JP2010183813A - Resonance type non-contact charging system - Google Patents

Resonance type non-contact charging system Download PDF

Info

Publication number
JP2010183813A
JP2010183813A JP2009027673A JP2009027673A JP2010183813A JP 2010183813 A JP2010183813 A JP 2010183813A JP 2009027673 A JP2009027673 A JP 2009027673A JP 2009027673 A JP2009027673 A JP 2009027673A JP 2010183813 A JP2010183813 A JP 2010183813A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
coil
resonance coil
side resonance
primary
secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009027673A
Other languages
Japanese (ja)
Inventor
Shinji Ichikawa
Tetsuhiro Ishikawa
Kenichi Nakada
Shinpei Sakota
Sadanori Suzuki
Kazuyoshi Takada
Yukihiro Yamamoto
健一 中田
幸宏 山本
真士 市川
哲浩 石川
慎平 迫田
定典 鈴木
和良 高田
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
トヨタ自動車株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/182Charging electric vehicles by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1827Automatic adjustment of relative position between charging device and vehicle
    • B60L11/1833Automatic adjustment of relative position between charging device and vehicle the vehicle being positioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2230/00Charging station details
    • B60L2230/10Parts thereof
    • B60L2230/16Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7088Charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7208Electric power conversion within the vehicle
    • Y02T10/7241DC to AC or AC to DC power conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/121Electric charging stations by conductive energy transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/122Electric charging stations by inductive energy transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/125Alignment between the vehicle and the charging station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/127Converters or inverters for charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/128Energy exchange control or determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/163Information or communication technologies related to charging of electric vehicle

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonance type non-contact charging system capable of efficiently charging a secondary battery installed on a vehicle without providing a moving means for moving a primary resonance coil. <P>SOLUTION: A power feeding side facility 10 includes a primary coil 12 selectively connected to an AC power supply unit 11 and a resistance R via a switch SW1, and a primary side resonance coil 13. An in-vehicle side facility 20 includes two secondary side resonance coils 21a, 21b, two secondary coils 22a, 22b, a charger 23, a secondary battery 24 connected to the charger 23, and a distance measuring AC power supply unit 27, wherein the secondary coils 22a, 22b are selectively connected to the distance measuring AC power supply unit 27 and the charger 23 through the switches SW2 and SW3. The distance between each of the secondary side resonance coils 21a, 21b and the primary side resonance coil 13 is estimated in a state that the secondary coils 22a, 22b are connected to the distance measuring AC power supply unit 27 and the resistance R is connected to the primary coil 12, and the positional relation between the power feeding side facility 10 and the in-vehicle side facility 20 is estimated from the estimated distance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、共鳴型非接触充電システムに係り、詳しくは車両に搭載された2次電池に非接触で充電を行う共鳴型非接触充電システムに関する。 The present invention relates to a resonance type non-contact charging system, more particularly to resonance type non-contact charging system for charging in a non-contact to a secondary battery mounted on a vehicle.

非接触で電力伝送を行う技術として共鳴方式が提案されている(例えば特許文献1)。 Resonance method has been proposed as a technique of performing power transmission in a non-contact (e.g., Patent Document 1). この共鳴方式による電力伝送システムでは、図9に示すように、二つの銅線コイル51,52を離れた状態で配置し、一方の銅線コイル(1次側共鳴コイル)51から他方の銅線コイル(2次側共鳴コイル)52に電磁場の共鳴によって電力を伝送する。 The power transmission system according to this resonance method, as shown in FIG. 9, and disposed in a state leaving the two copper wire coils 51 and 52, the other copper wire from one copper wire coils (primary side resonance coil) 51 for transferring power by resonance of the electromagnetic field in the coil (secondary side resonance coil) 52. 具体的には、交流電源53に接続された1次コイル54で発生した磁場を銅線コイル51,52による磁場共鳴により増強し、増強された銅線コイル52付近の磁場から2次コイル55により電磁誘導を利用して電力を取り出し、負荷56に供給する。 Specifically, the magnetic field generated by the primary coil 54 connected to an AC power source 53 is enhanced by magnetic field resonance by the copper wire coils 51 and 52, the magnetic field from the secondary coil 55 of the enhanced near copper wire coil 52 drawing power using electromagnetic induction, supplied to the load 56. そして、半径30cmの銅線コイル51,52を2m離して配置した場合に、負荷56としての60Wの電灯を点灯できることが確認されている。 Then, the copper wire coils 51, 52 of radius 30cm when placed apart 2m, it has been confirmed to be able to light the lamp of 60W as the load 56.

また、電動車のバッテリに非接触で効率良く充電可能にした非接触給電装置が提案されている(例えば特許文献2)。 The non-contact power feeding apparatus which efficiently be charged without contact to the electric vehicle battery has been proposed (e.g. Patent Document 2). 特許文献2の非接触給電装置は、電動車側の2次コイルに電磁結合する1次コイルを固定側に有し、1次コイル側から2次コイル側に給電を行う非接触給電装置において、1次コイル側の給電状態と、2次コイル側の受電状態とから給電効率を最大にするように、1次コイルの位置を移動させる位置決め手段を備えている。 Non-contact power feeding device of Patent Document 2, the electric car side of the secondary coil has a primary coil electromagnetically coupled to the stationary side, in the non-contact power feeding device for feeding power from the primary coil side to the secondary coil side, the feeding state of the primary coil, the power supply efficiency from the power receiving state of the secondary coil so as to maximize, and a positioning means for moving the position of the primary coil.

国際公開特許WO/2007/008646 A2 International Patent Publication No. WO / 2007/008646 A2 特開2006−345588号公報 JP 2006-345588 JP

ところが、特許文献1には共鳴型非接触電力伝送方式を車両に搭載された2次電池の充電に用いる場合の具体的な構成については開示されていない。 However, it does not disclose a specific configuration in the case of using the resonance type non-contact power transmission system in Patent Document 1 for charging the secondary battery mounted on a vehicle. また、特許文献2の非接触給電装置は、固定側に設けられた1次コイルの位置を移動させる位置決め手段(移動手段)が必要になり、構成が複雑になる。 The non-contact power feeding device of Patent Document 2, a positioning means for moving the position of the primary coil provided on the fixed side (moving means) is required, the structure becomes complicated.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる共鳴型非接触充電システムを提供することにある。 The present invention, which the was made in view of the conventional problems, and an object is not provided moving means for moving the primary side resonance coil provided on the feeding side, a secondary mounted in the vehicle and to provide a resonance type non-contact charging system that can efficiently charge the battery.

前記の目的を達成するため、請求項1に記載の発明は、交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムである。 To achieve the above object, a first aspect of the present invention, an AC power source, a power supply unit having a primary side resonance coil receives power from the AC power source, from the primary side resonance coil resonance with secondary side resonance coil receives power by magnetic resonance power, and a vehicle-side installation comprising a secondary battery connected to the charger and the charger supplied with power from the secondary side resonance coil a type non-contact charging system. そして、前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段と、前記距離推定手段により推定された距離から前記給電側設備と前記車載側設備との位置関係を推定する位置推定手段と、を備えている。 Then, at least one of provided with a plurality of the primary side resonance coil and the secondary side resonance coil, a distance estimation means for estimating a distance between the primary side resonance coil and the secondary side resonance coil, wherein the distance estimation and a, a position estimation means for estimating a positional relationship between the vehicle-side equipment and the power supply unit from the estimated distance by means. ここで、「交流電源」とは、交流電圧を出力する電源を意味し、直流電源から入力された直流を交流に変換して出力するものも含む。 Here, "AC power source" means a source that outputs an AC voltage, including those for converting direct current into alternating current inputted from a DC power source.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により2次側共鳴コイルと1次側共鳴コイルとの距離が推定される。 In the present invention, when the vehicle is parked by moving the charge position (stopped), the distance estimation means the distance between the secondary side resonance coil and the primary side resonance coil is estimated. そして、その推定された距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。 The positional relationship between the vehicle-side equipment and the power supply unit is estimated by the position estimation means from the estimated distance. 位置推定手段は少なくとも二組の1次側共鳴コイルと2次側共鳴コイル間の推定距離に基づいて給電側設備と車載側設備との位置関係を推定できる。 Position estimating means can estimate the positional relation between the vehicle-side equipment and the power supply unit based on the estimated distance between the at least two sets of the primary side resonance coil and the secondary side resonance coil. したがって、給電側設備と車載側設備とが効率良く充電可能な位置関係にあるか否かを判断できる。 Therefore, the power supply unit and the vehicle-side equipment can determine whether the efficient rechargeable positional relationship. そして、効率良く充電可能な位置関係になるまで車両を移動させた状態で充電を行うことにより、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。 By charging while moving the vehicle until efficient rechargeable positional relationship, without providing a moving means for moving the primary side resonance coil provided on the feed side, is mounted on a vehicle secondary batteries can be efficiently charged.

請求項2に記載の発明は、請求項1に記載の発明において、前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する。 The invention of claim 2 is the invention according to claim 1, wherein the power supply unit is primary that with coupled electromagnetic induction to the primary side resonance coil is selectively connected to the AC power source a coil, the distance estimation unit, the primary side resonance coil and the on the basis of at least one of the voltage detected from the voltage value and the secondary side resonance coil is detected from the primary coil estimating the distance between the secondary side resonance coil.

この発明では、距離を推定する方法として、1次コイル及び2次側共鳴コイルの少なくとも一方の電圧から推定する方法が採用される。 In the present invention, the distance as a method of estimating a method of estimating from at least one of the voltage of the primary coil and the secondary side resonance coil is employed. 例えば、1次コイルの電圧から推定する場合は、1次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。 For example, if the estimated from the voltage of the primary coil is found through testing the relationship between the distance between the voltage of the primary coil and the primary side resonance coil and the secondary side resonance coil, estimated using the relationship to. 2次側共鳴コイルの電圧から推定する場合は、2次側共鳴コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。 When estimating the voltage of the secondary side resonance coil is found through testing the relationship between the distance between the voltage of the secondary-side resonance coil and the primary side resonance coil and the secondary side resonance coil, by utilizing the relationship to estimate Te. また、1次コイル及び2次側共鳴コイルの両方の電圧から推定する場合は、両電圧値から求められる電力伝送効率から推定する。 In addition, when estimated from both the voltage of the primary coil and the secondary side resonance coil is estimated from the power transmission efficiency obtained from both the voltage value. したがって、2次コイルがなくても距離を推定することができる。 Therefore, it is possible that the secondary coil estimates the distance without.

請求項3に記載の発明は、請求項1に記載の発明において、前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、前記車載側設備は、前記2次側共鳴コイルに電磁誘導で結合されるとともに前記充電器と選択的に接続される2次コイルを有する。 The invention of claim 3 is the invention according to claim 1, wherein the power supply unit is primary that with coupled electromagnetic induction to the primary side resonance coil is selectively connected to the AC power source a coil, the vehicle-side equipment includes a secondary coil that is selectively connected to the charger while being coupled by electromagnetic induction to the secondary side resonance coil. 前記距離推定手段は、前記1次コイルから出力される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する。 Said distance estimation means, voltage value and the primary side resonance coil and the secondary side resonance coil based on at least one of the voltage detected from the secondary side resonance coil output from the primary coil to estimate the distance between.

この発明では、距離を推定する方法としては、「1次コイル及び2次コイルの少なくとも一方の電圧から推定する方法が採用される。例えば、1次コイルの電圧から推定する場合は、1次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。2次コイルの電圧から推定する場合は、2次コイルの電圧と1次側共鳴コイル及び2次側共鳴コイル間の距離との関係を試験で求めておき、その関係を利用して推定する。また、1次コイル及び2次コイルの両方の電圧から推定する場合は、両電圧値から求められる電力伝送効率から推定する。 In the present invention, the distance as a method of estimating a method of estimating from at least one of the voltage of the "primary coil and the secondary coil is employed. For example, when estimating the voltage of the primary coil, the primary coil voltage and advance determined by testing the relationship between the distance between the primary side resonance coil and the secondary side resonance coil, when estimating the voltage of .2 coil be estimated by utilizing the relationship, the secondary coil voltage and advance determined by testing the relationship between the distance between the primary side resonance coil and the secondary side resonance coil, is estimated using the relationship. Further, both the voltage of the primary coil and the secondary coil when estimating estimates the power transmission efficiency obtained from both the voltage value.

請求項4に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記車載側設備は、第1の2次側共鳴コイル及び第2の2次側共鳴コイルを有し、前記位置推定手段は、前記距離推定手段により推定された前記第1の2次側共鳴コイルと前記1次側共鳴コイルとの距離及び前記第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する。 Invention of claim 4 is the invention according to any one of claims 1 to 4, wherein the vehicle-side equipment, the first secondary side resonance coil and the second secondary side resonance coil It has the position estimation means, wherein the distance and the second secondary side resonance coil of the primary side resonance coil and the estimated first secondary side resonance coil by said distance estimation means 1 wherein the distance between the next side resonance coil and the power supply unit for estimating a positional relationship between the vehicle-side equipment.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により推定された第1の2次側共鳴コイルと1次側共鳴コイルとの距離及び第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離が推定される。 In the present invention, when the vehicle is moved to the charging position to park (stop), the distance between the first secondary side resonance coil and the primary side resonance coil estimated by the distance estimation unit and the second secondary the distance between the resonant coil and the primary side resonance coil is estimated. そして、距離推定手段により推定された第1の2次側共鳴コイルと1次側共鳴コイルとの距離及び第2の2次側共鳴コイルと1次側共鳴コイルとの距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。 The first secondary side resonance coil and powered by the distance and the second secondary-side resonance coil and the position estimation means from the distance between the primary side resonance coil of the primary side resonance coil estimated by the distance estimation unit positional relationship between the vehicle-side equipment and side equipment is estimated. そのため、推定された給電側設備と車載側設備との位置関係に基づいて、車両を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。 Therefore, based on the positional relationship between the vehicle-side equipment and the estimated power supply unit, vehicle can be easily moved to the charging position, a moving means for moving the primary side resonance coil provided on the feeding side without providing, it can be charged efficiently secondary battery mounted on a vehicle.

