WO2013082818A1 - 微波天线对准方法及装置 - Google Patents

微波天线对准方法及装置 Download PDF

Info

Publication number
WO2013082818A1
WO2013082818A1 PCT/CN2011/083789 CN2011083789W WO2013082818A1 WO 2013082818 A1 WO2013082818 A1 WO 2013082818A1 CN 2011083789 W CN2011083789 W CN 2011083789W WO 2013082818 A1 WO2013082818 A1 WO 2013082818A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
error signal
antenna
azimuth
antennas
Prior art date
Application number
PCT/CN2011/083789
Other languages
English (en)
French (fr)
Inventor
罗昕
陈一
吕瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2011800039754A priority Critical patent/CN102725968A/zh
Priority to PCT/CN2011/083789 priority patent/WO2013082818A1/zh
Priority to US13/786,298 priority patent/US20130201855A1/en
Publication of WO2013082818A1 publication Critical patent/WO2013082818A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a microwave antenna alignment method and apparatus.
  • a microwave antenna alignment method and apparatus Since the microwave antenna has a narrow beamwidth, it is necessary to align the antenna to ensure communication success.
  • the prior art is to provide a Received Signal Strength Indication (RSI) interface on an Out Door Unit (ODU).
  • the detection circuit inside the ODU outputs the RSSI voltage according to the strength of the received signal.
  • the staff first according to the antenna. The latitude and longitude of the location and the altitude are used to coarsely adjust the antenna to achieve approximate alignment of the antenna. Then, while monitoring the RSSI voltage level, adjust the antenna pointing until the RSSI voltage reaches the preset threshold.
  • Embodiments of the present invention provide a microwave antenna alignment method and apparatus, which provide an explicit indication for antenna adjustment, which makes antenna alignment more convenient.
  • the embodiment of the present invention uses the following technical solutions:
  • a microwave antenna alignment method includes:
  • the signals of the same phase received by the two sub-antennas in the same horizontal plane are subjected to vector subtraction to obtain an azimuth plane vector difference, and the azimuth plane angle error signal includes the azimuth plane vector difference, and the azimuth plane angle error signal is used for reflecting the reception.
  • a microwave antenna alignment method includes: Performing vector subtraction on signals of the same phase received by two sub-antennas in the same vertical plane to obtain a pitch plane vector difference, the pitch plane angle error signal including the pitch plane vector difference, and the pitch plane angle error signal is used Reflecting the magnitude and direction of the deviation between the receiving beam and the antenna pointing in the vertical plane;
  • the antenna is aligned in a vertical plane based on the pitch plane error signal.
  • a microwave antenna alignment device includes:
  • An error signal calculation unit is configured to perform vector subtraction of signals of the same phase received by two sub-antennas in the same horizontal plane to obtain an azimuth plane vector difference, and the azimuth plane angle error signal includes the azimuth plane vector difference, the azimuth plane
  • the angular error signal is used to reflect the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the horizontal plane;
  • An aligning unit configured to align the antenna in a horizontal plane according to the azimuth plane error signal.
  • a microwave antenna alignment device includes:
  • An error signal calculation unit configured to perform vector subtraction of signals of the same phase received by two sub-antennas in the same vertical plane, to obtain a pitch surface vector difference, where the elevation surface angle error signal includes the pitch surface vector difference,
  • the elevation surface angle error signal is used to reflect the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the vertical plane;
  • an aligning unit configured to align the antenna in a vertical plane according to the azimuth plane error signal.
  • the azimuth angle error signal and the angle between the receiving beam and the antenna pointing in the horizontal plane
  • the elevation angle error signal and the angle between the receiving beam and the antenna pointing in the vertical plane.
  • the positive and negative of the error signal reflects the direction of the deviation.
  • the magnitude of the error signal reflects the angle of the deviation, which can be based on the angle and direction of the deviation of the received beam from the horizontal or vertical plane of the receiving beam.
  • FIG. 1 is a flowchart of a microwave antenna alignment method according to Embodiment 1 of the present invention.
  • Figure 2 is a functional image of the angle at which the receive beam is offset from the antenna and the amplitude of the signal received by the two sub-amps in the same plane;
  • Figure 3 is a schematic diagram showing the relationship between the azimuth angle error signal and the angle between the receiving beam and the antenna pointing in the horizontal plane;
  • Figure 5 is a schematic diagram showing the relationship between the pitch angle error signal and the angle between the receiving beam and the antenna pointing in the vertical plane;
  • FIG. 6 is a flowchart of a microwave antenna alignment method according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of a method for aligning a microwave antenna according to Embodiment 4 of the present invention.
  • FIG. 8 is a structural block diagram of a wave antenna alignment device according to Embodiment 5 or Embodiment 7 of the present invention
  • FIG. 9 is a structural block diagram of a microwave antenna alignment device according to Embodiment 6 of the present invention.
  • FIG. 10 is a structural block diagram of the error signal calculation unit of FIG. 8 implemented by a vector overlay network.
  • an embodiment of the present invention provides a method for aligning a microwave antenna, including: Step 101: Performing a signal with the same phase received by two sub-antennas in the same horizontal plane The amount is subtracted to obtain the azimuth plane vector difference, and the azimuth plane angle error signal includes the azimuth plane vector difference, and the azimuth plane angle error signal is used to reflect the angle magnitude and direction of the deviation of the receiving beam between the horizontal plane and the antenna pointing;
  • the amplitudes of the signals received by the two sub-antennas are different.
  • the function image of the signal amplitude received by the two sub-antennas within a certain range is two different parabolas.
  • the signals of the same phase received by the two sub-antennas in the same horizontal plane ie, the azimuth plane
  • the vector subtraction can obtain the azimuth angle error signal, which is used to reflect the angle and direction of the deviation of the receiving beam from the antenna pointing in the horizontal plane.
  • the azimuth angle error signal There is a correspondence between the azimuth angle error signal and the angle at which the receiving beam deviates from the antenna pointing in the horizontal plane.
  • the abscissa is the angle of deviation
  • the ordinate is the amplitude of the azimuth angle error signal
  • the positive and negative of the error signal reflect the deviation.
  • the direction of the error signal reflects the angle of the deviation within a certain range. When the error signal is zero, the antenna is aligned.
  • Step 102 Align the antenna in a horizontal plane according to the azimuth plane error signal.
  • the microwave antenna alignment method provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the reflected deviation of the receiving beam in the horizontal plane from the antenna pointing, and needs to be tested in the alignment process with the prior art. Compared with adjusting the antenna in different directions, it provides a clear indication for the adjustment of the antenna, making the alignment of the antenna more convenient.
  • the embodiment of the present invention further provides a microwave antenna alignment method, wherein the azimuth angle error signal may further include: The signals of the same phase received by the two sub-antennas are vector subtracted to obtain the azimuth vector difference; or, the phase received by the other two sub-antennas in the other horizontal planes of the same horizontal plane and the two sub-antennas having the same symmetry axis The same signal is vector subtracted to obtain the azimuth vector difference. Since the other two sub-antennas in the horizontal plane and the two sub-antennas have the same symmetry axis, the obtained azimuth vector difference is equal to the azimuth vector difference in the first embodiment, so that the sum can also reflect the antenna pointing. Deviation from the angle size and direction, that is, square The plane angle error signal.
