CN104539309B - 基于极化失配的功放非线性影响下的全双工自干扰消除方法 - Google Patents

基于极化失配的功放非线性影响下的全双工自干扰消除方法 Download PDF

Info

Publication number
CN104539309B
CN104539309B CN201410822403.4A CN201410822403A CN104539309B CN 104539309 B CN104539309 B CN 104539309B CN 201410822403 A CN201410822403 A CN 201410822403A CN 104539309 B CN104539309 B CN 104539309B
Authority
CN
China
Prior art keywords
signal
self
interference
polarization
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410822403.4A
Other languages
English (en)
Other versions
CN104539309A (zh
Inventor
刘芳芳
赵闻
冯春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201410822403.4A priority Critical patent/CN104539309B/zh
Publication of CN104539309A publication Critical patent/CN104539309A/zh
Application granted granted Critical
Publication of CN104539309B publication Critical patent/CN104539309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种基于极化失配的功放非线性影响下的全双工自干扰消除方法,属于无线通信技术领域。本发明首先建立全双工系统模型,全双工系统中两个节点在同一时刻使用相同的载波频段实现点对点的通信,每一个节点处使用分开的两副正交双极化天线,一副用来发射信号,另一副用来接收信号;并且采用极化失配矩阵对接收端的信号进行极化失配处理,最后对期望信号的幅度相位进行补偿。本发明可以有效的消除存在PA非线性时系统的自干扰;消除性能不会随着非线性自干扰信号功率的增大而出现下降的现象。