請求項5に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記給電側設備は、第1の1次側共鳴コイル及び第2の1次側共鳴コイルを有し、前記位置推定手段は、前記距離推定手段により推定された前記第1の1次側共鳴コイルと前記2次側共鳴コイルとの距離及び前記第2の1次側共鳴コイルと前記2次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する。 Invention of claim 5 is the invention according to any one of claims 1 to 3, wherein the power supply unit has a first primary side resonance coil and the second primary-side resonance coil has the position estimation means, wherein the distance and the second primary-side resonance coil and the first primary side resonance coil and the secondary side resonance coil estimated by the distance estimation unit 2 wherein the distance between the next side resonance coil and the power supply unit for estimating a positional relationship between the vehicle-side equipment.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離推定手段により推定された第1の1次側共鳴コイルと2次側共鳴コイルとの距離及び第2の1次側共鳴コイルと2次側共鳴コイルとの距離が推定される。 In the present invention, when the vehicle is moved to the charging position to park (stop), the distance between the first primary-side resonance coil and the secondary side resonance coil estimated by the distance estimation unit and the second primary side the distance between the resonance coil and the secondary side resonance coil is estimated. そして、距離推定手段により推定された第1の1次側共鳴コイルと2次側共鳴コイルとの距離及び第2の1次側共鳴コイルと2次側共鳴コイルとの距離から位置推定手段により給電側設備と車載側設備との位置関係が推定される。 The first primary side resonance coil and powered by the position estimation means from the distance between the distance and the second primary-side resonance coil and the secondary side resonance coil and the secondary side resonance coil estimated by the distance estimation unit positional relationship between the vehicle-side equipment and side equipment is estimated. そのため、推定された給電側設備と車載側設備との位置関係に基づいて、車両を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。 Therefore, based on the positional relationship between the vehicle-side equipment and the estimated power supply unit, vehicle can be easily moved to the charging position, a moving means for moving the primary side resonance coil provided on the feeding side without providing, it can be charged efficiently secondary battery mounted on a vehicle.

請求項6に記載の発明は、請求項3〜請求項5のいずれか一項に記載の発明において、前記1次コイルと選択的に接続される抵抗と、前記2次コイルと選択的に接続される距離計測用交流電源とを有し、前記距離計測用交流電源が前記各2次コイルに接続されるとともに前記抵抗が前記1次コイルに接続された状態で前記各2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送する。 Invention of claim 6 is the invention according to any one of claims 3 to 5, and a resistor which is selectively connected to the primary coil, selectively connected to the secondary coil and a distance measuring AC power supplies, from each of the secondary side resonance coil in a state in which the resistance is connected to the primary coil with the distance measuring AC power source is connected to the respective secondary coils transmitting power to the primary side resonance coil. 前記距離推定手段は、前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記2次コイルから検出される電圧値及び前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記1次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記2次側共鳴コイルと前記1次側共鳴コイルとの距離を推定する。 Said distance estimation means, the primary side resonance coil from the detected voltage value and the secondary side resonance coil from the secondary coil after transmitting the power to the primary side resonance coil from the secondary side resonance coil estimating a distance between said primary side resonance coil and the secondary side resonance coil based on at least one of the voltage detected from the primary coil after transmitting power.

この発明では、車両が充電位置に移動して駐車(停止)する際、距離計測用交流電源が各2次コイルに接続されるとともに抵抗が1次コイルに接続された状態で各2次側共鳴コイルから1次側共鳴コイルに電力が伝送される。 In the present invention, when the vehicle is parked and moved to the charging position (stop), the distance measuring AC power source the secondary side resonance in a state where the resistance is connected to the primary coil is connected to the secondary coil power is transmitted to the primary side resonance coil from the coil. そして、2次コイルから検出される電圧値及び1次コイルから検出される電圧値の少なくともいずれか一方に基づいて、距離推定手段により2次側共鳴コイルと1次側共鳴コイルとの距離が推定される。 Then, based on at least one of a voltage value detected by the voltage value and the primary coil is detected from the secondary coil, the distance estimation means the distance between the secondary side resonance coil and the primary side resonance coil estimate It is.

請求項7に記載の発明は、請求項1〜請求項6のいずれか一項に記載の発明において、前記車載側設備が搭載された車両は駐車支援装置を備え、前記位置推定手段により推定された前記給電側設備と前記車載側設備との位置関係を示すデータが前記駐車支援装置において使用される。 The invention of claim 7 is the invention according to any one of claims 1 to 6, the vehicle in which the vehicle-side equipment is mounted is provided with a parking assist apparatus, estimated by the position estimation means wherein the said power supply unit data indicating the positional relationship between the vehicle-side equipment is used in the parking assist apparatus. ここで、「駐車支援装置」とは、車両が駐車する際に、運転者のハンドル操作を軽減させる役割を果たす装置を意味する。 Here, the "parking assist system", the vehicle is in park, means a serving device to reduce the steering wheel operation of the driver. 駐車支援装置には、例えば、カメラとコンピュータとにより、運転者がハンドルに触れることなく、カメラの撮影データに基づき目的の駐車位置に停止するように自動操舵を行う自動駐車装置や、ディスプレイに目的の駐車位置と、車両の現在位置とを表示する装置等がある。 Purpose The parking assist apparatus, for example, by a camera and a computer, without the driver touches the steering wheel, and an automatic parking system which performs automatic steering to stop the parking position of the object based on the imaging data of the camera, the display a parking position, and there is a device for displaying the current position of the vehicle. この発明では、より容易に車両を充電位置に移動、駐車させることができる。 In the present invention, more easily move the vehicle to the charging position, it is possible to park.

本発明によれば、給電側に設けられた1次側共鳴コイルを移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。 According to the present invention, without providing the means for moving the primary side resonance coil provided on the feed side, the secondary battery mounted on a vehicle can be efficiently charged.

第1の実施形態における共鳴型非接触充電システムの構成図。 Diagram of resonance type non-contact charging system in the first embodiment. 車両が充電位置へ移動する際の1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式平面図。 Schematic plan view showing the relationship between the primary side resonance coil and the secondary side resonance coil when a vehicle is moved to the charging position. 1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式図。 Schematic diagram showing the relationship between the primary side resonance coil and the secondary side resonance coil. 第2の実施形態における共鳴型非接触充電システムの構成図。 Diagram of resonance type non-contact charging system in the second embodiment. 第3の実施形態における共鳴型非接触充電システムの構成図。 Diagram of resonance type non-contact charging system in the third embodiment. 作用を説明するフローチャート。 Flow chart for explaining the action. (a)は車両が後退で充電位置へ移動する際の1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式平面図、(b)は前進で移動する際の模式平面図。 (A) is a schematic plan view showing the relationship between the primary side resonance coil and the secondary side resonance coil when a vehicle is moved to the charging position retracted, (b) schematic plan view when moving in advancing. 別の実施形態における車両の充電位置での1次側共鳴コイルと2次側共鳴コイルとの関係を示す模式側面図。 Schematic side view showing the relationship between the primary side resonance coil and the secondary side resonance coil in the charging position of the vehicle in another embodiment. 従来技術の非接触電力伝送装置の構成図。 Configuration diagram of a contactless power transmission apparatus of the prior art.

(第1の実施形態) (First Embodiment)
以下、本発明を具体化した第1の実施形態を図1〜図3にしたがって説明する。 Hereinafter, a description will be given of a first embodiment embodying the present invention with reference to FIGS. 1 to 3.
図1は共鳴型非接触充電システムの構成を模式的に示す。 Figure 1 shows the structure of the resonance type non-contact charging system schematically. 図1に示すように、共鳴型非接触充電システムは、地上側に設けられる給電側設備(送電側設備)10と、車両30に搭載された車載側設備20とで構成されている。 As shown in FIG. 1, the resonance type non-contact charging system includes a power supply unit (power transmission side equipment) 10 provided on the ground side, and a vehicle-side equipment 20 mounted on the vehicle 30. 給電側設備10は、交流電源11、交流電源11から電力の供給を受ける1次側共鳴コイル13を備えている。 Power supply unit 10 includes an AC power source 11, a primary-side resonance coil 13 from the AC power supply 11 receives power. 詳述すると、給電側設備10は、交流電源11と、1次コイル12と、1次側共鳴コイル13と、電源側コントローラ14とを備えている。 In detail, the power supply unit 10 includes an AC power source 11, and a primary coil 12, the primary side resonance coil 13, and a power controller 14. 1次コイル12と1次側共鳴コイル13とは同軸上に位置するように配設されている。 It is arranged so as to be positioned coaxially with the primary coil 12 and the primary side resonance coil 13. 1次コイル12はスイッチSW1を介して抵抗Rに接続される状態と、交流電源11に接続される状態とに切り換え可能になっている。 The primary coil 12 is in a switchable into a state of being connected with state of being connected to the resistor R via a switch SW1, to the AC power source 11. 1次コイル12は、1次側共鳴コイル13に電磁誘導で結合されるとともに交流電源11と抵抗Rとに選択的に接続される。 The primary coil 12 is selectively connected to the AC power source 11 and resistor R together with the coupled electromagnetic induction to the primary side resonance coil 13.

抵抗Rには、抵抗Rが1次コイル12に接続された状態で抵抗Rの両端間の電圧、即ち1次コイル12の出力電圧を検出する電圧センサ15が接続されている。 The resistor R, the voltage across the in a state where the resistance R is connected to the primary coil 12 resistance R, that is, the voltage sensor 15 for detecting the output voltage of the primary coil 12 is connected. 電圧センサ15の検出信号は電源側コントローラ14に入力される。 The detection signal of the voltage sensor 15 is input to the power controller 14. 1次側共鳴コイル13にはコンデンサCが接続されている。 Capacitor C is connected to the primary side resonance coil 13. 交流電源11は交流電圧を出力する電源である。 AC power supply 11 is a power source that outputs an AC voltage. 交流電源11は電源側コントローラ14による制御によって所定周波数(共鳴周波数)の交流を出力するように構成されている。 AC power supply 11 is configured to output an alternating current of a predetermined frequency (resonance frequency) control by power controller 14.

車載側設備20は、第1の2次側共鳴コイル21a及び第2の2次側共鳴コイル21bと、2個の2次コイル22a,22bと、2次コイル22a,22bに接続されて電力の供給を受ける充電器23と、充電器23に接続された2次電池24と、充電コントローラ25と、車両側コントローラ26とを備えている。 Vehicle side equipment 20 includes a first secondary side resonance coil 21a and second secondary-side resonance coil 21b, 2 pieces of secondary coils 22a, 22b and, the secondary coil 22a, is connected to the 22b power a charger 23 for receiving a supply, a secondary battery 24 connected to the charger 23, a charging controller 25, and a vehicle controller 26. 対応する2次側共鳴コイル21a,21b及び2次コイル22a,22bは同軸上に位置するように配設されている。 Corresponding secondary side resonance coil 21a, 21b and the secondary coil 22a, 22b are arranged so as to be positioned coaxially. 充電器23は、2次コイル22a,22bから入力される交流を整流する整流回路(図示せず)と、整流された直流を2次電池24に充電するのに適した電圧に昇圧する昇圧回路(図示せず)とを備えている。 Charger 23, the secondary coil 22a, a rectifier circuit for rectifying an AC input from 22b (not shown), the booster circuit for boosting the voltage suitable for charging the rectified DC to the secondary battery 24 and a (not shown) and. 充電コントローラ25は、充電時に充電器23の昇圧回路のスイッチング素子を制御する。 Charge controller 25 controls the switching elements of the booster circuit of the charger 23 during charging. 各2次コイル22a,22bは、スイッチSW2,SW3を介して充電器23に選択的に接続可能に構成されている。 Each secondary coil 22a, 22b are selectively connectable to the charger 23 via the switch SW2, SW3. 2次コイル22a,22bは、第1及び第2の2次側共鳴コイル21a,21bに電磁誘導で結合されるとともに充電器23と選択的に接続される。 Secondary coil 22a, 22b, the first and second secondary-side resonance coil 21a, are selectively connected to the charger 23 while being coupled by electromagnetic induction to 21b. 車載側設備20は距離計測用交流電源27を備え、距離計測用交流電源27は、スイッチSW2,SW3を介して2つの2次コイル22a,22bのいずれかに選択的に接続可能に構成されている。 Vehicle side equipment 20 is provided with a distance measuring AC power source 27, the distance measuring AC power supply 27, two secondary coils 22a via the switch SW2, SW3, selectively connectable to be configured in any of 22b there. 距離計測用交流電源27は、交流電源11が電力伝送時に出力するより二桁程度小さな交流電力を出力するように構成されている。 Distance measuring AC power source 27, an AC power source 11 is configured to output a small AC power by about two orders of magnitude than the output during power transmission.

なお、1次コイル12、1次側共鳴コイル13、2次側共鳴コイル21a,21b及び2次コイル22a,22bの巻数、巻径は伝送しようとする電力の大きさ等に対応して適宜設定される。 Incidentally, the primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 21a, 21b and the secondary coil 22a, 22b of turns, winding diameter is appropriately set in correspondence to the size of the power to be transmitted It is. また、図1において各スイッチSW1,SW2,SW3は、リレーの接点を示す。 Further, the switches SW1, SW2, SW3 in FIG. 1 shows the contact of the relay. 図1には、リレーの接点が有接点式で図示されているが、半導体素子を用いた無接点リレーでもよい。 Although FIG. 1 contacts of the relay are shown in reed type, it may be a non-contact relay using a semiconductor element.

電源側コントローラ14と、車両側コントローラ26とは図示しない無線通信装置を介して通信可能になっている。 A power controller 14, and can communicate via a wireless communication device (not shown) to the vehicle controller 26. 電源側コントローラ14はCPU及びメモリを備え、メモリには、車載側設備20を備えた車両30が充電位置へ移動する際にスイッチSW1を抵抗Rと1次コイル12とを接続する状態に切り換え、充電時にはスイッチSW1を交流電源11と1次コイル12とを接続する状態に切り換える制御プログラムが記憶されている。 Power controller 14 includes a CPU and a memory, the memory is switched to a state in which the vehicle 30 having a vehicle-side equipment 20 connects the switches SW1 resistor R and the primary coil 12 when moving to the charging position, control program to switch to the state of connecting the AC power source 11 and the primary coil 12 the switch SW1 are stored during charging. また、メモリには、抵抗Rが1次コイル12に接続された状態で、電圧センサ15の検出電圧データを車両側コントローラ26に送信する制御プログラムが記憶されている。 The memory, in a state in which the resistor R is connected to the primary coil 12, the control program transmits a detection voltage data of the voltage sensor 15 to the vehicle controller 26 is stored.

