WO2013084285A1 - Vehicle drive system - Google Patents

Vehicle drive system Download PDF

Info

Publication number
WO2013084285A1
WO2013084285A1 PCT/JP2011/078111 JP2011078111W WO2013084285A1 WO 2013084285 A1 WO2013084285 A1 WO 2013084285A1 JP 2011078111 W JP2011078111 W JP 2011078111W WO 2013084285 A1 WO2013084285 A1 WO 2013084285A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
wheel
battery
power transmission
motor
Prior art date
Application number
PCT/JP2011/078111
Other languages
French (fr)
Japanese (ja)
Inventor
千尋 川端
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2013547978A priority Critical patent/JP5771284B2/en
Priority to PCT/JP2011/078111 priority patent/WO2013084285A1/en
Publication of WO2013084285A1 publication Critical patent/WO2013084285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle drive device that supplies power to a vehicle motor to drive the vehicle.
  • utilization of this invention is not restricted to the vehicle drive device mentioned above.
  • an electric vehicle that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
  • the first technology has a structure in which a spiral portion is provided in the electrical wiring between the vehicle body and the wheel, and this spiral portion is supported by a link provided between the vehicle body and the accelerator.
  • the electric wiring is prevented from drooping and can follow the operation such as the vertical stroke of the wheel (for example, see Patent Document 1 below).
  • the second technology is related to the wiring structure of the in-wheel motor, and the wiring from the stator coil is connected to the wiring connection part of the terminal board and is electrically integrated for each phase.
  • the third technology is that the vehicle has an inverter, a motor, and a speed reducer on the side closer to the wheel. Thereby, the size of the loop of the high-frequency current path is reduced to suppress the generation of radiation noise caused by the high-frequency current (see, for example, Patent Document 3 below).
  • the fourth technology has a configuration in which the electric wire from the vehicle body to the motor is wound in a spiral shape around the kingpin center line Ki of the suspension.
  • the part wound in a spiral shape is wound or unwound around the center line of the kingpin, preventing the hindrance of the steering by the electric wire, improving the steerability, and the durability of the electric wire (For example, refer to Patent Document 4 below).
  • the fifth technology is related to the connection of electric wires (power supply cables) that feed power from the vehicle to the wheel motor, and a connection terminal box is provided on the downstream side in the wheel rotation direction when the vehicle moves forward.
  • the sixth technology is related to the support structure for the electric power supplied from the vehicle to the wheel motor.
  • the electric cable (three-phase high-voltage cable) is encased in a sheath and supported by the cable support member.
  • the support portion is configured to be installed on the vehicle body so as to be movable in any direction such as the front-rear direction, the width direction, and the height direction of the vehicle body.
  • Patent Documents 1 to 6 are all separated into a vehicle-side inverter and a wheel-side motor, a power cable that allows a high-voltage large current to flow between the inverter and the wheels. Is required.
  • This high-voltage, high-current power cable is subjected to a bending load due to wheel rotation by steering, etc., but because of its large diameter, the durability of the cable is reduced and the steering performance cannot be improved.
  • since there is a thick power cable in the wheel space between the vehicle and the wheel it is difficult to wire so as not to interfere with the suspension, and mud, dust, rain, snow, etc. are likely to adhere and deteriorate. Because it is easy, maintenance such as replacement takes time.
  • a vehicle drive device is connected to a first storage battery that stores DC power acquired from an external power source, and the first storage battery, and the DC power is converted to AC power.
  • a first converter that converts the AC power into power
  • a power transmission means having a power transmission antenna that wirelessly transmits the AC power
  • a power receiving antenna that wirelessly receives the AC power transmitted by the power transmission antenna, and converts the AC power into DC power
  • Power receiving means having a second converter, an in-wheel motor that is mounted on a wheel hub and drives the wheel, a second storage battery that is provided on the wheel and stores DC power received by the power receiving means,
  • An inverter provided on the wheel for converting the DC power of the second storage battery into AC power
  • a drive control means for controlling the rotational drive of the in-wheel motor
  • Power supply control means for controlling wireless power supply from the power transmission means to the power receiving means, and vertical stroke detection means for detecting the vertical stroke amount of the wheel, wherein the power supply control means
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment.
  • FIG. 3 is a diagram illustrating a circuit example of the inverter.
  • FIG. 4 is a diagram illustrating a circuit example of the bidirectional chopper.
  • FIG. 5 is a diagram showing an outline of power transmission between batteries.
  • FIG. 6 is a flowchart showing the entire control content related to power transmission.
  • FIG. 7 is a flowchart showing the control content of the power running torque control.
  • FIG. 8 is a flowchart showing the control content of the regenerative torque control.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment.
  • FIG. 3 is a diagram illustrating a circuit
  • FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment.
  • FIG. 10 is a chart showing torque command values during power running.
  • FIG. 11 is a chart showing torque command values during regeneration.
  • FIG. 12 is a chart showing torque command values when the pedal is released.
  • FIG. 13 is a chart showing a motor efficiency map.
  • FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low.
  • FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • FIG. 16 is a diagram showing an outline of another power transmission between batteries.
  • FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • FIG. 16 is a diagram showing an outline of another power transmission
  • FIG. 17 is a flowchart illustrating another example of a wireless power transmission control procedure.
  • FIG. 18A is a diagram of a structure example of a wheel and a power transmission antenna (part 1).
  • FIG. 18-2 is a diagram of a structure example of a wheel and a power transmission antenna (part 2).
  • FIG. 19 is a flowchart illustrating an example of a power transmission control procedure based on the vertical stroke amount of the wheel.
  • FIG. 20 is a flowchart illustrating another example of the control procedure of power transmission based on the vertical stroke amount of the wheel.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • the vehicle 100 is a four-wheel drive vehicle having left and right front wheels FL and FR and left and right rear wheels RL and RR.
  • the hubs of these four wheels FL, FR, RL, RR are provided with in-wheel type motor units M1 to M4, respectively, and are driven independently.
  • Each of the motor units M1 to M4 is provided with an inverter circuit (described later) for driving the motor, a second battery, and the like.
  • Each inverter circuit is provided with motor units M1 to M4 based on the control of the controller (ECU) 101. To drive. Various information is input to this controller 101, and as a result of torque distribution, motors (in-wheel motors) provided in the motor units M1 to M4 are driven.
  • Input to the controller 101 includes the following.
  • a steering angle is input from the handle 102.
  • the accelerator pedal 103 From the accelerator pedal 103, the total torque command value is input.
  • a brake amount is input from the brake pedal 104.
  • a shift brake amount is input from the shift brake 105.
  • Select positions such as R, N, and D are input from the selector 106.
  • the motor units M1 to M4 of the wheels FL, FR, RL, and RR are provided with sensors that detect the rotational speed V, and the rotational speeds Vfl, Vfr, and RR of the wheels FL, FR, RL, and RR are provided. Vrl and Vrr are input to the controller 101.
  • the vehicle 100 is provided with an acceleration sensor and a yaw rate sensor (not shown), and the detected acceleration and yaw rate are input to the controller 101.
  • the controller 101 drives each wheel FL, FR, RL, RR based on the above input.
  • the control signals S1 to S4 for driving are appropriately torque-distributed for each wheel FL, FR, RL, and RR, and supplied to the motor units M1 to M4.
  • the vehicle 100 is equipped with a battery and supplies power to the entire vehicle 100.
  • the battery is provided on the vehicle side, and is provided between the first storage battery (first battery) 111 that stores DC power acquired from an external power source outside the vehicle, and the motor units M1 to M4. It consists of the 2nd storage battery (2nd battery) to which electric power is transmitted. Motor units M1 to M4 of each wheel FL, FR, RL, RR are driven by the electric power stored in the second battery.
  • secondary batteries such as nickel metal hydride and lithium ion, fuel cells, and the like are applied.
  • An electric double layer capacitor may be used instead of the battery.
  • L1 to L4 are power supply lines.
  • This regeneration refers to power generation using the back electromotive force generated in the motor by relaxing the operation of the brake pedal 104 by the driver who drives the vehicle 100 and the depression of the accelerator pedal 103 during traveling.
  • the voltage converter includes a first converter (DC-AC converter) 121 (121a to 121d) provided on the vehicle side and an AC-DC converter (described later) provided in each of the wheel side motor units M1 to M4. ).
  • Power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) for wirelessly transmitting power are provided on the vehicle side and the wheel side.
  • the controller 101 controls the supply of the power sources L1 to L4 that can be supplied from the first battery 111 on the vehicle side to the motor units M1 to M4 for each wheel by the control signals S11 to S14.
  • DC power is converted into AC power by the DC-AC converter 121 (121a to 121d) on the vehicle side.
  • power is wirelessly transmitted to the motor units M1 to M4 on the wheel side by the pair of power transmission antennas 122 (122a to 122d) and 123 (123a to 123d).
  • AC power is converted into DC power by an AC-DC converter provided in the wheel side motor units M1 to M4, and then supplied to the second battery.
  • Inverters 203 (203a to 203d) to be described later drive the motors of the motor units M1 to M4 using the electric power stored in the second battery.
  • FIG. 2 is a block diagram showing the configuration of the vehicle drive device.
  • the vehicle drive device 200 supplies power to the motor to drive the motor. Further, power transmission between the first battery 111 and the second battery 212a is controlled according to the traveling state of the vehicle 100 and the like.
  • a first battery 111 is provided on the vehicle 100 side, and is connected to the DC-AC converter 121a via the power line L1.
  • the DC-AC converter 121a converts DC power into AC power and outputs the AC power to the power transmission antenna (power transmission antenna) 122a.
  • the wheel side motor unit M1 is provided with a power transmission antenna (power receiving antenna) 123a paired with the power transmission antenna 122a.
  • the power transmission antenna 123a receives the power transmitted from the vehicle-side power transmission antenna 122a.
  • a wound coil can be used for these power transmission antennas 122a and 123a, and power can be transmitted between the vehicle 100 and the wheel motor unit M1 in a non-contact manner.
  • the power received by the power transmission antenna 123a is converted into DC power by the second converter (AC-DC converter) 201a and output to the bidirectional chopper 202a.
  • the bidirectional chopper 202a is a circuit for performing power transmission in both directions (forward direction or reverse direction).
  • the output of the bidirectional chopper 202a is output to the second battery 212a.
  • the power of the first battery 111 on the vehicle side is supplied to the second battery 212a on the wheel side (in the positive direction) and stored in the second battery 212a, and the motor M in the motor unit M1 is connected via the inverter 203a. To drive the motor M.
  • the bidirectional chopper 202a to AC-DC converter 201a to power transmission antenna 123a to power transmission antenna 122a to Power can be transmitted via the path (power supply line L1) from the DC-AC converter 121a to the first battery 111 (reverse direction).
  • power can be stored in the first battery 111 via the second battery 212a.
  • the AC-DC converter 201a and the DC-AC converter 121a are both bidirectional. In this case, the AC-DC converter 201a performs DC-AC conversion, and the DC-AC converter 121a is AC-DC. Perform DC conversion. Further, 123a is a power transmission antenna, and 122a is a power reception antenna.
  • the controller 101 provided in the vehicle 100 includes a power supply control unit (remaining amount control unit) 221 that controls power supply to the power receiving unit, and a drive control unit (torque control unit) 222 that controls rotational driving of the wheels. Yes.
  • the remaining amount control unit 221 controls power supply to the second battery 212a.
  • the remaining amount control unit 221 detects the battery amounts (remaining battery amounts) of the first battery 111 and the second battery 212a. For example, when the remaining battery amount of the second battery 212a decreases, DC-AC conversion is performed. Power is transmitted from the vehicle 100 to the wheel motor unit M1 to the unit 121a and the AC-DC converter 201a via the control signal S11. At this time, the bidirectional chopper 202a performs power transmission in the positive direction from the vehicle 100 to the motor unit M1 by the control signal S11.
  • the remaining amount control unit 221 also uses the control signal S11 when performing power transmission in the reverse direction from the motor unit M1 to the vehicle side during regeneration of the motor M.
  • the presence / absence of transmission is controlled for the bidirectional chopper 202a.
  • power transmission from the second battery 212a toward the first battery is not performed.
  • the direction of power transmission is switched from the second battery 212a to the first battery 111.
  • the torque control unit 222 distributes the torque of all torque command values for each wheel FL, FR, RL, RR according to the running state.
  • the torque distribution value for the inverter 203a is output by the control signal S1a.
  • the motor unit M1 outputs the current value and voltage value of the second battery 212a to the controller 101 as a signal S1b, and outputs the rotation speed of the motor M to the controller 101 as a signal S1c.
  • control signals S1a to S1c and S11 are transmitted via a control line wired between the vehicle 100 and the motor unit M1 on the wheel side. Since these control signals S1a to S1c and S11 only need to be able to transmit data, a thin line can be used as a control line, and it is not necessary to use a thick line that performs large-capacity power transmission. There is no reduction.
  • FIG. 3 is a diagram illustrating an example of an inverter circuit.
  • the inverter 203a converts the DC power supplied from the second battery 212a into the three-phase AC power of the motor M.
  • a diode 301 and a driving transistor 302 are provided in each of the U, V, and W phases ⁇ , and a sine wave whose voltage and frequency are controlled by PWM modulation is generated and supplied to each phase of the motor M. Rotating drive.
  • FIG. 4 is a diagram illustrating a circuit example of a bidirectional chopper.
  • the bidirectional chopper 202 a includes a primary side half bridge circuit 401, a secondary side half bridge circuit 402, and a reactor 403.
  • the primary half bridge circuit 401 includes a switching element 404 connected to the AC-DC converter 201a and a diode 405.
  • the secondary half bridge circuit 402 includes a switching element 406 connected to the second battery 212a and a diode 407.
  • the reactor 403 is connected between the primary side and the secondary side. Under the control of the switching elements 404 and 406, forward power transmission from the primary side to the secondary side or reverse power transmission from the secondary side to the primary side can be performed via the reactor 403.
  • the motor M is supplied by supplying DC power from the vehicle 100 side. Can be driven. At this time, the supply of DC power between the vehicle 100 and the wheel motor unit M1 does not require a large current. This is because the electric power stored in the second battery 212a is used for driving the motor, and the amount of electric power necessary for outputting a large torque is stored in the second battery 212a with some margin. Just keep it. Therefore, if electric power transmission between the first battery 111 and the second battery 212a is continuously performed, it is not necessary to pass a large current. For this reason, the power transmission antennas 122a and 123a are provided in the vehicle 100 and the motor unit M1 of the wheel, respectively, so that non-contact wireless power transmission can be performed.
  • FIG. 5 is a diagram showing an outline of power transmission between batteries.
  • four motor units M1 to M4 are provided, and the first battery 111 having a relatively large capacity for driving the motors M of the four motor units M1 to M4 is used.
  • the second battery 212a provided in each of the motor units M1 (and M2 to M4) only needs to drive a single motor M, can be used with a relatively small capacity, and can reduce the weight.
  • the power transmission between the first battery 111 and the second battery 212a is such that the remaining amount (current value B1) of the second battery 212a in the motor unit M1 always approaches the target remaining amount value BS (Set). Control. This control is performed by the remaining amount control unit 221 of the controller 101.
  • the target remaining amount value BS is set to a predetermined value between the charging upper limit value BU (Upper) and the charging lower limit value BL (Lower).
  • RL (Lower) is a difference between the current value B1 and the charging lower limit value BL, and is a capacity that can be used by the second battery 212a.
  • the power transmission direction is bidirectional, that is, the forward direction and the reverse direction.
  • the positive direction is the direction from the first battery 111 to the second battery 212a.
  • the reverse direction is the direction from the second battery 212 a to the first battery 111.
  • the controller 101 basically has 1. Power transmission in the positive direction is performed during power running control. Power running control is performed, for example, when the depression of the accelerator pedal 103 is detected. 2. Power transmission in the reverse direction is performed during regenerative control. The regeneration control is performed, for example, when the depression of the brake pedal 104 is detected.
  • the controller 101 controls the regenerative power at the time of regeneration so that the current charging value B1 does not exceed the charging upper limit value BU of the second battery 212a. Further, the power running power during power running is controlled so that the current charge value B1 does not fall below the charge lower limit value BL of the second battery 212a.
  • FIG. 6 is a flowchart showing the entire control content related to power transmission. The process of power transmission and torque control performed by the controller 101 is shown. First, the controller 101 detects the current traveling speed with the sensors of the motor units M1 to M4. Further, depression of the accelerator pedal 103 and the brake pedal 104 is detected (step S701).
  • step S702 the combination of the current traveling state and the control mode is specified (step S702). as mentioned above, 1.
  • power running control is specified. 2.
  • regeneration control is specified. other than this, 3.
  • the power running control is specified. In this case, the pseudo creep torque described later is controlled. 4).
  • regeneration control is specified. In this case, a pseudo engine brake, which will be described later, is controlled. 5.
  • depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is medium (not fast and not slow), it is specified that there is no control (coasting operation).
  • step S703 it is determined which control mode is used (step S703).
  • step S703 power running control
  • step S704 power running torque control
  • step S706 When the control mode is regenerative control (step S703: regenerative), regenerative torque control is performed (step S705), and the process proceeds to step S706. If the control mode is coasting (step S703: coasting), no control is performed and the process proceeds to step S706.
  • step S706 the above-described wireless power transmission control is performed (step S706), and the process ends.
  • the controller 101 performs the above processes continuously over time.
  • FIG. 7 is a flowchart showing the control content of the power running torque control. The detailed control content of power running torque control shown to step S704 of FIG. 6 is shown.
  • the controller 101 detects each value of the second battery 212 (212a to 212d, where 212b to 212d indicate the second batteries of the motor units M2 to M4, respectively) provided in the motor units M1 to M4 ( Step S801).
  • the charging lower limit value of the second battery 212 (212a to 212d) is BL, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4.
  • the current values B1 to B4 of the second batteries 212a to 212d of the motor units M1 to M4 are always different depending on the driving state of the motor M.
  • torque distribution values T1 to T4 to each wheel are determined based on the depression amount of the accelerator pedal 103 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed.
  • the necessary powering powers W1 to W4 are calculated by the method (step S802).
  • capacitance RL which can use the electric power of the 2nd battery 212 is calculated (step S803).
  • the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively
  • Usable capacities RL1 to RL4 current values B1 to B4—charge lower limit BL Calculated by
  • step S804 the power running powers W1 to W4 required by the motor units M1 to M4 are compared with the capacities RL1 to RL4 usable in the second battery 212 (212a to 212d) calculated in step S803 (step S804).
  • step S804: Yes when the power running power W1 to W4 required for each motor unit M1 to M4 exceeds the capacity RL1 to RL4 usable by the corresponding second battery 212 (212a to 212d) (step S804: Yes), The torque distribution value of each wheel is recalculated so that the power running power is less than the usable capacities RL1 to RL4 (step S805). That is, when torque distribution is performed on all torque command values, the torque distribution value to the motor unit of the second battery 212 having a small remaining amount is decreased, and the torque distribution values of other motor units are also decreased at that ratio.
  • step S804 if the power running power W1 to W4 necessary for each of the motor units M1 to M4 is within the capacity RL1 to RL4 that can be used by the corresponding second battery 212 (212a to 212d) in step S804 (No in step S804).
  • the process of step S805 is not performed, and the process proceeds to step S806.
  • step S806 power running torque control is performed using the torque distribution values for the motor units M1 to M4 (step S806), and the process ends.
  • FIG. 8 is a flowchart showing the control content of the regenerative torque control. The detailed control content of regenerative torque control shown to step S705 of FIG. 6 is shown.
  • the motor M generates electric power.
  • the controller 101 detects each value of the second battery 212 (212a to 212d) provided in each of the motor units M1 to M4 (step S901).
  • the upper limit of charge of the second battery 212 is BU
  • the current value (remaining amount) is B1 to B4
  • the current voltage is V1 to V4.
  • torque distribution values T1 to T4 for each wheel are determined based on the depression amount of the brake pedal 104 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed.
  • the regenerative power W1 to W4 is calculated by the method (step S902).
  • step S903 the capacity
  • the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
  • Regenerative capacities RU1 to RU4 charge upper limit value BU ⁇ current values B1 to B4 Calculated by
  • step S904 the regenerative power W1 to W4 in each of the motor units M1 to M4 is compared with the capacity RU that can be regenerated by the second battery 212 (212a to 212d) calculated in step S903 (step S904).
  • the regenerative power W1 to W4 of each motor unit M1 to M4 exceeds the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) (step S904: Yes)
  • the regenerative power The torque distribution value of each wheel is recalculated so that becomes less than the capacity RU1 to RU4 that can be regenerated (step S905). That is, when all torque command values are torque-distributed, the torque distribution value to the motor unit of the second battery 212 having a large remaining amount is decreased, and the torque distribution values of the other motor units are also decreased at that ratio.
  • step S904 if the regenerative power W1 to W4 of each motor unit M1 to M4 is within the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) in step S904 (step S904: No), step S904 is performed. The process proceeds to step S906 without performing the process of S905.
  • step S906 regenerative torque control is performed using the torque distribution values for the motor units M1 to M4 (step S906), and the process ends.
  • FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment.
  • power transmission to the second battery 212a provided in the motor unit M1 will be described as an example.
  • similar processing is performed for the second batteries 212b to 212d provided in the other motor units M2 to M4. Good.
  • the controller 101 detects each value of the second battery 212a (step S1001).
  • the target remaining amount of the second battery 212a is BS
  • the current value (remaining amount) is B1
  • the current voltage is V1.
  • the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
  • an upper limit value Cmax at which electric power can be transmitted and electric power D to be transmitted are calculated by the following formula (step S1002).
  • the electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1.
  • the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
  • the power value of power transmission is determined (step S1003).
  • the power value of power transmission is performed by using the smaller one of the absolute value
  • step S1003 if the absolute value of power D to be transmitted does not exceed the upper limit Cmax that allows power transmission (step S1003: No), step S1004 is not performed and the power D to be transmitted is used as it is. The process proceeds to S1005.
  • step S1005 the differential capacity D is transmitted from the first battery 111 to the second battery 212a via the wireless power line L1. If the value of D is negative, it is during regeneration, and power is transmitted from the second battery 212a to the first battery 111 via the wireless power line L1 (step S1005).
  • FIG. 10 is a chart showing torque command values during power running. The relationship between the power running torque command value (vertical axis) and the depression amount (horizontal axis) of the accelerator pedal 103 is shown. As shown in the figure, the torque control unit 222 of the controller 101 does not control the amount of depression of the accelerator pedal 103 and the total torque command value at the time of power running in a proportional linear relationship, but the amount of depression of the accelerator pedal 103. On the other hand, a power running torque command value is output with a curve that gradually changes. Further, the power running torque command value at the time of backward movement is set to be gentler than that at the time of forward movement of the vehicle 100.
  • FIG. 11 is a chart showing torque command values during regeneration. The relationship of the regenerative torque command value (vertical axis) with respect to the depression amount (horizontal axis) of the brake pedal 104 is shown. As shown in the figure, the controller 101 controls the regenerative torque command value to have a substantially linear relationship with respect to the depression amount of the brake pedal 104. Further, the regenerative torque command value at the time of reverse movement is set so as to change more gently than at the time of forward movement of the vehicle.
  • FIG. 12 is a chart showing torque command values when the pedal is released. When neither the accelerator pedal 103 nor the brake pedal 104 is depressed, the controller 101 changes the torque command value according to the vehicle speed as shown in the figure.
  • pseudo creep torque is generated as positive (+) torque.
  • a pseudo engine brake is generated as a negative ( ⁇ ) torque.
  • the pseudo engine brake is applied when the vehicle speed is about 40 km / h or higher, and the largest torque value is applied when the vehicle speed is about 60 km / h. At a speed of about 60 km / h or more, a small torque value is gradually applied.
  • the coasting operation is performed with the torque command value set to zero.
  • the characteristics of the torque command value with respect to the vehicle speed may be changed for each switched mode.
  • the pseudo creep torque value is reduced in the eco mode compared to the normal mode, and the pseudo engine brake has a large negative torque value.
  • FIG. 13 is a chart showing a motor efficiency map.
  • the efficiency map 1400 shows the rotational speed-torque characteristics of the motor M, with the horizontal axis representing the rotational speed and the vertical axis representing the torque.
  • an efficiency map 1400 of the illustrated four quadrant is stored in advance.
  • the first to fourth quadrants of the efficiency map 1400 are respectively 1. Forward running: A state where the accelerator pedal is being depressed while moving forward. 2. Reverse power running: A state where the accelerator pedal is depressed during reverse. Reverse regeneration: State where the brake pedal is depressed during reverse. Normal regenerative regeneration: A state in which the brake pedal is depressed during forward travel.
  • the torque control unit 222 of the controller 101 calculates the total torque command amount from the depression amount of the accelerator pedal 103 and the brake pedal 104.
  • the total torque value is distributed to a torque distribution value T for each motor M of each wheel by a predetermined torque distribution.
  • the controller 101 detects the rotational speeds Vfl, Vfr, Vrl, Vrr by the sensors of the motor units M1 to M4 while the vehicle 100 is traveling.
  • the rotation speed is described as ⁇ .
  • the controller 101 refers to the efficiency map 1400 for the motor M, and obtains the efficiency ⁇ from the torque T and the rotational speed ⁇ .
  • the controller 101 estimates the power consumption at the time of power running, and the regenerative power at the time of regeneration from the following formula
  • Power efficiency ⁇ (T ⁇ ⁇ ) / (V ⁇ I)
  • Regeneration efficiency ⁇ (V ⁇ I) / (T ⁇ ⁇ ) (V and I are the voltage and current of the motor M or the voltage and current of the inverter 203)
  • V ⁇ I corresponds to the power consumption of the motor M during power running and the regenerative power W during regeneration.
  • the controller 101 obtains the current value and the usable or regenerative power amount for the second battery 212 (212a to 212d). Then, the amount of power that can be used or regenerated is compared with the calculated power consumption (regenerative power), and the torque distribution value for the motor M is corrected so as to be within the range.
  • the efficiency map 1400 the power consumption (regenerative power) of the motor M can be determined more accurately. As a result, it is possible to accurately estimate the amount of power required during power transmission (power D to be transmitted), accurately calculate the amount of power during power transmission, and perform efficient power transmission. Become.
  • the efficiency map 1400 is not limited to acquiring in advance.
  • the efficiency map 1400 may be created while the vehicle 100 is traveling.
  • the controller 101 includes an efficiency map generation unit, acquires the power consumption and the rotation speed of the motor M during traveling, and generates the efficiency map 1400 described above.
  • the configuration may be such that the efficiency map 1400 acquired in advance is updated.
  • Detects the torque value from the current I flowing through the motor M
  • Detects the rotational speed of the wheel by a rotational position sensor such as a resolver
  • Detects the current and voltage by a current sensor and a voltage sensor provided between the second battery 212a and the inverter 203a
  • the controller 101 can update the efficiency map 1400 stored in the storage unit at any time during traveling of the vehicle 100 by the above detection and calculation.
  • FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low.
  • the total torque command value is input as 100 [Nm] to the controller 101 by, for example, depressing the accelerator pedal 103.
  • the remaining amount of the battery of the second battery 212 (corresponding to 212b) provided in the motor unit M2 of the left front wheel FL is reduced, and the motor M of the left front wheel FL becomes 16%.
  • [Nm] can be output.
  • the torque of the left front wheel FL is simply lowered, the driving force of the left and right front wheels becomes unbalanced, which causes an effect that the direction of travel of the vehicle 100 changes.
  • the torque controller 222 of the controller 101 redistributes the torque as shown in FIG. That is, the torque is distributed to the left and right front wheels so that the same torque 16 [Nm] is obtained. Further, in order to make the left and right rear wheels the same ratio corresponding to the ratio (4/5) in which the torque of the front wheels is changed from 20 [Nm] to 16 [Nm]], 30 [Nm] to 24 [Nm] Change the torque to]. In this case, the total torque value is changed from 100 [Nm] to 80 [Nm].
  • the cooperative brake is a brake that generates a necessary braking force by combining a regenerative brake by the motor M and a mechanical brake by hydraulic control.
  • a regenerative brake by the motor M
  • a mechanical brake by hydraulic control.
  • a method of always using a regenerative brake and a mechanical brake at a predetermined ratio a method of using a regenerative brake up to a predetermined braking amount, and using a mechanical brake when a predetermined braking amount is exceeded,
  • a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount is a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount.
  • FIG. 15-1 is a diagram illustrating the control characteristics of the cooperative brake used in the embodiment.
  • the horizontal axis is speed, and the vertical axis is braking torque.
  • the motor M has a low rotation speed when the speed is low. Accordingly, as shown in the figure, when such a speed is low, the back electromotive force is also small, and thus a large regenerative brake cannot be obtained.
  • the controller 101 of the embodiment not only the regenerative brake of the motor M but also the coordinated brake control for obtaining the insufficient braking torque that cannot be obtained by the regenerative brake by the mechanical brake is performed.
  • the braking torque of the mechanical brake has a characteristic opposite to that of the regenerative brake, and increases as the speed decreases and decreases as the speed increases. Thereby, the braking torque value corresponding to the depression amount of the brake pedal 104 is obtained by the braking force of both the regenerative brake and the mechanical brake.
  • the controller 101 reduces the ratio of the regenerative brake braking torque in the same manner as at the low speed, thereby reducing the mechanical type. Cooperative brake control is performed so as to obtain a required braking torque by increasing the ratio of the braking torque by the brake.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • the ratio of the braking torque by the regenerative brake is gradually reduced, and conversely, the ratio by the mechanical brake is increased.
  • the braking torque is generated not only by the regenerative brake by the motor M but also by the cooperative brake control using the mechanical brake together, so that the necessary braking torque can be generated over a wide range of speeds. It can be done safely. Even when the second battery 212 cannot be charged due to a change in the charge capacity of the second battery 212, the necessary braking torque can be obtained.
  • FIG. 16 is a diagram showing an outline of another power transmission between batteries.
  • two items are added to each item regarding the battery amount of the second battery 212a. These are the wireless discharge execution determination value BJ + (plus) and the wireless charge execution determination value BJ- (minus).
  • the wireless discharge execution determination value BJ + is set between the target remaining amount value BS of the second battery 212a and the charge upper limit value BU.
  • the wireless charging execution determination value BJ- is set between the target remaining amount value BS and the charging lower limit value BL.
  • FIG. 17 is a flowchart showing another example of a wireless power transmission control procedure.
  • the controller 101 detects each value of the second battery 212a (step S1701).
  • the target remaining amount of the second battery 212a is BS
  • the current value (remaining amount) is B1
  • the current voltage is V1.
  • the maximum current of the wireless power supply line L1 for the motor unit M is Amax.
  • This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
  • the upper limit side wireless discharge execution judgment value BJ + and the lower limit side wireless charging execution judgment value BJ- are used.
  • step S1702 it is determined whether the current value B1 of the second battery 212a is less than the lower limit wireless charging execution determination value BJ ⁇ (step S1702). If the current value B1 of the second battery 212a is less than the lower limit side wireless charging execution determination value BJ ⁇ (step S1702: Yes), a value obtained by subtracting the current value B1 from the lower limit side wireless charging execution determination value BJ ⁇ is transmitted. It is assumed that the power D is desired (step S1703).
  • step S1704 if the current value B1 of the second battery 212a exceeds the lower limit side wireless charge execution determination value BJ- (step S1702: No), the current value B1 of the second battery 212a is the upper limit side wireless discharge execution determination value. It is determined whether or not BJ + is exceeded (step S1704). If the current value B1 of the second battery 212a exceeds the upper limit side wireless discharge execution determination value BJ + (step S1704: Yes), it is desired to transmit a value obtained by subtracting the current value B1 from the upper limit side wireless discharge execution determination value BJ +. The power is D (step S1705). If the current value B1 of the second battery 212a is less than the upper limit wireless discharge execution determination value BJ + (step S1704: No), the process ends.
  • the electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1.
  • the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
  • the power value of power transmission is determined (step S1707).
  • the power value of power transmission is performed by using the smaller one of the absolute value
  • step S1707 if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1707: No), the processing of step S1708 is not performed and the power D to be transmitted is used as it is. The process moves to S1709.
  • step S1709 the differential capacity D is wirelessly transmitted from the first battery 111 to the second battery 212a. If the value of D is negative, power is transmitted wirelessly from the second battery 212a to the first battery 111 (step S1709).
  • the wireless power transmission amount is set such that the current value approaches the wireless charging execution determination value or the wireless discharge execution determination value. This makes it difficult to approach the charge upper limit value and the charge lower limit value, thereby reducing the need for power running torque and regenerative torque limitation to prevent overcharge and overdischarge.
  • FIG. 18A is a structural example in which the power transmission antenna is provided perpendicular to the ground.
  • a wheel 1800 of the vehicle 100 is formed by attaching a tire 1802 to a wheel 1801.
  • a motor (inner motor) M is provided inside the wheel 1801.
  • Suspension 1803 is provided between the wheel 1801 and the vehicle 100, and the suspension 1803 absorbs the vertical stroke of the wheel 1800 (tire 1802) due to road surface unevenness.
  • the inverter 203, the second battery 212, the power transmission antenna 123, and the receiving circuit (including the AC-DC converter 201 and the bidirectional chopper 202) 1810 are provided on the wheel 1800 side.
  • a power transmission antenna 122 and a transmission circuit (including a DC-AC conversion unit 121) 1811 are provided so as to face the power transmission antenna 123.
  • the surfaces of the pair of power transmission antennas 122 and 123 are provided perpendicular to the ground.
  • the vertical stroke amount of the wheel 1800 can be detected by the following method. 1.
  • the suspension 1803 is provided with a sensor for detecting the vertical stroke amount.
  • An acceleration sensor is provided in the vehicle 100 to detect the vertical stroke amount of the vehicle 100, and the vertical stroke amount of the wheel 1800 is calculated (estimated) by the vertical stroke amount calculation means provided in the controller 101.
  • an acceleration sensor included in a navigation device attached to the vehicle 100 may be used.
  • a distance sensor is provided in the vehicle 100 to detect the distance of the vehicle 100 with respect to the ground, and a vertical stroke amount calculation unit provided in the controller 101 calculates (estimates) the vertical stroke amount of the wheel 1800.
  • Fig. 18-2 shows a structural example in which the power transmission antenna is provided horizontally with respect to the ground.
  • a pair of power transmission antennas 122 and 123 are provided horizontally above the ground at the upper position of the wheel 1800.
  • the center does not shift between the pair of power transmission antennas 122 and 123, but the distance between the power transmission antenna 122 and the rod 123 changes.
  • the wireless power transmission efficiency changes.
  • FIG. 19 is a flowchart showing an example of a power transmission control procedure based on the vertical stroke amount of the wheel.
  • the remaining amount control unit 221 of the controller 101 detects the vertical stroke amount of the wheel 1800 (step S1901). Then, it is determined whether the detected vertical stroke amount of the wheel 1800 is equal to or smaller than a preset threshold value (step S1902). If the detected vertical stroke amount of the wheel 1800 is equal to or less than a preset threshold value (step S1902: Yes), wireless power transmission using the pair of power transmission antennas 122 and 123 is performed (step S1903). On the other hand, if the detected vertical stroke amount of the wheel 1800 exceeds a preset threshold value (step S1902: No), wireless power transmission is not performed (step S1904).
  • step S1901 the root mean square or peak value transition of the vertical stroke amount of the wheel 1800 detected in a predetermined section is obtained, and in step S1902, it is compared with a threshold value.
  • step S1901 when the configuration is such that the vertical stroke amount of the vehicle 100 is detected by the acceleration sensor, the offset of the gravitational acceleration is removed, and when the configuration is such that the distance sensor detects the distance, the distance between the distance sensor and the ground when stationary. The vertical stroke amount is detected after removing the offset. By these processes, the vertical stroke amount can be detected accurately and stably.
  • the acceleration sensor and the distance sensor are both provided in the vehicle 100.
  • the configuration is provided in the wheel 1800, the vertical stroke amount of the wheel 1800 can be directly detected.
  • FIG. 20 is a flowchart showing another example of the power transmission control procedure based on the vertical stroke amount of the wheel.
  • the threshold value for determining whether or not power supply is performed is changed according to the remaining battery level.
  • the remaining amount control unit 221 of the controller 101 detects the remaining amount of the second battery 212 based on the signal S1b (step S2001). Then, it is determined whether the remaining amount of the second battery 212 is equal to or greater than a set threshold value (for example, a target remaining amount value BS or more) (step S2002). If the remaining amount of the second battery 212 is equal to or greater than the set threshold value (step S2002: Yes), the default value is set as the vertical stroke threshold value (step S2003).
  • a set threshold value for example, a target remaining amount value BS or more
  • step S2002 if the remaining amount of the second battery 212 is less than the set threshold (second predetermined value) (step S2002: No), the upper and lower stroke threshold is changed based on the remaining amount of the second battery 212 (step S2004). ).
  • threshold data indicating a threshold relationship corresponding to the remaining amount of the second battery is stored in advance in a storage unit (not shown) of the controller 101. If the remaining amount of the second battery 212 is equal to or greater than the set threshold value, the threshold value data decreases the vertical stroke threshold value (narrows the allowable power supply range), and the difference between the second battery 212 remaining amount and the set threshold value. As the number increases, the vertical stroke threshold (third predetermined value) is increased (the power supply allowable range is increased).
  • step S2005 the vertical stroke amount of the wheel 1800 is detected. Then, it is determined whether the detected vertical stroke amount of the wheel 1800 is equal to or smaller than the threshold value set in step S2003 or step S2004 (step S2006). If the detected vertical stroke amount of the wheel 1800 is equal to or smaller than the threshold value (step S2006: Yes), wireless power transmission is performed using the pair of power transmission antennas 122 and 123 (step S2007). On the other hand, if the detected vertical stroke amount of the wheel 1800 exceeds a preset threshold value (step S2006: No), wireless power transmission is not performed (step S2008).
  • a battery is provided for each of the vehicle and the wheel, and power is transmitted between the vehicle and the wheel by non-contact radio.
  • the power transmission between the batteries is controlled so that the capacity of the second battery on the wheel side always approaches the target remaining amount value. As a result, stable power can be supplied to the motor at all times.
  • power transmission is controlled according to the running state of the vehicle, in response to power running and regeneration, torque distribution to each motor, and changes in braking torque, ensuring driving safety and power transmission. Can be performed efficiently.
  • the battery can be prevented from running out by transmitting power even if the transmission efficiency is low.
  • the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

