WO2013082795A1 - 动态微通道塑料挤出成型装置及方法 - Google Patents
动态微通道塑料挤出成型装置及方法 Download PDFInfo
- Publication number
- WO2013082795A1 WO2013082795A1 PCT/CN2011/083734 CN2011083734W WO2013082795A1 WO 2013082795 A1 WO2013082795 A1 WO 2013082795A1 CN 2011083734 W CN2011083734 W CN 2011083734W WO 2013082795 A1 WO2013082795 A1 WO 2013082795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- head
- dynamic
- plastic
- extrusion
- syringe
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/42—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/823—Temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/13—Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/28—Storing of extruded material, e.g. by winding up or stacking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/301—Extrusion nozzles or dies having reciprocating, oscillating or rotating parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/325—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/325—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
- B29C48/327—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections with centering means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/83—Heating or cooling the cylinders
- B29C48/832—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/86—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
- B29C48/865—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/875—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9115—Cooling of hollow articles
- B29C48/912—Cooling of hollow articles of tubular films
- B29C48/913—Cooling of hollow articles of tubular films externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/919—Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92114—Dimensions
- B29C2948/92152—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92514—Pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92609—Dimensions
- B29C2948/92647—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/80—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
- B29C48/83—Heating or cooling the cylinders
Definitions
- the present invention relates to an extrusion molding technique for plastic articles, and more particularly to a dynamic microchannel plastic extrusion molding apparatus and method.
- Extrusion is mainly used for the extrusion molding of plastic products of the same cross section, such as fibers, films, tubes, rods, sheets, profiles, and plastic articles having a variable cross section.
- the processing of hollow microchannel plastic products such as medical microtubes and hollow fibers is also performed by extrusion molding.
- a common method of plastic extrusion of small diameter hollow passages is generally by installing a hollow core in the extruder head die, with a fluid injected into the hollow core, typically atmospheric or compressed gas, such as a book designed by Cambridge University Mackley et al.
- a molding method for a microchannel film containing a plurality of parallel capillaries (WO 2005/056272), a molding method for extruding a small inner hole of a plastic product designed by Wu Daming et al. (CN 200310101653.0).
- the inner diameter of these hollow passage forming methods is constant, and it is difficult to form a structure in which the diameter of the hollow passage is dynamically changed.
- the plastic bellows forming method can realize the dynamic change of the hollow channel, but the method has the following disadvantages: (1) The inner diameter of the channel is generally large, and it is difficult to process to the micrometer scale; (2) the channel change is subsequently formed by the mechanical forming device. , the inner diameter change law type is small; (3) the outer diameter also changes dynamically; (4) only applies to single channel pipe.
- the dynamic microchannel plastic extrusion molding device and method of the invention can make up for the shortcomings of the above methods: one-step extrusion molding microchannels whose inner diameter changes dynamically, the outer diameter of the product is basically unchanged; a large number of dynamic microchannels can be integrated together; dynamic microchannel The change law is convenient and adjustable.
- the object of the present invention is to provide a dynamic microchannel plastic extrusion molding apparatus and method for the deficiencies of the prior art.
- the invention is useful for one-step extrusion molding of plastic articles of varying cross-section.
- a dynamic microchannel plastic extrusion molding apparatus which comprises: a single screw extruder, a flange, a winding device, a dynamic extruder head, a valve, a pressure regulation , a fluid source, a water tank, a pulley, a tractor, a data acquisition and control system, etc.; wherein the single-screw extruder comprises: a hopper, a motor, a screw, a barrel, a first heating coil, and a heating controller; The rotating shaft of the motor and the screw in the barrel are connected by a coupling, and the barrel is covered with three first heating coils, and the three first heating coils are connected with the heating controller, and the barrel and the dynamic extruder head pass.
- the data acquisition and control system comprises: pressure sensors P1 and P2, temperature sensors T1-T4, proximity switches, a computer with a data card, a heating controller, etc.; wherein the temperature sensors ⁇ 1 ⁇ 3 are respectively installed in The barrel is covered with three sections of the first heating coil, the temperature sensors ⁇ 1 ⁇ 3 are connected to the heating controller, and the temperature sensor ⁇ 4 is installed on the outer surface of the dynamic extruder head to cover the second heating coil, and the temperature sensor ⁇ 4 is also heated.
- the controller is connected, the pressure sensor P1 is installed in the dynamic extruder head, the pressure sensor ⁇ 2 is installed at the valve outlet, the proximity switch is close to the tractor, and the proximity switch, temperature sensor and pressure sensor are connected to the computer with the data card.
- the dynamic extruder head comprises: a head joint, a head runner inlet section, a set screw, a die plate, a die die, a head body, a head cover, a syringe core and a straight line a voice coil motor: wherein the head cover is fixed on the head body; the head connector is fixed on the head body; the head die is located at the exit of the head body, and is pressed by the die plate; the set screw Screwing into the head body to adjust the radial position of the die head; the head connector, the die die, the head body and the head cover together form a flow path including the flow path inlet section and the flow path The converging section, the flow channel forming section and the flow path outlet; the syringe core is composed of a syringe body and an injection needle, one end of the syringe body is connected to the linear voice coil motor, and the other end is passed through the head cover into the body of the machine, and the injection needle Brazed together; the sy
- a dynamic microchannel plastic extrusion molding method for the above apparatus comprising the steps of:
- the motor drives the screw in the single-screw extruder, and the plastic raw material is fed into the barrel from the hopper. Under the action of the screw rotation and the electric heating of the first heating ring, the plastic melt is gradually plasticized; the plastic melt is in the screw Rotating through the flange into the dynamic extruder head, the screen between the flanges blocks solids and semi-solids that are not fully plasticized.
- the plastic melt enters the flow path consisting of the head joint, the die, the head body and the head cover, and is wrapped around the outer surface of the syringe core; the plastic melt is in the flow path.
- the convergent section pressure is gradually increased to 2-5 MPa and then enters the runner forming section.
- the syringe core vibrates in the extrusion direction under the drive of the linear voice coil motor.
- the movement law of the distance y between the end face of the injection needle and the end face of the die is shown in Fig. 8 (the vibration mode can be various rules or not Regular vibration, as shown in Figure 10-15);
- the injection fluid supplied by the fluid source enters the plastic melt from the syringe flow path, forming a microchannel under the pressure of the plastic melt and the pressure of the injection fluid, and the microchannel interface period Sexually changing, thereby forming the microchannels of the extrusion, the plastic melt is gradually cooled and solidified into the plastic base of the extrusion.
- the present invention is capable of extruding a plastic article having a micron-sized passage having a dynamically varying inner diameter
- the structural parameters such as the inner diameter, amplitude, period, continuous penetration of the dynamic microchannel can be changed at will, and the device adaptability is strong;
- the data acquisition and control system facilitates the recording of analytical data, setting of operating parameters, programming and automation.
