WO2013082874A1 - 电路板结构及其制程方法 - Google Patents

电路板结构及其制程方法 Download PDF

Info

Publication number
WO2013082874A1
WO2013082874A1 PCT/CN2012/070018 CN2012070018W WO2013082874A1 WO 2013082874 A1 WO2013082874 A1 WO 2013082874A1 CN 2012070018 W CN2012070018 W CN 2012070018W WO 2013082874 A1 WO2013082874 A1 WO 2013082874A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
circuit board
metal substrate
layer
board structure
Prior art date
Application number
PCT/CN2012/070018
Other languages
English (en)
French (fr)
Inventor
张光耀
方林冬
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/497,467 priority Critical patent/US20130140062A1/en
Publication of WO2013082874A1 publication Critical patent/WO2013082874A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09072Hole or recess under component or special relationship between hole and component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the invention relates to a manufacturing process of a circuit board, in particular to a circuit board structure and a manufacturing method thereof. Background technique
  • FIG. 1 is a schematic diagram of a conventional metal core printed circuit board.
  • a conventional metal core printed circuit board (MCPCB) 1 includes a metal substrate 10, a dielectric layer 11, and a metal layer 12.
  • the dielectric layer 11 is formed between the metal substrate 10 and the metal layer 12 as an insulating layer;
  • the metal substrate 10 can be an aluminum substrate, and the metal layer 12 can be a copper layer.
  • the dielectric layer 11 is not electrically conductive, the metal layer 12 and the metal substrate 10 are not in contact with each other. And, the thermal conductivity of the dielectric layer 11 (2-4. 7 (W/m. k)) is compared with the metal layer 12 (such as a copper layer, 398/401 (W/m. k)) and the metal substrate 10 ( The heat transfer coefficient of the aluminum substrate, 237 (W/m.k), is much lower, so that the dielectric layer 11 becomes a heat dissipation bottleneck of the metal core printed circuit board 1.
  • FIG. 2 is a schematic diagram of the metal core printed circuit board of FIG. 1 including electronic components.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above, and to provide a circuit board structure and a manufacturing method thereof, which can increase the heat transfer coefficient of the circuit board, thereby improving the heat dissipation performance of the circuit board.
  • the technical solution of the present invention includes a method for manufacturing a circuit board structure, comprising: providing a circuit board including a metal substrate, a metal layer, and a dielectric layer between the metal substrate and the metal layer; A groove is formed on the metal substrate, the dielectric layer and the metal layer to be in a bare state; and a metal connection process is performed on the groove to bring the metal substrate into contact with the metal layer.
  • the process method of the present invention further includes: An exposure etching process is performed on the surface of the metal layer to form a metal wiring on the surface.
  • An opening that connects the metal substrate is formed in the electronic component mounting region of the metal line.
  • the LED module is mounted in the electronic component mounting area by surface mounting technology, wherein the heat dissipating member of the LED module contacts the metal substrate through the opening.
  • the technical solution of the present invention includes a circuit board structure including a metal substrate, a dielectric layer, and a metal layer.
  • a dielectric layer is formed on the metal substrate; a metal layer is formed on the dielectric layer; wherein the metal substrate and the metal layer are in contact at a suitable location by a metal bonding process.
  • the circuit board structure of the present invention further includes:
  • the surface of the metal layer includes a metal wiring, and the electronic component mounting region of the metal wiring has an opening that communicates with the metal substrate.
  • the LED mounting module is mounted in the electronic component mounting area, wherein the heat dissipating component of the LED module contacts the metal substrate through the opening.
  • the surface of the metal layer is further provided with a connector electrically connected to the metal line.
  • the metal substrate contains an aluminum substrate.
  • the metal layer contains a copper layer.
  • the circuit board structure and the manufacturing method thereof of the present invention contact the metal substrate and the metal layer at an appropriate position, so that the heat transfer coefficient of the circuit board can be increased, thereby improving the heat dissipation performance of the circuit board.
  • FIG. 1 is a schematic view of a conventional metal core printed circuit board.
  • FIG. 2 is a schematic view of the metal core printed circuit board of FIG. 1 including electronic components.
  • FIG. 3 is a flow chart of a method for fabricating a circuit board structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic view (1) of a method of manufacturing a circuit board structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram (2) of a manufacturing method of a circuit board structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a manufacturing method of a circuit board structure according to an embodiment of the present invention (3).
  • FIG. 7 is a schematic diagram (4) of a manufacturing method of a circuit board structure according to an embodiment of the present invention.
  • Figure 8 is a perspective view showing the structure of a circuit board according to an embodiment of the present invention.
  • FIG. 9 is another schematic diagram of a process for fabricating the circuit board structure of FIG. 6.
  • FIG. detailed description is another schematic diagram of a process for fabricating the circuit board structure of FIG. 6.
  • FIG. 3 is a flowchart of a method for fabricating a circuit board structure according to an embodiment of the present invention.
  • a method of manufacturing a circuit board structure includes: providing a metal substrate, a metal layer, and a dielectric layer a circuit board between the metal substrate and the metal layer (step S100); forming a groove on the circuit board to make the metal substrate, the dielectric layer and the metal layer into a bare state (step S110); performing a metal connection process in the groove The metal substrate is in contact with both of the metal layers (step S120).
  • FIG. 4 is a schematic diagram (1) of a method for fabricating a circuit board structure according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a process for fabricating a circuit board structure according to an embodiment of the present invention
  • FIG. 6 is a circuit board according to an embodiment of the present invention