This vehicle drive system is provided with: a first battery (111) for storing direct current (DC) power; a DC-AC converter (121a) for converting DC power from the first battery to alternating current (AC) power; a power transmitting means having a power transmitting antenna (122a) that wirelessly transmits AC power; a power receiving antenna that wirelessly receives the AC power transmitted by the power transmitting antenna; a power receiving means having an AC-DC converter (201a) that converts AC power to DC power; a motor (M) that is mounted to the hub of a wheel; a second battery (212a) that is provided to the wheel, and stores the DC power received by the power receiving means; an inverter (203a) that converts DC power from the second battery to AC power; a torque controller (222) that controls the rotary drive of the motor; a residual quantity controller (221) that controls the wireless supply of power from the power transmitting means to the power receiving means; and a vertical stroke detector that detects the vertical stroke volume of the wheel. The residual quantity controller conducts the wireless supply of power from the power transmitting means to the power receiving means if the detected vertical stroke volume is less than a prescribed value.

Description

車両駆動装置Vehicle drive device
 この発明は、車両のモータへ電源を供給し車両を駆動する車両駆動装置に関する。ただし、この発明の利用は、上述した車両駆動装置には限られない。 The present invention relates to a vehicle drive device that supplies power to a vehicle motor to drive the vehicle. However, utilization of this invention is not restricted to the vehicle drive device mentioned above.
 従来、移動体である電気自動車(EV)にモータを設け、車輪を駆動する構成において、モータを車輪に設けるインホイールモータ構造とし、このモータに対する電源を車両から供給するものとして、下記の各技術が開示されている。 Conventionally, an electric vehicle (EV) that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
 一つ目の技術は、車体と車輪との間の電気配線に螺旋部を設け、この螺旋部を車体とアクセルとの間に設けられたリンクに支持させる構造としている。これにより、電気配線の垂れ下がりを防止し、車輪の上下ストローク等の動作に追従できるようにしたものである(たとえば、下記特許文献1参照。)。 The first technology has a structure in which a spiral portion is provided in the electrical wiring between the vehicle body and the wheel, and this spiral portion is supported by a link provided between the vehicle body and the accelerator. As a result, the electric wiring is prevented from drooping and can follow the operation such as the vertical stroke of the wheel (for example, see Patent Document 1 below).
 二つ目の技術は、インホイールモータの配線構造にかかり、ターミナル基板の配線接続部にステータコイルからの配線を接続して各相ごとに電気的に集約する構成としている。これにより、コスト低減と組付作業を容易化でき、ステータの側方に設置位置が制約される結線用ユニットを用いず、インホイールモータの車幅方向の縮小化を達成している(たとえば、下記特許文献2参照。)。 The second technology is related to the wiring structure of the in-wheel motor, and the wiring from the stator coil is connected to the wiring connection part of the terminal board and is electrically integrated for each phase. Thereby, cost reduction and assembly work can be facilitated, and reduction of the in-wheel motor in the vehicle width direction is achieved without using a connection unit whose installation position is restricted to the side of the stator (for example, (See Patent Document 2 below.)
 三つ目の技術は、車両には、車輪(ホイール)に近い側に、インバータ、モータ、減速機を配置している。これにより、高周波電流の経路のループの大きさを小さくして高周波電流に起因する放射ノイズの発生を抑制している(たとえば、下記特許文献3参照。)。 The third technology is that the vehicle has an inverter, a motor, and a speed reducer on the side closer to the wheel. Thereby, the size of the loop of the high-frequency current path is reduced to suppress the generation of radiation noise caused by the high-frequency current (see, for example, Patent Document 3 below).
 四つ目の技術は、車体からモータへの電線をサスペンションのキングピン中心線Kiを中心として渦巻き状に巻いた構成としている。これにより、ホイールの転舵時に渦巻き状に巻かれた部分がキングピン中心線を中心として巻き取られまたは巻き戻され、電線による転舵の妨げを防止して転舵性を高め、電線の耐久性を確保している(たとえば、下記特許文献4参照。)。 The fourth technology has a configuration in which the electric wire from the vehicle body to the motor is wound in a spiral shape around the kingpin center line Ki of the suspension. As a result, when the wheel is steered, the part wound in a spiral shape is wound or unwound around the center line of the kingpin, preventing the hindrance of the steering by the electric wire, improving the steerability, and the durability of the electric wire (For example, refer to Patent Document 4 below).
 五つ目の技術は、車両から車輪のモータへ給電する電線(給電ケーブル)の接続にかかり、車両前進時のホイールの回転方向の下流側に接続端子箱を設けた構成としている。これにより、ホイールの内周面に異物が固着した状態で車両が前進した場合に、異物が給電ケーブルよりも先に端子箱に衝突して粉砕され、給電ケーブルの損傷を抑制している(たとえば、下記特許文献5参照。)。 The fifth technology is related to the connection of electric wires (power supply cables) that feed power from the vehicle to the wheel motor, and a connection terminal box is provided on the downstream side in the wheel rotation direction when the vehicle moves forward. As a result, when the vehicle moves forward in a state where foreign matter is fixed to the inner peripheral surface of the wheel, the foreign matter collides with the terminal box before the power supply cable and is crushed, thereby suppressing damage to the power supply cable (for example, , See Patent Document 5 below).
 六つ目の技術は、車両から車輪のモータへ給電する電線の支持構造にかかり、電線(三相高圧ケーブル)を一括してシースで内包してケーブル支持部材で支持し、このケーブル支持部材の支持部を車体の前後方向、幅方向および高さ方向等の任意の方向に移動可能となるように車体に設置した構成としている。これにより、車輪が凸凹路を転動するときや運転者により操舵されるときなど、モータと電源側との直線距離が変化しても、三相高圧ケーブルが支持部と共に車体の前後方向、幅方向および高さ方向に移動し、三相高圧ケーブルの撓み部分が変形することでインホイールモータとバッテリ側との直線距離の変化が吸収されて三相高圧ケーブルの耐久性を向上させている(たとえば、下記特許文献6参照。)。 The sixth technology is related to the support structure for the electric power supplied from the vehicle to the wheel motor. The electric cable (three-phase high-voltage cable) is encased in a sheath and supported by the cable support member. The support portion is configured to be installed on the vehicle body so as to be movable in any direction such as the front-rear direction, the width direction, and the height direction of the vehicle body. As a result, even if the linear distance between the motor and the power source changes, such as when the wheel rolls on a bumpy road or is steered by the driver, the three-phase high-voltage cable and the support section The three-phase high-voltage cable is moved in the direction and height direction, and the change in the linear distance between the in-wheel motor and the battery is absorbed by the deformed portion of the three-phase high-voltage cable, thereby improving the durability of the three-phase high-voltage cable ( For example, see Patent Document 6 below.)
特開2001-301472号公報JP 2001-301472 A 特開2004-120909号公報JP 2004-120909 A 特開2005-29086号公報Japanese Patent Laying-Open No. 2005-29086 特開2006-62388号公報JP 2006-62388 A 特開2009-96429号公報JP 2009-96429 A 特開2010-221902号公報JP 2010-221902 A
 しかしながら、上記の特許文献1~6に記載の技術は、いずれも車両側のインバータと、車輪側のモータとに分離されているため、インバータと車輪の間に高電圧の大電流が流せる電源ケーブルが必要となる。 However, since the techniques described in Patent Documents 1 to 6 are all separated into a vehicle-side inverter and a wheel-side motor, a power cable that allows a high-voltage large current to flow between the inverter and the wheels. Is required.
 この高電圧大電流の電源ケーブルには、操舵による車輪の回転等により撓みの負荷がかかるが、径が太いためケーブルの耐久性を低下させるとともに、操舵性を高めることができない。また、車両と車輪との間のホイールスペースに太い電源ケーブルが存在するため、サスペンションと干渉しないように配線することが困難であるとともに、泥や粉塵、雨や雪等が付着しやすく、劣化しやすいため、交換等のメンテナンスに手間がかかる。 This high-voltage, high-current power cable is subjected to a bending load due to wheel rotation by steering, etc., but because of its large diameter, the durability of the cable is reduced and the steering performance cannot be improved. In addition, since there is a thick power cable in the wheel space between the vehicle and the wheel, it is difficult to wire so as not to interfere with the suspension, and mud, dust, rain, snow, etc. are likely to adhere and deteriorate. Because it is easy, maintenance such as replacement takes time.
 上述した課題を解決し、目的を達成するため、この発明にかかる車両駆動装置は、外部電源より取得した直流電力を蓄える第1蓄電池と、前記第1蓄電池に接続され、前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナを有する送電手段と、前記送電アンテナにより送電された前記交流電力を無線受電する受電アンテナと、当該交流電力を直流電力へ変換する第2変換器を有する受電手段と、車輪のハブに装着され、当該車輪を駆動するインホイールモータと、前記車輪に設けられ、前記受電手段により受電した直流電力を蓄える第2蓄電池と、前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、前記インホイールモータの回転駆動を制御する駆動制御手段と、前記送電手段より前記受電手段への無線給電を制御する給電制御手段と、車輪の上下ストローク量を検出する上下ストローク検出手段と、を備え、前記給電制御手段は、検出された前記上下ストローク量が所定値未満の場合に前記送電手段より前記受電手段への無線給電を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, a vehicle drive device according to the present invention is connected to a first storage battery that stores DC power acquired from an external power source, and the first storage battery, and the DC power is converted to AC power. A first converter that converts the AC power into power, a power transmission means having a power transmission antenna that wirelessly transmits the AC power, a power receiving antenna that wirelessly receives the AC power transmitted by the power transmission antenna, and converts the AC power into DC power Power receiving means having a second converter, an in-wheel motor that is mounted on a wheel hub and drives the wheel, a second storage battery that is provided on the wheel and stores DC power received by the power receiving means, An inverter provided on the wheel for converting the DC power of the second storage battery into AC power; and a drive control means for controlling the rotational drive of the in-wheel motor; Power supply control means for controlling wireless power supply from the power transmission means to the power receiving means, and vertical stroke detection means for detecting the vertical stroke amount of the wheel, wherein the power supply control means has the detected vertical stroke amount When the power is less than a predetermined value, wireless power feeding from the power transmission unit to the power reception unit is performed.
図1は、実施の形態にかかる車両駆動装置が搭載された車両の構成を示す概要図である。FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted. 図2は、実施の形態にかかる車両駆動装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment. 図3は、インバータの回路例を示す図である。FIG. 3 is a diagram illustrating a circuit example of the inverter. 図4は、双方向チョッパの回路例を示す図である。FIG. 4 is a diagram illustrating a circuit example of the bidirectional chopper. 図5は、バッテリ間の電力伝送の概要を示す図である。FIG. 5 is a diagram showing an outline of power transmission between batteries. 図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。FIG. 6 is a flowchart showing the entire control content related to power transmission. 図7は、力行トルク制御の制御内容を示すフローチャートである。FIG. 7 is a flowchart showing the control content of the power running torque control. 図8は、回生トルク制御の制御内容を示すフローチャートである。FIG. 8 is a flowchart showing the control content of the regenerative torque control. 図9は、実施の形態にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment. 図10は、力行時のトルク指令値を示す図表である。FIG. 10 is a chart showing torque command values during power running. 図11は、回生時のトルク指令値を示す図表である。FIG. 11 is a chart showing torque command values during regeneration. 図12は、ペダルを離したときのトルク指令値を示す図表である。FIG. 12 is a chart showing torque command values when the pedal is released. 図13は、モータ効率マップを示す図表である。FIG. 13 is a chart showing a motor efficiency map. 図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low. 図15-1は、実施の形態で用いる協調ブレーキの制御特性を示す図である。FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment. 図15-2は、実施の形態で用いる協調ブレーキの他の制御特性を示す図である。FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment. 図16は、バッテリ間の他の電力伝送の概要を示す図である。FIG. 16 is a diagram showing an outline of another power transmission between batteries. 図17は、無線による電力伝送の制御手順の他の例を示すフローチャートである。FIG. 17 is a flowchart illustrating another example of a wireless power transmission control procedure. 図18-1は、車輪および電力伝送アンテナの構造例を示す図である(その1)。FIG. 18A is a diagram of a structure example of a wheel and a power transmission antenna (part 1). 図18-2は、車輪および電力伝送アンテナの構造例を示す図である(その2)。FIG. 18-2 is a diagram of a structure example of a wheel and a power transmission antenna (part 2). 図19は、車輪の上下ストローク量に基づく電力伝送の制御手順の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of a power transmission control procedure based on the vertical stroke amount of the wheel. 図20は、車輪の上下ストローク量に基づく電力伝送の制御手順の他の例を示すフローチャートである。FIG. 20 is a flowchart illustrating another example of the control procedure of power transmission based on the vertical stroke amount of the wheel.
 以下に添付図面を参照して、この発明にかかる車両駆動装置の好適な実施の形態を詳細に説明する。以下の説明では、各車輪にモータを備えたインホイール型の構成を例に説明する。この実施の形態では、モータ駆動の電力を無線により非接触に車両から車輪に電力伝送する構成である。 Hereinafter, preferred embodiments of a vehicle drive apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the following description, an in-wheel type configuration in which a motor is provided for each wheel will be described as an example. In this embodiment, the motor-driven power is transmitted from the vehicle to the wheels in a non-contact manner by radio.
(車両の構成)
 図1は、実施の形態にかかる車両駆動装置が搭載された車両の構成を示す概要図である。車両100は、左右の前車輪FL,FRと、左右の後車輪RL,RRを有する4輪駆動車である。これら四つの各車輪FL,FR,RL,RRのハブには、それぞれインホイール型のモータユニットM1~M4が設けられ、独立に駆動される。
(Vehicle configuration)
FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted. The vehicle 100 is a four-wheel drive vehicle having left and right front wheels FL and FR and left and right rear wheels RL and RR. The hubs of these four wheels FL, FR, RL, RR are provided with in-wheel type motor units M1 to M4, respectively, and are driven independently.
 これらモータユニットM1~M4には、それぞれモータ駆動用のインバータ回路(後述する)と、第2バッテリ等が設けられ、各インバータ回路はコントローラ(ECU)101の制御に基づき、モータユニットM1~M4を駆動する。このコントローラ101には各種情報が入力され、トルク配分された結果、各モータユニットM1~M4に設けられたモータ(インホイールモータ)を駆動する。 Each of the motor units M1 to M4 is provided with an inverter circuit (described later) for driving the motor, a second battery, and the like. Each inverter circuit is provided with motor units M1 to M4 based on the control of the controller (ECU) 101. To drive. Various information is input to this controller 101, and as a result of torque distribution, motors (in-wheel motors) provided in the motor units M1 to M4 are driven.
 コントローラ101に対する入力としては、以下がある。ハンドル102からは操舵角が入力される。アクセルペダル103からは、全トルク指令値が入力される。ブレーキペダル104からはブレーキ量が入力される。シフトブレーキ105からはシフトブレーキ量が入力される。セレクタ106からはR,N,D等のセレクトポジションが入力される。 Input to the controller 101 includes the following. A steering angle is input from the handle 102. From the accelerator pedal 103, the total torque command value is input. A brake amount is input from the brake pedal 104. A shift brake amount is input from the shift brake 105. Select positions such as R, N, and D are input from the selector 106.
 また、各車輪FL,FR,RL,RRのモータユニットM1~M4には、それぞれ回転速度Vを検出するセンサが設けられており、各車輪FL,FR,RL,RRの回転速度Vfl,Vfr,Vrl,Vrrがコントローラ101に入力される。 The motor units M1 to M4 of the wheels FL, FR, RL, and RR are provided with sensors that detect the rotational speed V, and the rotational speeds Vfl, Vfr, and RR of the wheels FL, FR, RL, and RR are provided. Vrl and Vrr are input to the controller 101.
 このほか、車両100には、加速度センサとヨーレートセンサ(不図示)が設けられ、検出した加速度およびヨーレートがコントローラ101に入力される。 In addition, the vehicle 100 is provided with an acceleration sensor and a yaw rate sensor (not shown), and the detected acceleration and yaw rate are input to the controller 101.
 コントローラ101は、上記の入力に基づき、各車輪FL,FR,RL,RRを駆動する。駆動のための制御信号S1~S4は、各車輪FL,FR,RL,RRごとに適切にトルク配分され、各モータユニットM1~M4に供給される。 The controller 101 drives each wheel FL, FR, RL, RR based on the above input. The control signals S1 to S4 for driving are appropriately torque-distributed for each wheel FL, FR, RL, and RR, and supplied to the motor units M1 to M4.
 また、車両100には、バッテリが搭載され、車両100全体に対して電源供給する。バッテリは、車両側に設けられ、車両外部の外部電源より取得した直流電力を蓄える第1蓄電池(第1バッテリ)111と、モータユニットM1~M4内部に設けられ、第1バッテリ111との間で電力伝送される第2蓄電池(第2バッテリ)とからなる。各車輪FL,FR,RL,RRのモータユニットM1~M4は、第2バッテリに蓄電された電力により駆動される。これらバッテリとしては、ニッケル水素、リチウムイオン等の二次電池や燃料電池などが適用される。また、バッテリの代わりに電気二重層キャパシタを用いてもよい。図中L1~L4が電源ラインである。 In addition, the vehicle 100 is equipped with a battery and supplies power to the entire vehicle 100. The battery is provided on the vehicle side, and is provided between the first storage battery (first battery) 111 that stores DC power acquired from an external power source outside the vehicle, and the motor units M1 to M4. It consists of the 2nd storage battery (2nd battery) to which electric power is transmitted. Motor units M1 to M4 of each wheel FL, FR, RL, RR are driven by the electric power stored in the second battery. As these batteries, secondary batteries such as nickel metal hydride and lithium ion, fuel cells, and the like are applied. An electric double layer capacitor may be used instead of the battery. In the figure, L1 to L4 are power supply lines.
 なお、回生時には、モータへの電源供給(力行)のときとは逆に、モータユニットM1~M4によって発生した電力をバッテリ側に供給する。この回生とは、車両100を運転するドライバによるブレーキペダル104の操作や、走行中にアクセルペダル103の踏み込みを緩和することによって、モータに発生する逆起電力を用いた発電を示す。 In addition, at the time of regeneration, the power generated by the motor units M1 to M4 is supplied to the battery side, contrary to the power supply (power running) to the motor. This regeneration refers to power generation using the back electromotive force generated in the motor by relaxing the operation of the brake pedal 104 by the driver who drives the vehicle 100 and the depression of the accelerator pedal 103 during traveling.