- Figure 1 is a schematic view showing the overall assembly of a dynamic microchannel plastic extrusion molding apparatus
- FIG. 2 is a schematic structural view of a dynamic extruder head 9 of a high frequency vibration of a core
- Figure 3-6 is a schematic diagram of the extrusion molding of a constant inner diameter microchannel plastic at different end positions of the injection needle 24 under steady-state experimental conditions, wherein the distance between the end of the syringe core needle and the die die is yi ⁇ 4 , respectively The inner diameter of the microchannel is (1 ⁇ 4, y 1 and d 3 are both zero;
- Figure 7 is a graph showing the relationship between the end position y of the syringe core and the inner diameter d of the extruded microchannel under steady state experimental conditions, wherein y max represents the corresponding y value when the microchannel inner diameter d starts to be maximum, and y mm represents micro The corresponding y value when the inner diameter of the channel begins to be zero;
- FIG. 8 is a schematic diagram of the distance between the needle end face of the syringe core and the die of the die y;
- FIG. 9 is a schematic view of the dynamic microchannel plastic extrusion molding under the condition of high frequency vibration of the syringe core shown in FIG. 8;
- Figure 10-12 is an illustration of a continuous dynamic microchannel extrusion longitudinal section of three syringe cores under high frequency vibration conditions
- Figure 13-15 is an illustration of the discontinuous dynamic microchannel extrusion longitudinal section of three syringe cores under high frequency vibration conditions
- plastic material 1 hopper 2, motor 3, screw 4, barrel 5, first heating ring 6, flange 7, winding device 8, dynamic extruder head 9, valve 10, pressure regulator 11, Fluid source 12, water tank 13, pulley 14, cooling water 15, proximity switch 16, tractor 17, dynamic microchannel plastic extrusion 18, head connector 19, runner inlet section 20, connector fixing screw 21, positioning Screw 22, flow path convergence section 23, injection needle 24, copper brazed joint 25, die plate 26, head die 27, runner outlet 28, runner forming section 29, head body 30, head cover Plate 31, cover fixing screw 32, syringe body 33.
- Air supply pipe 34 Air supply pipe 34, air supply pipe flow path 35, syringe flow path 36, syringe core 37, linear voice coil motor 38, extrusion plastic base 39, extrusion microchannel 40, plastic melt 41, with data card Computer 42, second heating coil 43, heating controller 44
- the dynamic microchannel structure means that the cross section of the microchannel in the structural material changes dynamically along the extrusion direction of the plastic product, and the microchannel can be continuously penetrated or closed non-continuously (as shown in Fig. 10-15), the hollow passage cross section It can be a circle, a triangle, a rectangle, a polygon, etc.
- Multiple dynamic microchannel structures can be integrated into extruded plastics such as films, tubes, sheets, sheets, and profiles to obtain multi-dynamic microchannel structural plastics.
- the cross-section dimensions of the microchannels are mainly 50-500 microns, and can also be extended to small scales such as millimeters and submicron, with a dynamic period of 100 micrometers to 5 millimeters.
- the dynamic microchannel structure of the invention is novel, has various changes, simple processing equipment, high degree of automation, stable extrusion of shaped products, and high dimensional precision.
- the invention provides a dynamic microchannel plastic extrusion molding device and method.
- the inner diameter of the hollow passage is stable, and a method of injecting a fluid such as compressed air into the plastic melt is generally adopted, and the fluid pressure and flow rate, the extrusion pressure, and the structure of the head are maintained during the extrusion process, and a stable extruded plastic cross section is obtained. .
- the invention utilizes the following principles: Under steady-state extrusion conditions, a fluid of a stable pressure and flow rate is injected into the plastic melt through the core of the hollow syringe (the injection fluid can be air, compressed gas, silicone oil, etc., chemically and physically stable under processing conditions)
- the fluid may also be a drug in a fluid state that requires encapsulation, etc., and the inner diameter of the plastic extrusion microchannel is different when the end positions of the different syringe cores are different.
- Figure 3-6 shows the distance between the end of the syringe core needle and the die die is yi ⁇ 4 , the corresponding microchannel inner diameter is d
- Figure 7 is the steady state experimental conditions of the syringe core end position y and squeeze The profile of the inner diameter d of the formed microchannel (y is positive in the extrusion direction), and it can be seen that the inner diameter d of the microchannel is approximately linear with the end position y of the syringe core.
- high frequency short-range longitudinal vibration of the syringe core can cause longitudinal dynamic changes in the inner diameter of the microchannels within the extruded plastic.
- FIG. 8 is a schematic view showing the distance y-harmonic vibration curve of the needle core end face and the die die
- Fig. 9 is a schematic view showing the dynamic microchannel plastic extrusion molding of the syringe core shown in Fig. 8.
- Figure 10-12 is an example of the continuous dynamic microchannel extrusion longitudinal section of the three syringe cores under high frequency vibration
- 13-15 is an illustration of the longitudinal cross-section of discontinuous dynamic microchannel extrusion under high frequency vibration conditions of three syringe cores.
- the invention can not only extrude a single dynamic microchannel structural plastic product, but also can be conveniently integrated into a multi-dynamic microchannel, and only needs to increase the number of injection needles on the dynamic extruder head to obtain a film containing a plurality of dynamic microchannel structures.
- Extrusion processing plastics such as pipes, sheets, plates, and profiles.
- the invention is suitable for the production of plastic extruded articles which require micro hollow passages which need to be dynamically changed inside, for example: micro-mixers with dynamic inner diameter changes, conduits, hollow fibers, profiles, etc.
- the hollow passage cross section can be circular, triangular, rectangular Structures such as polygons, dynamic hollow channel scales of micron or even nanometer scale.
- the dynamic microchannel plastic products processed by the method provided by the invention can be applied to micro reactors, micromixers, micro heat exchangers, micro sensors, microfluidic chips, capillary electrophoresis, DNA and protein monitoring and analysis, anti-counterfeiting, drug packaging Biomedical applications such as materials, drug delivery, optical components, tissue engineering scaffolds, foam structural materials, and medical catheters.
- the dynamic microchannel plastic extrusion molding apparatus of the present invention comprises the following components: a single screw extruder, a flange 7, a winding device 8, a dynamic extruder head 9, a valve 10, a pressure regulator 11, Fluid source 12, sink 13, pulley 14, tractor 17, data acquisition and control system.
- the single screw extruder includes: a hopper 2, a motor 3, a screw 4, a barrel 5, a first heating coil 6 and a heating controller 44.
- the rotating shaft of the motor 3 is coupled with the screw 4 in the barrel 5 through a coupling, and the barrel 5 is covered with three first heating coils 6, and the three heating coils 6 are connected to the heating controller 44, the barrel 5 and the dynamic
- the extruder head 9 is connected by a flange 7 with a screen between the flanges 7; the dynamic extruder head 9 is covered with a second heating coil 43, a fluid source 12, a pressure regulator 11, a valve 10 and a dynamic extrusion
- the machine head 9 is sequentially connected by a pipe, and the water tank 13 is placed below the dynamic extruder head 9, and the pulley 14 is fixed in the water tank 13, and the tractor 17 and the winding device 8 are sequentially disposed behind the water tank 13.
- the data acquisition and control system includes: pressure sensors P1 and P2, temperature sensor Tl-T4, proximity switch 16, computer with data card 42, heating controller 44.
