JP2010183813A - Resonance type non-contact charging system - Google Patents

Resonance type non-contact charging system Download PDF

Info

Publication number
JP2010183813A
JP2010183813A JP2009027673A JP2009027673A JP2010183813A JP 2010183813 A JP2010183813 A JP 2010183813A JP 2009027673 A JP2009027673 A JP 2009027673A JP 2009027673 A JP2009027673 A JP 2009027673A JP 2010183813 A JP2010183813 A JP 2010183813A
Authority
JP
Japan
Prior art keywords
coil
primary
resonance coil
resonance
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009027673A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takada
和良 高田
Sadanori Suzuki
定典 鈴木
Kenichi Nakada
健一 中田
Shinpei Sakota
慎平 迫田
Yukihiro Yamamoto
幸宏 山本
Shinji Ichikawa
真士 市川
Tetsuhiro Ishikawa
哲浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2009027673A priority Critical patent/JP2010183813A/en
Publication of JP2010183813A publication Critical patent/JP2010183813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonance type non-contact charging system capable of efficiently charging a secondary battery installed on a vehicle without providing a moving means for moving a primary resonance coil. <P>SOLUTION: A power feeding side facility 10 includes a primary coil 12 selectively connected to an AC power supply unit 11 and a resistance R via a switch SW1, and a primary side resonance coil 13. An in-vehicle side facility 20 includes two secondary side resonance coils 21a, 21b, two secondary coils 22a, 22b, a charger 23, a secondary battery 24 connected to the charger 23, and a distance measuring AC power supply unit 27, wherein the secondary coils 22a, 22b are selectively connected to the distance measuring AC power supply unit 27 and the charger 23 through the switches SW2 and SW3. The distance between each of the secondary side resonance coils 21a, 21b and the primary side resonance coil 13 is estimated in a state that the secondary coils 22a, 22b are connected to the distance measuring AC power supply unit 27 and the resistance R is connected to the primary coil 12, and the positional relation between the power feeding side facility 10 and the in-vehicle side facility 20 is estimated from the estimated distance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、共鳴型非接触充電システムに係り、詳しくは車両に搭載された2次電池に非接触で充電を行う共鳴型非接触充電システムに関する。   The present invention relates to a resonance-type contactless charging system, and more particularly to a resonance-type contactless charging system that charges a secondary battery mounted on a vehicle in a contactless manner.

非接触で電力伝送を行う技術として共鳴方式が提案されている(例えば特許文献1)。この共鳴方式による電力伝送システムでは、図9に示すように、二つの銅線コイル51,52を離れた状態で配置し、一方の銅線コイル(1次側共鳴コイル)51から他方の銅線コイル(2次側共鳴コイル)52に電磁場の共鳴によって電力を伝送する。具体的には、交流電源53に接続された1次コイル54で発生した磁場を銅線コイル51,52による磁場共鳴により増強し、増強された銅線コイル52付近の磁場から2次コイル55により電磁誘導を利用して電力を取り出し、負荷56に供給する。そして、半径30cmの銅線コイル51,52を2m離して配置した場合に、負荷56としての60Wの電灯を点灯できることが確認されている。   A resonance method has been proposed as a technique for power transmission without contact (for example, Patent Document 1). In this power transmission system using the resonance method, as shown in FIG. 9, two copper wire coils 51 and 52 are arranged in a separated state, and one copper wire coil (primary resonance coil) 51 is connected to the other copper wire. Electric power is transmitted to the coil (secondary resonance coil) 52 by electromagnetic field resonance. Specifically, the magnetic field generated by the primary coil 54 connected to the AC power supply 53 is enhanced by magnetic field resonance by the copper wire coils 51 and 52, and the secondary coil 55 generates the magnetic field in the vicinity of the enhanced copper wire coil 52. Electric power is extracted using electromagnetic induction and supplied to the load 56. And when the copper wire coils 51 and 52 of radius 30cm are arrange | positioned 2 m apart, it has been confirmed that the 60W electric lamp as the load 56 can be lighted.

また、電動車のバッテリに非接触で効率良く充電可能にした非接触給電装置が提案されている(例えば特許文献2)。特許文献2の非接触給電装置は、電動車側の2次コイルに電磁結合する1次コイルを固定側に有し、1次コイル側から2次コイル側に給電を行う非接触給電装置において、1次コイル側の給電状態と、2次コイル側の受電状態とから給電効率を最大にするように、1次コイルの位置を移動させる位置決め手段を備えている。   There has also been proposed a non-contact power feeding device that can efficiently charge a battery of an electric vehicle without contact (for example, Patent Document 2). The non-contact power feeding device of Patent Document 2 has a primary coil that is electromagnetically coupled to a secondary coil on the electric vehicle side on the fixed side, and feeds power from the primary coil side to the secondary coil side. Positioning means is provided for moving the position of the primary coil so as to maximize the power supply efficiency from the power supply state on the primary coil side and the power reception state on the secondary coil side.

国際公開特許WO/2007/008646 A2International Patent Publication WO / 2007/008646 A2 特開2006−345588号公報JP 2006-345588 A

ところが、特許文献1には共鳴型非接触電力伝送方式を車両に搭載された2次電池の充電に用いる場合の具体的な構成については開示されていない。また、特許文献2の非接触給電装置は、固定側に設けられた1次コイルの位置を移動させる位置決め手段(移動手段)が必要になり、構成が複雑になる。   However, Patent Document 1 does not disclose a specific configuration when the resonance type non-contact power transmission method is used for charging a secondary battery mounted on a vehicle. Further, the non-contact power feeding device of Patent Document 2 requires positioning means (moving means) for moving the position of the primary coil provided on the fixed side, and the configuration becomes complicated.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる共鳴型非接触充電システムを提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a secondary mounted on a vehicle without providing a moving means for moving a primary side resonance coil provided on a power feeding side. An object of the present invention is to provide a resonance type non-contact charging system capable of efficiently charging a battery.

前記の目的を達成するため、請求項1に記載の発明は、交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムである。そして、前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段と、前記距離推定手段により推定された距離から前記給電側設備と前記車載側設備との位置関係を推定する位置推定手段と、を備えている。ここで、「交流電源」とは、交流電圧を出力する電源を意味し、直流電源から入力された直流を交流に変換して出力するものも含む。   In order to achieve the above-described object, the invention according to claim 1 is an AC power source, a power supply side facility including a primary side resonance coil that receives power supply from the AC power source, and a primary side resonance coil. Resonance including a secondary resonance coil that receives power by magnetic field resonance, a charger that receives power supply from the secondary resonance coil, and a vehicle-mounted facility that includes a secondary battery connected to the charger. Type non-contact charging system. A plurality of at least one of the primary side resonance coil and the secondary side resonance coil are provided, and distance estimation means for estimating a distance between the primary side resonance coil and the secondary side resonance coil; and the distance estimation Position estimation means for estimating a positional relationship between the power supply side equipment and the in-vehicle side equipment from the distance estimated by the means. Here, the “AC power supply” means a power supply that outputs an AC voltage, and includes an output that converts a DC input from a DC power supply into an AC.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により2次側共鳴コイルと1次側共鳴コイルとの距離が推定される。そして、その推定された距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。位置推定手段は少なくとも二組の1次側共鳴コイルと2次側共鳴コイル間の推定距離に基づいて給電側設備と車載側設備との位置関係を推定できる。したがって、給電側設備と車載側設備とが効率良く充電可能な位置関係にあるか否かを判断できる。そして、効率良く充電可能な位置関係になるまで車両を移動させた状態で充電を行うことにより、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。   In this invention, when the vehicle moves to the charging position and parks (stops), the distance between the secondary resonance coil and the primary resonance coil is estimated by the distance estimation means. Then, the positional relationship between the power supply side equipment and the in-vehicle side equipment is estimated from the estimated distance by the position estimation means. The position estimating means can estimate the positional relationship between the power supply side equipment and the in-vehicle side equipment based on at least the estimated distance between the two sets of primary side resonance coils and secondary side resonance coils. Therefore, it can be determined whether or not the power supply side equipment and the in-vehicle side equipment are in a positional relationship that allows efficient charging. Then, charging is performed in a state where the vehicle is moved until the positional relationship is efficiently charged, so that it is mounted on the vehicle without providing a moving means for moving the primary side resonance coil provided on the power feeding side. The secondary battery can be charged efficiently.

請求項2に記載の発明は、請求項1に記載の発明において、前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する。   According to a second aspect of the present invention, in the first aspect of the invention, the power supply side facility is coupled to the primary resonance coil by electromagnetic induction and is selectively connected to the AC power source. The distance estimating means includes the primary resonance coil and the voltage based on at least one of a voltage value detected from the primary coil and a voltage value detected from the secondary resonance coil. Estimate the distance between the secondary resonance coils.

この発明では、距離を推定する方法として、1次コイル及び2次側共鳴コイルの少なくとも一方の電圧から推定する方法が採用される。例えば、1次コイルの電圧から推定する場合は、1次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。2次側共鳴コイルの電圧から推定する場合は、2次側共鳴コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。また、1次コイル及び2次側共鳴コイルの両方の電圧から推定する場合は、両電圧値から求められる電力伝送効率から推定する。したがって、2次コイルがなくても距離を推定することができる。   In the present invention, as a method of estimating the distance, a method of estimating from the voltage of at least one of the primary coil and the secondary resonance coil is employed. For example, when estimating from the voltage of the primary coil, a relationship between the voltage of the primary coil and the distance between the primary side resonance coil and the secondary side resonance coil is obtained by a test and is estimated using the relationship. To do. When estimating from the voltage of the secondary side resonance coil, the relationship between the voltage of the secondary side resonance coil and the distance between the primary side resonance coil and the secondary side resonance coil is obtained by a test, and the relationship is used. To estimate. Moreover, when estimating from the voltage of both a primary coil and a secondary side resonance coil, it estimates from the electric power transmission efficiency calculated | required from both voltage values. Therefore, the distance can be estimated without a secondary coil.

請求項3に記載の発明は、請求項1に記載の発明において、前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、前記車載側設備は、前記2次側共鳴コイルに電磁誘導で結合されるとともに前記充電器と選択的に接続される2次コイルを有する。前記距離推定手段は、前記1次コイルから出力される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する。   According to a third aspect of the present invention, in the first aspect of the invention, the power supply side facility is coupled to the primary resonance coil by electromagnetic induction and is selectively connected to the AC power source. The on-vehicle equipment includes a secondary coil that is coupled to the secondary resonance coil by electromagnetic induction and is selectively connected to the charger. The distance estimation means includes the primary resonance coil and the secondary resonance coil based on at least one of a voltage value output from the primary coil and a voltage value detected from the secondary resonance coil. Estimate the distance between.

この発明では、距離を推定する方法としては、「1次コイル及び2次コイルの少なくとも一方の電圧から推定する方法が採用される。例えば、1次コイルの電圧から推定する場合は、1次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。2次コイルの電圧から推定する場合は、2次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。また、1次コイル及び2次コイルの両方の電圧から推定する場合は、両電圧値から求められる電力伝送効率から推定する。   In the present invention, as a method of estimating the distance, “a method of estimating from the voltage of at least one of the primary coil and the secondary coil is adopted. For example, when estimating from the voltage of the primary coil, the primary coil. The relationship between the voltage of the primary coil and the distance between the primary side resonance coil and the secondary side resonance coil is obtained by a test and is estimated using the relationship. The relationship between the voltage of the primary coil and the distance between the primary side resonance coil and the secondary side resonance coil is obtained by a test, and is estimated using the relationship, and from the voltages of both the primary coil and the secondary coil. When estimating, it estimates from the power transmission efficiency calculated | required from both voltage values.

請求項4に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記車載側設備は、第1の2次側共鳴コイル及び第2の2次側共鳴コイルを有し、前記位置推定手段は、前記距離推定手段により推定された前記第1の2次側共鳴コイルと前記1次側共鳴コイルとの距離及び前記第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する。   The invention according to claim 4 is the invention according to any one of claims 1 to 4, wherein the on-vehicle equipment includes a first secondary resonance coil and a second secondary resonance coil. The position estimating means includes a distance between the first secondary resonance coil and the primary resonance coil estimated by the distance estimation means, and the second secondary resonance coil and the first The positional relationship between the power supply side equipment and the in-vehicle side equipment is estimated from the distance to the secondary resonance coil.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により推定された第1の2次側共鳴コイルと1次側共鳴コイルとの距離及び第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離が推定される。そして、距離推定手段により推定された第1の2次側共鳴コイルと1次側共鳴コイルとの距離及び第2の2次側共鳴コイルと1次側共鳴コイルとの距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。そのため、推定された給電側設備と車載側設備との位置関係に基づいて、車両を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。   In this invention, when the vehicle moves to the charging position and parks (stops), the distance between the first secondary resonance coil and the primary resonance coil estimated by the distance estimation means and the second secondary side are estimated. A distance between the resonance coil and the primary resonance coil is estimated. Then, the position estimation unit supplies power from the distance between the first secondary resonance coil and the primary resonance coil estimated by the distance estimation unit and the distance between the second secondary resonance coil and the primary resonance coil. The positional relationship between the side equipment and the in-vehicle side equipment is estimated. Therefore, based on the estimated positional relationship between the power supply side equipment and the in-vehicle side equipment, the vehicle can be easily moved to the charging position, and moving means for moving the primary resonance coil provided on the power supply side is provided. Without providing, the secondary battery mounted on the vehicle can be charged efficiently.