  • Step 102 Aligning the antennas in the horizontal plane according to the azimuth error signal includes:
  • Step 1021 Convert an azimuth angle error signal into an angle and a direction of a deviation of a receiving beam between a horizontal plane and an antenna pointing direction;
  • Step 1022 Align the antenna in a horizontal plane according to the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the horizontal plane.
  • Step 103 Perform vector subtraction on the signals of the same phase received by the two sub-antennas in the same vertical plane to obtain a vector difference of the elevation surface, the error signal of the elevation surface angle includes a vector difference of the elevation surface, and the error signal of the elevation surface angle is used for reflection.
  • the pitch angle error signal may further include: performing, by using the same vertical plane, the signals of the same phase received by the other two sub-antennas of the two sub-antennas having the same axis of symmetry to perform vector subtraction, and obtaining the pitch plane vector difference; Or, the signals of the same phase received by the other two sub-antennas of the same vertical plane and the other two sub-antennas of the same sub-antenna are subjected to vector subtraction, and the obtained plane vector difference is obtained.
  • the signals of the same phase received by the two sub-antennas in the same vertical plane are subjected to vector subtraction, and the vertical error signal is used in the vertical plane.
  • the elevation angle error signal is between the angle between the vertical angle of the receiving beam and the antenna pointing.
  • the abscissa is the angle of deviation
  • the ordinate is the amplitude of the pitch angle error signal
  • the positive and negative of the error signal reflect the direction of the deviation.
  • the magnitude of the error signal reflects the angle of the deviation, the error signal When it is zero, it indicates antenna alignment.
  • Step 104 Align the antenna in a vertical plane according to the elevation plane error signal. Further, step 104: aligning the antenna in the vertical plane according to the elevation plane error signal specifically includes: Step 1041: Converting the elevation plane angle error signal into an angle and a direction of a deviation of the receiving beam between the vertical plane and the antenna pointing direction. ;
  • Step 1042 Align the antenna in a vertical plane according to the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the vertical plane.
  • step 101 there may be no logical sequence relationship between step 101 and step 103.
  • the microwave antenna alignment method provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the receiving beam deviating from the antenna pointing in the horizontal plane and the vertical plane, and the alignment process with the prior art. It is necessary to try to adjust the antenna in different directions, which provides a clear indication of the adjustment of the antenna, making the alignment of the antenna more convenient. Moreover, as shown in FIG. 3 and FIG. 5, the curve near the zero point is very steep, so that the state in which the azimuth angle error signal and the elevation surface angle error signal are zero is easily captured, and the RSSI voltage after the antenna is substantially aligned with the prior art. The antenna can be accurately aligned more easily than when the change is small.
  • the embodiment of the present invention further provides a microwave antenna alignment method, including: Step 201: Perform vector subtraction on signals of the same phase received by two sub-antennas in the same vertical plane to obtain a pitch plane.
  • the vector difference, the elevation surface angle error signal includes the pitch surface vector difference, and the elevation surface angle error signal is used to reflect the angle magnitude and direction of the deviation of the receiving beam between the vertical plane and the antenna pointing direction;
  • Step 202 Align the antenna in a vertical plane according to the pitch plane error signal.
  • the microwave antenna alignment method provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the angle between the receiving beam and the antenna pointing in the vertical plane, and needs to try in the alignment process with the prior art. Compared to adjusting the antenna in different directions, it provides a clear indication of the adjustment of the antenna, making the alignment of the antenna more convenient.
  • the embodiment of the present invention further provides a method for aligning a microwave antenna, wherein the pitch angle error signal may further include: the same vertical plane and the symmetry axis of the two sub-antennas
  • the signals of the same phase received by the other two sub-antennas are vector subtracted to obtain a vector difference of the elevation plane; or, the other two of the other vertical planes of the same vertical plane are the same as the symmetry axes of the two sub-antennas
  • the signals of the same phase received by the sub-antennas are subjected to vector subtraction, and the obtained plane vector difference is obtained.
  • Step 202 Aligning the antennas in the vertical plane according to the pitch plane error signal specifically includes:
  • Step 2021 Convert the elevation surface angle error signal into an angle and a direction of a deviation of the receiving beam between the vertical plane and the antenna pointing direction;
  • Step 2022 Align the antenna in a vertical plane according to the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the vertical plane.
  • Step 203 Perform vector subtraction on the signals of the same phase received by the two sub-antennas in the same horizontal plane to obtain an azimuth plane vector difference, where the azimuth plane angle error signal includes the azimuth plane vector difference, and the azimuth plane angle error signal is used to reflect the reception.
  • the azimuth angle error signal may further include: performing, in the same horizontal plane, a signal with the same phase received by the other two sub-antennas of the two sub-antennas having the same axis of symmetry, performing vector subtraction, and obtaining an azimuth plane vector difference; or The signals of the same phase received by the other two sub-antennas of the same horizontal plane and the other two sub-antennas of the same sub-antenna are subjected to vector subtraction, and the obtained azimuth vector difference is obtained.
  • Step 204 Align the antenna in a horizontal plane according to the azimuth plane error signal.
  • Step 204 Aligning the antenna in the horizontal plane according to the azimuth plane error signal specifically includes: Step 2041: Converting the azimuth plane angle error signal into an angle magnitude and a direction of a deviation of the receiving beam between the horizontal plane and the antenna pointing direction;
  • Step 2042 According to an angle of a deviation between the receiving beam and the antenna pointing in a horizontal plane, The direction aligns the antenna in the horizontal plane.
  • step 201 there may be no logical sequence relationship between step 201 and step 203.
  • the specific principle is the same as that of the foregoing embodiment, and details are not described herein again.
  • the microwave antenna alignment method provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the receiving beam deviating from the antenna pointing in the horizontal plane and the vertical plane, and the alignment process with the prior art. It is necessary to try to adjust the antenna in different directions, which provides a clear indication of the adjustment of the antenna, making the alignment of the antenna more convenient. Moreover, as shown in FIG. 3 and FIG. 5, the curve near the zero point is very steep, so that the state in which the azimuth angle error signal and the elevation surface angle error signal are zero is easily captured, and the RSSI voltage after the antenna is substantially aligned with the prior art. The antenna can be accurately aligned more easily than when the change is small.
  • an embodiment of the present invention provides a microwave antenna alignment apparatus, including: an error signal calculation unit 1 configured to perform vector subtraction on signals of the same phase received by two sub-antennas in the same horizontal plane. Obtaining an azimuth plane vector error, the azimuth plane angle error signal includes the azimuth plane vector difference, and the azimuth plane angle error signal is used to reflect an angle magnitude and a direction of a deviation of the receiving beam between the horizontal plane and the antenna pointing; Aligning the antenna in a horizontal plane according to the azimuth plane error signal.