- the temperature sensors ⁇ 1 ⁇ 3 are respectively installed on the barrel 5 and covered with three first heating coils 6.
- the temperature sensors ⁇ 1 ⁇ 3 are connected to the heating controller 44, and the heating controller 44 measures according to the temperature sensors ⁇ 1 ⁇ 3.
- the temperature information controls the on and off and current of the current flowing into the three first heating coils 6.
- the temperature sensor ⁇ 4 is mounted on the dynamic extruder head 9 to cover the second heating coil 43, and the temperature sensor ⁇ 4 is also connected to the heating controller 44.
- the heating controller 44 controls the flow into the second heating coil according to the temperature information measured by the temperature sensor ⁇ 4.
- the on and off current of 43 current is also connected to the heating controller 44.
- the pressure sensor P1 is mounted in the dynamic extruder head 9, the pressure sensor ⁇ 2 is mounted at the outlet of the valve 10, the proximity switch 16 is adjacent to the tractor 17, the proximity switch 16, the temperature sensor ⁇ 4 and the pressure sensor P1 are both associated with the computer 42 with the data card. Connected.
- the dynamic extruder head 9 includes: a head joint 19, a set screw 22, a die plate 26, a die die 27, a head body 30, a head cover 31, and a syringe core 37.
- the linear voice coil motor 38 the head cover 31 is fixed to the head body 30 by the cover fixing screw 32; the head joint 19 is fixed to the head body 30 by the joint fixing screw 21; the die die 27 Located at the exit of the head body 30, pressed by the die press plate 26; the set screw 22 is screwed into the head body 30 to adjust the radial position of the die die 27;
- the head connector 19, the nose die 27, the head body 30 and the head cover 31 together form a flow path including a flow path inlet section 20, a flow path convergence section 23, a flow path forming section 29, and The flow path outlet 28;
- the syringe core 37 is composed of a syringe body 33 and an injection needle 24, the syringe body 33 end is connected to the linear voice coil motor 38, and the other end is inserted into
- the outer diameter of the injection needle 24 is small, generally in the range of 0.2-2 mm, and the smaller outer diameter is difficult to realize due to the processing technique.
- the outer diameter is 0.4 mm and the inner diameter is 0.2 mm ;
- the linear voice coil motor 38 drives the syringe core 37 to be high. Frequency short-range vibration; the set screw 22 is screwed into the head body 30, and the radial position of the nose die 27 is adjusted to adjust the flow path outlet 28.
- the fluid source 12 can provide various injection fluids as needed, such as a gas tank containing a chemically or physically stable fluid, or a liquid pump, which can be supplied with air, C02, N2, water vapor, glycerin. , silicone oil, etc.
- the dynamic microchannel plastic extrusion molding method of the present invention comprises the following steps:
- the motor 3 drives the screw 4 in the single-screw extruder, and the plastic material 1 is fed into the barrel 5 from the hopper 2, and is gradually plasticized to form a plastic melt under the electric heating of the screw 4 and the electric heating of the first heating ring 6.
- the plastic melt 41 enters the dynamic extruder head 9 through the flange 7 under the rotation of the screw 4, and the screen between the flanges 7 blocks the solid and semi-solid which are not completely plasticized.
- the plastic melt 41 enters the flow path composed of the head connector 19, the die die 27, the head body 30 and the head cover 31 from the head connector 19, and is wrapped around the syringe core 37.
- the plastic melt 41 is gradually increased in pressure at the flow path converging section 23 to 2-5 MPa, and then enters the flow path forming section 29.
- the syringe core 37 vibrates in the extrusion direction under the driving of the linear voice coil motor 38.
- the movement law of the distance y between the end surface of the injection needle 24 and the end surface of the die die 27 is as shown in Fig. 8 (the vibration mode can be various) Regular or irregular vibrations, as shown in Figures 10-15);
- the injection fluid supplied by the fluid source 12 enters the plastic melt 41 from the syringe flow path 36, under the pressure of the plastic melt 41 and the pressure of the injection fluid, forming
- the microchannels, the microchannel interface are periodically changed to form the extruded microchannels 40, and the plastic melt 41 is also gradually cooled and solidified into the extruded plastic substrate 39.
- the extrusion plastic substrate 39 with the extrusion microchannels 40 is extruded from the runner outlet 28, and under the pulling action of the tractor 17, enters the water tank 13 through the pulley 14, and the circulating cooling water 15 pairs are extruded.
- the piece is rapidly cooled and shaped to form a dynamic microchannel plastic extrusion 18 .
- winding or cutting of plastic extrusions For the structural characteristics of different dynamic microchannel plastic extrusions 18, such as for fibers, small conduits, films, sheet extrusions, the winding device 8 is installed; For the general Pipe, sheet, profile, installation of the cutting device to the dynamic microchannel plastic extrusion 18 according to product requirements.
- the dynamic microchannel plastic extrusion molding device and method of the invention are suitable for producing micro-structures of plastic micro tubes, hollow fibers, micro-reactors, micro-mixers, micro-heat exchangers, medical micro-tubes, etc., which need to dynamically change micron-sized inner diameter channels.
- Plastic products; multi-dynamic microchannel plastics containing a large number of dynamic microchannels, can be used as foam materials, and can easily design voids, open and close holes.
- Suitable plastic materials include polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), polyurethane (PU), polyamide (PA), polyolefin elastomers, etc.
- PE polyethylene
- PVC polyvinyl chloride
- PP polypropylene
- PS polystyrene
- PU polyurethane
- PA polyamide
- polyolefin elastomers etc.