 車両側および車輪側(モータユニットM1~M4)の電源ラインL1~L4上には、それぞれ電圧変換部が設けられる。この電圧変換部は、車両側に設けられる第1変換器(DC-AC変換部)121(121a~121d)と、車輪側各モータユニットM1~M4内部に設けられるAC-DC変換部(後述する)によって構成される。車両側と車輪側には、電力を無線送電するための電力伝送アンテナ122(122a~122d)、123(123a~123d)が設けられる。 On the vehicle side and the wheel side (motor units M1 to M4), voltage converters are provided on the power supply lines L1 to L4, respectively. The voltage converter includes a first converter (DC-AC converter) 121 (121a to 121d) provided on the vehicle side and an AC-DC converter (described later) provided in each of the wheel side motor units M1 to M4. ). Power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) for wirelessly transmitting power are provided on the vehicle side and the wheel side.
 そして、コントローラ101は、車両側の第1バッテリ111から供給可能な電源ラインL1~L4の各電源を、制御信号S11~S14により、車輪別のモータユニットM1~M4に供給制御する。この際、電源ラインL1~L4の電源は、車両側のDC-AC変換部121(121a~121d)により直流電力が交流電力に変換される。そして、一対の電力伝送アンテナ122(122a~122d)、123(123a~123d)により、車輪側のモータユニットM1~M4に無線送電される。 Then, the controller 101 controls the supply of the power sources L1 to L4 that can be supplied from the first battery 111 on the vehicle side to the motor units M1 to M4 for each wheel by the control signals S11 to S14. At this time, as for the power sources of the power supply lines L1 to L4, DC power is converted into AC power by the DC-AC converter 121 (121a to 121d) on the vehicle side. Then, power is wirelessly transmitted to the motor units M1 to M4 on the wheel side by the pair of power transmission antennas 122 (122a to 122d) and 123 (123a to 123d).
 そして、車輪側のモータユニットM1~M4に設けられるAC-DC変換部により交流電力が直流電力に変換された後、第2バッテリに供給される。第2バッテリに蓄電された電力を用いて、後述するインバータ203(203a~203d)は、モータユニットM1~M4のモータを駆動する。 Then, AC power is converted into DC power by an AC-DC converter provided in the wheel side motor units M1 to M4, and then supplied to the second battery. Inverters 203 (203a to 203d) to be described later drive the motors of the motor units M1 to M4 using the electric power stored in the second battery.
 なお、上記モータユニットM1~M4のモータの回生時には、車輪側のモータユニットM1~M4から車両側(第1バッテリ111)に向けて電力を無線送電することができる。 Note that, during regeneration of the motors of the motor units M1 to M4, electric power can be wirelessly transmitted from the wheel side motor units M1 to M4 toward the vehicle side (first battery 111).
(車両駆動装置の構成)
 図2は、車両駆動装置の構成を示すブロック図である。車両駆動装置200は、モータへ電源を供給してモータを駆動する。また、車両100の走行状態等により、第1バッテリ111と第2バッテリ212a間での電力伝送を制御する。
(Configuration of vehicle drive device)
FIG. 2 is a block diagram showing the configuration of the vehicle drive device. The vehicle drive device 200 supplies power to the motor to drive the motor. Further, power transmission between the first battery 111 and the second battery 212a is controlled according to the traveling state of the vehicle 100 and the like.
 以下、車両100と、モータユニットM1間の電源ラインL1上の構成について説明することとし、図中添え字「a」は、電源ラインL1およびモータユニットM1に対応していることを示す。なお、他の電源ラインL2~L4についても同様の構成であり、説明は省略する。 Hereinafter, the configuration on the power supply line L1 between the vehicle 100 and the motor unit M1 will be described, and the subscript “a” in the drawing indicates that it corresponds to the power supply line L1 and the motor unit M1. The other power supply lines L2 to L4 have the same configuration and will not be described.
 はじめに、電源ラインL1について、車両100から車輪側のモータユニットM1側への電源を供給する各構成について説明する。車両100側には、第1バッテリ111が設けられ、電源ラインL1を介してDC-AC変換部121aに接続されている。DC-AC変換部121aは、直流電力を交流電力に変換し、電力伝送アンテナ(送電アンテナ)122aに出力する。 First, each configuration for supplying power from the vehicle 100 to the motor unit M1 on the wheel side of the power supply line L1 will be described. A first battery 111 is provided on the vehicle 100 side, and is connected to the DC-AC converter 121a via the power line L1. The DC-AC converter 121a converts DC power into AC power and outputs the AC power to the power transmission antenna (power transmission antenna) 122a.
 車輪側のモータユニットM1には、電力伝送アンテナ122aと対の電力伝送アンテナ(受電アンテナ)123aが設けられる。この電力伝送アンテナ123aは、車両側の電力伝送アンテナ122aから送電された電力を受電する。これら電力伝送アンテナ122a,123aには、たとえば、巻回されたコイルを用いることができ、車両100と車輪のモータユニットM1との間を非接触で電力伝送できる。 The wheel side motor unit M1 is provided with a power transmission antenna (power receiving antenna) 123a paired with the power transmission antenna 122a. The power transmission antenna 123a receives the power transmitted from the vehicle-side power transmission antenna 122a. For example, a wound coil can be used for these power transmission antennas 122a and 123a, and power can be transmitted between the vehicle 100 and the wheel motor unit M1 in a non-contact manner.
 電力伝送アンテナ123aで受電した電力は、第2変換器(AC-DC変換部)201aにより交流電力が直流電力に変換され、双方向チョッパ202aに出力される。双方向チョッパ202aは、双方向(正方向あるいは逆方向)への電力伝送を行うための回路である。 The power received by the power transmission antenna 123a is converted into DC power by the second converter (AC-DC converter) 201a and output to the bidirectional chopper 202a. The bidirectional chopper 202a is a circuit for performing power transmission in both directions (forward direction or reverse direction).
 双方向チョッパ202aの出力は、第2バッテリ212aに出力される。これにより、車両側の第1バッテリ111の電源を車輪側の第2バッテリ212aに供給し(正方向)、第2バッテリ212aに蓄電されるとともに、インバータ203aを介してモータユニットM1内のモータMに供給され、モータMを駆動させる。 The output of the bidirectional chopper 202a is output to the second battery 212a. As a result, the power of the first battery 111 on the vehicle side is supplied to the second battery 212a on the wheel side (in the positive direction) and stored in the second battery 212a, and the motor M in the motor unit M1 is connected via the inverter 203a. To drive the motor M.
 モータMの回生時には、モータMで発生した電力がインバータ203aを介して第2バッテリ212aに供給されるとともに、双方向チョッパ202a~AC-DC変換部201a~電力伝送アンテナ123a~電力伝送アンテナ122a~DC-AC変換部121a~第1バッテリ111の経路(電源ラインL1)を介して電力伝送することができる(逆方向)。これにより、第2バッテリ212aを介して第1バッテリ111への蓄電を行うことができる。なお、AC-DC変換部201aとDC-AC変換部121aは共に双方向であるため、この場合は、AC-DC変換部201aはDC-AC変換を行い、DC-AC変換部121aはAC-DC変換を行う。また、123aは送電アンテナとなり、122aは受電アンテナとなる。 During regeneration of the motor M, electric power generated by the motor M is supplied to the second battery 212a via the inverter 203a, and the bidirectional chopper 202a to AC-DC converter 201a to power transmission antenna 123a to power transmission antenna 122a to Power can be transmitted via the path (power supply line L1) from the DC-AC converter 121a to the first battery 111 (reverse direction). As a result, power can be stored in the first battery 111 via the second battery 212a. The AC-DC converter 201a and the DC-AC converter 121a are both bidirectional. In this case, the AC-DC converter 201a performs DC-AC conversion, and the DC-AC converter 121a is AC-DC. Perform DC conversion. Further, 123a is a power transmission antenna, and 122a is a power reception antenna.
 車両100に設けられるコントローラ101は、受電手段への給電を制御する給電制御手段(残量制御部)221と、車輪の回転駆動を制御する駆動制御手段(トルク制御部)222とを有している。残量制御部221は、第2バッテリ212aに対する電源供給を制御する。第1バッテリ111および第2バッテリ212aのバッテリ量(バッテリ残量)は、残量制御部221が検出しており、たとえば、第2バッテリ212aのバッテリ残量が少なくなったときには、DC-AC変換部121a、AC-DC変換部201aに対し、車両100から車輪のモータユニットM1に対する電力伝送を制御信号S11を介して行う。この際、制御信号S11により双方向チョッパ202aは、車両100からモータユニットM1へ向う正方向の電力伝送を行う。 The controller 101 provided in the vehicle 100 includes a power supply control unit (remaining amount control unit) 221 that controls power supply to the power receiving unit, and a drive control unit (torque control unit) 222 that controls rotational driving of the wheels. Yes. The remaining amount control unit 221 controls power supply to the second battery 212a. The remaining amount control unit 221 detects the battery amounts (remaining battery amounts) of the first battery 111 and the second battery 212a. For example, when the remaining battery amount of the second battery 212a decreases, DC-AC conversion is performed. Power is transmitted from the vehicle 100 to the wheel motor unit M1 to the unit 121a and the AC-DC converter 201a via the control signal S11. At this time, the bidirectional chopper 202a performs power transmission in the positive direction from the vehicle 100 to the motor unit M1 by the control signal S11.
 一方、残量制御部221は、モータMの回生時に、モータユニットM1から車両側へ向う逆方向の電力伝送を行う場合についても、制御信号S11を用いて行う。この場合、双方向チョッパ202aに対しては、伝送の有無を制御する。伝送を行わない制御時には、第2バッテリ212aから第1バッテリ方向への電力伝送は行わない。伝送を行う制御時には、電力伝送の方向を第2バッテリ212aから第1バッテリ111の方向に切り替える。 On the other hand, the remaining amount control unit 221 also uses the control signal S11 when performing power transmission in the reverse direction from the motor unit M1 to the vehicle side during regeneration of the motor M. In this case, the presence / absence of transmission is controlled for the bidirectional chopper 202a. During control without transmission, power transmission from the second battery 212a toward the first battery is not performed. At the time of control for transmission, the direction of power transmission is switched from the second battery 212a to the first battery 111.
 トルク制御部222は、全トルク指令値を走行状態に応じて各車輪FL,FR,RL,RRごとにトルク配分する。図示の右前輪FRのモータユニットM1に対しては、インバータ203aに対するトルク配分値を制御信号S1aで出力することにより行う。 The torque control unit 222 distributes the torque of all torque command values for each wheel FL, FR, RL, RR according to the running state. For the motor unit M1 of the right front wheel FR shown in the figure, the torque distribution value for the inverter 203a is output by the control signal S1a.
 また、モータユニットM1は、第2バッテリ212aの電流値および電圧値を信号S1bとしてコントローラ101に出力し、モータMの回転速度を信号S1cとしてコントローラ101に出力する。 The motor unit M1 outputs the current value and voltage value of the second battery 212a to the controller 101 as a signal S1b, and outputs the rotation speed of the motor M to the controller 101 as a signal S1c.
 これら制御信号S1a~S1cと、S11は、車両100と車輪側のモータユニットM1との間で有線接続された制御線を介して伝送させる。これら制御信号S1a~S1cと、S11については、データ送信できればよいため、制御線に細線を用いることができ、大容量の電力伝送を行うような太線を用いる必要はないため、車輪の操舵性を低下させることがない。 These control signals S1a to S1c and S11 are transmitted via a control line wired between the vehicle 100 and the motor unit M1 on the wheel side. Since these control signals S1a to S1c and S11 only need to be able to transmit data, a thin line can be used as a control line, and it is not necessary to use a thick line that performs large-capacity power transmission. There is no reduction.
 図3は、インバータの回路例を示す図である。インバータ203aは、第2バッテリ212aから供給される直流電力をモータMの3相交流電力に変換する。U,V,Wの各相±にそれぞれダイオード301と、駆動トランジスタ302とを設け、PWM変調により、電圧と周波数を制御した正弦波を生成してモータMの各相に供給してモータMを回転駆動する。 FIG. 3 is a diagram illustrating an example of an inverter circuit. The inverter 203a converts the DC power supplied from the second battery 212a into the three-phase AC power of the motor M. A diode 301 and a driving transistor 302 are provided in each of the U, V, and W phases ±, and a sine wave whose voltage and frequency are controlled by PWM modulation is generated and supplied to each phase of the motor M. Rotating drive.
 図4は、双方向チョッパの回路例を示す図である。双方向チョッパ202aは、一次側ハーフブリッジ回路401と、二次側ハーフブリッジ回路402と、リアクトル403とを備えている。一次側ハーフブリッジ回路401は、AC-DC変換部201aに接続されるスイッチング素子404と、ダイオード405を有している。二次側ハーフブリッジ回路402は、第2バッテリ212aに接続されるスイッチング素子406と、ダイオード407とを有している。リアクトル403は、一次側と二次側との間に接続されている。そして、スイッチング素子404,406の制御により、リアクトル403を介して一次側から二次側への正方向の電力伝送、あるいは二次側から一次側への逆方向の電力伝送を行うことができる。 FIG. 4 is a diagram illustrating a circuit example of a bidirectional chopper. The bidirectional chopper 202 a includes a primary side half bridge circuit 401, a secondary side half bridge circuit 402, and a reactor 403. The primary half bridge circuit 401 includes a switching element 404 connected to the AC-DC converter 201a and a diode 405. The secondary half bridge circuit 402 includes a switching element 406 connected to the second battery 212a and a diode 407. The reactor 403 is connected between the primary side and the secondary side. Under the control of the switching elements 404 and 406, forward power transmission from the primary side to the secondary side or reverse power transmission from the secondary side to the primary side can be performed via the reactor 403.
 上記構成により、車両100側に第1バッテリ111を設け、インバータ203aと第2バッテリ212aをモータユニットM1に内蔵して設けているため、DCの電源を車両100側から供給することにより、モータMを駆動することができる。この際、車両100と車輪のモータユニットM1との間におけるDC電力の供給は、大電流を必要としない。これは、モータの駆動には、第2バッテリ212aに蓄電されている電力を用いるためであり、大きなトルクを出力する際に必要な電力量を多少の余裕を持って第2バッテリ212aに蓄電しておけばよい。したがって、第1バッテリ111と第2バッテリ212aの間の電力伝送を連続的に行うようにしておけば、大電流を流さなくても済むのである。このため、車両100と、車輪のモータユニットM1にそれぞれ電力伝送アンテナ122a,123aを設け、非接触な無線による電力伝送を行うことができる。 With the above configuration, since the first battery 111 is provided on the vehicle 100 side and the inverter 203a and the second battery 212a are provided in the motor unit M1, the motor M is supplied by supplying DC power from the vehicle 100 side. Can be driven. At this time, the supply of DC power between the vehicle 100 and the wheel motor unit M1 does not require a large current. This is because the electric power stored in the second battery 212a is used for driving the motor, and the amount of electric power necessary for outputting a large torque is stored in the second battery 212a with some margin. Just keep it. Therefore, if electric power transmission between the first battery 111 and the second battery 212a is continuously performed, it is not necessary to pass a large current. For this reason, the power transmission antennas 122a and 123a are provided in the vehicle 100 and the motor unit M1 of the wheel, respectively, so that non-contact wireless power transmission can be performed.
(バッテリ間の電力伝送の概要)
 図5は、バッテリ間の電力伝送の概要を示す図である。4輪駆動の場合、四つのモータユニットM1~M4を有し、第1バッテリ111は、これら四つのモータユニットM1~M4のモータMを駆動する比較的大きな容量を有するものを用いる。一方、モータユニットM1(およびM2~M4)にそれぞれ設ける第2バッテリ212aは、単一のモータMを駆動すればよく、比較的小容量のものを用いることができ、重量を軽量化できる。
(Outline of power transfer between batteries)
FIG. 5 is a diagram showing an outline of power transmission between batteries. In the case of four-wheel drive, four motor units M1 to M4 are provided, and the first battery 111 having a relatively large capacity for driving the motors M of the four motor units M1 to M4 is used. On the other hand, the second battery 212a provided in each of the motor units M1 (and M2 to M4) only needs to drive a single motor M, can be used with a relatively small capacity, and can reduce the weight.
 第1バッテリ111と、第2バッテリ212aとの間における電力伝送は、モータユニットM1内の第2バッテリ212aの残量(現在値B1)が、常に目標残量値BS(Set)に近づくように制御する。この制御は、上記コントローラ101の残量制御部221が行う。目標残量値BSは、充電上限値BU(Upper)と充電下限値BL(Lower)との間の所定値に設定される。図中RL(Lower)は、現在値B1と充電下限値BLとの差分であり、第2バッテリ212aで使用可能な容量である。 The power transmission between the first battery 111 and the second battery 212a is such that the remaining amount (current value B1) of the second battery 212a in the motor unit M1 always approaches the target remaining amount value BS (Set). Control. This control is performed by the remaining amount control unit 221 of the controller 101. The target remaining amount value BS is set to a predetermined value between the charging upper limit value BU (Upper) and the charging lower limit value BL (Lower). In the figure, RL (Lower) is a difference between the current value B1 and the charging lower limit value BL, and is a capacity that can be used by the second battery 212a.
 電力の伝送方向は、上述したように双方向、すなわち正方向と逆方向がある。正方向は、第1バッテリ111→第2バッテリ212aの方向である。逆方向は、第2バッテリ212a→第1バッテリ111の方向である。 As described above, the power transmission direction is bidirectional, that is, the forward direction and the reverse direction. The positive direction is the direction from the first battery 111 to the second battery 212a. The reverse direction is the direction from the second battery 212 a to the first battery 111.
 コントローラ101は、基本的には、
1.正方向への電力伝送は、力行制御時に行う。力行制御は、たとえば、アクセルペダル103の踏み込みを検出したときに行う。
2.逆方向への電力伝送は、回生制御時に行う。回生制御は、たとえば、ブレーキペダル104の踏み込みを検出したときに行う。
The controller 101 basically has
1. Power transmission in the positive direction is performed during power running control. Power running control is performed, for example, when the depression of the accelerator pedal 103 is detected.
2. Power transmission in the reverse direction is performed during regenerative control. The regeneration control is performed, for example, when the depression of the brake pedal 104 is detected.
 そして、コントローラ101(残量制御部221およびトルク制御部222)は、充電の現在値B1が第2バッテリ212aの充電上限値BUを超えないように、回生時の回生電力を制御する。また、充電の現在値B1が第2バッテリ212aの充電下限値BLを下回らないように、力行時の力行電力を制御する。 The controller 101 (the remaining amount control unit 221 and the torque control unit 222) controls the regenerative power at the time of regeneration so that the current charging value B1 does not exceed the charging upper limit value BU of the second battery 212a. Further, the power running power during power running is controlled so that the current charge value B1 does not fall below the charge lower limit value BL of the second battery 212a.
(電力伝送の制御内容)
 図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。コントローラ101が行う電力伝送とトルク制御の処理について示している。はじめに、コントローラ101は、モータユニットM1~M4のセンサにより、現在の走行速度を検出する。また、アクセルペダル103とブレーキペダル104の踏み込みを検出する(ステップS701)。