Description

基于极化失配的功放非线性影响下的全双工自干扰消除方法
技术领域
本发明属于无线通信技术领域,特别涉及全双工通信技术和全双工通信系统中的自干扰消除。具体地说,是指基于极化失配的功放非线性影响下的全双工自干扰消除方法。
背景技术
全双工通信能够在同一时间和同一频段上实现双向通信,与传统的TDD和FDD通信相比,全双工技术能大大提升物理层的性能。全双工通信中的一个关键挑战是消除同一节点发射机天线耦合引起的自干扰,这个自干扰信号比期望信号高60dB~100dB。目前,国内外有很多学者在致力于自干扰消除方法的设计。
在全双工系统中,由于发射端PA(功率放大器,简称功放)非线性失真引起的自干扰严重影响了全双工设备的性能,尤其当发射信号的发射功率比较大的时候。现在已有一些关于解决由PA非线性带来的自干扰的研究。比如采用泰勒级数对PA非线性进行建模,然后对其中的非线性系数进行估计,进而构建自消除信号。也有采用联合信道估计和非线性参数估计的迭代方法,能够消除由PA非线性引起的自干扰。还有采用并行Hammerstein模型对PA非线性进行建模,并且将射频消除后的自干扰信号也等价转化为该模型的表达形式,对其参数进行估计,构建自消除信号进行非线性数字自干扰的消除。现有这些方法,通常都需要对PA非线性进行建模,并对模型中的非线性参数进行估计,然后根据估计出的非线性参数构建存在PA非线性时的自干扰信号,最后在接收端减去构建的消除信号完成干扰消除。在实际的系统中,如果在估计PA非线性使用的模型与PA的实际特性不匹配的时候,则当非线性自干扰信号强度越大,那么由这种不匹配带来的消除性能的下降也会越大。
发明内容
针对存在PA非线性的全双工系统,本发明提出了一种基于极化失配的功放非线性影响下的全双工自干扰消除方法。该方法利用自干扰的极化特性不受PA非线性的影响,能有效的消除PA非线性引起的自干扰。
在全双工系统中,由于存在很强的自干扰信号,系统的非线性成为限制传统自干扰消除性能的一个重要因素。本发明提出了一种极化域的自干扰消除方法,用以消除存在PA非线性时系统的自干扰。本发明利用自干扰信号的极化特性不受PA非线性的影响,在接收端通过对自干扰信号进行极化失配处理,采用具有与自干扰极化状态正交的极化状态的极化失配矩阵接收信号对其进行消除。理论分析和仿真显示,本发明可以有效的消除存在PA非线性时系统的自干扰,同时当发射信号的功率增大时,本方法的消除性能不会随着非线性自干扰信号功率的增大而出现下降的现象。
本发明提供的基于极化失配的功放非线性影响下的全双工自干扰消除方法,具体步骤如下:
第一步,建立全双工系统模型。
全双工系统中两个节点Node1和Node2在同一时刻使用相同的载波频段实现点对点的通信,每一个节点处使用分开的两副正交双极化天线,一副用来发射信号,另一副用来接收信号,在发射端,信号经过PA后使用功分器将信号分成两路幅度比固定的信号,经过移相器调整这两路信号之间的相位差,最后两路信号通过正交双极化天线发射出去;接收端在某一时刻接收到远端发射过来的期望信号ES(t)的同时,也会接收到来自同一节点发射端天线耦合过来的自干扰信号EI(t)。
对于节点Node1,经过功放之后的信号表示为
其中l表示功放非线性的阶数,L是非线性最高阶数,a表示非线性增益,wc是载波角频率,t表示时间。经过功分器和移相器后,信号变为
其中PI表示的是发射信号的极化状态,用极化相位描述子()表示。
对于节点Node2的发射端,其发射的期望信号表示为,
其中,PS是期望信号的极化状态,由极化相位描述子()表征,S(t)是时域信号波形。
第二步,对接收端的信号进行极化失配处理。
接收端的信号表示为:
Y(t)=HSES(t)+HIEI(t)+N(t) (3)
=HSPsS(t)+HIPII(t)+N(t)
其中表示接收到的期望信号,PS是期望信号的极化状态,S(t)是时域信号波形,N(t)为二维独立同分布的高斯白噪声;为期望信号的极化相位描述子,HS表示期望信号到达接收端经过的无线信道,HI表示自干扰信道;
接收端的信号经过下变频后进入A/D,用基带信号形式表示A/D的输出信号,
Y(k)=HSPSS(k)+HIPII(k)+N(k) (6)
其中k表示离散的时间,令表示期望信号经过莱斯信道HS后到达接收端时的极化状态,令表示经过莱斯信道HI后自干扰信号的极化状态;
令极化失配自干扰消除后的信号Yresidual(k)表示为,
Yresidual(k)=M[HSPSS(k)+HIPII(k)+N(k)] (7)