- Suitable injection fluids may be various chemically and physically
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
公开了一种动态微通道塑料挤出成型装置及方法,该装置主要由单螺杆挤出机、动态挤出机头(9)、流体源(12)、水槽(13)、牵引机(17)、收卷装置(8)、数据采集和控制系统组成,在机头口模(27)出口附近,注射器芯体注射针头(24)端部位置不同时,塑料挤出成型微通道内径也不同,当动态挤出机头(9)内中空注射器芯体(37)沿挤出方向高频短程振动时,导致挤出的塑料内微通道内径动态变化。该装置结构新颖、变化规律多样、加工设备简单、自动化程度高、成型制品挤出稳定、尺寸精度高。
Description
动态微通道塑料挤出成型装置及方法
技术领域
本发明涉及一种塑料制品的挤出成型技术, 尤其涉及一种动态微通道塑料 挤出成型装置及方法。
背景技术
挤出成型主要用于相同横截面的塑料制品的挤出成型, 如纤维、 薄膜、 管 材、 棒材、 板材、 异型材, 而不说能成型变化横截面的塑料制品。 医用微管、 中 空纤维等含有中空小通道塑料制品的加工, 也都采用挤出成型。 常见的塑料挤 出成型小直径中空通道的方法一般是通过在挤出机头口模内安装中空芯体, 中 空芯体内通注射流体, 一般是大气或压缩气体, 如剑桥大学 Mackley等设计的 书
内含多个平行毛细管的微通道薄膜的成型方法 (WO 2005/056272),吴大鸣等设计 的用于挤出塑料制品小内孔的成型方法 (CN 200310101653.0) 。 但是, 这些中 空通道成型方法的内径恒定不变, 难以成型中空通道直径动态变化的结构。
塑料波紋管成型方法能够实现中空通道的动态变化, 但这类方法存在以下 不足之处: (1 ) 通道内径尺寸一般较大, 难以加工到微米尺度; (2) 通道变化 通过机械成型装置后续成型, 内径变化规律类型少; (3 ) 外径也动态变化; (4) 只适用于单通道管材。
本发明动态微通道塑料挤出成型装置及方法能够弥补以上方法的缺点: 一 步挤出成型内径动态变化的微通道, 产品外径基本不变; 能将大量动态微通道 集成在一起; 动态微通道的变化规律方便可调。
发明内容
本发明目的是针对现有技术的不足, 提供一种动态微通道塑料挤出成型装 置及方法。 本发明用于一步挤出成型变化横截面的塑料制品。
本发明的目的是通过以下技术方案来实现的: 一种动态微通道塑料挤出成 型装置, 它包括: 单螺杆挤出机、 法兰、 收卷装置、 动态挤出机头、 阀门、 压 力调节器、 流体源、 水槽、 滑轮、 牵引机、 数据采集和控制系统等; 其中, 所 述单螺杆挤出机包括: 料斗、 电机、 螺杆、 机筒、 第一加热圈和加热控制器等; 所述电机的转轴与机筒内的螺杆通过联轴器联接, 机筒外包覆三段第一加热圈, 三段第一加热圈均与加热控制器相连, 机筒与动态挤出机头通过法兰相连, 法 兰之间含有滤网; 动态挤出机头外包覆第二加热圈, 流体源、 压力调节器、 阀
门和动态挤出机头依次通过管路连接, 动态挤出机头下方安放水槽, 水槽内固 定有滑轮, 水槽后面依次安放牵引机和收卷装置。
进一步地, 所述数据采集和控制系统包括: 压力传感器 P1和 P2、温度传感 器 Tl-T4、 接近开关、 带数据卡的计算机和加热控制器等; 其中, 所述温度传感 器 Τ1~Τ3分别安装在机筒外包覆三段第一加热圈处, 温度传感器 Τ1~Τ3均与加 热控制器相连, 温度传感器 Τ4安装在动态挤出机头外包覆第二加热圈处, 温度 传感器 Τ4也与加热控制器相连, 压力传感器 P1安装在动态挤出机头内, 压力 传感器 Ρ2安装于阀门出口处, 接近开关接近牵引机, 接近开关、 温度传感器和 压力传感器均与带数据卡的计算机相连。
进一步地, 所述动态挤出机头包括: 机头连接头、 机头流道入口段、 定位 螺钉、 口模压板、 机头口模、 机头体、 机头盖板、 注射器芯体和直线音圈电机: 其中, 所述机头盖板固定在机头体上; 机头连接头固定在机头体上; 机头口模 位于机头体出口处, 由口模压板压紧; 定位螺钉旋入机头体, 调节机头口模径 向位置; 机头连接头、 机头口模、 机头体和机头盖板共同形成一个流道, 该流 道包括流道入口段、 流道收敛段、 流道成型段和流道出口; 注射器芯体由注射 器体与注射针头构成, 注射器体一端与直线音圈电机相连, 另一端穿过机头盖 板进入机头体内, 并与注射针头钎焊在一起; 注射器体和注射针头的内部通道 相通, 形成注射器流道; 注射器流道与阀门相通。
一种上述装置的动态微通道塑料挤出成型方法, 该方法包括以下步骤:
( 1 ) 电机驱动单螺杆挤出机内螺杆, 塑料原料由料斗加入机筒, 在螺杆旋转输 送和第一加热圈的电加热作用下, 逐渐塑化形成塑料熔体; 塑料熔体在螺杆的 旋转推动下通过法兰进入动态挤出机头, 法兰之间的滤网阻拦未完全塑化的固 体和半固体。
(2) 塑料熔体从机头连接体进入由机头连接头、 机头口模、 机头体和机头盖板 组成的流道内, 并包覆在注射器芯体外; 塑料熔体在流道收敛段压力逐步上升 到 2-5MPa, 然后进入流道成型段。
(3 )注射器芯体在直线音圈电机驱动下沿挤出方向振动, 注射针头端面与机头 口模端面之间距离 y的运动规律如图 8所示 (振动方式可以是各种规则或不规 则的振动, 如图 10-15所示); 流体源供应的注射流体由注射器流道进入塑料熔 体, 在塑料熔体的压力和注射流体的压力作用下, 形成微通道, 微通道界面周 期性地变化, 从而成型挤出件微通道, 塑料熔体也逐步开始冷却固化成为挤出 件塑料基体。
(4) 带有挤出件微通道的挤出件塑料基体从流道出口挤出, 在牵引机的牵拉作 用下, 通过滑轮进入水槽, 循环冷却水对挤出件快速冷却定型, 最终成型为动 态微通道塑料挤出件。
本发明的有益效果是:
1、 本发明能够挤出成型含有内径动态变化的微米级通道的塑料制品;
2、 动态微通道的内径、 振幅、 周期、 是否连续贯通等结构参数可以随意改变, 装置适应性强;
3、 动态微通道塑料制品内部微通道动态变化, 外部尺寸基本不变;
4、 通过集成, 可以将大量动态微通道集合在多动态微通道塑料内;
5、 自动化程度高, 质量稳定, 易于操作, 劳动强度小。 数据采集和控制系统便 于记录分析数据、 设定操作参数、 编程和自动控制。
附图说明
图 1是动态微通道塑料挤出成型装置总装配示意图;
图 2是芯体高频振动的动态挤出机头 9结构示意图;
图 3-6是稳态实验条件下不同注射针头 24端部位置时恒定内径微通道塑料 挤出成型示意图,其中注射器芯体针头端部与机头口模的距离分别为 yi〜4,相应 的微通道内径为(1^4, y1和d3均为零;
图 7是稳态实验条件下,注射器芯体端部位置 y与挤出成型的微通道内径 d 的关系曲线, 其中, ymax表示微通道内径 d开始最大时对应的 y值, ymm表示微 通道内径开始为零时对应的 y值 ;
图 8注射器芯体针头端面与机头口模的距离 y简谐振动曲线示意图; 图 9是图 8所示的注射器芯体高频振动条件下动态微通道塑料挤出成型示 意图;
图 10-12 是举例说明三种注射器芯体高频振动条件下连续动态微通道挤出 纵截面;
图 13-15 是举例说明的三种注射器芯体高频振动条件下不连续动态微通道 挤出纵截面;
图中: 塑料原料 1、 料斗 2、 电机 3、 螺杆 4、 机筒 5、 第一加热圈 6、 法兰 7、 收卷装置 8、 动态挤出机头 9、 阀门 10、 压力调节器 11、 流体源 12、 水槽 13、 滑轮 14、 冷却水 15、 接近开关 16、 牵引机 17、 动态微通道塑料挤出件 18、 机头连接头 19、 流道入口段 20、 连接头固定螺钉 21、 定位螺钉 22、 流道收敛 段 23、 注射针头 24、 铜钎焊焊接接头 25、 口模压板 26、 机头口模 27、 流道出 口 28、 流道成型段 29、 机头体 30、 机头盖板 31、 盖板固定螺钉 32、 注射器体
33、 供气管 34、 供气管流道 35、 注射器流道 36、 注射器芯体 37、 直线音圈电 机 38、 挤出件塑料基体 39、 挤出件微通道 40、 塑料熔体 41、 带数据卡的计算 机 42、 第二加热圈 43、 加热控制器 44
具体实施方式
动态微通道结构指这种结构材料中微通道横截面沿着塑料制品挤出方向动 态变化, 微通道可以连续贯通, 也可以非连续独立封闭 (如图 10-15所示), 中 空通道横截面可以是圆形、 三角形、 矩形、 多边形等结构。 多条动态微通道结 构能够集成应用于薄膜、 管材、 片材、 板材、 异型材等挤出加工塑料得到多动 态微通道结构塑料。 微通道横截面尺寸主要为 50-500微米, 也能扩展到毫米和 亚微米等小尺度, 动态变化周期长度 100微米 -5毫米。 本发明的动态微通道结 构新颖、 变化规律多样、 加工设备简单、 自动化程度高、 成型制品挤出稳定、 尺寸精度高。
本发明提供了一种动态微通道塑料挤出成型装置及方法。 一般的中空通道 内径稳定, 一般采用对塑料熔体内注入压缩空气等流体的方法, 挤出过程中保 持流体压力和流量、 挤出压力、 机头结构不变, 得到稳定的挤出塑料横截面。
本发明利用了以下原理: 稳态挤出条件下, 通过中空注射器芯体对塑料熔 体注入稳定压力、 流量的流体 (注射流体可以是空气、 压缩气体、 硅油等在加 工条件下化学、 物理稳定的流体, 也可以是需要封装的流体状态的药物等), 不 同注射器芯体端部位置时, 塑料挤出成型微通道内径也不同。图 3-6展示了注射 器芯体针头端部与机头口模的距离分别为 yi〜4时, 相应的微通道内径为 d 图 7是稳态实验条件下注射器芯体端部位置 y与挤出成型的微通道内径 d关系 曲线 (y以挤出方向为正向), 从中可见, 微通道内径 d与注射器芯体端部位置 y呈近似线性关系。 另外, 动态条件下, 注射器芯体的高频短程纵向振动能够导 致挤出的塑料内微通道内径纵向动态变化。 图 8显示了注射器芯体针头端面与 机头口模的距离 y简谐振动曲线示意图, 图 9是图 8所示的注射器芯体高频振 动条件下动态微通道塑料挤出成型示意图。 通过改变注射器芯体的振动规律, 实现挤出微通道内径沿挤出方向的动态变化,图 10-12是举例说明三种注射器芯 体高频振动条件下连续动态微通道挤出纵截面,图 13-15是举例说明的三种注射 器芯体高频振动条件下不连续动态微通道挤出纵截面。 本发明不仅可以挤出单 条动态微通道结构塑料制品, 也可以很方便集成为多动态微通道, 仅需要在动 态挤出机头上增加注射针头的数量, 得到含有多条动态微通道结构的薄膜、 管 材、 片材、 板材、 异型材等挤出加工塑料。
本发明适用于生产内部需要动态变化的微小中空通道的塑料挤出制品, 例 如: 内径动态变化的微混合器、 导管、 中空纤维、 异型材等, 中空通道横截面 可以是圆形、 三角形、 矩形、 多边形等结构, 动态中空通道尺度微米级甚至纳 米级。
本发明提供的方法加工得到的动态微通道塑料制品能够应用于微型反应 器、 微型混合器、 微型换热器、 微传感器、 微流控芯片、 毛细管电泳、 DNA和 蛋白质监测分析、 防伪、 药物封装材料、 药物缓释、 光学元件、 组织工程支架、 泡沬结构材料和医用导管等生物医药应用。
如图 1 所示, 本发明动态微通道塑料挤出成型装置包括以下部件: 单螺杆 挤出机、 法兰 7、 收卷装置 8、 动态挤出机头 9、 阀门 10、 压力调节器 11、 流体 源 12、 水槽 13、 滑轮 14、 牵引机 17、 数据采集和控制系统。 其中, 单螺杆挤 出机包括: 料斗 2、 电机 3、 螺杆 4、 机筒 5、 第一加热圈 6和加热控制器 44。 电机 3的转轴与机筒 5内的螺杆 4通过联轴器联接, 机筒 5外包覆三段第一加 热圈 6, 三段加热圈 6均与加热控制器 44相连, 机筒 5与动态挤出机头 9通过 法兰 7相连, 法兰 7之间含有滤网; 动态挤出机头 9外包覆第二加热圈 43, 流 体源 12、 压力调节器 11、 阀门 10和动态挤出机头 9依次通过管路连接, 动态 挤出机头 9下方安放水槽 13, 水槽 13内固定有滑轮 14, 水槽 13后面依次安放 牵引机 17和收卷装置 8。
数据采集和控制系统包括: 压力传感器 P1和 P2、 温度传感器 Tl-T4、 接近 开关 16、 带数据卡的计算机 42、 加热控制器 44。 其中, 温度传感器 Τ1~Τ3分 别安装在机筒 5外包覆三段第一加热圈 6处, 温度传感器 Τ1~Τ3均与加热控制 器 44相连, 加热控制器 44根据温度传感器 Τ1~Τ3测量的温度信息控制流入三 段第一加热圈 6上电流的通断和大小。温度传感器 Τ4安装在动态挤出机头 9外 包覆第二加热圈 43处,温度传感器 Τ4也与加热控制器 44相连,加热控制器 44 根据温度传感器 Τ4测量的温度信息控制流入第二加热圈 43上电流的通断和大 小。压力传感器 P1安装在动态挤出机头 9内, 压力传感器 Ρ2安装于阀门 10出 口处, 接近开关 16接近牵引机 17, 接近开关 16、 温度传感器 Τ4和压力传感器 P1均与带数据卡的计算机 42相连。
如图 2所示, 动态挤出机头 9包括: 机头连接头 19、 定位螺钉 22、 口模压 板 26、 机头口模 27、 机头体 30、 机头盖板 31、 注射器芯体 37和直线音圈电机 38: 机头盖板 31通过盖板固定螺钉 32固定在机头体 30上; 机头连接头 19通 过连接头固定螺钉 21固定在机头体 30上; 机头口模 27位于机头体 30出口处, 由口模压板 26压紧; 定位螺钉 22旋入机头体 30, 调节机头口模 27径向位置;
机头连接头 19、 机头口模 27、 机头体 30和机头盖板 31共同形成一个流道, 该 流道包括流道入口段 20、 流道收敛段 23、 流道成型段 29和流道出口 28; 注射 器芯体 37由注射器体 33与注射针头 24构成, 注射器体 33—端与直线音圈电 机 38相连, 另一端穿过机头盖板 31进入机头体 30内, 并与注射针头 24钎焊 在一起, 钎焊处形成铜钎焊焊接接头 25; 注射器体 33和注射针头 24的内部通 道相通, 形成注射器流道 36; 注射器流道 36通过供气管 34内的供气管流道 35 与阀门 10相通。
注射针头 24外径较小, 一般在 0.2-2mm范围内, 更小的外径由于加工技术 较难实现, 优选采用外径 0.4mm, 内径 0.2mm; 直线音圈电机 38带动注射器芯 体 37高频短程振动; 定位螺钉 22旋入机头体 30, 调节机头口模 27径向位置, 从而调节流道出口 28。 流体源 12可以根据需要, 提供各种注射流体, 如可以是 装有化学、 物理稳定的流体的气罐, 也可以是液体泵, 提供的注射流体可以为 空气、 C02、 N2、 水蒸气、 甘油、 硅油等。
本发明动态微通道塑料挤出成型方法包括以下步骤:
1、 电机 3驱动单螺杆挤出机内螺杆 4, 塑料原料 1 由料斗 2加入机筒 5, 在螺 杆 4旋转输送和第一加热圈 6的电加热作用下, 逐渐塑化形成塑料熔体 41 ; 塑 料熔体 41在螺杆 4的旋转推动下通过法兰 7进入动态挤出机头 9, 法兰 7之间 的滤网阻拦未完全塑化的固体和半固体。
2、 塑料熔体 41从机头连接体 19进入由机头连接头 19、 机头口模 27、 机头体 30和机头盖板 31组成的流道内, 并包覆在注射器芯体 37外; 塑料熔体 41在流 道收敛段 23压力逐步上升到 2-5MPa, 然后进入流道成型段 29。
3、 注射器芯体 37在直线音圈电机 38驱动下沿挤出方向振动, 注射针头 24端 面与机头口模 27端面之间距离 y的运动规律如图 8所示(振动方式可以是各种 规则或不规则的振动,如图 10-15所示); 流体源 12供应的注射流体由注射器流 道 36进入塑料熔体 41, 在塑料熔体 41的压力和注射流体的压力作用下, 形成 微通道, 微通道界面周期性地变化, 从而成型挤出件微通道 40, 塑料熔体 41也 逐步开始冷却固化成为挤出件塑料基体 39。
4、 带有挤出件微通道 40的挤出件塑料基体 39从流道出口 28挤出, 在牵引机 17的牵拉作用下, 通过滑轮 14进入水槽 13, 循环的冷却水 15对挤出件快速冷 却定型, 最终成型为动态微通道塑料挤出件 18。
5、 塑料挤出件的收卷或裁切: 对于不同的动态微通道塑料挤出件 18 的结构特 性, 如对于纤维、 小导管、 薄膜、 片材挤出件, 安装收卷装置 8; 而对于一般的
管材、 板材、 异型材, 安装裁切装置对动态微通道塑料挤出件 18按照产品要求 裁切。
本发明动态微通道塑料挤出成型装置及方法适用于生产塑料微管、 中空纤 维、 微型反应器、 微型混合器、 微型换热器、 医用微管等所有需要动态变化微 米级内径通道的微结构塑料制品; 含有大量动态微通道的多动态微通道塑料, 可以作为泡沬材料使用, 并且可以方便设计空隙度、 开闭孔。 适用的塑料原料 包括聚乙烯 (PE)、 聚氯乙烯 (PVC) 、 聚丙烯 (PP)、 聚苯乙烯 (PS)、 聚氨酯 (PU)、 聚酰胺 (PA)、 聚烯烃弹性体等能够挤出加工的热塑性聚合物。 适用的 注射流体可以是在加工条件下各种化学、 物理稳定的流体, 如空气、 C02、 N2、 水蒸气、 甘油、 硅油等, 也可以是需要封装的流体状态的药物等。
Claims
1、 一种动态微通道塑料挤出成型装置, 其特征在于, 它包括: 单螺杆挤出 机、 法兰 (7)、 收卷装置 (8) 、 动态挤出机头 (9)、 阀门 (10)、 压力调节器
(11)、 流体源 (12)、 水槽 (13)、 滑轮 (14)、 牵引机 (17)、 数据采集和控制 系统; 其中, 所述单螺杆挤出机包括: 料斗 (2)、 电机 (3)、 螺杆 (4)、 机筒
(5)、 第一加热圈 (6) 和加热控制器 (44); 所述电机 (3) 的转轴与机筒 (5) 内的螺杆 (4) 通过联轴器联接, 机筒 (5) 外包覆三段第一加热圈 (6), 三段 第一加热圈 (6) 均与加热控制器 (44) 相连, 机筒 (5) 与动态挤出机头 (9) 通过法兰 (7) 相连, 法兰 (7) 之间含有滤网; 动态挤出机头 (9) 外包覆第二 加热圈(43), 流体源(12)、 压力调节器(11)、 阀门 (10)和动态挤出机头(9) 依次通过管路连接, 动态挤出机头 (9) 下方安放水槽 (13), 水槽 (13) 内固 定有滑轮 (14), 水槽 (13) 后面依次安放牵引机 (17) 和收卷装置 (8) 。
2、 根据权利要求 1所述动态微通道塑料挤出成型装置, 其特征在于, 所述 数据采集和控制系统包括: 压力传感器 P1和 P2、 温度传感器 Tl-T4、 接近开关
(16)、 带数据卡的计算机 (42) 和加热控制器 (44); 其中, 所述温度传感器 Τ1~Τ3分别安装在机筒(5)外包覆三段第一加热圈(6)处, 温度传感器 Τ1~Τ3 均与加热控制器 (44) 相连, 温度传感器 Τ4安装在动态挤出机头 (9) 外包覆 第二加热圈 (43) 处, 温度传感器 Τ4也与加热控制器 (44)相连, 压力传感器 P1安装在动态挤出机头 (9) 内, 压力传感器 Ρ2安装于阀门 (10) 出口处, 接 近开关 (16)接近牵引机 (17), 接近开关 (16)、 温度传感器 Τ4和压力传感器 P1均与带数据卡的计算机 (42) 相连。
3、 根据权利要求 1所述动态微通道塑料挤出成型装置, 其特征在于, 所述 动态挤出机头 (9) 包括: 机头连接头 (19)、 定位螺钉 (22)、 口模压板 (26)、 机头口模 (27)、 机头体 (30)、 机头盖板 (31)、 注射器芯体 (37) 和直线音圈 电机(38): 其中, 所述机头盖板(31)固定在机头体(30)上; 机头连接头(19) 固定在机头体 (30) 上; 机头口模 (27) 位于机头体 (30) 出口处, 由口模压 板 (26) 压紧; 定位螺钉 (22) 旋入机头体 (30), 调节机头口模 (27) 径向位 置; 机头连接头 (19)、 机头口模 (27)、 机头体 (30) 和机头盖板 (31) 共同 形成一个流道, 该流道包括流道入口段 (20)、 流道收敛段 (23)、 流道成型段
(29)和流道出口 (28); 注射器芯体(37) 由注射器体(33)与注射针头 (24) 构成, 注射器体 (33) —端与直线音圈电机 (38) 相连, 另一端穿过机头盖板 (31) 进入机头体 (30) 内, 并与注射针头 (24) 钎焊在一起; 注射器体 (33) 和注射针头 (24) 的内部通道相通, 形成注射器流道 (36); 注射器流道 (36) 与阀门 (10) 相通。
4、 一种应用权利要求 1所述装置的动态微通道塑料挤出成型方法, 其特征 在于, 该方法包括以下步骤:
1)、 电机 (3) 驱动单螺杆挤出机内螺杆 (4), 塑料原料 (1) 由料斗 (2) 加入机筒 (5), 在螺杆 (4) 旋转输送和第一加热圈 (6) 的电加热作用下, 逐 渐塑化形成塑料熔体 (41); 塑料熔体 (41) 在螺杆 (4) 的旋转推动下通过法 兰 (7) 进入动态挤出机头 (9), 法兰 (7) 之间的滤网阻拦未完全塑化的固体 和半固体;
2)、 塑料熔体 (41) 从机头连接体 (19) 进入由机头连接头 (19)、 机头口 模 (27)、 机头体 (30) 和机头盖板 (31) 组成的流道内, 并包覆在注射器芯体
(37) 外; 塑料熔体 (41) 在流道收敛段 (23) 压力逐步上升到 2-5MPa, 然后 进入流道成型段 (29);
3)、 注射器芯体 (37) 在直线音圈电机 (38) 驱动下沿挤出方向振动, 注 射针头(24)端面与机头口模(27)端面之间距离 y的运动规律如图 8所示(振 动方式可以是各种规则或不规则的振动, 如图 10-15所示); 流体源 (12) 供应 的注射流体由注射器流道 (36) 进入塑料熔体 (41), 在塑料熔体 (41) 的压力 和注射流体的压力作用下, 形成微通道, 微通道界面周期性地变化, 从而成型 挤出件微通道 (40), 塑料熔体 (41) 也逐步开始冷却固化成为挤出件塑料基体
(39);
4)、 带有挤出件微通道 (40) 的挤出件塑料基体 (39) 从流道出口 (28) 挤出, 在牵引机 (17) 的牵拉作用下, 通过滑轮 (14) 进入水槽 (13), 循环的 冷却水(15)对挤出件快速冷却定型, 最终成型为动态微通道塑料挤出件(18)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/199,954 US9586356B2 (en) | 2011-12-07 | 2014-03-06 | Device and method for dynamic extrusion molding of plastic article having variable micro-channel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110402471.1 | 2011-12-07 | ||
CN201110402471.1A CN102514173B (zh) | 2011-12-07 | 2011-12-07 | 动态微通道塑料挤出成型装置及方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/199,954 Continuation US9586356B2 (en) | 2011-12-07 | 2014-03-06 | Device and method for dynamic extrusion molding of plastic article having variable micro-channel |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013082795A1 true WO2013082795A1 (zh) | 2013-06-13 |
Family
ID=46285373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/083734 WO2013082795A1 (zh) | 2011-12-07 | 2011-12-09 | 动态微通道塑料挤出成型装置及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9586356B2 (zh) |
CN (1) | CN102514173B (zh) |
WO (1) | WO2013082795A1 (zh) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8647098B2 (en) * | 2010-09-22 | 2014-02-11 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based additive manufacturing systems |
US11092977B1 (en) | 2017-10-30 | 2021-08-17 | Zane Coleman | Fluid transfer component comprising a film with fluid channels |
DE102011118719A1 (de) * | 2011-11-16 | 2013-05-16 | Brabender Gmbh & Co.Kg | Vorrichtung zum Extrudieren eines medizinischen Instruments, das in einen menschlichen oder tierischen Körper einführbar ist |
CN102514173B (zh) | 2011-12-07 | 2014-05-21 | 浙江大学 | 动态微通道塑料挤出成型装置及方法 |
CN102909836A (zh) * | 2012-08-10 | 2013-02-06 | 泰瑞机器股份有限公司 | 挤注式大注射量注塑成型装置及其使用方法 |
CN104097357B (zh) * | 2013-04-07 | 2016-06-01 | 宁波汇邦尼龙科技有限公司 | 一种多孔吸声材料及其加工方法 |
CN105459379A (zh) * | 2015-12-25 | 2016-04-06 | 杜崇铭 | 智能化物料塑化双线生产系统 |
CN105936116A (zh) * | 2016-06-30 | 2016-09-14 | 重庆浩立塑胶有限公司 | 节能型塑料挤出机 |
RU2646929C2 (ru) * | 2016-07-04 | 2018-03-12 | ООО "Гратон-СК" | Способ стабилизации давления в экструзионной плоскощелевой головке |
TW201801895A (zh) * | 2016-07-14 | 2018-01-16 | 東友科技股份有限公司 | 三維印表機之擠出裝置及其冷卻機構與冷卻方法 |
US20180111301A1 (en) * | 2016-10-20 | 2018-04-26 | Teng-Pu Lin | Device for making foam pipes and method for making foam pipes |
CN106584803A (zh) * | 2016-12-26 | 2017-04-26 | 张家港市大能塑料制品有限公司 | 一种螺栓挤出机 |
CN107199684B (zh) * | 2017-04-28 | 2022-09-06 | 青岛科技大学 | 一种橡胶动态挤出成型装置和方法 |
JP2019116023A (ja) * | 2017-12-27 | 2019-07-18 | 住友ゴム工業株式会社 | ゴム押出装置及びゴム押出方法 |
CN110253856B (zh) * | 2019-07-05 | 2020-07-03 | 浙江大学 | 一种用于制备微纳结构的变截面微分化活字式口模 |
US11752680B2 (en) * | 2020-02-26 | 2023-09-12 | The Boeing Company | Fabrication of hollow fiber materials having sealed chambers |
CN112758613A (zh) * | 2020-04-02 | 2021-05-07 | 苏州美梦机器有限公司 | 物料输送系统和方法 |
CN111791449A (zh) * | 2020-07-29 | 2020-10-20 | 泰州市光明电子材料有限公司 | 一种聚四氟乙烯挤出管成型设备 |
CN113001930B (zh) * | 2021-02-22 | 2022-10-25 | 重庆市九龙橡胶制品制造有限公司 | 高强帆布橡胶带挤压设备 |
CN113263708B (zh) * | 2021-07-01 | 2022-10-04 | 拓凌机械(浙江)有限公司 | 用于制备高通道尺寸可控性的微通道塑料制品的口模结构 |
CN114407314B (zh) * | 2022-01-24 | 2024-04-05 | 拓凌机械(浙江)有限公司 | 一种具有模内流变在线测量功能的微注塑模具及测控方法 |
DE102022103216A1 (de) * | 2022-02-11 | 2023-08-17 | Cqlt Saargummi Technologies S.À.R.L. | Dichtungs- oder Kantenschutzprofil, Verfahren zu dessen Herstellung und Extrusionswerkzeug |
CN115736088B (zh) * | 2022-11-29 | 2024-07-26 | 中国农业大学 | 一种高水分植物蛋白的双螺杆挤压设备和方法 |
CN117021552B (zh) * | 2023-10-09 | 2024-02-06 | 汕头市明佳热收缩膜有限公司 | 节能“pof多层”吹膜机 |
CN117067518B (zh) * | 2023-10-13 | 2024-02-23 | 福建省三泰模具有限公司 | 一种可控制料流速度的模具及制造工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08150655A (ja) * | 1994-11-30 | 1996-06-11 | Furukawa Electric Co Ltd:The | 押出機の押出量測定装置 |
US6572800B1 (en) * | 1999-01-20 | 2003-06-03 | Poliglas, S.A. | Process and apparatus for producing foam |
CN200967270Y (zh) * | 2006-04-25 | 2007-10-31 | 杨峥雄 | 一种机械动态挤出机 |
CN101905535A (zh) * | 2010-07-20 | 2010-12-08 | 浙江大学 | 物理发泡剂注入塑料挤出微通道成型装置及方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3046178A (en) * | 1957-02-01 | 1962-07-24 | Earl S Tupper | Filamentous decoration and fabrication process |
US3501805A (en) * | 1963-01-03 | 1970-03-24 | American Cyanamid Co | Apparatus for forming multicomponent fibers |
US3355763A (en) * | 1965-05-17 | 1967-12-05 | Egan & Co Frank W | Rotary parison head blow molding machine |
US3479422A (en) * | 1966-10-27 | 1969-11-18 | Phillips Petroleum Co | Tubular extrusion having integral web |
US3564653A (en) * | 1967-08-23 | 1971-02-23 | Haskon Inc | Variable extrusion apparatus |
DE2028064A1 (de) * | 1970-06-08 | 1971-12-16 | Troester Maschf Paul | Schneckenpresse zum Ausformen von vorplastifizierten Elastomeren oder Thermoplasten |
CA989321A (en) * | 1970-07-17 | 1976-05-18 | Pcl Industries Limited | Method and aparatus for filtering flowable material |
DE2700003A1 (de) * | 1977-01-03 | 1978-07-06 | Reifenhaeuser Kg | Anlage zur herstellung von strangpressprofilen |
US4333906A (en) * | 1979-03-12 | 1982-06-08 | Extracorporeal Medical Specialties, Inc. | Process for producing hollow fibers having a non-uniform wall thickness and a non-uniform cross-sectional area |
US6012621A (en) * | 1997-09-04 | 2000-01-11 | Condux International, Inc. | Cable conveying apparatus |
CN1326684C (zh) | 2003-10-28 | 2007-07-18 | 北京化工大学 | 挤出塑料制品内孔成型方法 |
GB2408961A (en) | 2003-12-12 | 2005-06-15 | Univ Cambridge Tech | Apparatus and method |
EP1666223A1 (en) * | 2004-09-27 | 2006-06-07 | Italrec S.R.L. | Densifier system and relative method for treatment of plastic materials |
US20060172028A1 (en) * | 2005-02-01 | 2006-08-03 | Visteon Global Technologies, Inc. | Quick change head tooling for blow molding machine |
US7980197B2 (en) * | 2006-11-03 | 2011-07-19 | Illinois Tool Works, Inc. | Method and apparatus for dispensing a viscous material on a substrate |
US20100110823A1 (en) * | 2008-11-06 | 2010-05-06 | Womer Timothy W | Combined Screw Design and Heating Mechanism for Low Shear Resins |
CN102029704B (zh) * | 2010-10-30 | 2012-11-28 | 浙江德斯泰塑胶有限公司 | 一种利用水直接冷却制备厚聚乙烯醇缩丁醛胶片的方法 |
CN102514173B (zh) | 2011-12-07 | 2014-05-21 | 浙江大学 | 动态微通道塑料挤出成型装置及方法 |
-
2011
- 2011-12-07 CN CN201110402471.1A patent/CN102514173B/zh active Active
- 2011-12-09 WO PCT/CN2011/083734 patent/WO2013082795A1/zh active Application Filing
-
2014
- 2014-03-06 US US14/199,954 patent/US9586356B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08150655A (ja) * | 1994-11-30 | 1996-06-11 | Furukawa Electric Co Ltd:The | 押出機の押出量測定装置 |
US6572800B1 (en) * | 1999-01-20 | 2003-06-03 | Poliglas, S.A. | Process and apparatus for producing foam |
CN200967270Y (zh) * | 2006-04-25 | 2007-10-31 | 杨峥雄 | 一种机械动态挤出机 |
CN101905535A (zh) * | 2010-07-20 | 2010-12-08 | 浙江大学 | 物理发泡剂注入塑料挤出微通道成型装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140225301A1 (en) | 2014-08-14 |
CN102514173A (zh) | 2012-06-27 |
CN102514173B (zh) | 2014-05-21 |
US9586356B2 (en) | 2017-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013082795A1 (zh) | 动态微通道塑料挤出成型装置及方法 | |
US11198242B2 (en) | Extruder | |
EP3112133B1 (en) | 3d printer | |
US8157557B2 (en) | Rotary die head of film blowing machine for starch biodegradable material | |
CN106124362A (zh) | 一种超声塑化毛细管流变仪及粘度测试方法 | |
CN102615805B (zh) | 一种多腔塑料微管直角挤出模具 | |
JP6634196B2 (ja) | 成形機および部品成形方法 | |
US11701807B2 (en) | Apparatus for molding an elongated hollow article | |
JP2019027959A (ja) | 未加硫ゴムの粘度測定方法および装置並びに未加硫ゴムの流動シミュレーション方法 | |
CN1065037A (zh) | 制造长带材的设备和方法 | |
CN110253856B (zh) | 一种用于制备微纳结构的变截面微分化活字式口模 | |
CN103411053B (zh) | 塑料微通道管道结构及制备方法与装置 | |
US20170021077A1 (en) | Hollow molded article | |
CN114750392B (zh) | 降密度生物全降解薄膜挤出成型机 | |
JP2005225232A (ja) | 押出方式における方法、押出方式および押出方式用装置 | |
CN201538027U (zh) | 一种大型高分子制品挤出成型装置 | |
AU2016362991B2 (en) | Method of molding a part | |
CN114407314A (zh) | 一种具有模内流变在线测量功能的微注塑模具及测控方法 | |
CN102211392B (zh) | 一种具有曲线型机颈流道的挤塑机 | |
CN102039657A (zh) | 一种大型高分子制品挤出成型装置及工艺 | |
CN113263708B (zh) | 用于制备高通道尺寸可控性的微通道塑料制品的口模结构 | |
RU2433913C1 (ru) | Экструзионная головка для изготовления полимерных двухслойных труб с применением ультразвуковых колебаний | |
CN100434255C (zh) | 水辅挤出成型方法及装置 | |
CN102990852A (zh) | 一种pe管件注塑机注射料筒过渡套筒结构 | |
US20230249965A1 (en) | Hydrodynamic and gravity focusing apparatus and method of forming and shaping microfluidic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11877094 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11877094 Country of ref document: EP Kind code of ref document: A1 |