WO2013082860A1 - 码头船用岸电系统 - Google Patents

码头船用岸电系统 Download PDF

Info

Publication number
WO2013082860A1
WO2013082860A1 PCT/CN2012/000735 CN2012000735W WO2013082860A1 WO 2013082860 A1 WO2013082860 A1 WO 2013082860A1 CN 2012000735 W CN2012000735 W CN 2012000735W WO 2013082860 A1 WO2013082860 A1 WO 2013082860A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cable
reel
high voltage
power supply
Prior art date
Application number
PCT/CN2012/000735
Other languages
English (en)
French (fr)
Inventor
白力群
Original Assignee
Bai Liqun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46188908&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013082860(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bai Liqun filed Critical Bai Liqun
Publication of WO2013082860A1 publication Critical patent/WO2013082860A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • B63J2003/043Driving of auxiliaries from power plant other than propulsion power plant using shore connectors for electric power supply from shore-borne mains, or other electric energy sources external to the vessel, e.g. for docked, or moored vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels

Definitions

  • the invention relates to a ship power supply system, in particular to a dock ship shore power system.
  • China is the world's largest water transport country, with an annual port cargo throughput of more than 7 billion tons, ranking first in the world.
  • the number of ships berthing in China's coastal and inland river ports is huge, mainly including general cargo ships, bulk carriers, container ships, automobile ships, log ships, chemical tankers, liquefied gas carriers, passenger ships and tankers. Since almost all ships in the world use their own light-burning or heavy-duty diesel generators to generate electricity by themselves, the ship emits a large amount of carbon dioxide, stellate and nitride, which has a serious impact on the atmospheric environment.
  • Ships docked at the dock must use the ship's auxiliary equipment 24 hours a day to generate electricity to meet the needs of the ship's electricity.
  • the auxiliary machine burns a large amount of oil in the work, discharges a large amount of exhaust gas, and generates noise pollution 24 hours a day without interruption.
  • the variable frequency power supply equipment manufactured by the general manufacturer uses the general frequency converter as the main core component.
  • This kind of frequency converter is used as a power source and has insurmountable defects.
  • the frequency converter is a power source that can change the frequency and voltage. It is composed of AC-DC-AC and other circuits.
  • the three-phase AC power of the power grid is rectified into a pulsating DC through three-phase bridge. Filtered into a smooth DC through electrolytic capacitors and inductors, and finally through the inverter, inverter into three-phase AC with adjustable voltage and frequency.
  • the standard name of the inverter is the inverter.
  • the input circuit of the inverter (frequency converter) is a circuit that charges the filter capacitor after full-wave rectification of the three-phase AC power supply.
  • the input current always appears near the amplitude value of the voltage, which is a discontinuous shock wave, and the output of the inverter
  • the circuit is an inverter bridge that converts direct current into a three-phase modulated AC voltage whose frequency is continuously adjustable.
  • the output voltage waveform is a sinusoidal modulated SPWM wave.
  • the harmonic voltage drop caused by the high harmonic current on the line causes distortion of the grid voltage waveform. This distortion affects other loads, resulting in electrical equipment.
  • the technical problem to be solved by the present invention is to provide a docking marine shore power system with reasonable design, strong applicability, stability and high efficiency in view of the deficiencies of the prior art.
  • the technical problem to be solved by the present invention is achieved by the following technical solutions.
  • the invention relates to a docking ship shore power system, which is characterized in that: it comprises a high voltage variable frequency power supply device, a high voltage junction box, a high voltage cable reel and a shipborne substation;
  • the high-voltage variable frequency power supply device comprises a high-voltage incoming line rejecting transformer, the high-voltage cable is connected to the high-voltage incoming line and is connected to the transformer, and the high-voltage incoming line is rejected with a plurality of current limiting resistors, and the transformer passes through the high-voltage cable and the frequency conversion
  • the inverter is composed of a plurality of PWM power units connected in series and in parallel. The inverter is connected to the sine filter through a high voltage cable, and the sinus filter is rejected by the high voltage cable and the high voltage outlet; a programmable controller, wherein the PLC programmable controller is connected to the frequency converter through a signal line;
  • the high-voltage junction box comprises a base, the base is provided with a box body with a box door, a double-color warning light is arranged on the box body, a high-pressure door lock is arranged on the box door, and a high-voltage indicator is arranged in the box body,
  • the high-voltage indicator is connected to the two-color warning light and the high-voltage door lock through the signal line; a plurality of high-voltage sockets are arranged in parallel on the high-voltage cable in the access box, and the high-voltage plug is matched with the high-voltage socket, and the high-voltage plug passes through the high-voltage cable.
  • Receiving the box; the high-voltage indicator is connected to the high-voltage cable through the high-voltage sensor; the heat-dissipating hole is arranged on the base or the box;
  • the high-voltage cable reel includes a frame, and the reel is provided with a reel and a cable discharger, the reel includes a reel and a motor, and the reel is connected to a main shaft fixed to the frame, and the motor passes the magnetic a stagnation coupling, a reducer and a transmission mechanism are connected to the main shaft, and a high-pressure reel collector is arranged in the reel, and the discharge arranging device is arranged at a front part of the reel;
  • the shipboard substation includes a high-voltage inlet and outlet line rejection, a transformer and a low-voltage inlet and outlet line rejection.
  • the high-voltage cable is connected to the high-voltage inlet and outlet line, and then enters the transformer.
  • the transformer is rejected by the low-voltage cable and the low-voltage inlet and outlet, and the low-voltage inlet and outlet lines are rejected.
  • the low-voltage cable is disconnected from the power distribution; it also has a PLC programmable controller, and the PLC programmable controller is rejected by the signal line and the low-voltage input and output line, and the power distribution is rejected.
  • the circuit breaker is connected, and the PLC programmable controller is also connected to the speed regulating lifting device of the shipboard generator through a signal line, and the shipboard generator is connected to the power distribution through the signal line;
  • the high-voltage cable is connected to the high-voltage input line of the high-voltage variable-frequency power supply device, after being converted into a high-voltage junction box by the high-voltage variable-frequency power supply device, and then connected to the high-voltage junction box through the high-voltage plug and the high-voltage cable,
  • the high-voltage cable is connected to the high-voltage inlet and outlet of the ship-borne substation by the high-voltage cable reeling.
  • the docking marine shore power system described above is characterized in that: the high voltage junction box further has a wireless communication antenna connected to the wireless communication module, and the wireless communication module is connected with the multimode optical cable of the access box.
  • the technical problem to be solved by the present invention can be further achieved by the following technical solutions.
  • the docking marine power system described above is characterized in that: the high voltage plug of the high voltage junction box is provided with two interlocking pins.
  • the docking marine shore power system described above is characterized in that: the high-voltage cable reeling device is further provided with a PLC programmable controller, and the PLC programmable controller passes the signal line and the motor control module, the operation button box and the signal respectively. Acquisition sensor connection.
  • the high-voltage reel collector of the high-voltage cable reel consists of a carbon brush bracket, a carbon brush, a high-pressure slip ring and a high-voltage insulated terminal;
  • the carbon brush bracket is fixedly connected
  • a plurality of high-voltage insulated terminals are fixed on the carbon brush holder, and a high-pressure mechanism consisting of a high-voltage sliding ring and a high-voltage insulating terminal connected in sequence is connected to the end portion of the main shaft in the reel, and the carbon brush holder is attached.
  • the high-voltage insulated terminals are respectively connected to the high-pressure slip ring by a carbon brush.
  • the high-voltage cable reeling cable discharger comprises a two-way threaded screw fixed to the frame by a bearing, and a cable nut is arranged on the two-way threaded screw A cable retaining member is fixed on the cable nut.
  • the docking marine shore power system described above is characterized by: the cable limit of the high voltage cable reeling
  • the piece is in the shape of a drum, and the transmission mechanism is a transmission sprocket chain.
  • the docking marine shore power system described above is characterized in that: the high voltage variable frequency power supply device is further provided with a photoelectric conversion module, and the photoelectric conversion module is connected with a PLC programmable controller of a high voltage variable frequency power supply device, and The optical fiber cable transmits a signal; the shipboard substation further includes a photoelectric conversion module, and the photoelectric conversion module passes through a signal line and a PLC programmable controller of the shipboard substation, and the photoelectric conversion module passes the multimode optical cable and the high voltage variable frequency power supply.
  • the device's PLC programmable controller is connected.