請求項5に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記給電側設備は、第1の1次側共鳴コイル及び第2の1次側共鳴コイルを有し、前記位置推定手段は、前記距離推定手段により推定された前記第1の1次側共鳴コイルと前記2次側共鳴コイルとの距離及び前記第2の1次側共鳴コイルと前記2次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する。   According to a fifth aspect of the present invention, in the invention according to any one of the first to third aspects, the power supply side equipment includes a first primary side resonance coil and a second primary side resonance coil. The position estimating means includes a distance between the first primary resonance coil and the secondary resonance coil estimated by the distance estimation means, and the second primary resonance coil and the 2 The positional relationship between the power supply side equipment and the in-vehicle side equipment is estimated from the distance to the secondary resonance coil.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により推定された第1の1次側共鳴コイルと2次側共鳴コイルとの距離及び第2の1次側共鳴コイルと2次側共鳴コイルとの距離が推定される。そして、距離推定手段により推定された第1の1次側共鳴コイルと2次側共鳴コイルとの距離及び第2の1次側共鳴コイルと2次側共鳴コイルとの距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。そのため、推定された給電側設備と車載側設備との位置関係に基づいて、車両を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。   In this invention, when the vehicle moves to the charging position and parks (stops), the distance between the first primary resonance coil and the secondary resonance coil estimated by the distance estimation means and the second primary side are estimated. A distance between the resonance coil and the secondary resonance coil is estimated. Then, the position estimation unit supplies power from the distance between the first primary resonance coil and the secondary resonance coil estimated by the distance estimation unit and the distance between the second primary resonance coil and the secondary resonance coil. The positional relationship between the side equipment and the in-vehicle side equipment is estimated. Therefore, based on the estimated positional relationship between the power supply side equipment and the in-vehicle side equipment, the vehicle can be easily moved to the charging position, and moving means for moving the primary resonance coil provided on the power supply side is provided. Without providing, the secondary battery mounted on the vehicle can be charged efficiently.

請求項6に記載の発明は、請求項3〜請求項5のいずれか一項に記載の発明において、前記1次コイルと選択的に接続される抵抗と、前記2次コイルと選択的に接続される距離計測用交流電源とを有し、前記距離計測用交流電源が前記各2次コイルに接続されるとともに前記抵抗が前記1次コイルに接続された状態で前記各2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送する。前記距離推定手段は、前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記2次コイルから検出される電圧値及び前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記1次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記2次側共鳴コイルと前記1次側共鳴コイルとの距離を推定する。   The invention according to claim 6 is the invention according to any one of claims 3 to 5, wherein the resistor is selectively connected to the primary coil, and the secondary coil is selectively connected. A distance measuring AC power source, wherein the distance measuring AC power source is connected to each secondary coil and the resistor is connected to the primary coil from each secondary resonance coil. Power is transmitted to the primary resonance coil. The distance estimating means transmits a power value from the secondary resonance coil to the primary resonance coil and detects a voltage value detected from the secondary coil and from the secondary resonance coil to the primary resonance coil. A distance between the secondary resonance coil and the primary resonance coil is estimated based on at least one of the voltage values detected from the primary coil after transmitting power.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離計測用交流電源が各2次コイルに接続されるとともに抵抗が1次コイルに接続された状態で各2次側共鳴コイルから1次側共鳴コイルに電力が伝送される。そして、2次コイルから検出される電圧値及び1次コイルから検出される電圧値の少なくともいずれか一方に基づいて、距離推定手段により2次側共鳴コイルと1次側共鳴コイルとの距離が推定される。   In this invention, when the vehicle moves to the charging position and parks (stops), the AC power source for distance measurement is connected to each secondary coil and each secondary side resonance is connected with the resistance connected to the primary coil. Power is transmitted from the coil to the primary resonance coil. Based on at least one of the voltage value detected from the secondary coil and the voltage value detected from the primary coil, the distance between the secondary resonance coil and the primary resonance coil is estimated by the distance estimation means. Is done.

請求項7に記載の発明は、請求項1〜請求項6のいずれか一項に記載の発明において、前記車載側設備が搭載された車両は駐車支援装置を備え、前記位置推定手段により推定された前記給電側設備と前記車載側設備との位置関係を示すデータが前記駐車支援装置において使用される。ここで、「駐車支援装置」とは、車両が駐車する際に、運転者のハンドル操作を軽減させる役割を果たす装置を意味する。駐車支援装置には、例えば、カメラとコンピュータとにより、運転者がハンドルに触れることなく、カメラの撮影データに基づき目的の駐車位置に停止するように自動操舵を行う自動駐車装置や、ディスプレイに目的の駐車位置と、車両の現在位置とを表示する装置等がある。この発明では、より容易に車両を充電位置に移動、駐車させることができる。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the vehicle on which the in-vehicle side equipment is mounted includes a parking assistance device, and is estimated by the position estimating means. Further, data indicating the positional relationship between the power supply side equipment and the in-vehicle side equipment is used in the parking assistance device. Here, the “parking support device” means a device that plays a role of reducing driver's steering operation when the vehicle is parked. The parking assist device includes, for example, an automatic parking device that performs automatic steering so that the driver stops at a target parking position based on shooting data of the camera without touching the steering wheel by a camera and a computer. There are devices for displaying the parking position and the current position of the vehicle. In this invention, the vehicle can be moved and parked at the charging position more easily.

本発明によれば、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。   ADVANTAGE OF THE INVENTION According to this invention, the secondary battery mounted in the vehicle can be charged efficiently, without providing the moving means which moves the primary side resonance coil provided in the electric power feeding side.

第1の実施形態における共鳴型非接触充電システムの構成図。The block diagram of the resonance-type non-contact charge system in 1st Embodiment. 車両が充電位置へ移動する際の1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式平面図。The schematic plan view which shows the relationship between the primary side resonance coil at the time of a vehicle moving to a charge position, and a secondary side resonance coil. 1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式図。The schematic diagram which shows the relationship between a primary side resonance coil and a secondary side resonance coil. 第2の実施形態における共鳴型非接触充電システムの構成図。The block diagram of the resonance type non-contact charge system in 2nd Embodiment. 第3の実施形態における共鳴型非接触充電システムの構成図。The block diagram of the resonance type non-contact charge system in 3rd Embodiment. 作用を説明するフローチャート。The flowchart explaining an effect | action. (a)は車両が後退で充電位置へ移動する際の1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式平面図、(b)は前進で移動する際の模式平面図。(A) is a schematic top view which shows the relationship between the primary side resonance coil and secondary side resonance coil when a vehicle moves backward to a charge position, (b) is a schematic plan view at the time of moving forward. 別の実施形態における車両の充電位置での1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式側面図。The schematic side view which shows the relationship between the primary side resonance coil and the secondary side resonance coil in the charge position of the vehicle in another embodiment. 従来技術の非接触電力伝送装置の構成図。The block diagram of the non-contact electric power transmission apparatus of a prior art.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図3にしたがって説明する。
図1は共鳴型非接触充電システムの構成を模式的に示す。図1に示すように、共鳴型非接触充電システムは、地上側に設けられる給電側設備(送電側設備)10と、車両30に搭載された車載側設備20とで構成されている。給電側設備10は、交流電源11、交流電源11から電力の供給を受ける1次側共鳴コイル13を備えている。詳述すると、給電側設備10は、交流電源11と、1次コイル12と、1次側共鳴コイル13と、電源側コントローラ14とを備えている。1次コイル12と1次側共鳴コイル13とは同軸上に位置するように配設されている。1次コイル12はスイッチSW1を介して抵抗Rに接続される状態と、交流電源11に接続される状態とに切り換え可能になっている。1次コイル12は、1次側共鳴コイル13に電磁誘導で結合されるとともに交流電源11と抵抗Rとに選択的に接続される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 schematically shows the configuration of a resonance type non-contact charging system. As shown in FIG. 1, the resonance-type non-contact charging system includes a power supply side facility (power transmission side facility) 10 provided on the ground side and an in-vehicle side facility 20 mounted on a vehicle 30. The power supply side equipment 10 includes an AC power supply 11 and a primary resonance coil 13 that receives power from the AC power supply 11. More specifically, the power supply side equipment 10 includes an AC power source 11, a primary coil 12, a primary side resonance coil 13, and a power source side controller 14. The primary coil 12 and the primary side resonance coil 13 are disposed so as to be coaxial. The primary coil 12 can be switched between a state connected to the resistor R via the switch SW <b> 1 and a state connected to the AC power supply 11. Primary coil 12 is coupled to primary resonance coil 13 by electromagnetic induction and is selectively connected to AC power supply 11 and resistor R.

抵抗Rには、抵抗Rが1次コイル12に接続された状態で抵抗Rの両端間の電圧、即ち1次コイル12の出力電圧を検出する電圧センサ15が接続されている。電圧センサ15の検出信号は電源側コントローラ14に入力される。1次側共鳴コイル13にはコンデンサCが接続されている。交流電源11は交流電圧を出力する電源である。交流電源11は電源側コントローラ14による制御によって所定周波数(共鳴周波数)の交流を出力するように構成されている。   A voltage sensor 15 that detects a voltage across the resistor R, that is, an output voltage of the primary coil 12 in a state where the resistor R is connected to the primary coil 12, is connected to the resistor R. The detection signal of the voltage sensor 15 is input to the power supply side controller 14. A capacitor C is connected to the primary resonance coil 13. The AC power supply 11 is a power supply that outputs an AC voltage. The AC power supply 11 is configured to output an AC having a predetermined frequency (resonance frequency) under the control of the power supply controller 14.

車載側設備20は、第1の2次側共鳴コイル21a及び第2の2次側共鳴コイル21bと、2個の2次コイル22a,22bと、2次コイル22a,22bに接続されて電力の供給を受ける充電器23と、充電器23に接続された2次電池24と、充電コントローラ25と、車両側コントローラ26とを備えている。対応する2次側共鳴コイル21a,21b及び2次コイル22a,22bは同軸上に位置するように配設されている。充電器23は、2次コイル22a,22bから入力される交流を整流する整流回路(図示せず)と、整流された直流を2次電池24に充電するのに適した電圧に昇圧する昇圧回路(図示せず)とを備えている。充電コントローラ25は、充電時に充電器23の昇圧回路のスイッチング素子を制御する。各2次コイル22a,22bは、スイッチSW2,SW3を介して充電器23に選択的に接続可能に構成されている。2次コイル22a,22bは、第1及び第2の2次側共鳴コイル21a,21bに電磁誘導で結合されるとともに充電器23と選択的に接続される。車載側設備20は距離計測用交流電源27を備え、距離計測用交流電源27は、スイッチSW2,SW3を介して2つの2次コイル22a,22bのいずれかに選択的に接続可能に構成されている。距離計測用交流電源27は、交流電源11が電力伝送時に出力するより二桁程度小さな交流電力を出力するように構成されている。   The in-vehicle side equipment 20 is connected to the first secondary resonance coil 21a and the second secondary resonance coil 21b, the two secondary coils 22a and 22b, and the secondary coils 22a and 22b, and generates electric power. A charger 23 that receives the supply, a secondary battery 24 connected to the charger 23, a charge controller 25, and a vehicle-side controller 26 are provided. Corresponding secondary resonance coils 21a, 21b and secondary coils 22a, 22b are arranged so as to be located on the same axis. The charger 23 includes a rectifier circuit (not shown) that rectifies the alternating current input from the secondary coils 22a and 22b, and a booster circuit that boosts the rectified direct current to a voltage suitable for charging the secondary battery 24. (Not shown). The charge controller 25 controls the switching element of the booster circuit of the charger 23 during charging. Each secondary coil 22a, 22b is configured to be selectively connectable to the charger 23 via the switches SW2, SW3. The secondary coils 22a and 22b are coupled to the first and second secondary resonance coils 21a and 21b by electromagnetic induction and are selectively connected to the charger 23. The in-vehicle equipment 20 includes a distance measurement AC power supply 27, and the distance measurement AC power supply 27 is configured to be selectively connectable to one of the two secondary coils 22a and 22b via the switches SW2 and SW3. Yes. The AC power supply 27 for distance measurement is configured to output AC power that is about two orders of magnitude smaller than the AC power supply 11 outputs during power transmission.

なお、1次コイル12、1次側共鳴コイル13、2次側共鳴コイル21a,21b及び2次コイル22a,22bの巻数、巻径は伝送しようとする電力の大きさ等に対応して適宜設定される。また、図1において各スイッチSW1,SW2,SW3は、リレーの接点を示す。図1には、リレーの接点が有接点式で図示されているが、半導体素子を用いた無接点リレーでもよい。   The number of turns and the winding diameter of the primary coil 12, the primary side resonance coil 13, the secondary side resonance coils 21a and 21b, and the secondary coils 22a and 22b are appropriately set according to the magnitude of the electric power to be transmitted. Is done. In FIG. 1, the switches SW1, SW2, and SW3 indicate relay contacts. In FIG. 1, the contact of the relay is shown as a contact type, but a contactless relay using a semiconductor element may be used.

電源側コントローラ14と、車両側コントローラ26とは図示しない無線通信装置を介して通信可能になっている。電源側コントローラ14はCPU及びメモリを備え、メモリには、車載側設備20を備えた車両30が充電位置へ移動する際にスイッチSW1を抵抗Rと1次コイル12とを接続する状態に切り換え、充電時にはスイッチSW1を交流電源11と1次コイル12とを接続する状態に切り換える制御プログラムが記憶されている。また、メモリには、抵抗Rが1次コイル12に接続された状態で、電圧センサ15の検出電圧データを車両側コントローラ26に送信する制御プログラムが記憶されている。   The power supply controller 14 and the vehicle controller 26 can communicate with each other via a wireless communication device (not shown). The power supply side controller 14 includes a CPU and a memory. In the memory, the switch 30 is switched to a state in which the resistor R and the primary coil 12 are connected when the vehicle 30 including the in-vehicle side equipment 20 moves to the charging position. A control program for switching the switch SW1 to a state in which the AC power supply 11 and the primary coil 12 are connected during charging is stored. Further, the memory stores a control program for transmitting detected voltage data of the voltage sensor 15 to the vehicle-side controller 26 in a state where the resistor R is connected to the primary coil 12.

車両側コントローラ26は、CPU及びメモリを備え、メモリには、スイッチSW2,SW3を、車両30が充電位置へ移動する際に二つの2次コイル22a,22bを距離計測用交流電源27と選択的に接続する状態に、充電時には二つの2次コイル22a,22bを充電器23に選択的に接続する状態に、切り換える制御プログラムが記憶されている。メモリには2次コイル22a,22bが距離計測用交流電源27にそれぞれ接続された状態で、車両側コントローラ26から送信された電圧センサ15の検出電圧データに基づいて各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を演算(推定)する制御プログラムが記憶されている。電圧センサ15と車両側コントローラ26とで距離推定手段が構成されている。また、メモリには、各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離から1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係、即ち、給電側設備10と車載側設備20との位置関係を推定する制御プログラムが記憶されている。車両側コントローラ26は給電側設備10と車載側設備20との位置関係を推定する位置推定手段としても機能する。   The vehicle-side controller 26 includes a CPU and a memory. In the memory, the switches SW2 and SW3 are selectively connected to the two secondary coils 22a and 22b and the distance measuring AC power supply 27 when the vehicle 30 moves to the charging position. A control program for switching to a state in which the two secondary coils 22a and 22b are selectively connected to the charger 23 during charging is stored. In the memory, the secondary coils 22a and 22b are connected to the distance measuring AC power supply 27, respectively, and based on the detected voltage data of the voltage sensor 15 transmitted from the vehicle controller 26, the secondary resonance coils 21a and A control program for calculating (estimating) the distance between 21b and the primary resonance coil 13 is stored. The voltage sensor 15 and the vehicle-side controller 26 constitute distance estimation means. Further, in the memory, the positional relationship between the primary side resonance coil 13 and the two secondary side resonance coils 21a and 21b from the distance between the secondary side resonance coils 21a and 21b and the primary side resonance coil 13, that is, A control program for estimating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 is stored. The vehicle-side controller 26 also functions as position estimation means for estimating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20.

車両30は駐車支援装置として公知の自動駐車装置31を備えている。自動駐車装置31は車両の後部に設けられた図示しないカメラと、コンピュータとにより、運転者がハンドルに触れることなく、カメラの撮影データに基づき目的の駐車位置に駐車(停止)するように自動操舵を行う。この実施形態では、自動駐車装置31は、車両30が充電位置に停止する際は、カメラの撮影データに代えて位置推定手段により推定された給電側設備10と車載側設備20との位置関係(位置データ)に基づき自動操舵を行うようになっている。   The vehicle 30 includes a known automatic parking device 31 as a parking assistance device. The automatic parking device 31 is automatically steered by a computer (not shown) provided at the rear of the vehicle and a computer so that the driver parks (stops) at a target parking position based on the camera data without touching the steering wheel. I do. In this embodiment, when the vehicle 30 stops at the charging position, the automatic parking apparatus 31 replaces the captured data of the camera with the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 estimated by the position estimation means ( Automatic steering based on the position data).

図2及び図3に示すように、第1及び第2の2次側共鳴コイル21a,21bは、車両30の後側底部の左右両側に、コイルの中心軸が車両30の上下方向に延びるように設けられている。1次側共鳴コイル13は、地上に形成された穴の中に、充電時の停止位置に停止した車両30の下方に位置し、コイルの中心軸が地上面に対して直交する方向に延びるように設けられている。なお、穴の開口は車両30の移動に支障がないようにカバーで覆われている。1次側共鳴コイル13及び2次側共鳴コイル21a,21bは、電線が螺旋状に巻回されて、同じに形成されている。   As shown in FIGS. 2 and 3, the first and second secondary resonance coils 21 a and 21 b are arranged on the left and right sides of the rear bottom portion of the vehicle 30 so that the central axis of the coil extends in the vertical direction of the vehicle 30. Is provided. The primary resonance coil 13 is positioned below the vehicle 30 stopped at the charging stop position in a hole formed on the ground so that the central axis of the coil extends in a direction perpendicular to the ground surface. Is provided. The opening of the hole is covered with a cover so as not to hinder the movement of the vehicle 30. The primary side resonance coil 13 and the secondary side resonance coils 21a and 21b are formed in the same manner by winding an electric wire in a spiral shape.

次に前記のように構成された共鳴型非接触充電システムの作用を説明する。
車両30に搭載された2次電池24に充電を行う場合には、車両30は給電側設備10の1次側共鳴コイル13が設けられた充電位置に駐車(停止)する必要がある。車両30が充電位置へ移動する際、給電側設備10と車載側設備20との位置関係を推定するための処理が、電源側コントローラ14及び車両側コントローラ26とで共同して行われる。
Next, the operation of the resonance type non-contact charging system configured as described above will be described.
When the secondary battery 24 mounted on the vehicle 30 is charged, the vehicle 30 needs to be parked (stopped) at the charging position where the primary resonance coil 13 of the power supply side equipment 10 is provided. When the vehicle 30 moves to the charging position, processing for estimating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 is performed jointly by the power supply side controller 14 and the vehicle side controller 26.

電源側コントローラ14は、車両側コントローラ26から車両30が充電位置へ移動する旨の信号を受信すると、1次コイル12が抵抗Rと接続される状態にスイッチSW1を切り換える。車両側コントローラ26は、スイッチSW3を距離計測用交流電源27に接続される状態に保持し、スイッチSW2を2次コイル22aに接続される位置に切り換える。この状態で距離計測用交流電源27から共鳴周波数の交流電圧が2次コイル22aに印加されると、2次コイル22aに磁場が発生し、この磁場が1次側共鳴コイル13と2次側共鳴コイル21aとによる磁場共鳴により増強され、増強された1次側共鳴コイル13付近の磁場により電磁誘導で1次コイル12から交流が出力される。1次コイル12の出力電圧は電圧センサ15により検出され、その検出電圧データが電源側コントローラ14を介して車両側コントローラ26へ送信される。車両側コントローラ26はその検出電圧データをメモリに記憶した後、スイッチSW2を2次コイル22bに接続される位置に切り換え、前記と同様にその状態で電圧センサ15による1次コイル12の出力電圧の検出電圧データを電源側コントローラ14から受信する。そして、車両側コントローラ26は両検出電圧データに基づいて1次側共鳴コイル13と第1及び第2の2次側共鳴コイル21a,21bとの距離を推定する。   When receiving a signal indicating that the vehicle 30 is moved to the charging position from the vehicle-side controller 26, the power-side controller 14 switches the switch SW1 so that the primary coil 12 is connected to the resistor R. The vehicle-side controller 26 keeps the switch SW3 connected to the distance measuring AC power supply 27 and switches the switch SW2 to a position connected to the secondary coil 22a. In this state, when an AC voltage having a resonance frequency is applied from the AC power supply 27 for distance measurement to the secondary coil 22a, a magnetic field is generated in the secondary coil 22a, and this magnetic field is generated between the primary resonance coil 13 and the secondary resonance. An alternating current is output from the primary coil 12 by electromagnetic induction by the magnetic field in the vicinity of the enhanced primary side resonance coil 13 that is enhanced by magnetic field resonance with the coil 21a. The output voltage of the primary coil 12 is detected by the voltage sensor 15, and the detected voltage data is transmitted to the vehicle controller 26 via the power supply controller 14. After storing the detected voltage data in the memory, the vehicle-side controller 26 switches the switch SW2 to a position where it is connected to the secondary coil 22b, and in the same manner as described above, the output voltage of the primary coil 12 by the voltage sensor 15 is switched. Detection voltage data is received from the power supply side controller 14. Then, the vehicle-side controller 26 estimates the distance between the primary side resonance coil 13 and the first and second secondary side resonance coils 21a and 21b based on both detection voltage data.

1次コイル12から検出される出力電圧の大きさは、1次側共鳴コイル13と第1及び第2の2次側共鳴コイル21a,21bとの距離と一定の関係があり、車両側コントローラ26はメモリに記憶されたその関係に基づいて各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を推定する。そして、車両側コントローラ26は、二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離から給電側設備10と車載側設備20との位置関係を推定する。二つの2次側共鳴コイル21a,21b間の距離は予め分かっているため、二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離が分かれば、給電側設備10と車載側設備20との位置関係が一義的に決まる。この位置関係から充電が効率良く行われる充電位置に車両30が到着したか否かが判断される。車両側コントローラ26は、給電側設備10と車載側設備20との位置関係が、予め設定された位置関係となるまでスイッチSW2の接続状態を切り換えて電源側コントローラ14から検出電圧データを受信し、1次側共鳴コイル13と二つ2次側共鳴コイル21a,21bとの位置関係を推定する処理を繰り返す。   The magnitude of the output voltage detected from the primary coil 12 has a certain relationship with the distance between the primary side resonance coil 13 and the first and second secondary side resonance coils 21a and 21b. Estimates the distance between each secondary resonance coil 21a, 21b and the primary resonance coil 13 based on the relationship stored in the memory. And the vehicle side controller 26 estimates the positional relationship of the electric power feeding side equipment 10 and the vehicle-mounted side equipment 20 from the distance of the two secondary side resonance coils 21a and 21b and the primary side resonance coil 13. FIG. Since the distance between the two secondary resonance coils 21a and 21b is known in advance, if the distance between the two secondary resonance coils 21a and 21b and the primary resonance coil 13 is known, the power supply side equipment 10 and the vehicle-mounted device are mounted. The positional relationship with the side equipment 20 is uniquely determined. It is determined from this positional relationship whether or not the vehicle 30 has arrived at a charging position where charging is performed efficiently. The vehicle-side controller 26 receives the detected voltage data from the power-side controller 14 by switching the connection state of the switch SW2 until the positional relationship between the power supply-side facility 10 and the in-vehicle-side facility 20 becomes a preset positional relationship. The process of estimating the positional relationship between the primary resonance coil 13 and the two secondary resonance coils 21a and 21b is repeated.

この実施形態では、給電側設備10と車載側設備20との位置関係のデータは、自動駐車装置31の駆動に用いられる。そのため、運転者は車両30を充電位置に駐車させる際は、自動駐車装置31の駆動スイッチを入れ、ハンドルから手を離す。その結果、自動駐車装置31はカメラの撮影データに代えて位置推定手段(車両側コントローラ26)により推定された給電側設備10と車載側設備20との位置関係を示すデータに基づき、車両30が充電位置に駐車するまで自動操舵を継続する。   In this embodiment, data on the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 is used for driving the automatic parking device 31. Therefore, when the driver parks the vehicle 30 at the charging position, the driver turns on the driving switch of the automatic parking device 31 and releases his / her hand from the handle. As a result, the automatic parking device 31 uses the vehicle 30 based on the data indicating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 estimated by the position estimation means (vehicle side controller 26) instead of the camera data. Continue automatic steering until parking at the charging position.

車両30が充電位置に駐車すると、車両側コントローラ26はスイッチSW3を充電器23と接続する状態に切り換え、スイッチSW2を1次側共鳴コイル13に近い側の2次側共鳴コイル(この実施形態では第2の2次側共鳴コイル21b)と接続する状態に保持し、電源側コントローラ14に給電要求信号を送信する。電源側コントローラ14は給電要求信号を受信すると、1次コイル12が交流電源11に接続される位置にスイッチSW1を切り換える。そして、交流電源11から共鳴周波数の交流が出力される。   When the vehicle 30 is parked at the charging position, the vehicle-side controller 26 switches to a state in which the switch SW3 is connected to the charger 23, and the switch SW2 is switched to the secondary-side resonance coil (in this embodiment, close to the primary-side resonance coil 13). The power supply request signal is transmitted to the power supply side controller 14 while keeping the state connected to the second secondary resonance coil 21 b). When receiving the power supply request signal, the power supply controller 14 switches the switch SW1 to a position where the primary coil 12 is connected to the AC power supply 11. Then, alternating current having a resonance frequency is output from the alternating current power supply 11.

交流電源11から1次コイル12に共鳴周波数の交流電圧が印加されることにより1次コイル12に磁場が発生し、この磁場が1次側共鳴コイル13と第2の2次側共鳴コイル21bとによる磁場共鳴により増強され、増強された2次側共鳴コイル21b付近の磁場から2次コイル22bにより電磁誘導を利用して電力が取り出されて充電器23に供給される。充電器23に供給された交流は整流回路で整流された後、昇圧回路で2次電池24を充電するのに適した電圧に昇圧されて2次電池24に充電される。充電コントローラ25は、例えば、2次電池24の電圧が所定電圧になった時点からの経過時間により充電完了を判断し、充電が完了すると、電源側コントローラ14に充電完了信号を送信する。電源側コントローラ14は、充電完了信号を受信すると電力伝送を終了する。   When an AC voltage having a resonance frequency is applied from the AC power source 11 to the primary coil 12, a magnetic field is generated in the primary coil 12, and this magnetic field is generated between the primary resonance coil 13 and the second secondary resonance coil 21b. Power is extracted from the magnetic field in the vicinity of the enhanced secondary resonance coil 21b by the secondary coil 22b using electromagnetic induction and supplied to the charger 23. The alternating current supplied to the charger 23 is rectified by a rectifier circuit, then boosted to a voltage suitable for charging the secondary battery 24 by a booster circuit, and charged to the secondary battery 24. For example, the charging controller 25 determines the completion of charging based on the elapsed time from the time when the voltage of the secondary battery 24 reaches a predetermined voltage, and transmits a charging completion signal to the power supply side controller 14 when the charging is completed. The power supply side controller 14 will complete | finish electric power transmission, if a charge completion signal is received.