  • the microwave antenna alignment device provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the deviation of the receiving beam from the antenna pointing in the horizontal plane, and needs to try differently in the alignment process with the prior art. Compared with the direction adjustment antenna, it provides a clear indication for the adjustment of the antenna, which makes the alignment of the antenna more convenient.
  • an embodiment of the present invention provides a microwave antenna alignment device.
  • the azimuth angle error signal may further include: performing, in the same horizontal plane, a signal with the same phase received by the other two sub-antennas of the same symmetry axis of the two sub-antennas, performing vector subtraction, The azimuth plane vector difference is obtained; or, the signals of the same phase received by the other two sub-antennas of the same horizontal plane and the other two sub-antennas of the same two horizontal antennas are subjected to vector subtraction, and the obtained azimuth plane vector difference is obtained.
  • the aligning unit 2 is specifically configured to: convert the azimuth angle error signal into an angle and a direction of a deviation of the receiving beam from the antenna pointing in the horizontal plane; according to the angle at which the receiving beam deviates from the antenna pointing in the horizontal plane The size and direction align the antenna in the horizontal plane.
  • the error signal calculation unit 1 is further configured to perform vector subtraction on the signals of the same phase received by the two sub-antennas in the same vertical plane to obtain a pitch surface vector difference, and the elevation surface angle error signal includes a pitch plane vector difference.
  • the pitch angle error signal is used to reflect the magnitude and direction of the angle at which the receiving beam deviates from the antenna pointing in the vertical plane;
  • the pitch angle error signal may further include: performing, by using the same vertical plane, the signals of the same phase received by the other two sub-antennas of the two sub-antennas having the same axis of symmetry to perform vector subtraction, and obtaining the pitch plane vector difference; Or, the signals of the same phase received by the other two sub-antennas of the same vertical plane and the other two sub-antennas of the same sub-antenna are subjected to vector subtraction, and the obtained plane vector difference is obtained.
  • the aligning unit 2 is further configured to align the antenna in a vertical plane according to the pitch plane error signal.
  • the aligning unit 2 is further configured to: convert the elevation surface angle error signal into an angle and a direction of a deviation of the receiving beam between the vertical plane and the antenna pointing; according to the receiving beam in the vertical plane and the antenna pointing The angular magnitude and direction of the deviation between the antennas are aligned in the vertical plane.
  • error signal calculation unit 1 is further configured to: perform vector summation on signals having the same phase received by multiple antennas in the same horizontal plane and in the same vertical plane to obtain a received signal; It is divided into multi-channel transmit signals of equal amplitude and phase.
  • the transmitting channel 3 is configured to input the transmitting signal to the error signal calculating unit, the receiving channel 4 is configured to receive the received signal, and the duplexer 5 is configured to isolate the transmitting signal and the receiving signal.
  • the first port P1, the second port P2, the third port P3, and the fourth port P4 of the vector overlay network 11 are respectively associated with the first sub-antenna A1.
  • the second sub-antenna A2, the third sub-antenna A3, and the fourth sub-antenna A4 are connected, wherein the first sub-antenna A1 and the second sub-antenna A2 are in the same horizontal plane, and the third sub-antenna A3 and the fourth sub-antenna A4 are in the same In the horizontal plane, the first sub-antenna A1 and the third sub-antenna A3 are in the same vertical plane, and the second sub-antenna A2 and the fourth sub-antenna A4 are in the same vertical plane.
  • the fifth port P5 of the vector overlay network 11 is connected to the duplexer 5
  • the sixth port P6 and the seventh port P7 of the vector overlay network 11 are connected to the alignment unit 2.
  • the transmitting signal is input to the vector superposition network 11 from the fifth port P5 via the transmitting channel 3 and the duplexer 5.
  • the vector superimposing network 11 divides the transmitting signal into four equal-amplitude and identical-phase transmitting signals, respectively.
  • the output is transmitted to the four sub-antennas through the first port P1, the second port P2, the third port P3, and the fourth port P4.
  • the first sub-A1, the second sub-A1, the third sub-A3, and the fourth sub-A4 and the fourth sub-A4 receive a first signal E1, a second signal E2, and a third phase having the same amplitude but the same phase.
  • the signal E3 and the fourth signal E4 are respectively input to the vector superposition network 11 through the first port P1, the second port P2, the third port P3 and the fourth port P4, and the vector superposition network 11 performs vector addition, subtraction and output on the four signals.
  • E1+E2+E3+E4 is output to the duplexer 5 and the receiving channel 4 through the fifth port P5, that is, the receiving signal, the azimuth angle error signal E1-E2+E3-E4 and the elevation surface angle error signal E1-E3 +E2-E4 are output to the aligning unit 2 through the sixth port P6 and the seventh port P7, respectively, which is the same as the principle in the above embodiment, and the aligning unit 2 converts the azimuth angle error signal into the receiving beam in the horizontal plane and the antenna.
  • the angle magnitude and direction of the deviation between the directions, the pitch angle error signal is converted to the magnitude and direction of the angle at which the receive beam deviates from the antenna pointing in the vertical plane.
  • the aligning unit 2 can automatically align the antenna or indicate the magnitude and direction of the angle between the receiving beam and the antenna pointing, which is adjusted by the staff.
  • the microwave antenna alignment device provided by the embodiment of the invention can generate the azimuth plane angle error signal and the elevation surface angle error signal simultaneously without affecting the transmission of the useful signal, and according to the receiving beam in the horizontal plane and the vertical plane and the antenna Adjust the angle and direction of the angle between the pointing antennas
  • it is necessary to try to adjust the antenna in different directions which provides a clear indication for the adjustment of the antenna, which makes the alignment of the antenna more convenient.
  • the curve near the zero point is very steep, so the azimuth angle error signal and the pitch plane angle error signal make it easier to accurately align the antenna.
  • an embodiment of the present invention provides a microwave antenna alignment apparatus, including: an error signal calculation unit 1 configured to perform vector phase on signals having the same phase received by two sub-antennas in the same vertical plane. Subtracting, obtaining azimuth plane vector difference, the elevation plane angle error signal includes the azimuth plane vector difference, for reflecting the angle magnitude and direction of the deviation of the receiving beam between the vertical plane and the antenna pointing; the aligning unit 2 is configured according to The azimuth error signal aligns the antenna in a vertical plane.
  • the microwave antenna alignment device provided by the embodiment of the present invention can adjust the antenna according to the angle and direction of the deviation between the receiving beam and the antenna pointing in the vertical plane, and needs to try in the alignment process with the prior art. Compared to adjusting the antenna in different directions, it provides a clear indication of the adjustment of the antenna, making the alignment of the antenna more convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种微波天线对准方法及装置,涉及通信技术领域,为天线的调整提供了明确指示,使得天线的对准更加方便。一种微波天线对准方法,包括:将同一水平面内的两个子天线接收到的相位相同的信号进行矢量相减,得到方位面矢量差,方位面角误差信号包括所述方位面矢量差,所述方位面角误差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大小和方向;根据所述方位面误差信号在水平面内对准天线。