  • the circuit board in providing a circuit board including a metal substrate, a metal layer, and a dielectric layer between the metal substrate and the metal layer (step S100), the circuit board can be laminated by a bonding process.
  • the circuit board can be a metal core printed circuit board comprising a metal substrate 20, a dielectric layer 21 and a metal layer 22. Among them, the dielectric layer 21 is formed between the metal substrate 20 and the metal layer 22 as an insulating layer.
  • a recess is formed on the circuit board to make the metal substrate, the dielectric layer and the metal layer into a bare state (step S110), and one or more of the circuit board can be formed by a drilling blind hole program.
  • the groove 23 brings the position of the metal substrate 20, the dielectric layer 21, and the metal layer 22 to the groove 23 into a bare state.
  • the metal connection process of the groove to bring the metal substrate into contact with the metal layer it is possible to use, for example, a metal 220 (for example, copper plating) at the position of the groove 23.
  • the metal connection process enables the metal substrate 20 and the metal layer 22 to be in contact with each other, so that the heat transfer coefficient of the circuit board can be increased, thereby improving the heat dissipation performance of the entire circuit board.
  • the metal 220 can be in the form of filling the recess 23 such that the metal substrate 20 and the metal layer 22 are in contact with each other.
  • the metal connection process may also be silver plated, and the material selection is not limited to the copper metal as described above.
  • FIG. 7 is a schematic view showing a manufacturing method of a circuit board structure according to an embodiment of the present invention
  • FIG. 8 is a perspective view showing a circuit board structure according to an embodiment of the present invention.
  • the manufacturing method of the circuit board structure also includes the following steps:
  • an exposure etching process is performed on the surface S of the metal layer 22 to form a metal wiring 2a on the surface S.
  • an opening 22b communicating with the metal substrate 20 is formed in the electronic component mounting region M of the metal wiring 22a.
  • the light emitting diode module 24 is mounted in the electronic component mounting area M by Surface Mounted Technology (SMT).
  • SMT Surface Mounted Technology
  • step S120 in the step of performing the metal connection process in the recess 23 to bring the metal substrate 20 into contact with the metal layer 22 (step S120), it can be further seen from FIG. 8 (which can be combined with FIG. 5 and FIG. 6).
  • the position of the recess 23 is such that the metal substrate 20 and the metal layer 22 are brought into contact with each other by a metal bonding process such as plating with a metal 220 (for example, copper plating), so that the heat transfer coefficient of the circuit board structure 2 can be increased, thereby improving The overall heat dissipation performance of the circuit board structure 2.
  • the thermal energy generated when the LED module 24 is energized and emitted can directly transfer the thermal energy of the metal layer 22 to the metal substrate 20 through the metal 220 to achieve rapid heat dissipation performance;
  • the opening 22b of the substrate 20 and the heat energy of the heat sink 24a of the LED module 24 can also be directly transmitted to the metal substrate 20, and the heat dissipation performance can be achieved as well.
  • the circuit board structure 2 provided by the present invention includes a metal substrate 20, a dielectric layer 21, and a metal layer 22.
  • the dielectric layer 21 is formed on the metal substrate 20; the metal layer 22 is formed on the dielectric layer 21.
  • both the metal substrate 20 and the metal layer 22 are in contact at a position (e.g., the position of the recess 23 described above) by a metal connection procedure.
  • the surface S of the metal layer 22 includes the metal wiring 22a, and the electronic component mounting region M of the metal wiring 22a has the opening 22b that connects the metal substrate 20.
  • the electronic component mounting area M can be mounted with one or more LED modules 24, wherein the heat sink 24a of the LED module 24 can directly contact the metal substrate 20 through the opening 22b.
  • the type of the metal line 22a in Fig. 8 is only for understanding here, and it is not intended to limit the line type.
  • the surface S of the metal layer 22 is further provided with a connector 25 electrically connected to the metal line 22a.
  • a connector 25 electrically connected to the metal line 22a.
  • an external power can be supplied to the LED module 24 by the connector 25 to cause the light emitting unit of the LED module 24 to emit light.
  • the function of the connector 25 is not limited thereto depending on the circuit design requirements.
  • a dielectric layer 21 is formed between the metal substrate 20 and the metal layer 22 as an insulating layer; and the metal substrate 20 includes an aluminum substrate, and the metal layer 22 includes a copper layer.
  • the material of the metal substrate 20 and the metal layer 22 is not limited thereto, and it is still possible to select metals having different heat transfer coefficients in accordance with actual circuit design requirements.
  • the connector 25 can supply electric energy to the metal line 22a on the surface S of the metal layer 22, so that the LED module 24 on the circuit board structure 2 can be energized to emit light.
  • the thermal energy generated when the LED module 24 emits light can directly transfer the thermal energy of the metal layer 22 to the metal substrate 20 through the metal 220 (such as copper or silver) to achieve rapid heat dissipation performance;
  • the thermal energy of the heat sink 24a of the LED module 24 can also be directly transmitted to the metal substrate 20, and the heat dissipation performance can be achieved.
  • FIG. 9 is another schematic diagram of a process of the circuit board structure of FIG.
  • the metal substrate and the metal layer are brought into contact (step S120), and at the position of the groove 23, for example, a metal 220a is plated (for example, plating).
  • the copper metal connection process allows the metal substrate 20 and the metal layer 22 to be in contact with each other, so that the heat transfer coefficient of the circuit board can be increased, thereby improving the heat dissipation performance of the entire circuit board.
  • the metal 220a is in the form of an unfilled recess 23, which still enables the metal substrate 20 and the metal layer 22 to contact each other and reduces the use of materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

一种电路板结构的制程方法,其特征在于,包括:提供包含金属基板、金属层以及介电层位于金属基板与金属层之间的电路板;在电路板上形成凹槽使金属基板、介电层与金属层成为裸露状态;在凹槽进行金属连接程序,使金属基板与金属层两者接触。本发明亦提供一种电路板结构,其特征在于,包括金属基板、介电层以及金属层。介电层形成在金属基板上;金属层形成在介电层上;其中,金属基板与金属层两者于一适当位置通过金属连接程序而接触。

Description

电路板结构及其制程方法
技术领域
本发明涉及电路板的制造工艺, 特别是涉及电路板结构及其制程方法。 背景技术
请参阅图 1, 图 1为一种现有的金属芯印刷电路板的示意图。
如图 1所示, 现有的金属芯印刷电路板 (Metal Core PCB, MCPCB) 1包含金属基板 10、 介电层 11以及金属层 12。 其中, 介电层 11形成在金属基板 10与金属层 12之间以作为 一绝缘层; 金属基板 10能够为铝基板, 金属层 12能够为铜层。
然而, 由此金属芯印刷电路板 1的结构可知, 由于介电层 11不导电, 所以金属层 12 与金属基板 10并未互相接触。 以及, 介电层 11的热传导系数 (2-4. 7 (W/m. k) )相较于金 属层 12 (如铜层, 398/401 (W/m. k) )与金属基板 10 (如铝基板, 237 (W/m. k) )的热传导系数 较低得多, 以致介电层 11成为金属芯印刷电路板 1的散热瓶颈。
详言之, 当电子组件被配置在金属层 12上的一金属线路时, 由于电子组件于通电作 功后会产生热能, 因此热能会直接产生在金属层 12, 之后热能经金属层 12会往下传递, 然而由于受到导电系数较低的介电层 11阻隔的缘故, 使得热能无法顺利传导至金属基板 10。
请参阅图 2, 图 2为图 1金属芯印刷电路板包含电子组件的示意图。
承上述, 当电子组件(如发光二极管模组 13)以一表面组装技术 (Surface Mounted
Technology, SMT) 被安装在金属层 12上的金属线路时, 由于发光二极管模组 13于通电 发光时会产生热能 H, 因此热能 H会直接产生在金属层 12, 之后热能 H经金属层 12会往 下传递, 然而由于受到导电系数较低的介电层 11阻隔的缘故, 使得热能 H无法顺利传导 至金属基板 10。 发明内容
本发明要解决的技术问题在于克服上述现有技术的不足,而提出一种电路板结构及其 制程方法, 使之能够增加电路板的热传导系数, 从而提升电路板的散热效能。
依据上述发明目的,本发明的技术方案包括,提出一种电路板结构的制程方法,包括: 提供包含金属基板、金属层以及介电层位于金属基板与金属层之间的电路板;在电路板上 形成凹槽使金属基板、介电层与金属层成为裸露状态; 在凹槽进行金属连接程序, 使金属 基板与金属层两者接触。
本发明的制程方法, 还包括: 在金属层的表面进行曝光蚀刻程序以在此表面形成金属线路。
在金属线路的电子组件安装区形成有连通金属基板的开口。
利用表面组装技术在电子组件安装区安装发光二极管模组,其中发光二极管模组的散 热件通过开口接触金属基板。
依据上述发明目的, 本发明的技术方案包括, 提出一种电路板结构, 包括金属基板、 介电层以及金属层。介电层形成在金属基板上; 金属层形成在介电层上; 其中, 金属基板 与金属层两者于一适当位置通过金属连接程序而接触。
本发明的电路板结构, 还包括:
金属层的表面包含金属线路, 此金属线路的电子组件安装区具有连通金属基板的开 口。
电子组件安装区安装发光二极管模组,其中发光二极管模组的散热件通过开口而接触 金属基板。
金属层的表面更配置电性连接金属线路的连接器。