=MHSPSS(k)+MHIPII(k)+MN(k)
其中Yresidual(k)表示经过极化失配自干扰消除后的信号,令称之为极化失配矩阵,其中为极化失配矩阵的极化相位描述子;
令M满足MHIPI=0,则Yresidual(k)=MHSPSS(k)+MN(k),那么自干扰信号被完全消除了。
第三步,对期望信号的幅度相位进行补偿。
本发明的有益效果有:
(1)可以有效的消除存在PA非线性时系统的自干扰;
(2)消除性能不会随着非线性自干扰信号功率的增大而出现下降的现象。
附图说明
图1:本发明实施例的使用极化失配技术的全双工系统设计图;
图2:本发明采用的极化失配消除方法的具体设计图;
图3:本发明中不同发射功率,不同天线消除量下,存在和不存在PA非线性两种情况下的消除性能对比图(坐标图)
图4:本发明中不同发射功率,不同天线消除量下,不同接收SNR下,系统输出SINR对比图(坐标图);
图5:本发明中期望信号极化状态估计存在估计误差情况下的消除性能对比图(坐标图)。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种基于极化失配的功放非线性影响下的全双工自干扰消除方法,具体如下:第一步,建立全双工系统模型。
本发明采用如图1所示的全双工系统模型,该全双工系统中两个节点(Node1和Node2)在同一时刻使用相同的载波频段实现点对点的通信,与传统全双工系统的区别在于每一个节点处使用分开的两副正交双极化天线,一副用来发射信号,另一副用来接收信号。在发射端,信号经过PA后使用功分器将信号分成两路幅度比固定的信号,经过移相器调整这两路信号之间的相位差,最后两路信号通过正交双极化天线发射出去。接收端在某一时刻接收到远端(其他节点)发射过来的期望信号ES(t)的同时,也会接收到来自同一节点(自身节点)发射端天线耦合过来的自干扰信号EI(t)。
对于节点Node1的正交双极化天线Tx1,用i(t)表示原始的基带发射信号,当受到功放非线性的影响后,PA输出信号I(t)可以表示为输入信号的多项式函数,如式(1)所示,
l表示功放非线性的阶数,L是非线性最高阶数,a表示非线性增益,wc是载波角频率,t表示时间。
PA输出信号I(t)经过功分器和移相器后,变为发射信号EI(t)也称自干扰信号经正交双极化天线发射,
其中,GFI(t)表示经过功分器和移相器之后的信号,PI表示的是发射信号的极化状态,用极化相位描述子()表示。表征两路信号的幅度关系,表征两路信号的相位差。
由此可见,尽管存在PA的非线性,但PA的输出信号经过功分器和移相器之后,其极化状态完全由功分器和移相器的参数确定下来了,即()。所以当确定了功分器和移相器的参数后,发射信号的极化状态就相应的确定下来了,并不会受到PA非线性的影响。
对于节点Node2的发射端正交双极化天线Tx2,其发射的期望信号可以表示为,
其中,PS是期望信号的极化状态,由极化相位描述子()表征,S(t)是时域信号波形。
第二步,对接收端的信号进行极化失配处理。
在节点Node1的接收端正交双极化天线Rx1处,不仅接收到来自远端节点Node2发射过来的期望信号ES(t),并且还会接收到发射端正交双极化天线Tx1通过自干扰信道耦合过来的很强的自干扰信号EI(t)。那么接收端正交双极化天线Rx1处接收到的信号可以表示为,
Y(t)=HSES(t)+HIEI(t)+N(t) (4)
=HSPsS(t)+HIPII(t)+N(t)
其中N(t)为二维独立同分布的高斯白噪声(AWGN)。HS表示Node1和Node2之间的无线通信信道,HI表示的是同一节点收发机之间(接收端和发射端的正交双极化天线之间)的自干扰信道。
接收端正交双极化天线Rx1接收到的信号经过下变频后进入A/D,用基带信号形式表示A/D的输出信号,
Y(k)=HSPSS(k)+HIPII(k)+N(k) (6)
其中k表示离散的时间。令表示期望信号经过莱斯信道HS后到达接收端时的极化状态。令表示经过莱斯信道HI后自干扰信号的极化状态。
对于公式(6)中的自干扰信号HIPII(k),采用极化失配的方式(图1中的极化失配自干扰消除模块)对其进行消除,令极化失配自干扰消除后的信号Yresidual(k)表示为,
Yresidual(k)=M[HSPSS(k)+HIPII(k)+N(k)] (7)
=MHSPSS(k)+MHIPII(k)+MN(k)
其中Yresidual(k)表示经过极化失配自干扰消除后的信号。令称之为极化失配矩阵,其中为极化失配矩阵的极化相位描述子。如果M满足MHIPI=0,则Yresidual(k)=MHSPSS(k)+MN(k),那么自干扰信号被完全消除了。所以根据MHIPI=0有,