車両側コントローラ26は、CPU及びメモリを備え、メモリには、スイッチSW2,SW3を、車両30が充電位置へ移動する際に二つの2次コイル22a,22bを距離計測用交流電源27と選択的に接続する状態に、充電時には二つの2次コイル22a,22bを充電器23に選択的に接続する状態に、切り換える制御プログラムが記憶されている。 Vehicle controller 26 includes a CPU and a memory, the memory, the switch SW2, SW3 and selective distance measuring alternating current power supply 27 two secondary coils 22a, and 22b when the vehicle 30 moves to the charging position in a state of connection to the two secondary coils 22a during charging, 22b in a state that selectively connected to the charger 23, a control program for switching is stored. メモリには2次コイル22a,22bが距離計測用交流電源27にそれぞれ接続された状態で、車両側コントローラ26から送信された電圧センサ15の検出電圧データに基づいて各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を演算(推定)する制御プログラムが記憶されている。 The memory secondary coil 22a, 22b in a state of being connected respectively to the distance measuring AC power supply 27, the vehicle-side controller 26 based on the detected voltage data of the voltage sensor 15 transmitted from the secondary side resonance coil 21a, 21b and calculates the distance between the primary side resonance coil 13 (estimated) control program are stored. 電圧センサ15と車両側コントローラ26とで距離推定手段が構成されている。 The distance estimating means and a voltage sensor 15 and the vehicle controller 26 is configured. また、メモリには、各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離から1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係、即ち、給電側設備10と車載側設備20との位置関係を推定する制御プログラムが記憶されている。 The memory, the secondary side resonance coil 21a, 21b and the primary side resonance from the distance between the coil 13 the primary side resonance coil 13 and the two secondary side resonance coil 21a, the positional relationship between 21b, i.e., control program to estimate the supply side equipment 10 the positional relation between the vehicle-side equipment 20 is stored. 車両側コントローラ26は給電側設備10と車載側設備20との位置関係を推定する位置推定手段としても機能する。 Vehicle controller 26 also functions as a position estimation means for estimating a positional relationship between the vehicle-side equipment 20 and the power supply unit 10.

車両30は駐車支援装置として公知の自動駐車装置31を備えている。 Vehicle 30 is provided with a known automatic parking device 31 as a parking assist apparatus. 自動駐車装置31は車両の後部に設けられた図示しないカメラと、コンピュータとにより、運転者がハンドルに触れることなく、カメラの撮影データに基づき目的の駐車位置に駐車(停止)するように自動操舵を行う。 Automatic parking device 31 and the camera (not shown) provided on the rear of the vehicle, by the computer, without the driver touches the steering wheel, parked in parking position of the object based on the imaging data of the camera (stop) to the automatic steering as I do. この実施形態では、自動駐車装置31は、車両30が充電位置に停止する際は、カメラの撮影データに代えて位置推定手段により推定された給電側設備10と車載側設備20との位置関係(位置データ)に基づき自動操舵を行うようになっている。 In this embodiment, the automatic parking device 31, when the vehicle 30 is stopped in the charging position, the position relationship between been supply side equipment 10 estimated by the position estimation means instead of the photographing data of the camera and the vehicle-side equipment 20 ( and it performs the automatic steering based on the position data).

図2及び図3に示すように、第1及び第2の2次側共鳴コイル21a,21bは、車両30の後側底部の左右両側に、コイルの中心軸が車両30の上下方向に延びるように設けられている。 As shown in FIGS. 2 and 3, the first and second secondary-side resonance coil 21a, 21b is on the left and right sides of the basolateral after the vehicle 30, so that the central axis of the coil extends in the vertical direction of the vehicle 30 It is provided to. 1次側共鳴コイル13は、地上に形成された穴の中に、充電時の停止位置に停止した車両30の下方に位置し、コイルの中心軸が地上面に対して直交する方向に延びるように設けられている。 The primary side resonance coil 13, in a hole formed in the ground, located under the vehicle 30 stopped at the stop position at the time of charging, so that the central axis of the coil extends in a direction perpendicular to the ground surface It is provided to. なお、穴の開口は車両30の移動に支障がないようにカバーで覆われている。 The opening of the hole is covered with a cover so as not to interfere with the movement of the vehicle 30. 1次側共鳴コイル13及び2次側共鳴コイル21a,21bは、電線が螺旋状に巻回されて、同じに形成されている。 The primary side resonance coil 13 and the secondary side resonance coil 21a, 21b are wire wound spirally, and is the same in form.

次に前記のように構成された共鳴型非接触充電システムの作用を説明する。 Next a description will be given of the operation of the configured resonance type non-contact charging system as described above.
車両30に搭載された2次電池24に充電を行う場合には、車両30は給電側設備10の1次側共鳴コイル13が設けられた充電位置に駐車(停止)する必要がある。 When to charge the secondary battery 24 mounted on a vehicle 30, the vehicle 30 needs to be parked (stopped) in the charging position the primary side resonance coil 13 is provided in the supply side equipment 10. 車両30が充電位置へ移動する際、給電側設備10と車載側設備20との位置関係を推定するための処理が、電源側コントローラ14及び車両側コントローラ26とで共同して行われる。 When the vehicle 30 moves to the charging position, the processing for estimating a positional relationship between the supply side equipment 10 and the vehicle-side equipment 20 is carried out in cooperation with the power controller 14 and the vehicle controller 26.

電源側コントローラ14は、車両側コントローラ26から車両30が充電位置へ移動する旨の信号を受信すると、1次コイル12が抵抗Rと接続される状態にスイッチSW1を切り換える。 Power controller 14, the vehicle 30 from the vehicle-side controller 26 receives a signal indicating a movement to the charging position, switches the switch SW1 to the state where the primary coil 12 is connected to the resistor R. 車両側コントローラ26は、スイッチSW3を距離計測用交流電源27に接続される状態に保持し、スイッチSW2を2次コイル22aに接続される位置に切り換える。 Vehicle controller 26 maintains the state of being connected to the switch SW3 to the distance measuring AC power supply 27 is switched to the position connects the switch SW2 to the secondary coil 22a. この状態で距離計測用交流電源27から共鳴周波数の交流電圧が2次コイル22aに印加されると、2次コイル22aに磁場が発生し、この磁場が1次側共鳴コイル13と2次側共鳴コイル21aとによる磁場共鳴により増強され、増強された1次側共鳴コイル13付近の磁場により電磁誘導で1次コイル12から交流が出力される。 When an AC voltage of the resonant frequency from the distance measuring alternating current power supply 27 in this state is applied to the secondary coil 22a, a magnetic field is generated in the secondary coil 22a, the magnetic field is the primary side resonance coil 13 and the secondary side resonance enhanced by a magnetic field resonance by the coil 21a, an AC from the primary coil 12 by electromagnetic induction is output by the magnetic field of the enhanced near the primary side resonance coil 13. 1次コイル12の出力電圧は電圧センサ15により検出され、その検出電圧データが電源側コントローラ14を介して車両側コントローラ26へ送信される。 The output voltage of the primary coil 12 is detected by a voltage sensor 15, the detected voltage data is sent to the vehicle controller 26 via the power controller 14. 車両側コントローラ26はその検出電圧データをメモリに記憶した後、スイッチSW2を2次コイル22bに接続される位置に切り換え、前記と同様にその状態で電圧センサ15による1次コイル12の出力電圧の検出電圧データを電源側コントローラ14から受信する。 After the vehicle-side controller 26 which stores the detected voltage data in the memory is switched to position connects the switch SW2 to the secondary coil 22b, the same output voltage in the primary coil 12 by the voltage sensor 15 in this state receiving the detected voltage data from the power controller 14. そして、車両側コントローラ26は両検出電圧データに基づいて1次側共鳴コイル13と第1及び第2の2次側共鳴コイル21a,21bとの距離を推定する。 The vehicle controller 26 estimates the distance between the primary side resonance coil 13 on the basis of both the detection voltage data first and second secondary side resonance coil 21a, 21b.

1次コイル12から検出される出力電圧の大きさは、1次側共鳴コイル13と第1及び第2の2次側共鳴コイル21a,21bとの距離と一定の関係があり、車両側コントローラ26はメモリに記憶されたその関係に基づいて各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を推定する。 Magnitude of the output voltage detected from the primary coil 12, the primary side resonance coil 13 and the first and second secondary side resonance coil 21a, there is a distance between a fixed relationship with 21b, the vehicle-side controller 26 We estimate the distance of the secondary side resonance coil 21a on the basis of the relationship stored in the memory, 21b and the primary side resonance coil 13. そして、車両側コントローラ26は、二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離から給電側設備10と車載側設備20との位置関係を推定する。 The vehicle controller 26 estimates the positional relationship between the two secondary side resonance coil 21a, 21b and the distance between the primary side resonance coil 13 and the power supply unit 10 and the vehicle-side equipment 20. 二つの2次側共鳴コイル21a,21b間の距離は予め分かっているため、二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離が分かれば、給電側設備10と車載側設備20との位置関係が一義的に決まる。 Since the two secondary side resonance coil 21a, the distance between 21b is known in advance, the two secondary-side resonance coil 21a, knowing the distance between 21b and the primary side resonance coil 13, vehicle and supply side equipment 10 the positional relationship between the side equipment 20 is uniquely determined. この位置関係から充電が効率良く行われる充電位置に車両30が到着したか否かが判断される。 Charged from the positional relationship whether the vehicle 30 has arrived at the charging position is efficiently performed is determined. 車両側コントローラ26は、給電側設備10と車載側設備20との位置関係が、予め設定された位置関係となるまでスイッチSW2の接続状態を切り換えて電源側コントローラ14から検出電圧データを受信し、1次側共鳴コイル13と二つ2次側共鳴コイル21a,21bとの位置関係を推定する処理を繰り返す。 Vehicle controller 26 includes a power supply unit 10 is the positional relationship between the vehicle-side equipment 20 receives the detected voltage data from the power controller 14 switches the connection state of the switch SW2 until a preset positional relationship, the primary side resonance coil 13 and two secondary side resonance coil 21a, and repeats the process of estimating a positional relationship between 21b.

この実施形態では、給電側設備10と車載側設備20との位置関係のデータは、自動駐車装置31の駆動に用いられる。 In this embodiment, the data of the positional relationship between the supply side equipment 10 and the in-vehicle side equipment 20 is used to drive an automatic parking system 31. そのため、運転者は車両30を充電位置に駐車させる際は、自動駐車装置31の駆動スイッチを入れ、ハンドルから手を離す。 Therefore, the driver when parking the vehicle 30 to the charging position, put the drive switch of the automatic parking device 31, it releases the hand from the handle. その結果、自動駐車装置31はカメラの撮影データに代えて位置推定手段(車両側コントローラ26)により推定された給電側設備10と車載側設備20との位置関係を示すデータに基づき、車両30が充電位置に駐車するまで自動操舵を継続する。 As a result, the automatic parking device 31 based on the data indicating the positional relationship between the supply side equipment 10, which is estimated by the position estimation means instead of the photographing data of the camera (vehicle-side controller 26) and the vehicle-side equipment 20, the vehicle 30 is to continue the automatic steering to be parked in the charging position.

車両30が充電位置に駐車すると、車両側コントローラ26はスイッチSW3を充電器23と接続する状態に切り換え、スイッチSW2を1次側共鳴コイル13に近い側の2次側共鳴コイル(この実施形態では第2の2次側共鳴コイル21b)と接続する状態に保持し、電源側コントローラ14に給電要求信号を送信する。 When the vehicle 30 is parked in the charging position, switching to a state where the vehicle-side controller 26 is connected to the charger 23 switches SW3, the side of the secondary side resonance coil close the switch SW2 to the primary side resonance coil 13 (in this embodiment It was held in a state of connecting the second secondary side resonance coil 21b), which transmits a feed request signal to the power controller 14. 電源側コントローラ14は給電要求信号を受信すると、1次コイル12が交流電源11に接続される位置にスイッチSW1を切り換える。 If power controller 14 receives the power supply request signal, it switches the switch SW1 to position the primary coil 12 is connected to the AC power source 11. そして、交流電源11から共鳴周波数の交流が出力される。 Then, the AC resonant frequency is output from the AC power source 11.

交流電源11から1次コイル12に共鳴周波数の交流電圧が印加されることにより1次コイル12に磁場が発生し、この磁場が1次側共鳴コイル13と第2の2次側共鳴コイル21bとによる磁場共鳴により増強され、増強された2次側共鳴コイル21b付近の磁場から2次コイル22bにより電磁誘導を利用して電力が取り出されて充電器23に供給される。 Magnetic field to the primary coil 12 by the AC voltage is applied to the resonance frequency from the AC power supply 11 to the primary coil 12 is generated, the magnetic field between the primary side resonance coil 13 and the second secondary-side resonance coil 21b by enhanced by magnetic field resonance, power using electromagnetic induction is supplied to the charger 23 is taken out by the secondary coil 22b from the magnetic field of the enhanced near the secondary-side resonance coil 21b. 充電器23に供給された交流は整流回路で整流された後、昇圧回路で2次電池24を充電するのに適した電圧に昇圧されて2次電池24に充電される。 After the AC supplied to the charger 23 is rectified by the rectifier circuit, it is boosted to a voltage suitable for charging the secondary battery 24 by the booster circuit is charged to the secondary battery 24. 充電コントローラ25は、例えば、2次電池24の電圧が所定電圧になった時点からの経過時間により充電完了を判断し、充電が完了すると、電源側コントローラ14に充電完了信号を送信する。 Charge controller 25, for example, the voltage of the secondary battery 24 is determined to charge complete by the time elapsed from the time has reached a predetermined voltage, when charging is completed, it transmits a charge completion signal to the power controller 14. 電源側コントローラ14は、充電完了信号を受信すると電力伝送を終了する。 Power controller 14 terminates the power transmission when receiving a charging completion signal.

この実施形態によれば、以下に示す効果を得ることができる。 According to this embodiment, it is possible to obtain the following effects.
(1)共鳴型非接触充電システムは、給電側設備10と、車載側設備20とを備えている。 (1) resonance type non-contact charging system includes a power supply unit 10, and a vehicle-side equipment 20. 給電側設備10は、交流電源11、交流電源11から電力の供給を受ける1次側共鳴コイル13を備えている。 Power supply unit 10 includes an AC power source 11, a primary-side resonance coil 13 from the AC power supply 11 receives power. 車載側設備20は、1次側共鳴コイル13からの電力を磁場共鳴して受電する2次側共鳴コイル21a,21b、2次側共鳴コイル21a,21bから電力の供給を受ける充電器23及び充電器23に接続された2次電池24を備えている。 Vehicle side equipment 20, secondary side resonance coil 21a for receiving power from the primary side resonance coil 13 and the magnetic field resonance, 21b, the secondary-side resonance coil 21a, a charger 23 and a charging receive power from 21b and a secondary battery 24 connected to the vessel 23. また、共鳴型非接触充電システムは、1次側共鳴コイル13及び第1及び第2の2次側共鳴コイル21a,21b間の距離を推定する距離推定手段(電圧センサ15及び車両側コントローラ26)と、距離推定手段により推定された距離から給電側設備10と車載側設備20との位置関係を推定する位置推定手段(車両側コントローラ26)とを備えている。 Further, the resonance type non-contact charging system, a distance estimation means for estimating the primary side resonance coil 13 and the first and second secondary side resonance coil 21a, the distance between 21b (a voltage sensor 15 and the vehicle controller 26) When, and a position estimation means for estimating a positional relationship between the vehicle-side equipment 20 and the power supply unit 10 from the estimated distance (vehicle-side controller 26) by the distance estimation unit. したがって、給電側設備10と車載側設備20とが効率良く充電可能な位置関係にあるか否かを判断できる。 Accordingly, the supply side equipment 10 and the vehicle-side equipment 20 can determine whether the efficient rechargeable positional relationship. そして、効率良く充電可能な位置関係になるまで車両30を移動させた状態で充電を行うことにより、給電側に設けられた1次側共鳴コイル13を移動させる移動手段を設けずに、車両に搭載された2次電池を効率良く充電することができる。 By charging while being efficiently move the vehicle 30 until the rechargeable positional relationship, without providing a moving means for moving the primary side resonance coil 13 provided on the feeding side, on the vehicle the onboard rechargeable battery can be efficiently charged. また、1次側共鳴コイル13と2次側共鳴コイル21a,21bとの距離を推定するのに非接触電力伝送に用いる1次コイル12、1次側共鳴コイル13、2次側共鳴コイル21a,21b及び2次コイル22a,22bを利用するため、距離推定用に新たに設ける構成部品を少なくすることができる。 Further, the primary side resonance coil 13 and the secondary side resonance coil 21a, for the non-contact power transmission to estimate the distance between 21b primary coil 12, the primary side resonance coil 13, the secondary side resonance coil 21a, to utilize 21b and the secondary coil 22a, a 22b, it is possible to reduce the components newly provided for distance estimation.

(2)共鳴型非接触充電システムは、推定された二つの2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離に基づいて、1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係を推定する位置推定手段(車両側コントローラ26)を備えている。 (2) resonance type non-contact charging system, estimated two secondary side resonance coil 21a, based on the distance between 21b and the primary side resonance coil 13, the primary side resonance coil 13 and two secondary side resonant coil 21a, and a position estimation means for estimating (vehicle-side controller 26) the positional relationship between 21b. したがって、推定された1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係に基づいて、車両30を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイル13を移動させる移動手段を設けずに、車両30に搭載された2次電池24を効率良く充電することができる。 Therefore, the estimated primary side resonance coil 13 and two secondary side resonance coil 21a, on the basis of the positional relationship between 21b, it is possible to easily move the vehicle 30 to the charging position, provided on the feeding side without providing the means for moving the primary side resonance coil 13, the secondary battery 24 mounted on the vehicle 30 can be efficiently charged.

(3)給電側設備10には1次コイル12に対して交流電源11と選択的に接続可能な抵抗Rが設けられ、車載側設備20には2次コイル22a,22bに選択的に接続可能な距離計測用交流電源27が設けられている。 (3) the power supply unit 10 selectively connectable resistance R and the AC power supply 11 to the primary coil 12 is provided in the secondary coil 22a in-vehicle equipment 20 and 22b selectively connectable distance measuring AC power source 27 is provided such. そして、距離計測用交流電源27が各2次コイル22a,22bに接続されるとともに抵抗Rが1次コイル12に接続された状態で各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離が推定される。 Then, the distance measuring alternating current power supply 27 each secondary coil 22a, in a state where the resistance R is connected to the primary coil 12 is connected to a 22b each secondary side resonance coil 21a, 21b and the primary side resonance coil 13 the distance between is estimated. したがって、各2次側共鳴コイル21a,21bと1次側共鳴コイル13との距離を推定する際に、2次電池24の残存容量の影響を受けない。 Therefore, the secondary side resonance coil 21a, in estimating the distance between 21b and the primary side resonance coil 13, not affected by the remaining capacity of the secondary battery 24.

(4)1次コイル12はスイッチSW1を介して抵抗Rと交流電源11とに選択的に接続可能に設けられ、給電側設備10は、抵抗Rが1次コイル12に接続された状態で抵抗Rの両端間の電圧を検出する電圧センサ15を備えている。 (4) the primary coil 12 is selectively connectable to provided an AC power source 11 and the resistor R via a switch SW1, the power supply unit 10, the resistance in a state where the resistance R is connected to the primary coil 12 and a voltage sensor 15 for detecting the voltage across R. したがって、車両側コントローラ26は、2次側共鳴コイル21a,21bが距離計測用交流電源27に接続された状態で抵抗Rの両端間の検出電圧データに基づいて、1次側共鳴コイル13と二つの2次側共鳴コイル21a,21bとの位置関係を推定することができる。 Thus, the vehicle-side controller 26, the secondary side resonance coil 21a, on the basis of the detected voltage data across 21b connected to the distance measuring AC power supply 27 state by the resistor R, 1 primary side resonance coil 13 and the secondary One of the secondary side resonance coil 21a, it is possible to estimate the positional relationship between 21b.

(5)車両30は駐車支援装置を備え、給電側設備10と車載側設備20との位置関係を示すデータが駐車支援装置において使用される。 (5) the vehicle 30 is equipped with a parking assist device, data indicating the positional relationship between the vehicle-side equipment 20 and the supply side equipment 10 is used in the parking assist apparatus. したがって、容易に車両30を充電位置へ移動、駐車させることができる。 Accordingly, easily move the vehicle 30 to the charging position, it is possible to park.

(6)車両30は駐車支援装置として自動駐車装置31を備えており、位置推定手段(車両側コントローラ26)により推定された1次側共鳴コイル13と2次側共鳴コイル21a,21bとの位置関係を示すデータに基づき自動駐車装置31が駆動される。 (6) the vehicle 30 is provided with an automatic parking system 31 as a parking assistance apparatus, a position estimating means the primary side resonance coil 13, which is estimated by (vehicle-side controller 26) and the secondary side resonance coil 21a, the position of the 21b automatic parking system 31 based on the data indicating the relationship is driven. したがって、より容易に車両30を充電位置へ移動、駐車させることができる。 Accordingly, more easily move the vehicle 30 to the charging position, it is possible to park.

(7)給電側設備10の1次コイル12及び1次側共鳴コイル13は地上に形成された穴の中に設けられているため、1次コイル12及び1次側共鳴コイル13の配置スペースの確保が容易になる。 (7) The primary coil 12 and the primary side resonance coil 13 of the supply side equipment 10 is because it is provided in a hole formed in the ground, the primary coil 12 and the primary side resonance coil 13 of the arrangement space ensure it is easy. また、車両30が充電位置へ移動する際に給電側設備10と車両30との干渉を回避でき、移動経路の自由度が増す。 Further, it is possible to avoid interference with the supply side equipment 10 and the vehicle 30 when the vehicle 30 moves to the charging position, the degree of freedom of the movement path increases.

(8)1次側共鳴コイル13及び2次側共鳴コイル21a,21bにコンデンサCが接続されている。 (8) the primary side resonance coil 13 and the secondary side resonance coil 21a, a capacitor C and 21b are connected. したがって、1次側共鳴コイル13及び2次側共鳴コイル21a,21bのコイルの巻数を増やすことなく共鳴周波数を下げることができる。 Therefore, it is possible to lower the resonance frequency without increasing the primary side resonance coil 13 and the secondary side resonance coil 21a, the number of turns of the coil 21b. また、共鳴周波数が同じであれば、1次側共鳴コイル13及び2次側共鳴コイル21a,21bを、コンデンサCを接続しない場合に比べて小型化することができる。 However, if you do the same resonance frequency, the primary side resonance coil 13 and the secondary side resonance coil 21a, a 21b, it can be miniaturized as compared with the case of not connecting the capacitor C.

(第2の実施形態) (Second Embodiment)
次に第2の実施形態を図4にしたがって説明する。 Next will be described a second embodiment in accordance with FIG. この実施形態では、1次側共鳴コイルが複数(この実施形態では2個)設けられ、2次側共鳴コイルが1個設けられている点と、車載側設備20に距離計測用交流電源27が設けられていない点とが第1の実施形態と大きく異なっている。 In this embodiment, the primary side resonance coil plurality (two in this embodiment) is provided, and that the secondary side resonance coil is provided one, the AC power source 27 for distance measurement on the vehicle side equipment 20 that is not provided and is significantly different from the first embodiment. 第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。 Basically the same parts as in the first embodiment and detailed description thereof is omitted with the same reference numerals.

図4に示すように、給電側設備10は、2個の1次コイル12a,12bと、第1及び第2の1次側共鳴コイル13a,13bとを備え、2個の1次コイル12a,12bはスイッチSW1を介して交流電源11に選択的に接続可能に設けられている。 As shown in FIG. 4, the power supply unit 10 is provided with two primary coil 12a, and 12b, first and second primary-side resonance coil 13a, and 13b, two of the primary coil 12a, 12b are provided to be selectively connected to an AC power source 11 via a switch SW1. 電源側コントローラ14は、車両30が充電位置に移動する際にスイッチSW1を2個の1次コイル12a,12bを交流電源11と選択的に接続する状態に切り換え、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。 Power controller 14, two of the primary coil 12a of the switch SW1 when the vehicle 30 is moved to the charging position is switched to a state for selectively connecting and 12b and the AC power supply 11, for charging an AC power source 11 controlling to output a two orders of magnitude smaller alternating current from the output during power transmission. 電源側コントローラ14は、2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号を車両側コントローラ26に送信する。 Power controller 14 transmits two primary coil 12a, both 12b is a signal indicating whether it is connected to the AC power source 11 to the vehicle controller 26. また、電源側コントローラ14は、充電時には二つの1次コイル12a,12bのうち、車両側コントローラ26からの指令信号により指示された1次コイル(例えば、1次コイル12a)を交流電源11と接続する状態に切り換える。 Further, power controller 14, two of the primary coil 12a during charge, among 12b, connected to the AC power supply 11 to the primary coil indicated by the command signal from the vehicle controller 26 (e.g., the primary coil 12a) It switched to the state to be.

車載側設備20は、1個の2次側共鳴コイル21及び1個の2次コイル22を備えるとともに、2次コイル22の出力電圧を検出する電圧センサ28を備えている。 Vehicle side equipment 20 is provided with a single secondary side resonance coil 21 and one secondary coil 22, and a voltage sensor 28 for detecting an output voltage of the secondary coil 22. 車両側コントローラ26は、車両30が充電位置へ移動する際にその旨を知らせる信号を電源側コントローラ14に出力する。 Vehicle controller 26 outputs a signal indicating that effect when the vehicle 30 moves to the charging position to the power controller 14. 電源側コントローラ14は、逐次、スイッチSW1の接続状態を切り換えるとともに2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号を車両側コントローラ26へ送信する。 Power controller 14 sequentially transmits two primary coil 12a switches the connection state of the switch SW1, which of 12b is a signal indicating whether it is connected to the AC power source 11 to the vehicle controller 26. 車両側コントローラ26は、電源側コントローラ14から送信された2個の1次コイル12a,12bのどちらが交流電源11に接続されているかを知らせる信号と、電圧センサ28の検出電圧データとに基づいて各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を演算する。 Vehicle controller 26, each on the basis of a signal indicating whether the two primary coils 12a transmitted from the power controller 14, which of 12b are connected to an AC power source 11, on the detected voltage data of the voltage sensor 28 the primary side resonance coil 13a, and calculates the distance between 13b and the secondary side resonance coil 21. この実施形態では電圧センサ28及び車両側コントローラ26が距離推定手段を構成する。 In this embodiment a voltage sensor 28 and the vehicle controller 26 constituting the distance estimation unit. そして、車両側コントローラ26は、各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離から給電側設備10と車載側設備20との位置関係を推定する。 The vehicle controller 26 estimates the positional relationship between the vehicle-side equipment 20 and the power supply unit 10 from the distance between each of the primary side resonance coil 13a, 13b and the secondary side resonance coil 21.

給電側設備10と車載側設備20との位置関係が、予め設定された位置関係となるまでスイッチSW1の接続状態が切り換えられるとともに、電圧センサ28により2次コイル22の出力電圧が検出される。 The supply side equipment 10 is the positional relationship between the vehicle-side equipment 20, together with the switched connection state of the switch SW1 until the preset positional relationship, by the voltage sensor 28 output voltage of the secondary coil 22 is detected. また、車両側コントローラ26により、各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離が演算される。 Further, the vehicle controller 26, the primary side resonance coil 13a, the distance between 13b and the secondary side resonance coil 21 is calculated. そして、給電側設備10と車載側設備20との位置関係のデータが、自動駐車装置31の駆動に用いられ、車両30が充電位置まで移動される。 Then, the data of the positional relationship between the supply side equipment 10 and the vehicle-side equipment 20 is used to drive an automatic parking device 31, the vehicle 30 is moved to the charging position.

車両30が充電位置に駐車すると、車両側コントローラ26から電源側コントローラ14に給電要求信号と、2次側共鳴コイル21が二つの1次側共鳴コイル13a,13bのどちらに近いかを知らせる信号とが送信される。 When the vehicle 30 is parked in the charging position, a feed request signal to the power controller 14 from the vehicle-side controller 26, it signals the secondary side resonance coil 21 informs similar to either two primary side resonance coil 13a, and 13b and There are transmitted. 電源側コントローラ14は両信号を受信すると、交流電源11を例えば、2次コイル22aに接続する位置にスイッチSW1を切り換える。 If power controller 14 receives both signals, switches the switch SW1 to the AC power source 11, for example, at a position connected to the secondary coil 22a. その状態で、交流電源11から車両30の移動時において出力するより二桁程度大きな交流電力が共鳴周波数で出力されて、2次電池24の充電が行われる。 In this state, a large AC power by about two orders of magnitude than the output from the AC power source 11 during movement of the vehicle 30 is output at the resonant frequency, the charging of the secondary battery 24 is performed.

この第2の実施形態によれば、第1の実施形態の(5)〜(8)と同様な効果に加えて以下の効果を得ることができる。 According to this second embodiment, in addition to the same effects as the first embodiment (5) - (8) to obtain the following effects.
(9)給電側設備10は複数の1次コイル12a,12b及び複数の1次側共鳴コイル13a,13bを備え、1次コイル12a,12bは交流電源11に選択的に接続可能に設けられ、各1次コイル12a,12bに交流電圧が印加された状態で各1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を距離推定手段(電圧センサ28及び車両側コントローラ26)により推定する。 (9) power supply unit 10 is provided with a plurality of primary coils 12a, 12b and a plurality of primary side resonance coil 13a, a 13b, the primary coil 12a, 12b is provided to be selectively connected to an AC power source 11, each primary coil 12a, the primary side resonance coil 13a in a state where an AC voltage is applied to 12b, 13b and by the distance estimating means the distance between the secondary side resonance coil 21 (the voltage sensor 28 and the vehicle controller 26) presume. 車両側コントローラ26は二つの1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離から給電側設備10と車載側設備20との位置関係を推定する。 Vehicle controller 26 estimates the positional relationship between the two primary side resonance coil 13a, 13b and the distance between the secondary side resonance coil 21 and the power supply unit 10 and the vehicle-side equipment 20. したがって、推定された給電側設備10と車載側設備20との位置関係に基づいて、車両30を充電位置に容易に移動させることができ、給電側に設けられた1次側共鳴コイル13a,13bを移動させる移動手段を設けずに、車両30に搭載された2次電池24を効率良く充電することができる。 Therefore, based on the positional relationship between the vehicle-side equipment 20 and the supply side equipment 10 is estimated, the vehicle 30 can be easily moved to the charging position, the primary side resonance coil 13a provided on the feeding side, 13b the without providing a moving means for moving the secondary battery 24 mounted on the vehicle 30 can be efficiently charged. また、1次側共鳴コイル13a,13bと2次側共鳴コイル21との距離を推定するのに非接触電力伝送に用いる1次コイル12a,12b、1次側共鳴コイル13a,13b、2次側共鳴コイル21及び2次コイル22を利用するため、新たに設ける構成部品を少なくすることができる。 Further, the primary side resonance coil 13a, 13b and the primary coil 12a to be used for non-contact power transmission to estimate the distance between the secondary side resonance coil 21, 12b, the primary side resonance coil 13a, 13b, the secondary side to utilize the resonance coil 21 and secondary coil 22, it is possible to reduce the components newly provided.

(第3の実施形態) (Third Embodiment)
次に第3の実施形態を図5〜図7にしたがって説明する。 Next will be described a third embodiment according to Figures 5-7. この実施形態では、1次側共鳴コイルが1個設けられ、2次側共鳴コイルが2個設けられている点は第1の実施形態と同じであるが、車両30の前側に2次側共鳴コイル21Fが、後側に2次側共鳴コイル21Rが1個ずつ設けられている点が第1の実施形態と大きく異なっている。 In this embodiment, the primary side resonance coil is provided one, but the point that the secondary side resonance coil is provided two is the same as the first embodiment, the secondary side to the front of the vehicle 30 resonance coil 21F is, the secondary side resonance coil 21R on the rear side is the point that is provided one by one is significantly different from the first embodiment. 第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。 Basically the same parts as in the first embodiment and detailed description thereof is omitted with the same reference numerals.

図5に示すように、1次コイル12は交流電源11に直接接続されている。 As shown in FIG. 5, the primary coil 12 is connected directly to the AC power source 11. 車載側設備20は、第1及び第2の2次側共鳴コイルとしての2個の2次側共鳴コイル21F,21R及び2個の2次コイル22F,22Rが設けられ、2個の2次コイル22F,22RはスイッチSWを介して充電器23に選択的に接続可能に構成されている。 Vehicle side equipment 20 includes two secondary side resonance coil 21F of the first and second secondary side resonance coil, 21R and two secondary coils 22F, 22R are provided, two of the secondary coil 22F, 22R is configured to be selectively connected to the charger 23 via the switch SW. また、距離推定手段を構成する電圧センサ28が、スイッチSWを介して2個の2次コイル22F,22Rに選択的に接続可能に設けられている。 Further, voltage sensor 28 constituting the distance estimation means, via the switches SW 2 pieces of secondary coil 22F, are selectively connectable to provided 22R. 図7(a),(b)に示すように、2次側共鳴コイル21Fは車両30の前側に設けられ、2次側共鳴コイル21Rは車両30の後側に設けられている。 As shown in FIG. 7 (a), (b), 2 the primary side resonance coil 21F is disposed in the front of the vehicle 30, the secondary side resonance coil 21R is provided on the rear side of the vehicle 30.

車両側コントローラ26は、車両30が充電位置へ移動する際、図7(a)に示すように、後退で移動する場合は後側の2次側共鳴コイル21Rを使用して1次側共鳴コイル13と2次側共鳴コイル21Rとの距離を演算する。 Vehicle controller 26 when the vehicle 30 moves to the charging position, as shown in FIG. 7 (a), 1 primary side resonance coil using secondary side resonance coil 21R of the rear side when moving backward 13 and calculates the distance between the secondary side resonance coil 21R. また、図7(b)に示すように、前進で移動する場合は前側の2次側共鳴コイル21Fを使用して1次側共鳴コイル13と2次側共鳴コイル21Fとの距離を演算する。 Further, as shown in FIG. 7 (b), when moving calculates the distance of the primary side resonance coil 13 using the front of the secondary-side resonance coil 21F and the secondary side resonance coil 21F in advance. 車両側コントローラ26は、車両30が充電位置へ移動する際にその旨を知らせる信号を電源側コントローラ14に出力する。 Vehicle controller 26 outputs a signal indicating that effect when the vehicle 30 moves to the charging position to the power controller 14. 電源側コントローラ14は、その信号を受信すると、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。 Power controller 14 receives the signal and controlled to output a two orders of magnitude smaller alternating current from the output of the AC power source 11 during power transmission for charging.

次に図6にしたがって車両30が充電位置へ移動、駐車する際の作用を説明する。 Then moving vehicle 30 to the charging position in accordance with FIG. 6, the operation at the time of parking. 充電位置へ移動する際、運転者により充電要求スイッチが操作されると、車両側コントローラ26はステップS1で電源側コントローラ14に充電開始要求、即ち2次電池24の充電を行うため充電位置へ移動する旨の信号を送信する。 When moving to the charging position movement, the charging request switch is operated by the driver, the vehicle-side controller 26 request to start charging the power controller 14 in step S1, i.e. to the charging position for charging the secondary battery 24 to send a signal to the effect that. 電源側コントローラ14はその信号を受信すると、交流電源11を充電のための電力伝送時に出力するより二桁程度小さな交流電流を出力するように制御する。 If power controller 14 receives the signal and controlled to output a two orders of magnitude smaller alternating current from the output of the AC power source 11 during power transmission for charging. 次に車両側コントローラ26はステップS2で車両30が前進か否かを判断し、前進であればステップS3に進んで前側の2次側共鳴コイル21F(受電コイルF)を用いて距離推定を開始する。 Then the vehicle-side controller 26 determines whether the vehicle 30 is either advanced in step S2, starts a distance estimation using a front of the secondary side resonance coil 21F (power receiving coil F) proceeds to step S3 if forward to. 詳述すると、車両側コントローラ26は、スイッチSWを2次側共鳴コイル21Fに接続する状態に保持し、電圧センサ28からの検出電圧を入力し、その検出電圧から1次側共鳴コイル13と2次側共鳴コイル21Fとの距離を演算する。 More specifically, the vehicle-side controller 26, and held in a state that connects the switch SW to the secondary side resonance coil 21F, inputs the detection voltage from the voltage sensor 28, from the detected voltage primary side resonance coil 13 and 2 It calculates the distance to the next side resonance coil 21F. 次に車両側コントローラ26はステップS4に進み、1次側共鳴コイル13と2次側共鳴コイル21Fとの距離が所定距離以下か否か、即ち1次側共鳴コイル13と2次側共鳴コイル21Fとの距離が、2次電池24への充電が効率良く行われる予め設定された距離以下か否かを判断する。 Then the vehicle-side controller 26 proceeds to step S4, the primary side resonance coil 13 and the secondary side the distance between the resonance coil 21F is whether or not a predetermined distance or less, i.e., the primary side resonance coil 13 and the secondary side resonance coil 21F the distance between the charging of the secondary battery 24 it is determined whether the following distance set in advance is performed efficiently. ステップS4で所定距離以下であれば車両側コントローラ26はステップS5へ進み、所定距離以下でなければステップS3に戻る。 Vehicle controller 26 if the predetermined distance or less in the step S4 proceeds to step S5, the flow returns to step S3 if the predetermined distance or less. ステップS5で車両側コントローラ26は距離推定を終了し、電源側コントローラ14に距離推定終了の旨を送信する。 Vehicle controller 26 terminates the distance estimated in step S5, and transmits the purport of the distance estimation ended power controller 14. そして、ステップS6で駐車が完了し、2次電池24の充電のための給電(電力伝送)が開始される。 Then, the parking is completed at step S6, power supply for charging the secondary battery 24 (power transmission) starts.

一方、ステップS2で車両30が前進でなければ車両側コントローラ26はステップS7に進み、ステップS7で車両30が後退か否かを判断し、後退であればステップS8に進んで後側の2次側共鳴コイル21R(受電コイルR)を用いて距離推定を開始する。 On the other hand, the vehicle-side controller 26 if not the vehicle 30 is advancing, the process proceeds to step S7 in the step S2, the vehicle 30 determines whether or not backward in step S7, 2-order side after proceeds to step S8 if backward to start the distance estimation using a side resonance coil 21R (the power receiving coil R). 詳述すると、車両側コントローラ26は、スイッチSWを2次側共鳴コイル21Rに接続する状態に保持し、電圧センサ28からの検出電圧を入力し、その検出電圧から1次側共鳴コイル13と2次側共鳴コイル21Rとの距離を演算する。 More specifically, the vehicle-side controller 26, and held in a state that connects the switch SW to the secondary side resonance coil 21R, and inputs the detected voltage from the voltage sensor 28, from the detected voltage primary side resonance coil 13 and 2 It calculates the distance to the next side resonance coil 21R. 次に車両側コントローラ26はステップS9に進み、1次側共鳴コイル13と2次側共鳴コイル21Rとの距離が所定距離以下か否か、即ち1次側共鳴コイル13と2次側共鳴コイル21Rとの距離が、2次電池24への充電が効率良く行われる予め設定された距離以下か否かを判断する。 Then the vehicle-side controller 26 proceeds to step S9, the primary-side resonance coil 13 and the secondary side resonance distance between the coil 21R is whether or not a predetermined distance or less, i.e., the primary side resonance coil 13 and the secondary side resonance coil 21R the distance between the charging of the secondary battery 24 it is determined whether the following distance set in advance is performed efficiently. ステップS9で所定距離以下であれば車両側コントローラ26はステップS5へ進み、所定距離以下でなければステップS8に戻る。 Vehicle controller 26 if the predetermined distance or less in step S9, the process proceeds to step S5, the flow returns to step S8 if the predetermined distance or less. ステップS7で後退でなければ、ステップS2へ戻る。 If not retracted at step S7, the flow returns to step S2. ステップS2及びステップS7において前進でも後退でもないということは車両30がまだ移動していないことを意味し、車両30が移動を開始するまでステップS2及びステップS7が繰り返される。 That neither retreated in advance in step S2 and step S7 means that the vehicle 30 has not yet moved, step S2 and step S7 are repeated until the vehicle 30 starts to move.

この第3の実施形態によれば、第1の実施形態の(7),(8)と同様な効果に加えて以下の効果を得ることができる。 According to the third embodiment, in the first embodiment (7), it is possible to obtain the following effects in addition to the same effects as (8).
(10)車両30の前側に1個の2次側共鳴コイル21Fが設けられ、後側に1個の2次側共鳴コイル21Rが設けられ、車両30が充電位置へ前進で移動する場合は前側の2次側共鳴コイル21Fを用いて距離の推定が行われ、後退で移動する場合は後側の2次側共鳴コイル21Rを用いて距離の推定が行われる。 (10) one of the secondary side resonance coil 21F on the front side of the vehicle 30 is provided, one of the secondary side resonance coil 21R on the rear side is provided, the front side when the vehicle 30 is moving in the forward to the charging position distance estimation is performed using the secondary side resonance coil 21F, when moving backward is estimated distance by using the secondary side resonance coil 21R of the rear takes place. したがって、2次側共鳴コイルが車両30の前側あるいは後側の一方のみに設けられる構成に比べて、車両30が充電位置まで移動する際、前進で移動する場合あるいは後退で移動する場合に関わらず必要な移動距離を短くすることができる。 Therefore, the secondary side resonance coil in comparison with a configuration that is provided only on one of the front or rear of the vehicle 30, when the vehicle 30 is moved to the charging position, regardless of when moving or when backward to move forward it is possible to shorten the travel distance required.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。 Embodiment is not limited to the above, for example, it may be embodied as follows.
○ 第1の実施形態や第2の実施形態において、2次側共鳴コイル及び2次コイルの組を車両30の前側に設けたり、車両30の前側及び後側の両方に設けたりしてもよい。 In ○ first embodiment and the second embodiment, a set of secondary side resonance coil and the secondary coil may be provided on the front side of the vehicle 30 may be or provided on both the front and rear of the vehicle 30 . 2次側共鳴コイル及び2次コイルの組を車両30の前側及び後側の両方に設けた場合は、車両30が充電位置まで移動する際、前進で移動する場合あるいは後退で移動する場合に関わらず必要な移動距離を短くすることができる。 When provided with a set of secondary side resonance coil and the secondary coil both the front and rear of the vehicle 30, when the vehicle 30 is moved to the charging position, regardless of when moving or when backward to move forward it is possible to shorten the travel distance required not.

○ 第1の実施形態のように、複数の2次側共鳴コイル21a,21b及び2次コイル22a,22bの組を車載側設備20に設けた場合、距離推定時に2次コイル22a,22bに交流を供給して1次コイル12の出力電圧を測定する構成に代えて、1次コイル12に交流を供給して2次コイル22a,22bの出力電圧を測定する構成にしてもよい。 ○ As in the first embodiment, the AC plurality of secondary side resonance coil 21a, 21b and the secondary coil 22a, 22b set the case of providing the vehicle-side equipment 20, distance estimation during the secondary coil 22a, and 22b the instead of the configuration for measuring the output voltage of the supplying primary coil 12, secondary coil 22a by supplying alternating current to the primary coil 12, it may be configured to measure the output voltage of 22b. この場合、抵抗Rや距離計測用交流電源27が不要になり、構成が簡単になる。 In this case, the resistor R and the distance AC power source 27 is not required for the measurement, the configuration is simplified.

○ 第3の実施形態において、車両30の前側及び後側に2次側共鳴コイル21F及び2次コイル22Fの組と、2次側共鳴コイル21R及び2次コイル22Rの組とをそれぞれ2組ずつ設ける。 In ○ third embodiment, a set of secondary side resonance coil 21F, and the secondary coil 22F on the front side and rear side of the vehicle 30, the secondary side resonance coil 21R and the secondary coil 22R assembled with the two sets respectively provided. そして、1次側共鳴コイル13と二つの2次側共鳴コイル21Fあるいは1次側共鳴コイル13と二つの2次側共鳴コイル21Rとの距離から給電側設備10と車載側設備20との位置を推定するようにしてもよい。 Then, the position of the vehicle-side equipment 20 from the distance between the primary side resonance coil 13 and two secondary side resonance coil 21F or the primary side resonance coil 13 and two secondary side resonance coil 21R and the power supply unit 10 it may be estimated. この場合は、給電側設備10と車載側設備20との位置関係を示すデータを駐車支援装置に使用して、より容易に車両30を充電位置へ移動、駐車させることができる。 In this case, using the indicating data and power supply unit 10 to the positional relationship between the vehicle-side equipment 20 to a parking assist apparatus, more easily move the vehicle 30 to the charging position, it is possible to park.

○ 給電側設備10と車載側設備20との位置関係を推定する場合、いずれか一方が二つあればよい。 ○ When estimating the supply side equipment 10 the positional relation between the vehicle-side equipment 20, either one may if twofold. しかし、1次側共鳴コイルを3個以上設けるとともに2次側共鳴コイルを1個設けたり、2次側共鳴コイルを3個以上設けるとともに1次側共鳴コイルを1個設けたりしてもよい。 However, it may be provided one secondary-side resonance coil provided with a primary side resonance coil 3 or more, the primary side resonance coil is provided with the secondary side resonance coil 3 or more may be or provided one. そして、1次側共鳴コイルと2次側共鳴コイルとの距離推定を開始する際、電圧センサ15,28の検出電圧の大きな組み合わせとなる2組を選択して、距離推定を行えば、充電位置までの移動距離を短くすることができる。 Then, when starting the distance estimation of the primary side resonance coil and the secondary side resonance coil, by selecting two sets comprising a large combination of the detection voltage of the voltage sensor 15 and 28, by performing the distance estimation, the charging position it is possible to shorten the movement distance to.

○1次コイル12等及び1次側共鳴コイル13等のコイルの軸心が地上面に対して直交する方向に延びるように設け、2次側共鳴コイル21a等及び2次コイル22a等のコイルの軸心が車両30の上下方向に延びるように設ける構成に代えて、1次コイル12等および1次側共鳴コイル13等のコイルの軸心が地上面に対して水平方向に延びるように設け、2次側共鳴コイル21a等及び2次コイル22a等のコイルの軸心が車両30の上下方向と直交する方向に延びるように設ける構成にしてもよい。 ○ provided the axis of the coil, such as the primary coil 12 or the like and the primary side resonance coil 13 so as to extend in a direction perpendicular to the ground surface, such as a secondary side resonance coil 21a or the like and the secondary coil 22a of the coil axis is instead of the configuration provided to extend in the vertical direction of the vehicle 30, provided as the axis of the coil, such as the primary coil 12 and the like and the primary side resonance coil 13 extends in the horizontal direction with respect to the ground surface, axis of the coil, such as a secondary side resonance coil 21a or the like and the secondary coil 22a may be configured to provide to extend in a direction perpendicular to the vertical direction of the vehicle 30. 例えば、図8に示すように、地上に突出するように設けた給電側設備10の収容ボックス内に1次側共鳴コイル13等をコイルの軸心が地上面に対して水平方向に延びるように設け、車両30の前側に2次側共鳴コイル21a等をコイルの軸心が車両30の上下方向と直交する方向に延びるように設ける。 For example, as shown in FIG. 8, the primary side resonance coil 13 or the like into the receiving box supply side equipment 10 provided so as to protrude on the ground as the axis of the coil extends in the horizontal direction with respect to the ground surface provided, providing the secondary side resonance coil 21a or the like on the front side of the vehicle 30 as the axis of the coil extends in a direction perpendicular to the vertical direction of the vehicle 30. また、2次側共鳴コイル21a等を車両30の後側に設けてもよい。 Further, the secondary side resonance coil 21a or the like may be provided on the rear side of the vehicle 30.

○ 2次側共鳴コイル21a等をコイルの軸心が車両30の上下方向と直交する方向に延びるように水平方向に延びるように設ける場合、2次側共鳴コイル21a等を車両30の前側又は後側に設ける代わりに、車両30の側部に設けてもよい。 ○ If the secondary side resonance coil 21a or the like the axis of the coil is provided so as to extend in the horizontal direction so as to extend in a direction perpendicular to the vertical direction of the vehicle 30, the secondary side resonance coil 21a or the like after the front or the vehicle 30 instead of providing the side, it may be provided on the side of the vehicle 30. つまり、1次側共鳴コイル13等は軸心が地上面に対して水辺方向に延びるように設けられ、2次側共鳴コイル21a等は軸心が車両の幅方向に延びるように設けられる。 That is, the primary side resonance coil 13 and the like is provided so as to axis extends waterside direction to the ground surface, such as a secondary side resonance coil 21a is provided as the axis extends in the width direction of the vehicle.

○ 車両30は運転者を必要とする車両に限らず無人搬送車でもよい。 ○ vehicle 30 may be AGV not limited to a vehicle that requires a driver.
○ 2次電池24への充電位置が屋内の場合、給電側設備10の1次コイル12等及び1次側共鳴コイル13等を充電時における車両30の停止位置の上方、例えば天井に設けてもよい。 If the charge position to the ○ 2 battery 24 is indoors, the upper stop position of the vehicle 30 at the time of charging the primary coil 12 or the like and the primary side resonance coil 13 and the like of the supply side equipment 10, for example be provided in the ceiling good.

○ 距離推定手段は1次コイル12あるいは2次コイル22等の出力電圧を検出する電圧センサ15,28に限らない。 ○ distance estimation means is not limited to the voltage sensor 15 and 28 for detecting the output voltage, such as the primary coil 12 or secondary coil 22. 例えば、距離推定時に共鳴系の入力インピーダンスを測定するインピーダンス測定手段を距離推定手段として設けてもよい。 For example, it may be provided an impedance measuring means for measuring the input impedance of the resonant system at a distance estimated as the distance estimation unit. ここで、「共鳴系の入力インピーダンス」とは、距離推定時に交流が供給(入力)される1次コイル又は2次コイルの両端で測定した共鳴系(1次コイル、1次側共鳴コイル、2次側共鳴コイル、2次コイル)全体のインピーダンスを指す。 Here, "the input impedance of the resonant system", the distance estimation during the supply alternating current (input) to the primary coil or resonant system measured at both ends of the secondary coil (primary coil, the primary side resonance coil, 2 next side resonance coil, the secondary coil) refers to the overall impedance. 第1の実施形態では2次コイル22a,22bの両端で入力インピーダンスを測定し、第2の実施形態では1次コイル12の両端で入力インピーダンスを測定する。 In the first embodiment the secondary coil 22a, by measuring the input impedance at both ends of 22b, in the second embodiment for measuring the input impedance at both ends of the primary coil 12. インピーダンスの測定は、例えば、1次コイル12の両端の電圧あるいは2次コイル22a,22bの両端の電圧を検出することにより行う。 Measurements of impedance, for example, by detecting the voltage across or the secondary coil 22a of the primary coil 12, the voltage across the 22b. 車載側設備20に設けられた2次コイル22a,22bの両端の電圧を検出してインピーダンスを測定する場合、電力は車載側設備20から伝送され、インピーダンスの測定のための電圧の検出も車載側設備20で行われる。 Secondary coil 22a provided on the vehicle side equipment 20, when measuring the impedance by detecting the voltage across the 22b, power is transmitted from the vehicle side equipment 20, also detected vehicle-side voltage for the impedance measurement It is carried out in the facility 20. そのため、車両側コントローラ26は電源側コントローラ14と無線通信で連絡する必要がなく、1次側共鳴コイル13及び2次側共鳴コイル21a,21b間の距離を推定することを車載側設備20で完結できる。 Therefore, the vehicle-side controller 26 does not need to contact with the power source side controller 14 and the wireless communication, complete primary side resonance coil 13 and the secondary side resonance coil 21a, to estimate the distance between 21b at-vehicle equipment 20 it can.

○ 給電側設備10と車載側設備20との位置関係を推定するには、1次側共鳴コイル及び2次側共鳴コイルの少なくとも一方が複数設けられていればよく、必ずしも1次コイルや2次コイルは必須ではない。 ○ the supply side equipment 10 to estimate the positional relation between the vehicle-side equipment 20 may be at least one of the primary side resonance coil and the secondary side resonance coil if provided with a plurality, not necessarily the primary coil and secondary coil is not essential. 例えば、共鳴型非接触充電システムの負荷が一定で使用される場合は、2次コイルを無くして二次側共鳴コイルの電力を充電器23に供給することができる。 For example, when the load of the resonance type non-contact charging system is used in constant, it is possible to eliminate the secondary coil to supply power of the secondary side resonance coil in the charger 23.

○ 2次コイルを無くした場合、距離推定手段は、1次コイルから検出される電圧値及び2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定すればよい。 If eliminated ○ secondary coil, the distance estimation unit, the primary side resonance coil and 2 based on at least one of the voltage detected from the voltage value and the secondary side resonance coil is detected from the primary coil the distance between the following side resonance coil may be estimated. 例えば、車載側設備20から電力を伝送する場合でも、1次コイルから検出される電圧値に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定する場合や、1次コイル及び2次側共鳴コイルから検出される電圧値から電力伝送効率を求めて電力伝送効率から1次側共鳴コイル及び2次側共鳴コイル間の距離を推定してもよい。 For example, even when transmitting the power from the vehicle-side equipment 20, and when estimating the distance between the primary side resonance coil and the secondary side resonance coil based on the voltage detected from the primary coil, the primary coil and distance may be estimated between the secondary side resonance from the voltage value detected from the coil seeking power transfer efficiency power transmission the primary side resonance coil from the efficiency and the secondary-side resonance coil. また、給電側設備10から電力を伝送する場合でも、2次側共鳴コイルから検出される電圧値に基づいて1次側共鳴コイル及び2次側共鳴コイル間の距離を推定する場合や、1次コイル及び2次側共鳴コイルから検出される電圧値から電力伝送効率を求めて電力伝送効率から1次側共鳴コイル及び2次側共鳴コイル間の距離を推定してもよい。 Also, even when transferring power from the power supply unit 10, and when estimating the distance between the primary side resonance coil and the secondary side resonance coil based on the voltage detected from the secondary side resonance coil, a primary the distance between the coils and the secondary side resonance primary side resonance coil seeking power transmission efficiency from the voltage value detected from the power transmission efficiency from the coil and the secondary side resonance coil may be estimated.

○ 車載側設備20から電力を伝送する場合、第1の実施形態のように距離計測用交流電源27を2次電池24と別に設けずに、充電器23として双方向の充電器を使用してもよい。 ○ When transmitting electric power from the vehicle-side equipment 20, without separately providing a secondary battery 24 a distance measuring AC power source 27 as in the first embodiment, using a bi-directional charger as a charger 23 it may be. 即ち、充電器23として2次側共鳴コイルから供給される交流電力を直流に変換して2次電池24に充電する機能と、2次電池24から供給される電力を交流に変換して2次側共鳴コイルへ供給する機能を備えたものを使用する。 That is, the function of charging the AC power supplied as a charger 23 from the secondary side resonance coil to the secondary battery 24 into a DC, secondary to convert the AC power supplied from the secondary battery 24 to use those having a function of supplying to the side resonance coil. この場合、距離計測用交流電源27が不要になる。 In this case, the distance measurement alternating current power source 27 is not required.

○ 給電側設備10が、1次側共鳴コイル13に電磁誘導で結合されるとともに交流電源11と選択的に接続される1次コイル12を有し、車載側設備20が、2次側共鳴コイル21a,21bに電磁誘導で結合されるとともに充電器23と選択的に接続される2次コイル22a,22bを有する場合は、距離推定方法選択の自由度が高くなる。 ○ supply side equipment 10 has a primary coil 12 which is selectively connected to an AC power source 11 while being coupled by electromagnetic induction to the primary side resonance coil 13, the vehicle-mounted side equipment 20, secondary side resonance coil 21a, 2 coil 22a which is selectively connected to the charger 23 while being coupled by electromagnetic induction, when having a 22b to 21b, the degree of freedom of the distance estimation method selection is high. 距離推定手段は、1次コイル12から検出される電圧値及び2次コイル22a,22bから検出される電圧値の少なくともいずれか一方に基づいて1次側共鳴コイル13及び2次側共鳴コイル21a,21b間の距離を推定すればよい。 The distance estimation means, first voltage value is detected from the primary coil 12 and secondary coil 22a, 1 based on at least one of the voltage detected from 22b the primary side resonance coil 13 and the secondary side resonance coil 21a, the distance between 21b may be estimated. 例えば、1次コイル12から検出される電圧値に基づいて距離を推定する場合、電力を第1の実施形態のように車載側設備20から供給して1次コイル12の電圧を検出して距離を推定する方法と、電力を給電側設備10から供給するとともに、1次コイル12の電圧から共鳴系の入力インピーダンスを求めて距離を推定する方法とがある。 For example, when estimating the distance based on the voltage detected from the primary coil 12, the distance by detecting the voltage of the supplied primary coil 12 from the vehicle-side equipment 20 as in the first embodiment the power a method of estimating the supplies power from the power supply unit 10, and a method of estimating the distance seeking input impedance of the resonant system from the voltage of the primary coil 12. 2次コイル22a,22bから検出される電圧値に基づいて距離を推定する場合も、2次コイル22a,22bの電圧を検出して距離を推定する方法と、2次コイル22a,22bの電圧から共鳴系の入力インピーダンスを求めて距離を推定する方法とがある。 Secondary coil 22a, even when estimating the distance based on the voltage detected from 22b, the secondary coil 22a, a method for estimating the distance by detecting the voltage of 22b, the secondary coil 22a, the voltage 22b and a method of estimating the distance seeking input impedance of the resonant system.

○ 距離計測用交流電源27が各2次コイル22a,22bに接続されるとともに抵抗Rが1次コイル12に接続された状態で各2次側共鳴コイル21a,21bから1次側共鳴コイル13に電力を伝送して距離を推定する場合、距離推定手段は、電力伝送中に距離の推定を行う構成に限らない。 ○ distance measuring AC power source 27 is the secondary coil 22a, the secondary side resonance coil 21a in a state where the resistance R is connected to the primary coil 12 is connected to 22b, from 21b to the primary-side resonance coil 13 when estimating the distance by transmitting a power, distance estimation means is not limited to the configuration in which the distance estimation in the power transmission. 例えば、距離推定手段は第1及び第2の2次側共鳴コイル21a,21bから1次側共鳴コイル13に電力を伝送した後、距離計測用交流電源27との接続を解除した後、1次コイル12の電圧及び2次コイル22a,22bの電圧の少なくとも一方を検出して、その電圧値に基づいて距離推定を行ってもよい。 For example, after the distance estimation means releasing the connection between the first and second secondary side resonance coil 21a, after transmitting the power to the primary side resonance coil 13 from 21b, the distance measuring AC power source 27, primary voltage, and the secondary coil 22a of the coil 12, and detecting at least one of 22b voltage, may be carried out distance estimation based on the voltage value.

○ 駐車支援装置は自動駐車装置31に限らず、車両30が駐車する際に、運転者のハンドル操作を軽減させる役割を果たす装置であればよい。 ○ parking assist apparatus is not limited to the automatic parking device 31, when the vehicle 30 is parked, or if the serving system to reduce the steering wheel operation of the driver. 例えば、ディスプレイに目的の駐車位置と、車両30の現在位置とを表示する装置や、ハンドルの操舵位置を現在位置に保持するのか、右に操舵すべきかあるいは左に操舵すべきかを音声や表示手段で報知する装置でもよい。 For example, a parking target position on the display, the vehicle current and position and to display the device 30, or to hold the steering position of the steering wheel to the current position, voice or display means should be steered to or left should be steered to the right in may be a device to inform.

○ 充電器23に昇圧回路を設けずに、2次コイル22等から出力される交流電流を整流回路で整流しただけで2次電池24に充電するようにしてもよい。 ○ without providing a booster circuit to the charger 23 may be an alternating current output from the secondary coil 22 or the like to charge only the secondary battery 24 and rectified by the rectifier circuit.
○ 1次コイル12等及び2次コイル22等の径は、1次側共鳴コイル13等及び2次側共鳴コイル21等の径と同じに形成されている構成に限らず、小さくても大きくてもよい。 Diameter of 12 such ○ primary coil and the like secondary coil 22 is not limited to the configuration that is the same form and size, such as such as the primary side resonance coil 13 and the secondary side resonance coil 21, and larger or smaller it may be.

○ 1次側共鳴コイル13等及び2次側共鳴コイル21等は、それぞれ電線が螺旋状に巻回された形状に限らず、一平面上で渦巻き状に巻回された形状としてもよい。 ○ 1 primary side resonance coil 13 and the like and the secondary side resonance coil 21 or the like, the wire is not limited to the wound shape helically respectively, it may be wound shape in a spiral shape in one plane. この場合、共鳴コイルの軸方向の長さが小さくなり、地上に形成する穴の深さを浅くすることができる。 In this case, the axial length of the resonance coil is reduced, it is possible to reduce the depth of the hole formed in the ground.

○ 1次コイル12等、1次側共鳴コイル13等、2次側共鳴コイル21等及び2次コイル22等の外形は、円形に限らず、例えば、四角形や六角形や三角形等の多角形にしたり、あるいは楕円形にしたりしてもよい。 ○ primary coil 12 and the like, the primary side resonance coil 13 or the like, the outer shape of such secondary side resonance coil 21 and the like secondary coil 22 is not limited to a circular shape, for example, a polygonal shape such as square, hexagonal or triangular or, or it may be or oval.

○ 1次側共鳴コイル13等及び2次側共鳴コイル21等に接続されたコンデンサCを省略してもよい。 ○ a capacitor C connected to the primary side resonance coil 13 and the like and the secondary side resonance coil 21 and the like may be omitted. しかし、コンデンサCを接続した構成の方が、コンデンサCを省略した場合に比べて、共鳴周波数を下げることができる。 However, towards the configuration of connecting the capacitor C, as compared with the case of omitting the capacitor C, it is possible to lower the resonant frequency. また、共鳴周波数が同じであれば、コンデンサCを省略した場合に比べて、1次側共鳴コイル13等及び2次側共鳴コイル21等の小型化が可能になる。 Further, if the resonance frequency the same, compared with the case of omitting the capacitor C, to allow the primary side resonance coil 13 and the like and the secondary side resonance coil 21 miniaturize the like.

以下の技術的思想(発明)は前記実施形態から把握できる。 The following technical ideas (invention) can be grasped from the embodiments.
(1)請求項6に記載の発明において、前記抵抗が前記1次コイルに接続された状態で前記抵抗の両端間の電圧を検出する電圧センサが前記距離推定手段を構成する。 (1) in the invention described in claim 6, a voltage sensor wherein the resistance to detect the voltage across the resistor when connected to the primary coil constituting the distance estimation unit.

(2)請求項3〜請求項7及び前記技術的思想(1)のいずれか1項に記載の発明において、前記2次側共鳴コイル及び前記2次コイルは、車両の前側及び後側にそれぞれ設けられ、車両が充電位置へ前進で移動する際は前側に設けられた2次側共鳴コイルが距離推定に用いられ、車両が充電位置へ後退で移動する際は後側に設けられた2次側共鳴コイルが距離推定に用いられる。 (2) In the invention described in any one of claims 3 to 7, and the technical idea (1), the secondary side resonance coil and the secondary coil are respectively the front and rear sides of the vehicle provided, the vehicle when moving the secondary side resonance coil provided on the front side used for distance estimation in advance to the charging position, the secondary vehicle is provided on the side later when moving backward to the charging position side resonance coil is used to distance estimation.

(3)請求項1に記載の発明において、前記1次側共鳴コイル及び2次側共鳴コイルはともに複数設けられ、給電要求電力が予め設定された値以上の場合、複数組の1次側共鳴コイル及び2次側共鳴コイルを用いて同時に電力伝送を行う。 (3) In the invention of claim 1, wherein the primary side resonance coil and the secondary side resonance coil are both provided in plurality, if more than feed the required power is set in advance value, a plurality of sets of the primary side resonance perform power transmission at the same time using a coil and a secondary side resonance coil.

(4)請求項2〜請求項7及び前記技術的思想(1)〜(3)のいずれか1項に記載の発明において、前記2次側共鳴コイルは車両の底部に設けられ、前記1次コイル及び1次側共鳴コイルは充電位置に駐車した車両の下方に位置するように設けられている。 (4) In the invention according to any one of claims 2 to 7 and the technical idea (1) to (3), the secondary side resonance coil provided at the bottom of the vehicle, the primary coil and the primary side resonance coil is provided so as to be positioned below the vehicle parked in the charging position.

(5)交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムであって、 (5) AC power supply, the AC and the power supply unit with a primary side resonance coil receives power from the power source, the primary side secondary side resonance coil power to the power receiving by the magnetic field resonance from the resonance coil, a resonance type non-contact charging system that includes a vehicle-side installation comprising a connected secondary battery to the charger and the charger supplied with electric power from the secondary side resonance coil,
前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段を備えていることを特徴とする共鳴型非接触充電システム。 At least one of the primary side resonance coil and the secondary side resonance coil provided with a plurality, characterized in that it comprises a distance estimation means for estimating the distance between the primary side resonance coil and the secondary side resonance coil resonance type non-contact charging system that.

R…抵抗、10…給電側設備、11…交流電源、12,12a,12b…1次コイル、13,13a,13b…1次側共鳴コイル、20…車載側設備、21,21a,21b,21F,21R…2次側共鳴コイル、15,28…距離推定手段を構成する電圧センサ、22,22a,22b,22F,22R…2次コイル、23…充電器、24…2次電池、26…距離推定手段を構成するとともに位置推定手段としての車両側コントローラ、27…距離計測用交流電源、30…車両、31…駐車支援装置としての自動駐車装置。 R ... resistance, 10 ... power supply unit, 11 ... AC power source, 12, 12a, 12b ... 1 primary coil, 13, 13a, 13b ... 1 primary side resonance coil, 20 ... vehicle-side equipment, 21, 21a, 21b, 21F , 21R ... secondary side resonance coil, a voltage sensor that constitutes the 15, 28 ... distance estimation unit, 22, 22a, 22b, 22F, 22R ... second coil, 23 ... charger, 24 ... secondary battery, 26 ... distance vehicle controller as a position estimation means as to constitute the estimating means, 27 ... distance measuring alternating current power supply, 30 ... vehicle, 31 ... automatic parking system as a parking assist apparatus.

Claims (7)

  1. 交流電源、前記交流電源から電力の供給を受ける1次側共鳴コイルを備えた給電側設備と、前記1次側共鳴コイルからの電力を磁場共鳴して受電する2次側共鳴コイル、前記2次側共鳴コイルから電力の供給を受ける充電器及び前記充電器に接続された2次電池を備えた車載側設備とを備えた共鳴型非接触充電システムであって、 AC power, from said AC power source and the power supply unit with a primary side resonance coil supplied with power, the primary-side secondary side resonance coil power to the power receiving by the magnetic field resonance from the resonance coil, the secondary a resonance type non-contact charging system that includes a vehicle-side equipment having two batteries connected from the side resonance coil in the charger and the charger receives power,
    前記1次側共鳴コイル及び前記2次側共鳴コイルの少なくとも一方が複数設けられ、 At least one of the primary side resonance coil and the secondary side resonance coil provided with a plurality of,
    前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する距離推定手段と、 A distance estimation means for estimating a distance between the primary side resonance coil and the secondary side resonance coil,
    前記距離推定手段により推定された距離から前記給電側設備と前記車載側設備との位置関係を推定する位置推定手段と、 A position estimation means for estimating a positional relationship between the vehicle-side equipment and the power supply unit from the estimated distance by the distance estimation unit,
    を備えていることを特徴とする共鳴型非接触充電システム。 Resonance type non-contact charging system, characterized in that it comprises.
  2. 前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、 The power supply unit has a primary coil which is selectively connected to the AC power supply while being coupled by electromagnetic induction to the primary side resonance coil,
    前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次側共鳴コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する請求項1に記載の共鳴型非接触充電システム。 Said distance estimation means, voltage value and the primary side resonance coil and the secondary side resonance coil based on at least one of the voltage detected from the secondary side resonance coil is detected from the primary coil resonance type non-contact charging system according to claim 1 for estimating the distance between.
  3. 前記給電側設備は、前記1次側共鳴コイルに電磁誘導で結合されるとともに前記交流電源と選択的に接続される1次コイルを有し、 The power supply unit has a primary coil which is selectively connected to the AC power supply while being coupled by electromagnetic induction to the primary side resonance coil,
    前記車載側設備は、前記2次側共鳴コイルに電磁誘導で結合されるとともに前記充電器と選択的に接続される2次コイルを有し、 The vehicle-side equipment includes a secondary coil that is selectively connected to the charger while being coupled by electromagnetic induction to the secondary side resonance coil,
    前記距離推定手段は、前記1次コイルから検出される電圧値及び前記2次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記1次側共鳴コイル及び前記2次側共鳴コイル間の距離を推定する請求項1に記載の共鳴型非接触充電システム。 Said distance estimation unit, the voltage value and the second the primary side resonance coil and the secondary side resonance coil based on at least one of the voltage detected from the coil is detected from the primary coil resonance type non-contact charging system according to claim 1 for estimating the distance.
  4. 前記車載側設備は、第1の2次側共鳴コイル及び第2の2次側共鳴コイルを有し、 The vehicle-side equipment includes a first secondary side resonance coil and the second secondary side resonance coil,
    前記位置推定手段は、前記距離推定手段により推定された前記第1の2次側共鳴コイルと前記1次側共鳴コイルとの距離及び前記第2の2次側共鳴コイルと前記1次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する請求項1〜請求項3のいずれか一項に記載の共鳴型非接触充電システム。 Wherein the position estimating means, the distance the estimated by the estimation means first distance between the secondary side resonance coil and the primary side resonance coil and the second secondary side resonance coil and the primary side resonance coil resonance type non-contact charging system according to any one of claims 1 to 3 for estimating a positional relationship between the vehicle-side equipment and the power supply unit from the distance between.
  5. 前記給電側設備は、第1の1次側共鳴コイル及び第2の1次側共鳴コイルを有し、 The power supply unit has a first primary side resonance coil and the second primary-side resonance coil,
    前記位置推定手段は、前記距離推定手段により推定された前記第1の1次側共鳴コイルと前記2次側共鳴コイルとの距離及び前記第2の1次側共鳴コイルと前記2次側共鳴コイルとの距離から前記給電側設備と前記車載側設備との位置関係を推定する請求項1〜請求項3のいずれか一項に記載の共鳴型非接触充電システム。 Wherein the position estimating means, the distance the distance between the estimated by the estimation means first primary side resonance coil and the secondary side resonance coil and the second primary-side resonance coil and the secondary side resonance coil resonance type non-contact charging system according to any one of claims 1 to 3 for estimating a positional relationship between the vehicle-side equipment and the power supply unit from the distance between.
  6. 前記1次コイルと選択的に接続される抵抗と、 A resistor which is selectively connected to the primary coil,
    2次コイルと選択的に接続される距離計測用交流電源とを有し、 And a distance measuring AC power supplies selectively connected to the secondary coil,
    前記距離計測用交流電源が前記各2次コイルに接続されるとともに前記抵抗が前記1次コイルに接続された状態で前記各2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送し、 The resistance is transmitting power to the primary side resonance coil from each of the secondary side resonance coil in a state of being connected to the primary coil with the distance measuring AC power source is connected to the respective secondary coil,
    前記距離推定手段は、前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記2次コイルから検出される電圧値及び前記2次側共鳴コイルから前記1次側共鳴コイルに電力を伝送した後に前記1次コイルから検出される電圧値の少なくともいずれか一方に基づいて前記2次側共鳴コイルと前記1次側共鳴コイルとの距離を推定する請求項3〜請求項5のいずれか一項に記載の共鳴型非接触充電システム。 Said distance estimation means, the primary side resonance coil from the detected voltage value and the secondary side resonance coil from the secondary coil after transmitting the power to the primary side resonance coil from the secondary side resonance coil of claims 3 to 5 to estimate the distance between the said primary side resonance coil and the secondary side resonance coil based on at least one of the voltage detected from the primary coil after transmitting power resonance type non-contact charging system according to any one.
  7. 前記車載側設備が搭載された車両は駐車支援装置を備え、前記位置推定手段により推定された前記給電側設備と前記車載側設備との位置関係を示すデータが前記駐車支援装置において使用される請求項1〜請求項6のいずれか一項に記載の共鳴型非接触充電システム。 The vehicle-vehicle equipment is mounted is provided with a parking assist apparatus, wherein the data indicating the positional relationship between the vehicle-side facilities and estimated the power supply unit by the position estimation means are used in the parking assist apparatus resonance type non-contact charging system according to any one of claim 1 to claim 6.
JP2009027673A 2009-02-09 2009-02-09 Resonance type non-contact charging system Pending JP2010183813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027673A JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027673A JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Publications (1)

Publication Number Publication Date
JP2010183813A true true JP2010183813A (en) 2010-08-19

Family

ID=42764876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027673A Pending JP2010183813A (en) 2009-02-09 2009-02-09 Resonance type non-contact charging system

Country Status (1)

Country Link
JP (1) JP2010183813A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160515A (en) * 2010-01-29 2011-08-18 Autonetworks Technologies Ltd Radio charging apparatus for vehicle
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
CN102640395A (en) * 2010-12-01 2012-08-15 丰田自动车株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP2012165527A (en) * 2011-02-04 2012-08-30 Nitto Denko Corp Wireless power supply system
WO2012133446A1 (en) * 2011-03-30 2012-10-04 Tdk株式会社 Wireless power supplying/receiving device, and wireless power transmitting system
JP2012196126A (en) * 2011-03-03 2012-10-11 Semiconductor Energy Lab Co Ltd Power receiving device and wireless power feeding system
WO2012144253A1 (en) * 2011-04-21 2012-10-26 日産自動車株式会社 Torque control apparatus and contactless charging system
WO2012168777A2 (en) 2011-06-09 2012-12-13 Toyota Jidosha Kabushiki Kaisha Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
KR101217655B1 (en) 2011-11-04 2013-01-02 포항공과대학교 산학협력단 Wireless power tranfer system for automatic car
CN102916499A (en) * 2012-10-24 2013-02-06 天津工业大学 Energy coupling verification system based on coupled-mode theory
WO2013054399A1 (en) 2011-10-12 2013-04-18 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system
JP2013074673A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Power transmission device, power reception device, vehicle having the same devices, power transmission system and power transmission system control method
JP5199495B1 (en) * 2012-03-29 2013-05-15 パナソニック株式会社 Vehicle guidance apparatus, methods vehicle guidance information providing apparatus and the vehicle guide
WO2013069089A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
WO2013084286A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
WO2013084285A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
WO2013088554A1 (en) * 2011-12-15 2013-06-20 パイオニア株式会社 Vehicle drive device
JP2013219944A (en) * 2012-04-10 2013-10-24 Sony Corp Power receiving device, control method of power receiving device, and power feeding system
CN103597697A (en) * 2011-06-09 2014-02-19 丰田自动车株式会社 Power-receiving device, vehicle, and non-contact power supply system
EP2789495A1 (en) * 2011-12-06 2014-10-15 Panasonic Corporation Vehicle guidance device and vehicle guidance method
US8946940B2 (en) 2011-03-23 2015-02-03 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving apparatus, the non-contact power transmitting device and the non-contact power transmitting and receiving system
US9000620B2 (en) 2011-05-31 2015-04-07 Samsung Electronics Co., Ltd. Apparatus and method of dividing wireless power in wireless resonant power transmission system
WO2015093513A1 (en) * 2013-12-20 2015-06-25 株式会社Ihi Parking assistance apparatus and system
JP2015527036A (en) * 2012-07-16 2015-09-10 クアルコム,インコーポレイテッド Alignment and identification of the device in an inductive power transfer system
WO2016008608A1 (en) * 2014-07-15 2016-01-21 Paul Vahle Gmbh & Co. Kg Determining the position of a pickup relative to the primary arrangement of an inductive energy transmission system
JP2016119784A (en) * 2014-12-22 2016-06-30 株式会社ダイヘン Non-contact power transmission device and non-contact power supply system
CN106165245A (en) * 2014-04-08 2016-11-23 日产自动车株式会社 Contactless electricity supply system and contactless electricity reception device
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Positioning of the device in an inductive power transfer system
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9997959B2 (en) 2012-03-23 2018-06-12 Samsung Electronics Co., Ltd. Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
JPH09182212A (en) * 1995-12-25 1997-07-11 Toyota Autom Loom Works Ltd Automatic charging device
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジーMassachusetts Institute Of Technology Wireless non-radiative energy transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH0767270A (en) * 1993-08-26 1995-03-10 Sumitomo Electric Ind Ltd Displacement detector in noncontact power supply for mobile body
JPH09182212A (en) * 1995-12-25 1997-07-11 Toyota Autom Loom Works Ltd Automatic charging device
JPH09215211A (en) * 1996-02-02 1997-08-15 Sumitomo Wiring Syst Ltd Charging system for electric vehicle
JP2009501510A (en) * 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジーMassachusetts Institute Of Technology Wireless non-radiative energy transfer

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
JP2011160515A (en) * 2010-01-29 2011-08-18 Autonetworks Technologies Ltd Radio charging apparatus for vehicle
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
CN102640395A (en) * 2010-12-01 2012-08-15 丰田自动车株式会社 Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
JP5083480B2 (en) * 2010-12-01 2012-11-28 トヨタ自動車株式会社 Non-contact power feeding apparatus, a control method of a vehicle and the non-contact power supply system
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
US9461506B2 (en) 2011-02-04 2016-10-04 Nitto Denko Corporation Wireless power-supply system
JP2012165527A (en) * 2011-02-04 2012-08-30 Nitto Denko Corp Wireless power supply system
JP2012196126A (en) * 2011-03-03 2012-10-11 Semiconductor Energy Lab Co Ltd Power receiving device and wireless power feeding system
US9729013B2 (en) 2011-03-23 2017-08-08 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
US8946940B2 (en) 2011-03-23 2015-02-03 Samsung Electronics Co., Ltd. Wireless power transmission system, and method for controlling wireless power transmission and wireless power reception
JP5804052B2 (en) * 2011-03-30 2015-11-04 Tdk株式会社 Wireless supply power receiving apparatus and wireless power transmission system
US9006935B2 (en) 2011-03-30 2015-04-14 Tdk Corporation Wireless power feeder/receiver and wireless power transmission system
WO2012133446A1 (en) * 2011-03-30 2012-10-04 Tdk株式会社 Wireless power supplying/receiving device, and wireless power transmitting system
JP2012228119A (en) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd Torque control apparatus and contactless charging system
WO2012144253A1 (en) * 2011-04-21 2012-10-26 日産自動車株式会社 Torque control apparatus and contactless charging system
CN103492219A (en) * 2011-04-21 2014-01-01 日产自动车株式会社 Torque control apparatus and contactless charging system
US9623767B2 (en) 2011-04-21 2017-04-18 Nissan Motor Co., Ltd. Torque control apparatus and contactless charging system
US9000620B2 (en) 2011-05-31 2015-04-07 Samsung Electronics Co., Ltd. Apparatus and method of dividing wireless power in wireless resonant power transmission system
WO2012168777A2 (en) 2011-06-09 2012-12-13 Toyota Jidosha Kabushiki Kaisha Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
CN103597697A (en) * 2011-06-09 2014-02-19 丰田自动车株式会社 Power-receiving device, vehicle, and non-contact power supply system
US9180782B2 (en) 2011-06-20 2015-11-10 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JPWO2012176264A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Non-contact power receiving apparatus, the non-contact power transmitting device and the non-contact power transmitting and receiving system
JP2013074673A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Power transmission device, power reception device, vehicle having the same devices, power transmission system and power transmission system control method
WO2013054399A1 (en) 2011-10-12 2013-04-18 トヨタ自動車株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting system
KR101217655B1 (en) 2011-11-04 2013-01-02 포항공과대학교 산학협력단 Wireless power tranfer system for automatic car
WO2013069089A1 (en) * 2011-11-08 2013-05-16 トヨタ自動車株式会社 Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
WO2013084286A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
JPWO2013084286A1 (en) * 2011-12-05 2015-04-27 パイオニア株式会社 Vehicle drive system
JPWO2013084285A1 (en) * 2011-12-05 2015-04-27 パイオニア株式会社 Vehicle drive system
WO2013084285A1 (en) * 2011-12-05 2013-06-13 パイオニア株式会社 Vehicle drive system
EP2789495A1 (en) * 2011-12-06 2014-10-15 Panasonic Corporation Vehicle guidance device and vehicle guidance method
US9539911B2 (en) 2011-12-06 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Vehicle guidance device and vehicle guidance method
EP2789495A4 (en) * 2011-12-06 2015-10-14 Panasonic Ip Man Co Ltd Vehicle guidance device and vehicle guidance method
JPWO2013088554A1 (en) * 2011-12-15 2015-04-27 パイオニア株式会社 Vehicle drive system
WO2013088554A1 (en) * 2011-12-15 2013-06-20 パイオニア株式会社 Vehicle drive device
US9997959B2 (en) 2012-03-23 2018-06-12 Samsung Electronics Co., Ltd. Wireless power transmission system and method for increasing coupling efficiency by adjusting resonant frequency
WO2013145581A1 (en) * 2012-03-29 2013-10-03 パナソニック株式会社 Vehicle guidance device, vehicle guidance information providing device and vehicle guidance method
JP5199495B1 (en) * 2012-03-29 2013-05-15 パナソニック株式会社 Vehicle guidance apparatus, methods vehicle guidance information providing apparatus and the vehicle guide
JP2013219944A (en) * 2012-04-10 2013-10-24 Sony Corp Power receiving device, control method of power receiving device, and power feeding system
US9859755B2 (en) 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
JP2015527036A (en) * 2012-07-16 2015-09-10 クアルコム,インコーポレイテッド Alignment and identification of the device in an inductive power transfer system
CN102916499A (en) * 2012-10-24 2013-02-06 天津工业大学 Energy coupling verification system based on coupled-mode theory
JP2016541223A (en) * 2013-09-27 2016-12-28 クアルコム,インコーポレイテッド Positioning of the device in an inductive power transfer system
JP2015120378A (en) * 2013-12-20 2015-07-02 株式会社Ihi Parking assistance device and parking assistance system
CN105593072A (en) * 2013-12-20 2016-05-18 株式会社Ihi Parking assistance apparatus and system
WO2015093513A1 (en) * 2013-12-20 2015-06-25 株式会社Ihi Parking assistance apparatus and system
EP3131173A4 (en) * 2014-04-08 2017-04-05 Nissan Motor Co., Ltd Contactless electricity supply system and contactless electricity reception device
CN106165245B (en) * 2014-04-08 2017-10-03 日产自动车株式会社 Non-contact power supply system and the non-contact power receiving apparatus
CN106165245A (en) * 2014-04-08 2016-11-23 日产自动车株式会社 Contactless electricity supply system and contactless electricity reception device
EP3131173A1 (en) * 2014-04-08 2017-02-15 Nissan Motor Co., Ltd Contactless electricity supply system and contactless electricity reception device
WO2016008608A1 (en) * 2014-07-15 2016-01-21 Paul Vahle Gmbh & Co. Kg Determining the position of a pickup relative to the primary arrangement of an inductive energy transmission system
JP2016119784A (en) * 2014-12-22 2016-06-30 株式会社ダイヘン Non-contact power transmission device and non-contact power supply system

Similar Documents

Publication Publication Date Title
US5710502A (en) System for recharging the storage batteries of an electric motor vehicle
US20140015328A1 (en) Device alignment and identification in inductive power transfer systems
US20140035526A1 (en) Selective communication based on distance from a plurality of electric vehicle wireless charging stations in a facility
US20150094887A1 (en) Device alignment in inductive power transfer systems
US20120043172A1 (en) Non-contact power receiving apparatus and vehicle having the same
WO2010041321A1 (en) Non-contact power transmission device and vehicle having non-contact power transmission device
US20120043931A1 (en) Device housing a battery and charging apparatus for contactless charging
US20120119708A1 (en) Charging base, charging system and charging method
US20130335015A1 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
JP2010022183A (en) Electric vehicle and inductive power-transmission device suitable therefor
WO2012042902A1 (en) Electricity supply system for electric automobile, and electric automobile and power supply device used in said system
US20140111151A1 (en) System and method for inductance compensation in wireless power transfer
US20110082612A1 (en) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US20120098330A1 (en) Coil unit, noncontact power receiving apparatus, noncontact power transmitting apparatus, noncontact power feeding system, and vehicle
JP2011182608A (en) Electric vehicle
WO1984004212A1 (en) Vehicle battery charging apparatus
US20120323423A1 (en) Vehicle parking assist system, vehicle including the same, and vehicle parking assist method
JP2012228119A (en) Torque control apparatus and contactless charging system
US8212520B2 (en) Resonance type non-contact charging device
JPH10136588A (en) Charge system of motorized vehicle
US20130119930A1 (en) Resonance type non-contact power supply system
WO2010098397A1 (en) Power supply system of mobile unit
JP2011244530A (en) Power receiving side equipment of resonance type non-contact power supply system
JP2010193657A (en) Power supply system for mobile vehicle
JP2011160505A (en) Wireless charging apparatus and wireless charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210