WO2013082911A1 - 一种cmos工艺集成定向耦合器 - Google Patents

一种cmos工艺集成定向耦合器 Download PDF

Info

Publication number
WO2013082911A1
WO2013082911A1 PCT/CN2012/074063 CN2012074063W WO2013082911A1 WO 2013082911 A1 WO2013082911 A1 WO 2013082911A1 CN 2012074063 W CN2012074063 W CN 2012074063W WO 2013082911 A1 WO2013082911 A1 WO 2013082911A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
metal
directional coupler
isolation
isolated
Prior art date
Application number
PCT/CN2012/074063
Other languages
English (en)
French (fr)
Inventor
叶乐
汪佳逸
廖怀林
黄如
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US13/641,647 priority Critical patent/US9123982B2/en
Publication of WO2013082911A1 publication Critical patent/WO2013082911A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines

Definitions

  • CMOS process integrated directional coupler This application claims priority to Chinese Patent Application No. 20111039996, filed on Dec. 5, 2011, the entire content of TECHNICAL FIELD
  • the present invention is in the field of radio frequency integrated circuit technology, and in particular, provides a full-chip integrated directional coupler technology and integrated circuit in a standard CMOS process. Background technique
  • the directional coupler is a widely used RF device that can be used for signal isolation, signal separation, etc., to achieve simultaneous operation of the RF receiver and transmitter in the same frequency band.
  • the schematic diagram of the directional coupler applied to the transceiver system is shown in Figure 1.
  • the "input” is connected to the transmitter output (TX), the “direct” is connected to the antenna (Antenna), and the “coupled end” is used. (Coupled) Connect to the receiver input (RX), "Isolated” (Isolated) to the matching resistor (Res).
  • the directional coupler defines that the loss between the input and the through-end is "Insertion Loss", the loss from the input to the coupling is “Coupling”, and the loss from the through-end to the coupling is “Isolation”. (Isolation), the difference between "isolation” and “coupling degree” is “Directivity”. Its performance requirements: The insertion loss is small, the coupling degree is not very large, and the isolation is very large, that is, the directivity is strong. For a transceiver system, the transmitted signal energy is very strong and a large part is coupled to the receiver input, but the received signal is very weak. Without the directional coupler, the strong output coupling signal will flood the unused receiving signal.
  • the integrated directional coupler expands the applicability and lower cost, and is applied to, for example, an RFID reader system (RFID Reader).
  • RFID Reader RFID reader system
  • some special processing techniques have been used before, such as the literature Shim, S., Hong, S., "A CMOS Power Amplifier With Integrated-Passive-Device Spiral-Shaped Directional Coupler for Mobile UHF RFID Reader," Microwave Theory and Techniques, IEEE Transactions on , vol.PP, no.99, pp.1, 0 Describes an IPD (integrated) Passive device)
  • the size of the directional coupler is small, the special process technology used cannot be compatible with the standard CMOS process, the cost is high, the processing process is complicated, and the integrated integrated coupler integrated circuit cannot be realized. Poor practicality.
  • a standard CMOS process integrates directional coupler technology and integrated circuits, the steps of which include ( Figure 3, as shown in Figure 4):
  • the coil 1 and the coil 2 are wound into a square, and a circular, rectangular, octagonal or the like may also be used;
  • the two ports of the coil 1 and the two ports of the coil 2 are at an angle of 90°, and the spatial distance between the direct end (Direct) and the coupled end (Coupled) is relatively close, and the distance between the input end (Input) and the isolated end (Isolated) is relatively long;
  • the coils of the coil 1 and the coil 2 are staggered up and down, and the center of the upper/lower layer is directly opposite to the lower layer.
  • the center line of the upper metal line, the upper and lower metal lines have over-cover 0 (or no over-coverage), that is, the metal line width W can be greater than or equal to or less than the metal line spacing S;
  • the principle of the invention is: (a) The directional coupler is equivalent to a passive transformer with structural variation.
  • the four-port parameters are symmetrical.
  • the spatial position asymmetry is used to achieve the difference of four-port parameters. .
  • a coil 1 (a square in this description, or a rectangle such as a rectangle, a circle, an octagon, etc.) wound by a metal of the Mth layer, and a coil 2 wound by a metal of the Nth layer (square in the present description)
  • a coil 2 wound by a metal of the Nth layer (square in the present description)
  • Coil 1 and coil 2 use different coil shapes, coil radius (minimum inner diameter Dl, maximum outer diameter)
  • coil 1 and coil 2 use different metal layer line width W, spacing S, and switch to different metal layers (the time can change the vertical spacing H of the upper and lower metal lines) can adjust the insertion loss (Insertion Loss) , Coupling isolation (Isolation) directionality (Directivity) and other parameters;
  • the directional coupler is designed to match the output of the power amplifier.
  • the actual transmitter power amplifier output is poorly matched, and the output power variation causes the power amplifier output matching to change.
  • the actual performance of the directional coupler deviates from the design value.
  • factors such as process fluctuations and temperature changes may also cause deterioration of the performance of the directional coupler.
  • the directional coupler uses a capacitor Cp for frequency tuning and a capacitor Cs for isolation tuning to solve the above problem.
  • the present invention innovatively employs a three-dimensional structure coil, a coil 1 mainly composed of an M-th layer metal and a coil 2 (N ⁇ l, M ⁇ N+2) mainly composed of an N-th metal layer,
  • the vertical distance H is large, and the upper and lower metal layers are vertically shifted.
  • the center of the upper/lower metal lines is aligned with the center of the lower/upper metal lines in the vertical direction, and the edges are over-covered (and may not be over-covered), not completely overlapping.
  • the above points make the isolation (Isolation) increase greatly and the directivity is good, as shown in Fig. 5 (the simulation result, the transceiver operating frequency is 875MHz);
  • Figure 1 is a schematic diagram of a directional coupler applied to a general transceiver system
  • FIG. 2 is a schematic diagram of a portion of a directional coupler that suppresses coupling of a transmitted signal in a received signal
  • FIG. 3 is a top view of a new standard CMOS process directional coupler layout according to the present invention
  • FIG. 4 is a cross-sectional view of a new standard CMOS process directional coupler layout A3 according to the present invention
  • FIG. 6 is a schematic illustration of one embodiment of the invention. detailed description
  • the CMOS process integrated directional coupler of the present invention can be connected to a transmitter, a receiver, an antenna, and a matching resistor to form a transceiver that operates at the same frequency.
  • the receiver and transmitter can operate simultaneously at the same frequency.
  • the input end (Input) of the CMOS integrated directional coupler is 1 port in FIG. 6, the direct end (Direct) is 2 ports in FIG. 6, and the isolated end (Isolated) is 3 port in FIG. 6, and the coupled end (Coupled) For Figure 6 4 ports.
  • the CMOS integrated directional coupler can be connected as shown in Fig. 6 (a): a 1-port connection transmitter output (TX), a 2-port connection antenna (Antenna), and a 3-port connection 50 ohm ground resistance (Res).
  • the 4-port is connected to the receiver input (RX).
  • the corresponding parameters are defined as: S12CS21) Insertion Loss Insertion Loss; S24(S42) Coupling Coupling; S14(S41) Isolation
  • the CMOS integrated directional coupler can also be connected as shown in Figure 6 (b): 2-port connection transmitter output (TX), 1-port connection antenna (Antenna), 4-port connection 50 ohm ground resistance (Res) , 3-port connection to the receiver input (RX).
  • TX 2-port connection transmitter output
  • Antenna 1-port connection antenna
  • Res 4-port connection 50 ohm ground resistance
  • RX 3-port connection to the receiver input
  • the corresponding parameters are defined as: S12CS21) Insertion Loss Insertion Loss; S13(S31) Coupling Coupling; S23(S32) Isolation
  • the CMOS integrated directional coupler can also be connected as shown in Figure 6 (c): 3-port connection transmitter output (TX), 4-port connection antenna (Antenna), 1-port connection 50 ohm ground resistance (Res) , 2 ports are connected to the receiver input (RX).
  • TX 3-port connection transmitter output
  • Antenna 4-port connection antenna
  • Res 1-port connection 50 ohm ground resistance
  • RX receiver input
  • S34CS43 Insertion Loss Insertion Loss
  • the CMOS integrated directional coupler can also be connected as shown in Figure 6 (d): 4-port connection transmitter output (TX), 3-port connection antenna (Antenna), 2-port connection 50 ohm ground resistance (Res) , 1 port is connected to the receiver input (RX).
  • TX 4-port connection transmitter output
  • Antenna 3-port connection antenna
  • Res 2-port connection 50 ohm ground resistance
  • RX receiver input
  • S34CS43 Insertion loss Insertion Loss

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种标准CMOS工艺的全在片集成的定向耦合器技术及集成电路,属于射频通讯技术领域。本发明的核心是:使用标准CMOS工艺技术,上层金属线绕成的线圈1和下层金属线绕成的线圈2以及两个调谐电容阵列和匹配电阻组成CMOS集成定向耦合器;线圈1两端口为直通端和输入端,线圈2两端口为耦合端和隔离端;线圈1和线圈2端口成90°;线圈1由高层金属绕成、线圈2由底层金属绕成,插入损耗小、隔离度大;直通端和输入端之间的电容用于频率调谐;耦合端和隔离端之间的电容用于隔离度调谐;线圈1和线圈2采用立体结构,上下层金属线之间有部分交叠,改变线圈形状、圈数、线宽,改换用不同金属层以及不同层金属线条交叠多少,均可以灵活地改变插入损耗、隔离度、耦合度等性能参数。本发明所实现的标准CMOS工艺集成定向耦合器,具有可在硅基CMOS/BiCMOS工艺上单芯片集成、插入损耗小、隔离度大、定向性好、调谐性强、适用性强、成本低的特点。

Description

一种 CMOS工艺集成定向耦合器 本申请要求于 2011年 12月 5日提交的中国专利申请 201110399962.5的优先权, 其全部内容通过引用合并于此。 技术领域 本发明属于射频集成电路技术领域, 尤其是提供一种标准 CMOS工艺的全在片 集成的定向耦合器 (Directional Coupler) 技术及集成电路。 背景技术
定向耦合器是一种应用广泛的射频器件, 可用于信号隔离、信号分离等, 实现射 频接收机和发射机同时工作在相同的频段。定向耦合器应用于收发机系统的原理图如 图 1所示, "输入端"(Input) 连接发射机输出端 (TX), "直通端"(Direct) 接天线 (Antenna), "耦合端" (Coupled) 接接收机输入端 (RX), "隔离端" (Isolated) 接 匹配电阻 (Res)。定向耦合器定义:输入端到直通端之间的损耗为"插入损耗" (Insertion Loss),输入端到耦合端的损耗为"耦合度 "(Coupling),直通端到耦合端的损耗为"隔 离度" (Isolation), "隔离度" 与 "耦合度"之差为 "方向性"( Directivity )。 它的性 能要求: 插入损耗很小, 耦合度不是很大, 隔离度很大, 即方向性强。 对于一收发同 频系统, 一般发射信号能量很强且很大一部分会耦合到接收机输入端, 而接收信号却 很弱, 不使用定向耦合器, 很强的输出耦合信号会淹没有用的接受信号, 这样会导致 接收机无法正常工作, 如图 2左所示; 在使用定向耦合器之后, 接收信号由于耦合度 的关系被损失掉一些, 同时耦合到输入端的发射信号被极大地衰减, 从而可以保证同 时同频收发机的正常工作, 如图 2右所示。
传统的定向耦合器多使用传输线等制造, 如: Hilal Ezzeddine et al., "Directional coupler", US Patent, Patent No.US7394333B2, Jul. 1, 2008描述,它们体积大,加工工艺 复杂,成本高。后来人们为了小型化定向耦合器,采用分离元器件制作,如: Oleksandr Gorbachov, "Directional coupler for RF power detection", US Patent, Patent N0.7576626B2, Aug. 18, 2009, 然而这样设计的定向耦合器仍然不能集成。 随着集成 电路的快速发展,全在片集成是大势所趋,集成定向耦合器拓展了适用性,成本更低, 被应用于例如: 射频识别阅读器系统 (RFID Reader) 等。 为了能够在片集成定向耦 合器, 之前有人采用一些特殊的加工工艺实现, 如文献 Shim, S., Hong, S., "A CMOS Power Amplifier With Integrated-Passive-Device Spiral-Shaped Directional Coupler for Mobile UHF RFID Reader," Microwave Theory and Techniques, IEEE Transactions on , vol.PP, no.99, pp.1, 0 阐述了一种利用 IPD (integrated passive device)工艺制作的定向 耦合器, 虽然体积较小, 但是使用的特殊工艺技术不能与标准 CMOS工艺兼容, 成 本高,加工工艺复杂,无法实现在片集成定向耦合器(Directional Coupler)集成电路, 实用性差。
目前, 现有的文献和专利所述的定向耦合器方案和技术, 很多都没有解决在标准 CMOS工艺下实现定向耦合器的问题,这就极大地限制了这些技术的应用,如移动通 信系统领域对小型化、便携性的要求很高; 而有些虽然达到小型化的目标, 但是使用 特殊工艺制造, 成本高, 无法满足系统集成要求。 发明内容
本发明的目的提供一种标准 CMOS工艺集成定向耦合器技术及集成电路。 具有 可在硅基标准 CMOS工艺上单芯片集成、 面积小、 输入损耗小、 耦合度好、 隔离度 好、 调谐性强的特点。
本发明的上述目的是通过如下的技术方案予以实现的:
一种标准 CMOS工艺集成定向耦合器技术及集成电路, 其步骤包括(如图 3、如 图 4所示):
( 1 ) 输入端 (Input) 与直通端 (Direct) 之间是线圈 1, 由第 M层金属绕成, 交叉部分由第 M-1层金属连接; 耦合端 (Coupled) 与隔离端 (Isolated)之间是线圈 2, 由第 N层金属绕成, 交叉部分由第 N+1层金属连接 (N 1, M^N+2), 成立体 结构;
(2) 线圈 1和线圈 2绕成正方形, 圆形、 长方形、 八角形等多边形亦可以;
(3 ) 线圈 1两端口和线圈 2两端口成 90° 角,直通端(Direct)和耦合端(Coupled) 的空间距离较近, 输入端 (Input) 和隔离端 (Isolated) 的距离较远;
(4)线圈 1和线圈 2的金属线圈上下交错排布, 上层 /下层金属线中心正对下层
/上层金属线间距中心, 上下层金属线有过覆盖 0 (亦可无过覆盖), 即金属线宽 W可 以大于或者等于或者小于金属线间距 S;
( 5 ) 输入端和直通端之间有一个可调电容阵列 Cp, 实现频率调谐;
(6) 耦合端和隔离端之间的有一个可调电容阵列 Cs, 实现隔离度调谐。
本发明的原理是: (a) 定向耦合器等效为一种结构变异的无源变压器, 对于普通无源变压器, 四 端口参数对称,然而对于定向耦合器则利用其空间位置的非对称性达到四端口参数的 差异性。 由第 M层金属绕成的线圈 1 (本说明中为正方形, 亦可为长方形, 圆形, 八边形等多边形)两端口与由第 N层金属绕成的线圈 2 (本说明中为正方形, 亦可为 长方形, 圆形, 八边形等多边形) 的两端口成 90° 垂直, 利用这种空间非对称性, 使得四端口电路参数不同, 体现定向性: 直通端 (Direct) 与输入端 (Input) 为同层 线圈两端,耦合端(Coupled)和隔离端(Isolated)为另一同层线圈两端,直通端(Direct) 和耦合端 (Coupled) 的空间距离较近, 输入端 (Input) 和隔离端 (Isolated) 的距离 较远;
(b)线圈 1和线圈 2采用不同的线圈形状、 线圈半径(最小内径 Dl、 最大外径
D2) 和线圈圈数; 线圈 1和线圈 2采用不同金属层线宽 W、 间距 S, 以及换用不同 金属层 (次可改变上下层金属线垂直间距 H) 均可以调节插入损耗 (Insertion Loss)、 耦合度 ( Coupling ) 隔离度 ( Isolation ) 方向性 (Directivity) 等参数;
(c) 一般情况下, 定向耦合器是按照功率放大器输出匹配好的情况下设计的, 然而实际中的发射机功率放大器输出匹配较差,并且输出功率变化会导致功率放大器 输出匹配发生变化, 使得定向耦合器实际使用性能与设计值有偏差。除了上述问题之 夕卜, 工艺波动、 温度变化等因素亦会导致定向耦合器性能的恶化。
所述定向耦合器采用电容 Cp用于频率调谐, 电容 Cs用于隔离度调谐, 来解决 上述问题。
本发明的优点是:
( 1 ) 输入损耗小: 输入端 (Input) 和直通端 (Direct) 是由第 M层金属 (交叉 处由第 M-1 层金属连接) 连接, 高层金属 (相对于另一层线圈所用金属层) 对地寄 生电容小, 同时下层线圈的隔离端所接的匹配电阻接地, 上层线圈对地寄生电容一部 分被下层线圈屏蔽, 使得输入损耗很小;
(2)定向性好: 本发明创新性地采用立体结构线圈, 主要由第 M层金属构成的 线圈 1和主要由第 N层金属构成的线圈 2 (N^ l , M^N+2), 垂直距离 H较大, 同 时上下层金属层垂直方向错开, 上 /下层金属线宽中心与下 /上层金属线间隔中心在垂 直方向对齐, 边缘存在过覆盖 (亦可以无过覆盖), 不是完全重叠, 以上几点使得在 耦合度(Coupling)略微变差的同时,隔离度(Isolation)大幅增加,定向性(Directivity) 好, 如图 5所示 (仿真结果, 收发机工作频率为 875MHz);
(3 ) 面积小: 由于采用立体线圈结构, 上下层金属线圈交错排布, 在达到相同 定向性 (Directivity) 指标下, 相比于平面线圈结构, 金属线间距可以更小, 定向耦 合器整体结构更加紧凑, 面积更小;
(4) 适用性强: 在设计过程中, 改变线圈 1和线圈 2的形状 (如正方形、 长方 形、 圆形、 八边形等多边形)、 圈数、 半径 (最小内径 Dl、 最大外径 D2), 线圈 1和 线圈 2使用的金属层间隔(如选用更底层或更高层的金属, 改变上下层金属线圈垂直 距离 H), 两线圈间过覆盖的深度 0, 均可灵活地改变输入损耗 (Insertion Loss )、 耦 合度 (Coupling)、 隔离度 (Isolation)、 定向性 (Directivity) 的大小, 对于不同要求 的系统均可以通过改变上述条件达到要求;
( 5 ) 调谐性强: 引入电容 Cp用于频率调谐、 电容 Cs用于隔离度调谐, 避免了 由于发射机 (τχ) 输出匹配差、 不同输出功率下输出匹配变化、 工艺波动、 温度变 化等带来的非理想效应对于实际器件工作性能的恶化;
(6) 可以在硅基标准 CMOS工艺上单芯片集成, 亦可在 BiCMOS工艺、 HBT 工艺等集成; 可以作为一个模块与其它电路和系统集成在单一芯片上, 成本低, 极大 地提高了系统的集成度。 附图说明 下面结合附图, 对本发明进行详细描述
图 1是应用于一般收发机系统的定向耦合器原理图;
图 2是定向耦合器抑制接收信号中发射信号耦合的部分的原理图;
图 3是本发明所述的一种新型标准 CMOS工艺定向耦合器版图俯视图; 图 4是本发明所述的一种新型标准 CMOS工艺定向耦合器版图 A3截面剖面图; 图 5是本发明所述的一种新型标准 CMOS工艺定向耦合器性能图;
图 6是本发明的一个具体实施方式示意图。 具体实施方式
为了对本发明进行详细说明, 现举一个如下具体实施例:
本发明所述的 CMOS工艺集成定向耦合器, 可以连接发射机、 接收机、 天线、 匹配电阻组成一个同时同频工作的收发机。如图 6所示的通过本发明实现的射频识别 阅读器 (RFID Reader) 系统案例, 接收机和发射机可以在相同频率下同时工作。
所述的 CMOS集成定向耦合器的输入端(Input)为图 6中 1端口,直通端(Direct) 为图 6中 2端口, 隔离端 (Isolated) 为图 6中 3端口, 耦合端 (Coupled) 为图 6中 4端口。
所述的 CMOS集成定向耦合器, 可以采用如图 6 (a) 连接关系: 1端口连接发 射机输出端(TX), 2端口连接天线(Antenna), 3端口连接 50欧姆接地电阻(Res), 4端口连接接收机输入端(RX)。对应参数的定义为: S12CS21) 插入损耗 Insertion Loss; S24(S42) 耦合度 Coupling; S14(S41) 隔离度 Isolation
所述的 CMOS集成定向耦合器, 亦可以采用如图 6 (b) 连接关系: 2端口连接 发射机输出端(TX), 1端口连接天线(Antenna), 4端口连接 50欧姆接地电阻(Res), 3端口连接接收机输入端(RX)。对应参数的定义为: S12CS21) 插入损耗 Insertion Loss; S13(S31) 耦合度 Coupling; S23(S32) 隔离度 Isolation
所述的 CMOS集成定向耦合器, 亦可以采用如图 6 (c) 连接关系: 3端口连接 发射机输出端(TX), 4端口连接天线(Antenna), 1端口连接 50欧姆接地电阻(Res), 2端口连接接收机输入端(RX)。对应参数的定义为: S34CS43) 插入损耗 Insertion Loss; S24(S42) 耦合度 Coupling; S23(S32) 隔离度 Isolation
所述的 CMOS集成定向耦合器, 亦可以采用如图 6 (d) 连接关系: 4端口连接 发射机输出端(TX), 3端口连接天线(Antenna), 2端口连接 50欧姆接地电阻(Res), 1端口连接接收机输入端(RX)。对应参数的定义为: S34CS43) 插入损耗 Insertion Loss; S31(S13) 耦合度 Coupling; S14(S41) 隔离度 Isolation
以上通过详细实施案例描述了本发明所提供的一种标准 CMOS工艺定向耦合器 技术及集成电路,本领域的研究人员和技术人员可以根据上述的步骤作出形式或内容 方面的非实质性的改变而不偏离本发明实质保护的范围, 因此,本发明不局限于实施 例中所公开的内容。

Claims

权 利 要 求
1. 一种 CMOS工艺集成定向耦合器, 其步骤包括:
( 1 ) 输入端 (Input) 与直通端 (Direct) 之间是线圈 1, 由第 M层金属绕成, 交叉部分由第 M-1层金属连接; 耦合端 (Coupled) 与隔离端 (Isolated) 之间是 线圈 2, 由第 N层金属绕成, 交叉部分由第 N+1层金属连接(N 1, M^N+2), 成立体结构;
(2) 线圈 1和线圈 2绕成正方形, 圆形、 长方形、 八角形等多边形亦可以;
(3 ) 线圈 1 两端口和线圈 2 两端口成 90° 角, 直通端 (Direct) 和耦合端 (Coupled) 的距离较近, 输入端 (Input) 和隔离端 (Isolated) 的距离较远;
(4)线圈 1和线圈 2的金属线圈上下交错排布, 上层 /下层金属线中心正对下 层 /上层金属线间距中心, 上下层金属线可以有过覆盖 (0), 即金属线宽可以大 于或者等于或者小于金属线间距;
( 5 ) 输入端和直通端之间有一个可调电容阵列 Cp, 实现频率调谐;
(6) 耦合端和隔离端之间的有一个可调电容阵列 Cs, 实现隔离度调谐。 2. 一种用于定向耦合器调谐技术的集成电路, 其特征在于, 包括基于权利 要求 1所述的集成定向耦合器;
所述定向耦合器通过改变可调电容阵列 Cp来改变隔离度曲线下凹点的频率 通过改变可调电容阵列 Cs来改变隔离度曲线下凹的深度。
3. 如权利要求 2所述的集成电路, 其特征在于, 通过标准 CMOS工艺或 BiCMOS/BJT/HBT工艺来制造。
PCT/CN2012/074063 2011-12-05 2012-04-16 一种cmos工艺集成定向耦合器 WO2013082911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/641,647 US9123982B2 (en) 2011-12-05 2012-04-16 Directional coupler integrated by CMOS process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110399962.5A CN103138037B (zh) 2011-12-05 2011-12-05 一种基于标准cmos工艺的集成定向耦合器
CN201110399962.5 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013082911A1 true WO2013082911A1 (zh) 2013-06-13

Family

ID=48497546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074063 WO2013082911A1 (zh) 2011-12-05 2012-04-16 一种cmos工艺集成定向耦合器

Country Status (2)

Country Link
CN (1) CN103138037B (zh)
WO (1) WO2013082911A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880706B (zh) * 2014-02-27 2017-12-19 北京大学 一种基于片上定向耦合器的调频连续波雷达
CN105070705B (zh) * 2015-07-12 2017-09-26 北京理工大学 高集成度片上混合型差分正交耦合器
CN108631036B (zh) * 2018-04-09 2023-10-20 王宇晨 单芯片正交3dB定向耦合器
CN109904580A (zh) * 2019-04-18 2019-06-18 成都芯图科技有限责任公司 一种基于芯片的定向耦合器及集成结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617120A (zh) * 2003-07-28 2005-05-18 大塚宽治 信号传输系统和信号传输线路
US20090212887A1 (en) * 2008-02-25 2009-08-27 Ahmadreza Rofougaran Method and system for processing signals via directional couplers embedded in an integrated circuit package
EP2387097A2 (en) * 2010-05-03 2011-11-16 Korea Advanced Institute of Science and Technology Compact directional coupler using semiconductor process and mobile RFID reader transceiver system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617120A (zh) * 2003-07-28 2005-05-18 大塚宽治 信号传输系统和信号传输线路
US20090212887A1 (en) * 2008-02-25 2009-08-27 Ahmadreza Rofougaran Method and system for processing signals via directional couplers embedded in an integrated circuit package
EP2387097A2 (en) * 2010-05-03 2011-11-16 Korea Advanced Institute of Science and Technology Compact directional coupler using semiconductor process and mobile RFID reader transceiver system using the same

Also Published As

Publication number Publication date
CN103138037B (zh) 2015-07-29
CN103138037A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
US10879579B2 (en) Zero insertion loss directional coupler for wireless transceivers with integrated power amplifiers
KR101119910B1 (ko) 모바일 rfid 리더 송수신 시스템
KR101728607B1 (ko) 방향성 커플러용 시스템 및 방법
US8049589B2 (en) Balun circuit manufactured by integrate passive device process
US7978024B2 (en) Integrated balanced-unbalanced duplexer
KR101688036B1 (ko) 집적된 벌룬(들)을 갖는 광대역 집적형 rf/마이크로웨이브/밀리미터 믹서
JP6336582B2 (ja) 集積回路(ic)における磁気結合を低減させるためのシステムならびに関連構成要素および方法
US20130265132A1 (en) On-chip transformer having multiple windings
CN103378394B (zh) 一种基于变压器的定向耦合器
WO2013082911A1 (zh) 一种cmos工艺集成定向耦合器
US9543073B2 (en) Transformer, method for manufacturing transformer and chip
KR20160005064A (ko) 3-차원(3d) 집적 회로들(ic) 내의 튜닝가능한 다이플렉서들 및 관련 컴포넌트들 및 방법들
US20120126630A1 (en) System and method for inductive wireless signaling
CN103378055A (zh) 半导体器件
CN111755792B (zh) 一种3dB正交混合耦合器及射频前端模块、通信终端
US8008987B2 (en) Balun circuit manufactured by integrate passive device process
US20130141183A1 (en) Directional coupler integrated by cmos process
CN103378393B (zh) 一种基于印刷电路板的集成定向耦合器
US11699056B2 (en) RFID inlay
EP1307972B1 (en) Coupler for wireless communications
Wang et al. A compact spiral‐coupled directional coupler for a mobile RFID reader via integrated passive technology
US20160173138A1 (en) Device for bi-directional and multi-band rf communication over single resonant transmission line and method of its realization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13641647

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855182

Country of ref document: EP

Kind code of ref document: A1