  • the high-voltage busbar feeding three-phase high voltage of the power station is connected to the high-voltage variable frequency power supply device of the invention through the high-voltage cable, and is stepped down by the transformer to the frequency converter, and the single-phase output is crossed and crossed by the PWM inverter to realize the variable voltage frequency conversion.
  • High-voltage direct output after high-voltage output, the filter is shaped by the waveform processing, and the output voltage is a low-harmonic sine wave that meets the power consumption standard.
  • the integrated factor of the input of the frequency conversion unit can reach 0.95 or more. The input, output current, voltage, waveform, etc.
  • variable frequency power supply device variable frequency power supply device
  • the data acquisition and operation management communication with analog PLC is adopted, the control is more accurate and convenient, and the external human-machine interface monitors the data and controls the equipment to make the operation easier.
  • the photoelectric conversion module can be used to connect to the Internet or other adjacent or host devices through multimode fiber optic cable, so that other devices can be remotely controlled and monitored with the device.
  • variable frequency power supply of the invention has the characteristics of minimal harmonic pollution to the power grid, high input power factor, good output waveform quality, small harmonics, etc.
  • the output needs to add a power filter and is directly used as a high voltage variable frequency power supply.
  • 10KV, 50Hz land substation high voltage cable is connected to the high voltage variable frequency power supply device, and 6.6KV, 60Hz high voltage cable is connected from the high voltage variable frequency power supply device, and the high voltage cable is connected to the high voltage junction box, and the high voltage cable is reeled.
  • the ship connected to the shipborne substation, can output 50Hz/60Hz according to different working conditions for ships.
  • the 6KV grid voltage is supplied to the power unit after being stepped down by the auxiliary transformer of the secondary side.
  • the power unit is a three-phase input, single-phase output AC-DC PWM voltage source inverter structure, realizing high-voltage direct output of variable voltage frequency conversion. Supply high voltage load. Taking the 6KV output voltage level as an example, ' each phase consists of 6 power units with a rated voltage of 630V connected in series. The output phase voltage is 3780V and the line voltage is 6.6KV.
  • Each power unit is separated by a set of secondary sides of the input transformer. Power supply, insulation between power units and the secondary winding of the transformer. The secondary winding adopts the extended-edge delta connection method to realize multiplexing, so as to reduce the input harmonic current.
  • the 6KV voltage class frequency conversion it is a 36-pulse rectifier circuit structure, and the input current waveform is close to a sine wave. Since the input current harmonic distortion is very low, the integrated factor of the inverter input can reach 0.95 or more.
  • the inverter output adopts multi-transmission phase-phase PWM technology, and the 6KV output is equivalent to 36 level. Before the filtering, the output voltage is very close to the sine wave, and dv/dt 4 is small. (Voltage output is 6KV/50Hz, 6.6KV/60Hz)
  • the high-voltage junction box of the invention has a more reasonable structure, is convenient and safe to use, and is particularly suitable for use at a dock.
  • the high-voltage cable reel structure of the invention is more reasonable and convenient to use;
  • the high-pressure reel current collector is a high-voltage conductive mechanism installed inside the reel, so it can be applied to a high-voltage cable;
  • the hysteresis coupling provided It can maintain the optimal cable length, avoid cables that exceed the tightening limit and slack, maintain constant tension, and ensure that the cable is not strained.
  • the role of magnetic coupling ensures that the cable is in operation.
  • the cable ejector can be used to arrange the cable well when retracting the cable, so that the cable can be completely covered in the reel without manual operation by personnel;
  • the signal collection sensor sends the motion parameters of the reel to the PLC program to process the length of the cable, and the tension control of the reel is performed through the PLC programmable controller output point.
  • the shipborne substation of the present invention is not only the terminal equipment of the terminal marine power supply system, but also the power supply equipment for the ship using the shore power.
  • the high-voltage inlet and outlet lines, transformers and PLC programmable controllers installed in the ship-borne substation are used to introduce low-voltage power supply to the ship's main switchboard busbar through the ship's power cable for use by the ship after docking.
  • the ship-borne substation of the present invention supplies power to the ship in two power supply modes: 1. interlock mode, 1. grid-connected mode.
  • Interlock mode When the interlock mode is selected, the PLC program interlocks the low-voltage power switch of the ship-borne substation with the ship power station.
  • the low voltage power supply switch of the shipborne substation of the present invention does not accept any closing signal, and will not cause misoperation in the joint; only when the onboard generator stops working (ie, confluence When the power is lost, the low-voltage power supply switch of the ship-borne substation will receive the closing signal to provide shore power supply to the whole ship through the ship-borne substation.
  • Grid-connected mode When the grid-connected mode is selected, the PLC sets the low-voltage power switch of the ship-borne substation to the grid-connected mode. After adjusting the speed of the ship-borne generator so that the frequency and voltage of the ship-borne generator and the ship-borne substation are basically the same, press the grid connection button, the ship-borne substation captures the synchronization timing, and the grid signal is issued when the system reaches the complete grid connection condition.
  • the shipboard substation and the shipborne generator are connected to the grid for power supply. After the grid connection is successful, the load transfer and the shipboard generator are disengaged, so that the uninterrupted power supply from the shore power to the whole ship can be realized. Conversely, when the shore power supply is cancelled, the interlock mode and the grid-connected mode can also be selected to realize the recovery of the ship power station in the form of intermittent or uninterrupted power supply.
  • the ship-borne substation of the invention has reasonable structure and convenient use, and can realize the transfer of the ship load to the shore power under the condition of constant power, thereby ensuring that the normal operation and the living power of the ship are not affected.
  • the ship-borne substation of the invention is a new type of power supply mode, and the ship-borne substation has a compact structure, reliable operation and convenient maintenance.
  • the invention realizes the high-pressure ship, and the output design can be 400V, 415V, 440V, 690V, 6.6k V, 50/60Hz and the like.
  • the high-voltage variable frequency power supply device is installed in the terminal power distribution room, and the protection level IP20; Install high-voltage junction box on the sea side of the terminal, protection class IP56; ship-borne substation is directly installed on the ship, protection class IP56.
  • the ship-borne substation is designed according to different levels of output voltage, which can be divided into "high-voltage station”, “690V substation”, “440V substation”, “400 (415) V substation”; between the high voltage junction box and the shipborne substation, connected by a high voltage cable on the high voltage cable reel.
  • the shore power cable carried by the ship is directly connected to the corresponding power output terminal of the shipborne substation, and the power source set to meet the requirements of the ship power station can be provided to the ship for use.
  • the high-voltage cable box on the high-voltage junction box and the high-voltage cable reel can use the conventional quick-install safety connector to reduce the wiring work intensity and the wiring time of the ship to the port, and improve the work efficiency.
  • the high-voltage cable reel can be moved and used safely and reliably.
  • the retractable cable is quick and convenient.
  • the quick-fit safety switch and the ship-borne substation can be designed as an electrical interlock. Before the completion of the wiring and during the wiring process, the ship-borne substation cannot be powered on. If the ship-borne substation is already in the power supply state, the junction box cannot be opened for wiring. Operation; All power supply output sides are protected by circuit breakers to ensure safe use.
  • the ship-borne substation is preferably equipped with a phase sequence indicator for detecting and indicating the phase sequence of the power supply to ensure the normal operation of the ship.
  • the shipboard substation In order to meet the state of loading and unloading cargo for large ships, the shipboard substation is designed to be connected to the grid.
  • the shore power access screen of the ship power station is connected with the ship-borne substation.
  • the ship-borne substation samples and compares the power grid of the ship power station, adjusts the frequency, voltage and phase angle of the power supply of the device, establishes the conditions for the vehicle, and realizes the ship-borne substation and the ship.
  • the power station is operated in parallel, the load is transferred, and then the ship generator is turned off to realize uninterrupted power supply from the shipboard substation to the whole ship.
  • grid-connected and non-grid-connected switches can also be installed.
  • the grid When the grid is not connected to the grid, the grid is interlocked with the ship's power station to ensure that the ship-to-substation can supply power to the ship after the ship's power station stops generating electricity. It is consistent with the traditional working mode of the shore box, and is compatible with the shore power box that has no shore power access screen or is not modified.
  • the system of the present invention can adopt multiple voltage regulation and compensation measures.
  • Voltage sampling from the filter output, feedback to the PLC for closed-loop voltage stability control; PLC of the high-voltage variable-frequency power supply device is set by software, Establish a load-voltage compensation curve model to ensure that the power supply to the ship's electrical appliances meets the specifications.
  • the conditions for the use of the system of the invention for a ship Most ships currently have the conditions to receive shore power.
  • one or more ship-borne substations (shore power boxes) have been installed.
  • the ship When the ship is docked, the ship can be directly connected to the shore power system, and the power is sent to the main switchboard for power distribution.
  • the ship-borne substation to the main switchboard There is a fixed cable with sufficient capacity between them.
  • the ship docks at the dock it can directly connect to the shore power system and shut down the ship to generate electricity.
  • the shore power system replaces the mooring generator to supply power to the ship's mooring equipment through the ship-borne substation; the large ship installs the ship-borne substation (shore power access screen), or increases the ship-borne substation through modification, when the ship docks at the dock Direct connection to the shore power system, through the ship-borne substation to achieve parallel, load transfer, shutdown of the ship generator, the shore power system to the entire ship.
  • the ship-borne substation shore power access screen
  • the wharf shore power system of the present invention is a power supply system for supplying power to an inbound ship used at a dock, and has the following advantages:
  • the high-voltage variable-frequency power supply device, the high-voltage junction box, the high-voltage cable reel and the ship-borne substation constituting the system of the present invention can pass the multi-mode optical cable or the non-electrical communication through the PLC programmable controller and the wireless signal module.
  • the mutual signal connection is realized to realize information feedback and control, and the connection with the upper PC can also be realized, real-time monitoring and management is realized.
  • the system of the invention has wide adaptability, the dock occupying area is almost 0, no need for dock infrastructure reconstruction, one set of power supply can be used for multiple docks, one set of power supply can be used for multiple ships, shore power supply is far away from the dock, and does not occupy the valuable value of the dock. Space, while avoiding the complex environment of the terminal, does not require the renovation of the terminal site infrastructure, saving investment costs.
  • FIG. 1 is a schematic view of the system of the present invention
  • Figure 2 is a schematic block diagram of a high voltage variable frequency power supply device
  • Figure 3 is a schematic structural view of a high voltage junction box
  • Figure 4 is a schematic block diagram of the high voltage junction box
  • Figure 5 is a schematic structural view of a high voltage cable reel
  • Figure 6 is a cross-sectional structural view of a high-voltage cable reel
  • Figure 7 is a block diagram of the control structure of the high-voltage cable reel
  • Figure 8 is a block diagram of the ship-borne substation.
  • a dock marine shore power system includes a high voltage variable frequency power supply device, a high voltage junction box 2, a high voltage cable reel 3, and a shipborne substation 4;
  • the high-voltage variable frequency power supply device includes a high-voltage input line cabinet and a transformer, and the high-voltage cable 5 is connected to the high-voltage input line and is connected to the transformer, and the high-voltage input line is rejected with a plurality of current limiting resistors, and the transformer is
  • the inverter is connected to the frequency converter through a high voltage cable 5, and the frequency converter is composed of a plurality of PWM power units by series and parallel connection, the frequency converter is connected to the sine filter through a high voltage cable, and the sinus filter is rejected by the high voltage cable and the high voltage outlet. It also has a PLC programmable controller, and the PLC programmable controller is connected to the frequency converter through a signal line;
  • the high-voltage junction box includes a base 22, and the base 22 is provided with a box body 21 with a box door, and a double-color warning light 24 is disposed on the box body 21, and a high-pressure door lock is arranged on the box door.
  • a high-voltage indicator is disposed in the box 21, and the high-voltage indicator is connected to the two-color warning light 24 and the high-voltage door lock through a signal line; a plurality of high-voltage sockets are arranged in parallel on the high-voltage cable in the access box 21, and a high-voltage plug is provided for the high-voltage socket, and the high-voltage plug is connected to the box 21 through the high-voltage cable; the high-voltage indicator is connected to the high-voltage cable 5 through the high-voltage sensor; the above is provided on the base 22 or the box 21 Cooling hole 23;
  • the high-voltage cable 5 includes a frame 31, and a reel 37 and a cable ejector are disposed on the frame 31.
  • the reel 31 includes a reel 314 and a motor 33.
  • the barrel 314 is connected to a spindle 39 fixed to the frame 31, and the motor 33 passes through the hysteresis coupling 34, the speed reducer 35, and the conveyor
  • the structure 36 is connected to the cable discharger and the main shaft 39, and a high-pressure reel collector is disposed in the reel 314, and the discharge device is disposed at the front of the reel 314;
  • the ship-borne substation includes a high-voltage inlet and outlet line rejection, a transformer and a low-voltage inlet and outlet line rejection, and the high-voltage cable 5 is connected to the high-voltage inlet and outlet line, and then enters the transformer, and the transformer is connected to the low-voltage inlet and outlet cabinet through the low-voltage cable.
  • the low-voltage inlet and outlet cabinet is connected to the power distribution through the low-voltage cable; it also has a PLC programmable controller, and the PLC programmable controller is connected with the circuit breaker and the low-voltage inlet and outlet line, and the power distribution rejection circuit, respectively.
  • the programmable controller is also connected to the speed regulating lifting device of the shipboard generator through a signal line, and the shipboard generator is connected to the power distribution through the signal line;
  • the high-voltage variable frequency power supply device After the high-voltage cable 5 is connected to the high-voltage input line of the high-voltage variable-frequency power supply device 1, the high-voltage variable frequency power supply device is converted into a high-voltage junction box 2 after being converted by a high-voltage variable frequency power supply device, and then connected to the high-voltage junction box 2 through a high-voltage plug and a high-voltage cable 5 After the casing 21, the high-voltage cable 5 is connected to the high-voltage inlet and outlet of the ship-borne substation 4 via the high-voltage cable reel 3 on board.
  • Embodiment 2 In the dock marine shore power system described in Embodiment 1, the high voltage junction box 2 further includes a wireless communication antenna 25 connected to the wireless communication module, and the wireless communication module and the access box 21 Multimode fiber optic cable connection.
  • Embodiment 3 In the dock marine shore power system according to Embodiment 1 or 2, the high voltage plug of the high voltage junction box 2 is provided with two interlocking pins.
  • Embodiment 4 In the dock marine shore power system described in Embodiment 1, the high voltage cable reel 3 is further provided with a PLC programmable controller, and the PLC programmable controller respectively passes the signal line and the control module of the motor 33, Operate the button box and signal acquisition sensor connection.
  • the high pressure reel current collector is composed of a carbon brush holder 310, a carbon brush 313, a high voltage slip ring 315 and a high voltage insulated terminal 311;
  • the bracket 310 is fixedly connected to the reel 314, and a plurality of high-voltage insulated terminals 311 are fixed on the carbon brush holder 310.
  • the end of the main shaft 39 in the reel 314 is connected with a high-voltage sliding ring 315 connected in series to be insulated from the high voltage.
  • the high-voltage mechanism composed of the terminals 311 and the high-voltage insulated terminals 311 provided on the carbon brush holder 310 are connected to the high-pressure sliding ring 315 through the carbon brushes 313, respectively.
  • Embodiment 6 in the dock marine shore power system of Embodiment 1 or 4 or 5: the cable discharger comprises a two-way threaded screw 38 fixed to the frame 31 by a bearing, on the two-way threaded screw 38 A cable nut 32 is provided, and a cable limiting member 312 is fixed on the cable nut 32.
  • Embodiment 7 in the dock marine shore power system described in Embodiment 1 or 4 or 5 or 6, the cable limit member 312 of the high-voltage cable reel 3 is in the form of a drum, and the transmission mechanism is a transmission chain. Wheel chain.
  • Embodiment 8 The docking marine power system of the first embodiment: the high voltage variable frequency power supply device 1 further includes a photoelectric conversion module, the photoelectric conversion module and the PLC programmable controller of the high voltage variable frequency power supply device 1 Connecting, and transmitting signals through the multimode optical cable; the shipboard substation 4 is further provided with a photoelectric conversion module, and the photoelectric conversion module passes through a signal line and a PLC programmable controller of the shipboard substation 4, and the photoelectric conversion module passes The multimode optical cable is connected to the PLC programmable controller of the high voltage variable frequency power supply device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ac-Ac Conversion (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种码头船用岸电系统,包括高压变频电源装置(1)、高压接线箱(2)、高压电缆卷车(3)和船载变电站(4)。高压变频电源装置(1)包括高压进线柜和变压器,高压电缆接入高压进线柜并接出至变压器,高压进线柜设有若干级限流电阻,变压器通过高压电缆与变频器连接,变频器由若干个PWM功率单元通过串联及并联的方式组成,变频器通过高压电缆与正弦滤波器连接,正弦滤波器通过高压电缆与高压出线柜连接。该码头船用岸电系统是一种在码头使用的给进港船舶提供电源的供电系统,可节约能源,实现减排环保,适用范围广,为停靠船舶提供400V、415V、440V、690V、6.6kV,50/60Hz等多种制式的供电。

