WO2013083035A1 - 传输信号的方法和设备 - Google Patents

传输信号的方法和设备 Download PDF

Info

Publication number
WO2013083035A1
WO2013083035A1 PCT/CN2012/085899 CN2012085899W WO2013083035A1 WO 2013083035 A1 WO2013083035 A1 WO 2013083035A1 CN 2012085899 W CN2012085899 W CN 2012085899W WO 2013083035 A1 WO2013083035 A1 WO 2013083035A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
matrix
beamforming matrix
downlink
uplink
Prior art date
Application number
PCT/CN2012/085899
Other languages
English (en)
French (fr)
Inventor
陈智
曾俊杰
李玲香
王燚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12856284.0A priority Critical patent/EP2782263B1/en
Publication of WO2013083035A1 publication Critical patent/WO2013083035A1/zh
Priority to US14/297,022 priority patent/US9484999B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0865Independent weighting, i.e. weights based on own antenna reception parameters

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to a method and apparatus for transmitting signals. Background technique
  • the 3GPP Advanced Long Term Evolution (LTE-A, LTE-Advanced) system will use the method of relay cooperative transmission to improve the quality of service of cell edge users and extend cell coverage.
  • the backhaul link capacity of the trunk network limits the throughput of the access link, so it is important to enhance the quality of the backhaul link.
  • a backhaul link of a relay network having a plurality of relay stations a plurality of relay stations multiplex the same channel resources, and the multiplexing gain can greatly increase the system capacity.
  • multiple intermediate stations sharing the same resources must cause co-channel interference.
  • Embodiments of the present invention provide a method and a device for transmitting signals, which can simplify the design of an uplink beamforming matrix, thereby reducing the complexity of the system.
  • a method for transmitting a signal including: acquiring a downlink beamforming matrix; processing a uplink signal by using a conjugate transposed matrix of the downlink beamforming matrix as an uplink beamforming matrix.
  • an apparatus for transmitting a signal including: an obtaining module, configured to acquire a downlink transmit beamforming matrix; and a processing module, configured to use a conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beam
  • the shaping matrix processes the upstream signals.
  • a device for transmitting a signal including: an acquisition module, configured to acquire And a processing module, configured to process the uplink signal by using a conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beamforming matrix.
  • the conjugate transposed matrix of the downlink beamforming matrix can be used as the uplink beam shaping matrix to process the uplink signal, which can simplify the design of the uplink beamforming matrix, thereby reducing the complexity of the system.
  • FIG. 1 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of transmitting a signal according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of transmitting a signal according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a process of transmitting a signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart showing a process of transmitting a signal according to another embodiment of the present invention.
  • 6 is a structural schematic diagram of an apparatus for transmitting signals in accordance with one embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting a signal according to another embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the network elements of the radio access network in Long Term Evolution (LTE) and LTE-A include an eNB (eNodeB, evolved base station), and a WCDMA (Wideband Code Division Multiple Access) wireless connection.
  • the network elements of the network include RNC (Radio Network Controller) and NodeB.
  • RNC Radio Network Controller
  • WiMax Worldwide Interoperability for Microwave Access
  • the scheme of the base station system may be different, and the embodiment of the present invention is not limited. However, for convenience of description, the following embodiments will be described by taking an eNodeB as an example.
  • the terminal may also be referred to as a user equipment (UE, User Equipment), a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), etc., and the terminal may be wirelessly accessed.
  • the RAN Radio Access Network
  • the terminal may be a mobile phone (or "cellular" phone), a computer with communication function, etc., for example, the terminal may also be portable. Pocket, handheld, computer built-in or in-vehicle mobile devices.
  • one base station and multiple relay stations are placed in each cell.
  • the communication between the relay station and the base station of the local cell is interfered by the communication between the base station of the cell and other relay stations of the local cell (cell Internal interference) and interference (inter-cell interference) between other cell base stations and other cell relay stations.
  • cell Internal interference the communication between the base station of the cell and other relay stations of the local cell
  • interference inter-cell interference
  • adjacent cells use different frequency bands to suppress inter-cell interference.
  • adjacent cells may have overlapping frequency bands. Therefore, small-area interference suppression is also a key issue.
  • a beamforming algorithm is proposed at the base station to maximize the SINR at the relay station, which is less complicated than DPC and CoMP.
  • the above-described maximal SINR based beamforming aims to maximize the SINR at the relay station, and solves the iterative joint optimization problem of multiple relay stations.
  • the SINR of a certain relay station depends not only on its own beamforming vector (or beamforming matrix), but also on the beamforming vectors of other relay stations. Therefore, it is very difficult to solve the iterative joint optimization problem of multiple relay stations when solving the optimal beamforming vector.
  • each relay station can obtain an uplink transmit beamforming matrix by using Singular Value Decomposition (SVD) to improve the performance of the backhaul link.
  • the relay station first measures the downlink channel state information (CSIR, Channel State Information of Receive) of the base station to the relay station by using cell-specific reference signals (CRS), and obtains channel reciprocity of the TDD system.
  • the power allocated to the data stream corresponds to the water distribution of the channel matrix square singular value.
  • DMRS demodulation reference signal
  • Demodulation RS Demodulation RS
  • the design of such a beamforming matrix is based on channel matching, that is, favoring the direction of the wanted signal, but does not consider that multiple relay stations share the same resources to bring co-channel interference.
  • the problem that the relay station of the backhaul link is simultaneously subjected to intra-cell interference and inter-cell interference is further considered to improve the capacity of the backhaul link.
  • the embodiment according to the present invention is not limited to the relay network, for example, the embodiment according to the present invention is also applicable to multi-user multiple input multiple output (MU-MIMO, Multiple-User Multiple-Input) in the cell. In the scenario of Multiple-Output, it can be further extended to a co-frequency heterogeneous network with micro cells.
  • MU-MIMO multi-user multiple input multiple output
  • Multiple-User Multiple-Input multiple-Output
  • FIG. 1 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present invention.
  • the downlink beamforming matrix may be a downlink transmit beamforming matrix on the base station side, or may be a downlink receive beamforming matrix on the relay station, the user equipment, or the micro base station side.
  • the downlink beamforming matrix can be obtained based on beamforming matrix design criteria such as Signal to Leakage Noise Ratio (SLNR) or Signal to Interference Noise Ratio (SINR).
  • SLNR Signal to Leakage Noise Ratio
  • SINR Signal to Interference Noise Ratio
  • SINR Signal to Interference Noise Ratio
  • the embodiment of the present invention is not limited thereto.
  • the downlink beamforming matrix may be acquired by using the above SVD or the like.
  • the conjugate transposed matrix (also referred to as a dual matrix) of the downlink beamforming matrix is used as an uplink beamforming matrix to process an uplink signal.
  • the base station may use the conjugate transposed matrix of the downlink transmit and receive matrix as an uplink receive beamforming matrix to process the uplink signal received from the relay station, and the relay station, the user equipment, or the micro base station may transpose the conjugate of the downlink receive beamforming matrix.
  • the matrix processes the uplink signal to be transmitted to the base station as an uplink transmit beamforming matrix.
  • the conjugate transposed matrix of the downlink beamforming matrix can be used as the uplink beam shaping matrix to process the uplink signal, which can simplify the design of the uplink beamforming matrix, thereby reducing the complexity of the system.
  • the conjugate transposed matrix of the downlink beamforming matrix is used as an uplink beamforming matrix to process the uplink signal.
  • the duality of the transceiver filter means that the transmit beamforming matrix has a conjugate transpose relationship with the receive beamforming matrix.
  • the base station can use the conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beamforming matrix to process the uplink signal received from the relay station.
  • the relay station may use the conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beamforming matrix to process the uplink signal transmitted to the base station.
  • FIG. 2 is a schematic flow chart of a method of transmitting a signal according to another embodiment of the present invention.
  • the first communications device acquires a downlink transmit beamforming matrix based on a signal to noise ratio at the second communications device.
  • the first communication device may be a macro base station
  • the second communication device may be a relay station, a base station or a user terminal.
  • the above information leakage ratio may refer to a ratio of signal energy transmitted by a base station of the cell to a certain relay station to a sum of signal energy leaked to a relay station by a base station of the cell to another relay station and noise energy at the relay station. .
  • the first communications device uses the conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beamforming matrix to process the uplink signal received from the second communications device. And using the conjugate transposed matrix of the downlink transmit beamforming matrix as the uplink receive beamforming matrix is equivalent to considering the signal to interference and noise ratio at the base station when designing the uplink receive beamforming matrix (this equivalent relationship will be followed Proven in the example).
  • the base station can use the conjugate transposed matrix of the downlink transmit beamforming matrix as the uplink receive beamforming matrix to process the uplink signal, which can simplify the design of the uplink receive beamforming matrix, thereby reducing system complexity.
  • the signal-to-noise ratio at the relay station is considered when designing the downlink transmit beamforming matrix, which is equivalent to considering the signal-to-noise ratio at the base station when designing the uplink receive beamforming matrix, thereby suppressing interference in the cell.
  • the first communications device obtains a signal venting noise at the second communications device according to a covariance matrix of the additive white Gaussian noise vector at the second communications device and a channel matrix of the first communications device to the second communications device Ratio to the largest downlink transmit beamforming matrix.
  • the second communication device can be at least one relay station.
  • the channel matrix of the first communication device to the second communication device includes a channel matrix of the base station to the at least one relay station.
  • the base station may obtain a downlink transmit beamforming matrix for the relay station by maximizing a signal to noise ratio at a certain relay station, that is, the base station may cause the relay station to transmit a downlink signal to the relay station by using the downlink transmit beamforming matrix.
  • the letter has the largest noise rejection ratio.
  • the conjugate transposed matrix of the downlink transmit beamforming matrix obtained by maximizing the signal-to-noise ratio at the relay station is obtained as an uplink receive beamforming matrix according to an embodiment of the present invention, and maximizing the signal-to-noise ratio at the relay station is equivalent to
  • the signal to interference and noise ratio at the base station is maximized, that is, the signal sent by the relay station to the base station is minimized by other relay stations in the cell, thereby suppressing interference in the cell.
  • the first communications device can obtain the downlink transmit beamforming matrix by the following formula:
  • i is the number of the second communication device
  • the SLNR is the signal to noise ratio at the second communication device