Description

微波天线对准方法及装置
技术领域 本发明涉及通信技术领域, 尤其涉及一种微波天线对准方法及装置。 背景技术 由于微波天线波束宽度较窄, 因此需要对准天线才能保证通信成功。 现 有技术为在室外单元(Out Door Unit, ODU )上设置一个接收信号强度指示 ( Received Signal Strength Indication, RSSI )接口, ODU内部的检测电路根 据接收信号的强度输出 RSSI电压, 工作人员首先根据天线所在位置的经纬度 和海拔高度对天线进行粗调, 实现天线大致对准, 之后一边监测 RSSI电压大 小一边调整天线指向, 直到 RSSI电压达到预先设定的门限值。 由于对准过程 中只有信号强度的指示, 需要试着朝不同方向调整天线, 费时费力。 发明内容 本发明的实施例提供一种微波天线对准方法及装置, 为天线的调整提供 了明确指示, 使得天线的对准更加方便。
为解决上述技术问题, 本发明的实施例釆用如下技术方案:
一种微波天线对准方法, 包括:
将同一水平面内的两个子天线接收到的相位相同的信号进行矢量相减, 得到方位面矢量差, 方位面角误差信号包括所述方位面矢量差, 所述方位面 角误差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大小和 方向;
根据所述方位面误差信号在水平面内对准天线。
一种微波天线对准方法, 包括: 将同一竖直面内的两个子天线接收到的相位相同的信号进行矢量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括所述俯仰面矢量差, 所述俯仰面 角误差信号用于反映竖直面内接收波束与天线指向之间偏离的角度大小和方 向;
根据所述俯仰面误差信号在竖直面内对准天线。
一种微波天线对准装置, 包括:
误差信号计算单元, 用于将同一水平面内的两个子天线接收到的相位相 同的信号进行矢量相减, 得到方位面矢量差, 方位面角误差信号包括所述方 位面矢量差, 所述方位面角误差信号用于反映接收波束在水平面内与天线指 向之间偏离的角度大小和方向;
对准单元, 用于根据所述方位面误差信号在水平面内对准天线。
一种微波天线对准装置, 包括:
误差信号计算单元, 用于将同一竖直面内的两个子天线接收到的相位相 同的信号进行矢量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括所述俯 仰面矢量差, 所述俯仰面角误差信号用于反映接收波束在竖直面内与天线指 向之间偏离的角度大小和方向;
对准单元, 用于根据所述方位面误差信号在竖直面内对准天线。
方位面角误差信号与水平面内接收波束与天线指向之间偏离的角度之间 存在对应关系, 俯仰面角误差信号与竖直面内接收波束与天线指向之间偏离 的角度之间存在对应关系, 误差信号的正负反映了偏离的方向, 在一定范围 内, 误差信号的大小反映了偏离的角度大小, 可以根据接收波束在水平面内 或竖直面内与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现 有技术的对准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供 了明确指示, 使得天线的对准更加方便。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一中一种微波天线对准方法的流程图;
图 2为在同一平面内, 接收波束与天线指向偏离的角度和两个子天线接 收到的信号幅度的函数图像;
图 3 方位面角误差信号与水平面内接收波束与天线指向之间偏离的角度 对应关系示意图;
图 4为本发明实施例二中一种微波天线对准方法的流程图;
图 5 为俯仰面角误差信号与竖直面内接收波束与天线指向之间偏离的角 度对应关系示意图;
图 6为本发明实施例三中一种微波天线对准方法的流程图;
图 7为本发明实施例四中一种微波天线对准方法的流程图;
图 8为本发明实施例五或实施例七中一种 波天线对准装置的结构框图; 图 9为本发明实施例六中一种微波天线对准装置的结构框图;
图 10为图 8中误差信号计算单元用矢量叠加网络来实现的结构框图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
如图 1所示, 本发明实施例提供了一种微波天线对准方法, 包括: 步骤 101、将同一水平面内的两个子天线接收到的相位相同的信号进行矢 量相减, 得到方位面矢量差, 方位面角误差信号包括上述方位面矢量差, 方 位面角误差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大 小和方向;
具体地, 由于上述两个子天线的位置不同, 因此天线在一定范围内没有 对准时, 上述两个子天线接收到的信号幅度也不同, 如图 2所示, 接收波束 与天线指向偏离的角度和上述两个子天线接收到的信号幅度在一定范围内的 函数图像为两条不同的抛物线, 如图 3所示, 将上述同一水平面 (即方位面) 内的两个子天线接收到的相位相同的信号进行矢量相减, 即可得到方位面角 误差信号, 用于反映接收波束在水平面内与天线指向之间偏离的角度大小和 方向。 方位面角误差信号与接收波束在水平面内与天线指向之间偏离的角度 之间存在对应关系, 横坐标为偏离的角度, 纵坐标为方位面角误差信号幅度, 误差信号的正负反映了偏离的方向, 在一定范围内, 误差信号的大小反映了 偏离的角度大小, 误差信号为零时表示天线对准。
步骤 102、 根据方位面误差信号在水平面内对准天线。
本发明实施例提供的微波天线对准方法, 可以根据反映出的接收波束在 水平面内与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现有 技术的对准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供了 明确指示, 使得天线的对准更加方便。
实施例二
基于实施例一, 如图 4所示, 本发明实施例还提供一种微波天线对准方 法, 其中, 方位面角误差信号还可以包括: 上述同一水平面内与上述两个子 天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得 到的方位面矢量差; 或, 不同于上述同一水平面的其他水平面内与上述两个 子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。 由于在水平面内与上述两个子天线同对称轴的另外两 个子天线进行矢量相减, 得到的方位面矢量差与实施例一中的方位面矢量差 相等, 因此它们的和同样可以反映天线指向的偏离角度大小和方向, 即为方 位面角误差信号。
步骤 102根据方位面误差信号在水平面内对准天线具体包括:
步骤 1021、 将方位面角误差信号转换为接收波束在水平面内与天线指向 之间偏离的角度大小和方向;
具体为根据方位面角误差信号与接收波束在水平面内与天线指向之间偏 离的角度之间存在对应关系进行转换。
步骤 1022、 根据接收波束在水平面内与天线指向之间偏离的角度大小和 方向在水平面内对准天线。
本发明实施例提供的微波天线对准方法还包括:
步骤 103、将同一竖直面内的两个子天线接收到的相位相同的信号进行矢 量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括俯仰面矢量差, 俯仰面 角误差信号用于反映接收波束在竖直面内与天线指向之间偏离的角度大小和 方向;
进一步地, 俯仰面角误差信号还可以包括: 上述同一竖直面内与上述两 个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相 减, 得到的俯仰面矢量差; 或, 不同于上述同一竖直面的其他竖直面内与上 述两个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量 相减, 得到的俯仰面矢量差。