Description

码头船用岸电系统 技术领域
本发明涉及一种船舶供电系统, 特别是一种码头船用岸电系统。
背景技术
据资料介绍, 我国是世界上最大的水运国家, 年港口货物吞吐量达 70多 亿吨, 居世界之首。 每年在我国沿海和内河港口靠泊装卸货物的船舶数量巨 大, 主要包括杂货船、 散货船、 集装箱船、 汽车船、 原木船、 化工品船、 液 化气船、 客轮和油轮等。 由于全世界几乎所有的船舶均使用燃烧轻盾或重质 柴油的发电机自行发电, 所以船舶会排出大量二氧化碳、 石克化物和氮化物, 对大气环境造成严重影响。
停靠码头的船舶必须一天 24小时采用船舶辅机来发电, 以满足船舶用电 的需求。 辅机在工作中燃烧大量的油料, 排出大量的废气, 同时 24小时不间 断地产生噪声污染。
目前, 国外船舶大多数均釆用 60 Hz电制供电, 而我国电网供电电源频率 标准为 50Hz, 因此, 国外船舶直接接入我国电网是不能正常工作的。
随着集装箱船载箱量的不断提升, 6600 V中压电力供电系统成了超大型 集装箱船的标准配置,港口接岸电电源既要满足目前以 440V低压电制为主要 配置的船舶需要, 同时也要适应 6600 V中压电力供电系统船舶的发展趋势。
一般生产厂家制造的变频供电设备均采用通用变频器为主要核心部件。 这种变频器作为电源使用, 有着不可克服的缺陷: 变频器是可以改变频率和 电压的电源, 由交流-直流-交流等电路构成的, 将电网三相交流电经过三相桥 式整流成脉动直流, 在通过电解电容和电感滤波成平滑直流, 最后通过逆变 器, 逆变成电压和频率可调的三相交流电。 变频器的标准叫法为变频调速器。 变频器 (变频调速器) 的输入电路是三相交流电源经全波整流后向滤波电容 器充电的电路, 输入电流总是出现在电压的振幅值附近, 呈不连续的沖击波, 变频器的输出电路是把直流变成频率连续可调的三相调制交流电压的逆变 桥, 其输出电压波形是正弦调制 SPWM波。 高次谐波电流在线路上所造成谐 波压降, 引起电网电压波形畸变, 这个畸变影响到其它负载, 导致用电设备
1
确认本 效率降低, 噪声增大, 甚至在一些设备里发生共振, 导致设备过热, 还会给 仪表装置和电讯设备带来严重的电磁干扰, 给测试装置的精度及数据的可靠 性带来严重的威胁。
发明内容
本发明所要解决的技术问题是针对现有技术的不足, 提供一种设计合理、 可适用性强、 稳定高效的码头船用岸电系统。
本发明所要解决的技术问题是通过以下的技术方案来实现的。 本发明是 一种码头船用岸电系统, 其特点是: 它包括高压变频电源装置、 高压接线箱、 高压电缆卷车和船载变电站;
高压变频电源装置包括高压进线拒和变压器, 高压电缆接入高压进线拒 并接出至变压器, 所述的高压进线拒设有若干级限流电阻, 所述的变压器通 过高压电缆与变频器连接,所述的变频器由若干个 PWM功率单元通过串联及 并联的方式组成, 变频器通过高压电缆与正弦滤波器连接, 正弦滤波器通过 高压电缆与高压出线拒连接; 它还设有 PLC可编程控制器, 所述的 PLC可编 程控制器通过信号线与变频器连接;
所述的高压接线箱包括底座, 底座上设有带箱门的箱体, 在箱体上设有 双色警灯, 箱门上设有高压门锁, 箱体内设有高压指示器, 所述的高压指示 器通过信号线与双色警灯、 高压门锁连接; 接入箱体内的高压电缆上并联设 有若干个高压插座, 它还设有与高压插座配套的高压插头, 高压插头通过高 压电缆接出箱体; 所述的高压指示器通过高压传感器连接在高压电缆上; 述 的在底座或箱体上设有散热孔;
所述的高压电缆卷车包括机架, 在机架上设有卷车和排缆器, 所述的卷 车包括卷筒和电机, 卷筒连接在固定于机架的主轴上, 电机通过磁滞联轴器、 减速机和传动机构与主轴连接, 在卷筒内设有高压卷筒集电器, 所述的排缆 器设在卷筒的前部;
所述的船载变电站包括高压进出线拒、 变压器和低压进出线拒, 高压电 缆接入高压进出线拒后接出, 进入变压器, 变压器通过低压电缆与低压进出 线拒连接, 低压进出线拒通过低压电缆与配电拒连接; 它还设有 PLC可编程 控制器, 所述的 PLC可编程控制器分别通过信号线与低压进出线拒、 配电拒 的断路器连接, PLC 可编程控制器还通过信号线与船载发电机的调速升降装 置连接, 所述的船载发电机通过信号线与配电拒连接;
所述的高压电缆接入高压变频电源装置的高压进线拒后, 经高压变频电 源装置变频变压后接入高压接线箱, 再经高压插头及高压电缆接出高压接线 箱的箱体后, 高压电缆经高压电缆卷车上船连接至船载变电站的高压进出线 拒。
本发明所要解决的技术问题还可以通过以下的技术方案来进一步实现。 以上所述的码头船用岸电系统, 其特点是: 所述的高压接线箱还设有与无线 通讯模块连接的无线通讯天线, 所述的无线通讯模块与接入箱体的多模光缆 连接。
本发明所要解决的技术问题还可以通过以下的技术方案来进一步实现。 以上所述的码头船用岸电系统, 其特点是: 所述的高压接线箱的高压插头设 有两个联锁插针。
本发明所要解决的技术问题还可以通过以下的技术方案来进一步实现。 以上所述的码头船用岸电系统, 其特点是: 所述的高压电缆卷车还设有 PLC 可编程控制器, PLC 可编程控制器分别通过信号线与电机的控制模块、 操作 按钮盒及信号采集传感器连接。 以上所述的码头船用岸电系统, 其特点是: 所述的高压电缆卷车的高压卷筒 集电器由碳刷支架、 碳刷、 高压滑环和高压绝缘端子组成; 碳刷支架固定连 接在卷筒上, 在碳刷支架上固定设有若干高压绝缘端子, 处于卷筒内的主轴 端部上连接设有由依次连接的高压滑环与高压绝缘端子组成的高压机构, 碳 刷支架上所设的高压绝缘端子分别通过碳刷与高压滑环连接。 以上所述的码头船用岸电系统, 其特点是: 所述的高压电缆卷车的排缆器包 括通过轴承固定在机架上的双向螺紋丝杆, 在双向螺紋丝杆上设有排缆螺母, 在排缆螺母上固定设有电缆限位件。
本发明所要解决的技术问题还可以通过以下的技术方案来进一步实现。 以上所述的码头船用岸电系统, 其特点是: 所述的高压电缆卷车的电缆限位 件为滚筒状, 所述的传动机构为传动链轮链条。 以上所述的码头船用岸电系统, 其特点是: 所述的高压变频电源装置还设有 光电转换模块, 所述的光电转换模块与高压变频电源装置的 PLC可编程控制 器连接, 并通过多模光缆传输信号; 所述的船载变电站还设有光电转换模块, 所述的光电转换模块通过信号线与船载变电站的 PLC可编程控制器, 该光电 转换模块通过多模光缆与高压变频电源装置的 PLC可编程控制器连接。
本发明使用时, 电站高压母线馈电三相高压经高压电缆接进本发明的高 压变频电源装置, 经变压器降压后给变频器, 单相输出经交直交 PWM逆变, 实现变压变频的高压直接输出, 高压输出后由滤波器通过对波形的整形处理, 输出电压为低谐波的符合用电标准的正弦波, 经输出单元输出, 变频单元输 入的综合因数可达到 0.95以上, 同时通过对输入, 输出电流, 电压, 波形等 的采样, 并送至 PLC分析处理控制, 从而实现整个变频电源装置的多环闭环 反馈控制。 采用带模拟量 PLC进行数据采集以及运算管理通讯, 控制更加准 确方便, 外接人机界面对数据进行监控和对设备进行控制, 使操作更加简便。
本发明高压变频电源的主要技术指标见下表: 项 目 指标 额定输入电压 10KV
输入电压范围 ± 10%
额定输入频率 50HZ
输入功率因数 ^0. 95
整机输入效率 ^96%
输入电流总相对谐波含量(THD) 5%
输 额定输出电压 6. 6KV
出 输出频率范围 50/60HZ
输出频率分辨率 0. 01HZ
输出频率稳定精度 ±0. 1%
额定输出容量 6. 6KV, 1250KVA 输出电压总相对谐波含量(THD) 2%
输出波形 正弦波 同时, 可以采用光电转换模块, 通过多模光缆与因特网或者其它相邻或 上位设备连接, 从而使其他设备能够和本设备进行远程控制和监控。
本发明的变频电源具有对电网谐波污染极小, 输入功率因数高, 输出波 形质量好, 谐波小等优越的特性, 输出需要添加电力滤波器, 直接用作高压 变频电源。 10KV、 50Hz陆域变电所高压电缆接入高压变频电源装置中, 并从 高压变频电源装置中接出 6.6KV、 60Hz高压电缆, 该高压电缆再接入高压接 线箱, 经高压电缆卷车上船, 接入船载变电站, 再才艮据不同的工况可以输出 50Hz/60Hz, 供船舶使用。
6KV 电网电压经过副边多重化的隔离变压器降压后给功率单元供电, 功 率单元为三相输入、单相输出的交直交 PWM电压源型逆变器结构, 实现变压 变频的高压直接输出, 供给高压负载。 以 6KV输出电压等级为例, ' 每相由 6 个额定电压为 630V 的功率单元串联而成, 输出相电压达 3780V, 线电压达 6.6KV, 每个功率单元分别由输入变压器的一组副边供电, 功率单元之间及变 压器二次绕组之间相互绝缘。 二次绕组采用延边三角形接法, 实现多重化, 以达到降低输入谐波电流的目的。 对于 6KV电压等级变频而言, 就是 36脉 冲的整流电路结构, 输入电流波形接近正弦波。 由于输入电流谐波失真很低, 变频器输入的综合因数可达到 0.95以上。
逆变器输出采用多电平移相式 PWM技术, 6KV输出相当于 36电平, 滤 波之前输出电压已经非常接近正弦波, dv/dt 4艮小。 (电压输出分别为 6KV/50Hz, 6.6KV/60Hz )
本发明的高压接线箱结构更为合理, 使用方便安全, 特别适合在码头使 用。
本发明的高压电缆卷车结构更为合理, 使用方便; 所述的高压卷筒集电 器是安装在卷筒内部的高压导电机构, 因此它可以适用于高压电缆; 所设的 磁滞联轴器可以维持最佳电缆长度, 避免超过拉紧限制和松弛的电缆, 保持 恒张力, 保证电缆不被拉伤; 同时磁力耦合的作用保证了电缆在工作过程中 始终处于柔性张紧状态; 通过所设的排缆器可以实现在收放电缆时能很好的 编排电缆的顺序, 使电缆能有序的布满卷筒, 无需人员进行手动操作; 通过 所设的信号釆集传感器将卷车的运动参数送至 PLC程序处理计算缆绳长度, 通过 PLC可编程控制器输出点, 对卷车进行张力控制。
本发明的船载变电站既是码头船用供电系统的终端设备, 也是船舶使用 岸电的电源设备。船载变电站内设置的高压进出线拒,变压器以及 PLC可编程 控制器等, 通过船用电力电缆将低压供电引入至船舶主配电板汇流排, 供船 舶靠港后使用。
本发明的船载变电站向船舶供电有两种供电模式可供选择: 1、联锁模式, 1、 并网模式。
1、 联锁模式: 选择联锁模式时, PLC程序将船载变电站低压供电开关与 船舶电站互锁。 当船载发电机正在工作(即汇流排有电时), 本发明船载变电 站低压供电开关不接受任何合闸信号, 不会造成合间误动作; 只有当船载发 电机停止工作(即汇流排失电时),船载变电站低压供电开关才接受合闸信号, 实现通过船载变电站向全船提供岸电供电。
2、 并网模式: 选择并网模式时, PLC将船载变电站低压供电开关设置为 并网待并模式。 通过调整船载发电机转速, 使船载发电机与船载变电站的频 率和电压基本一致后, 按动并网按钮, 船载变电站捕捉同步时机, 系统达到 完全并网条件时发出并网信号, 使船载变电站与船载发电机实现并网供电。 并网成功后, 进行负载转移并解列船载发电机, 从而实现由岸电向全船提供 不间断供电。 反之, 撤销岸电供电时, 也可以选择联锁模式和并网模式两种 方式, 实现间断或不间断供电的形式恢复船舶电站工作。
本发明的船载变电站结构设置合理、 使用方便, 可以实现在不断电的状 况下实现船舶负荷向岸电的转移, 从而保证船舶的正常作业和生活用电不受 任何影响。 本发明船载变电站是一种新型理念的供电方式, 船载变电站结构 紧凑, 运行可靠, 维护方便。
本发明实现了高压上船, 其输出设计可以为 400V、 415V、 440V, 690V, 6.6k V, 50/60Hz等多种制式的电制。
本发明使用时, 将高压变频电源装置安装在码头配电房内, 防护等级 IP20; 在码头海侧安装高压接线箱, 防护等级 IP56; 船载变电站直接安装在 船舶上使用, 防护等级 IP56。 为了减小安装到船舶上的设备体积小、 重量轻, 船载变电站按照不同等级的输出电压分别设计, 可以分为"高压站"、 "690V变 电站"、 "440V变电站"、 "400 ( 415 ) V变电站"; 高压接线箱与船载变电站之 间, 通过高压电缆卷车上的高压电缆连接。 随船携带的岸电电缆, 直接接入 到船载变电站相应的电源输出端, 即可将设置为符合船舶电站要求的电源提 供给船舶使用。
高压接线箱和高压电缆卷车上的高压电缆可以采用常规的快装安全接线 器, 以减少接线工作强度和船舶靠港的接线时间, 提高工作效率。
高压电缆卷车可移动使用, 安全可靠, 收放电缆快捷、 方便。 快装安全 接线器与船载变电站之间可以设计成电气联锁, 接线完成之前和接线过程中, 船载变电站不能合闸供电; 船载变电站如果已经处于供电状态, 将不能打开 接线箱进行接线操作; 所有电源输出侧, 均采用断路器保护, 确保使用安全 性。
为了保证船载变电站向船舶提供的电源相序与船舶电站的相序一致, 船 载变电站最好安装有相序指示器, 用于检测和指示电源相序, 保证船舶电气 正常运行。
为了满足大型船舶装卸货物状态使用岸电电源, 船载变电站设计为可并 网使用。 将船舶电站的岸电接入屏与船载变电站连接, 船载变电站对船舶电 站电网采样并进行比较计算, 调整装置电源的频率、 电压和相角, 建立并车 条件, 实现船载变电站与船舶电站并联运行、 负载转移, 然后关闭船舶发电 机, 实现由船载变电站向全船无间断供电。 船载变电站中还可以设置并网和 不并网转换开关, 选择不并网时, 实现与船舶电站电网互锁, 确保在船舶电 站停止发电后才能由船载变电站向船舶供电, 这种工作方式与传统的岸电箱 工作方式一致, 兼容没有岸电接入屏或者没有改造的船舶岸电箱接岸电使用。
为了克服市电电网供电波动, 克服滤波器、 变压器以及供电线路造成的 电力压降, 克服大负载使用状况造成的电力压降, 保证供电电压的稳定, 本 发明系统可以采取多重稳压和补偿措施。 从滤波器输出端进行电压取样, 反 馈到 PLC进行闭环电压稳定控制; 高压变频电源装置的 PLC通过软件设置, 建立负载——电压补偿曲线模型 , 确保到达船舶用电电器的电源符合规范要 求。
关于船舶使用本发明系统的条件。 目前大多数船舶已经具备接岸电的条 件。 一般船舶, 已经安装了一个或多个船载变电站(岸电箱), 船舶停靠码头 时可以直接连接岸电系统, 将电力送至主配电板进行配电, 船载变电站至主 配电板之间设有足够容量的固定电缆。 岸电箱至岸电电源设备之间备有足够 容量和足够长度的连接电缆, 这些电缆在船舶航行时一般卷绕在高压电缆绞 车上, 船舶停靠码头时可以直接连接岸电系统, 关闭船舶发电机, 由岸电系 统代替停泊发电机通过船载变电站向船舶停泊使用的设备供电; 大型船舶安 装了船载变电站(岸电接入屏), 或者通过改装增加船载变电站, 船舶停靠码 头时可以直接连接岸电系统, 通过船载变电站实现并车、 负载转移、 关闭船 舶发电机, 由岸电系统向全船供电。
与现有技术相比, 本发明码头船用岸电系统是一种在码头使用的给进港 船舶提供电源的供电系统, 它具有以下优点:
1、 节约能源。 用岸电来代替船舶辅机供电, 使船东大大地节省了能源支 付费用, 实现的油改电, 符合环保低碳要求。
2、 减排环保。 由于采用了岸电来提供能源, 使停靠码头的船舶在港口作 业时不再有辅机的尾气向空中排放, 保护了所在港口的城市环境。 同时由于 船舶上不再有 24小时工作的辅机, 使得靠泊船舶的噪声污染得到了控制, 为 码头作业工人及船舶上工作的船员提供了良好的工作环境和生产环境。
3、 构成本发明系统的高压变频电源装置、 高压接线箱、 高压电缆卷车和 船载变电站之间可以通过所设的 PLC可编程控制器、 无线信号模块可以通过 多模光缆或无电通讯等进行相互信号连接, 实现信息反馈与控制, 也可以实 现与上位 PC机连接, 实现实时监控管理。
4、 本发明系统适应范围广, 码头占用面积几乎为 0, 无需码头基建改造, 一套电源可用于多个码头, 一套电源可用于多条船舶, 岸电电源远离码头, 不占用码头的宝贵空间, 同时也避开了码头的复杂环境, 无需码头现场基建 改造, 节约了投资成本。
附图说明 图 1为本发明系统的一种示意图;
图 2为高压变频电源装置的原理框图;
图 3为高压接线箱的一种结构示意图;
图 4为高压接线箱的原理框图;
图 5为高压电缆卷车的一种结构示意图;
图 6为高压电缆卷车的一种剖视结构示意图;
图 7为高压电缆卷车的控制结构框图;
图 8为船载变电站的原理框图。
具体实施方式
以下参照附图, 进一步描述本发明的具体技术方案, 以便于本领域的技 术人员进一步地理解本发明 , 而不构成对其权利的限制。
实施例 1 , 参照图 1 , 一种码头船用岸电系统, 它包括高压变频电源装置 1、 高压接线箱 2、 高压电缆卷车 3和船载变电站 4;
参照图 2, 高压变频电源装置包括高压进线柜和变压器, 高压电缆 5接入 高压进线拒并接出至变压器, 所述的高压进线拒设有若干级限流电阻, 所述 的变压器通过高压电缆 5与变频器连接,所述的变频器由若干个 PWM功率单 元通过串联及并联的方式组成, 变频器通过高压电缆与正弦滤波器连接, 正 弦滤波器通过高压电缆与高压出线拒连接; 它还设有 PLC可编程控制器, 所 述的 PLC可编程控制器通过信号线与变频器连接;
参照图 3, 4, 所述的高压接线箱包括底座 22, 底座 22上设有带箱门的 箱体 21 , 在箱体 21上设有双色警灯 24, 箱门上设有高压门锁, 箱体 21内设 有高压指示器, 所述的高压指示器通过信号线与双色警灯 24、 高压门锁连接; 接入箱体 21内的高压电缆上并联设有若干个高压插座, 它还设有与高压插座 配套的高压插头, 高压插头通过高压电缆接出箱体 21 ; 所述的高压指示器通 过高压传感器连接在高压电缆 5上; 所述的在底座 22或箱体 21上设有散热 孔 23;
参照图 5-7, 所述的高压电缆 5卷车它包括机架 31, 在机架 31上设有卷 车 37和排缆器, 所述的卷车 31包括卷筒 314和电机 33, 卷筒 314连接在固 定于机架 31的主轴 39上, 电机 33通过磁滞联轴器 34、 减速机 35和传动机 构 36与排缆器、 主轴 39连接, 在卷筒 314内设有高压卷筒集电器, 所述的 排缆器设在卷筒 314的前部;
参照图 8,所述的船载变电站包括高压进出线拒、变压器和低压进出线拒, 高压电缆 5接入高压进出线拒后接出, 进入变压器, 变压器通过低压电缆与 低压进出线柜连接,低压进出线柜通过低压电缆与配电拒连接;它还设有 PLC 可编程控制器, 所述的 PLC可编程控制器分别通过信号线与低压进出线拒、 配电拒的断路器连接, PLC 可编程控制器还通过信号线与船载发电机的调速 升降装置连接, 所述的船载发电机通过信号线与配电拒连接;
所述的高压电缆 5接入高压变频电源装置 1的高压进线拒后, 经高压变 频电源装置变频变压后接入高压接线箱 2,再经高压插头及高压电缆 5接出高 压接线箱 2的箱体 21后, 高压电缆 5经高压电缆卷车 3上船连接至船载变电 站 4的高压进出线拒。
实施例 2, 实施例 1所述的码头船用岸电系统中: 所述的高压接线箱 2还 设有与无线通讯模块连接的无线通讯天线 25, 所述的无线通讯模块与接入箱 体 21的多模光缆连接。
实施例 3 , 实施例 1或 2所述的码头船用岸电系统中: 所述的高压接线箱 2的高压插头设有两个联锁插针。
实施例 4, 实施例 1所述的码头船用岸电系统中: 所述的高压电缆卷车 3 还设有 PLC可编程控制器, PLC可编程控制器分别通过信号线与电机 33的 控制模块、 操作按钮盒及信号采集传感器连接。
实施例 5, 实施例 1或 4所述的码头船用岸电系统中: 所述的高压卷筒集 电器由碳刷支架 310、 碳刷 313、 高压滑环 315和高压绝缘端子 311组成; 碳 刷支架 310固定连接在卷筒 314上, 在碳刷支架 310上固定设有若干高压绝 缘端子 311 , 处于卷筒 314内的主轴 39端部上连接设有由依次连接的高压滑 环 315与高压绝缘端子 311组成的高压机构, 碳刷支架 310上所设的高压绝 缘端子 311分别通过碳刷 313与高压滑环 315连接。
实施例 6, 实施例 1或 4或 5所述的码头船用岸电系统中: 所述的排缆器 包括通过轴承固定在机架 31上的双向螺纹丝杆 38, 在双向螺纹丝杆 38上设 有排缆螺母 32, 在排缆螺母 32上固定设有电缆限位件 312。 实施例 7, 实施例 1或 4或 5或 6所述的码头船用岸电系统中: _所述的高 压电缆卷车 3的电缆限位件 312为滚筒状, 所述的传动机构为传动链轮链条。
实施例 8, 实施例 1所述的码头船用岸电系统中: 所述的高压变频电源装 置 1还设有光电转换模块,所述的光电转换模块与高压变频电源装置 1的 PLC 可编程控制器连接, 并通过多模光缆传输信号; 所述的船载变电站 4还设有 光电转换模块, 所述的光电转换模块通过信号线与船载变电站 4的 PLC可编 程控制器, 该光电转换模块通过多模光缆与高压变频电源装置 1的 PLC可编 程控制器连接。
u

Claims

1、 一种码头船用岸电系统, 其特征在于: 它包括高压变频电源装置、 高 压接线箱、 高压电缆卷车和船载变电站;
高压变频电源装置包括高压进线拒和变压器, 高压电缆接入高压进线拒 并接出至变压器, 所述的高压进线拒设有若干级限流电阻, 所述的变压器通 过高压电缆与变频器连接,所述的变频器由若干个 PWM功率单元通过串联及 并联的方式组成, 变频器通过高压电缆与正弦滤波器连接, 正弦滤波器通过 高压电缆与高压出线拒连接; 它还设有 PLC可编程控制器, 所述的 PLC可编 程控制器通过信号线与变频器连接;
所述的高压接线箱包括底座, 底座上设有带箱门的箱体, 在箱体上设有 双色警灯, 箱门上设有高压门锁, 箱体内设有高压指示器, 所述的高压指示 器通过信号线与双色警灯、 高压门锁连接; 接入箱体内的高压电缆上并联设 有若干个高压插座, 它还设有与高压插座配套的高压插头, 高压插头通过高 压电缆接出箱体; 所述的高压指示器通过高压传感器连接在高压电缆上; 述 的在底座或箱体上设有散热孔; '
所述的高压电缆卷车包括机架, 在机架上设有卷车和排缆器, 所述的卷 车包括卷筒和电机, 卷筒连接在固定于机架的主轴上, 电机通过磁滞联轴器、 减速机和传动机构与主轴连接, 在卷筒内设有高压卷筒集电器, 所述的排缆 器设在卷筒的前部;
所述的船载变电站包括高压进出线拒、 变压器和低压进出线拒, 高压电 缆接入高压进出线拒后接出, 进入变压器, 变压器通过低压电缆与低压进出 线柜连接, 低压进出线柜通过低压电缆与配电拒连接; 它还设有 PLC可编程 控制器, 所述的 PLC可编程控制器分别通过信号线与低压进出线拒、 配电拒 的断路器连接, PLC 可编程控制器还通过信号线与船载发电机的调速升降装 置连接, 所述的船载发电机通过信号线与配电拒连接;
所述的高压电缆接入高压变频电源装置的高压进线柜后, 经高压变频电 源装置变频变压后接入高压接线箱, 再经高压插头及高压电缆接出高压接线 箱的箱体后, 高压电缆经高压电缆卷车上船连接至船载变电站的高压进出线 根。
2、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 接线箱还设有与无线通讯模块连接的无线通讯天线, 所述的无线通讯模块与 接入箱体的多模光缆连接。
3、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 接线箱的高压插头设有两个联锁插针。
4、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 电缆卷车还设有 PLC可编程控制器, PLC可编程控制器分别通过信号线与电 机的控制模块、 操作按钮盒及信号采集传感器连接。
5、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 电缆卷车的高压卷筒集电器由碳刷支架、 碳刷、 高压滑环和高压绝缘端子组 成; 碳刷支架固定连接在卷筒上, 在碳刷支架上固定设有若干高压色缘端子, 处于卷筒内的主轴端部上连接设有由依次连接的高压滑环与高压绝缘端子组 成的高压机构, 碳刷支架上所设的高压绝缘端子分别通过碳刷与高压滑环连 接。
6根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压电 缆卷车的排缆器包括通过轴承固定在机架上的双向螺紋丝杆, 在双向螺紋丝 杆上设有排缆螺母, 在排缆螺母上固定设有电缆限位件。
7、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 电缆卷车的电缆限位件为滚筒状, 所述的传动机构为传动链轮链条。
8、 根据权利要求 1所述的码头船用岸电系统, 其特征在于: 所述的高压 变频电源装置还设有光电转换模块, 所述的光电转换模块与高压变频电源装 置的 PLC可编程控制器连接, 并通过多模光缆传输信号; 所述的船载变电站 还设有光电转换模块, 所述的光电转换模块通过信号线与船载变电站的 PLC 可编程控制器, 该光电转换模块通过多模光缆与高压变频电源装置的 PLC可 编程控制器连接。
PCT/CN2012/000735 2011-12-06 2012-05-28 码头船用岸电系统 WO2013082860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110399121.4 2011-12-06
CN2011103991214A CN102497110B (zh) 2011-12-06 2011-12-06 码头船用岸电系统

Publications (1)

Publication Number Publication Date
WO2013082860A1 true WO2013082860A1 (zh) 2013-06-13

Family

ID=46188908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000735 WO2013082860A1 (zh) 2011-12-06 2012-05-28 码头船用岸电系统

Country Status (2)

Country Link
CN (1) CN102497110B (zh)
WO (1) WO2013082860A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499752A (zh) * 2013-09-13 2014-01-08 镇江科创电气工程有限公司 便携式模拟发电机屏
CN117424242A (zh) * 2023-12-18 2024-01-19 上海交通大学三亚崖州湾深海科技研究院 一种具有超远距离变频启动功能的船载升压装置及方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497112A (zh) * 2011-11-30 2012-06-13 连云港星火岸电工程有限公司 高压变频电源装置
CN102878092B (zh) * 2012-10-16 2015-04-08 章礼道 新型节能调速电动给水泵系统
CN103078397B (zh) * 2013-02-05 2015-10-21 张建伟 岸船供电方法
CN103401245B (zh) * 2013-08-20 2015-08-26 刘明日 智能环保高压岸电电源系统
CN103513131B (zh) * 2013-09-13 2016-03-02 镇江科创电气工程有限公司 模拟船舶发电机装置
CN103532138A (zh) * 2013-10-21 2014-01-22 安徽天沃电气技术有限公司 一种码头智能型高压船用岸电系统
CN103683165B (zh) * 2013-12-11 2016-07-06 大连海威金属结构有限公司 停泊岸电电缆滚动支撑固定装置
CN104104183A (zh) * 2014-07-14 2014-10-15 天津市特变电工变压器有限公司 船用箱式同步机组变频岸基电源
CN105490264A (zh) * 2015-12-21 2016-04-13 辽宁绿港科技有限公司 一种船舶高压岸电系统
CN106904249A (zh) * 2015-12-23 2017-06-30 上海船舶研究设计院 一种船舶克令吊与冷藏箱分电箱的供电系统
CN105896446A (zh) * 2016-04-21 2016-08-24 上海外高桥造船有限公司 用于浮式储油装置单元的岸电连接装置
CN106532624B (zh) * 2016-08-22 2018-12-11 中海网络科技股份有限公司 一种船舶岸电综合保护控制系统
CN106849087A (zh) * 2017-01-09 2017-06-13 中交航局安装工程有限公司 一种应用于散货码头的岸电系统
CN106877203B (zh) * 2017-03-30 2019-02-05 大丰隆盛实业有限公司 一种码头岸电供电系统随动式供电设备
CN106877204B (zh) * 2017-03-30 2019-02-05 大丰隆盛实业有限公司 一种码头岸电供电系统
CN107086571B (zh) * 2017-06-23 2023-08-04 国网冀北节能服务有限公司 靠港船舶使用的岸电系统
CN107516897A (zh) * 2017-09-15 2017-12-26 江苏耐维思通科技股份有限公司 一种高压岸电供应连接装置
CN107585639A (zh) * 2017-09-15 2018-01-16 江苏耐维思通科技股份有限公司 一种岸电高压电缆绞车
CN108429285A (zh) * 2018-03-29 2018-08-21 武汉理工大学 一种适用于kHz级交流电的船用离并网混合型双向变频变流器
CN109179089A (zh) * 2018-11-01 2019-01-11 陕西华通机电制造有限公司 一种岸电线缆智能管理系统
CN109980576B (zh) * 2018-11-28 2020-09-25 国网河南省电力公司修武县供电公司 一种用于供电电缆松弛调节装置
CN109896357A (zh) * 2019-02-21 2019-06-18 国电南瑞科技股份有限公司 一种趸船专用智能电缆收放系统
CN111580429A (zh) * 2020-05-07 2020-08-25 武汉理工大学 适用于岸电系统的物联网终端数据采集装置及监控方法
CN112010117A (zh) * 2020-07-22 2020-12-01 贵州电网有限责任公司 一种便携式检修电源盘
CN112027814A (zh) * 2020-08-28 2020-12-04 许继电源有限公司 一种电缆卷筒控制方法及电缆卷筒控制装置
CN112260109B (zh) * 2020-10-28 2022-07-01 西安中车永电电气有限公司 一种高防护双电制岸电箱
CN113765207A (zh) * 2021-08-12 2021-12-07 中国船舶电站设备有限公司 一种船电与岸电转换控制装置
CN114363913B (zh) * 2022-01-06 2024-04-05 中铁长江交通设计集团有限公司 基于电力线通讯实现的港口船舶岸电系统
CN115065026A (zh) * 2022-05-31 2022-09-16 青岛和瑞德电力科技有限公司 一种用于岸电的高压电缆快装接线系统
DE202022103338U1 (de) * 2022-06-14 2022-07-19 bremenports GmbH & Co KG Stromversorgungsnetz für Binnenschiffe
CN116646828A (zh) * 2023-06-01 2023-08-25 浙江浙能迈领环境科技有限公司 一种船舶用高压岸电供应连接设备及连接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184589A1 (en) * 2004-02-20 2005-08-25 Japan Radio & Electric Mfg. Co., Ltd. Method of supplying electric power from shore to ship and system thereof
CN1921252A (zh) * 2005-08-25 2007-02-28 清华同方威视技术股份有限公司 一种用于移动系统市电供应的收放电缆卷筒装置
CN200976478Y (zh) * 2006-11-30 2007-11-14 夹江水工机械厂 电缆插头快换接线箱
CN101488720A (zh) * 2008-10-24 2009-07-22 青岛经济技术开发区创统科技发展有限公司 大功率船舶岸电电源
CN202004351U (zh) * 2010-12-23 2011-10-05 北京市电力公司 箱式变电站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255517A (zh) * 2011-06-11 2011-11-23 台州富凌电气有限公司 一种船舶用岸电电源
CN202455066U (zh) * 2011-12-06 2012-09-26 连云港星火岸电工程有限公司 一种码头船用岸电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184589A1 (en) * 2004-02-20 2005-08-25 Japan Radio & Electric Mfg. Co., Ltd. Method of supplying electric power from shore to ship and system thereof
CN1921252A (zh) * 2005-08-25 2007-02-28 清华同方威视技术股份有限公司 一种用于移动系统市电供应的收放电缆卷筒装置
CN200976478Y (zh) * 2006-11-30 2007-11-14 夹江水工机械厂 电缆插头快换接线箱
CN101488720A (zh) * 2008-10-24 2009-07-22 青岛经济技术开发区创统科技发展有限公司 大功率船舶岸电电源
CN202004351U (zh) * 2010-12-23 2011-10-05 北京市电力公司 箱式变电站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, HONGBO ET AL.: "On the technology of on-shore power supply for vessels", PORT & WATERWAY ENGINEERING, September 2011 (2011-09-01), pages 183 - 184 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499752A (zh) * 2013-09-13 2014-01-08 镇江科创电气工程有限公司 便携式模拟发电机屏
CN117424242A (zh) * 2023-12-18 2024-01-19 上海交通大学三亚崖州湾深海科技研究院 一种具有超远距离变频启动功能的船载升压装置及方法
CN117424242B (zh) * 2023-12-18 2024-03-26 上海交通大学三亚崖州湾深海科技研究院 一种具有超远距离变频启动功能的船载升压装置及方法

Also Published As

Publication number Publication date
CN102497110B (zh) 2013-07-03
CN102497110A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2013082860A1 (zh) 码头船用岸电系统
CN202455066U (zh) 一种码头船用岸电系统
CN205544287U (zh) 基于交直流复合电网的船舶岸电系统
CN101488720A (zh) 大功率船舶岸电电源
CN103401245B (zh) 智能环保高压岸电电源系统
CN205377286U (zh) 一种船舶高压岸电系统
CN106816874A (zh) 基于交直流复合电网的船舶岸电系统以及供电方法
DE202014103274U1 (de) Landstromversorgungssystem für Schiffe am Kai
WO2012122873A1 (zh) 港口岸基变频供电系统
EP2458724A1 (en) Movable shore power variable frequency power supply device
CN105490264A (zh) 一种船舶高压岸电系统
CN102255517A (zh) 一种船舶用岸电电源
CN203119479U (zh) 一种岸基供电系统
JP3193427U (ja) 埠頭の船舶用陸電システム
CN106208140A (zh) 一种高压大功率双向船舶岸电电源系统
CN203434629U (zh) 智能环保高压岸电电源系统
CN103457259B (zh) 中压直流区域配电系统
CN103124102A (zh) 码头高压船用岸电系统
CN201509059U (zh) 港口岸电变频供电系统与停港船舶受电系统快速连接装置
CN201315548Y (zh) 大功率船舶岸电电源
CN202541349U (zh) 岸边移动式船用变电站集成系统
CN201788236U (zh) 一种滑触供电小车的专用检测装置
CN201490897U (zh) 一种可移动式岸电变频供电装置
CN109353239B (zh) 一种用于千吨级以上电动船充电的户外集中式交直流岸电箱
CN202817886U (zh) 不间断电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854626

Country of ref document: EP

Kind code of ref document: A1