(Contents of power transmission control)
FIG. 6 is a flowchart showing the entire control content related to power transmission. The process of power transmission and torque control performed by the controller 101 is shown. First, the controller 101 detects the current traveling speed with the sensors of the motor units M1 to M4. Further, depression of the accelerator pedal 103 and the brake pedal 104 is detected (step S701).
 そして、現在の走行状態と制御形態の組み合わせを特定する(ステップS702)。上記のように、
1.アクセルペダル103の踏み込みを検出したときには、力行制御と特定する。
2.ブレーキペダル104の踏み込みを検出したときには、回生制御と特定する。このほか、
3.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が遅い場合には、力行制御と特定する。この場合、後述する擬似クリープトルクの制御を行う。
4.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が速い場合には、回生制御と特定する。この場合、後述する擬似エンジンブレーキの制御を行う。
5.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が中程度(速くなく、また遅くない速度)の場合には、制御なし(惰行運転)と特定する。
Then, the combination of the current traveling state and the control mode is specified (step S702). as mentioned above,
1. When depression of the accelerator pedal 103 is detected, power running control is specified.
2. When depression of the brake pedal 104 is detected, regeneration control is specified. other than this,
3. When the depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is low, the power running control is specified. In this case, the pseudo creep torque described later is controlled.
4). When depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is high, regeneration control is specified. In this case, a pseudo engine brake, which will be described later, is controlled.
5. When depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is medium (not fast and not slow), it is specified that there is no control (coasting operation).
 つぎに、制御形態がいずれであるかを判断する(ステップS703)。制御形態が力行制御のときには(ステップS703:力行)、力行トルク制御を行い(ステップS704)、ステップS706に移行する。制御形態が回生制御のときには(ステップS703:回生)、回生トルク制御を行い(ステップS705)、ステップS706に移行する。制御形態が惰行の場合には(ステップS703:惰行)、特に制御を行わず、ステップS706に移行する。 Next, it is determined which control mode is used (step S703). When the control mode is power running control (step S703: power running), power running torque control is performed (step S704), and the process proceeds to step S706. When the control mode is regenerative control (step S703: regenerative), regenerative torque control is performed (step S705), and the process proceeds to step S706. If the control mode is coasting (step S703: coasting), no control is performed and the process proceeds to step S706.
 つぎに、ステップS706では、上述した無線による電力伝送制御を行い(ステップS706)、処理を終了する。コントローラ101は、上記の各処理を経時的に連続して行う。 Next, in step S706, the above-described wireless power transmission control is performed (step S706), and the process ends. The controller 101 performs the above processes continuously over time.
(力行トルク制御について)
 図7は、力行トルク制御の制御内容を示すフローチャートである。図6のステップS704に示した力行トルク制御の詳細な制御内容を示している。はじめに、コントローラ101は、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d:ただし212b~212dはモータユニットM2~M4の第2バッテリを指し不図示)の各値を検出する(ステップS801)。
(About power running torque control)
FIG. 7 is a flowchart showing the control content of the power running torque control. The detailed control content of power running torque control shown to step S704 of FIG. 6 is shown. First, the controller 101 detects each value of the second battery 212 (212a to 212d, where 212b to 212d indicate the second batteries of the motor units M2 to M4, respectively) provided in the motor units M1 to M4 ( Step S801).
 第2バッテリ212(212a~212d)の充電下限値はBLとし、現在値(残量)はB1~B4とし、現在の電圧はV1~V4とする。モータユニットM1~M4の第2バッテリ212a~212dは、モータMの駆動状態に対応してそれぞれ現在値B1~B4が異なり常に変動する。 The charging lower limit value of the second battery 212 (212a to 212d) is BL, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4. The current values B1 to B4 of the second batteries 212a to 212d of the motor units M1 to M4 are always different depending on the driving state of the motor M.
 つぎに、アクセルペダル103の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1~M4)へのトルク配分値T1~T4を決定し、後述するモータ効率マップを用いた電力推定方法により、必要な力行電力W1~W4を算出する(ステップS802)。 Next, torque distribution values T1 to T4 to each wheel (each motor unit M1 to M4) are determined based on the depression amount of the accelerator pedal 103 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed. The necessary powering powers W1 to W4 are calculated by the method (step S802).
 つぎに、第2バッテリ212の電力使用可能な容量RLを算出する(ステップS803)。具体的には、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)について、
 使用可能な容量RL1~RL4=現在値B1~B4-充電下限値BL
により算出する。
Next, the capacity | capacitance RL which can use the electric power of the 2nd battery 212 is calculated (step S803). Specifically, the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
Usable capacities RL1 to RL4 = current values B1 to B4—charge lower limit BL
Calculated by
 つぎに、各モータユニットM1~M4で必要な力行電力W1~W4と、ステップS803で算出した第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4とを比較する(ステップS804)。この結果、各モータユニットM1~M4で必要な力行電力W1~W4が対応する第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4を超えた場合には(ステップS804:Yes)、力行電力が使用可能な容量RL1~RL4以下となるように、各車輪のトルク配分値を再計算する(ステップS805)。すなわち、全トルク指令値をトルク配分する際に、残量が少ない第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。 Next, the power running powers W1 to W4 required by the motor units M1 to M4 are compared with the capacities RL1 to RL4 usable in the second battery 212 (212a to 212d) calculated in step S803 (step S804). As a result, when the power running power W1 to W4 required for each motor unit M1 to M4 exceeds the capacity RL1 to RL4 usable by the corresponding second battery 212 (212a to 212d) (step S804: Yes), The torque distribution value of each wheel is recalculated so that the power running power is less than the usable capacities RL1 to RL4 (step S805). That is, when torque distribution is performed on all torque command values, the torque distribution value to the motor unit of the second battery 212 having a small remaining amount is decreased, and the torque distribution values of other motor units are also decreased at that ratio.
 一方、ステップS804で各モータユニットM1~M4で必要な力行電力W1~W4が対応する第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4に収まっていれば(ステップS804:No)、ステップS805の処理を行わず、ステップS806に移行する。 On the other hand, if the power running power W1 to W4 necessary for each of the motor units M1 to M4 is within the capacity RL1 to RL4 that can be used by the corresponding second battery 212 (212a to 212d) in step S804 (No in step S804). The process of step S805 is not performed, and the process proceeds to step S806.
 そして、ステップS806では、各モータユニットM1~M4に対するトルク配分値を用いて、力行トルク制御を行い(ステップS806)、処理を終了する。 In step S806, power running torque control is performed using the torque distribution values for the motor units M1 to M4 (step S806), and the process ends.
(回生トルク制御について)
 図8は、回生トルク制御の制御内容を示すフローチャートである。図6のステップS705に示した回生トルク制御の詳細な制御内容を示している。回生時には、モータMが電力を発生する。はじめに、コントローラ101は、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)の各値を検出する(ステップS901)。第2バッテリ212の充電上限値はBUとし、現在値(残量)はB1~B4とし、現在の電圧はV1~V4とする。
(Regenerative torque control)
FIG. 8 is a flowchart showing the control content of the regenerative torque control. The detailed control content of regenerative torque control shown to step S705 of FIG. 6 is shown. During regeneration, the motor M generates electric power. First, the controller 101 detects each value of the second battery 212 (212a to 212d) provided in each of the motor units M1 to M4 (step S901). The upper limit of charge of the second battery 212 is BU, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4.
 つぎに、ブレーキペダル104の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1~M4)へのトルク配分値T1~T4を決定し、後述するモータ効率マップを用いた電力推定方法により、回生電力W1~W4を算出する(ステップS902)。 Next, torque distribution values T1 to T4 for each wheel (each motor unit M1 to M4) are determined based on the depression amount of the brake pedal 104 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed. The regenerative power W1 to W4 is calculated by the method (step S902).
 つぎに、第2バッテリ212の電力回生可能な容量RUを算出する(ステップS903)。具体的には、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)について、
 回生可能な容量RU1~RU4=充電上限値BU-現在値B1~B4
により算出する。
Next, the capacity | capacitance RU in which electric power regeneration of the 2nd battery 212 is possible is calculated (step S903). Specifically, the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
Regenerative capacities RU1 to RU4 = charge upper limit value BU−current values B1 to B4
Calculated by
 つぎに、各モータユニットM1~M4での回生電力W1~W4と、ステップS903で算出した第2バッテリ212(212a~212d)で回生可能な容量RUとを比較する(ステップS904)。この結果、各モータユニットM1~M4の回生電力W1~W4が対応する第2バッテリ212(212a~212d)で回生可能な容量RU1~RU4を超えた場合には(ステップS904:Yes)、回生電力が回生可能な容量RU1~RU4以下となるように、各車輪のトルク配分値を再計算する(ステップS905)。すなわち、全トルク指令値をトルク配分する際に、残量が多い第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。 Next, the regenerative power W1 to W4 in each of the motor units M1 to M4 is compared with the capacity RU that can be regenerated by the second battery 212 (212a to 212d) calculated in step S903 (step S904). As a result, when the regenerative power W1 to W4 of each motor unit M1 to M4 exceeds the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) (step S904: Yes), the regenerative power The torque distribution value of each wheel is recalculated so that becomes less than the capacity RU1 to RU4 that can be regenerated (step S905). That is, when all torque command values are torque-distributed, the torque distribution value to the motor unit of the second battery 212 having a large remaining amount is decreased, and the torque distribution values of the other motor units are also decreased at that ratio.
 一方、ステップS904で各モータユニットM1~M4の回生電力W1~W4が対応する第2バッテリ212(212a~212d)で回生可能な容量RU1~RU4に収まっていれば(ステップS904:No)、ステップS905の処理を行わず、ステップS906に移行する。 On the other hand, if the regenerative power W1 to W4 of each motor unit M1 to M4 is within the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) in step S904 (step S904: No), step S904 is performed. The process proceeds to step S906 without performing the process of S905.
 そして、ステップS906では、各モータユニットM1~M4に対するトルク配分値を用いて、回生トルク制御を行い(ステップS906)、処理を終了する。 In step S906, regenerative torque control is performed using the torque distribution values for the motor units M1 to M4 (step S906), and the process ends.
(電力伝送の制御手順)
 つぎに、上述した無線による電力伝送の制御手順について説明する。図9は、実施の形態にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。図9の説明では、モータユニットM1に設けられる第2バッテリ212aに対する電力伝送を例に説明するが、他のモータユニットM2~M4に設けられる第2バッテリ212b~212dについても同様の処理を行えばよい。
(Power transmission control procedure)
Next, the above-described wireless power transmission control procedure will be described. FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment. In the description of FIG. 9, power transmission to the second battery 212a provided in the motor unit M1 will be described as an example. However, if similar processing is performed for the second batteries 212b to 212d provided in the other motor units M2 to M4. Good.
 はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS1001)。第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。 First, the controller 101 detects each value of the second battery 212a (step S1001). The target remaining amount of the second battery 212a is BS, the current value (remaining amount) is B1, and the current voltage is V1. Further, the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
 つぎに、電力伝送可能な上限値Cmaxと、伝送したい電力Dとを下記式により算出する(ステップS1002)。
 電力伝送可能な上限値Cmax=電源ラインL1の最大電流Amax×現在の電圧V1
 伝送したい電力D=BS-B1
Next, an upper limit value Cmax at which electric power can be transmitted and electric power D to be transmitted are calculated by the following formula (step S1002).
Upper limit Cmax at which power can be transmitted = maximum current Amax of power supply line L1 × current voltage V1
Power to be transmitted D = BS-B1
 上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。 The electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1. For example, during power running, the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
 つぎに、電力伝送の電力値を決定する(ステップS1003)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS1003:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値-Cmaxを伝送する電力Dとして決定する(ステップS1004)。 Next, the power value of power transmission is determined (step S1003). The power value of power transmission is performed by using the smaller one of the absolute value | D | of the power D desired to be transmitted and the upper limit Cmax capable of power transmission. For this reason, if the absolute value of the power D to be transmitted exceeds the upper limit value Cmax capable of power transmission (step S1003: Yes), the power for transmitting the upper limit value Cmax capable of power transmission when the power D to be transmitted is positive. Determine as D. When the power D to be transmitted is negative, an upper limit value −Cmax that allows power transmission is determined as the power D to be transmitted (step S1004).
 一方、ステップS1003において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS1003:No)、ステップS1004の処理を行わず、伝送したい電力Dをそのまま用い、ステップS1005に移行する。 On the other hand, in step S1003, if the absolute value of power D to be transmitted does not exceed the upper limit Cmax that allows power transmission (step S1003: No), step S1004 is not performed and the power D to be transmitted is used as it is. The process proceeds to S1005.
 そして、ステップS1005では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線の電源ラインL1を介して電力伝送する。Dの値が負の場合には、回生時であるため、第2バッテリ212aから第1バッテリ111に無線の電源ラインL1を介して電力伝送する(ステップS1005)。 In step S1005, the differential capacity D is transmitted from the first battery 111 to the second battery 212a via the wireless power line L1. If the value of D is negative, it is during regeneration, and power is transmitted from the second battery 212a to the first battery 111 via the wireless power line L1 (step S1005).
(力行トルク指令値について)
 図10は、力行時のトルク指令値を示す図表である。アクセルペダル103の踏み込み量(横軸)に対する力行トルク指令値(縦軸)の関係を示している。コントローラ101のトルク制御部222は、図示のように、これらアクセルペダル103の踏み込み量と、力行時の全トルク指令値とは、比例する直線関係で制御するのではなく、アクセルペダル103の踏み込み量に対してはじめはなだらかに変化する曲線を有して力行トルク指令値を出力する。また、車両100の前進時に比べて後退時の力行トルク指令値は、さらになだらかとなるよう設定している。
(About power running torque command value)
FIG. 10 is a chart showing torque command values during power running. The relationship between the power running torque command value (vertical axis) and the depression amount (horizontal axis) of the accelerator pedal 103 is shown. As shown in the figure, the torque control unit 222 of the controller 101 does not control the amount of depression of the accelerator pedal 103 and the total torque command value at the time of power running in a proportional linear relationship, but the amount of depression of the accelerator pedal 103. On the other hand, a power running torque command value is output with a curve that gradually changes. Further, the power running torque command value at the time of backward movement is set to be gentler than that at the time of forward movement of the vehicle 100.
(回生トルク指令値について)
 図11は、回生時のトルク指令値を示す図表である。ブレーキペダル104の踏み込み量(横軸)に対する回生トルク指令値(縦軸)の関係を示している。コントローラ101は、図示のように、ブレーキペダル104の踏み込み量に対し、回生トルク指令値は、ほぼ直線関係となるよう制御している。また、車両の前進時に比べて後退時の回生トルク指令値は、なだらかに変化するよう設定している。
(Regenerative torque command value)
FIG. 11 is a chart showing torque command values during regeneration. The relationship of the regenerative torque command value (vertical axis) with respect to the depression amount (horizontal axis) of the brake pedal 104 is shown. As shown in the figure, the controller 101 controls the regenerative torque command value to have a substantially linear relationship with respect to the depression amount of the brake pedal 104. Further, the regenerative torque command value at the time of reverse movement is set so as to change more gently than at the time of forward movement of the vehicle.
(擬似クリープトルクと擬似エンジンブレーキについて)
 図12は、ペダルを離したときのトルク指令値を示す図表である。コントローラ101は、アクセルペダル103もブレーキペダル104も踏まれない場合、図示のように、車速に応じてトルク指令値を変えている。
(About pseudo creep torque and pseudo engine brake)
FIG. 12 is a chart showing torque command values when the pedal is released. When neither the accelerator pedal 103 nor the brake pedal 104 is depressed, the controller 101 changes the torque command value according to the vehicle speed as shown in the figure.
 そして、車速が遅い場合は、プラス(+)のトルクとして擬似クリープトルクを生成する。車速が速い場合は、マイナス(-)のトルクとして擬似エンジンブレーキを生成する。図示の例では、車速が40km/h程度以上で擬似エンジンブレーキをかけ、60km/h程度が最も大きなトルク値をかけるようになっている。60km/h程度以上の速度では、次第に小さなトルク値をかけるようになっている。車速が中程度の場合は(図中Nの速度領域)、トルク指令値をゼロにして惰行運転する。 And when the vehicle speed is slow, pseudo creep torque is generated as positive (+) torque. When the vehicle speed is high, a pseudo engine brake is generated as a negative (−) torque. In the illustrated example, the pseudo engine brake is applied when the vehicle speed is about 40 km / h or higher, and the largest torque value is applied when the vehicle speed is about 60 km / h. At a speed of about 60 km / h or more, a small torque value is gradually applied. When the vehicle speed is medium (N speed range in the figure), the coasting operation is performed with the torque command value set to zero.
 また、通常モードとエコモードとを切り替えるように構成した場合、切り替えたモード別に、車速に対するトルク指令値の特性を変えてもよい。図示の例では、通常モードに比べてエコモード時には、擬似クリープトルク値を少なくし、擬似エンジンブレーキは、マイナスの大きなトルク値としている。 Further, when the normal mode and the eco mode are switched, the characteristics of the torque command value with respect to the vehicle speed may be changed for each switched mode. In the illustrated example, the pseudo creep torque value is reduced in the eco mode compared to the normal mode, and the pseudo engine brake has a large negative torque value.
(モータ効率マップを用いたモータの電力推定)
 つぎに、モータ効率マップを用いたモータMの消費電力(回生電力)推定について説明する。図13は、モータ効率マップを示す図表である。効率マップ1400は、モータMの回転速度-トルク特性を示すものであり、横軸は回転速度、縦軸はトルクである。コントローラ101の記憶部には、図示の4象限の効率マップ1400をあらかじめ格納しておく。
(Motor power estimation using motor efficiency map)
Next, power consumption (regenerative power) estimation of the motor M using the motor efficiency map will be described. FIG. 13 is a chart showing a motor efficiency map. The efficiency map 1400 shows the rotational speed-torque characteristics of the motor M, with the horizontal axis representing the rotational speed and the vertical axis representing the torque. In the storage unit of the controller 101, an efficiency map 1400 of the illustrated four quadrant is stored in advance.
 効率マップ1400の第1~第4象限は、それぞれ、
1.正転力行:前進中にアクセルペダルを踏んでいる状態
2.逆転力行:後退中にアクセルペダルを踏んでいる状態
3.逆転回生:後退中にブレーキペダルを踏んでいる状態
4.正転回生:前進中にブレーキペダルを踏んでいる状態
である。
The first to fourth quadrants of the efficiency map 1400 are respectively
1. Forward running: A state where the accelerator pedal is being depressed while moving forward. 2. Reverse power running: A state where the accelerator pedal is depressed during reverse. Reverse regeneration: State where the brake pedal is depressed during reverse. Normal regenerative regeneration: A state in which the brake pedal is depressed during forward travel.
 コントローラ101のトルク制御部222は、アクセルペダル103やブレーキペダル104の踏み込み量から、全トルク指令量を算出する。そして、この全トルク値を所定のトルク配分によって、各車輪のモータMごとのトルク配分値Tに配分する。 The torque control unit 222 of the controller 101 calculates the total torque command amount from the depression amount of the accelerator pedal 103 and the brake pedal 104. The total torque value is distributed to a torque distribution value T for each motor M of each wheel by a predetermined torque distribution.
 また、コントローラ101は、車両100の走行中、各モータユニットM1~M4のセンサにより回転速度Vfl,Vfr,Vrl,Vrrを検出する。ここでは、回転速度をωとして説明する。そして、コントローラ101は、モータMについて、効率マップ1400を参照し、トルクTと回転速度ωから効率ηを得る。 Further, the controller 101 detects the rotational speeds Vfl, Vfr, Vrl, Vrr by the sensors of the motor units M1 to M4 while the vehicle 100 is traveling. Here, the rotation speed is described as ω. Then, the controller 101 refers to the efficiency map 1400 for the motor M, and obtains the efficiency η from the torque T and the rotational speed ω.
 そして、コントローラ101は、以下の式から、力行時の消費電力と、回生時の回生電力をそれぞれ推定する。
・力行時
 効率η=(T・ω)/(V・I)
・回生時
 効率η=(V・I)/(T・ω)
 (V,Iは、モータMの電圧と電流、あるいはインバータ203の電圧と電流)
And the controller 101 estimates the power consumption at the time of power running, and the regenerative power at the time of regeneration from the following formula | equation, respectively.
・ Power efficiency η = (T ・ ω) / (V ・ I)
・ Regeneration efficiency η = (V ・ I) / (T ・ ω)
(V and I are the voltage and current of the motor M or the voltage and current of the inverter 203)
 上記の(V・I)がモータMの力行時の消費電力、および回生時の回生電力Wに相当する。コントローラ101は、上述したように、第2バッテリ212(212a~212d)について、現在値と、使用可能あるいは回生可能な電力量を求める。そして、使用可能あるいは回生可能な電力量と、算出した上記消費電力(回生電力)とを比較し、範囲内に収まるように、モータMに対するトルク配分値を修正する。 The above (V · I) corresponds to the power consumption of the motor M during power running and the regenerative power W during regeneration. As described above, the controller 101 obtains the current value and the usable or regenerative power amount for the second battery 212 (212a to 212d). Then, the amount of power that can be used or regenerated is compared with the calculated power consumption (regenerative power), and the torque distribution value for the motor M is corrected so as to be within the range.
 そして、効率マップ1400を用いることにより、より正確にモータMの消費電力(回生電力)を判断できるようになる。これにより、電力伝送時における必要な電力量(伝送したい電力D)を精度よく推定することができ、電力伝送時の電力量を正確に算出でき、効率的な電力伝送を行うことができるようになる。 And by using the efficiency map 1400, the power consumption (regenerative power) of the motor M can be determined more accurately. As a result, it is possible to accurately estimate the amount of power required during power transmission (power D to be transmitted), accurately calculate the amount of power during power transmission, and perform efficient power transmission. Become.
 効率マップ1400は、あらかじめ取得しておくに限らない。たとえば、車両100の走行中に効率マップ1400を作成してもよい。コントローラ101は、効率マップ生成部を備え、走行時にモータMの消費電力と、回転数とを取得して、上記の効率マップ1400を生成する。 The efficiency map 1400 is not limited to acquiring in advance. For example, the efficiency map 1400 may be created while the vehicle 100 is traveling. The controller 101 includes an efficiency map generation unit, acquires the power consumption and the rotation speed of the motor M during traveling, and generates the efficiency map 1400 described above.
 このほか、あらかじめ取得した効率マップ1400を更新する構成とすることもできる。この際、
・モータMに流れる電流Iからトルク値を検出
・レゾルバ等の回転位置センサにより車輪の回転速度を検出
・第2バッテリ212aとインバータ203a間に設けた電流センサおよび電圧センサにより電流と電圧を検出し、電力を算出
 コントローラ101は、上記の検出および算出によって、車両100の走行時に、記憶部に格納した効率マップ1400を随時更新していくことができる。
In addition, the configuration may be such that the efficiency map 1400 acquired in advance is updated. On this occasion,
・ Detects the torque value from the current I flowing through the motor M ・ Detects the rotational speed of the wheel by a rotational position sensor such as a resolver ・ Detects the current and voltage by a current sensor and a voltage sensor provided between the second battery 212a and the inverter 203a Calculation of Electric Power The controller 101 can update the efficiency map 1400 stored in the storage unit at any time during traveling of the vehicle 100 by the above detection and calculation.
(トルク配分例)
 つぎに、各車輪のモータMに対するトルク配分値の再配分例について説明する。図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。コントローラ101に対し、たとえば、アクセルペダル103の踏み込みにより、全トルク指令値が100[Nm]として入力された場合を例に説明する。
(Example of torque distribution)
Next, an example of redistribution of the torque distribution value for the motor M of each wheel will be described. FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low. An example will be described in which the total torque command value is input as 100 [Nm] to the controller 101 by, for example, depressing the accelerator pedal 103.
 図14中の(a)に示すように、仮に、コントローラ101のトルク制御部222が、トルク配分値として、左右の前輪を20[Nm]、左右の後輪を30[Nm]にトルク配分としたとする。 As shown in (a) of FIG. 14, suppose that the torque control unit 222 of the controller 101 assigns torque distribution values to 20 [Nm] for the left and right front wheels and 30 [Nm] for the left and right rear wheels. Suppose that
 ここで、図14の(b)に示すように、左前輪FLのモータユニットM2に設けられた第2バッテリ212(212bに相当)のバッテリ残量が少なくなり、左前輪FLのモータMで16[Nm]しか出力できなくなったとする。これに対応して単に左前輪FLだけのトルクを下げてしまうと、左右の前輪の駆動力がアンバランスになり、車両100の進行の向きが変わるという影響が生じる。 Here, as shown in FIG. 14B, the remaining amount of the battery of the second battery 212 (corresponding to 212b) provided in the motor unit M2 of the left front wheel FL is reduced, and the motor M of the left front wheel FL becomes 16%. Assume that only [Nm] can be output. Correspondingly, if the torque of the left front wheel FL is simply lowered, the driving force of the left and right front wheels becomes unbalanced, which causes an effect that the direction of travel of the vehicle 100 changes.
 このため、コントローラ101のトルク制御部222は、図14(c)に示すように、トルクの再配分を行う。すなわち、左右の前輪に対し、同じトルク16[Nm]となるようトルク配分する。また、前輪のトルクを20[Nm]から16[Nm」]に変更した割合(4/5)に対応して左右の後輪についても、同じ割合にするため、30[Nm]から24[Nm]にトルクを変更する。この場合、全トルク値は、100[Nm]から80[Nm]に変更されることになる。 For this reason, the torque controller 222 of the controller 101 redistributes the torque as shown in FIG. That is, the torque is distributed to the left and right front wheels so that the same torque 16 [Nm] is obtained. Further, in order to make the left and right rear wheels the same ratio corresponding to the ratio (4/5) in which the torque of the front wheels is changed from 20 [Nm] to 16 [Nm]], 30 [Nm] to 24 [Nm] Change the torque to]. In this case, the total torque value is changed from 100 [Nm] to 80 [Nm].
 上記説明では、第2バッテリ212の残量が少なくなることに基づくトルクの再配分について説明したが、バッテリ212が満充電に近い場合に、車両100の制動時(ブレーキ時)についても、同様に行う。ただし、この場合、制動力としてモータMの回生ブレーキだけでは足りなくなるため、この不足分の制動力は機械式ブレーキを併用する必要がある。 In the above description, the torque redistribution based on the fact that the remaining amount of the second battery 212 is reduced has been described. However, when the battery 212 is nearly fully charged, the same applies to the braking of the vehicle 100 (during braking). Do. However, in this case, only the regenerative brake of the motor M is not sufficient as the braking force, so this insufficient braking force needs to be used in combination with a mechanical brake.
(協調ブレーキについて)
 協調ブレーキとは、モータMによる回生ブレーキと、油圧制御による機械式ブレーキとを組み合わせて、必要な制動力を生成するブレーキである。回生ブレーキと機械式ブレーキの組み合わせについては、各種方法がある。
(About cooperative brake)
The cooperative brake is a brake that generates a necessary braking force by combining a regenerative brake by the motor M and a mechanical brake by hydraulic control. There are various methods for combining a regenerative brake and a mechanical brake.
 たとえば、常に、回生ブレーキと機械式ブレーキとを所定の比率でいずれも使用する方法、所定の制動量までは回生ブレーキを使用し、所定の制動量以上となると機械式ブレーキを加えて用いる方法、所定の制動量までは機械式ブレーキを使用し、所定の制動量以上となると回生ブレーキを加えて用いる方法、等がある。 For example, a method of always using a regenerative brake and a mechanical brake at a predetermined ratio, a method of using a regenerative brake up to a predetermined braking amount, and using a mechanical brake when a predetermined braking amount is exceeded, There is a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount.
 図15-1は、実施の形態で用いる協調ブレーキの制御特性を示す図である。横軸は速度、縦軸は制動トルクである。モータMは、速度が低いとき回転数が小さい。したがって、図示のように、このような速度が低いときには逆起電力も小さくなるため、大きな回生ブレーキを得ることができない。 FIG. 15-1 is a diagram illustrating the control characteristics of the cooperative brake used in the embodiment. The horizontal axis is speed, and the vertical axis is braking torque. The motor M has a low rotation speed when the speed is low. Accordingly, as shown in the figure, when such a speed is low, the back electromotive force is also small, and thus a large regenerative brake cannot be obtained.
 したがって、実施の形態のコントローラ101では、モータMの回生ブレーキだけではなく、回生ブレーキでは得られない不足分の制動トルクを機械式ブレーキにより得る協調ブレーキ制御を行うようにしている。図示の例では、機械式ブレーキの制動トルクは、回生ブレーキと逆の特性を有し、速度が低いほど大きく、速度が高くなるにつれて減少させている。これにより、ブレーキペダル104の踏み込み量に対応した制動トルク値を、回生ブレーキと機械式ブレーキ双方の制動力により得る。 Therefore, in the controller 101 of the embodiment, not only the regenerative brake of the motor M but also the coordinated brake control for obtaining the insufficient braking torque that cannot be obtained by the regenerative brake by the mechanical brake is performed. In the example shown in the figure, the braking torque of the mechanical brake has a characteristic opposite to that of the regenerative brake, and increases as the speed decreases and decreases as the speed increases. Thereby, the braking torque value corresponding to the depression amount of the brake pedal 104 is obtained by the braking force of both the regenerative brake and the mechanical brake.
 また、第2バッテリ212の現在値が満充電に近くなって大きな回生ブレーキをかけることができない場合、コントローラ101は、低速時と同じように、回生ブレーキの制動トルクの割合を小さくし、機械式ブレーキによる制動トルクの割合を大きくして、必要な制動トルクを得るよう協調ブレーキ制御を行う。 Further, when the current value of the second battery 212 is close to full charge and a large regenerative brake cannot be applied, the controller 101 reduces the ratio of the regenerative brake braking torque in the same manner as at the low speed, thereby reducing the mechanical type. Cooperative brake control is performed so as to obtain a required braking torque by increasing the ratio of the braking torque by the brake.
 図15-2は、実施の形態で用いる協調ブレーキの他の制御特性を示す図である。図示の例では、回生ブレーキによって発生する電力が充電できなくなった時点で、次第に回生ブレーキによる制動トルクの割合を小さくし、逆に機械式ブレーキによる割合を大きくさせている。 FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment. In the illustrated example, when the electric power generated by the regenerative brake can no longer be charged, the ratio of the braking torque by the regenerative brake is gradually reduced, and conversely, the ratio by the mechanical brake is increased.
 以上説明したように、制動トルクをモータMによる回生ブレーキだけではなく、機械式ブレーキを併用する協調ブレーキ制御により、広範囲な速度に渡り必要な制動トルクを発生させることができ、車両100の走行を安全に行うことができるようになる。そして、第2バッテリ212の充電容量の変化により、第2バッテリ212に充電できないような状態が生じたときであっても、必要な制動トルクを得ることができるようになる。 As described above, the braking torque is generated not only by the regenerative brake by the motor M but also by the cooperative brake control using the mechanical brake together, so that the necessary braking torque can be generated over a wide range of speeds. It can be done safely. Even when the second battery 212 cannot be charged due to a change in the charge capacity of the second battery 212, the necessary braking torque can be obtained.
(電力伝送の他の制御手順)
 図16は、バッテリ間の他の電力伝送の概要を示す図である。この例では、第2バッテリ212aのバッテリ量についての各項目に二つの項目を加えている。これらは、無線放電実施判断値BJ+(プラス)と、無線充電実施判断値BJ-(マイナス)である。
(Other control procedures for power transmission)
FIG. 16 is a diagram showing an outline of another power transmission between batteries. In this example, two items are added to each item regarding the battery amount of the second battery 212a. These are the wireless discharge execution determination value BJ + (plus) and the wireless charge execution determination value BJ- (minus).
 無線放電実施判断値BJ+は、第2バッテリ212aの目標残量値BSと充電上限値BUとの間に設定する。また、無線充電実施判断値BJ-は、目標残量値BSと充電下限値BLとの間に設定する。 The wireless discharge execution determination value BJ + is set between the target remaining amount value BS of the second battery 212a and the charge upper limit value BU. The wireless charging execution determination value BJ- is set between the target remaining amount value BS and the charging lower limit value BL.
 図17は、無線による電力伝送の制御手順の他の例を示すフローチャートである。はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS1701)。図16に示したように、第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。また、上限側の無線放電実施判断値BJ+と、下限側の無線充電実施判断値BJ-とを用いる。 FIG. 17 is a flowchart showing another example of a wireless power transmission control procedure. First, the controller 101 detects each value of the second battery 212a (step S1701). As shown in FIG. 16, the target remaining amount of the second battery 212a is BS, the current value (remaining amount) is B1, and the current voltage is V1. Further, the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like. The upper limit side wireless discharge execution judgment value BJ + and the lower limit side wireless charging execution judgment value BJ- are used.
 つぎに、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-未満であるか判断する(ステップS1702)。第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-未満であれば(ステップS1702:Yes)、下限側の無線充電実施判断値BJ-から現在値B1を引いた値を伝送したい電力Dとする(ステップS1703)。 Next, it is determined whether the current value B1 of the second battery 212a is less than the lower limit wireless charging execution determination value BJ− (step S1702). If the current value B1 of the second battery 212a is less than the lower limit side wireless charging execution determination value BJ− (step S1702: Yes), a value obtained by subtracting the current value B1 from the lower limit side wireless charging execution determination value BJ− is transmitted. It is assumed that the power D is desired (step S1703).
 一方、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-を超えていれば(ステップS1702:No)、第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えているか判断する(ステップS1704)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えていれば(ステップS1704:Yes)、上限側の無線放電実施判断値BJ+から現在値B1を引いた値を伝送したい電力Dとする(ステップS1705)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+未満であれば(ステップS1704:No)、処理を終了する。 On the other hand, if the current value B1 of the second battery 212a exceeds the lower limit side wireless charge execution determination value BJ- (step S1702: No), the current value B1 of the second battery 212a is the upper limit side wireless discharge execution determination value. It is determined whether or not BJ + is exceeded (step S1704). If the current value B1 of the second battery 212a exceeds the upper limit side wireless discharge execution determination value BJ + (step S1704: Yes), it is desired to transmit a value obtained by subtracting the current value B1 from the upper limit side wireless discharge execution determination value BJ +. The power is D (step S1705). If the current value B1 of the second battery 212a is less than the upper limit wireless discharge execution determination value BJ + (step S1704: No), the process ends.
 上記の処理により、第2バッテリ212aの現在値が、上限側の無線放電実施判断値よりも大きい場合、あるいは下限の無線充電実施判断値よりも小さい場合は、現在値との差分のみの電力を無線により電力伝送させるようにする。 When the current value of the second battery 212a is larger than the upper limit side wireless discharge execution determination value or smaller than the lower limit wireless charge execution determination value by the above processing, only the power difference from the current value is obtained. Power is transmitted wirelessly.
 上記ステップS1703,ステップS1705の処理後、電力伝送可能な上限値Cmaxを下記式により算出する(ステップS1706)。
 電力伝送可能な上限値Cmax=無線により電力伝送できる最大電流Amax×現在の電圧V1
After the processing of step S1703 and step S1705, the upper limit Cmax that allows power transmission is calculated by the following equation (step S1706).
Upper limit value Cmax at which power can be transmitted = maximum current Amax at which power can be transmitted wirelessly × current voltage V1
 上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。 The electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1. For example, during power running, the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
 つぎに、電力伝送の電力値を決定する(ステップS1707)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS1707:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値-Cmaxを伝送する電力Dとして決定する。(ステップS1708)。 Next, the power value of power transmission is determined (step S1707). The power value of power transmission is performed by using the smaller one of the absolute value | D | of the power D desired to be transmitted and the upper limit Cmax capable of power transmission. For this reason, if the absolute value of the power D to be transmitted exceeds the upper limit value Cmax capable of power transmission (step S1707: Yes), the power for transmitting the upper limit value Cmax capable of power transmission when the power D to be transmitted is positive. Determine as D. When the power D to be transmitted is negative, an upper limit value −Cmax that allows power transmission is determined as the power D to be transmitted. (Step S1708).
 一方、ステップS1707において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS1707:No)、ステップS1708の処理を行わず、伝送したい電力Dをそのまま用い、ステップS1709に移行する。 On the other hand, in step S1707, if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1707: No), the processing of step S1708 is not performed and the power D to be transmitted is used as it is. The process moves to S1709.
 そして、ステップS1709では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線により電力伝送する。Dの値が負の場合には、第2バッテリ212aから第1バッテリ111に無線により電力伝送する(ステップS1709)。 In step S1709, the differential capacity D is wirelessly transmitted from the first battery 111 to the second battery 212a. If the value of D is negative, power is transmitted wirelessly from the second battery 212a to the first battery 111 (step S1709).
 上記の電力伝送の制御処理によれば、無線による電力損失が無視できない場合、現在値が無線充電実行判断値を超えたときのみ、非接触充電による電力伝送を実施している。これにより、無線による電力伝送量は、現在値が無線充電実施判断値あるいは無線放電実施判断値に近づくようにする。これにより、充電上限値と充電下限値に近づきにくくできるため、過充電や過放電を防止するための力行トルクや回生トルク制限の必要性が少なくなる。 According to the above power transmission control process, when wireless power loss cannot be ignored, power transmission by non-contact charging is performed only when the current value exceeds the wireless charging execution determination value. As a result, the wireless power transmission amount is set such that the current value approaches the wireless charging execution determination value or the wireless discharge execution determination value. This makes it difficult to approach the charge upper limit value and the charge lower limit value, thereby reducing the need for power running torque and regenerative torque limitation to prevent overcharge and overdischarge.
(車輪および電力伝送アンテナの構造例)
 図18-1,図18-2は、それぞれ車輪および電力伝送アンテナの構造例を示す図である。図18-1は、電力伝送アンテナを地面に対し垂直に設けた構造例である。車両100の車輪1800は、ホイール1801にタイヤ1802が装着されてなる。ホイール1801内部には、モータ(インナーモータ)Mが設けられる。
(Example of wheel and power transmission antenna structure)
18A and 18B are diagrams illustrating structural examples of the wheel and the power transmission antenna, respectively. FIG. 18A is a structural example in which the power transmission antenna is provided perpendicular to the ground. A wheel 1800 of the vehicle 100 is formed by attaching a tire 1802 to a wheel 1801. A motor (inner motor) M is provided inside the wheel 1801.
 ホイール1801と、車両100との間には、サスペンション1803が上下に設けられ、路面の凹凸による車輪1800(タイヤ1802)の上下ストロークをサスペンション1803が吸収する。 Suspension 1803 is provided between the wheel 1801 and the vehicle 100, and the suspension 1803 absorbs the vertical stroke of the wheel 1800 (tire 1802) due to road surface unevenness.
 そして、車輪1800側には、上述したインバータ203と、第2バッテリ212と、電力伝送アンテナ123と、受信回路(AC-DC変換部201,双方向チョッパ202を含む)1810が設けられる。車両100側には、電力伝送アンテナ123と対向するように電力伝送アンテナ122と送信回路(DC-AC変換部121を含む)1811が設けられる。これら一対の電力伝送アンテナ122,123の面は、地面に対し垂直に設けられている。 Further, on the wheel 1800 side, the inverter 203, the second battery 212, the power transmission antenna 123, and the receiving circuit (including the AC-DC converter 201 and the bidirectional chopper 202) 1810 are provided. On the vehicle 100 side, a power transmission antenna 122 and a transmission circuit (including a DC-AC conversion unit 121) 1811 are provided so as to face the power transmission antenna 123. The surfaces of the pair of power transmission antennas 122 and 123 are provided perpendicular to the ground.
 上記構成において、路面の凹凸による車輪1800の上下ストロークが大きいと、一対の電力伝送アンテナ122,123の中心がずれ、無線による電力伝送の効率が低下する。このため、車輪1800の上下ストローク量を検出し、車輪1800の上下ストローク量が少なく、伝送効率がよい状態のときに電力伝送を行うようにする。 In the above configuration, when the vertical stroke of the wheel 1800 due to road surface unevenness is large, the center of the pair of power transmission antennas 122 and 123 is shifted, and the efficiency of wireless power transmission is reduced. Therefore, the vertical stroke amount of the wheel 1800 is detected, and power transmission is performed when the vertical stroke amount of the wheel 1800 is small and the transmission efficiency is good.
 車輪1800の上下ストローク量は、以下の方法で検出できる。
1.サスペンション1803に上下のストローク量を検出するセンサを設ける。
2.車両100に加速度センサを設けて車両100の上下ストローク量を検出し、コントローラ101に設けた上下ストローク量算出手段により、車輪1800の上下ストローク量を算出(推定)する。たとえば、車両100に取り付けたナビゲーション装置が備える加速度センサを利用してもよい。
3.車両100に距離センサを設けて、地面に対する車両100の距離を検出し、コントローラ101に設けた上下ストローク量算出手段により、車輪1800の上下ストローク量を算出(推定)する。
The vertical stroke amount of the wheel 1800 can be detected by the following method.
1. The suspension 1803 is provided with a sensor for detecting the vertical stroke amount.
2. An acceleration sensor is provided in the vehicle 100 to detect the vertical stroke amount of the vehicle 100, and the vertical stroke amount of the wheel 1800 is calculated (estimated) by the vertical stroke amount calculation means provided in the controller 101. For example, an acceleration sensor included in a navigation device attached to the vehicle 100 may be used.
3. A distance sensor is provided in the vehicle 100 to detect the distance of the vehicle 100 with respect to the ground, and a vertical stroke amount calculation unit provided in the controller 101 calculates (estimates) the vertical stroke amount of the wheel 1800.
 図18-2は、電力伝送アンテナを地面に対し水平に設けた構造例である。図示の例では、車輪1800の上部位置に地面に対し水平に一対の電力伝送アンテナ122,123を設けている。この図に示す例では、車輪1800が上下にストローク動作しても、一対の電力伝送アンテナ122,123間は、中心のずれは生じないが、電力伝送アンテナ122, 123間の距離が変化するため、無線による電力伝送効率が変化する。 Fig. 18-2 shows a structural example in which the power transmission antenna is provided horizontally with respect to the ground. In the example shown in the figure, a pair of power transmission antennas 122 and 123 are provided horizontally above the ground at the upper position of the wheel 1800. In the example shown in this figure, even if the wheel 1800 is moved up and down, the center does not shift between the pair of power transmission antennas 122 and 123, but the distance between the power transmission antenna 122 and the rod 123 changes. The wireless power transmission efficiency changes.
 図19は、車輪の上下ストローク量に基づく電力伝送の制御手順の一例を示すフローチャートである。コントローラ101の残量制御部221は、車輪1800の上下ストローク量を検出する(ステップS1901)。そして、検出した車輪1800の上下ストローク量があらかじめ設定した閾値以下であるか判断する(ステップS1902)。検出した車輪1800の上下ストローク量があらかじめ設定した閾値以下であれば(ステップS1902:Yes)、一対の電力伝送アンテナ122,123を用いた無線による電力伝送を実施する(ステップS1903)。一方、検出した車輪1800の上下ストローク量があらかじめ設定した閾値を超えていれば(ステップS1902:No)、無線による電力伝送を実施しない(ステップS1904)。 FIG. 19 is a flowchart showing an example of a power transmission control procedure based on the vertical stroke amount of the wheel. The remaining amount control unit 221 of the controller 101 detects the vertical stroke amount of the wheel 1800 (step S1901). Then, it is determined whether the detected vertical stroke amount of the wheel 1800 is equal to or smaller than a preset threshold value (step S1902). If the detected vertical stroke amount of the wheel 1800 is equal to or less than a preset threshold value (step S1902: Yes), wireless power transmission using the pair of power transmission antennas 122 and 123 is performed (step S1903). On the other hand, if the detected vertical stroke amount of the wheel 1800 exceeds a preset threshold value (step S1902: No), wireless power transmission is not performed (step S1904).
 たとえば、ステップS1901では、所定の区間において検出された車輪1800の上下ストローク量の二乗平均、あるいはピーク値の推移を求め、ステップS1902において、閾値と比較する。また、ステップS1901では、車両100の上下ストローク量を加速度センサで検出する構成としたときには、重力加速度のオフセットを除去し、距離センサで検出する構成としたときには、静止時の距離センサと地面間距離のオフセットを除去した上で、上下ストローク量を検出する。これらの処理により、上下ストローク量を精度よく安定して検出できる。 For example, in step S1901, the root mean square or peak value transition of the vertical stroke amount of the wheel 1800 detected in a predetermined section is obtained, and in step S1902, it is compared with a threshold value. In step S1901, when the configuration is such that the vertical stroke amount of the vehicle 100 is detected by the acceleration sensor, the offset of the gravitational acceleration is removed, and when the configuration is such that the distance sensor detects the distance, the distance between the distance sensor and the ground when stationary. The vertical stroke amount is detected after removing the offset. By these processes, the vertical stroke amount can be detected accurately and stably.
 また、上述の説明では、加速度センサ、および距離センサは、いずれも車両100に設ける構成としたが、車輪1800に設ける構成とすれば、直接、車輪1800の上下ストローク量を検出できるようになる。 In the above description, the acceleration sensor and the distance sensor are both provided in the vehicle 100. However, if the configuration is provided in the wheel 1800, the vertical stroke amount of the wheel 1800 can be directly detected.
 図20は、車輪の上下ストローク量に基づく電力伝送の制御手順の他の例を示すフローチャートである。この制御手順では、バッテリ残量に応じて給電実施の有無を判断するための閾値を変更する構成である。 FIG. 20 is a flowchart showing another example of the power transmission control procedure based on the vertical stroke amount of the wheel. In this control procedure, the threshold value for determining whether or not power supply is performed is changed according to the remaining battery level.
 はじめに、コントローラ101の残量制御部221は、信号S1bに基づき第2バッテリ212の残量を検出する(ステップS2001)。そして、第2バッテリ212の残量が設定した閾値以上(たとえば、目標残量値BS以上)であるか判断する(ステップS2002)。第2バッテリ212の残量が設定した閾値以上であれば(ステップS2002:Yes)、デフォルトの値を上下ストロークの閾値に設定する(ステップS2003)。 First, the remaining amount control unit 221 of the controller 101 detects the remaining amount of the second battery 212 based on the signal S1b (step S2001). Then, it is determined whether the remaining amount of the second battery 212 is equal to or greater than a set threshold value (for example, a target remaining amount value BS or more) (step S2002). If the remaining amount of the second battery 212 is equal to or greater than the set threshold value (step S2002: Yes), the default value is set as the vertical stroke threshold value (step S2003).
 一方、第2バッテリ212の残量が設定した閾値(第2所定値)未満であれば(ステップS2002:No)、第2バッテリ212の残量に基づき、上下ストロークの閾値を変更する(ステップS2004)。たとえば、コントローラ101の図示しない記憶部には、あらかじめ第2バッテリの残量対応する閾値の関係を示す閾値データを記憶しておく。この閾値データは、第2バッテリ212の残量が設定した閾値以上であれば、上下ストロークの閾値を小さく(給電の許容範囲を狭く)、第2バッテリ212の残量が設定した閾値との差が多くなるほど、上下ストロークの閾値(第3所定値)を大きく(給電の許容範囲を広く)する。 On the other hand, if the remaining amount of the second battery 212 is less than the set threshold (second predetermined value) (step S2002: No), the upper and lower stroke threshold is changed based on the remaining amount of the second battery 212 (step S2004). ). For example, threshold data indicating a threshold relationship corresponding to the remaining amount of the second battery is stored in advance in a storage unit (not shown) of the controller 101. If the remaining amount of the second battery 212 is equal to or greater than the set threshold value, the threshold value data decreases the vertical stroke threshold value (narrows the allowable power supply range), and the difference between the second battery 212 remaining amount and the set threshold value. As the number increases, the vertical stroke threshold (third predetermined value) is increased (the power supply allowable range is increased).
 この後、車輪1800の上下ストローク量を検出する(ステップS2005)。そして、検出した車輪1800の上下ストローク量がステップS2003,あるいはステップS2004で設定した閾値以下であるか判断する(ステップS2006)。検出した車輪1800の上下ストローク量が閾値以下であれば(ステップS2006:Yes)、一対の電力伝送アンテナ122,123を用いた無線による電力伝送を実施する(ステップS2007)。一方、検出した車輪1800の上下ストローク量があらかじめ設定した閾値を超えていれば(ステップS2006:No)、無線による電力伝送を実施しない(ステップS2008)。 Thereafter, the vertical stroke amount of the wheel 1800 is detected (step S2005). Then, it is determined whether the detected vertical stroke amount of the wheel 1800 is equal to or smaller than the threshold value set in step S2003 or step S2004 (step S2006). If the detected vertical stroke amount of the wheel 1800 is equal to or smaller than the threshold value (step S2006: Yes), wireless power transmission is performed using the pair of power transmission antennas 122 and 123 (step S2007). On the other hand, if the detected vertical stroke amount of the wheel 1800 exceeds a preset threshold value (step S2006: No), wireless power transmission is not performed (step S2008).
 これにより、第2バッテリ212の残量が少ないほど、給電の許容範囲を広くして、電力の伝送効率が悪くても、第2バッテリ212の給電を優先して行うことができるようになる。 Thus, the smaller the remaining amount of the second battery 212, the wider the allowable range of power feeding, and even when the power transmission efficiency is poor, the power feeding of the second battery 212 can be performed with priority.
 以上説明した実施の形態によれば、車両と車輪にそれぞれバッテリを設け、車両と車輪の間を非接触な無線により電力伝送する構成とした。これにより、車両と車輪との間に大容量の電力伝送ケーブルを設ける必要がなく、ケーブルの損傷や交換を不要にできる。また、相互のバッテリ間での電力伝送は、車輪側の第2バッテリの容量が常に目標残量値に近づくよう制御する。これにより、常時モータに対して安定な電力を供給できるようになる。 According to the embodiment described above, a battery is provided for each of the vehicle and the wheel, and power is transmitted between the vehicle and the wheel by non-contact radio. Thereby, it is not necessary to provide a large-capacity power transmission cable between the vehicle and the wheel, and it is possible to eliminate damage and replacement of the cable. In addition, the power transmission between the batteries is controlled so that the capacity of the second battery on the wheel side always approaches the target remaining amount value. As a result, stable power can be supplied to the motor at all times.
 さらに、電力伝送を車両の走行状態にあわせて、力行時と回生時、および各モータに対するトルク配分、および制動トルクの変化に対応して制御するため、運転の安全性を確保できるとともに、電力伝送を効率的に行えるようになる。 In addition, power transmission is controlled according to the running state of the vehicle, in response to power running and regeneration, torque distribution to each motor, and changes in braking torque, ensuring driving safety and power transmission. Can be performed efficiently.
 そして、車輪の上下ストロークを検出して、無線による給電を制御する構成とすることにより、一対の電力伝送アンテナの伝送効率がよい状態で電力伝送できるようになる。さらに、第2バッテリの残量が少ないときには、伝送効率が悪くても電力伝送することにより、バッテリ切れを防止できるようになる。 Then, by detecting the vertical stroke of the wheel and controlling the power supply by radio, it is possible to transmit power while the transmission efficiency of the pair of power transmission antennas is good. Furthermore, when the remaining amount of the second battery is low, the battery can be prevented from running out by transmitting power even if the transmission efficiency is low.
 なお、本実施の形態で説明した方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 Note that the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 車両
 101 コントローラ
 102 ハンドル
 103 アクセルペダル
 104 ブレーキペダル
 105 シフトブレーキ
 106 セレクタ
 111 第1バッテリ
 121(121a) 第1変換器(DC-AC変換部)
 122(122a),123(123a) 電力伝送アンテナ
 201(201a) 第2変換器(AC-DC変換部)
 202a 双方向チョッパ
 203a インバータ
 212(212a) 第2バッテリ
 221 残量制御部
 222 トルク制御部
1800 車輪
1803 サスペンション
 M1~M4 モータユニット
 M モータ(インホイールモータ)
 L1~L4 電源ライン
DESCRIPTION OF SYMBOLS 100 Vehicle 101 Controller 102 Handle 103 Accelerator pedal 104 Brake pedal 105 Shift brake 106 Selector 111 First battery 121 (121a) First converter (DC-AC converter)
122 (122a), 123 (123a) Power transmission antenna 201 (201a) Second converter (AC-DC converter)
202a Bidirectional chopper 203a Inverter 212 (212a) Second battery 221 Remaining amount control unit 222 Torque control unit 1800 Wheel 1803 Suspension M1 to M4 Motor unit M Motor (in-wheel motor)
L1 to L4 Power line

Claims (7)

  1.  外部電源より取得した直流電力を蓄える第1蓄電池と、
     前記第1蓄電池に接続され、前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナを有する送電手段と、
     前記送電アンテナにより送電された前記交流電力を無線受電する受電アンテナと、当該交流電力を直流電力へ変換する第2変換器を有する受電手段と、
     車輪のハブに装着され、当該車輪を駆動するインホイールモータと、
     前記車輪に設けられ、前記受電手段により受電した直流電力を蓄える第2蓄電池と、
     前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、
     前記インホイールモータの回転駆動を制御する駆動制御手段と、
     前記送電手段より前記受電手段への無線給電を制御する給電制御手段と、
     車輪の上下ストローク量を検出する上下ストローク検出手段と、を備え、
     前記給電制御手段は、検出された前記上下ストローク量が所定値未満の場合に前記送電手段より前記受電手段への無線給電を行うこと
     を特徴とする車両駆動装置。
    A first storage battery for storing DC power acquired from an external power source;
    A first converter connected to the first storage battery and converting the DC power into AC power; and a power transmission means having a power transmission antenna for wirelessly transmitting the AC power;
    A power receiving means having a power receiving antenna for wirelessly receiving the AC power transmitted by the power transmitting antenna, and a second converter for converting the AC power into DC power;
    An in-wheel motor mounted on a wheel hub and driving the wheel;
    A second storage battery that is provided on the wheel and stores DC power received by the power receiving means;
    An inverter provided on the wheel for converting the DC power of the second storage battery into AC power;
    Drive control means for controlling the rotational drive of the in-wheel motor;
    Power supply control means for controlling wireless power supply from the power transmission means to the power reception means;
    And a vertical stroke detecting means for detecting the vertical stroke amount of the wheel,
    The power feeding control means performs wireless power feeding from the power transmitting means to the power receiving means when the detected vertical stroke amount is less than a predetermined value.
  2.  前記上下ストローク検出手段は、
     前記車輪に接続されたサスペンションの変位量を検出する変位量検出手段と、
     前記変位量に基づいて前記上下ストローク量を算出する上下ストローク量算出手段と、を備えること
     を特徴とする請求項1に記載の車両駆動装置。
    The vertical stroke detecting means includes
    A displacement amount detecting means for detecting a displacement amount of a suspension connected to the wheel;
    The vehicle drive device according to claim 1, further comprising: an up / down stroke amount calculating unit that calculates the up / down stroke amount based on the displacement amount.
  3.  前記上下ストローク検出手段は、
     前記車輪の上下方向の加速度を検出する加速度検出手段と、
     前記加速度に基づいて前記上下ストローク量を算出する上下ストローク量算出手段と、を備えること
     を特徴とする請求項1に記載の車両駆動装置。
    The vertical stroke detecting means includes
    Acceleration detecting means for detecting acceleration in the vertical direction of the wheel;
    The vehicle drive device according to claim 1, further comprising: an up / down stroke amount calculating unit that calculates the up / down stroke amount based on the acceleration.
  4.  前記上下ストローク検出手段は、
     前記車輪が接する地面との距離を検出する距離検出手段と、
     前記距離に基づいて前記上下ストローク量を算出する上下ストローク量算出手段と、を備えること
     を特徴とする請求項1に記載の車両駆動装置。
    The vertical stroke detecting means includes
    Distance detecting means for detecting a distance from the ground that the wheel contacts;
    The vehicle drive device according to claim 1, further comprising: an up / down stroke amount calculating unit that calculates the up / down stroke amount based on the distance.
  5.  前記第2蓄電池の蓄電量を検出する蓄電量検出手段をさらに備え、
     前記給電制御手段は、前記蓄電量が第2所定値未満の場合には、前記上下ストローク量が所定値より大きい第3所定値未満の場合に前記送電手段より前記受電手段への無線給電を行うこと
     を特徴とする請求項1に記載の車両駆動装置。
    A storage amount detecting means for detecting a storage amount of the second storage battery;
    The power supply control unit performs wireless power supply from the power transmission unit to the power reception unit when the amount of stored electricity is less than a second predetermined value and the vertical stroke amount is less than a third predetermined value greater than a predetermined value. The vehicle drive device according to claim 1, wherein:
  6.  前記送電アンテナの送電面と、前記受電アンテナの受電面とが、地面に対し垂直に対向して配置されていること
     を特徴とする請求項1に記載の車両駆動装置。
    2. The vehicle drive device according to claim 1, wherein a power transmission surface of the power transmission antenna and a power reception surface of the power reception antenna are disposed perpendicularly to the ground.
  7.  前記送電アンテナの送電面と、前記受電アンテナの受電面とが、地面に対し水平に対向して配置されていること
     を特徴とする請求項1に記載の車両駆動装置。
    The vehicle drive device according to claim 1, wherein a power transmission surface of the power transmission antenna and a power reception surface of the power reception antenna are disposed horizontally opposite to the ground.
PCT/JP2011/078111 2011-12-05 2011-12-05 Vehicle drive system WO2013084285A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013547978A JP5771284B2 (en) 2011-12-05 2011-12-05 Vehicle drive device
PCT/JP2011/078111 WO2013084285A1 (en) 2011-12-05 2011-12-05 Vehicle drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078111 WO2013084285A1 (en) 2011-12-05 2011-12-05 Vehicle drive system