  • is the downlink transmit beamforming matrix to be solved
  • W is the channel matrix of the first communication device to the second communication device i, H; is the channel matrix of the first communication device to the second communication device j
  • H & C ⁇ 2 is The power spectral density of additive white Gaussian noise of each antenna at the second communication device i
  • I e C is the number of streams of data transmitted by the first communication device
  • M is the number of antennas of the first communication device
  • the number of antennas of the communication device i, i and j are integers.
  • the base station may first obtain the uplink channel matrix from the DMRS, and then use the TDD system channel. For reciprocity, a downlink transmission channel matrix can be obtained.
  • the base station can use o at the base station as the o at the relay station when designing the channel matrix.
  • the base station may also obtain information about o at the relay station from the relay station.
  • the downlink transmit beamforming matrix is the eigenvalue vector corresponding to the largest generalized eigenvalue of the matrix pair Hi Hi ⁇ ⁇ ⁇ ⁇ H Hj, when > 1
  • the downlink beamforming matrix is used as the uplink beamforming matrix to process the uplink signal.
  • the base station uses the conjugate transposed matrix of the downlink transmission beamforming matrix as the uplink reception beamforming matrix to process the uplink signal received from the relay station, which can make
  • the criterion for maximizing the SLNR based on the design of the downlink transmit beamforming matrix is equivalent to the criterion for maximizing the SINR upon which the uplink receive beamforming matrix is designed (regardless of the uplink transmit beamforming, ie considering the unit matrix), thereby Intra-cell interference is suppressed.
  • FIG. 3 is a schematic flowchart of a method of transmitting a signal according to another embodiment of the present invention.
  • the second communications device acquires a downlink receive beamforming matrix based on a signal to interference and noise ratio at the second device.
  • the first communication device is a macro base station and the second communication device is a relay station, a micro base station or a user terminal.
  • the above signal to interference and noise ratio may refer to a ratio of the useful signal energy received by a relay station from the base station of the own cell to the sum of the interference signal energy received by the relay station from other cell base stations and the noise energy at the relay station.
  • the second communications device uses the conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beamforming matrix to process the uplink signal sent to the first communications device.
  • the relay station considers the signal to interference and noise ratio at the relay station when designing the downlink receive beamforming matrix, and uses the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beamforming matrix, which is equivalent to designing the uplink transmit beam.
  • the letter-to-noise ratio at the base station is taken into account when shaping the matrix (this equivalent relationship will be demonstrated in later embodiments).
  • the relay station can use the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beamforming matrix to process the uplink signal, which can simplify the design of the uplink transmit beamforming matrix, thereby reducing the complexity of the system.
  • the signal-to-interference-and-noise ratio at the relay station is considered when designing the downlink receive beamforming matrix, which is equivalent to considering the signal-to-noise ratio at the base station when designing the uplink transmit beamforming matrix (this equivalent relationship will be later As demonstrated in the embodiments, it is possible to suppress inter-cell interference.
  • the second communications device obtains a signal to interference and noise ratio at the second communications device based on the interference plus noise covariance matrix at the second communications device and an equivalent channel matrix from the first communications device to the second communications device The largest downlink receive beamforming matrix.
  • the second communication device can be at least one relay station.
  • the channel matrix of the first communication device to the second communication device includes a channel matrix of the base station to the at least one relay station.
  • the relay station can obtain the downlink receive beamforming matrix of the relay station by maximizing the signal to interference and noise ratio at the relay station, that is, when the relay station receives the downlink signal from the base station by using the downlink receive beamforming matrix, the relay station can make the signal at the relay station The dry noise ratio is the largest.
  • the conjugate transposed matrix of the downlink receive beamforming matrix obtained by maximizing the signal to interference and noise ratio at the relay station is obtained as an uplink transmit beamforming matrix according to an embodiment of the present invention, so that maximizing the signal to interference and noise ratio at the relay station is equivalent to
  • the uplink maximizes the signal to noise ratio at the base station, that is, the signal transmitted by the relay station to the base station leaks to other cells with the least signal energy, thereby suppressing inter-cell interference.
  • the second communication device obtains the downlink receive beamforming matrix by the following formula:
  • SINR is the signal to interference and noise ratio at the second communication device
  • IC N ⁇ is from the first communication device to the second
  • M is the number of antennas of the first communication device
  • N is the number of antennas of the second communication device i
  • i and j are integers.
  • the downlink beamforming matrix is used as the uplink beamforming matrix to process the uplink signal.
  • the relay station uses the conjugate transposed matrix of the downlink reception beamforming matrix as the uplink transmission beamforming matrix to process the uplink signal transmitted to the base station, which can make
  • the criterion for maximizing the SINR upon which the downlink receive beamforming matrix is designed is equivalent to the criterion for maximizing the SLNR upon which the uplink transmit beamforming matrix is designed, thereby suppressing inter-cell interference.
  • FIG. 2 and the embodiment of FIG. 3 are not completely independent and may be used in combination, and such combinations are also within the scope of embodiments of the present invention.
  • the base station acquires a downlink transmit beamforming matrix, and processes the downlink signal sent to the relay station by using a downlink transmit beamforming matrix.
  • the base station can design a downlink transmit beamforming matrix in a conventional manner.
  • the base station uses the SVD to design a downlink transmit beamforming matrix, so that the beam direction of the downlink signal sent by the base station is aligned with the desired relay station, thereby enabling the relay.
  • the performance of the backhaul link has been improved.
  • the relay station acquires a downlink receive beamforming matrix, and processes the downlink signal received from the base station by using a downlink receive matrix.
  • the relay station designs the downlink receive beamforming matrix in a conventional manner.
  • the relay station designs the downlink receive beamforming matrix by using the SVD, so that the relay station receives the beam direction of the downlink signal and aligns with the base station that transmits the signal, thereby making The performance of the backhaul link has been improved.
  • the relay station uses the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beam shaping matrix to process the uplink signal sent to the base station.
  • the relay station uses the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit wave.
  • the beam shaping matrix simplifies the design of the uplink transmit beamforming matrix.
  • the base station uses the conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beamforming matrix to process the uplink signal received from the relay station.
  • the base station uses the conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beamforming matrix, which simplifies the design of the uplink receive beamforming matrix.
  • FIG. 5 is a schematic flowchart of a process of transmitting a signal according to another embodiment of the present invention.
  • an uplink beamforming algorithm can be designed on the premise that the base transceiver of the base station is dual and the transceiver of the relay station is dual, while suppressing inter-relay interference between cells and inter-cell interference.
  • the base station acquires a downlink transmit beamforming matrix with a target of maximizing SLNR.
  • the base station can first demodulate the reference signal (Demodulation)
  • DMRS Downlink Reference Signal
  • the channel reciprocity of the TDD system can be used to obtain downlink channel state information from the base station to each relay station (Channel State Information at the
  • CSIR and CSIT indicate reception channel status information and transmission status information, respectively.
  • the channel information used by the base station to calculate the uplink receive beamforming matrix can be expressed as CSIR
  • the channel information used by the base station to calculate the downlink transmit beamforming matrix can be expressed as CSIT.
  • the channel matrix H can be obtained by various pilot signals.
  • the received signal at the relay is:
  • 3 ⁇ 4 is the downlink receive beamforming matrix of the relay station i, R t C dxN , M is the number of antennas of the base station, and N is the number of antennas of the relay.
  • the downlink transmit beamforming matrix can be solved with the aim of maximizing the SLNR at the relay station i:
  • W is the eigenvector corresponding to the previous largest generalized eigenvalue of the matrix pair H ⁇ H,., ⁇ . 2 / + ;
  • the relay acquires a downlink receive beamforming matrix with a target of maximizing SINR.
  • the relay station first uses the cell-specific reference signal transmitted by the base station.
  • CRS Cell-specific Reference Signal
  • the formula for the received signal at the relay can be as shown in equation (1).
  • the SINR of the relay i is
  • the downlink receive beamforming matrix can be obtained by Lagrangian multiplication to ⁇ + ⁇ /)- 1 ⁇ .
  • the equivalent channel can be passed through the user reference signal (DM-RS). Obtained.
  • the interference plus noise covariance matrix can be calculated by the cell-specific reference signal. So when using the SINR to solve the receive matrix, there is only one variable, that is, the SINR of the relay i depends only on its own beamforming vector, and other The subsequent beamforming vector has nothing to do. Therefore, the optimal beamforming vector does not need to consider the iterative joint optimization problem of multiple relays, which can be solved by Lagrangian.
  • the solution process is simple.
  • the uplink beamforming transmission matrix can achieve the purpose of inter-cell interference suppression.
  • the maximum SINR refers to the useful signal energy sent by the base station of the local cell to the relay station i and the energy of the other station base station to the relay station i plus the noise energy. The ratio is the largest.
  • the relay station uses the conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beam shaping matrix to process the uplink signal.
  • the conjugate transposed matrix of the downlink receive beamforming matrix designed to maximize the SINR is used as the uplink transmit beamforming matrix, so that the downlink receive beam can be designed.
  • the criterion for maximizing the SINR upon which the matrix is shaped is equivalent to the criterion for maximizing the SLNR upon which the uplink transmit beamforming matrix is designed.
  • Inter-channel - mt interference to the relay / Inter-channel - mt interference to the relay /.
  • is the channel matrix of the base station to the relay i.
  • Send a beamforming matrix for the downlink.
  • o is the noise power after the receive beamforming process at relay station i.
  • the uplink transmit beamforming matrix designed to maximize SLNR ie, the minimum energy leaked to other cells solves the following problems:
  • the uplink receive beamforming matrix at the base station is the channel matrix of relay i to the base station.
  • the uplink transmit beamforming matrix for relay i. o is the noise power after the receive beamforming process at the base station.
  • the noise power spectrum of the base station and the relay station is generally considered to be uniform, and in the case of strong interference, the influence of noise is negligible.
  • the criterion for maximizing the SLNR based on the beamforming matrix can be understood as the sum of the signal energy and the noise energy of the useful signal energy transmitted by the relay station i in the uplink backhaul link to the base station of the own cell and the leakage of the relay station i to other cell base stations.
  • the ratio is the largest.
  • the base station uses a conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beamforming matrix to process the uplink signal.