この実施形態によれば、以下に示す効果を得ることができる。
(1)共鳴型非接触充電システムは、給電側設備10と、車載側設備20とを備えている。給電側設備10は、交流電源11、交流電源11から電力の供給を受ける1次側共鳴コイル13を備えている。車載側設備20は、1次側共鳴コイル13からの電力を磁場共鳴して受電する2次側共鳴コイル21a,21b、2次側共鳴コイル21a,21bから電力の供給を受ける充電器23及び充電器23に接続された2次電池24を備えている。また、共鳴型非接触充電システムは、1次側共鳴コイル13及び第1及び第2の2次側共鳴コイル21a,21b間の距離を推定する距離推定手段(電圧センサ15及び車両側コントローラ26)と、距離推定手段により推定された距離から給電側設備10と車載側設備20との位置関係を推定する位置推定手段(車両側コントローラ26)とを備えている。したがって、給電側設備10と車載側設備20とが効率良く充電可能な位置関係にあるか否かを判断できる。そして、効率良く充電可能な位置関係になるまで車両30を移動させた状態で充電を行うことにより、給電側に設けられた1次側共鳴コイル13を移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。また、1次側共鳴コイル13と2次側共鳴コイル21a,21bとの距離を推定するのに非接触電力伝送に用いる1次コイル12、1次側共鳴コイル13、2次側共鳴コイル21a,21b及び2次コイル22a,22bを利用するため、距離推定用に新たに設ける構成部品を少なくすることができる。
According to this embodiment, the following effects can be obtained.
(1) The resonance-type non-contact charging system includes a power supply side facility 10 and an in-vehicle side facility 20. The power supply side equipment 10 includes an AC power supply 11 and a primary resonance coil 13 that receives power from the AC power supply 11. The in-vehicle equipment 20 includes a charger 23 that receives power from the secondary resonance coils 21 a and 21 b that receives power from the primary resonance coil 13 through magnetic field resonance, and a charger 23 that receives power from the secondary resonance coils 21 a and 21 b. A secondary battery 24 connected to the vessel 23 is provided. Further, the resonance type non-contact charging system is configured to estimate distance between the primary side resonance coil 13 and the first and second secondary side resonance coils 21a and 21b (voltage sensor 15 and vehicle side controller 26). And position estimation means (vehicle-side controller 26) for estimating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 from the distance estimated by the distance estimation means. Therefore, it can be determined whether or not the power supply side equipment 10 and the in-vehicle side equipment 20 are in a positional relationship that allows efficient charging. Then, charging is performed in a state where the vehicle 30 is moved until the positional relationship that allows efficient charging is achieved, so that the vehicle is not provided with a moving means for moving the primary resonance coil 13 provided on the power feeding side. The mounted secondary battery can be charged efficiently. Further, the primary coil 12, the primary resonance coil 13, the secondary resonance coil 21a, which are used for non-contact power transmission to estimate the distance between the primary resonance coil 13 and the secondary resonance coils 21a, 21b. Since 21b and the secondary coils 22a and 22b are used, the number of components newly provided for distance estimation can be reduced.

(2)共鳴型非接触充電システムは、推定された二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離に基づいて、1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係を推定する位置推定手段(車両側コントローラ26)を備えている。したがって、推定された1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係に基づいて、車両30を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイル13を移動させる移動手段を設けずに、車両30に搭載された2次電池24を効率良く充電することができる。   (2) The resonance type non-contact charging system includes the primary resonance coil 13 and the two secondary sides based on the estimated distance between the two secondary resonance coils 21a and 21b and the primary resonance coil 13. Position estimation means (vehicle-side controller 26) for estimating the positional relationship with the resonance coils 21a and 21b is provided. Therefore, based on the estimated positional relationship between the primary resonance coil 13 and the two secondary resonance coils 21a and 21b, the vehicle 30 can be easily moved to the charging position and provided on the power supply side. The secondary battery 24 mounted on the vehicle 30 can be efficiently charged without providing a moving means for moving the primary resonance coil 13.

(3)給電側設備10には1次コイル12に対して交流電源11と選択的に接続可能な抵抗Rが設けられ、車載側設備20には2次コイル22a,22bに選択的に接続可能な距離計測用交流電源27が設けられている。そして、距離計測用交流電源27が各2次コイル22a,22bに接続されるとともに抵抗Rが1次コイル12に接続された状態で各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離が推定される。したがって、各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を推定する際に、2次電池24の残存容量の影響を受けない。   (3) The power supply side equipment 10 is provided with a resistor R that can be selectively connected to the AC power supply 11 with respect to the primary coil 12, and the in-vehicle side equipment 20 can be selectively connected to the secondary coils 22a and 22b. A distance measuring AC power supply 27 is provided. The secondary-side resonance coils 21a and 21b and the primary-side resonance coil 13 are connected with the distance measuring AC power source 27 connected to the secondary coils 22a and 22b and the resistor R connected to the primary coil 12. Is estimated. Therefore, when estimating the distance between each secondary side resonance coil 21a, 21b and the primary side resonance coil 13, it is not influenced by the remaining capacity of the secondary battery 24.

(4)1次コイル12はスイッチSW1を介して抵抗Rと交流電源11とに選択的に接続可能に設けられ、給電側設備10は、抵抗Rが1次コイル12に接続された状態で抵抗Rの両端間の電圧を検出する電圧センサ15を備えている。したがって、車両側コントローラ26は、2次側共鳴コイル21a,21bが距離計測用交流電源27に接続された状態で抵抗Rの両端間の検出電圧データに基づいて、1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係を推定することができる。   (4) The primary coil 12 is provided so as to be selectively connectable to the resistor R and the AC power supply 11 via the switch SW1, and the power supply side equipment 10 is in a state where the resistor R is connected to the primary coil 12. A voltage sensor 15 for detecting a voltage between both ends of R is provided. Accordingly, the vehicle-side controller 26 is connected to the primary-side resonance coil 13 and the secondary-side resonance coil 13 based on the detected voltage data between both ends of the resistor R in a state where the secondary-side resonance coils 21a and 21b are connected to the distance measuring AC power source 27. The positional relationship with the two secondary resonance coils 21a and 21b can be estimated.

(5)車両30は駐車支援装置を備え、給電側設備10と車載側設備20との位置関係を示すデータが駐車支援装置において使用される。したがって、容易に車両30を充電位置へ移動、駐車させることができる。   (5) The vehicle 30 includes a parking assistance device, and data indicating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 is used in the parking assistance device. Therefore, the vehicle 30 can be easily moved and parked at the charging position.

(6)車両30は駐車支援装置として自動駐車装置31を備えており、位置推定手段(車両側コントローラ26)により推定された1次側共鳴コイル13と2次側共鳴コイル21a,21bとの位置関係を示すデータに基づき自動駐車装置31が駆動される。したがって、より容易に車両30を充電位置へ移動、駐車させることができる。   (6) The vehicle 30 includes an automatic parking device 31 as a parking assist device, and the positions of the primary side resonance coil 13 and the secondary side resonance coils 21a and 21b estimated by the position estimation means (vehicle side controller 26). The automatic parking device 31 is driven based on the data indicating the relationship. Therefore, the vehicle 30 can be moved and parked to the charging position more easily.

(7)給電側設備10の1次コイル12及び1次側共鳴コイル13は地上に形成された穴の中に設けられているため、1次コイル12及び1次側共鳴コイル13の配置スペースの確保が容易になる。また、車両30が充電位置へ移動する際に給電側設備10と車両30との干渉を回避でき、移動経路の自由度が増す。   (7) Since the primary coil 12 and the primary side resonance coil 13 of the power supply side equipment 10 are provided in holes formed on the ground, the arrangement space of the primary coil 12 and the primary side resonance coil 13 is reduced. Securement becomes easy. Further, when the vehicle 30 moves to the charging position, interference between the power supply side equipment 10 and the vehicle 30 can be avoided, and the degree of freedom of the movement route is increased.

(8)1次側共鳴コイル13及び2次側共鳴コイル21a,21bにコンデンサCが接続されている。したがって、1次側共鳴コイル13及び2次側共鳴コイル21a,21bのコイルの巻数を増やすことなく共鳴周波数を下げることができる。また、共鳴周波数が同じであれば、1次側共鳴コイル13及び2次側共鳴コイル21a,21bを、コンデンサCを接続しない場合に比べて小型化することができる。   (8) A capacitor C is connected to the primary resonance coil 13 and the secondary resonance coils 21a and 21b. Therefore, the resonance frequency can be lowered without increasing the number of turns of the primary resonance coil 13 and the secondary resonance coils 21a and 21b. Further, if the resonance frequency is the same, the primary resonance coil 13 and the secondary resonance coils 21a and 21b can be reduced in size compared to the case where the capacitor C is not connected.

(第2の実施形態)
次に第2の実施形態を図4にしたがって説明する。この実施形態では、1次側共鳴コイルが複数(この実施形態では2個)設けられ、2次側共鳴コイルが1個設けられている点と、車載側設備20に距離計測用交流電源27が設けられていない点とが第1の実施形態と大きく異なっている。第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In this embodiment, a plurality of primary resonance coils (two in this embodiment) are provided, one secondary resonance coil is provided, and a distance measuring AC power supply 27 is provided in the in-vehicle equipment 20. The point which is not provided is greatly different from the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、給電側設備10は、2個の1次コイル12a,12bと、第1及び第2の1次側共鳴コイル13a,13bとを備え、2個の1次コイル12a,12bはスイッチSW1を介して交流電源11に選択的に接続可能に設けられている。電源側コントローラ14は、車両30が充電位置に移動する際にスイッチSW1を2個の1次コイル12a,12bを交流電源11と選択的に接続する状態に切り換え、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。電源側コントローラ14は、2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号を車両側コントローラ26に送信する。また、電源側コントローラ14は、充電時には二つの1次コイル12a,12bのうち、車両側コントローラ26からの指令信号により指示された1次コイル(例えば、1次コイル12a)を交流電源11と接続する状態に切り換える。   As shown in FIG. 4, the power supply side equipment 10 includes two primary coils 12a and 12b, and first and second primary side resonance coils 13a and 13b, and includes two primary coils 12a, 12b is provided so as to be selectively connectable to the AC power source 11 via the switch SW1. When the vehicle 30 moves to the charging position, the power supply side controller 14 switches the switch SW1 to a state in which the two primary coils 12a and 12b are selectively connected to the AC power supply 11 to charge the AC power supply 11 for charging. Control is performed to output an alternating current that is about two orders of magnitude smaller than the output during power transmission. The power supply side controller 14 transmits a signal notifying which of the two primary coils 12 a and 12 b is connected to the AC power supply 11 to the vehicle side controller 26. Moreover, the power supply side controller 14 connects the primary coil (for example, primary coil 12a) instruct | indicated with the command signal from the vehicle side controller 26 among the two primary coils 12a and 12b with the alternating current power supply 11 at the time of charge. Switch to the state you want.

車載側設備20は、1個の2次側共鳴コイル21及び1個の2次コイル22を備えるとともに、2次コイル22の出力電圧を検出する電圧センサ28を備えている。車両側コントローラ26は、車両30が充電位置へ移動する際にその旨を知らせる信号を電源側コントローラ14に出力する。電源側コントローラ14は、逐次、スイッチSW1の接続状態を切り換えるとともに2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号を車両側コントローラ26へ送信する。車両側コントローラ26は、電源側コントローラ14から送信された2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号と、電圧センサ28の検出電圧データとに基づいて各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を演算する。この実施形態では電圧センサ28及び車両側コントローラ26が距離推定手段を構成する。そして、車両側コントローラ26は、各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離から給電側設備10と車載側設備20との位置関係を推定する。   The in-vehicle equipment 20 includes one secondary resonance coil 21 and one secondary coil 22, and also includes a voltage sensor 28 that detects the output voltage of the secondary coil 22. When the vehicle 30 moves to the charging position, the vehicle-side controller 26 outputs a signal to that effect to the power supply-side controller 14. The power supply controller 14 sequentially switches the connection state of the switch SW1 and transmits a signal notifying which of the two primary coils 12a and 12b is connected to the AC power supply 11 to the vehicle controller 26. The vehicle-side controller 26 determines whether each of the two primary coils 12a and 12b transmitted from the power-side controller 14 is connected to the AC power source 11 and the detected voltage data of the voltage sensor 28. The distance between the primary side resonance coils 13a and 13b and the secondary side resonance coil 21 is calculated. In this embodiment, the voltage sensor 28 and the vehicle-side controller 26 constitute distance estimation means. Then, the vehicle-side controller 26 estimates the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 from the distances between the primary side resonance coils 13 a and 13 b and the secondary side resonance coil 21.

給電側設備10と車載側設備20との位置関係が、予め設定された位置関係となるまでスイッチSW1の接続状態が切り換えられるとともに、電圧センサ28により2次コイル22の出力電圧が検出される。また、車両側コントローラ26により、各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離が演算される。そして、給電側設備10と車載側設備20との位置関係のデータが、自動駐車装置31の駆動に用いられ、車両30が充電位置まで移動される。   The connection state of the switch SW1 is switched until the positional relationship between the power supply side facility 10 and the in-vehicle side facility 20 becomes a preset positional relationship, and the output voltage of the secondary coil 22 is detected by the voltage sensor 28. Further, the vehicle-side controller 26 calculates the distance between each primary-side resonance coil 13a, 13b and the secondary-side resonance coil 21. And the data of the positional relationship of the electric power feeding side equipment 10 and the vehicle-mounted side equipment 20 are used for the drive of the automatic parking apparatus 31, and the vehicle 30 is moved to a charge position.

車両30が充電位置に駐車すると、車両側コントローラ26から電源側コントローラ14に給電要求信号と、2次側共鳴コイル21が二つの1次側共鳴コイル13a,13bのどちらに近いかを知らせる信号とが送信される。電源側コントローラ14は両信号を受信すると、交流電源11を例えば、2次コイル22aに接続する位置にスイッチSW1を切り換える。その状態で、交流電源11から車両30の移動時において出力するより二桁程度大きな交流電力が共鳴周波数で出力されて、2次電池24の充電が行われる。   When the vehicle 30 is parked at the charging position, the vehicle controller 26 sends a power supply request signal to the power controller 14 and a signal notifying which of the two primary resonance coils 13a and 13b the secondary resonance coil 21 is closer to. Is sent. When receiving both signals, the power supply side controller 14 switches the switch SW1 to a position where the AC power supply 11 is connected to, for example, the secondary coil 22a. In this state, AC power that is about two orders of magnitude larger than that output from the AC power supply 11 when the vehicle 30 is moving is output at the resonance frequency, and the secondary battery 24 is charged.