金属基板包含铝基板。
金属层包含铜层。
与现有技术相比,本发明的电路板结构及其制程方法, 于一适当位置将金属基板与金 属层两者接触, 使之能够增加电路板的热传导系数, 从而提升电路板的散热效能。 附图说明
图 1为一种现有的金属芯印刷电路板的示意图。
图 2为图 1金属芯印刷电路板包含电子组件的示意图。
图 3为本发明一实施例电路板结构的制程方法的流程图。
图 4为本发明一实施例电路板结构的制程方法的示意图(一)。
图 5为本发明一实施例电路板结构的制程方法的示意图(二)。
图 6为本发明一实施例电路板结构的制程方法的示意图 (三)。
图 7为本发明一实施例电路板结构的制程方法的示意图(四)。
图 8为本发明一实施例电路板结构的立体图。
图 9为图 6电路板结构的制程方法的另一实施示意图。 具体实施方式
以下结合附图所示的最佳实施例作进一步详述。
请参阅图 3, 图 3为本发明一实施例电路板结构的制程方法的流程图。
如图 3所示, 电路板结构的制程方法, 包括: 提供包含金属基板、 金属层以及介电层 位于金属基板与金属层之间的电路板 (步骤 S100) ; 在电路板上形成凹槽使金属基板、 介 电层与金属层成为裸露状态 (步骤 S110) ; 在凹槽进行金属连接程序, 使金属基板与金属 层两者接触 (步骤 S120)。
详言之, 请同时参阅图 3、 图 4、 图 5、 图 6。 图 4为本发明一实施例电路板结构的制 程方法的示意图(一); 图 5为本发明一实施例电路板结构的制程方法的示意图(二); 图 6 为本发明一实施例电路板结构的制程方法的示意图 (三)。
由图 3与图 4可知,在提供包含金属基板、金属层以及介电层位于金属基板与金属层 之间的电路板 (步骤 S100)中, 能够利用一贴合制程使电路板具有层迭结构。 所述电路板 能够为金属芯印刷电路板, 电路板包含金属基板 20、 介电层 21以及金属层 22。其中, 介 电层 21形成在金属基板 20与金属层 22之间以作为绝缘层。
由图 3与图 5可知,在电路板上形成凹槽使金属基板、介电层与金属层成为裸露状态 (步骤 S110)中, 能够利用一钻盲孔程序在电路板上形成一或多数个凹槽 23 使金属基板 20、 介电层 21与金属层 22于凹槽 23的位置成为裸露状态。
由图 3与图 6可知, 在凹槽进行金属连接程序, 使金属基板与金属层两者接触 (步骤 S120)中, 能够在凹槽 23的位置, 利用如镀上金属 220 (例如, 镀铜)的金属连接程序使金 属基板 20与金属层 22两者得以相互接触,使之能够增加电路板的热传导系数,从而提升 电路板整体的散热效能。 于此实施例中, 金属 220能够为填满凹槽 23的型态, 使金属基 板 20与金属层 22两者相互接触。另外, 金属连接程序亦可选用镀银, 其材质之选用并不 限定如上述之铜金属。
请同时参阅图 6、 图 7与图 8, 图 7为本发明一实施例电路板结构的制程方法的示意 图(四); 图 8为本发明一实施例电路板结构的立体图。
电路板结构的制程方法还包含下列步骤:
如图 6至 8所示, 在金属层 22的表面 S进行曝光蚀刻程序以在表面 S形成金属线路 2a o接着在金属线路 22a的电子组件安装区 M形成有连通金属基板 20的开口 22b。之后 利用表面组装技术 (Surface Mounted Technology, SMT) 在电子组件安装区 M安装发光 二极管模组 24。所述发光二极管模组 24的散热件 24a通过开口 22b而能够直接接触金属 基板 20。
其中, 于上述在凹槽 23进行金属连接程序, 使金属基板 20与金属层 22两者接触的 步骤中(步骤 S120) , 进一步可从图 8看出(可配合图 5与图 6), 在凹槽 23的位置, 利用 如镀上金属 220 (例如,镀铜)的金属连接程序使金属基板 20与金属层 22两者得以相互接 触, 使之能够增加电路板结构 2的热传导系数, 从而提升电路板结构 2整体的散热效能。
由此可知, 当发光二极管模组 24被通电发光时所产生的热能, 能够通过金属 220直 接将金属层 22的热能传递至金属基板 20, 以达到快速散热的效能; 同时, 利用连通金属 基板 20的开口 22b,发光二极管模组 24的散热件 24a的热能亦能够直接传递至金属基板 20, 而同样能够达到快速散热的效能。
以及, 如图 8所示, 本发明所提供的电路板结构 2包括金属基板 20、 介电层 21以及 金属层 22。 所述介电层 21形成在金属基板 20上; 金属层 22形成在介电层 21上。 其中, 金属基板 20与金属层 22两者于一位置 (例如上述凹槽 23的位置)通过金属连接程序而接 触。
详言之, 金属层 22的表面 S包含金属线路 22a, 金属线路 22a的电子组件安装区 M 具有连通金属基板 20的开口 22b。 电子组件安装区 M能够安装一或多个发光二极管模组 24, 其中发光二极管模组 24的散热件 24a通过开口 22b而能够直接接触金属基板 20。值 得一提的是,图 8中的金属线路 22a的型态于此仅助于理解,其并非用以限制此线路型态。
以及,金属层 22的表面 S更配置电性连接金属线路 22a的连接器 (Connector) 25。例 如,利用连接器 25能够将一外部电能供应至发光二极管模组 24, 以使发光二极管模组 24 的发光单元发光, 但随着电路设计需求的不同, 连接器 25的功用不限定于此。 另外, 介 电层 21形成在金属基板 20与金属层 22之间以作为绝缘层; 且金属基板 20包含铝基板, 金属层 22包含铜层。 然而, 金属基板 20与金属层 22的材质并不限定于此, 其仍可依实 际的电路设计需求, 而选用具有不同热传导系数的金属。
由此可知,于实际运用时,能够通过连接器 25提供电能至金属层 22表面 S上的金属 线路 22a, 使得电路板结构 2上的发光二极管模组 24得以被通电而发光。 所述发光二极 管模组 24发光时所产生的热能,能够通过金属 220 (如铜或银等)直接将金属层 22的热能 传递至金属基板 20, 以达到快速散热的效能; 同时, 利用连通金属基板 20的开口 22b, 发光二极管模组 24的散热件 24a的热能亦能够直接传递至金属基板 20,而同样能够达到 散热的效能。
请参阅图 9, 图 9为图 6电路板结构的制程方法的另一实施示意图。
由图 3与图 9可知,上述在凹槽进行金属连接程序,使金属基板与金属层两者接触 (步 骤 S120)中, 能够在凹槽 23的位置, 利用如镀上金属 220a (例如, 镀铜)的金属连接程序 使金属基板 20与金属层 22两者得以相互接触,使之能够增加电路板的热传导系数,从而 提升电路板整体的散热效能。 其中, 金属 220 a于此实施例为未填满凹槽 23的型态, 其 仍能够使金属基板 20与金属层 22两者相互接触, 并减少材料的使用。
由此可知, 本发明电路板结构及其制程方法, 具有以下之特点:
1.于一适当位置 (例如上述凹槽的位置)将金属基板与金属层两者接触,使之能够增加 电路板的热传导系数, 从而提升电路板的散热效能。
2.利用连通金属基板的开口,发光二极管模组的散热件的热能亦能够直接传递至金属 基板, 以达到快速散热的效能。 以上, 仅为本发明的较佳实施例, 意在进一步说明本发明, 而非对其进行限定。 凡根 据上述文字和附图所公开的内容进行的简单的替换, 都在本专利的权利保护范围之列。

Claims

权利要求
1、 一种电路板结构的制程方法, 包括:
提供包含一金属基板、一金属层以及一介电层位于该金属基板与该金属层之间的一电 路板;
在该电路板上形成一凹槽使该金属基板、 该介电层与该金属层成为裸露状态; 以及 在该凹槽进行一金属连接程序, 使该金属基板与该金属层两者接触。
2、 如权利要求 1所述的电路板结构的制程方法, 还包括: 在该金属层的一表面进行 一曝光蚀刻程序以在该表面形成一金属线路。
3、 如权利要求 2所述的电路板结构的制程方法, 还包括: 在该金属线路的一电子组 件安装区形成有连通该金属基板的一开口。
4、 如权利要求 3所述的电路板结构的制程方法 还包括: 利用一表面组装技术在该 电子组件安装区安装一发光二极管模组,其中该发光 极管模组的一散热件通过该开口接 触该金属基板。
5、 一种电路板结构, 包括:
一金属基板;
介电层, 形成在该金属基板上; 以及
一金属层, 形成在该介电层上;
其中, 该金属基板与该金属层两者于一位置通过一金属连接程序而接触。
6、 如权利要求 5所述的电路板结构, 还包括:
该金属层的一表面包含一金属线路,该金属线路的一电子组件安装区具有连通该金属 基板的一开口。
7、 如权利要求 6所述的电路板结构, 还包括: 该电子组件安装区安装一发光二极管 模组, 其中该发光二极管模组的一散热件通过该开口接触该金属基板。
8、 如权利要求 6所述的电路板结构, 其中, 该金属层的该表面还配置电性连接该金 属线路的一连接器。
9、 如权利要求 5所述的电路板结构, 其中, 该金属基板包含一铝基板。
10、 如权利要求 5所述的电路板结构, 其中, 该金属层包含一铜层。
PCT/CN2012/070018 2011-12-05 2012-01-04 电路板结构及其制程方法 WO2013082874A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/497,467 US20130140062A1 (en) 2011-12-05 2012-01-04 Circuit board structure and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103992039A CN102497747A (zh) 2011-12-05 2011-12-05 电路板结构及其制程方法
CN201110399203.9 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013082874A1 true WO2013082874A1 (zh) 2013-06-13

Family

ID=46189522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070018 WO2013082874A1 (zh) 2011-12-05 2012-01-04 电路板结构及其制程方法

Country Status (2)

Country Link
CN (1) CN102497747A (zh)
WO (1) WO2013082874A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289887A1 (en) * 2005-06-24 2006-12-28 Jabil Circuit, Inc. Surface mount light emitting diode (LED) assembly with improved power dissipation
CN101106893A (zh) * 2007-08-01 2008-01-16 锐迪科无线通信技术(上海)有限公司 带有散热结构的印刷电路板
CN201475950U (zh) * 2009-06-04 2010-05-19 何忠亮 Led灯散热基板
CN201788966U (zh) * 2010-07-29 2011-04-06 欣兴电子股份有限公司 非热电分离式金属基板及具有该金属基板的发光组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222897A (ja) * 2001-01-29 2002-08-09 Hitachi Metals Ltd 半導体用パッケージ
JP4669392B2 (ja) * 2003-01-28 2011-04-13 日本シイエムケイ株式会社 メタルコア多層プリント配線板
JP2005079516A (ja) * 2003-09-03 2005-03-24 Mitsubishi Gas Chem Co Inc 金属芯入りキャビティ型半導体プラスチックパッケージ
CN201373367Y (zh) * 2009-01-22 2009-12-30 深圳市成光兴实业发展有限公司 一种利用半导体制冷的大功率led光源模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289887A1 (en) * 2005-06-24 2006-12-28 Jabil Circuit, Inc. Surface mount light emitting diode (LED) assembly with improved power dissipation
CN101106893A (zh) * 2007-08-01 2008-01-16 锐迪科无线通信技术(上海)有限公司 带有散热结构的印刷电路板
CN201475950U (zh) * 2009-06-04 2010-05-19 何忠亮 Led灯散热基板
CN201788966U (zh) * 2010-07-29 2011-04-06 欣兴电子股份有限公司 非热电分离式金属基板及具有该金属基板的发光组件

Also Published As

Publication number Publication date
CN102497747A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
TWI437930B (zh) 封裝載板及其製作方法
JP2011139008A (ja) 熱と電気の伝導経路を分離させたチップオンボード用金属基板構造
JP2008277817A (ja) 放熱モジュール及びその製造方法
JP2011108924A (ja) 熱伝導基板及びその電子部品実装方法
JP4992532B2 (ja) 放熱基板及びその製造方法
TW201234682A (en) Circuit for a light emitting component and method of manufacturing the same
CN111132476A (zh) 双面线路散热基板的制备方法
CN111031687A (zh) 制备散热电路板的方法
JP2008041953A (ja) 発光装置
KR20120100303A (ko) 인쇄회로기판, 이를 구비한 발광모듈, 발광모듈을 구비하는 조명유닛 및 발광모듈 제조방법
KR101115403B1 (ko) 발광 장치
JP5369034B2 (ja) ハイブリッド型放熱基板
JP5197562B2 (ja) 発光素子パッケージ及びその製造方法
KR101055297B1 (ko) 개선된 열방출 특성을 갖는 메탈 인쇄회로기판의 제조 방법
US11545412B2 (en) Package structure and manufacturing method thereof
WO2013082874A1 (zh) 电路板结构及其制程方法
US20120122278A1 (en) Method Of Manufacturing Semiconductor Package Board
TWI422078B (zh) 熱輻射結構以及製造其之方法
TWI437670B (zh) 散熱基板之結構及其製程
KR101085660B1 (ko) 방열 구조물 및 그 제조 방법
JP2009218254A (ja) 回路モジュールとその製造方法
TW201347616A (zh) 發光二極體封裝及所使用之pcb式散熱基板與其製法
KR101116725B1 (ko) 인쇄회로기판 조립체
JP2011082269A (ja) 発光ダイオード基板及びその製造方法
JP2010010558A (ja) 発光装置及び発光装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13497467

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854965

Country of ref document: EP

Kind code of ref document: A1