  • the conjugate transposed matrix of the downlink transmit beamforming matrix designed to maximize the SLNR is used as the uplink receive beamforming matrix, so that the downlink transmit beamforming matrix can be designed.
  • the criterion for maximizing the SLNR upon which it is based is equivalent to the criterion for maximizing the SINR upon which the uplink receive beamforming matrix is designed.
  • the signal sent to the base station for the intra-cell relay j is an interference signal.
  • is the uplink receive beamforming matrix at the base station.
  • Send a beamforming matrix for the uplink. Is the noise at the base station.
  • the conjugate transposed matrix of the downlink transmit beamforming matrix is used as an uplink receive beamforming matrix according to an embodiment of the present invention, that is, a criterion for maximizing SLNR based on designing a downlink transmit beamforming matrix is equivalent to design uplink
  • the criterion for maximizing the SINR upon which the beamforming matrix is received can be understood as the interference that the signals transmitted by other relays on the backhaul link to the base station have the least interference to the signals transmitted by the target relay to the base station.
  • the base station may design a downlink transmit beamforming matrix with the target of maximizing the SLNR, and use the conjugate transposed matrix of the downlink transmit matrix as an uplink receive beamforming matrix according to the principle of uplink and downlink duality to suppress the cell.
  • the relay station can design a downlink receive beamforming matrix with the goal of maximizing SINR, and downlink reception according to the principle of uplink and downlink duality.
  • the conjugate transposed matrix of the beamforming matrix acts as an uplink transmit matrix to suppress inter-cell interference.
  • the process of acquiring an uplink transmit beamforming matrix and the process of acquiring an uplink receive beamforming matrix in Embodiment 5 may be used separately or simultaneously, for example, obtaining uplink transmit beamforming by using the foregoing manner.
  • the matrix is used to eliminate inter-cell interference, and the uplink receive beamforming matrix is obtained in the above manner in order to eliminate interference between relay stations in the cell.
  • the uplink beamforming matrix is designed to suppress inter-cell interference on the premise of transmitting and receiving dual.
  • the following steps may be performed:
  • the base station designs a downlink transmit beamforming matrix in a conventional manner (for example, SVD) to implement a certain Purpose (for example, to improve the performance of the relay backhaul link);
  • the relay station designs the downlink receive beamforming matrix with the target of maximizing SINR, and uses the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beam.
  • Forming a matrix to suppress inter-cell interference (similar to 520 in FIG. 5, and details are not described herein again).
  • the conjugate transposed matrix of the downlink transmit beamforming matrix of the base station is used as the uplink receive beamforming matrix.
  • the criterion for maximizing the SINR based on the design of the downlink receive beamforming matrix is equivalent to the maximum based on the design of the uplink transmit beamforming matrix.
  • the criteria for SLNR, thereby suppressing inter-cell interference .
  • the conjugate transposed matrix of the downlink beamforming matrix can be used as an uplink beamforming matrix according to an embodiment of the present invention, thereby simplifying the design process of the uplink beamforming matrix.
  • designing an uplink beamforming algorithm to suppress intra-cell interference on the premise of transmitting and receiving duals may perform the following steps:
  • the base station designs a downlink transmit beamforming matrix with a target of maximizing SLNR (as with FIG. 5 510 is similar, and is not described here again;
  • the relay station designs the downlink receive beamforming matrix in a conventional manner (for example, SVD), and uses the conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beamforming matrix to achieve a certain purpose.
  • the performance of the relay backhaul link is improved
  • the uplink and downlink duality in the case of the base transceiver filter dual (conjugate transpose) and the relay transceiver filter dual, Using the conjugate transposed matrix of the downlink transmit matrix of the base station as the uplink receive beamforming matrix, the criterion for maximizing the SLNR based on designing the downlink transmit beamforming matrix is equivalent to the maximum based on designing the uplink receive beamforming matrix.
  • the SINR criterion is eliminated, thereby eliminating interference between relay stations in the cell.
  • the conjugate transposed matrix of the downlink beamforming matrix can be used as an uplink beamforming matrix according to an embodiment of the present invention, thereby simplifying the design process of the uplink beamforming matrix.
  • the method of transmitting a signal according to an embodiment of the present invention has been described above, and an apparatus for transmitting a signal according to an embodiment of the present invention will be described below with reference to FIGS. 6 and 7, respectively.
  • FIG. 6 is a block diagram showing the structure of an apparatus 600 for transmitting signals in accordance with one embodiment of the present invention.
  • Apparatus 600 includes an acquisition module 610 and a processing module 620.
  • the acquisition module 610 acquires a downlink transmit beamforming matrix.
  • the processing module 620 processes the uplink signal by using the conjugate transposed matrix of the downlink transmit beamforming matrix as the uplink receive beamforming matrix.
  • the conjugate transposed matrix of the downlink transmit beamforming matrix can be used as the uplink receive beamforming matrix to process the uplink signal, which can simplify the design of the uplink receive beamforming matrix, thereby reducing the complexity of the system.
  • the device 600 is a first communication device, and the acquisition module 610 acquires a downlink transmit beamforming matrix based on a signal-to-noise ratio at the second communication device, and the processing module 620 uses the conjugate transposed matrix of the downlink transmit beamforming matrix as an uplink receive beam.
  • a shaping matrix that processes the upstream signals received from the second communication device.
  • the obtaining module 610 acquires a downlink transmission that maximizes a signal to noise ratio at the second communication device according to a covariance matrix of the additive white Gaussian noise vector at the second communication device and a channel matrix of the first communication device to the second communication device. Beamforming matrix.
  • the obtaining module 610 is configured to obtain the downlink transmit beamforming matrix by using the following formula:
  • i is the number of the second communication device
  • the SLNR is the signal to noise ratio at the second communication device
  • is the downlink transmit beamforming matrix to be solved
  • W is the channel matrix of the first communication device to the second communication device i, H
  • H & co is the second
  • the number of antennas of device i, i and j are integers.
  • the downlink transmit beamforming matrix is a matrix pair I — — — —
  • the downlink transmit beamforming matrix is a feature vector corresponding to the previous largest generalized eigenvalue of the matrix pair H ; , N ⁇ 2 / + ⁇ HH.
  • the processing module 620 processes the uplink signal by using the conjugate transposed matrix of the downlink beamforming matrix as the uplink beamforming matrix in the case where the transceiver filter pair of the first communication device and the transceiver filter of the second communication device are dual.
  • the first communication device is a macro base station
  • the second communication device is a relay station, a micro base station or a user terminal.
  • the base station may use the conjugate transposed matrix of the downlink transmitting beamforming matrix as the uplink receiving beamforming matrix process to receive from the relay station.
  • the uplink signal may be such that the criterion for maximizing the SLNR based on the design of the downlink transmit beamforming matrix is equivalent to the criterion for maximizing the SINR upon which the uplink receive beamforming matrix is designed (regardless of uplink transmit beamforming, ie considering It is a unit matrix), thereby suppressing intra-cell interference.
  • FIG. 7 is a structural schematic diagram of an apparatus 700 for transmitting signals according to another embodiment of the present invention.
  • Apparatus 700 includes an acquisition module 710 and a processing module 720.
  • the acquisition module 710 acquires a downlink receive beamforming matrix.
  • the processing module 720 processes the uplink signal by using the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beamforming matrix.
  • the conjugate transposed matrix of the downlink receive beamforming matrix can be used as the uplink transmit beamforming matrix to process the uplink signal, which can simplify the design of the uplink transmit beamforming matrix, thereby reducing the complexity of the system.
  • the device 700 is a second communication device, and the obtaining module 710 acquires a downlink receive beamforming matrix based on a signal to interference and noise ratio at the second device, and the processing module 720 uses the conjugate transposed matrix of the downlink receive beamforming matrix as an uplink transmit beamforming.
  • the matrix processes the uplink signal sent to the first communication device.
  • the obtaining module 710 obtains, according to the interference plus noise covariance matrix at the second communication device, and the equivalent channel matrix from the first communication device to the second communication device, so that the signal is dry and noise at the second communication device Ratio to the largest downlink receive beamforming matrix.
  • the obtaining module 710 is configured to obtain the downlink receiving beamforming matrix by using the following formula:
  • i is the number of the second communication device
  • the SINR is the signal to interference and noise ratio at the second communication device
  • the processing module 720 processes the uplink signal by using the conjugate transposed matrix of the downlink beamforming matrix as the uplink beamforming matrix in the case where the transceiver filter pair of the first communication device and the transceiver filter of the second communication device are dual.
  • the first communication device is a macro base station
  • the second communication device is a relay station, a micro base station or a user terminal.
  • the relay station may use the conjugate transposed matrix of the downlink receive beamforming matrix as the uplink transmit beamforming matrix process to send to the base station.
  • the uplink signal may be such that the criterion for maximizing the SINR upon which the downlink receive beamforming matrix is designed is equivalent to the criterion for maximizing the SLNR upon which the uplink transmit beamforming matrix is designed, thereby suppressing inter-cell interference.
  • the embodiment of the present invention further provides that the communication system may include the macro base station and the relay station according to the foregoing embodiments, or include a macro base station and a micro base station, or include a macro base station and a user equipment.
  • an embodiment of the uplink beamforming matrix is proposed according to an embodiment of the present invention.
  • the scheme does not require coordination between base stations, but the base station designs downlink downlink beamforming matrices of different relay stations according to channel information in the cell, which reduces the requirements on the system, and the design criterion based on SLNR at the base station breaks through the limitation of the number of transmitting antennas. Interference between different relay stations in the cell is effectively suppressed.
  • the receiving beamforming of the relay station aims to maximize the SINR, so that the beam direction can obtain the best compromise between the main lobe beam alignment useful signal direction and the null trap beam alignment interference signal direction, and then the direction is taken as the uplink.
  • the direction of the beam is transmitted, so that the beam main lobe of the uplink signal is aligned with the direction of the leaked signal of the neighboring base station.
  • the entire algorithm is simple in design, no iterative algorithm is used, which saves overhead and enhances the performance of the relay backhaul link.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the present invention A portion of the technical solution that contributes in nature or to the prior art, or a portion of the technical solution, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer
  • the device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明实施例提供了一种传输信号的方法和设备。该方法包括:获取下行波束成形矩阵;利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成形矩阵处理上行信号。本发明实施例可以利用该下行波束成形矩阵的共轭转置矩阵作为上行波束成形矩阵处理上行信号,能够简化上行波束成形矩阵的设计,从而降低系统的复杂度。

Description

传输信号的方法和设备 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及一种传输信号的 方法和设备。 背景技术
在 3GPP先进的长期演进(LTE-A, LTE- Advanced ) 系统将会釆用中继 协作传输的方法提高小区边缘用户的服务质量和扩展小区覆盖。 中继网络的 回程链路容量限制了接入链路的吞吐量, 因此, 加强回程链路的质量至关重 要。 在具有多个中继站(Relay )的中继网络的回程链路中, 多个中继站复用 相同的信道资源, 复用增益能够大大提高系统容量。 但是, 多个中站继共用 相同的资源必定会带来共信道干扰。
为了消除共信道干扰, 目前已知容量最优的解决方案是脏纸编码(DPC, Dirty Paper Coding ), 但是由于其复杂度过高而难以实现。 另夕卜, 多点协作传 输 ( CoMP, Coordinated Multipoint Transmission/Reception )技术因其能有效 改善小区边缘用户性能, 提高系统吞吐量, 在近年来引起了业界的广泛关注 和研究, 但 CoMP技术需要多小区间基站的协作, 在实际应用时仍然具有一 定的难度。 发明内容
本发明实施例提供了一种传输信号的方法和设备, 能够简化上行波束成 形矩阵的设计, 从而降低系统的复杂度。
一方面, 提供了一种传输信号的方法, 包括: 获取下行波束成形矩阵; 利用该下行波束成形矩阵的共轭转置矩阵作为上行波束成形矩阵处理上行信 号。
另一方面, 提供了一种传输信号的设备, 包括: 获取模块, 用于获取下 行发送波束成形矩阵; 和处理模块, 用于利用该下行发送波束成形矩阵的共 轭转置矩阵作为上行接收波束成形矩阵处理上行信号。
另一方面, 提供了一种传输信号的设备, 包括: 获取模块, 用于获取下 行接收波束成形矩阵; 和处理模块, 用于利用该下行接收波束成形矩阵的共 轭转置矩阵作为上行发送波束成形矩阵处理上行信号。
本发明实施例可以利用该下行波束成形矩阵的共轭转置矩阵作为上行波 束成形矩阵处理上行信号, 能够简化上行波束成形矩阵的设计, 从而降低系 统的复杂度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明一个实施例的传输信号的方法的示意性流程图。
图 2是根据本发明另一实施例的传输信号的方法的示意' \ί流程图。
图 3是根据本发明另一实施例的传输信号的方法的示意性流程图。
图 4是才艮据本发明的一个实施例的传输信号的过程的示意性流程图。 图 5是才艮据本发明的另一实施例的传输信号的过程的示意性流程图。 图 6是根据本发明一个实施例的传输信号的设备的结构性示意图。
图 7是根据本发明另一实施例的传输信号的设备的结构性示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
应理解, 本发明的技术方案可以应用于各种通信系统, 例如: 全球移动 通讯( GSM, Global System of Mobile communication )系统、码分多址( CDMA, Code Division Multiple Access )系统、宽带码分多址( WCDMA, Wideband Code Division Multiple Access ) 系统、 通用分组无线业务( GPRS, General Packet Radio Service )、 长期演进(LTE, Long Term Evolution ) 系统、 先进的长期演 进( LTE-A, Advanced long term evolution )系统、通用移动通信系统( UMTS , Universal Mobile Telecommunication System )等 , 本发明实施例并不限定, 但 为描述方便, 本发明实施例将以 LTE网络为例进行说明。 系统中可包括不同的网元。 例如, 长期演进( LTE , Long Term Evolution )和 LTE-A中无线接入网络的网元包括 eNB ( eNodeB , 演进型基站), WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址) 中无线接入网络 的网元包括 RNC ( Radio Network Controller, 无线网络控制器)和 NodeB , 类似地 , WiMax ( Worldwide Interoperability for Microwave Access, 全球微波 互联接入)等其它无线网络也可以使用与本发明实施例类似的方案, 只是基 站系统中的相关模块可能有所不同, 本发明实施例并不限定, 但为描述方便, 下述实施例将以 eNodeB为例进行说明。
还应理解, 在本发明实施例中, 终端也可称之为用户设备(UE, User Equipment ), 移动台 ( MS, Mobile Station )、 移动终端( Mobile Terminal )等, 该终端可以经无线接入网 (RAN, Radio Access Network )与一个或多个核心 网进行通信, 例如, 终端可以是移动电话(或称为 "蜂窝" 电话)、 具有通信 功能的计算机等, 例如, 终端还可以是便携式、 袖珍式、 手持式、 计算机内 置的或者车载的移动装置。
在中继网络中, 每个小区内放置一个基站和多个中继站, 当基站与中继 站通信时, 中继站与本小区基站之间的通信会受到本小区基站与本小区其他 中继站的通信的干扰(小区内干扰) 以及其他小区基站与其它小区中继站之 间通信的干扰(小区外干扰)。 在传统移动通信系统中, 相邻小区釆用不同频 段以抑制小区间干扰。但在 LTE和 LTE-A系统中, 相邻小区可能存在重叠频 段, 因此, 小区间干扰抑制也是一个关键问题。
为了克服多个中继站共用相同的资源带来共信道干扰, 对于下行链路, 已经提出了在基站以最大化中继站处的 SINR为目标的波束成形算法, 该方 案与 DPC和 CoMP相比复杂度降低。 上述基于最大化 SINR的波束成形以最 大化中继站处的 SINR为目标, 求解多个中继站的迭代联合优化问题。 换句 话说, 某个中继站的 SINR不仅取决于自己的波束成形向量(或者称为波束 成形矩阵), 同时与其他中继站的波束成形向量有关。 因此, 求解最优的波束 成形向量时需考虑多个中继站的迭代联合优化问题, 求解非常困难。 对于上行链路,通常各中继站可以釆用奇异值分解(SVD, Singular Value Decomposition )获得上行发送波束成形矩阵, 以提升回程链路的性能。 具体 来说, 中继站 首先通过小区专用参考信号 (CRS , Cell-specific reference signals ) 测量基站到该中继站的下行信道状态信息 (CSIR , Channel State Information of Receive ), 并且利用 TDD系统信道互易性可获得该中继站到基 站的上行信道状态信息 ( CSIT, Channel State Information of Transmit ), 设为 H 然后, 对该信道作 SVD分解, 有 = υ^Η。 最后, 将上行发送波束成 形矩阵定为 ί^ = ν 分配给数据流的功率对应于信道矩阵平方奇异值进行的注 水分配。 在接收端, 基站利用解调参考信号 (DMRS , Demodulation RS )测 得的信道信息将上行接收波束成形矩阵定为: = 1 。 通过对信道进行匹配, 可以使中继回程链路的性能得到一定的提升。 然而, 这种波束成形矩阵的设 计是基于信道匹配的, 即有利于有用信号的方向, 但没有考虑多个中继站共 用相同的资源带来共信道干扰。
因此, 根据本发明的实施例在设计一种简单的上行波束成形算法时, 还 将进一步考虑回程链路的中继站同时受到小区内干扰以及小区间干扰的问 题, 以提高回程链路的容量。
需要说明的是, 根据本发明的实施例并不限于中继网络, 例如, 根据本 发明的实施例还可应用于蜂窝小区中多用户多输入多输出 ( MU-MIMO , Multiple-User Multiple-Input Multiple-Output )的场景中,也可进一步扩展到具 有微小区的同频异构网络中。
图 1是根据本发明一个实施例的传输信号的方法的示意性流程图。
110, 获取下行波束成形矩阵。
例如, 下行波束成形矩阵可以是基站侧的下行发送波束成形矩阵, 或者 也可以是中继站、 用户设备或微基站侧的下行接收波束成形矩阵。
例如, 可以基于信泄噪比 ( SLNR, Signal to Leakage Noise Ratio )或信 干噪比 ( SINR, Signal to Interference Noise Ratio )等波束成形矩阵设计准则 获取下行波束成形矩阵。 根据本发明的实施例并不限于此, 例如, 还可以釆 用上述 SVD等方式获取下行波束成形矩阵。
120, 利用该下行波束成形矩阵的共轭转置矩阵(也可称为对偶矩阵 )作 为上行波束成形矩阵处理上行信号。 例如, 基站可以将下行发送接收矩阵的共轭转置矩阵作为上行接收波束 成形矩阵处理从中继站接收到的上行信号, 而中继站、 用户设备或微基站可 以将下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩阵处理 将要发送给基站的上行信号。
本发明实施例可以利用该下行波束成形矩阵的共轭转置矩阵作为上行波 束成形矩阵处理上行信号, 能够简化上行波束成形矩阵的设计, 从而降低系 统的复杂度。
在 120中, 在第一通信设备的收发滤波器对偶和第二通信设备的收发滤 波器对偶的情况下, 利用该下行波束成形矩阵的共轭转置矩阵作为上行波束 成形矩阵处理上行信号。
这里, 收发滤波器对偶是指发送波束成形矩阵与接收波束成形矩阵具有 共轭转置关系。 例如, 在基站的收发滤波器对偶并且中继站的收发滤波器也 对偶的情况下, 基站可以将下行发送波束成形矩阵的共轭转置矩阵作为上行 接收波束成形矩阵, 以便处理从中继站接收的上行信号, 或者中继站可以将 下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩阵, 以便处 理向基站发送的上行信号。
图 2是根据本发明另一实施例的传输信号的方法的示意' \ί流程图。
210,第一通信设备基于第二通信设备处的信泄噪比获取下行发送波束成 形矩阵。
根据本发明的实施例, 第一通信设备可以为宏基站, 第二通信设备可以 为中继站、 基站或用户终端。
例如, 上述信泄噪比可以指本小区的基站发送给某个中继站的信号能量 与本小区的基站发送给该中继站的信号泄漏到其它中继站的信号能量和该中 继站处的噪声能量之和的比值。
220,第一通信设备利用该下行发送波束成形矩阵的共轭转置矩阵作为上 行接收波束成形矩阵, 处理从第二通信设备接收的上行信号。 并且利用该下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束成形矩 阵, 等效于在设计上行接收波束成形矩阵时考虑了基站处的信干噪比 (这种 等效关系将在后面的实施例中得以证明)。 本发明实施例可以由基站利用该下行发送波束成形矩阵的共轭转置矩阵 作为上行接收波束成形矩阵处理上行信号, 能够简化上行接收波束成形矩阵 的设计, 从而降低系统的复杂度。 另外, 在设计下行发送波束成形矩阵时考 虑了中继站处的信泄噪比, 等效于在设计上行接收波束成形矩阵时考虑了基 站处的信干噪比, 从而能够抑制小区内的干扰。
在 210中, 第一通信设备根据第二通信设备处的加性高斯白噪声向量的 协方差矩阵和第一通信设备到第二通信设备的信道矩阵, 获取使得第二通信 设备处的信泄噪比最大的下行发送波束成形矩阵。
例如, 第二通信设备可以是至少一个中继站。 这里第一通信设备到第二 通信设备的信道矩阵包括基站到至少一个中继站的信道矩阵。 基站可以通过 使某个中继站处的信泄噪比最大来获取针对该中继站的下行发送波束成形矩 阵, 即该基站在釆用该下行发送波束成形矩阵向该中继站发送下行信号时, 可以使得该中继站处的信泄噪比最大。
根据本发明的实施例将获取的使得中继站处的信泄噪比最大的下行发送 波束成形矩阵的共轭转置矩阵作为上行接收波束成形矩阵, 而最大化中继站 处的信泄噪比等效于最大化基站处的信干噪比, 即该中继站发给基站的信号 受到小区内其它中继站的干扰最小, 从而抑制了小区内的干扰。
在 210中, 第一通信设备可以通过下列公式获取该下行发送波束成形矩 阵:
Figure imgf000007_0001
其中 i为第二通信设备的编号,该 SLNR为第二通信设备处的信泄噪比;
^是待求解的下行发送波束成形矩阵, W 为第一通信设备到第二 通信设备 i的信道矩阵, H;为第一通信设备到第二通信设备 j的 信道矩阵, H & C σ2为第二通信设备 i处的每根天线的加性高斯白噪声 的功率谱密度, I e C 为第一通信设备发送的数据的流数; M为第一 通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整数。
例如, 基站可以先由 DMRS获得上行信道矩阵, 再利用 TDD系统信道 互易性, 可得到下行发送信道矩阵 。 例如, 在实际中, 由于通常基站和中 继站的噪声功率谱是一致的, 且值较小, 因此基站在设计信道矩阵时, 可以 使用基站处的 o作为中继站处的 o 。 可选地, 基站还可以从中继站处获取关 于中继站处的 o 的信息。 在 210 中, 当 = l时, 该下行发送波束成形矩阵即为矩阵对 Hi Hi Νσ?Ι +∑ Η " Hj 的最大广义特征值对应的特征值向量, 当 > 1时,
3*1
Figure imgf000008_0001
的特征向量。 在 220中, 在第一通信设备的收发滤波器对偶和第二通信设备的收发滤 波器对偶的情况下, 利用上述下行波束成形矩阵作为上行波束成形矩阵处理 上行信号。
例如,在基站的收发滤波器对偶并且中继站的收发滤波器对偶的情况下, 基站利用上述下行发送波束形成矩阵的共轭转置矩阵作为上行接收波束成形 矩阵处理从中继站接收的上行信号, 可使得设计下行发送波束成形矩阵时所 基于的最大化 SLNR的准则等效于设计上行接收波束成形矩阵时所基于的最 大化 SINR的准则 (不考虑上行发送波束成形, 即考虑其为单位矩阵), 从而 抑制了小区内干扰。
图 3是根据本发明另一实施例的传输信号的方法的示意性流程图。
310 ,第二通信设备基于第二设备处的信干噪比获取下行接收波束成形矩 阵。
根据本发明的实施例,第一通信设备为宏基站,第二通信设备为中继站、 微基站或用户终端。
例如, 上述信干噪比可以指某个中继站从本小区的基站接收的有用信号 能量与该中继站从其它小区基站接收到的干扰信号能量和该中继站处的噪声 能量之和的比值。
320 ,第二通信设备利用该下行接收波束成形矩阵的共轭转置矩阵作为上 行发送波束成形矩阵, 处理向第一通信设备发送的上行信号。 例如, 中继站在设计下行接收波束成形矩阵时考虑了中继站处的信干噪 比, 并且利用该下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成 形矩阵,等效于在设计上行发送波束成形矩阵时考虑了基站处的信泄噪比(这 种等效关系将在后面的实施例中得以证明)。
本发明实施例可以由中继站利用该下行接收波束成形矩阵的共轭转置矩 阵作为上行发送波束成形矩阵处理上行信号, 能够简化上行发送波束成形矩 阵的设计, 从而降低系统的复杂度。 另外, 在设计下行接收波束成形矩阵时 考虑了中继站处的信干噪比, 等效于在设计上行发送波束成形矩阵时考虑了 基站处的信泄噪比(这种等效关系将在后面的实施例中得以证明 ), 从而能够 抑制小区间干扰。
在 310中, 第二通信设备根据第二通信设备处的干扰加噪声协方差矩阵 和从第一通信设备到第二通信设备的等效信道矩阵, 获取使得第二通信设备 处的信干噪比最大的下行接收波束成形矩阵。
例如, 第二通信设备可以为至少一个中继站。 这里第一通信设备到第二 通信设备的信道矩阵包括基站到至少一个中继站的信道矩阵。 中继站可以通 过使中继站处的信干噪比最大来获取该中继站的下行接收波束成形矩阵, 即 该中继站在釆用该下行接收波束成形矩阵从该基站接收下行信号时, 可以使 得该中继站处的信干噪比最大。
根据本发明的实施例将获取的使得中继站处的信干噪比最大的下行接收 波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩阵, 使得最大化中继 站处的信干噪比等效于上行最大化基站处的信泄噪比, 即中继站发送给基站 的信号泄漏到其它小区的信号能量最小, 从而抑制了小区间干扰。
在 310中,第二通信设备通过下面的公式获取该下行接收波束成形矩阵:
max
Figure imgf000009_0001
其中, i为第二通信设备的编号, SINR为第二通信设备处的信干噪比; 为第二通信设备处的干扰加噪声协方差矩阵, I C N ^ 为从 第一通信设备到第二通信设备的等效信道矩阵, W , H, e CNxM; 为 待求解的下行接收波束成形矩阵, cdxN ; M为第一通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整数。 例如, ( . +o /)可以通过小区专用参考信号获得, 用户专用参考信号可 以为 DM-RS, 而等效信道矩阵^ 通过用户专用参考信号获得。 在 320中, 在第一通信设备的收发滤波器对偶和第二通信设备的收发滤 波器对偶的情况下, 利用上述下行波束成形矩阵作为上行波束成形矩阵处理 上行信号。
例如,在基站的收发滤波器对偶并且中继站的收发滤波器对偶的情况下, 中继站利用上述下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成 形矩阵处理向基站发送的上行信号, 可使得设计下行接收波束成形矩阵时所 基于的最大化 SINR 的准则等效于设计上行发送波束成形矩阵时所基于的最 大化 SLNR的准则, 从而抑制了小区间干扰。
应理解, 图 2的实施例与图 3的实施例并不是完全独立的, 可以组合使 用, 这种组合也落入本发明实施例的范围内。
图 4是才艮据本发明的一个实施例的传输信号的过程的示意性流程图。 410,基站获取下行发送波束成形矩阵, 并通过下行发送波束成形矩阵处 理向中继站发送的下行信号。
根据本发明的实施例 ,基站可以以常规方式设计下行发送波束成形矩阵, 例如, 基站利用 SVD设计下行发送波束成形矩阵, 以使得基站发送的下行信 号的波束方向对准期望中继站, 从而使得中继回程链路的性能得到一定的提 升。
420, 中继站获取下行接收波束成形矩阵,并通过下行接收矩阵处理从基 站接收的下行信号。
根据本发明的实施例, 中继站以常规方式设计下行接收波束成形矩阵, 例如, 中继站利用 SVD设计下行接收波束成形矩阵, 以使得中继站接收下行 信号的波束方向对准发送该信号的基站, 从而使得中继回程链路的性能得到 一定的提升。
430,中继站利用下行接收波束成形矩阵的共轭转置矩阵作为上行发送波 束成形矩阵处理向基站发送的上行信号。
例如, 中继站将下行接收波束成形矩阵的共轭转置矩阵作为上行发送波 束成形矩阵, 可以简化上行发送波束成形矩阵的设计。
440,基站利用下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束 成形矩阵处理从中继站接收的上行信号。
例如, 基站将下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束 成形矩阵, 可以简化上行接收波束成形矩阵的设计。
应理解, 上述 410与 420的顺序可以颠倒, 430与 440的顺序可以颠倒。 图 5是根据本发明另一实施例的传输信号的过程的示意性流程图。
根据本发明的实施例可以在基站的收发滤波器对偶并且中继站的收发滤 波器对偶的前提下设计上行波束成形算法, 同时抑制小区内中继站间干扰以 及小区间干扰。
510, 基站以最大化 SLNR为目标获取下行发送波束成形矩阵。
例如, 对于 TDD系统, 基站可以首先通过解调参考信号(Demodulation
Reference Signal, DMRS )测得各中继站到基站的上行信道状态信息( Channel
State Information at the Receiver, CSIR ), 然后, 可以利用 TDD系统信道互易 性获得基站到各中继站的下行信道状态信息 ( Channel State Information at the
Transmitter, CSIT )。 CSIR和 CSIT分别表示接收信道状态信息和发送状态信 息。 例如: 对于上行链路, 基站计算上行接收波束成形矩阵所用的信道信息 可表示为 CSIR, 对于下行链路, 基站计算下行发送波束成形矩阵所用的信道 信息可表示为 CSIT。 信道矩阵 H可以通过各种导频信号获得。
经过波束成形后, 中继 处的接收信号为:
Yi = Hi Wi Xi + Ri Hi Wj Xj + Ψ, + Ά Z, ( 1 ) 其中, 为基站发送给中继站 的信号, x^ cdxl 为流数。 ^为待求 解的下行发送波束成形矩阵, e CMxd。 ^为基站到中继站 的信道矩阵,
H G CNXM , 互;为基站到中继站_/的信道矩阵, I & C 表示小区外总的 干扰信号 e CWxl , 为中继 '·处的噪声, e CWxl , E(ztZ ) = a l , 其中 σ2/为 加性高斯白噪声向量的协方差矩阵。 ¾为中继站 i的下行接收波束成形矩阵, Rt CdxN , M为基站的天线数目, N为中继 的天线数目。
经过计算, 中继站 i的 SLNR为:
Figure imgf000012_0001
可以以最大化中继站 i处的 SLNR为目标求解下行发送波束成形矩阵:
= arg jnax SLNR = arg jnax (2)
Figure imgf000012_0002
可以根据瑞利熵定理求得, 即 为矩阵对 A^2/ +∑H H 的最大广义特征值对应的特征向量。 下面证明当釆用多流进行传输时
( W,eCMxd,d>\ ), W为矩阵对 H^H,., \^.2/ + ; 的前 个最大广义特 征值对应的特征向量。
根据瑞利熵定理, 当为单流传输 ( = l ) 时, 即为矩阵对 其中
的前
Figure imgf000012_0003
个最大的广义特征值对应的特征向量。 证明如下:
定 Hermite 矩 可逆矩阵 T 。 其 中
Λ;
Figure imgf000012_0004
为正则矩阵 束 H ,,
Figure imgf000013_0001
的广义特征值。 令^ =7^ , e CMxd , 由于;是 可逆的, 因此^和 是——对应的。 可得到:
(3)
Figure imgf000013_0002
将 作 SVD分解, a=u, i , f/,.和 '为酉矩阵, U^C VteC
0
Figure imgf000013_0003
则上式可以写为:
Figure imgf000013_0005
Figure imgf000013_0004
= 7^作适当的放缩就可以使^满足 7>(„ ) =1。 证毕。
520, 中继以最大化 SINR为目标获取下行接收波束成形矩阵。
例如, 对于 TDD 系统, 中继站首先利用基站发送的小区专用参考信号
( Cell-specific Reference Signal, CRS )获得导频处的干扰加噪声协方差矩阵。 具体方法是: 在导频处, 信道估计乘以已知的导频信息, 并用接收信号减去 所得值, 再对这个差值求自相关得到导频处的干扰协方差矩阵; 而在非导频 处, 通过线性插值获取干扰加噪声协方差矩阵。 同时, 中继站可利用用户专 用参考信号, 例如, 解调参考信号(Demodulation Reference Signal, DM-RS ) 测得等效信道。
经过波束成形后, 中继 处的接收信号的公式可以如公式(1)所示。 通过计算, 中继端 i的 SINR为
s = siM^ (5) 例如, 对于下行链路, 可以利用最大化 SINR来设计下行接收波束成形 矩阵:
舰=腿^ (6)
R' „ 为了使 SINR最大, 利用拉格朗日数乘法可以得到下行接收波束成形矩 阵为 ^^+^/)—1^^。 其中, 上述等效信道, 可以通过用户参考信号 (DM-RS)获得。 为干扰加噪声协方差矩阵, 可以通过小区专用参 考信号计算获得。 所以利用 SINR求解接收矩阵时, 只有 一个变量, 即中继 i的 SINR仅取决于自己的波束成形向量,而与其他中继的波束成形向量无关。 因此, 求解最优的波束成形向量时无需考虑多个中继的迭代联合优化问题, 可利用拉格朗日来求解, 求解过程简单。 将此下行接收波束成形矩阵作为上 行波束成形发送矩阵, 可以达到小区间干扰抑制的目的。 这里, 最大化 SINR 是指使本小区基站发送给中继站 i的有用信号能量与其他小区基站对中继站 i 的干 4尤信号能量加噪声能量的比值最大。
530,中继站利用下行接收波束成形矩阵的共轭转置矩阵作为上行发送波 束成形矩阵以处理上行信号。
才艮据本发明的实施例, 在中继站处, 利用对偶性, 将以最大化 SINR为 目标设计的下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩 阵, 可使得设计下行接收波束成形矩阵时所基于的最大化 SINR的准则等效 于设计上行发送波束成形矩阵时所基于的最大化 SLNR的准则。 具体证明如 下:
例如, 在中继站或用户设备, 以最大化 SINR为目标设计接收矩阵即解 决 ¾口下问题:
Tr(RiHiWiW H R )
Ri = arg max SINR = arg max - ― ―
Figure imgf000014_0001
s. r Rfl =1, i = ...,K Ri .dxN 其中, ∑ — mt^— ; mt Λ为其他小区基站发送的信号经小区 j _ mt
间信道 ― mt对中继 /的干扰。 为下行接收波束成形矩阵,应表述为 : dxN , 为流数, 即支持多流传输, 例如 d=2 , 即支持双流传输。 ^为基站到中继 i 的信道矩阵。 ^为下行发送波束成形矩阵。 o 为中继站 i处由接收波束成形 处理之后的噪声功率。 在中继站或用户设备, 以最大化 SLNR (即泄露到其他小区的能量最小) 为目的设计的上行发送波束成形矩阵即解决如下问题:
Figure imgf000015_0001
其中, .为基站处的上行接收波束成形矩阵。 JL为中继 i到基站的信道 矩阵。 ■为中继 i的上行发送波束成形矩阵。 o 为基站处由接收波束成形处 理之后的噪声功率。
在实际中, 通常认为基站和中继站的噪声功率谱是一致的, 并且, 在强 干扰情况下, 噪声的影响可忽略不计。
从公式(9 )可以看出, 在 TDD 系统中, 由互易性可知^ = Hf , 如果 基站的收发滤波器对偶和中继端的收发滤波器对偶(例如, = , W, = w 等 ), 则设计下行接收波束成形矩阵时所基于的最大化 SINR的准则等效于设 计上行发送波束成形矩阵时所基于的最大化 SLNR的准则。 根据本发明的实施例将下行接收波束成形矩阵的共轭转置矩阵作为上行 发送波束成形矩阵, 也就是, 使得设计下行接收波束成形矩阵时所基于的最 大化 SINR的准则等效于设计上行发送波束成形矩阵时所基于的最大化 SLNR 的准则, 可理解为使上行回程链路中的中继站 i发送到本小区基站的有用信 号能量与中继站 i 泄露到其他小区基站的信号能量和噪声能量之和的比值最 大。 当中继站釆用上述上行发送波束成形矩阵处理发送给基站的上行信号时, 可以抑制小区间干扰。
540,基站利用下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束 成形矩阵以处理上行信号。
根据本发明的实施例, 在基站端, 利用对偶性, 将以最大化 SLNR为目 标设计的下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束成形矩 阵, 可使得设计下行发送波束成形矩阵时所基于的最大化 SLNR的准则等效 于设计上行接收波束成形矩阵时所基于的最大化 SINR的准则。 具体证明如 下:
例如, 在基站, 以最大化 SLNR为目标设计下行发送矩阵即求如下优化 问题:
Figure imgf000016_0001
( 10 ) 其中, R - R. H, )wt为基站发送给中继站 i的信息泄露到本小区其 它中继站处的^ ¾。 o 为中继站 z'处经中继接收波束成形矩阵处理后的噪声功 率。 ^为下行发送波束成形矩阵, 与前对应, ^应表述为 : Mxi/。 为流 数, 即支持多流传输。 ^为基站到中继站 i的信道矩阵。
在基站, 以最大化 SINR为目标设计下行接收波束成形矩阵即解决如下 问题:
在只考虑小区内干扰的影响的情况下, 基站处的接收信号可以表示为: yBS = Wi Hi Xt + Wi
Figure imgf000016_0002
XJ + Z ( 11 ) 其中, 为小区内中继 j发送到基站的信号, 为干扰信号。 ^为基 站处的上行接收波束成形矩阵。 为中继站 i到基站的信道矩阵。 ■为上行 发送波束成形矩阵。 为基站处的噪声。
τΛττ, Tri , HL R! H
Wi = arg max SINR = arg max—— γ f w )
Wt ^ . ~ — ― —Η—Η—Η ― h
Tr j W1HjRjRj Hj Wt +W1a l一W1 ( 12 ) s.t. tr w w1 j = l, i = \, ...,K W, : dxM 其中,
Figure imgf000017_0001
在实际应用中, 通常认为基站和中继站的噪声功率谱是一致的, 并且, 在强干扰情况下, 噪声的影响可忽略不计。
公式(12 ) 中∑^ ; :^^^「为邻区中继发送的信号对中继 发送给 基站的信号的干扰。 ;≠ 公式(13 )可看出, 在 TDD系统中, 由互易性可知^ = Hf , 如果基站的收发滤波器对偶和中继端的收发滤波器对偶(例如, 对于 中继 i, = Rf , = w ), 则设计下行发送波束成形矩阵时所基于的最大 化 SLNR的准则等效于设计上行接收波束成形矩阵时所基于的最大化 SINR 的准则。
根据本发明的实施例利用该下行发送波束成形矩阵的共轭转置矩阵作为 上行接收波束成形矩阵, 也就是, 使得设计下行发送波束成形矩阵时所基于 的最大化 SLNR的准则等效于设计上行接收波束成形矩阵时所基于的最大化 SINR的准则,可以理解为使其它中继在回程链路上行给基站发送的信号对目 标中继发送给基站的信号的干扰最小。 当基站釆用上述上行接收波束成形矩 阵处理从中继站 i接收的上行信号时, 可以抑制小区内的干扰。
应理解, 上述 510与 520的顺序可以颠倒, 530与 540的顺序可以颠倒。 根据本发明的实施例, 基站可以以最大化 SLNR为目标设计下行发送波 束成形矩阵, 并根据上下行对偶性原理, 将下行发送矩阵的共轭转置矩阵作 为上行接收波束成形矩阵, 以抑制小区内的干扰。 中继站可以以最大化 SINR 为目标设计下行接收波束成形矩阵, 并根据上下行对偶性原理, 将下行接收 波束成形矩阵的共轭转置矩阵作为上行发送矩阵, 以抑制小区间干扰。
需要说明的是, 在实际应用中, 实施例 5中的获取上行发送波束成形矩 阵的过程和获取上行接收波束成形矩阵的过程可分别使用也可同时使用, 例 如, 通过上述方式获取上行发送波束成形矩阵是为了消除小区间的干扰, 而 通过上述方式获取上行接收波束成形矩阵是为了消除小区内中继站间的干 扰。
可选地, 作为另一实施例, 在收发对偶的前提下设计上行波束成形矩阵 以抑制小区间干扰, 可以执行以下步骤: 基站以常规方式(例如, SVD )设 计下行发送波束成形矩阵以实现某种目的 (例如, 使得中继回程链路的性能 得到一定的提升);中继站以最大化 SINR为目标设计下行接收波束成形矩阵, 并将下行接收波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩阵以抑 制小区间干扰(与图 5的 520类似, 在此不再赘述); 根据上下行对偶性, 利 用基站的下行发送波束成形矩阵的共轭转置矩阵作为上行接收波束成形矩 阵, 实现在基站收发滤波器对偶并且中继端收发滤波器亦对偶的情况下, 可 使得设计下行接收波束成形矩阵时所基于的最大化 SINR的准则等效于设计 上行发送波束成形矩阵时所基于的最大化 SLNR的准则, 从而抑制了小区间 干扰。 另外, 根据本发明的实施例可以将下行波束成形矩阵的共轭转置矩阵 作为上行波束成形矩阵, 从而简化了上行波束成形矩阵的设计过程。
可选地, 作为另一实施例, 在收发对偶的前提下设计上行波束成形算法 以抑制小区内干扰, 可以执行以下步骤: 基站以最大化 SLNR为目标设计下 行发送波束成形矩阵(与图 5的 510类似, 在此不再赘述); 中继站以常规方 式(例如, SVD )设计下行接收波束成形矩阵, 并将下行接收波束成形矩阵 的共轭转置矩阵作为上行发送波束成形矩阵以实现某种目的 (例如, 使得中 继回程链路的性能得到一定的提升); 根据上下行对偶性, 实现了在基站收发 滤波器对偶(共轭转置) 并且中继端收发滤波器对偶的情况下, 即利用基站 的下行发送矩阵的共轭转置矩阵作为上行接收波束成形矩阵, 可使得设计下 行发送波束成形矩阵时所基于的最大化 SLNR的准则等效于设计上行接收波 束成形矩阵时所基于的最大化 SINR 的准则, 从而消除了小区内中继站间的 干扰。 另外, 根据本发明的实施例可以将下行波束成形矩阵的共轭转置矩阵 作为上行波束成形矩阵, 从而简化了上行波束成形矩阵的设计过程。 上面描述了根据本发明实施例的传输信号的方法, 下面分别结合图 6和 图 7描述根据本发明实施例的传输信号的设备。
图 6是根据本发明一个实施例的传输信号的设备 600的结构性示意图。 设备 600包括获取模块 610和处理模块 620。
获取模块 610获取下行发送波束成形矩阵。 处理模块 620利用该下行发 送波束成形矩阵的共轭转置矩阵作为上行接收波束成形矩阵处理上行信号。
本发明实施例可以利用该下行发送波束成形矩阵的共轭转置矩阵作为上 行接收波束成形矩阵处理上行信号,能够简化上行接收波束成形矩阵的设计, 从而降低系统的复杂度。
设备 600为第一通信设备, 获取模块 610基于第二通信设备处的信泄噪 比获取下行发送波束成形矩阵, 并且处理模块 620利用该下行发送波束成形 矩阵的共轭转置矩阵作为上行接收波束成形矩阵, 处理从第二通信设备接收 的上行信号。
获取模块 610根据第二通信设备处的加性高斯白噪声向量的协方差矩阵 和第一通信设备到第二通信设备的信道矩阵, 获取使得第二通信设备处的信 泄噪比最大的下行发送波束成形矩阵。
获取模块 610该获取模块用于通过下列公式获取该下行发送波束成形矩 阵:
Figure imgf000019_0001
其中 i为第二通信设备的编号,该 SLNR为第二通信设备处的信泄噪比;
^是待求解的下行发送波束成形矩阵, W 为第一通信设备到第二 通信设备 i的信道矩阵, H;为第一通信设备到第二通信设备 j的 信道矩阵, H & c o 为第二通信设备 i处的每根天线的加性高斯白噪声 的功率谱密度, I e C 为第一通信设备发送的数据的流数; M为第一 通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整数。
根据本发明的实施例, 当 = i时, 该下行发送波束成形矩阵即为矩阵对 I— — — —、
H H,., N^.2/ +∑H H 的最大广义特征值对应的特征值向量, 当 > i时, ί— — f ― ―、,
该下行发送波束成形矩阵为该矩阵对 H;, N^2/ +∑H H 的前 个最 大的广义特征值对应的特征向量。 处理模块 620在第一通信设备的收发滤波器对偶和第二通信设备的收发 滤波器对偶的情况下, 利用该下行波束成形矩阵的共轭转置矩阵作为上行波 束成形矩阵处理上行信号。
第一通信设备为宏基站, 第二通信设备为中继站、 微基站或用户终端。 根据本发明的实施例, 在基站的收发滤波器对偶并且中继站的收发滤波 器对偶的情况下, 基站可以利用上述下行发送波束形成矩阵的共轭转置矩阵 作为上行接收波束成形矩阵处理从中继站接收的上行信号, 可使得设计下行 发送波束成形矩阵时所基于的最大化 SLNR的准则等效于设计上行接收波束 成形矩阵时所基于的最大化 SINR的准则 (不考虑上行发送波束成形, 即考 虑其为单位矩阵), 从而抑制了小区内干扰。
设备 600的获取模块 610和处理模块 620的操作和功能可以参考上述图 1的方法的 110和 120, 为了避免重复, 在此不再赘述。
图 7是根据本发明另一实施例的传输信号的设备 700的结构性示意图。 设备 700包括获取模块 710和处理模块 720。
获取模块 710获取下行接收波束成形矩阵。 处理模块 720利用该下行接 收波束成形矩阵的共轭转置矩阵作为上行发送波束成形矩阵处理上行信号。
本发明实施例可以利用该下行接收波束成形矩阵的共轭转置矩阵作为上 行发送波束成形矩阵处理上行信号,能够简化上行发送波束成形矩阵的设计, 从而降低系统的复杂度。
设备 700为第二通信设备, 获取模块 710基于第二设备处的信干噪比获 取下行接收波束成形矩阵, 并且处理模块 720利用该下行接收波束成形矩阵 的共轭转置矩阵作为上行发送波束成形矩阵, 处理向第一通信设备发送的上 行信号。
获取模块 710根据第二通信设备处的干扰加噪声协方差矩阵和从第一通 信设备到第二通信设备的等效信道矩阵, 获取使得第二通信设备处的信干噪 比最大的下行接收波束成形矩阵。
获取模块 710该获取模块用于通过下面的公式获取该下行接收波束成形 矩阵:
max
Figure imgf000021_0001
其中, i为第二通信设备的编号, SINR为第二通信设备处的信干噪比;
( + o /)为第二通信设备处的干扰加噪声协方差矩阵, 通过小区专用参考信 号获得, a l e CM^ ; ^ 为从第一通信设备到第二通信设备的等效信道矩阵, 通过用户专用参考信号获得, W , H, e CNxM; 为待求解的下行接收 波束成形矩阵, e Cdxw ; M为第一通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整数。 处理模块 720在第一通信设备的收发滤波器对偶和第二通信设备的收发 滤波器对偶的情况下, 利用该下行波束成形矩阵的共轭转置矩阵作为上行波 束成形矩阵处理上行信号。
第一通信设备为宏基站, 第二通信设备为中继站、 微基站或用户终端。 根据本发明的实施例, 在基站的收发滤波器对偶并且中继站的收发滤波 器对偶的情况下, 中继站可以利用上述下行接收波束成形矩阵的共轭转置矩 阵作为上行发送波束成形矩阵处理向基站发送的上行信号, 可使得设计下行 接收波束成形矩阵时所基于的最大化 SINR的准则等效于设计上行发送波束 成形矩阵时所基于的最大化 SLNR的准则, 从而抑制了小区间干扰。
设备 700的获取模块 710和处理模块 720的操作和功能可以参考上述图
1的方法的 110和 120 , 为了避免重复, 在此不再赘述。
本发明实施例还提供一种通信系统可包括上述实施例所述的宏基站和中 继站, 或者包括宏基站和微基站, 或者包括宏基站和用户设备。
针对中继回程链路中中继站同时受到小区内干扰以及邻小区干扰的问 题, 根据本发明的实施例提出了一种上行波束成形矩阵的设计方案。 该方案 不需要基站之间的协同, 只是基站根据小区内的信道信息设计不同中继站的 下行发送波束成形矩阵, 降低了对系统的要求, 基站处基于 SLNR的设计准 则突破了发射天线数量的限制, 有效地抑制了小区内不同中继站间的干扰。 同时, 中继站的接收波束成形以最大化 SINR为目标, 使得波束方向可以在 主瓣波束对准有用信号方向和零陷波束对准干扰信号方向之间取得最佳折 中, 再将该方向作为上行波束的发射方向, 从而很好地实现了上行信号的波 束主瓣对准目标基站方向与零陷波束对准对邻区基站的泄露信号方向的折 中。 另外, 整个算法设计简单, 没有釆用迭代算法, 节省了开销并且使中继 回程链路的性能得到增强。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的 技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可 以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者 网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的 存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ), 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种传输信号的方法, 其特征在于, 包括:
获取下行波束成形矩阵;
利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成形矩阵处理 上行信号。
2 根据权利要求 1所述的方法, 其特征在于, 所述获取下行波束成形矩 阵, 包括:
第一通信设备基于第二通信设备处的信泄噪比获取下行发送波束成形矩 阵,
其中所述利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成形 矩阵处理上行信号, 包括:
所述第一通信设备利用所述下行发送波束成形矩阵的共轭转置矩阵作为 上行接收波束成形矩阵, 处理从所述第二通信设备接收的上行信号。
3、根据权利要求 2所述的方法, 其特征在于, 所述第一通信设备基于所 述第二通信设备处的信泄噪比获取下行发送波束成形矩阵, 包括:
所述第一通信设备根据所述第二通信设备处的加性高斯白噪声向量的协 方差矩阵和所述第一通信设备到所述第二通信设备的信道矩阵, 获取使得所 述第二通信设备处的信泄噪比最大的下行发送波束成形矩阵。
4、根据权利要求 3所述的方法, 其特征在于, 所述获取使得所述第二通 信设备处的信泄噪比最大的下行发送波束成形矩阵, 包括:
所述第一通信设备通过下列公式获取所述下行发送波束成形矩阵:
Figure imgf000024_0001
其中 i为所述第二通信设备的编号, 所述 SLNR为所述第二通信设备处 的信泄噪比; ^是待求解的下行发送波束成形矩阵, W 为所述第 一通信设备到第二通信设备 i的信道矩阵, H & C H;为第一通信设备到 第二通信设备 j的信道矩阵, H & C σ2为第二通信设备 i处的每根天线 的加性高斯白噪声的功率谱密度, I e C 为所述第一通信设备发送的 数据的流数; M为所述第一通信设备的天线个数; N为第二通信设备 i的天 线个数, i和 j为整数。
5、 根据权利要求 4所述的方法, 其特征在于, 当 = l时, 所述下行发送 波束成形矩阵即为矩阵对 {H ^ No 2/ + H 的最大广义特征值对应 的特征值向量, 当 ^ > 1时, 所述下行发送波束成形矩阵为所述矩阵对
I— — — —、
| H H,., N^2/ +∑H H 的前 个最大的广义特征值对应的特征向量。
6根据权利要求 1所述的方法, 其特征在于, 所述获取下行波束成形矩 阵, 包括:
第二通信设备基于所述第二设备处的信干噪比获取下行接收波束成形矩 阵,
其中利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成形矩阵 处理上行信号包括:
第二通信设备利用所述下行接收波束成形矩阵的共轭转置矩阵作为上行 发送波束成形矩阵, 处理向第一通信设备发送的上行信号。
7、根据权利要求 6所述的方法, 其特征在于, 第二通信设备基于所述第 二设备处的信干噪比获取下行接收波束成形矩阵, 包括:
所述第二通信设备根据所述第二通信设备处的干扰加噪声协方差矩阵和 从所述第一通信设备到所述第二通信设备的等效信道矩阵, 获取使得所述第 二通信设备处的信干噪比最大的下行接收波束成形矩阵。
8、根据权利要求 7所述的方法, 其特征在于, 所述获取使得所述第二通 信设备处的信干噪比最大的下行接收波束成形矩阵, 包括:
所述第二通信设备通过下面的公式获取所述下行接收波束成形矩阵: max
Figure imgf000025_0001
其中, i为所述第二通信设备的编号, SINR为所述第二通信设备处的信 干噪比; ( + o /)为所述第二通信设备处的干扰加噪声协方差矩阵, a l e C N; ^ 为从所述第一通信设备到所述第二通信设备的等效信道矩阵, Wi e CMxd , Hi e CNxM; 为待求解的下行接收波束成形矩阵, e Cdxw ; M为 所述第一通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整 数。
9、根据权利要求 2至 8所述的方法, 其特征在于, 利用所述下行波束成 形矩阵的共轭转置矩阵作为上行波束成形矩阵处理上行信号, 包括:
在所述第一通信设备的收发滤波器对偶和所述第二通信设备的收发滤波 器对偶的情况下, 利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束 成形矩阵处理上行信号。
10、 根据权利要求 2至 8中的任一项所述的方法, 其特征在于, 其特征 在于, 所述第一通信设备为宏基站, 所述第二通信设备为中继站、 微基站或 用户终端。
11、 一种传输信号的设备, 其特征在于, 包括:
获取模块, 用于获取下行发送波束成形矩阵; 和
处理模块, 用于利用所述下行发送波束成形矩阵的共轭转置矩阵作为上 行接收波束成形矩阵处理上行信号。
12、根据权利要求 11所述的设备, 其特征在于, 所述设备为第一通信设 备, 所述获取模块用于基于第二通信设备处的信泄噪比获取所述下行发送波 束成形矩阵, 并且所述处理模块用于利用所述下行发送波束成形矩阵的共轭 转置矩阵作为所述上行接收波束成形矩阵, 处理从所述第二通信设备接收的 上行信号。
13、根据权利要求 12所述的设备, 其特征在于, 所述获取模块用于根据 所述第二通信设备处的加性高斯白噪声向量的协方差矩阵和所述第一通信设 备到所述第二通信设备的信道矩阵, 获取使得所述第二通信设备处的信泄噪 比最大的下行发送波束成形矩阵。
14、根据权利要求 13所述的设备, 其特征在于, 所述获取模块用于通过 下列公式获取
Figure imgf000026_0001
其中 i为所述第二通信设备的编号, 所述 SLNR为所述第二通信设备处 的信泄噪比; ^是待求解的下行发送波束成形矩阵, W 为所述第 一通信设备到第二通信设备 i的信道矩阵 I G C H;为第一通信设备到 第二通信设备 j的信道矩阵, H & C σ2为第二通信设备 i处的每根天线 的加性高斯白噪声的功率谱密度, l e C 为所述第一通信设备发送的 数据的流数; M为所述第一通信设备的天线个数; N为第二通信设备 i的天 线个数, i和 j为整数。
15、 根据权利要求 14所述的设备, 其特征在于, 当 = l时, 所述下行发 送波束成形矩阵即为 义特征值对
Figure imgf000027_0001
应的特征值向量, 当^ > 1时, 所述下行发送波束成形矩阵为所述矩阵对 Hi Hi 的前 个最大的广义特征值对应的特征向量 (
Figure imgf000027_0002
16、 根据权利要求 12至 15所述的设备, 其特征在于, 所述处理模块用 于在所述第一通信设备的收发滤波器对偶和所述第二通信设备的收发滤波器 对偶的情况下, 利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成 形矩阵处理上行信号。
17、 根据权利要求 12至 15中的任一项所述的设备, 其特征在于, 其特 征在于, 所述第一通信设备为宏基站, 所述第二通信设备为中继站、 微基站 或用户终端。
18、 一种传输信号的设备, 其特征在于, 包括:
获取模块, 用于获取下行接收波束成形矩阵; 和
处理模块, 用于利用所述下行接收波束成形矩阵的共轭转置矩阵作为上 行发送波束成形矩阵处理上行信号。
19、根据权利要求 18所述的设备, 其特征在于, 所述设备为第二通信设 备, 所述获取模块用于基于所述第二设备处的信干噪比获取所述下行接收波 束成形矩阵, 并且所述处理模块利用所述下行接收波束成形矩阵的共轭转置 矩阵作为所述上行发送波束成形矩阵,处理向第一通信设备发送的上行信号。 20、根据权利要求 19所述的设备, 其特征在于, 所述获取模块用于根据 所述第二通信设备处的干扰加噪声协方差矩阵和从所述第一通信设备到所述 第二通信设备的等效信道矩阵, 获取使得所述第二通信设备处的信干噪比最 大的下行接收波束成形矩阵。
21、根据权利要求 20所述的设备, 其特征在于, 所述获取模块用于通过 下面的公式获取所述下行接收波束成形矩阵:
max
其中, i为所述第二通信设备的编号, SINR为所述第二通信设备处的信 干噪比; + o /)为所述第二通信设备处的干扰加噪声协方差矩阵, a l e C N; 为从所述第一通信设备到所述第二通信设备的等效信道矩阵, Wi e CMxd , Hi e CNxM; 为待求解的下行接收波束成形矩阵, e Cdxw ; M为 所述第一通信设备的天线个数; N为第二通信设备 i的天线个数, i和 j为整 数。
22、 根据权利要求 19至 21所述的设备, 其特征在于, 所述处理模块用 于在所述第一通信设备的收发滤波器对偶和所述第二通信设备的收发滤波器 对偶的情况下, 利用所述下行波束成形矩阵的共轭转置矩阵作为上行波束成 形矩阵处理上行信号。
23、 根据权利要求 19至 21中的任一项所述的设备, 其特征在于, 其特 征在于, 所述第一通信设备为宏基站, 所述第二通信设备为中继站、 微基站 或用户终端。
PCT/CN2012/085899 2011-12-05 2012-12-05 传输信号的方法和设备 WO2013083035A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12856284.0A EP2782263B1 (en) 2011-12-05 2012-12-05 Signal transmission method and device
US14/297,022 US9484999B2 (en) 2011-12-05 2014-06-05 Method and device for transmitting signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110398042.1 2011-12-05
CN201110398042.1A CN103138822B (zh) 2011-12-05 2011-12-05 传输信号的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/297,022 Continuation US9484999B2 (en) 2011-12-05 2014-06-05 Method and device for transmitting signal

Publications (1)

Publication Number Publication Date
WO2013083035A1 true WO2013083035A1 (zh) 2013-06-13

Family

ID=48498195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085899 WO2013083035A1 (zh) 2011-12-05 2012-12-05 传输信号的方法和设备

Country Status (4)

Country Link
US (1) US9484999B2 (zh)
EP (1) EP2782263B1 (zh)
CN (1) CN103138822B (zh)
WO (1) WO2013083035A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263692B2 (en) 2015-04-10 2019-04-16 Viasat, Inc. Satellite for end-to-end beamforming
US10128939B2 (en) 2015-04-10 2018-11-13 Viasat, Inc. Beamformer for end-to-end beamforming communications system
BR122019006888B1 (pt) * 2015-04-10 2020-10-13 Viasat, Inc método para fornecer um serviço de comunicação a terminais de usuário
US10020921B2 (en) 2015-11-18 2018-07-10 National Taiwan University Directional reference signal transmission
KR101771436B1 (ko) * 2016-03-17 2017-08-28 광주과학기술원 멀티홉 무선 네트워크의 전이중 통신방법
CN106888483B (zh) * 2016-04-15 2019-01-04 中国移动通信有限公司研究院 一种通信控制方法、宏基站、热点基站及系统
GB2549988A (en) * 2016-05-06 2017-11-08 Deltenna Ltd Relay
EP3529917B1 (en) * 2016-10-21 2020-12-30 Viasat, Inc. Ground-based beamformed communications using mutually synchronized spatially multiplexed feeder links
CN107070581B (zh) * 2016-12-29 2019-10-25 上海华为技术有限公司 一种干扰消除方法以及基站
EP3593579B1 (en) * 2017-03-08 2021-07-14 Telefonaktiebolaget LM Ericsson (publ) Power amplifier-aware user scheduling
US20190068262A1 (en) * 2017-08-23 2019-02-28 Mediatek Inc. Method for Uplink Beam Training and Determination for Wireless Communication System with Beamforming
CN111126141B (zh) * 2019-11-19 2023-12-29 深圳供电局有限公司 台区识别方法、装置、系统、计算机设备和可读存储介质
US11962398B2 (en) 2020-09-30 2024-04-16 Qualcomm Incorporated Programmable smart repeater with in-band control
CN115808236B (zh) * 2023-02-02 2023-05-05 武汉理工大学 船用涡轮增压器故障在线监测诊断方法、装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218950A1 (en) * 2006-03-17 2007-09-20 Codreanu Marian I Data transmission parameter optimization in MIMO communications system
CN101771507A (zh) * 2009-01-05 2010-07-07 上海贝尔阿尔卡特股份有限公司 多小区mimo无线通信网络中消除小区间干扰的方法和装置
CN102104404A (zh) * 2009-12-21 2011-06-22 株式会社Ntt都科摩 无线通信系统中多用户mimo的传输方法、基站和用户终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071770A1 (en) * 2001-03-06 2002-09-12 Beamreach Networks, Inc. Adaptive communications methods for multiple user packet radio wireless networks
US6496535B2 (en) * 2001-03-23 2002-12-17 Navini Networks, Inc. Method and system for effective channel estimation in a telecommunication system
JP4604545B2 (ja) * 2004-05-10 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法ム
DE102004028703A1 (de) * 2004-06-14 2005-12-29 Siemens Ag Verfahren zur Zuweisung von Übertragungskapazitäten bei einer Signalübertragung, Basisstation und mobiles Endgerät
JP2006121516A (ja) * 2004-10-22 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> 空間多重伝送用送受信方法および空間多重伝送用送受信装置
US8515359B2 (en) * 2005-03-09 2013-08-20 Intel Corporation Method and apparatus to provide low cost transmit beamforming for network devices
US8180314B2 (en) * 2006-03-08 2012-05-15 Broadcom Corporation Method and system for utilizing givens rotation to reduce feedback information overhead
KR101446700B1 (ko) * 2007-05-29 2014-10-07 삼성전자주식회사 다중 입출력 무선통신 시스템에서 제한된 피드포워드를이용한 빔포밍 장치 및 방법
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
WO2011078726A1 (en) * 2009-12-25 2011-06-30 Intel Corporation Method and apparatus for downlink multiuser mimo transmission in a wireless network
EP2567467A2 (en) * 2010-05-04 2013-03-13 Celeno Communications Ltd. System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
CN102185683B (zh) * 2010-07-29 2014-06-11 东南大学 基于统计信漏噪比准则的mimo多用户下行传输方法
CN102075959B (zh) * 2011-01-07 2013-07-31 西安电子科技大学 LTE-A系统中CoMP下的协调波束成形方法
US20130028243A1 (en) * 2011-07-25 2013-01-31 Qualcomm Incorporated Facilitating channel sounding for multiple input and multiple output (mimo) transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218950A1 (en) * 2006-03-17 2007-09-20 Codreanu Marian I Data transmission parameter optimization in MIMO communications system
CN101771507A (zh) * 2009-01-05 2010-07-07 上海贝尔阿尔卡特股份有限公司 多小区mimo无线通信网络中消除小区间干扰的方法和装置
CN102104404A (zh) * 2009-12-21 2011-06-22 株式会社Ntt都科摩 无线通信系统中多用户mimo的传输方法、基站和用户终端

Also Published As

Publication number Publication date
EP2782263B1 (en) 2019-07-03
US20140307664A1 (en) 2014-10-16
EP2782263A1 (en) 2014-09-24
EP2782263A4 (en) 2014-11-26
CN103138822B (zh) 2017-04-12
CN103138822A (zh) 2013-06-05
US9484999B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
WO2013083035A1 (zh) 传输信号的方法和设备
KR102365954B1 (ko) 멀티 셀 전차원 mimo 시스템을 위한 방법 및 장치
Wang et al. Coordinated multiple points transmission for LTE-advanced systems
EP3499743B1 (en) Transmission method and device for downlink receiving beam training signal
US9112548B2 (en) Method to optimize the power assignment of user streams transmitted from base stations in coordinated base station transmission systems
WO2014165018A1 (en) Spatial alignment for d2d interference mitigation
WO2014015660A1 (zh) 无线通信系统的基带处理装置和无线通信系统
EP3085141B1 (en) Beamforming for coordinated multipoint communications
CN106559164B (zh) 在mmw网络中执行用户信息反馈的方法和装置
WO2011095138A1 (en) System and method for transceivers in a wireless network
US20140161059A1 (en) Method for transmitting and receiving data in communication system using multiple antennas and apparatus therefor
JP2024037987A (ja) サブテラヘルツサブバンド平坦化フィードバック
CN116056233A (zh) 一种用于无线通信的通信节点中的方法和装置
CN103312393B (zh) 一种上行协作多点方法及系统
KR20110119520A (ko) 무선랜 시스템에서 간섭 회피 방법 및 장치
US9301269B1 (en) Acquisition of periodic synchronization signals
Aredath et al. Optimal power allocation for maximizing the energy efficiency of NOMA enabled full-duplex coordinated direct and relay transmission (CDRT) system with SWIPT
JP5571116B2 (ja) 無線通信装置
Chen et al. A novel interference suppression method in wireless relay networks
Sun et al. Performance evaluation of distributed scheduling for downlink coherent joint transmission
WO2023020034A1 (zh) 一种权值确定方法及装置
WO2023029238A1 (zh) 转发器、网络设备及其通信方法
WO2023028724A1 (zh) 转发器、网络设备及其通信方法
WO2019201251A1 (zh) 一种多天线系统发射和接收方法及装置
CN115955262A (zh) 信道状态信息获取方法、计算机可读介质和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012856284

Country of ref document: EP