この第2の実施形態によれば、第1の実施形態の(5)〜(8)と同様な効果に加えて以下の効果を得ることができる。
(9)給電側設備10は複数の1次コイル12a,12b及び複数の1次側共鳴コイル13a,13bを備え、1次コイル12a,12bは交流電源11に選択的に接続可能に設けられ、各1次コイル12a,12bに交流電圧が印加された状態で各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を距離推定手段(電圧センサ28及び車両側コントローラ26)により推定する。車両側コントローラ26は二つの1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離から給電側設備10と車載側設備20との位置関係を推定する。したがって、推定された給電側設備10と車載側設備20との位置関係に基づいて、車両30を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイル13a,13bを移動させる移動手段を設けずに、車両30に搭載された2次電池24を効率良く充電することができる。また、1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を推定するのに非接触電力伝送に用いる1次コイル12a,12b、1次側共鳴コイル13a,13b、2次側共鳴コイル21及び2次コイル22を利用するため、新たに設ける構成部品を少なくすることができる。
According to this 2nd Embodiment, in addition to the effect similar to (5)-(8) of 1st Embodiment, the following effects can be acquired.
(9) The power supply side equipment 10 includes a plurality of primary coils 12a and 12b and a plurality of primary side resonance coils 13a and 13b, and the primary coils 12a and 12b are provided so as to be selectively connectable to the AC power source 11. The distance between each primary side resonance coil 13a, 13b and the secondary side resonance coil 21 in a state where an alternating voltage is applied to each primary coil 12a, 12b by distance estimation means (voltage sensor 28 and vehicle side controller 26). presume. The vehicle-side controller 26 estimates the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 from the distance between the two primary side resonance coils 13 a and 13 b and the secondary side resonance coil 21. Accordingly, the vehicle 30 can be easily moved to the charging position based on the estimated positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20, and the primary side resonance coils 13a and 13b provided on the power supply side. The secondary battery 24 mounted on the vehicle 30 can be efficiently charged without providing a moving means for moving the battery. Further, primary coils 12a and 12b used for non-contact power transmission to estimate the distance between the primary resonance coils 13a and 13b and the secondary resonance coil 21, and the primary resonance coils 13a and 13b and the secondary side. Since the resonance coil 21 and the secondary coil 22 are used, the number of newly provided components can be reduced.

(第3の実施形態)
次に第3の実施形態を図5〜図7にしたがって説明する。この実施形態では、1次側共鳴コイルが1個設けられ、2次側共鳴コイルが2個設けられている点は第1の実施形態と同じであるが、車両30の前側に2次側共鳴コイル21Fが、後側に2次側共鳴コイル21Rが1個ずつ設けられている点が第1の実施形態と大きく異なっている。第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. This embodiment is the same as the first embodiment in that one primary resonance coil and two secondary resonance coils are provided, but the secondary resonance is provided on the front side of the vehicle 30. The coil 21F is greatly different from the first embodiment in that one secondary resonance coil 21R is provided on the rear side. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示すように、1次コイル12は交流電源11に直接接続されている。車載側設備20は、第1及び第2の2次側共鳴コイルとしての2個の2次側共鳴コイル21F,21R及び2個の2次コイル22F,22Rが設けられ、2個の2次コイル22F,22RはスイッチSWを介して充電器23に選択的に接続可能に構成されている。また、距離推定手段を構成する電圧センサ28が、スイッチSWを介して2個の2次コイル22F,22Rに選択的に接続可能に設けられている。図7(a),(b)に示すように、2次側共鳴コイル21Fは車両30の前側に設けられ、2次側共鳴コイル21Rは車両30の後側に設けられている。   As shown in FIG. 5, the primary coil 12 is directly connected to the AC power source 11. The on-vehicle equipment 20 is provided with two secondary resonance coils 21F and 21R and two secondary coils 22F and 22R as first and second secondary resonance coils, and two secondary coils. 22F and 22R are configured to be selectively connectable to the charger 23 via the switch SW. Further, a voltage sensor 28 constituting a distance estimating means is provided so as to be selectively connectable to the two secondary coils 22F and 22R via the switch SW. As shown in FIGS. 7A and 7B, the secondary resonance coil 21 </ b> F is provided on the front side of the vehicle 30, and the secondary resonance coil 21 </ b> R is provided on the rear side of the vehicle 30.

車両側コントローラ26は、車両30が充電位置へ移動する際、図7(a)に示すように、後退で移動する場合は後側の2次側共鳴コイル21Rを使用して1次側共鳴コイル13と2次側共鳴コイル21Rとの距離を演算する。また、図7(b)に示すように、前進で移動する場合は前側の2次側共鳴コイル21Fを使用して1次側共鳴コイル13と2次側共鳴コイル21Fとの距離を演算する。車両側コントローラ26は、車両30が充電位置へ移動する際にその旨を知らせる信号を電源側コントローラ14に出力する。電源側コントローラ14は、その信号を受信すると、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。   When the vehicle 30 moves to the charging position, as shown in FIG. 7A, the vehicle-side controller 26 uses the rear-side secondary resonance coil 21R to move the primary-side resonance coil. The distance between 13 and the secondary resonance coil 21R is calculated. Further, as shown in FIG. 7B, when moving forward, the distance between the primary resonance coil 13 and the secondary resonance coil 21F is calculated using the secondary resonance coil 21F on the front side. When the vehicle 30 moves to the charging position, the vehicle-side controller 26 outputs a signal to that effect to the power supply-side controller 14. When receiving the signal, the power supply side controller 14 controls the alternating current power supply 11 to output an alternating current that is about two orders of magnitude smaller than that output during power transmission for charging.

次に図6にしたがって車両30が充電位置へ移動、駐車する際の作用を説明する。充電位置へ移動する際、運転者により充電要求スイッチが操作されると、車両側コントローラ26はステップS1で電源側コントローラ14に充電開始要求、即ち2次電池24の充電を行うため充電位置へ移動する旨の信号を送信する。電源側コントローラ14はその信号を受信すると、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。次に車両側コントローラ26はステップS2で車両30が前進か否かを判断し、前進であればステップS3に進んで前側の2次側共鳴コイル21F(受電コイルF)を用いて距離推定を開始する。詳述すると、車両側コントローラ26は、スイッチSWを2次側共鳴コイル21Fに接続する状態に保持し、電圧センサ28からの検出電圧を入力し、その検出電圧から1次側共鳴コイル13と2次側共鳴コイル21Fとの距離を演算する。次に車両側コントローラ26はステップS4に進み、1次側共鳴コイル13と2次側共鳴コイル21Fとの距離が所定距離以下か否か、即ち1次側共鳴コイル13と2次側共鳴コイル21Fとの距離が、2次電池24への充電が効率良く行われる予め設定された距離以下か否かを判断する。ステップS4で所定距離以下であれば車両側コントローラ26はステップS5へ進み、所定距離以下でなければステップS3に戻る。ステップS5で車両側コントローラ26は距離推定を終了し、電源側コントローラ14に距離推定終了の旨を送信する。そして、ステップS6で駐車が完了し、2次電池24の充電のための給電(電力伝送)が開始される。   Next, the operation when the vehicle 30 moves to the charging position and parks will be described with reference to FIG. When the driver operates the charge request switch when moving to the charging position, the vehicle controller 26 moves to the charging position to request the power source controller 14 to start charging, that is, to charge the secondary battery 24 in step S1. Send a signal to do so. When the power supply side controller 14 receives the signal, the power supply side controller 14 controls the AC power supply 11 to output an alternating current that is about two orders of magnitude smaller than that output during power transmission for charging. Next, the vehicle-side controller 26 determines whether or not the vehicle 30 is moving forward in step S2, and if it is moving forward, the flow advances to step S3 to start distance estimation using the front secondary resonance coil 21F (power receiving coil F). To do. More specifically, the vehicle-side controller 26 holds the switch SW in a state of being connected to the secondary resonance coil 21F, inputs the detection voltage from the voltage sensor 28, and determines the primary resonance coils 13 and 2 from the detection voltage. The distance from the secondary resonance coil 21F is calculated. Next, the vehicle-side controller 26 proceeds to step S4, whether or not the distance between the primary side resonance coil 13 and the secondary side resonance coil 21F is equal to or less than a predetermined distance, that is, the primary side resonance coil 13 and the secondary side resonance coil 21F. Is less than or equal to a preset distance at which the secondary battery 24 is efficiently charged. If it is below predetermined distance in step S4, the vehicle side controller 26 will progress to step S5, and if not below predetermined distance, it will return to step S3. In step S <b> 5, the vehicle-side controller 26 ends the distance estimation, and transmits a notification of the distance estimation end to the power source-side controller 14. And parking is completed by step S6 and the electric power feeding (electric power transmission) for charge of the secondary battery 24 is started.

一方、ステップS2で車両30が前進でなければ車両側コントローラ26はステップS7に進み、ステップS7で車両30が後退か否かを判断し、後退であればステップS8に進んで後側の2次側共鳴コイル21R(受電コイルR)を用いて距離推定を開始する。詳述すると、車両側コントローラ26は、スイッチSWを2次側共鳴コイル21Rに接続する状態に保持し、電圧センサ28からの検出電圧を入力し、その検出電圧から1次側共鳴コイル13と2次側共鳴コイル21Rとの距離を演算する。次に車両側コントローラ26はステップS9に進み、1次側共鳴コイル13と2次側共鳴コイル21Rとの距離が所定距離以下か否か、即ち1次側共鳴コイル13と2次側共鳴コイル21Rとの距離が、2次電池24への充電が効率良く行われる予め設定された距離以下か否かを判断する。ステップS9で所定距離以下であれば車両側コントローラ26はステップS5へ進み、所定距離以下でなければステップS8に戻る。ステップS7で後退でなければ、ステップS2へ戻る。ステップS2及びステップS7において前進でも後退でもないということは車両30がまだ移動していないことを意味し、車両30が移動を開始するまでステップS2及びステップS7が繰り返される。   On the other hand, if the vehicle 30 is not moving forward in step S2, the vehicle-side controller 26 proceeds to step S7. In step S7, it is determined whether or not the vehicle 30 is moving backward. The distance estimation is started using the side resonance coil 21R (power receiving coil R). More specifically, the vehicle-side controller 26 holds the switch SW in a state of being connected to the secondary resonance coil 21R, inputs the detection voltage from the voltage sensor 28, and inputs the primary resonance coils 13 and 2 from the detection voltage. The distance from the secondary resonance coil 21R is calculated. Next, the vehicle-side controller 26 proceeds to step S9, whether or not the distance between the primary side resonance coil 13 and the secondary side resonance coil 21R is equal to or smaller than a predetermined distance, that is, the primary side resonance coil 13 and the secondary side resonance coil 21R. Is less than or equal to a preset distance at which the secondary battery 24 is efficiently charged. If it is less than the predetermined distance in step S9, the vehicle-side controller 26 proceeds to step S5, and if not less than the predetermined distance, returns to step S8. If it is not reverse in step S7, the process returns to step S2. In step S2 and step S7, neither forward nor reverse means that the vehicle 30 has not yet moved, and step S2 and step S7 are repeated until the vehicle 30 starts moving.

この第3の実施形態によれば、第1の実施形態の(7),(8)と同様な効果に加えて以下の効果を得ることができる。
(10)車両30の前側に1個の2次側共鳴コイル21Fが設けられ、後側に1個の2次側共鳴コイル21Rが設けられ、車両30が充電位置へ前進で移動する場合は前側の2次側共鳴コイル21Fを用いて距離の推定が行われ、後退で移動する場合は後側の2次側共鳴コイル21Rを用いて距離の推定が行われる。したがって、2次側共鳴コイルが車両30の前側あるいは後側の一方のみに設けられる構成に比べて、車両30が充電位置まで移動する際、前進で移動する場合あるいは後退で移動する場合に関わらず必要な移動距離を短くすることができる。
According to the third embodiment, in addition to the same effects as (7) and (8) of the first embodiment, the following effects can be obtained.
(10) One secondary resonance coil 21F is provided on the front side of the vehicle 30, and one secondary resonance coil 21R is provided on the rear side. When the vehicle 30 moves forward to the charging position, the front side The secondary side resonance coil 21F is used to estimate the distance, and when moving backward, the rear side secondary resonance coil 21R is used to estimate the distance. Therefore, compared with the configuration in which the secondary resonance coil is provided only on one of the front side and the rear side of the vehicle 30, regardless of whether the vehicle 30 moves forward or backward when moving to the charging position. The required moving distance can be shortened.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第1の実施形態や第2の実施形態において、2次側共鳴コイル及び2次コイルの組を車両30の前側に設けたり、車両30の前側及び後側の両方に設けたりしてもよい。2次側共鳴コイル及び2次コイルの組を車両30の前側及び後側の両方に設けた場合は、車両30が充電位置まで移動する際、前進で移動する場合あるいは後退で移動する場合に関わらず必要な移動距離を短くすることができる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
In the first embodiment and the second embodiment, a set of the secondary resonance coil and the secondary coil may be provided on the front side of the vehicle 30, or may be provided on both the front side and the rear side of the vehicle 30. . When the set of the secondary resonance coil and the secondary coil is provided on both the front side and the rear side of the vehicle 30, regardless of whether the vehicle 30 moves to the charging position, moves forward, or moves backward. Therefore, the required moving distance can be shortened.

○ 第1の実施形態のように、複数の2次側共鳴コイル21a,21b及び2次コイル22a,22bの組を車載側設備20に設けた場合、距離推定時に2次コイル22a,22bに交流を供給して1次コイル12の出力電圧を測定する構成に代えて、1次コイル12に交流を供給して2次コイル22a,22bの出力電圧を測定する構成にしてもよい。この場合、抵抗Rや距離計測用交流電源27が不要になり、構成が簡単になる。   ○ As in the first embodiment, when a set of a plurality of secondary resonance coils 21a, 21b and secondary coils 22a, 22b is provided in the in-vehicle equipment 20, AC is exchanged with the secondary coils 22a, 22b when estimating the distance. Instead of the configuration in which the output voltage of the primary coil 12 is measured, an alternating current may be supplied to the primary coil 12 to measure the output voltage of the secondary coils 22a and 22b. In this case, the resistance R and the AC power supply 27 for distance measurement are not necessary, and the configuration is simplified.

○ 第3の実施形態において、車両30の前側及び後側に2次側共鳴コイル21F及び2次コイル22Fの組と、2次側共鳴コイル21R及び2次コイル22Rの組とをそれぞれ2組ずつ設ける。そして、1次側共鳴コイル13と二つの2次側共鳴コイル21Fあるいは1次側共鳴コイル13と二つの2次側共鳴コイル21Rとの距離から給電側設備10と車載側設備20との位置を推定するようにしてもよい。この場合は、給電側設備10と車載側設備20との位置関係を示すデータを駐車支援装置に使用して、より容易に車両30を充電位置へ移動、駐車させることができる。   In the third embodiment, two sets of the secondary resonance coil 21F and the secondary coil 22F and two sets of the secondary resonance coil 21R and the secondary coil 22R on the front side and the rear side of the vehicle 30, respectively. Provide. The positions of the power supply side equipment 10 and the in-vehicle side equipment 20 are determined based on the distance between the primary side resonance coil 13 and the two secondary side resonance coils 21F or the primary side resonance coil 13 and the two secondary side resonance coils 21R. You may make it estimate. In this case, it is possible to move and park the vehicle 30 to the charging position more easily by using the data indicating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20 in the parking assistance device.

○ 給電側設備10と車載側設備20との位置関係を推定する場合、いずれか一方が二つあればよい。しかし、1次側共鳴コイルを3個以上設けるとともに2次側共鳴コイルを1個設けたり、2次側共鳴コイルを3個以上設けるとともに1次側共鳴コイルを1個設けたりしてもよい。そして、1次側共鳴コイルと2次側共鳴コイルとの距離推定を開始する際、電圧センサ15,28の検出電圧の大きな組み合わせとなる2組を選択して、距離推定を行えば、充電位置までの移動距離を短くすることができる。   ○ When estimating the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20, only one of them may be provided. However, three or more primary resonance coils and one secondary resonance coil may be provided, or three or more secondary resonance coils may be provided and one primary resonance coil may be provided. When starting the estimation of the distance between the primary side resonance coil and the secondary side resonance coil, if two sets that are large combinations of the detection voltages of the voltage sensors 15 and 28 are selected and the distance estimation is performed, the charging position Can be shortened.

○1次コイル12等及び1次側共鳴コイル13等のコイルの軸心が地上面に対して直交する方向に延びるように設け、2次側共鳴コイル21a等及び2次コイル22a等のコイルの軸心が車両30の上下方向に延びるように設ける構成に代えて、1次コイル12等および1次側共鳴コイル13等のコイルの軸心が地上面に対して水平方向に延びるように設け、2次側共鳴コイル21a等及び2次コイル22a等のコイルの軸心が車両30の上下方向と直交する方向に延びるように設ける構成にしてもよい。例えば、図8に示すように、地上に突出するように設けた給電側設備10の収容ボックス内に1次側共鳴コイル13等をコイルの軸心が地上面に対して水平方向に延びるように設け、車両30の前側に2次側共鳴コイル21a等をコイルの軸心が車両30の上下方向と直交する方向に延びるように設ける。また、2次側共鳴コイル21a等を車両30の後側に設けてもよい。   ○ Provided so that the axial centers of the primary coil 12 and the like and the primary resonance coil 13 and the like extend in a direction perpendicular to the ground surface, and the coils of the secondary resonance coil 21a and the secondary coil 22a. Instead of the configuration in which the shaft center is provided so as to extend in the vertical direction of the vehicle 30, the shaft centers of the coils such as the primary coil 12 and the primary resonance coil 13 are provided so as to extend in the horizontal direction with respect to the ground surface. You may make it the structure provided so that the axial center of coils, such as secondary side resonance coil 21a etc. and secondary coil 22a, may extend in the direction orthogonal to the up-down direction of the vehicle 30. For example, as shown in FIG. 8, the primary resonance coil 13 or the like is placed in the accommodation box of the power supply side equipment 10 provided so as to protrude above the ground so that the axis of the coil extends in the horizontal direction with respect to the ground surface. The secondary resonance coil 21 a and the like are provided on the front side of the vehicle 30 so that the axis of the coil extends in a direction perpendicular to the vertical direction of the vehicle 30. Further, the secondary resonance coil 21 a and the like may be provided on the rear side of the vehicle 30.

○ 2次側共鳴コイル21a等をコイルの軸心が車両30の上下方向と直交する方向に延びるように水平方向に延びるように設ける場合、2次側共鳴コイル21a等を車両30の前側又は後側に設ける代わりに、車両30の側部に設けてもよい。つまり、1次側共鳴コイル13等は軸心が地上面に対して水辺方向に延びるように設けられ、2次側共鳴コイル21a等は軸心が車両の幅方向に延びるように設けられる。   When the secondary resonance coil 21a and the like are provided so as to extend in the horizontal direction so that the axis of the coil extends in a direction perpendicular to the vertical direction of the vehicle 30, the secondary resonance coil 21a and the like are arranged on the front side or the rear side of the vehicle 30. Instead of being provided on the side, the vehicle 30 may be provided on the side. That is, the primary resonance coil 13 and the like are provided such that the axis extends in the waterside direction with respect to the ground surface, and the secondary resonance coil 21a and the like are provided so that the axis extends in the vehicle width direction.

○ 車両30は運転者を必要とする車両に限らず無人搬送車でもよい。
○ 2次電池24への充電位置が屋内の場合、給電側設備10の1次コイル12等及び1次側共鳴コイル13等を充電時における車両30の停止位置の上方、例えば天井に設けてもよい。
The vehicle 30 is not limited to a vehicle that requires a driver, and may be an automated guided vehicle.
○ When the charging position for the secondary battery 24 is indoors, the primary coil 12 and the primary resonance coil 13 of the power supply side equipment 10 and the like may be provided above the stop position of the vehicle 30 during charging, for example, on the ceiling Good.

○ 距離推定手段は1次コイル12あるいは2次コイル22等の出力電圧を検出する電圧センサ15,28に限らない。例えば、距離推定時に共鳴系の入力インピーダンスを測定するインピーダンス測定手段を距離推定手段として設けてもよい。ここで、「共鳴系の入力インピーダンス」とは、距離推定時に交流が供給(入力)される1次コイル又は2次コイルの両端で測定した共鳴系(1次コイル、1次側共鳴コイル、2次側共鳴コイル、2次コイル)全体のインピーダンスを指す。第1の実施形態では2次コイル22a,22bの両端で入力インピーダンスを測定し、第2の実施形態では1次コイル12の両端で入力インピーダンスを測定する。インピーダンスの測定は、例えば、1次コイル12の両端の電圧あるいは2次コイル22a,22bの両端の電圧を検出することにより行う。車載側設備20に設けられた2次コイル22a,22bの両端の電圧を検出してインピーダンスを測定する場合、電力は車載側設備20から伝送され、インピーダンスの測定のための電圧の検出も車載側設備20で行われる。そのため、車両側コントローラ26は電源側コントローラ14と無線通信で連絡する必要がなく、1次側共鳴コイル13及び2次側共鳴コイル21a,21b間の距離を推定することを車載側設備20で完結できる。   The distance estimation means is not limited to the voltage sensors 15 and 28 that detect the output voltage of the primary coil 12 or the secondary coil 22 or the like. For example, impedance measuring means for measuring the input impedance of the resonance system at the time of distance estimation may be provided as the distance estimation means. Here, the “resonance system input impedance” means a resonance system (primary coil, primary resonance coil, 2) measured at both ends of a primary coil or a secondary coil to which alternating current is supplied (input) during distance estimation. This indicates the impedance of the entire secondary resonance coil and secondary coil. In the first embodiment, the input impedance is measured at both ends of the secondary coils 22a and 22b, and in the second embodiment, the input impedance is measured at both ends of the primary coil 12. The impedance is measured, for example, by detecting the voltage at both ends of the primary coil 12 or the voltages at both ends of the secondary coils 22a and 22b. When the impedance is measured by detecting the voltages at both ends of the secondary coils 22a and 22b provided in the in-vehicle side equipment 20, the electric power is transmitted from the in-vehicle side equipment 20, and the detection of the voltage for measuring the impedance is also on the in-vehicle side. Performed at the facility 20. Therefore, the vehicle-side controller 26 does not need to communicate with the power-source-side controller 14 by radio communication, and the in-vehicle equipment 20 completes the estimation of the distance between the primary side resonance coil 13 and the secondary side resonance coils 21a and 21b. it can.

○ 給電側設備10と車載側設備20との位置関係を推定するには、1次側共鳴コイル及び2次側共鳴コイルの少なくとも一方が複数設けられていればよく、必ずしも1次コイルや2次コイルは必須ではない。例えば、共鳴型非接触充電システムの負荷が一定で使用される場合は、2次コイルを無くして二次側共鳴コイルの電力を充電器23に供給することができる。   ○ In order to estimate the positional relationship between the power supply side equipment 10 and the in-vehicle side equipment 20, it is sufficient that at least one of the primary side resonance coil and the secondary side resonance coil is provided. The coil is not essential. For example, when the load of the resonance type non-contact charging system is used with a constant load, the secondary coil can be eliminated and the power of the secondary resonance coil can be supplied to the charger 23.

○ 2次コイルを無くした場合、距離推定手段は、1次コイルから検出される電圧値及び2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定すればよい。例えば、車載側設備20から
電力を伝送する場合でも、1次コイルから検出される電圧値に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定する場合や、1次コイル及び2次側共鳴コイルから検出される電圧値から電力伝送効率を求めて電力伝送効率から1次側共鳴コイル及び2次側共鳴コイル間の距離を推定してもよい。また、給電側設備10から電力を伝送する場合でも、2次側共鳴コイルから検出される電圧値に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定する場合や、1次コイル及び2次側共鳴コイルから検出される電圧値から電力伝送効率を求めて電力伝送効率から1次側共鳴コイル及び2次側共鳴コイル間の距離を推定してもよい。
○ When the secondary coil is eliminated, the distance estimating means uses the primary resonance coil and 2 based on at least one of the voltage value detected from the primary coil and the voltage value detected from the secondary resonance coil. What is necessary is just to estimate the distance between secondary side resonance coils. For example, even when power is transmitted from the in-vehicle side equipment 20, the distance between the primary side resonance coil and the secondary side resonance coil is estimated based on the voltage value detected from the primary coil, The power transmission efficiency may be obtained from the voltage value detected from the secondary resonance coil, and the distance between the primary resonance coil and the secondary resonance coil may be estimated from the power transmission efficiency. Further, even when power is transmitted from the power supply side equipment 10, the distance between the primary resonance coil and the secondary resonance coil is estimated based on the voltage value detected from the secondary resonance coil, or the primary You may obtain | require power transmission efficiency from the voltage value detected from a coil and a secondary side resonance coil, and may estimate the distance between a primary side resonance coil and a secondary side resonance coil from power transmission efficiency.

○ 車載側設備20から電力を伝送する場合、第1の実施形態のように距離計測用交流電源27を2次電池24と別に設けずに、充電器23として双方向の充電器を使用してもよい。即ち、充電器23として2次側共鳴コイルから供給される交流電力を直流に変換して2次電池24に充電する機能と、2次電池24から供給される電力を交流に変換して2次側共鳴コイルへ供給する機能を備えたものを使用する。この場合、距離計測用交流電源27が不要になる。   ○ When transmitting power from the in-vehicle equipment 20, a bidirectional charger is used as the charger 23 without providing the distance measuring AC power supply 27 separately from the secondary battery 24 as in the first embodiment. Also good. That is, the charger 23 converts the AC power supplied from the secondary resonance coil into DC and charges the secondary battery 24, and converts the power supplied from the secondary battery 24 into AC and converts the secondary battery 24 to AC. The one with the function to supply to the side resonance coil is used. In this case, the AC power supply 27 for distance measurement becomes unnecessary.

○ 給電側設備10が、1次側共鳴コイル13に電磁誘導で結合されるとともに交流電源11と選択的に接続される1次コイル12を有し、車載側設備20が、2次側共鳴コイル21a,21bに電磁誘導で結合されるとともに充電器23と選択的に接続される2次コイル22a,22bを有する場合は、距離推定方法選択の自由度が高くなる。距離推定手段は、1次コイル12から検出される電圧値及び2次コイル22a,22bから検出される電圧値の少なくともいずれか一方に基づいて1次側共鳴コイル13及び2次側共鳴コイル21a,21b間の距離を推定すればよい。例えば、1次コイル12から検出される電圧値に基づいて距離を推定する場合、電力を第1の実施形態のように車載側設備20から供給して1次コイル12の電圧を検出して距離を推定する方法と、電力を給電側設備10から供給するとともに、1次コイル12の電圧から共鳴系の入力インピーダンスを求めて距離を推定する方法とがある。2次コイル22a,22bから検出される電圧値に基づいて距離を推定する場合も、2次コイル22a,22bの電圧を検出して距離を推定する方法と、2次コイル22a,22bの電圧から共鳴系の入力インピーダンスを求めて距離を推定する方法とがある。   The power supply side equipment 10 has a primary coil 12 that is coupled to the primary side resonance coil 13 by electromagnetic induction and is selectively connected to the AC power source 11, and the in-vehicle side equipment 20 is a secondary side resonance coil. When the secondary coils 22a and 22b are coupled to the terminals 21a and 21b by electromagnetic induction and are selectively connected to the charger 23, the degree of freedom in selecting the distance estimation method is increased. The distance estimating means is configured to select the primary resonance coil 13 and the secondary resonance coil 21a, based on at least one of the voltage value detected from the primary coil 12 and the voltage value detected from the secondary coils 22a and 22b. What is necessary is just to estimate the distance between 21b. For example, when estimating the distance based on the voltage value detected from the primary coil 12, power is supplied from the in-vehicle equipment 20 as in the first embodiment, and the voltage of the primary coil 12 is detected to detect the distance. And a method of estimating the distance by supplying the power from the power supply side equipment 10 and obtaining the input impedance of the resonance system from the voltage of the primary coil 12. Even when the distance is estimated based on the voltage values detected from the secondary coils 22a and 22b, the distance is estimated by detecting the voltages of the secondary coils 22a and 22b and the voltages of the secondary coils 22a and 22b. There is a method of estimating the distance by obtaining the input impedance of the resonance system.

○ 距離計測用交流電源27が各2次コイル22a,22bに接続されるとともに抵抗Rが1次コイル12に接続された状態で各2次側共鳴コイル21a,21bから1次側共鳴コイル13に電力を伝送して距離を推定する場合、距離推定手段は、電力伝送中に距離の推定を行う構成に限らない。例えば、距離推定手段は第1及び第2の2次側共鳴コイル21a,21bから1次側共鳴コイル13に電力を伝送した後、距離計測用交流電源27との接続を解除した後、1次コイル12の電圧及び2次コイル22a,22bの電圧の少なくとも一方を検出して、その電圧値に基づいて距離推定を行ってもよい。   The distance measuring AC power supply 27 is connected to the secondary coils 22a and 22b and the resistor R is connected to the primary coil 12, and the secondary resonance coils 21a and 21b are connected to the primary resonance coil 13. When power is transmitted and the distance is estimated, the distance estimation means is not limited to the configuration that estimates the distance during power transmission. For example, the distance estimating means transmits power from the first and second secondary resonance coils 21a and 21b to the primary resonance coil 13, and then disconnects from the AC power supply 27 for distance measurement. At least one of the voltage of the coil 12 and the voltages of the secondary coils 22a and 22b may be detected, and distance estimation may be performed based on the voltage value.

○ 駐車支援装置は自動駐車装置31に限らず、車両30が駐車する際に、運転者のハンドル操作を軽減させる役割を果たす装置であればよい。例えば、ディスプレイに目的の駐車位置と、車両30の現在位置とを表示する装置や、ハンドルの操舵位置を現在位置に保持するのか、右に操舵すべきかあるいは左に操舵すべきかを音声や表示手段で報知する装置でもよい。   The parking assist device is not limited to the automatic parking device 31 and may be any device that plays a role of reducing the driver's steering operation when the vehicle 30 is parked. For example, a device for displaying the target parking position and the current position of the vehicle 30 on the display, or a voice or display means whether to hold the steering position of the steering wheel at the current position, whether to steer right or left It is also possible to use a device that provides notification.

○ 充電器23に昇圧回路を設けずに、2次コイル22等から出力される交流電流を整流回路で整流しただけで2次電池24に充電するようにしてもよい。
○ 1次コイル12等及び2次コイル22等の径は、1次側共鳴コイル13等及び2次側共鳴コイル21等の径と同じに形成されている構成に限らず、小さくても大きくてもよい。
The charger 23 may be charged with the secondary battery 24 only by rectifying the alternating current output from the secondary coil 22 or the like by the rectifier circuit without providing the booster circuit.
○ The diameters of the primary coil 12 and the like and the secondary coil 22 and the like are not limited to the same configuration as the diameter of the primary side resonance coil 13 and the like and the secondary side resonance coil 21 and the like. Also good.

○ 1次側共鳴コイル13等及び2次側共鳴コイル21等は、それぞれ電線が螺旋状に巻回された形状に限らず、一平面上で渦巻き状に巻回された形状としてもよい。この場合、共鳴コイルの軸方向の長さが小さくなり、地上に形成する穴の深さを浅くすることができる。   The primary resonance coil 13 and the secondary resonance coil 21 and the like are not limited to the shape in which the electric wire is wound spirally, and may have a spiral shape on one plane. In this case, the axial length of the resonance coil is reduced, and the depth of the hole formed on the ground can be reduced.

○ 1次コイル12等、1次側共鳴コイル13等、2次側共鳴コイル21等及び2次コイル22等の外形は、円形に限らず、例えば、四角形や六角形や三角形等の多角形にしたり、あるいは楕円形にしたりしてもよい。   ○ The outer shape of the primary coil 12, etc., the primary side resonance coil 13, etc., the secondary side resonance coil 21, etc., and the secondary coil 22 etc. is not limited to a circle, for example, a polygon such as a quadrangle, a hexagon, or a triangle. Or may be oval.

○ 1次側共鳴コイル13等及び2次側共鳴コイル21等に接続されたコンデンサCを省略してもよい。しかし、コンデンサCを接続した構成の方が、コンデンサCを省略した場合に比べて、共鳴周波数を下げることができる。また、共鳴周波数が同じであれば、コンデンサCを省略した場合に比べて、1次側共鳴コイル13等及び2次側共鳴コイル21等の小型化が可能になる。   The capacitor C connected to the primary side resonance coil 13 or the like and the secondary side resonance coil 21 or the like may be omitted. However, the configuration in which the capacitor C is connected can lower the resonance frequency compared to the case where the capacitor C is omitted. Further, if the resonance frequency is the same, the primary side resonance coil 13 and the like and the secondary side resonance coil 21 and the like can be downsized compared to the case where the capacitor C is omitted.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項6に記載の発明において、前記抵抗が前記1次コイルに接続された状態で前記抵抗の両端間の電圧を検出する電圧センサが前記距離推定手段を構成する。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention described in claim 6, a voltage sensor that detects a voltage across the resistor in a state where the resistor is connected to the primary coil constitutes the distance estimating means.

(2)請求項3〜請求項7及び前記技術的思想(1)のいずれか1項に記載の発明において、前記2次側共鳴コイル及び前記2次コイルは、車両の前側及び後側にそれぞれ設けられ、車両が充電位置へ前進で移動する際は前側に設けられた2次側共鳴コイルが距離推定に用いられ、車両が充電位置へ後退で移動する際は後側に設けられた2次側共鳴コイルが距離推定に用いられる。   (2) In the invention according to any one of claims 3 to 7 and the technical idea (1), the secondary resonance coil and the secondary coil are respectively arranged on a front side and a rear side of a vehicle. The secondary resonance coil provided on the front side is used for distance estimation when the vehicle moves forward to the charging position, and the secondary provided on the rear side when the vehicle moves backward to the charging position. A side resonance coil is used for distance estimation.

(3)請求項1に記載の発明において、前記1次側共鳴コイル及び2次側共鳴コイルはともに複数設けられ、給電要求電力が予め設定された値以上の場合、複数組の1次側共鳴コイル及び2次側共鳴コイルを用いて同時に電力伝送を行う。   (3) In the first aspect of the invention, a plurality of primary side resonance coils and a plurality of secondary side resonance coils are provided, and a plurality of sets of primary side resonance coils are provided when the required power supply is equal to or greater than a preset value. Electric power is transmitted simultaneously using the coil and the secondary resonance coil.

(4)請求項2〜請求項7及び前記技術的思想(1)〜(3)のいずれか1項に記載の発明において、前記2次側共鳴コイルは車両の底部に設けられ、前記1次コイル及び1次側共鳴コイルは充電位置に駐車した車両の下方に位置するように設けられている。   (4) In the invention according to any one of claims 2 to 7 and the technical ideas (1) to (3), the secondary resonance coil is provided at a bottom of a vehicle, and the primary The coil and the primary resonance coil are provided so as to be positioned below the vehicle parked at the charging position.

(5)交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムであって、
前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段を備えていることを特徴とする共鳴型非接触充電システム。
(5) AC power source, power supply side equipment including a primary side resonance coil that receives power supply from the AC power source, a secondary side resonance coil that receives power from the primary side resonance coil by magnetic field resonance, A resonance-type non-contact charging system including a charger that receives power supplied from the secondary-side resonance coil and a vehicle-mounted facility that includes a secondary battery connected to the charger,
A plurality of at least one of the primary side resonance coil and the secondary side resonance coil are provided, and distance estimation means for estimating a distance between the primary side resonance coil and the secondary side resonance coil is provided. Resonance type non-contact charging system.

R…抵抗、10…給電側設備、11…交流電源、12,12a,12b…1次コイル、13,13a,13b…1次側共鳴コイル、20…車載側設備、21,21a,21b,21F,21R…2次側共鳴コイル、15,28…距離推定手段を構成する電圧センサ、22,22a,22b,22F,22R…2次コイル、23…充電器、24…2次電池、26…距離推定手段を構成するとともに位置推定手段としての車両側コントローラ、27…距離計測用交流電源、30…車両、31…駐車支援装置としての自動駐車装置。   R: Resistance, 10: Power supply side equipment, 11: AC power supply, 12, 12a, 12b ... Primary coil, 13, 13a, 13b ... Primary resonance coil, 20: On-vehicle equipment, 21, 21a, 21b, 21F , 21R ... secondary resonance coil, 15, 28 ... voltage sensor constituting distance estimation means, 22, 22a, 22b, 22F, 22R ... secondary coil, 23 ... charger, 24 ... secondary battery, 26 ... distance A vehicle-side controller that constitutes an estimation unit and serves as a position estimation unit, 27... AC power supply for distance measurement, 30... Vehicle, 31.

Claims (7)

交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムであって、
前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、
前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段と、
前記距離推定手段により推定された距離から前記給電側設備と前記車載側設備との位置関係を推定する位置推定手段と、
を備えていることを特徴とする共鳴型非接触充電システム。
AC power source, power supply side equipment including a primary side resonance coil that receives power supply from the AC power source, a secondary side resonance coil that receives power from the primary side resonance coil by magnetic field resonance, and the secondary side A resonance-type non-contact charging system comprising a charger that receives power supplied from a side resonance coil and an in-vehicle facility that includes a secondary battery connected to the charger,
A plurality of at least one of the primary side resonance coil and the secondary side resonance coil are provided;
Distance estimating means for estimating a distance between the primary side resonance coil and the secondary side resonance coil;
Position estimation means for estimating a positional relationship between the power supply side equipment and the in-vehicle side equipment from the distance estimated by the distance estimation means;
A resonance-type non-contact charging system comprising:
前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、
前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する請求項1に記載の共鳴型非接触充電システム。
The power supply side facility has a primary coil that is coupled to the primary resonance coil by electromagnetic induction and is selectively connected to the AC power source,
The distance estimating means includes the primary resonance coil and the secondary resonance coil based on at least one of a voltage value detected from the primary coil and a voltage value detected from the secondary resonance coil. The resonance type non-contact charging system according to claim 1, wherein a distance between the two is estimated.
前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、
前記車載側設備は、前記2次側共鳴コイルに電磁誘導で結合されるとともに前記充電器と選択的に接続される2次コイルを有し、
前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する請求項1に記載の共鳴型非接触充電システム。
The power supply side facility has a primary coil that is coupled to the primary resonance coil by electromagnetic induction and is selectively connected to the AC power source,
The on-vehicle side equipment has a secondary coil that is coupled to the secondary resonance coil by electromagnetic induction and is selectively connected to the charger.
The distance estimating means is configured to connect between the primary resonance coil and the secondary resonance coil based on at least one of a voltage value detected from the primary coil and a voltage value detected from the secondary coil. The resonance type non-contact charging system according to claim 1, wherein the distance is estimated.
前記車載側設備は、第1の2次側共鳴コイル及び第2の2次側共鳴コイルを有し、
前記位置推定手段は、前記距離推定手段により推定された前記第1の2次側共鳴コイルと前記1次側共鳴コイルとの距離及び前記第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する請求項1〜請求項3のいずれか一項に記載の共鳴型非接触充電システム。
The in-vehicle equipment has a first secondary resonance coil and a second secondary resonance coil,
The position estimation means includes a distance between the first secondary resonance coil and the primary resonance coil estimated by the distance estimation means, and the second secondary resonance coil and the primary resonance coil. The resonance-type non-contact charging system according to any one of claims 1 to 3, wherein a positional relationship between the power supply side equipment and the in-vehicle side equipment is estimated from a distance from the vehicle.
前記給電側設備は、第1の1次側共鳴コイル及び第2の1次側共鳴コイルを有し、
前記位置推定手段は、前記距離推定手段により推定された前記第1の1次側共鳴コイルと前記2次側共鳴コイルとの距離及び前記第2の1次側共鳴コイルと前記2次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する請求項1〜請求項3のいずれか一項に記載の共鳴型非接触充電システム。
The power supply side facility includes a first primary resonance coil and a second primary resonance coil,
The position estimation means includes a distance between the first primary resonance coil and the secondary resonance coil estimated by the distance estimation means, and the second primary resonance coil and the secondary resonance coil. The resonance-type non-contact charging system according to any one of claims 1 to 3, wherein a positional relationship between the power supply side equipment and the in-vehicle side equipment is estimated from a distance from the vehicle.
前記1次コイルと選択的に接続される抵抗と、
2次コイルと選択的に接続される距離計測用交流電源とを有し、
前記距離計測用交流電源が前記各2次コイルに接続されるとともに前記抵抗が前記1次コイルに接続された状態で前記各2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送し、
前記距離推定手段は、前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記2次コイルから検出される電圧値及び前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記1次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記2次側共鳴コイルと前記1次側共鳴コイルとの距離を推定する請求項3〜請求項5のいずれか一項に記載の共鳴型非接触充電システム。
A resistor selectively connected to the primary coil;
A distance measuring AC power source selectively connected to the secondary coil;
The distance measuring AC power supply is connected to each secondary coil and the resistor is connected to the primary coil, and power is transmitted from each secondary resonance coil to the primary resonance coil.
The distance estimating means transmits a power value from the secondary resonance coil to the primary resonance coil and detects a voltage value detected from the secondary coil and from the secondary resonance coil to the primary resonance coil. 6. The distance between the secondary resonance coil and the primary resonance coil is estimated based on at least one of voltage values detected from the primary coil after transmitting electric power. The resonance-type non-contact charging system according to any one of claims.
前記車載側設備が搭載された車両は駐車支援装置を備え、前記位置推定手段により推定された前記給電側設備と前記車載側設備との位置関係を示すデータが前記駐車支援装置において使用される請求項1〜請求項6のいずれか一項に記載の共鳴型非接触充電システム。   The vehicle on which the on-vehicle side equipment is mounted includes a parking assistance device, and data indicating a positional relationship between the power feeding side equipment and the on-vehicle side equipment estimated by the position estimation unit is used in the parking assistance device. The resonant non-contact charging system according to any one of claims 1 to 6.
JP2009027673A 2009-02-09 2009-02-09 Resonance type non-contact charging system Pending JP2010183813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027673A JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027673A JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Publications (1)