解公式(8)得极化失配矩阵M如下所示,
由公式(9)可知,进行极化失配需要获得接收端自干扰的极化状态参数,为此采用插入训练序列的方式对自干扰的极化状态进行估计。在全双工系统的Node1和Node2正式建立通信之前,Node1发送一段训练序列进行自干扰极化状态参数的估计。对于极化状态的估计有许多方法可以采用,如参考文献[1][2](见参考文献[1]:Antoine R,Jocelyn C,Jerome I M.“Estimation of polarization parameters using time-frequencyrepresentations and its application to waves separation,”Signal Process,2006,86:3714–3731.见参考文献[2]:Xiaolin Lin,Caili Guo,Zhimin Zeng,Dongming Li,“Anovel interference avoidance scheme based on blind polarization signalprocessing for cognitive Femtocell network,”IEEE WPMC,pp.40-44,2012.)。
第三步,对期望信号的幅度相位进行补偿。
接收端信号经过极化失配矩阵M处理后能够有效地消除自干扰,但是同时也会对期望信号幅度和相位产生影响。期望信号经过极化失配矩阵后变为,
由公式(10)可知,期望信号经过极化失配矩阵后幅度和相位产生了失真,故需采用补偿因子C对失真的期望信号进行补偿。
为了求得补偿因子C,还需要对接收端的期望信号的极化状态进行估计,其估计方法类似于自干扰的极化状态估计方法。
最后得到经过极化失配矩阵M和进行补偿因子C补偿后的信号为,
y(k)=S(k)+CMN(k) (12)
可以看出接收端最后检测到的信号y(k)包括期望信号S(k)和噪声CMN(k)。
通过仿真验证本方法的性能,采用系统的输出信干噪比SINRout和输入信干噪比SINRin的比值来衡量消除方法的消除性能。信号源为常见的PSK信号,自干扰信号的发射极化状态为期望信号的发射极化状态为为方便分析,PA非线性只考虑到3阶非线性。自干扰信道建模为双极化莱斯信道,其参数设置见参见文献[1](见参考文献[3]:M.Duarte,C.Dick,and A.Sabharwal,“Experiment-driven characterization of full-duplex wireless systems,”IEEE Transactions onWireless Communication,vol.11,no.12,pp.4296-4307,Dec.2012.)。
图3显示了在不同的发射功率下,在有PA非线性和无PA非线性两种情况下,并且在不同的天线消除情况下,与本方法的消除性能的比较。由图可以看出,随着发射功率的增大,系统获得的自干扰消除量也会线性增大。并且最为重要的是,在存在非线性和无非线性两种情况下,采用本方法所获得的自干扰消除量几乎一样的。这表明本方法的消除性能是不受PA非线性影响的,原因在于本方法中,由于信号的极化特性不受PA非线性的影响,所以不论是在线性和非线性系统中,只要获得了到达接收端的信号的极化状态,设计相应的极化滤波矩阵,就可以完全消除自干扰信号,在这个过程中不需要对PA的非线性进行建模,这样就不会产生由于模型和PA实际非线性特性不匹配带来的在较大的发射功率下消除性能下降的现象。
图4显示了存在PA非线性的全双工系统能获得的输出信干噪比SINR随着发射功率的变化曲线。这些曲线是在不同的接收信噪比SNR以及具有不同的天线消除量情况下得到的。由图可以看出,不论自干扰的发射功率有多大,在相同的接收信噪比SNR下,系统都能获得一样的输出信干噪比,并且不受天线消除量的影响。这一现象可以表明,自干扰信号能被有效的消除到低于系统噪声的水平。在某一输入SNR下,系统的输出SINR高于SNR,并且在一次表明该方法对系统噪声也有一定的抑制效果。
图5则显示了期望信号的极化状态估计误差给消除性能带来的影响。当估计期望信号的极化状态时,引入不同的信噪比snr。结果显示,在不同snr下,系统的消除性能是一致的,并不受到期望信号极化状态估计误差影响,这表明即使在期望信号的极化状态的估计不理想的情况下,本方法的消除性能也能保持稳定性。

Claims (3)

1.基于极化失配的功放非线性影响下的全双工自干扰消除方法,其特征在于:
第一步,建立全双工系统模型;
全双工系统中两个节点Node1和Node2在同一时刻使用相同的载波频段实现点对点的通信,每一个节点处使用分开的两副正交双极化天线,一副用来发射信号,另一副用来接收信号,在发射端,信号经过PA后使用功分器将信号分成两路幅度比固定的信号,经过移相器调整这两路信号之间的相位差,最后两路信号通过正交双极化天线发射出去;接收端在某一时刻接收到远端发射过来的期望信号ES(t)的同时,也会接收到来自同一节点发射端天线耦合过来的自干扰信号EI(t);
第二步,对接收端的信号进行极化失配处理;
接收端的信号表示为:
Y ( t ) = H S E S ( t ) + H I E I ( t ) + N ( t ) = H S E S S ( t ) + H I E I I ( t ) + N ( t ) - - - ( 1 )
其中表示接收到的期望信号,PS是期望信号的极化状态,S(t)是时域信号波形,N(t)为二维独立同分布的高斯白噪声;为期望信号的极化相位描述子,HS表示期望信号到达接收端经过的无线信道,HI表示自干扰信道;PI表示发射信号的极化状态,I(t)表示节点经过功放之后的信号;
接收端的信号经过下变频后进入A/D,用基带信号形式表示A/D的输出信号,
Y(k)=HSPSS(k)+HIPII(k)+N(k) (2)
其中k表示离散的时间,令表示期望信号经过莱斯信道HS后到达接收端时的极化状态,为接收到的期望信号的极化相位描述子,令表示经过莱斯信道HI后自干扰信号的极化状态,为接收到的自干扰信号的极化相位描述子;S(k)表示k时刻的时域信号,N(k)表示k时刻的高斯白噪声,I(k)表示k时刻的节点经过功放之后的信号;令极化失配自干扰消除后的信号Yresidual(k)表示为,
Y r e s i d u a l ( k ) = M [ H S P S S ( k ) + H I P I I ( k ) + N ( k ) ] = MH S P S S ( k ) + MH I P I I ( k ) + M N ( k ) - - - ( 3 )
其中Yresidual(k)表示经过极化失配自干扰消除后的信号,令称之为极化失配矩阵,其中为极化失配矩阵的极化相位描述子;
令M满足MHIPI=0,则Yresidual(k)=MHSPSS(k)+MN(k),那么自干扰信号被完全消除了;
第三步,对期望信号的幅度相位进行补偿。
2.根据权利要求1所述的基于极化失配的功放非线性影响下的全双工自干扰消除方法,其特征在于:对于节点Node1,经过功放之后的信号表示为
I ( t ) = Σ l = 0 L - 1 a l + 1 ( i ( t ) e jw c t ) l + 1 - - - ( 4 )
其中i(t)表示原始的基带发射信号,l表示功放非线性的阶数,L是非线性最高阶数,al+1表示非线性阶数l+1的非线性增益,wc是载波角频率,t表示时间;经过功分器F和移相器G后,信号变为
E I ( t ) = G F I ( t ) = c o s α t I sinα t I e jβ t J I ( t ) = P I I ( t ) - - - ( 5 )
其中PI表示的是发射信号的极化状态,用极化相位描述子表示,
对于节点Node2的发射端,其发射的期望信号表示为,
E S ( t ) = c o s α t S sinα t S e jβ t S S ( t ) = P S S ( t ) - - - ( 6 )
其中,PS是期望信号的极化状态,由极化相位描述子表征,S(t)是时域信号波形。
3.根据权利要求1所述的基于极化失配的功放非线性影响下的全双工自干扰消除方法,其特征在于:所述的第三步具体为:
期望信号经过极化失配矩阵后变为,
MH S P S S ( k ) = ( sinα r S cosα r I e jβ r S - sinα r I cosα r S e jβ r I ) S ( k ) - - - ( 8 )
由公式(8)可知,期望信号经过极化失配矩阵后幅度和相位产生了失真,故需采用补偿因子C对失真的期望信号进行补偿;
C = 1 sinα r S cosα r I e jβ r S - sinα r I cosα r S e jβ r I - - - ( 9 )
为了求得补偿因子C,还需要对接收端的期望信号的极化状态进行估计,最后得到经过极化失配矩阵M和进行补偿因子C补偿后的信号为,
y(k)=S(k)+CMN(k) (10);
其中,k表示离散的时间,S(k)表示k时刻的时域信号,N(k)表示k时刻的高斯白噪声。
CN201410822403.4A 2014-12-25 2014-12-25 基于极化失配的功放非线性影响下的全双工自干扰消除方法 Active CN104539309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410822403.4A CN104539309B (zh) 2014-12-25 2014-12-25 基于极化失配的功放非线性影响下的全双工自干扰消除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410822403.4A CN104539309B (zh) 2014-12-25 2014-12-25 基于极化失配的功放非线性影响下的全双工自干扰消除方法

Publications (2)

Publication Number Publication Date
CN104539309A CN104539309A (zh) 2015-04-22
CN104539309B true CN104539309B (zh) 2017-03-22

Family

ID=52854792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410822403.4A Active CN104539309B (zh) 2014-12-25 2014-12-25 基于极化失配的功放非线性影响下的全双工自干扰消除方法

Country Status (1)

Country Link
CN (1) CN104539309B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037429A (zh) 2018-04-19 2022-09-09 华为技术有限公司 全双工自干扰减弱方法及全双工自干扰减弱系统
CN109067426B (zh) * 2018-09-28 2020-06-19 北京邮电大学 空间域与极化域联合的全双工自干扰消除方法
CN111669265B (zh) * 2020-05-25 2022-02-18 北京邮电大学 一种极化全双工通信中的极化状态估计方法及系统
CN114583468A (zh) * 2020-11-18 2022-06-03 北京大学 一种数字域正交双极化天线极化方向控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103957182A (zh) * 2014-05-21 2014-07-30 苏州东奇信息科技股份有限公司 一种基于mppsk调制的共信道全双工系统
CN104125180A (zh) * 2014-07-31 2014-10-29 北京邮电大学 全双工通信中时频域与极化域处理级联的自干扰消除方法
CN104168052A (zh) * 2014-09-01 2014-11-26 北京邮电大学 基于极化信息处理的自干扰消除方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2561630B1 (en) * 2010-04-22 2018-06-06 Telefonaktiebolaget LM Ericsson (publ) Multi-antenna device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103957182A (zh) * 2014-05-21 2014-07-30 苏州东奇信息科技股份有限公司 一种基于mppsk调制的共信道全双工系统
CN104125180A (zh) * 2014-07-31 2014-10-29 北京邮电大学 全双工通信中时频域与极化域处理级联的自干扰消除方法
CN104168052A (zh) * 2014-09-01 2014-11-26 北京邮电大学 基于极化信息处理的自干扰消除方法

Also Published As

Publication number Publication date
CN104539309A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
US11757606B2 (en) Full duplex wireless transmission with self-interference cancellation
KR101690120B1 (ko) 적응적 무선-주파수 간섭 소거 장치 및 방법, 그리고 수신기
CN103458424B (zh) 基于功率检测及环路延迟计算的自干扰消除方法
CN101873281B (zh) 一种对2×2 tdd-mimo系统信道的互易性丧失补偿方法
CN104539309B (zh) 基于极化失配的功放非线性影响下的全双工自干扰消除方法
CN103312640B (zh) 一种联合信道估计与iq不平衡补偿的方法
CN109067426A (zh) 空间域与极化域联合的全双工自干扰消除方法
CN103957182A (zh) 一种基于mppsk调制的共信道全双工系统
CN105978674A (zh) 基于压缩感知的fdd下大规模mimo信道估计的导频优化方法
CN104168052B (zh) 基于极化信息处理的自干扰消除方法
CN111466090B (zh) 分布式多输入多输出系统的空中互易性校准
CN103368718A (zh) 一种全双工无线通信装置、方法及系统
CN106452530B (zh) 基于极化斜投影的功放非线性影响下的mimo全双工自干扰消除方法
CN104125180B (zh) 全双工通信中时频域与极化域处理级联的自干扰消除方法
CN107846236A (zh) 消除全双工自干扰抑制过程中射频泄露信号影响的方法
CN109361436A (zh) 一种massive MIMO-OFDM上行系统中基于极化调制的相位噪声消除方法
CN105812073A (zh) 一种有源天线阵列水平和垂直联合校准方法及装置
CN112332882B (zh) 一种基于毫米波全双工中继通信的鲁棒混合收发机设计方法
CN101562591B (zh) 基于相位旋转的训练序列的i/q失配估计和补偿方法
CN102820934B (zh) 一种改进的最大比合并检测方法
CN103684567A (zh) 无线通信系统接收机分集合并方法及其装置
CN105871497B (zh) 一种基于相位噪声高斯白化的单载波全双工极化自干扰消除方法
WO2017107096A1 (zh) 天线系统及信号传输方法
CN107231178B (zh) 一种提高紧耦合mimo天线系统信道容量的方法
Wang et al. A Multi-Frequency-Point Algorithm for Frequency-Selective IQ imbalance Estimation in Massive MIMO System

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant