the pair of substantially L-shaped portions 416 can be manufactured as an integral part that can be easily manufactured by processing a steel plate, and the number of parts can be reduced.
 また、上記第1実施形態では、図2および図3に示すように、一対の略L字形状の部分16に跨るように1つの永久磁石12を設けた例を示したが、本発明はこれに限らない。本発明では、図11に示した第7変形例のように、一対の略L字形状の部分16のそれぞれに対応するように2つの永久磁石212aおよび212bを設けてもよい。 Moreover, in the said 1st Embodiment, as shown in FIG.2 and FIG.3, although the example which provided the one permanent magnet 12 so that a pair of substantially L-shaped part 16 might be straddled was shown, this invention is this. Not limited to. In the present invention, as in the seventh modification shown in FIG. 11, two permanent magnets 212a and 212b may be provided so as to correspond to each of the pair of substantially L-shaped portions 16.
 図11に示すように、第6変形例では、永久磁石212aは、図11の左側に配置された略L字形状の部分16の平坦面16c上に配置されている。この永久磁石212aは、略L字形状の部分16側の表面近傍がS極性を有するように着磁されているとともに、ヨーク17側の表面近傍がN極性を有するように着磁されている。また、第6変形例では、永久磁石212bは、図11の右側に配置された略L字形状の部分16の平坦面16c上に配置されている。この永久磁石212bは、略L字形状の部分16側の表面近傍がN極性を有するように着磁されているとともに、ヨーク17側の表面近傍がS極性を有するように着磁されている。 As shown in FIG. 11, in the sixth modification, the permanent magnet 212a is disposed on the flat surface 16c of the substantially L-shaped portion 16 disposed on the left side of FIG. The permanent magnet 212a is magnetized so that the vicinity of the surface on the substantially L-shaped portion 16 side has S polarity, and is magnetized so that the vicinity of the surface on the yoke 17 side has N polarity. Further, in the sixth modification, the permanent magnet 212b is disposed on the flat surface 16c of the substantially L-shaped portion 16 disposed on the right side of FIG. The permanent magnet 212b is magnetized so that the vicinity of the surface on the substantially L-shaped portion 16 side has N polarity, and the vicinity of the surface on the yoke 17 side is magnetized so as to have S polarity.
 また、上記第1実施形態では、図1に示すように、回転軸21をラジアル方向に非接触で支持する磁気軸受10に本発明を適用する例を示したが、図12に示す第8変形例のように、本発明は、回転軸21をアキシャル方向に非接触で支持する磁気軸受510にも適用可能である。 Moreover, in the said 1st Embodiment, as shown in FIG. 1, although the example which applies this invention to the magnetic bearing 10 which supports the rotating shaft 21 non-contacting in a radial direction was shown, 8th deformation | transformation shown in FIG. As an example, the present invention is also applicable to the magnetic bearing 510 that supports the rotating shaft 21 in the axial direction in a non-contact manner.
 図12に示すように、第8変形例では、電磁石コア513およびコイル514を含む電磁石511と、永久磁石512とを含む磁気軸受510が、回転軸21のラジアル方向の両側に一対設けられている。これら一対の磁気軸受510は、それぞれ、回転軸21と交差する板状部材22をアキシャル方向の両側から挟みこむように設けられている。この第8変形例では、電磁石511および永久磁石512は、共に、回転軸21に沿った面内で磁界(図12の一点鎖線および二点鎖線参照)を発生させることによって、磁気吸引力により回転軸21をアキシャル方向に非接触で支持するように構成されている。なお、板状部材22は、本発明の「回転軸部分」の一例である。 As shown in FIG. 12, in the eighth modification, a pair of magnetic bearings 510 including an electromagnet 511 including an electromagnet core 513 and a coil 514 and a permanent magnet 512 are provided on both sides in the radial direction of the rotary shaft 21. . Each of the pair of magnetic bearings 510 is provided so as to sandwich the plate-like member 22 that intersects the rotating shaft 21 from both sides in the axial direction. In the eighth modified example, both the electromagnet 511 and the permanent magnet 512 are rotated by a magnetic attractive force by generating a magnetic field (refer to a one-dot chain line and a two-dot chain line in FIG. 12) in a plane along the rotation axis 21. The shaft 21 is configured to be supported in a non-contact manner in the axial direction. The plate-like member 22 is an example of the “rotary shaft portion” in the present invention.
 ここで、第8変形例では、電磁石111の電磁石コア513には、電磁石511のコイル514から発生する磁界(図12の一点鎖線参照)が通過する空隙40bが設けられている。そして、永久磁石512から発生する磁界(図12の二点鎖線参照)が空隙40bを通過しないように、電磁石コア513の空隙40bに対応する部分に永久磁石512が配置されている。また、永久磁石512の電磁石コア513とは反対側の表面には、ヨーク517が設けられている。なお、空隙40bは、本発明の「磁気抵抗変化部」の一例である。 Here, in the eighth modification, the electromagnet core 513 of the electromagnet 111 is provided with a gap 40b through which a magnetic field generated from the coil 514 of the electromagnet 511 (see the dashed line in FIG. 12) passes. And the permanent magnet 512 is arrange | positioned in the part corresponding to the space | gap 40b of the electromagnet core 513 so that the magnetic field (refer to the dashed-two dotted line of FIG. 12) which generate | occur | produces from the permanent magnet 512 may not pass the space | gap 40b. A yoke 517 is provided on the surface of the permanent magnet 512 opposite to the electromagnet core 513. The air gap 40b is an example of the “magnetic resistance changing portion” in the present invention.
 この第8変形例においても、上記第1実施形態と同様に、電磁石コア513に設けられた空隙40bのギャップ長L2bは、永久磁石512の厚みt7(図12参照)よりも小さく、かつ、電磁石コア513と回転軸21との間の2つの空隙30bのギャップ長L1b(図12参照)の合計(2×L1b)よりも大きく設定されている。 Also in the eighth modification, as in the first embodiment, the gap length L2b of the gap 40b provided in the electromagnet core 513 is smaller than the thickness t7 (see FIG. 12) of the permanent magnet 512, and the electromagnet The gap length L1b (see FIG. 12) of the two gaps 30b between the core 513 and the rotating shaft 21 is set to be larger than the sum (2 × L1b).

Claims (20)

  1.  電磁石コア(13、113、213、313a、313b、313c、413、513)およびコイル(14、514)を含む電磁石(11、511)と、
     前記電磁石コアに取り付けられ、前記電磁石と共に磁気吸引力により回転軸部分(21、22)を非接触で支持する永久磁石(12、112、212a、212b)とを備え、
     前記電磁石コアは、前記電磁石のコイルから発生する磁界が通過する経路中に配置される磁気抵抗変化部(40、40a、40b、41、42a、42b、42c)を有し、
     前記永久磁石は、前記永久磁石から発生する磁界が前記磁気抵抗変化部を通過しないように、前記電磁石コアの前記磁気抵抗変化部に対応する部分に配置されている、磁気軸受。
    Electromagnets (11, 511) including electromagnet cores (13, 113, 213, 313a, 313b, 313c, 413, 513) and coils (14, 514);
    A permanent magnet (12, 112, 212a, 212b) that is attached to the electromagnet core and supports the rotating shaft portion (21, 22) in a non-contact manner by a magnetic attractive force together with the electromagnet;
    The electromagnet core has a magnetoresistive change portion (40, 40a, 40b, 41, 42a, 42b, 42c) disposed in a path through which a magnetic field generated from the coil of the electromagnet passes.
    The said permanent magnet is a magnetic bearing arrange | positioned in the part corresponding to the said magnetoresistive change part of the said electromagnet core so that the magnetic field generated from the said permanent magnet may not pass through the said magnetoresistive change part.
  2.  前記磁気抵抗変化部は、前記永久磁石の磁気抵抗よりも小さい磁気抵抗を有する、請求項1に記載の磁気軸受。 The magnetic bearing according to claim 1, wherein the magnetoresistive change portion has a magnetic resistance smaller than a magnetic resistance of the permanent magnet.
  3.  前記磁気抵抗変化部は、前記永久磁石の厚みよりも小さい磁路長を有する、請求項1に記載の磁気軸受。 The magnetic bearing according to claim 1, wherein the magnetoresistive change portion has a magnetic path length smaller than a thickness of the permanent magnet.
  4.  前記磁気抵抗変化部は、前記電磁石コアと前記回転軸部分との間の空間の前記コイルおよび前記永久磁石から発生する磁界が通過する部分(30、30a、30b)のギャップ長よりも大きい磁路長を有する、請求項1に記載の磁気軸受。 The magnetoresistance change portion has a magnetic path larger than a gap length of a portion (30, 30a, 30b) through which a magnetic field generated from the coil and the permanent magnet in a space between the electromagnet core and the rotating shaft portion passes. The magnetic bearing according to claim 1, wherein the magnetic bearing has a length.
  5.  前記磁気抵抗変化部は、前記電磁石コアを一対のコア部分(16、216、316a、316b、316c、416)に実質的に分離するように、前記コイルから発生する磁界と交差する方向に沿って延長形成されている、請求項1に記載の磁気軸受。 The magnetoresistive change unit is arranged along a direction intersecting a magnetic field generated from the coil so as to substantially separate the electromagnet core into a pair of core portions (16, 216, 316a, 316b, 316c, 416). The magnetic bearing according to claim 1, wherein the magnetic bearing is extended.
  6.  前記永久磁石は、前記一対のコア部分に跨って配置されている、請求項5に記載の磁気軸受。 The magnetic bearing according to claim 5, wherein the permanent magnet is disposed across the pair of core portions.
  7.  前記磁気抵抗変化部は、前記電磁石コアを完全に分離する空隙(40、41、43)、または、前記電磁石コアを細い部分で連結された状態にする空隙(42a、42b、42c)である、請求項6に記載の磁気軸受。 The magnetoresistive change portion is a gap (40, 41, 43) that completely separates the electromagnet core or a gap (42a, 42b, 42c) that connects the electromagnet core at a thin portion. The magnetic bearing according to claim 6.
  8.  前記永久磁石の少なくとも前記一対のコア部分側の表面近傍は、前記一対のコア部分の一方側と他方側とで互いに異なる極性を有するように着磁されている、請求項6に記載の磁気軸受。 The magnetic bearing according to claim 6, wherein at least the surface vicinity of the pair of core portions of the permanent magnet is magnetized to have different polarities on one side and the other side of the pair of core portions. .
  9.  前記永久磁石の前記一対のコア部分側の表面(12a)近傍は、前記一対のコア部分の一方側と他方側とで互いに異なる極性を有するように着磁され、
     前記永久磁石の前記一対のコア部分とは反対側の表面(12b)近傍は、前記永久磁石の前記一対のコア部分側の表面近傍とは反対の極性を有するように着磁されている、請求項8に記載の磁気軸受。
    The surface (12a) vicinity of the pair of core parts side of the permanent magnet is magnetized so as to have different polarities on one side and the other side of the pair of core parts,
    The vicinity of the surface (12b) opposite to the pair of core portions of the permanent magnet is magnetized so as to have a polarity opposite to that of the vicinity of the surface of the pair of core portions of the permanent magnet. Item 9. A magnetic bearing according to Item 8.
  10.  前記永久磁石の前記一対のコア部分とは反対側の表面を覆うヨーク(17、417、517)をさらに備える、請求項9に記載の磁気軸受。 The magnetic bearing according to claim 9, further comprising a yoke (17, 417, 517) covering a surface of the permanent magnet opposite to the pair of core portions.
  11.  前記ヨークと前記一対のコア部分とは、薄肉状の連結部(19)により互いに連結されている、請求項10に記載の磁気軸受。 The magnetic bearing according to claim 10, wherein the yoke and the pair of core portions are connected to each other by a thin connecting portion (19).
  12.  前記永久磁石は、前記一対のコア部分のそれぞれに対応するように一対設けられている、請求項5に記載の磁気軸受。 The magnetic bearing according to claim 5, wherein a pair of the permanent magnets is provided so as to correspond to each of the pair of core portions.
  13.  前記コイルから発生する磁界が前記回転軸部分を通過する領域と、前記永久磁石から発生する磁界が前記回転軸部分を通過する領域とが互いに略一致するように構成されている、請求項1に記載の磁気軸受。 The region in which the magnetic field generated from the coil passes through the rotating shaft portion and the region in which the magnetic field generated from the permanent magnet passes through the rotating shaft portion substantially coincide with each other. The magnetic bearing described.
  14.  前記電磁石コアの前記磁気抵抗変化部に対応する部分の表面は、平坦面(16c、115c)を含み、
     前記永久磁石は、前記電磁石コアの前記磁気抵抗変化部に対応する部分の前記平坦面上に配置されている、請求項1に記載の磁気軸受。
    The surface of the portion of the electromagnet core corresponding to the magnetoresistance change portion includes a flat surface (16c, 115c),
    The magnetic bearing according to claim 1, wherein the permanent magnet is disposed on the flat surface of a portion corresponding to the magnetoresistance change portion of the electromagnet core.
  15.  前記磁気抵抗変化部を有する前記電磁石コアは、前記回転軸部分の外周面を取り囲むように配置されており、
     前記電磁石および前記永久磁石は、前記回転軸部分と交差するとともに前記回転軸部分の半径方向に沿って延びる面内で磁界を発生させることによって、磁気吸引力により前記回転軸部分を半径方向に非接触で支持するように構成されている、請求項1に記載の磁気軸受。
    The electromagnet core having the magnetoresistive change portion is disposed so as to surround an outer peripheral surface of the rotating shaft portion,
    The electromagnet and the permanent magnet generate a magnetic field in a plane that intersects the rotating shaft portion and extends along the radial direction of the rotating shaft portion, thereby causing the rotating shaft portion to be non-radially formed by a magnetic attraction force. The magnetic bearing according to claim 1, wherein the magnetic bearing is configured to be supported by contact.
  16.  前記電磁石コアは、半径方向に沿って延びる部分(16a)を有する一対の略L字形状の部分(16、216、316a、316b、316c、416)が前記磁気抵抗変化部を介して周方向に沿って隣接するように配置されることにより構成された略U字形状の部分(15)を含む、請求項15に記載の磁気軸受。 The electromagnet core has a pair of substantially L-shaped portions (16, 216, 316a, 316b, 316c, 416) having a portion (16a) extending along the radial direction in the circumferential direction via the magnetoresistive change portion. The magnetic bearing according to claim 15, comprising a substantially U-shaped part configured by being arranged adjacent to each other.
  17.  前記略U字形状の部分は、前記回転軸部分を半径方向の両側から挟み込むように少なくとも一対設けられている、請求項16に記載の磁気軸受。 The magnetic bearing according to claim 16, wherein at least a pair of the substantially U-shaped portions are provided so as to sandwich the rotating shaft portion from both sides in the radial direction.
  18.  前記電磁石コアは、半径方向に沿って延びる部分(115a)と、前記半径方向に沿って延びる部分の前記回転軸部分とは反対側の端部から周方向の両側に延びる部分(115b)とを有する略T字形状の部分(115)を含み、
     前記略T字形状の部分は、前記磁気抵抗変化部を介して周方向に沿って隣接するように複数設けられている、請求項15に記載の磁気軸受。
    The electromagnet core has a portion (115a) extending along the radial direction and a portion (115b) extending on both sides in the circumferential direction from an end of the portion extending along the radial direction opposite to the rotation shaft portion. A substantially T-shaped portion (115) having
    The magnetic bearing according to claim 15, wherein a plurality of the substantially T-shaped portions are provided so as to be adjacent along a circumferential direction via the magnetoresistive change portion.
  19.  前記略T字形状の部分は、前記磁気抵抗変化部を介して周方向に沿って隣接するように4つ設けられている、請求項18に記載の磁気軸受。 19. The magnetic bearing according to claim 18, wherein four substantially T-shaped portions are provided so as to be adjacent along the circumferential direction via the magnetoresistive change portion.
  20.  前記回転軸部分は、回転軸(21)と、前記回転軸と交差する板状部材(22)とを含み、
     前記磁気抵抗変化部を有する前記電磁石コアは、前記板状部材を前記回転軸の軸線方向の両側から挟み込むように配置されており、
     前記電磁石および前記永久磁石は、磁気吸引力により前記板状部材を前記回転軸の軸線方向に非接触で支持することによって、前記回転軸部分を前記回転軸の軸線方向に非接触で支持するように構成されている、請求項1に記載の磁気軸受。
    The rotating shaft portion includes a rotating shaft (21) and a plate-like member (22) intersecting with the rotating shaft,
    The electromagnet core having the magnetoresistive change portion is disposed so as to sandwich the plate-like member from both sides in the axial direction of the rotating shaft,
    The electromagnet and the permanent magnet support the rotary shaft portion in a non-contact manner in the axial direction of the rotary shaft by supporting the plate member in a non-contact manner in the axial direction of the rotary shaft by a magnetic attraction force. The magnetic bearing according to claim 1, which is configured as follows.
PCT/JP2011/078605 2011-12-09 2011-12-09 Magnetic bearing WO2013084362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201190001181.XU CN203879931U (en) 2011-12-09 2011-12-09 Magnetic bearing
PCT/JP2011/078605 WO2013084362A1 (en) 2011-12-09 2011-12-09 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078605 WO2013084362A1 (en) 2011-12-09 2011-12-09 Magnetic bearing

Publications (1)

Publication Number Publication Date
WO2013084362A1 true WO2013084362A1 (en) 2013-06-13

Family

ID=48573759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078605 WO2013084362A1 (en) 2011-12-09 2011-12-09 Magnetic bearing

Country Status (2)

Country Link
CN (1) CN203879931U (en)
WO (1) WO2013084362A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237340A (en) * 2020-01-14 2020-06-05 燕山大学 Radial electromagnetic repulsion type magnetic-liquid double-suspension bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232955A (en) * 1995-02-27 1996-09-10 Ebara Corp Magnetic bearing
JP2001041238A (en) * 1999-07-28 2001-02-13 Seiko Seiki Co Ltd Composite type electromagnet and radial magnetic bearing
JP2001146917A (en) * 1999-11-24 2001-05-29 Meidensha Corp Thrust magnetic bearing using both of electromagnet and permanent magnet
JP2001224154A (en) * 2000-02-10 2001-08-17 Japan Science & Technology Corp Method and apparatus for multipole magnetically levitating rotation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232955A (en) * 1995-02-27 1996-09-10 Ebara Corp Magnetic bearing
JP2001041238A (en) * 1999-07-28 2001-02-13 Seiko Seiki Co Ltd Composite type electromagnet and radial magnetic bearing
JP2001146917A (en) * 1999-11-24 2001-05-29 Meidensha Corp Thrust magnetic bearing using both of electromagnet and permanent magnet
JP2001224154A (en) * 2000-02-10 2001-08-17 Japan Science & Technology Corp Method and apparatus for multipole magnetically levitating rotation

Also Published As

Publication number Publication date
CN203879931U (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US20200294703A1 (en) Three-phase reactor comprising iron-core units and coils
KR102113055B1 (en) Rotor and magnetoresistive motor
CN107017082B (en) Three-phase reactor, motor drive device, power conditioner, and machine
KR101575353B1 (en) Rotor having embedded permanent magnet
US9088199B2 (en) Motor
US20210246945A1 (en) Active radial magnetic bearing with yoke winding
JP2019054659A (en) Rotary electric machine
JP6065568B2 (en) Magnetizer
JP2010130819A (en) Field element and method for manufacturing field element
JP2016082778A (en) Magnet-embedded rotor unit and manufacturing method for the same
KR20120075428A (en) Reluctance motor
US9683601B2 (en) Generating radial electromagnetic forces
EP3012947A2 (en) Method for manufacturing an interior permanent magnet rotor unit and magnetizing device
WO2013094024A1 (en) Magnetic bearing
JP5066813B2 (en) Rotating electric machine
US6819015B2 (en) Stator fastening structure of reciprocating motor
WO2013084362A1 (en) Magnetic bearing
JP6631629B2 (en) Actuator
JP2001112228A (en) Movable magnet type linear actuator
JP2018042363A (en) Voice coil motor
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
US10608481B2 (en) Core of a transverse flux machine and an associated method thereof
JPWO2013084362A1 (en) Magnetic bearing
JP2012165506A (en) Axial gap motor
JP6990014B2 (en) Rotating machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190001181.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877100

Country of ref document: EP

Kind code of ref document: A1