与上述方位面误差信号的计算原理相同, 将同一竖直面 (即俯仰面) 内 的两个子天线接收到的相位相同的信号进行矢量相减, 以及在竖直面内与上 误差信号, 用于反映接收波束在竖直面内与天线指向之间偏离的角度大小和 方向, 如图 5 所示, 俯仰面角误差信号与接收波束在竖直面内与天线指向之 间偏离的角度之间存在对应关系, 横坐标为偏离的角度, 纵坐标为俯仰面角 误差信号幅度, 误差信号的正负反映了偏离的方向, 在一定范围内, 误差信 号的大小反映了偏离的角度大小, 误差信号为零时表示天线对准。
步骤 104、 根据俯仰面误差信号在竖直面内对准天线。 进一步地, 步骤 104根据俯仰面误差信号在竖直面内对准天线具体包括: 步骤 1041、 将俯仰面角误差信号转换为接收波束在竖直面内与天线指向 之间偏离的角度大小和方向;
具体为根据俯仰面角误差信号与接收波束在竖直面内与天线指向之间偏 离的角度之间存在对应关系进行转换。
步骤 1042、 根据接收波束在竖直面内与天线指向之间偏离的角度大小和 方向在竖直面内对准天线。
需要说明的是, 步骤 101与步骤 103之间可以没有逻辑先后关系。
本发明实施例提供的微波天线对准方法, 可以根据接收波束在水平面内 及竖直面内与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现 有技术的对准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供 了明确指示, 使得天线的对准更加方便。 并且, 如图 3和图 5所示, 在零点 附近的曲线非常陡峭, 因此方位面角误差信号和俯仰面角误差信号为零的状 态容易捕获, 与现有技术在天线大致对准之后 RSSI电压变化不大相比, 可以 更容易地将天线精确对准。
实施例三
如图 6所示, 本发明实施例还提供一种微波天线对准方法, 包括: 步骤 201、将同一竖直面内的两个子天线接收到的相位相同的信号进行矢 量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括所述俯仰面矢量差, 俯 仰面角误差信号用于反映接收波束在竖直面内与天线指向之间偏离的角度大 小和方向;
具体的原理与上述实施例相同, 在此不再赘述。
步骤 202、 根据俯仰面误差信号在竖直面内对准天线。
本发明实施例提供的微波天线对准方法, 可以根据接收波束在竖直面内 与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现有技术的对 准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供了明确指示, 使得天线的对准更加方便。 实施例四
基于实施例三, 如图 Ί 所示, 本发明实施例还提供一种微波天线对准方 法, 其中, 俯仰面角误差信号还可以包括: 上述同一竖直面内与上述两个子 天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得 到的俯仰面矢量差; 或, 不同于上述同一竖直面的其他竖直面内与上述两个 子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得到的俯仰面矢量差。
步骤 202根据俯仰面误差信号在竖直面内对准天线具体包括:
步骤 2021、 将俯仰面角误差信号转换为接收波束在竖直面内与天线指向 之间偏离的角度大小和方向;
步骤 2022、 根据接收波束在竖直面内与天线指向之间偏离的角度大小和 方向在竖直面内对准天线。
本发明实施例提供的微波天线对准方法还包括:
步骤 203、将同一水平面内的两个子天线接收到的相位相同的信号进行矢 量相减, 得到方位面矢量差, 方位面角误差信号包括上述方位面矢量差, 方 位面角误差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大 小和方向;
进一步地, 方位面角误差信号还可以包括: 上述同一水平面内与上述两 个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相 减, 得到的方位面矢量差; 或, 不同于上述同一水平面的其他水平面内与上 述两个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量 相减, 得到的方位面矢量差。
步骤 204、 根据方位面误差信号在水平面内对准天线。
其中, 步骤 204根据方位面误差信号在水平面内对准天线具体包括: 步骤 2041、 将方位面角误差信号转换为接收波束在水平面内与天线指向 之间偏离的角度大小和方向;
步骤 2042、 根据接收波束在水平面内与天线指向之间偏离的角度大小和 方向在水平面内对准天线。
需要说明的是, 步骤 201与步骤 203之间可以没有逻辑先后关系。 具体 的原理与上述实施例相同, 在此不再赘述。
本发明实施例提供的微波天线对准方法, 可以根据接收波束在水平面内 及竖直面内与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现 有技术的对准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供 了明确指示, 使得天线的对准更加方便。 并且, 如图 3和图 5所示, 在零点 附近的曲线非常陡峭, 因此方位面角误差信号和俯仰面角误差信号为零的状 态容易捕获, 与现有技术在天线大致对准之后 RSSI电压变化不大相比, 可以 更容易地将天线精确对准。
实施例五
如图 8所示, 本发明实施例提供了一种微波天线对准装置, 包括: 误差信号计算单元 1 ,用于将同一水平面内的两个子天线接收到的相位相 同的信号进行矢量相减, 得到方位面矢量差, 方位面角误差信号包括所述方 位面矢量差, 方位面角误差信号用于反映接收波束在水平面内与天线指向之 间偏离的角度大小和方向; 对准单元 2, 用于根据所述方位面误差信号在水平 面内对准天线。
具体的原理与上述实施例相同, 在此不再赘述。
本发明实施例提供的微波天线对准装置, 可以根据接收波束在水平面内 与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现有技术的对 准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供了明确指示, 使得天线的对准更加方便。
实施例六
基于实施例五, 如图 9所示, 本发明实施例提供了一种微波天线对准装 置,
其中, 方位面角误差信号还可以包括: 上述同一水平面内与上述两个子 天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得 到的方位面矢量差; 或, 不同于上述同一水平面的其他水平面内与上述两个 子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。
进一步地, 对准单元 2具体用于: 将方位面角误差信号转换为接收波束 在水平面内与天线指向之间偏离的角度大小和方向; 根据接收波束在水平面 内与天线指向之间偏离的角度大小和方向在水平面内对准天线。
进一步地, 误差信号计算单元 1 还用于, 将同一竖直面内的两个子天线 接收到的相位相同的信号进行矢量相减, 得到俯仰面矢量差, 俯仰面角误差 信号包括俯仰面矢量差, 俯仰面角误差信号用于反映接收波束在竖直面内与 天线指向之间偏离的角度大小和方向;
进一步地, 俯仰面角误差信号还可以包括: 上述同一竖直面内与上述两 个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量相 减, 得到的俯仰面矢量差; 或, 不同于上述同一竖直面的其他竖直面内与上 述两个子天线同对称轴的另外两个子天线接收到的相位相同的信号进行矢量 相减, 得到的俯仰面矢量差。
进一步地, 对准单元 2还用于, 根据俯仰面误差信号在竖直面内对准天 线。
进一步地, 对准单元 2还具体用于: 将俯仰面角误差信号转换为接收波 束在竖直面内与天线指向之间偏离的角度大小和方向; 根据接收波束在竖直 面内与天线指向之间偏离的角度大小和方向在竖直面内对准天线。
进一步地, 误差信号计算单元 1 还用于: 将同一水平面内及同一竖直面 内的多个天线接收到的相位相同的信号进行矢量相加, 得到接收信号; 将发 射信号对应多个天线平均分为等幅且相位相同的多路发射信号。
进一步地, 还包括:
发射通道 3 , 用于将发射信号输入到误差信号计算单元; 接收通道 4, 用 于接收上述的接收信号; 双工器 5 , 用于隔离发射信号与接收信号。
具体地原理与上述实施例相同, 在此不再赘述。 如图 10所示, 以下以矢 量叠加网络 11作为误差信号计算单元 1为例进一步说明本发明实施例, 矢量 叠加网络 11的第一端口 Pl、 第二端口 P2、 第三端口 P3及第四端口 P4分别 与第一子天线 Al、 第二子天线 A2、 第三子天线 A3及第四子天线 A4连接, 其中第一子天线 A1与第二子天线 A2在同一水平面内, 第三子天线 A3与第 四子天线 A4在同一水平面内, 第一子天线 A1与第三子天线 A3在同一竖直 面内, 第二子天线 A2和第四子天线 A4在同一竖直面内。 矢量叠加网络 11 的第五端口 P5与双工器 5连接, 矢量叠加网络 11的第六端口 P6和第七端口 P7与对准单元 2连接。
在发射过程中, 发射信号经由发射通道 3、 双工器 5, 从第五端口 P5输 入矢量叠加网络 11 , 矢量叠加网络 11将发射信号平均分为四路等幅且相位相 同的发射信号, 分别通过第一端口 Pl、 第二端口 P2、 第三端口 P3及第四端 口 P4输出到上述四个子天线发射出去。
在接收过程中, 第一子天线 Al、 第二子天线 A2、 第三子天线 A3与第四 子天线 A4接收到的幅度不等但相位相同的第一信号 El、 第二信号 E2、 第三 信号 E3与第四信号 E4, 分别通过第一端口 Pl、 第二端口 P2、 第三端口 P3 及第四端口 P4输入矢量叠加网络 11 , 矢量叠加网络 11对上述四路信号进行 矢量加减并输出, E1+E2+E3+E4通过第五端口 P5输出到双工器 5、接收通道 4, 即为接收信号, 方位面角误差信号 E1-E2+E3-E4 与俯仰面角误差信号 E1-E3+E2-E4分别通过第六端口 P6和第七端口 P7输出到对准单元 2,与上述 实施例中的原理相同, 对准单元 2将方位面角误差信号转换为接收波束在水 平面内与天线指向之间偏离的角度大小和方向, 将俯仰面角误差信号转换为 接收波束在竖直面内与天线指向之间偏离的角度大小和方向。 对准单元 2可 以自动对准天线或者将接收波束与天线指向之间偏离的角度大小和方向指示 出来, 由工作人员进行调整。
本发明实施例提供的微波天线对准装置, 能够在不影响有用信号传输的 情况下, 同时产生方位面角误差信号及俯仰面角误差信号, 并根据接收波束 在水平面及竖直面内与天线指向之间偏离的角度大小和方向对天线进行调 整, 与现有技术的对准过程中需要试着朝不同方向调整天线相比, 为天线的 调整提供了明确指示, 使得天线的对准更加方便。 并且, 如图 3和图 5所示, 在零点附近的曲线非常陡峭, 因此方位面角误差信号和俯仰面角误差信号为 可以更容易地将天线精确对准。
实施例七
如图 8所示, 本发明实施例提供了一种微波天线对准装置, 包括: 误差信号计算单元 1 ,用于将同一竖直面内的两个子天线接收到的相位相 同的信号进行矢量相减, 得到方位面矢量差, 俯仰面角误差信号包括上述方 位面矢量差, 用于反映接收波束在竖直面内与天线指向之间偏离的角度大小 和方向; 对准单元 2 , 用于根据方位面误差信号在竖直面内对准天线。
具体的原理与上述实施例相同, 在此不再赘述。
本发明实施例提供的微波天线对准装置, 可以根据接收波束在竖直面内 与天线指向之间偏离的角度大小和方向, 对天线进行调整, 与现有技术的对 准过程中需要试着朝不同方向调整天线相比, 为天线的调整提供了明确指示, 使得天线的对准更加方便。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求 书
1、 一种微波天线对准方法, 其特征在于, 包括:
将同一水平面内的两个子天线接收到的相位相同的信号进行矢量相减, 得 到方位面矢量差, 方位面角误差信号包括所述方位面矢量差, 所述方位面角误 差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大小和方向; 根据所述方位面误差信号在水平面内对准天线。
2、 根据权利要求 1所述的微波天线对准方法, 其特征在于,
所述方位面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的方位面矢量差;
或,
不同于所述同一水平面的其他水平面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。
3、 根据权利要求 1或 2所述的微波天线对准方法, 其特征在于, 所述根据所述方位面误差信号在水平面内对准天线包括:
将所述方位面角误差信号转换为接收波束在水平面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在水平面内与天线指向之间偏离的角度大小和方向在水 平面内对准天线。
4、 根据权利要求 3所述的微波天线对准方法, 其特征在于, 还包括: 将同一竖直面内的两个子天线接收到的相位相同的信号进行矢量相减, 得 到俯仰面矢量差, 俯仰面角误差信号包括所述俯仰面矢量差, 所述俯仰面角误 差信号用于反映接收波束在竖直面内与天线指向之间偏离的角度大小和方向; 根据所述俯仰面误差信号在竖直面内对准天线。
5、 根据权利要求 4所述的微波天线对准方法, 其特征在于,
所述俯仰面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的俯仰面矢量差;
或,
不同于所述同一竖直面的其他竖直面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的俯仰面矢量差。
6、 根据权利要求 4或 5所述的微波天线对准方法, 其特征在于, 所述根据所述俯仰面误差信号在竖直面内对准天线包括:
将所述俯仰面角误差信号转换为接收波束在竖直面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在竖直面内与天线指向之间偏离的角度大小和方向在竖 直面内对准天线。
7、 一种微波天线对准方法, 其特征在于, 包括:
将同一竖直面内的两个子天线接收到的相位相同的信号进行矢量相减, 得 到俯仰面矢量差, 俯仰面角误差信号包括所述俯仰面矢量差, 所述俯仰面角误 差信号用于反映竖直面内接收波束与天线指向之间偏离的角度大小和方向; 根据所述俯仰面误差信号在竖直面内对准天线。
8、 根据权利要求 7所述的微波天线对准方法, 其特征在于,
所述俯仰面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的俯仰面矢量差;
或,
不同于所述同一竖直面的其他竖直面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的俯仰面矢量差。
9、 根据权利要求 7或 8所述的微波天线对准方法, 其特征在于, 所述根据所述俯仰面误差信号在竖直面内对准天线包括:
将所述俯仰面角误差信号转换为接收波束在竖直面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在竖直面内与天线指向之间偏离的角度大小和方向在竖 直面内对准天线。
10、 根据权利要求 9所述的微波天线对准方法, 其特征在于, 还包括: 将同一水平面内的两个子天线接收到的相位相同的信号进行矢量相减, 得 到方位面矢量差, 方位面角误差信号包括所述方位面矢量差, 所述方位面角误 差信号用于反映接收波束在水平面内与天线指向之间偏离的角度大小和方向; 根据所述方位面误差信号在水平面内对准天线。
11、 根据权利要求 10所述的微波天线对准方法, 其特征在于,
所述方位面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的方位面矢量差;
或,
不同于所述同一水平面的其他水平面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。
12、 根据权利要求 10或 11所述的微波天线对准方法, 其特征在于, 所述根据所述方位面误差信号在水平面内对准天线包括:
将所述方位面角误差信号转换为接收波束在水平面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在水平面内与天线指向之间偏离的角度大小和方向在水 平面内对准天线。
13、 一种微波天线对准装置, 其特征在于, 包括:
误差信号计算单元, 用于将同一水平面内的两个子天线接收到的相位相同 的信号进行矢量相减, 得到方位面矢量差, 方位面角误差信号包括所述方位面 矢量差, 所述方位面角误差信号用于反映接收波束在水平面内与天线指向之间 偏离的角度大小和方向;
对准单元, 用于根据所述方位面误差信号在水平面内对准天线。
14、 根据权利要求 13所述的微波天线对准装置, 其特征在于,
所述方位面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的方位面矢量差;
或,
不同于所述同一水平面的其他水平面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。
15、 根据权利要求 13或 14所述的微波天线对准装置, 其特征在于, 所述对准单元具体用于:
将所述方位面角误差信号转换为接收波束在水平面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在水平面内与天线指向之间偏离的角度大小和方向在水 平面内对准天线。
16、 根据权利要求 15所述的微波天线对准装置, 其特征在于,
所述误差信号计算单元还用于, 将同一竖直面内的两个子天线接收到的相 位相同的信号进行矢量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括所述 俯仰面矢量差, 所述俯仰面角误差信号用于反映接收波束在竖直面内与天线指 向之间偏离的角度大小和方向;
所述对准单元还用于, 根据所述俯仰面误差信号在竖直面内对准天线。
17、 根据权利要求 16所述的微波天线对准装置, 其特征在于,
所述俯仰面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的俯仰面矢量差;
或,
不同于所述同一竖直面的其他竖直面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的俯仰面矢量差。
18、 根据权利要求 16或 17所述的微波天线对准装置, 其特征在于, 所述对准单元还具体用于:
将所述俯仰面角误差信号转换为接收波束在竖直面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在竖直面内与天线指向之间偏离的角度大小和方向在竖 直面内对准天线。
19、 根据权利要求 18所述的微波天线对准装置, 其特征在于,
所述误差信号计算单元还用于:
将所述同一水平面内及同一竖直面内的所述多个天线接收到的相位相同的 信号进行矢量相加, 得到接收信号;
将发射信号对应所述多个天线平均分为等幅且相位相同的多路发射信号。 还包括:
发射通道, 用于将所述发射信号输入到所述误差信号计算单元;
接收通道, 用于接收所述接收信号;
双工器, 用于隔离所述发射信号与接收信号。
20、 一种微波天线对准装置, 其特征在于, 包括:
误差信号计算单元, 用于将同一竖直面内的两个子天线接收到的相位相同 的信号进行矢量相减, 得到俯仰面矢量差, 俯仰面角误差信号包括所述俯仰面 矢量差, 所述俯仰面角误差信号用于反映接收波束在竖直面内与天线指向之间 偏离的角度大小和方向;
对准单元, 用于根据所述方位面误差信号在竖直面内对准天线。
21、 根据权利要求 20所述的微波天线对准装置, 其特征在于,
所述俯仰面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的俯仰面矢量差;
或,
不同于所述同一竖直面的其他竖直面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的俯仰面矢量差。
22、 根据权利要求 20或 21所述的微波天线对准装置, 其特征在于, 所述对准单元具体用于: 将所述俯仰面角误差信号转换为接收波束在竖直 面内与天线指向之间偏离的角度大小和方向;
根据所述接收波束在竖直面内与天线指向之间偏离的角度大小和方向在竖 直面内对准天线。
23、 根据权利要求 22所述的微波天线对准装置, 其特征在于,
误差信号计算单元还用于, 将同一水平面内的两个子天线接收到的相位相 同的信号进行矢量相减, 得到方位面矢量差, 方位面角误差信号包括所述方位 面矢量差, 所述方位面角误差信号用于反映接收波束在水平面内与天线指向之 间偏离的角度大小和方向;
所述对准单元还用于, 根据所述方位面误差信号在水平面内对准天线。
24、 根据权利要求 23所述的微波天线对准装置, 其特征在于,
所述方位面角误差信号还包括: 相位相同的信号进行矢量相减, 得到的方位面矢量差;
或,
不同于所述同一水平面的其他水平面内与所述两个子天线同对称轴的另外 两个子天线接收到的相位相同的信号进行矢量相减, 得到的方位面矢量差。
25、 根据权利要求 23或 24所述的微波天线对准方法, 其特征在于, 所述对准单元还具体用于:
将所述方位面角误差信号转换为接收波束在水平面内与天线指向之间偏离 的角度大小和方向;
根据所述接收波束在水平面内与天线指向之间偏离的角度大小和方向在水 平面内对准天线。
26、 根据权利要求 25所述的微波天线对准装置, 其特征在于,
所述误差信号计算单元还用于:
将所述同一水平面内及同一竖直面内的所述多个天线接收到的相位相同的 信号进行矢量相加, 得到接收信号;
将发射信号对应所述多个天线平均分为等幅且相位相同的多路发射信号。 还包括:
发射通道, 用于将所述发射信号输入到所述误差信号计算单元; 接收通道, 用于接收所述接收信号;
双工器, 用于隔离所述发射信号与接收信号。
PCT/CN2011/083789 2011-12-09 2011-12-09 微波天线对准方法及装置 WO2013082818A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800039754A CN102725968A (zh) 2011-12-09 2011-12-09 微波天线对准方法及装置
PCT/CN2011/083789 WO2013082818A1 (zh) 2011-12-09 2011-12-09 微波天线对准方法及装置
US13/786,298 US20130201855A1 (en) 2011-12-09 2013-03-05 Microwave antenna alignment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083789 WO2013082818A1 (zh) 2011-12-09 2011-12-09 微波天线对准方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/786,298 Continuation US20130201855A1 (en) 2011-12-09 2013-03-05 Microwave antenna alignment method and apparatus