Publication Number Publication Date
JP2010183813A true JP2010183813A (en) 2010-08-19

Family

ID=42764876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027673A Pending JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Country Status (1)

Country Link
JP (1) JP2010183813A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160515A (en) * 2010-01-29 2011-08-18 Autonetworks Technologies Ltd Radio charging apparatus for vehicle
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
CN102640395A (en) * 2010-12-01 2012-08-15 丰田自动车株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP2012165527A (en) * 2011-02-04 2012-08-30 Nitto Denko Corp Wireless power supply system
WO2012133446A1 (en) * 2011-03-30 2012-10-04 Tdk株式会社 Wireless power supplying/receiving device, and wireless power transmitting system
JP2012196126A (en) * 2011-03-03 2012-10-11 Semiconductor Energy Lab Co Ltd Power receiving device and wireless power feeding system
WO2012144253A1 (en) * 2011-04-21 2012-10-26 日産自動車株式会社 Torque control apparatus and contactless charging system
WO2012168777A2 (en) 2011-06-09 2012-12-13 Toyota Jidosha Kabushiki Kaisha Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
KR101217655B1 (en) 2011-11-04 2013-01-02 포항공과대학교 산학협력단 Wireless power tranfer system for automatic car
CN102916499A (en) * 2012-10-24 2013-02-06 天津工业大学 Energy coupling verification system based on coupled-mode theory
WO2013054399A1 (en) 2011-10-12 2013-04-18 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP2013074673A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Power transmission device, power reception device, vehicle having the same devices, power transmission system and power transmission system control method
JP5199495B1 (en) * 2012-03-29 2013-05-15 パナソニック株式会社 Vehicle guidance device, vehicle guidance information providing device, and vehicle guidance method
WO2013069089A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
WO2013084285A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
WO2013084286A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
WO2013088554A1 (en) * 2011-12-15 2013-06-20 パイオニア株式会社 Vehicle drive device
JP2013537788A (en) * 2010-07-29 2013-10-03 株式会社豊田自動織機 Resonant contactless power supply system
JP2013219944A (en) * 2012-04-10 2013-10-24 Sony Corp Power receiving device, control method of power receiving device, and power feeding system
CN103545852A (en) * 2012-07-12 2014-01-29 黄山市紫光优蓝机器人科技有限公司 Mobile wireless continuous automatic charge system
CN103597697A (en) * 2011-06-09 2014-02-19 丰田自动车株式会社 Power-receiving device, vehicle, and non-contact power supply system
KR20140031709A (en) * 2012-09-05 2014-03-13 엘지전자 주식회사 Wireless power receiver supporting both inductive and resonant method and wireless power receiving method
EP2789495A1 (en) * 2011-12-06 2014-10-15 Panasonic Corporation Vehicle guidance device and vehicle guidance method
US8946940B2 (en) 2011-03-23 2015-02-03 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
US9000620B2 (en) 2011-05-31 2015-04-07 Samsung Electronics Co., Ltd. Apparatus and method of dividing wireless power in wireless resonant power transmission system
WO2015093513A1 (en) * 2013-12-20 2015-06-25 株式会社Ihi Parking assistance apparatus and system
JP2015527036A (en) * 2012-07-16 2015-09-10 クアルコム,インコーポレイテッド Device alignment and identification in inductive power transfer systems
WO2016008608A1 (en) * 2014-07-15 2016-01-21 Paul Vahle Gmbh & Co. Kg Determining the position of a pickup relative to the primary arrangement of an inductive energy transmission system
JP2016119784A (en) * 2014-12-22 2016-06-30 株式会社ダイヘン Non-contact power transmission device and non-contact power supply system
CN106165245A (en) * 2014-04-08 2016-11-23 日产自动车株式会社 Contactless power supply system and noncontact current-collecting device
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Device alignment in inductive power transfer systems
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9997959B2 (en) 2012-03-23 2018-06-12 Samsung Electronics Co., Ltd. Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
JP2018148704A (en) * 2017-03-06 2018-09-20 株式会社東芝 Positional deviation direction estimating device, positional deviation direction estimating method and program
CN109451773A (en) * 2016-06-15 2019-03-08 高通股份有限公司 Method and apparatus for positioning the vehicles
WO2021095300A1 (en) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 Parking assistance device, parking assistance method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
JPH09182212A (en) * 1995-12-25 1997-07-11 Toyota Autom Loom Works Ltd Automatic charging device
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー Wireless non-radiative energy transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
JPH09182212A (en) * 1995-12-25 1997-07-11 Toyota Autom Loom Works Ltd Automatic charging device
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー Wireless non-radiative energy transfer

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10618411B2 (en) 2008-11-07 2020-04-14 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP2011160515A (en) * 2010-01-29 2011-08-18 Autonetworks Technologies Ltd Radio charging apparatus for vehicle
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
JP2013537788A (en) * 2010-07-29 2013-10-03 株式会社豊田自動織機 Resonant contactless power supply system
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
CN102640395A (en) * 2010-12-01 2012-08-15 丰田自动车株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP5083480B2 (en) * 2010-12-01 2012-11-28 トヨタ自動車株式会社 Non-contact power supply facility, vehicle, and control method for non-contact power supply system
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
JP2012165527A (en) * 2011-02-04 2012-08-30 Nitto Denko Corp Wireless power supply system
US9461506B2 (en) 2011-02-04 2016-10-04 Nitto Denko Corporation Wireless power-supply system
JP2012196126A (en) * 2011-03-03 2012-10-11 Semiconductor Energy Lab Co Ltd Power receiving device and wireless power feeding system
US10270295B2 (en) 2011-03-23 2019-04-23 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
US20170310167A1 (en) 2011-03-23 2017-10-26 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
US8946940B2 (en) 2011-03-23 2015-02-03 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
US10355533B2 (en) 2011-03-23 2019-07-16 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
US9729013B2 (en) 2011-03-23 2017-08-08 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
JP5804052B2 (en) * 2011-03-30 2015-11-04 Tdk株式会社 Wireless power receiving and receiving device and wireless power transmission system
US9006935B2 (en) 2011-03-30 2015-04-14 Tdk Corporation Wireless power feeder/receiver and wireless power transmission system
WO2012133446A1 (en) * 2011-03-30 2012-10-04 Tdk株式会社 Wireless power supplying/receiving device, and wireless power transmitting system
JP2012228119A (en) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd Torque control apparatus and contactless charging system
US9623767B2 (en) 2011-04-21 2017-04-18 Nissan Motor Co., Ltd. Torque control apparatus and contactless charging system
WO2012144253A1 (en) * 2011-04-21 2012-10-26 日産自動車株式会社 Torque control apparatus and contactless charging system
CN103492219A (en) * 2011-04-21 2014-01-01 日产自动车株式会社 Torque control apparatus and contactless charging system
US9000620B2 (en) 2011-05-31 2015-04-07 Samsung Electronics Co., Ltd. Apparatus and method of dividing wireless power in wireless resonant power transmission system
WO2012168777A2 (en) 2011-06-09 2012-12-13 Toyota Jidosha Kabushiki Kaisha Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
CN103597697A (en) * 2011-06-09 2014-02-19 丰田自动车株式会社 Power-receiving device, vehicle, and non-contact power supply system
US9180782B2 (en) 2011-06-20 2015-11-10 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
JP2013074673A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Power transmission device, power reception device, vehicle having the same devices, power transmission system and power transmission system control method
WO2013054399A1 (en) 2011-10-12 2013-04-18 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system
KR101217655B1 (en) 2011-11-04 2013-01-02 포항공과대학교 산학협력단 Wireless power tranfer system for automatic car
WO2013069089A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
CN106828118A (en) * 2011-11-08 2017-06-13 丰田自动车株式会社 The current-collecting device of vehicle, power transmission device and noncontact are sent by electric system
JPWO2013084285A1 (en) * 2011-12-05 2015-04-27 パイオニア株式会社 Vehicle drive device
JPWO2013084286A1 (en) * 2011-12-05 2015-04-27 パイオニア株式会社 Vehicle drive device
WO2013084285A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
WO2013084286A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
US9539911B2 (en) 2011-12-06 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Vehicle guidance device and vehicle guidance method
EP2789495A4 (en) * 2011-12-06 2015-10-14 Panasonic Ip Man Co Ltd Vehicle guidance device and vehicle guidance method
EP2789495A1 (en) * 2011-12-06 2014-10-15 Panasonic Corporation Vehicle guidance device and vehicle guidance method
JPWO2013088554A1 (en) * 2011-12-15 2015-04-27 パイオニア株式会社 Vehicle drive device
WO2013088554A1 (en) * 2011-12-15 2013-06-20 パイオニア株式会社 Vehicle drive device
US9997959B2 (en) 2012-03-23 2018-06-12 Samsung Electronics Co., Ltd. Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
WO2013145581A1 (en) * 2012-03-29 2013-10-03 パナソニック株式会社 Vehicle guidance device, vehicle guidance information providing device and vehicle guidance method
JP5199495B1 (en) * 2012-03-29 2013-05-15 パナソニック株式会社 Vehicle guidance device, vehicle guidance information providing device, and vehicle guidance method
JP2013219944A (en) * 2012-04-10 2013-10-24 Sony Corp Power receiving device, control method of power receiving device, and power feeding system
CN103545852A (en) * 2012-07-12 2014-01-29 黄山市紫光优蓝机器人科技有限公司 Mobile wireless continuous automatic charge system
US9859755B2 (en) 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
JP2018082619A (en) * 2012-07-16 2018-05-24 クアルコム,インコーポレイテッド Device alignment and identification in inductive power transfer systems
TWI658949B (en) * 2012-07-16 2019-05-11 美商維電股份有限公司 Wireless power receiver, wireless power transmitter, method of operating a wireless power receiver, and method of operating a wireless power transmitter
JP2015527036A (en) * 2012-07-16 2015-09-10 クアルコム,インコーポレイテッド Device alignment and identification in inductive power transfer systems
KR20140031709A (en) * 2012-09-05 2014-03-13 엘지전자 주식회사 Wireless power receiver supporting both inductive and resonant method and wireless power receiving method
KR101956570B1 (en) * 2012-09-05 2019-03-11 엘지전자 주식회사 Wireless power receiver supporting both inductive and resonant method and wireless power receiving method
CN102916499A (en) * 2012-10-24 2013-02-06 天津工业大学 Energy coupling verification system based on coupled-mode theory
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Device alignment in inductive power transfer systems
US10562396B2 (en) 2013-12-20 2020-02-18 Ihi Corporation Parking assistance apparatus and system
CN105593072A (en) * 2013-12-20 2016-05-18 株式会社Ihi Parking assistance apparatus and system
JP2015120378A (en) * 2013-12-20 2015-07-02 株式会社Ihi Parking assistance device and parking assistance system
WO2015093513A1 (en) * 2013-12-20 2015-06-25 株式会社Ihi Parking assistance apparatus and system
EP3131173A4 (en) * 2014-04-08 2017-04-05 Nissan Motor Co., Ltd Contactless electricity supply system and contactless electricity reception device
EP3131173A1 (en) * 2014-04-08 2017-02-15 Nissan Motor Co., Ltd. Contactless electricity supply system and contactless electricity reception device
CN106165245B (en) * 2014-04-08 2017-10-03 日产自动车株式会社 Contactless power supply system and noncontact current-collecting device
CN106165245A (en) * 2014-04-08 2016-11-23 日产自动车株式会社 Contactless power supply system and noncontact current-collecting device
WO2016008608A1 (en) * 2014-07-15 2016-01-21 Paul Vahle Gmbh & Co. Kg Determining the position of a pickup relative to the primary arrangement of an inductive energy transmission system
DE102014109893B4 (en) * 2014-07-15 2019-10-31 Paul Vahle Gmbh & Co. Kg Determining the position of a pickup relative to the primary arrangement of an inductive energy transmission system
JP2016119784A (en) * 2014-12-22 2016-06-30 株式会社ダイヘン Non-contact power transmission device and non-contact power supply system
CN109451773A (en) * 2016-06-15 2019-03-08 高通股份有限公司 Method and apparatus for positioning the vehicles
JP2018148704A (en) * 2017-03-06 2018-09-20 株式会社東芝 Positional deviation direction estimating device, positional deviation direction estimating method and program
WO2021095300A1 (en) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 Parking assistance device, parking assistance method, and program
JP2021079757A (en) * 2019-11-15 2021-05-27 パナソニックIpマネジメント株式会社 Parking support device, parking support method and program
CN114728656A (en) * 2019-11-15 2022-07-08 松下知识产权经营株式会社 Parking assistance device, parking assistance method, and program
JP7352898B2 (en) 2019-11-15 2023-09-29 パナソニックIpマネジメント株式会社 Parking support device, parking support method, and program

Similar Documents

Publication Publication Date Title
JP2010183813A (en) Resonance type non-contact charging system
JP5458187B2 (en) Resonant contactless power supply system
JP2010183812A (en) Resonance type non-contact charging system
JP6427873B2 (en) Parking assistance device and system
KR101210326B1 (en) Non-contact power transmission apparatus
JP5950027B2 (en) Non-contact power supply system and power supply device
JP5810632B2 (en) Non-contact power feeding device
JP5979308B2 (en) Contactless power supply system
JP5979309B2 (en) Contactless power supply system
JP5950028B2 (en) Contactless power supply system
KR101373682B1 (en) Vehicle parking assist system, vehicle including the same, and vehicle parking assist method
US9956914B2 (en) Parking assistance device and parking assistance method
US10899234B2 (en) Non-contact electric power transmission system, charging station, and vehicle
WO2012014485A2 (en) Resonance type non-contact power supply system
WO2019229808A1 (en) Power transmission device, and method for controlling power transmission device
CN106165247A (en) Contactless power supply system and noncontact current-collecting device
JP2011189895A (en) Mobile body power supplying device
CN108928247B (en) Contactless electrical power transmission system
US9637015B2 (en) Non-contact electric power transmission system and charging station
JP2014110681A (en) Non-contact power supply device, non-contact power supply system, and non-contact power supply method
JP2008131807A (en) Charging system for vehicle and charger for use therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210