Publications (1)

Publication Number Publication Date
WO2013084285A1 true WO2013084285A1 (en) 2013-06-13

Family

ID=48573693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078111 WO2013084285A1 (en) 2011-12-05 2011-12-05 Vehicle drive system

Country Status (2)

Country Link
JP (1) JP5771284B2 (en)
WO (1) WO2013084285A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144266A (en) * 2015-01-30 2016-08-08 東洋電機製造株式会社 Motor drive device
KR101764496B1 (en) 2015-11-02 2017-08-02 현대자동차주식회사 Active rectifier for wireless power transfer system and vehicle assembly using same and operating method thereof
US10381901B2 (en) 2017-05-12 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Wireless in-wheel electric assemblies with integrated in-wheel cooling and vehicles incorporating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191110A (en) * 1990-11-26 1992-07-09 Mitsubishi Motors Corp Active suspension for vehicle
JPH1118212A (en) * 1997-06-20 1999-01-22 Toyota Motor Corp Device for supplying electric power across above and below-spring members of vehicle
JP2006160033A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Electricity feed structure to wheel
JP2010183813A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191110A (en) * 1990-11-26 1992-07-09 Mitsubishi Motors Corp Active suspension for vehicle
JPH1118212A (en) * 1997-06-20 1999-01-22 Toyota Motor Corp Device for supplying electric power across above and below-spring members of vehicle
JP2006160033A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Electricity feed structure to wheel
JP2010183813A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144266A (en) * 2015-01-30 2016-08-08 東洋電機製造株式会社 Motor drive device
KR101764496B1 (en) 2015-11-02 2017-08-02 현대자동차주식회사 Active rectifier for wireless power transfer system and vehicle assembly using same and operating method thereof
US10381901B2 (en) 2017-05-12 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Wireless in-wheel electric assemblies with integrated in-wheel cooling and vehicles incorporating the same

Also Published As

Publication number Publication date
JPWO2013084285A1 (en) 2015-04-27
JP5771284B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5775605B2 (en) Vehicle drive device
JP5739548B2 (en) Vehicle drive device
JP5830449B2 (en) Electric vehicle drive system
CN103269898B (en) Elec. vehicle and control method thereof
US8849538B2 (en) Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
CN102470762B (en) Electric-vehicle propulsion power-conversion device
JP5822951B2 (en) Vehicle drive device
JP4380700B2 (en) Electric vehicle
US8935032B2 (en) Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
JP5705333B2 (en) Vehicle drive device
US20140018987A1 (en) Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
JP2012228163A (en) Torque distribution device and torque distribution method
CN104553880A (en) Electric vehicle
JP5771284B2 (en) Vehicle drive device
JP2013115937A (en) Control system for electric vehicle
JP5822946B2 (en) Vehicle drive device
KR101237317B1 (en) Propulsion device and method for four wheel drive hybrid vehicles
JP5353365B2 (en) Vehicle system
JP5771285B2 (en) Vehicle drive device
JP2012171616A (en) Torque distributor and method of distributing torque
KR20110048859A (en) Method for controling motor torque of vehicle
CN203391950U (en) Solar electric bicycle
JP2012175904A (en) Torque distribution device and torque distribution method
KR20120063118A (en) Electric 4 wheel drive systen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877087

Country of ref document: EP

Kind code of ref document: A1