Publications (1)

Publication Number Publication Date
WO2013082818A1 true WO2013082818A1 (zh) 2013-06-13

Family

ID=46950471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083789 WO2013082818A1 (zh) 2011-12-09 2011-12-09 微波天线对准方法及装置

Country Status (3)

Country Link
US (1) US20130201855A1 (zh)
CN (1) CN102725968A (zh)
WO (1) WO2013082818A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253658B (zh) * 2013-06-28 2016-11-23 华为技术有限公司 一种天线对准方法及系统
CN104280708B (zh) * 2013-07-12 2017-05-31 中国移动通信集团广东有限公司 微波自动校准方法、装置、通信应急车及基站
WO2016082175A1 (zh) 2014-11-28 2016-06-02 华为技术有限公司 用于天线对准的方法、装置、设备和系统
CN106152958A (zh) * 2016-07-27 2016-11-23 陕西飞机工业(集团)有限公司 一种天线对准测距组件
US10622846B2 (en) * 2017-02-17 2020-04-14 Hyundai Motor Company Method and apparatus for position alignment using low-frequency antennas in wireless power transfer system
CN107703479B (zh) * 2017-09-25 2020-02-07 中国电子科技集团公司第三十六研究所 一种消除和差通道相位差的方法和装置
US10727562B1 (en) 2019-04-23 2020-07-28 At&T Intellectual Property I, L.P. Dynamic autonomous piezoelectric stabilizer mount

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171849A (en) * 1985-02-25 1986-09-03 Secr Defence Improvements in or relating to the alignment of phased array antenna systems
CN101144859A (zh) * 2007-07-06 2008-03-19 哈尔滨工程大学 跟踪同一载体上三部雷达信号的装置
CN101478336A (zh) * 2008-12-30 2009-07-08 华为技术有限公司 一种天线对准的装置、方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171849A (en) * 1985-02-25 1986-09-03 Secr Defence Improvements in or relating to the alignment of phased array antenna systems
CN101144859A (zh) * 2007-07-06 2008-03-19 哈尔滨工程大学 跟踪同一载体上三部雷达信号的装置
CN101478336A (zh) * 2008-12-30 2009-07-08 华为技术有限公司 一种天线对准的装置、方法及系统

Also Published As

Publication number Publication date
CN102725968A (zh) 2012-10-10
US20130201855A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013082818A1 (zh) 微波天线对准方法及装置
US10509116B2 (en) Method and apparatus for determining location using phase difference of arrival
US7330151B1 (en) Alignment of an elliptical beam of an antenna
US20130027250A1 (en) Method and apparatus for aligning phased array antenna, and phased array antenna
CN107946778B (zh) 超短波单通道测向天线阵
CN101916908B (zh) 动中通平板天线电子变极化系统及电子变极化方法
CN102833199B (zh) 消除交叉极化干扰的方法及装置
US10063264B2 (en) Real time polarization compensation for dual-polarized millimeter wave communication
JP2014121089A (ja) アンテナシステムの校正
US20120086602A1 (en) Hybrid beam forming apparatus in wideband wireless communication system
US10230163B2 (en) Monopulse autotracking system for high gain antenna pointing
WO2021077921A1 (zh) 一种信号处理方法及相关装置
WO2014205740A1 (zh) 基于天馈系统的通道校准方法、装置及基站
JP4842333B2 (ja) 無線装置及び偏波面制御方法
WO2019079341A1 (en) METHOD AND APPARATUS FOR DETERMINING DIRECT VISIBILITY (LOS)
CA1141012A (en) Method an dsystem for tracking and object radiating a circularly or linearly polarized electromagnetic signal
CN107465447B (zh) 正交线极化信号的数字基带实时自适应匹配接收方法
WO2013028296A1 (en) Calibrating a retro-directive array for an asymmetric wireless link
CN110869806A (zh) 用于接收卫星定位信号的设备和方法
CN104539309B (zh) 基于极化失配的功放非线性影响下的全双工自干扰消除方法
WO2020261834A1 (ja) 受信装置、並びに、それを備えるレーダ装置、車両および通信システム
CN105337039B (zh) 卫星天线极化闭环跟踪方法和装置
JP5694240B2 (ja) 追尾アンテナ装置および送信位相補償方法
JP5431374B2 (ja) 無線通信システムおよび基地局装置
WO2023019649A1 (zh) 一种单脉冲天线跟踪校相方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003975.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011868861

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE