WO2013081123A1 - 超電導線材の常電導転移の検出方法 - Google Patents

超電導線材の常電導転移の検出方法 Download PDF

Info

Publication number
WO2013081123A1
WO2013081123A1 PCT/JP2012/081138 JP2012081138W WO2013081123A1 WO 2013081123 A1 WO2013081123 A1 WO 2013081123A1 JP 2012081138 W JP2012081138 W JP 2012081138W WO 2013081123 A1 WO2013081123 A1 WO 2013081123A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting wire
optical fiber
stokes raman
transition
superconducting
Prior art date
Application number
PCT/JP2012/081138
Other languages
English (en)
French (fr)
Inventor
大道 浩児
寺田 佳弘
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP12853605.9A priority Critical patent/EP2787341A4/en
Priority to CN201280058234.0A priority patent/CN103959044A/zh
Publication of WO2013081123A1 publication Critical patent/WO2013081123A1/ja
Priority to US14/289,836 priority patent/US20140268130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a method for detecting a normal conducting transition of a superconducting wire.
  • Superconducting wires are expected to be applied to superconducting magnets such as nuclear magnetic resonance imaging devices, magnetic levitation railways, magnetic bearings, electric motors, and superconducting cables. In order to put these to practical use, researches for ensuring the reliability of superconducting wires during operation are being actively conducted.
  • the superconductor constituting the superconducting wire generally has a critical temperature (the upper limit temperature indicating superconductivity) lower than room temperature, it can be lowered below the critical temperature using a cooling medium such as liquid helium and liquid nitrogen, a refrigerator, or the like. Used with cooling.
  • a cooling medium such as liquid helium and liquid nitrogen, a refrigerator, or the like. Used with cooling.
  • thermal disturbance or the like may occur in a part of the superconducting wire during energization. For this reason, when a normal conduction transition occurs from the superconducting state to the normal conducting state, Joule heat is generated and the temperature of the superconducting wire increases. For this reason, the normal conduction transition is promoted around the superconducting wire whose temperature has been increased, and the region of the normal conduction state is expanded (quenching phenomenon).
  • Patent Literature 1 a carbon film is provided on the superconductor to detect a slight temperature rise just before quenching, when the superconductor has transitioned to a normal conducting state due to thermal disturbance or the like, and a minute temperature change is caused from the voltage of the carbon film.
  • a method of detecting is described.
  • the method described in Patent Document 1 has a property that the electrical resistance value with respect to the temperature of the carbon film is remarkably large in an extremely low temperature region of several K (Kelvin) from the temperature of liquid helium (see FIG. 7 of Patent Document 1). Is used. For this reason, it is difficult to apply to a high temperature superconductor having a critical temperature of 77K or higher (for example, about 100K).
  • Patent Document 2 discloses superconductivity in which polarized light from a light source is incident on an optical fiber wound around a superconducting wire, the phase difference of polarization from the optical fiber is detected, and an abnormality in the polarization state of light transmitted through the optical fiber is detected.
  • a body quench detection method is described.
  • Patent Document 3 (see particularly the fourth invention) describes the following superconducting wire quench detection method. That is, the reflected light from the deformed part of the optical fiber or the transmitted light from the other end of the optical fiber is measured based on the mechanical displacement at the abnormal part when the optical fiber is attached to the outside of the superconducting wire and the superconducting wire is energized. This is a method for detecting abnormalities in the superconducting wire.
  • the methods described in Patent Documents 2 and 3 can only determine whether there is an abnormality in the optical fiber because the superconducting wire moves due to quenching, and the positional deviation and deformation of the optical fiber increase. It is not possible to specify the position.
  • Patent Document 4 and Non-Patent Document 1 describe a temperature measurement method at an extremely low temperature by an optical fiber type temperature sensor using a fiber Bragg grating (FBG).
  • FBG is an optical fiber type device in which a periodic refractive index change (grating) is formed in the core of an optical fiber, and selectively reflects a specific wavelength (Bragg wavelength) determined by the effective refractive index of the core and the grating period. It has the property to do.
  • the FBG when the ambient temperature changes, the effective refractive index of the core and the grating period change, so the Bragg wavelength changes. Therefore, by obtaining the relationship between the ambient temperature and the Bragg wavelength in advance, it can be used as a temperature sensor.
  • Patent Document 4 a coating material (coating) such as aluminum (Al) and polymethyl methacrylate (PMMA) having a larger thermal expansion coefficient (TEC) than silica, which is the main component of the optical fiber, is provided around the FBG of the optical fiber. Provided. Thereby, the change of the Bragg wavelength due to temperature is increased, and the sensitivity of the temperature sensor is improved.
  • Non-Patent Document 1 shows a measurement example of strain, temperature, and linear expansion.
  • Japanese Patent No. 2577682 Japanese Unexamined Patent Publication No. 8-304271 Japanese Unexamined Patent Publication No. 7-170721 US Pat. No. 6,072,922
  • the temperature change of the superconducting wire accompanying quenching can be measured with the optical fiber type temperature sensor provided with FBG disclosed in Patent Literature 4 and Non-Patent Literature 1, it is considered possible to detect quenching.
  • superconducting wires are usually used in units of several hundred meters. When quenching occurs in a unit of several hundreds of meters, the characteristics of the superconducting wire (critical temperature, critical current, etc.) depend on the operating state of the superconducting wire (cooling temperature, energizing current, etc.), but the quench propagates for several meters.
  • the quench starting point reaches a temperature of 600 to 700 K, and as a result, there is a possibility that the characteristics of the superconducting wire will be deteriorated or burned out. Therefore, in order to detect quenching before characteristics deterioration and burning of the superconducting wire occur, it is necessary to detect a temperature change within a few meters at most from the quench starting point. That is, in the case of an optical fiber type temperature sensor using FBG, it is necessary to arrange FBGs serving as sensing heads at multiple points at intervals of several meters. For example, if one optical fiber is arranged on a superconducting wire of 300 m and FBGs are provided at an interval of 1 m on this optical fiber, the total number of FBGs is 300 points.
  • the method of arranging multiple FBGs on one optical fiber has the following problems.
  • the number of FBGs is limited to the assigned wavelength band, so that the maximum is about 20 points.
  • the fiber interval between FBGs is 2 m or more in consideration of the pulse width performance of a pulse light source used as measurement light. I need it. Further, considering the performance of the measuring instrument, the FBG multipoint number is limited to about 100 points.
  • the measurable fiber length is limited to the temporal coherency of the tunable laser used as measurement light It is limited to about 100m. Therefore, it is impossible to detect a quench by arranging a total of 300 FBGs at an interval of 1 m with respect to the exemplified 300 m superconducting wire, regardless of which measurement method is used.
  • the present invention provides a method for detecting a normal conduction transition of a superconducting wire capable of detecting the occurrence of a normal conduction transition using an optical fiber and further specifying the position where the normal conduction transition has occurred.
  • One aspect of the present invention is a method for detecting a normal conducting transition of a superconducting wire comprising a base material, a superconducting layer having a critical temperature of 77 K or higher, and a metal stabilizing layer, wherein an optical fiber is disposed on the superconducting wire.
  • the measurement light is incident on the optical fiber, the intensity of the anti-Stokes Raman scattering light of the measurement light is measured, and the occurrence of the normal conduction transition in the superconducting wire is detected from the change in the intensity of the anti-Stokes Raman scattering light. It is also possible to detect that the normal conduction transition has occurred in the superconducting wire since the intensity of the anti-Stokes Raman scattering light has increased to a predetermined value or more.
  • the optical fiber may be a multimode fiber having a core diameter of 50 ⁇ m or more.
  • the superconducting wire can be coiled.
  • the normal conduction transition generated in the superconducting wire is detected with high responsiveness based on the change in the intensity of the anti-Stokes Raman scattering light generated in the optical fiber disposed on the superconducting wire. It is possible. Even if the superconducting wire is coiled, it can be detected with high accuracy. By measuring the intensity of anti-Stokes Raman scattering light in a time-resolved manner, it is also possible to specify the position where the normal conduction transition has occurred along the longitudinal direction of the optical fiber.
  • FIG. 5A It is a detailed block diagram which shows an example of the form of the normal conduction transition part which implements the detection method of the normal conduction transition of the superconducting wire used in embodiment. It is sectional drawing which follows the SS line
  • FIG. 1 is a configuration diagram showing an example of a mode for carrying out a method for detecting a normal conducting transition of a superconducting wire 1 using an optical fiber 3 and a temperature measuring instrument 10.
  • FIG. 2 is a cross-sectional view showing an example in which the optical fiber 3 is arranged on the metal stabilizing layer 1 c of the superconducting wire 1.
  • the superconducting wire 1 includes at least a base material 1a, a superconducting layer 1b having a critical temperature of 77K or higher, and a metal stabilizing layer 1c.
  • the base material 1a applicable to the superconducting wire 1 of this embodiment can be used as a base material for a normal superconducting wire, and may be high strength.
  • the base material 1a is preferably in the form of a tape in order to obtain a long cable, and is preferably made of a metal having heat resistance required for a superconductor film forming process or the like.
  • the metal examples include various metal materials such as silver, platinum, stainless steel, copper, nickel alloys such as Hastelloy (registered trademark), or a structure in which ceramics are disposed on these various metal materials.
  • nickel alloys are preferable.
  • Hastelloy trade name made by US Haynes Co., Ltd.
  • Hastelloy B, C, G, N, W which have different amounts of components such as molybdenum, chromium, iron, cobalt, etc. Any type can be used.
  • the thickness of the substrate 1a may be appropriately adjusted according to the purpose, and is usually 10 to 500 ⁇ m.
  • the superconductor constituting the superconducting layer 1b may be a known superconductor as long as it has a critical temperature of 77K or higher. Specifically, it may be a superconductor having a composition represented by REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd). Examples of this superconducting layer include Y123 (YBa 2 Cu 3 O 7-X ) and Gd123 (GdBa 2 Cu 3 O 7-X ).
  • oxide superconductors for example, be a composition consisting of Bi 2 Sr 2 Ca n-1 Cu n O 4 + 2n + ⁇ with high another oxide superconductor critical temperature represented by the composition or the like represented by good.
  • the thickness of the superconducting layer 1b is not particularly limited, but is preferably about 0.5 to 5 ⁇ m and preferably has a uniform thickness.
  • the superconducting layer 1b is formed by sputtering, vacuum deposition, laser deposition, electron beam deposition, pulse laser deposition (PLD), ion beam assisted deposition (IBAD), chemical vapor deposition (CVD), etc.
  • the PLD method or the IBAD method is preferable from the viewpoint of productivity.
  • the thermal coating decomposition method (MOD method) in which a metal organic acid salt is applied and then thermally decomposed, is applied on a substrate with a solution in which a metal component organic compound is uniformly dissolved, and then heated to heat the substrate. It is a method of forming a thin film on a substrate by decomposing.
  • the MOD method is suitable for manufacturing a long tape-shaped superconducting conductor because it does not require a vacuum process and enables high-speed film formation at a low cost.
  • the metal stabilization layer 1c laminated on the superconducting layer 1b includes a highly conductive metal material.
  • the metal material constituting the metal stabilizing layer 1c is not particularly limited as long as it has good conductivity, but is relatively inexpensive such as copper, brass (Cu—Zn alloy), copper alloy, stainless steel, and the like. It is preferable to use a material. Among them, copper having high conductivity and being inexpensive is more preferable.
  • the thickness of the metal stabilizing layer 1c is preferably 10 to 300 ⁇ m.
  • the metal stabilizing layer 1c can be formed by a known method, for example, a sputtering method or a method of soldering a metal tape such as copper.
  • the diffusion preventing layer is formed to prevent the diffusion of the constituent elements of the substrate, and is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), rare earth metal oxide, or the like.
  • the diffusion preventing layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 400 nm, for example.
  • the bed layer is formed to reduce the interfacial reactivity and obtain the orientation of the film disposed on the bed layer, for example, yttrium oxide (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), composed of aluminum oxide (Al 2 O 3) or the like.
  • the bed layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.
  • the intermediate layer is formed from a biaxially oriented material in order to control the crystal orientation of the superconducting layer.
  • the intermediate layer may have either a single layer structure or a multilayer structure.
  • Preferred materials include, for example, Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O. 3 , metal oxides such as Ho 2 O 3 and Nd 2 O 3 .
  • the intermediate layer is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted vapor deposition (IBAD), chemical vapor deposition (CVD), or thermal coating decomposition. It can be laminated by a known method such as a method (MOD method).
  • the thickness of the intermediate layer can be adjusted as appropriate, but is usually preferably in the range of 0.005 to 2 ⁇ m.
  • the cap layer is formed through a process of epitaxially growing on the surface of the intermediate layer, and then grain growth (overgrowth) in the lateral direction (plane direction), and crystal grains are selectively grown in the in-plane direction. Is preferred. Since such a cap layer has a higher degree of in-plane orientation than an intermediate layer made of a metal oxide layer, it is preferable to form a superconducting layer on the cap layer.
  • the material of the cap layer is not particularly limited as long as it fulfills the above function, and specifically, CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , Nd 2 O 3 and the like are preferable.
  • a Ce—MO oxide in which part of Ce in CeO 2 is substituted with another metal atom or metal ion may be included.
  • the metal stabilizing base layer can be formed by a known method such as sputtering, and the thickness is preferably 1 to 30 ⁇ m.
  • the optical fiber 3 is disposed on the metal stabilization layer 1c.
  • the optical fiber 3 is preferably made of quartz glass.
  • As the material constituting the silica glass optical fiber pure silica glass, silica glass using an additive for increasing the refractive index such as germanium (Ge), and additive for decreasing the refractive index such as fluorine (F) are used. It is possible to select appropriately from quartz glass or the like.
  • the optical fiber includes a single mode optical fiber having a core diameter of about 10 ⁇ m and a multimode optical fiber having a core diameter of about 50 ⁇ m, both of which can be applied to the optical fiber 3 of the present invention. is there.
  • the core diameter of the multimode optical fiber is not particularly limited. For example, 50 ⁇ m, 62.5 ⁇ m, 100 ⁇ m, and the like are commercially available.
  • the multimode optical fiber has a graded index (GI) type in which the core refractive index continuously changes in a quadratic function with respect to the radial direction, and the refractive index changes only at the interface between the core and the cladding.
  • GI graded index
  • SI step index
  • any refractive index type is applicable, but when the Raman light time domain reflection measurement method described later is used, the GI type having a small speed difference between propagation modes is preferable.
  • a coating material can be provided around the clad so as to be concentric with a cross section.
  • the covering material include resins such as ultraviolet (UV) curable acrylate, silicone, and polyimide, and metals such as copper (Cu) and nickel (Ni).
  • the optical fiber 3 is preferably arranged in contact with or close to the metal stabilizing layer 1c in the superconducting wire 1. In addition, it is preferable to fix the optical fiber 3 to the superconducting wire 1 in order to suppress a change in position with respect to the superconducting wire 1. For fixing the optical fiber 3, it is desirable to use a member having excellent durability at low temperatures.
  • Kapton tape (trade name) is used.
  • apisong grease (trade name) is used.
  • a resin such as polyimide or a bonding metal
  • a plurality of these fixing means may be used in combination.
  • a fixing member 4 represented by grease and an adhesive is interposed between the optical fiber 3 and the metal stabilization layer 1c, and the optical fiber 3 is disposed in contact with or close to the metal stabilization layer 1c.
  • the form is shown.
  • FIG. 5B the periphery of the composite wire 2 in which the optical fiber 3 is fixed to the superconducting wire 1 is covered with a covering member 5 typified by a tape, and the optical fiber 3 is brought into contact with or close to the metal stabilization layer 1c.
  • the form to arrange is shown.
  • the measuring light is incident on the optical fiber 3 disposed on the superconducting wire 1 by the temperature measuring instrument 10 shown in FIG. Measure the intensity of scattered light.
  • the position of the heat generated in the superconducting wire 1 can be specified by using pulsed light as the measurement light and measuring the intensity of the anti-Stokes Raman scattering light in a time-resolved manner.
  • the occurrence of the normal conducting transition can be detected in real time.
  • the temperature measuring device 10 may have any configuration as long as it can measure the anti-Stokes Raman scattering light intensity. Furthermore, the structure which can measure a Stokes Raman scattering light intensity
  • ROTDR Raman optical time domain reflectometry
  • the distance reciprocating between the temperature measuring instrument 10 and the scattered light generation position is calculated.
  • the position along the longitudinal direction of the optical fiber 3 can be specified.
  • anti-Stokes Raman scattered light means anti-Stokes lines of Raman scattered light
  • Stokes Raman scattered light means Stokes lines of Raman scattered light.
  • the Stokes Raman scattering light and the anti-Stokes Raman scattering light can be generated from any position even in an optical fiber having a uniform cross-sectional structure over the entire length of the optical fiber without providing an optical fiber structure like FBG. .
  • the spatial resolution along the longitudinal direction of the optical fiber shortens the pulse width of the pulsed light and improves the time accuracy until the scattered light generated in the optical fiber 3 returns to the temperature measuring instrument 10. For example, it can be shortened to about 1 to 2 m or less.
  • FIG. 3 is a graph showing the temperature dependence of the Stokes Raman scattering light intensity, the anti-Stokes Raman scattering light intensity, and the intensity ratio thereof measured by a known ROTDR method.
  • the optical fiber is placed in a thermostatic bath in the temperature range of 220 to 370K, and immersed in liquid nitrogen at 77K, and the intensity of each scattered light is measured. Further, the intensity ratio is calculated by dividing the anti-Stokes Raman scattering light intensity by the Stokes Raman scattering light intensity.
  • both the Stokes Raman scattering light intensity and the anti-Stokes Raman scattering light intensity change substantially linearly with respect to the temperature. For this reason, the temperature dependence of the intensity ratio between the Stokes Raman scattering light and the anti-Stokes Raman scattering light is obtained in advance, so that each point along the longitudinal direction of the optical fiber 3 can be determined from the actually measured intensity ratio value. The temperature around the optical fiber can be calculated.
  • the ROTDR type temperature measuring device when used for measuring the critical temperature (approximately 77 to 100 K) of the superconducting wire 1, the anti-Stokes Raman scattered light intensity decreases nonlinearly with respect to the temperature at temperatures lower than 250 K. When the temperature becomes lower than 100K, the scattered light intensity falls below the detection lower limit (noise level). For this reason, the ROTDR temperature measuring instrument generally has a measurement limit (lower limit) of about 250K.
  • the superconducting wire 1 When the superconducting wire 1 is energized below the critical temperature, since the superconducting layer 1b is in a superconducting state and has a resistance value of 0, current flows through the superconducting layer 1b and the superconducting wire 1 does not generate heat. In the superconducting wire 1, if for some reason a superconducting transition occurs in which the superconducting layer 1 b transitions from the superconducting state to the normal conducting state, a resistance is generated in the superconducting layer 1 b, and the current is stabilized with a relatively small resistance. Flow through layer 1c. At that time, in the metal stabilizing layer 1c, Joule heat corresponding to the current value and the resistance value is generated, and heat is generated.
  • the temperature of the wire rapidly rises from the critical temperature. Moreover, if the anti-Stokes Raman scattering light intensity is about 100 K or more which is the detection lower limit or more, the accuracy capable of temperature measurement is obtained. Thus, the normal conduction transition generated in the superconducting wire can be detected from the change in the intensity of the anti-Stokes Raman scattering light. Further, after detecting the normal conducting transition, the temperature change of the superconducting wire 1 can be continuously measured by the temperature measuring instrument 10.
  • the threshold value of the anti-Stokes Raman scattering light intensity is set to a predetermined value that exceeds the detection limit, and whether or not the superconducting wire has a normal conduction transition depends on whether the anti-Stokes Raman scattering light intensity exceeds the threshold value. Can be determined.
  • the anti-Stokes Raman scattering light intensity can be measured for optical fiber position dependency by time-resolved measurement. From this, it is also possible to specify the position where the normal conduction transition has occurred by calculating the position where the anti-Stokes Raman scattered light intensity exceeds a predetermined threshold value.
  • the anti-Stokes Raman scattering light intensity is weak in the vicinity of the liquid nitrogen temperature and is usually below the state (noise level) below the detection lower limit.
  • a strength of a level that is about 1 dB higher than the detection lower limit may be observed stochastically. For this reason, it is preferable to determine that the normal conduction transition has occurred with respect to the predetermined threshold, for example, when the intensity is about 2 dB or more from the detection lower limit, or more.
  • the predetermined threshold is preferably set to a level that is somewhat larger than the maximum value of the anti-Stokes Raman scattered light intensity when the superconducting state is maintained.
  • the maximum value of the anti-Stokes Raman scattering light intensity is the maximum value when the anti-Stokes Raman scattering light intensity is continuously measured for a certain period of time while the superconducting wire 1 is maintained in the superconducting state.
  • the predetermined threshold value a value specified in advance before the measurement of the anti-Stokes Raman scattering light intensity for the target superconducting wire can be used.
  • the anti-Stokes Raman scattering light intensity was measured while the superconducting wire 1 was kept in the superconducting state while the measurement was continued for the target superconducting wire in order to suppress the long-term change over time.
  • Past results may be statistically processed to update the predetermined threshold value regularly or irregularly.
  • the anti-Stokes Raman scattering light intensity is measured for each optical fiber position (two or more points) continuously, and the scattered light intensity is measured while the superconducting wire 1 is kept in the superconducting state.
  • the predetermined threshold value for determining whether or not the normal conducting transition has occurred can be set to a different value for each current value flowing through the superconducting wire.
  • the detection method of the normal conduction transition of the superconducting wire according to the present embodiment can be used for a protection device for a superconducting wire during operation.
  • the superconducting protection device converts the anti-Stokes Raman scattered light intensity measured by the temperature measuring instrument 10 of FIG. 1 into an electrical signal, receives the electrical signal, and automatically analyzes it according to the above-described normal conducting transition detection method.
  • Analytical device, control device that controls the amount of current applied to the superconducting wire by limiting (decreasing) or interrupting (stopping) the current when an abnormality is detected, an alarm that alerts the worker when an abnormality is detected A device, a display device for operating status, and the like can be provided.
  • the superconducting wire 1 can be prevented from being blown or burned out, and the superconducting wire 1 can be protected in a good state. Further, even when the superconducting wire is burned or deteriorated or there is a possibility that it may occur, the position where the normal conducting transition has occurred can be specified. Therefore, necessary work such as inspection, repair, repair, and replacement can be performed more quickly and accurately.
  • the present embodiment is also applicable to a superconducting coil that can generate an electromagnetic force (hoop stress) by making a superconducting wire into a coil shape and passing a current through the superconducting wire.
  • the superconducting coil may be, for example, a pancake-type coil body in which a superconducting wire is curved in the thickness direction of the superconducting wire and wound many times concentrically. Further, two or three or more coil bodies may be laminated.
  • the optical fiber type temperature sensor using FBG described in Patent Literature 4 and Non-Patent Literature 1 detects a temperature change from a Bragg wavelength change.
  • the Bragg wavelength of the FBG is also changed by strain generated in the longitudinal direction of the optical fiber due to the hoop stress. That is, since temperature change and hoop stress are regarded as the same Bragg wavelength change, there is a possibility of malfunction.
  • the Raman scattered light does not change in intensity due to strain (hoop stress) in the longitudinal direction of the optical fiber, only the temperature change can be measured from the intensity change. For this reason, even if it is a case where it applies to a superconducting coil, detection of a normal conduction transition is easy.
  • the scattered light intensity is measured regardless of the deformation and strain of the optical fiber. Therefore, the normal conducting transition can be detected regardless of whether the superconducting wire is coiled or linear, whether the coil of the superconducting wire is supported by a reel or the like from the inside, or whether the coil is hollow. .
  • FIG. 4 is a configuration diagram showing an embodiment for carrying out the method for detecting the normal conducting transition of the superconducting wire 1 used in the examples.
  • FIG. 5A is a detailed configuration diagram showing a form of a normal conducting transition part that intentionally generates a normal conducting transition with respect to the superconducting wire 1.
  • Hastelloy C276 having a width of 5 mm and a thickness of 0.1 mm was used for the base material 1 a of the superconducting wire 1.
  • GdBCO Ga 2 Cu 3 O 7-x
  • This superconducting layer has a critical temperature of about 90K and a critical current of about 230A (temperature 77K, value in a magnetic field 0T environment).
  • copper having a width of 5 mm and a thickness of 0.3 mm was used.
  • the optical fiber 3 is a GI multimode optical fiber having a core made of quartz glass doped with Ge having an outer diameter of 50 ⁇ m and a cladding made of pure silica glass having an outer diameter of 125 ⁇ m.
  • the optical fiber 3 is covered with a coating layer having an outer diameter of 150 ⁇ m made of polyimide around the cladding.
  • a ROTDR type temperature measuring instrument AQ8940 (model number) manufactured by Yokogawa Electric Corporation was used.
  • the optical fiber 3b that is intentionally generated in the normal conducting transition with respect to the superconducting wire 1 uses Apiezon N (trade name) grease as the fixing member 4 to stabilize the metal. It arrange
  • the total length of the optical fiber 3b disposed in the normal conducting transition portion is about 0.4 m, and as shown in FIG. 5A, it is fixed in a coil shape on the outer periphery of a glass fiber reinforced plastic winding frame 13 having a diameter of 0.26 m.
  • a resistance heater 14 made of Hastelloy is provided in the approximate center of the optical fiber 3b.
  • optical fiber 3a of about 304 m provided between the temperature measuring instrument 10 and the normal conducting transition part
  • optical fiber 3c of about 25 m provided on the output end side of the optical fiber 3 when viewed from the temperature measuring instrument 10
  • the connecting portion between the optical fiber 3a and the temperature measuring instrument 10 and the portion excluding the end of the optical fiber 3c are disposed on the superconducting wire 1. Further, these optical fibers were fixed together with the superconducting wire 1 in a coil shape on the outer periphery of a glass fiber reinforced plastic winding frame 13 having a diameter of 0.26 m.
  • the optical fiber 3a and the optical fiber 3c were also arranged close to the metal stabilizing layer 1c so that the temperature change of the superconducting wire 1 based on the scattered light intensity can be measured over the entire length of the optical fibers 3a, 3b, and 3c.
  • the optical fibers 3a, 3b, 3c are composed of a single optical fiber 3 in which a core and a clad are continuously connected.
  • Three reels 13, 13, 13 corresponding to the optical fibers 3a, 3b, 3c were respectively immersed in the liquid nitrogen 12 in the cryogenic vessel 11 and held at 77K.
  • a direct current of about 160 A was applied to the superconducting wire 1 only in the portion where the optical fiber 3b of the normal conducting transition portion was disposed.
  • the superconducting wire 1 was previously provided with a current terminal, which was connected to a power source (not shown).
  • the superconducting wire 1 and the optical fiber 3 are divided into three winding frames 13 and fixed.
  • Example 1 2 18 times from the temperature measuring instrument 10 with respect to the optical fiber 3 (262144 times) incident pulsed light, by decomposing each of the pulsed light time, Stokes Raman scattered light intensity and anti-Stokes Raman The optical fiber position dependence of scattered light intensity was measured. The measurement step of averaging the obtained scattered light intensity dependence on the position of the optical fiber with all pulsed light ( 218 pulses) was taken as one cycle, and each scattered light intensity was measured. 6 and 7 show the measurement results of one cycle corresponding to the normal conduction transition and the normal conduction transition, respectively. The measurement time per cycle is 45 seconds, and the measurement repetition rate is 0.022 cycles / second (ie, 0.022 Hz).
  • FIG. 6 shows the Stokes Raman scattering light intensity, the anti-Stokes Raman scattering light intensity, and the optical fiber position dependence of these intensity ratios measured before the normal conducting transition.
  • the ROTDR measurement is performed so that the optical fiber position is specified over the entire length of the optical fiber 3.
  • the graph only the results in the section of 275 to 325 m corresponding to a part of the optical fiber 3a, the entire optical fiber 3b, and a part of the optical fiber 3c are shown. Since the length of the optical fiber 3a is about 304 m as described above, the optical fiber 3b having a length of about 0.4 m is located near 304 m in the fiber position on the horizontal axis.
  • the anti-Stokes Raman scattering light intensity showed a value at the lower limit of detection. That is, since the anti-Stokes Raman scattered light intensity is an intensity equal to or lower than the noise level of the temperature measuring instrument 10, it can be determined that the superconducting wire 1 is maintained at the liquid nitrogen temperature (77K).
  • FIG. 7 shows the Stokes Raman scattering light intensity, the anti-Stokes Raman scattering light intensity, and the optical fiber position dependency of these intensity ratios measured when the normal conduction transition occurs.
  • the measurement conditions in FIG. 7 are the same as those in FIG.
  • FIG. 8 also shows the optical fiber position dependence of the anti-Stokes Raman scattering light intensity before and at the normal conduction transition.
  • FIG. 9 shows the optical fiber position dependency of the Stokes Raman scattering light intensity before and at the normal conduction transition.
  • the anti-reflection before and after the normal conducting transition including the ranges not shown in the graphs as well as the ranges shown in the graphs of FIGS.
  • the Stokes Raman scattering light intensity was below the noise level.
  • the anti-Stokes Raman scattered light at the 304 m point showed an intensity about 6 dB higher than the noise level, it was determined that the temperature of the optical fiber 3b increased at this point. That is, at this time, it was determined that the temperature of the superconducting wire 1 rose and a normal conducting transition occurred.
  • the point 304m identified as the occurrence position of the normal conduction transition by measurement in the present example corresponds to the position of the optical fiber 3b in the normal conduction transition part. Therefore, it has been demonstrated that the normal conduction transition of the superconducting wire 1 can be detected from the change in the intensity of the anti-Stokes Raman scattering light.
  • the scale on the vertical axis is 0.2 dB / Div. (Per graduation) and the scattered light intensity is 2 dB / Div. It is displayed larger than.
  • the 304m point is the position where the normal conduction transition occurs, when the Stokes Raman scattering light intensity is measured, even at the normal conduction transition, no increase in light intensity is observed with the temperature rise compared to before the normal conduction transition, Rather, a slight decrease in strength of about 0.05 dB was observed.
  • Example 2 The normal conductive transition of the superconducting wire 1 was detected with the same configuration as in Example 1. However, in this embodiment, and the number of incident pulsed light to the optical fiber 3 from the temperature measuring instrument 10 in one cycle 2 12 times and (4096). That is, in Example 2, incident from the temperature measuring instrument 10 2 12 times with respect to the optical fiber 3 (4096) pulsed light, by decomposing each of the pulsed light time, Stokes Raman scattered light intensity and anti-Stokes Raman The optical fiber position dependence of the scattered light intensity was measured. Obtained as one cycle step of measurements to average the optical fiber position dependence of the scattered light intensity at all of the pulsed light (2 12 pulses) was measured each of the scattered light intensity. The measurement time per cycle is 2.5 seconds, and the measurement repetition rate is 0.4 cycles / second (that is, 0.4 Hz).
  • FIG. 10 shows the Stokes Raman scattering light intensity, the anti-Stokes Raman scattering light intensity, and the optical fiber position dependency of these intensity ratios measured before the normal conducting transition.
  • the ROTDR measurement is performed so that the optical fiber position is specified over the entire length of the optical fiber 3.
  • the graph only the results in the section of 275 to 325 m corresponding to a part of the optical fiber 3a, the entire optical fiber 3b, and a part of the optical fiber 3c are shown. Since the length of the optical fiber 3a is about 304 m as described above, the optical fiber 3b having a length of about 0.4 m is located near 304 m in the fiber position on the horizontal axis.
  • the anti-Stokes Raman scattering light intensity showed a value at the lower limit of detection. That is, since the anti-Stokes Raman scattered light intensity is an intensity equal to or lower than the noise level of the temperature measuring instrument 10, it can be determined that the superconducting wire 1 is maintained at the liquid nitrogen temperature (77K).
  • FIG. 11 shows the Stokes Raman scattering light intensity, the anti-Stokes Raman scattering light intensity, and the optical fiber position dependence of these intensity ratios measured when the normal conducting transition occurs.
  • the measurement conditions in FIG. 11 are the same as those in FIG.
  • FIG. 12 shows the optical fiber position dependence of the anti-Stokes Raman scattering light intensity before and at the normal conduction transition.
  • FIG. 13 shows the optical fiber position dependency of the Stokes Raman scattered light intensity before and at the normal conduction transition.
  • Example 2 As shown in FIG. 12, since the anti-Stokes Raman scattered light at the 304 m point showed an intensity about 3 dB higher than the noise level, it was determined that the temperature of the optical fiber 3b had increased at this point. That is, at this time, it was determined that the temperature of the superconducting wire 1 rose and a normal conducting transition occurred. Also in Example 2, as in Example 1, the occurrence position of the normal conduction transition could be specified as the 304 m point corresponding to the position of the optical fiber 3b in the normal conduction transition part.
  • the vertical scale is 0.2 dB / Div. (Per graduation) and the scattered light intensity is 2 dB / Div. It is displayed larger than.
  • the 304m point is the position where the normal conduction transition occurs, but when the Stokes Raman scattering light intensity was measured, no clear change in light intensity was observed before and after the normal conduction transition.
  • Example 1 the ratio of signal intensity to noise level (S / N ratio) at the point 304 m where the normal conducting transition was detected was about 6 dB, whereas in Example 2, this S / N ratio was It was about 3 dB. This is because in Example 2, since the average number of one cycle is smaller than that in Example 1, the noise level has increased. However, in Example 2, it is possible to repeatedly measure in a very short time (2.5 seconds) by reducing the average number of one cycle.
  • the S / N ratio means that the higher the value, the better the detection accuracy of the normal conduction transition.
  • the measurement repetition rate means that the higher the value, the earlier the normal conduction transition can be detected.
  • the normal conduction transition generated in the section of about 0.4 m of the superconducting wire having a total length of about 325 m and the quench associated with the normal conduction transition are highly responsive by measuring the anti-Stokes Raman scattering light intensity. It was detected by sex. Therefore, in the present invention, it is possible to detect the normal conduction transition at intervals of 1 m for the superconducting wire having a length of 300 m as described above.
  • the present invention can be applied to a method for detecting normal conduction transition of a superconducting wire.

Abstract

 基材と、77K以上の臨界温度を有する超電導層と、金属安定化層とを備える超電導線材1の常電導転移の検出方法であって、光ファイバ3が超電導線材1に配置され、光ファイバ3に測定光を入射し、測定光のアンチストークスラマン散乱光の強度を計測し、超電導線材1に常電導転移が生じたことを、アンチストークスラマン散乱光の強度の変化に基づいて検出する。

Description

超電導線材の常電導転移の検出方法
 本発明は、超電導線材の常電導転移の検出方法に関する。
 本願は、2011年12月1日に、日本に出願された特願2011-263580号に基づき優先権を主張し、その内容をここに援用する。
 超電導線材は、例えば核磁気共鳴画像装置、磁気浮上式鉄道、磁気軸受、電動機等の超電導磁石、および、超電導ケーブルへの応用が期待されている。これらの実用化に向けて、超電導線材の運転中の信頼性を確保する研究が盛んに行われている。
 超電導線材を構成する超電導体は、一般に臨界温度(超電導性を示す上限の温度)が常温よりも低いため、液体ヘリウムおよび液体窒素等の冷却媒体、および、冷凍機等を用いて臨界温度以下に冷却して使用される。しかしながら、超電導線材の外部から臨界温度以下に冷却しても、通電時に超電導線材の一部に熱攪乱等が生じることがある。これが原因で、超電導状態から常電導状態へ遷移する常電導転移が発生すると、ジュール熱が発生して超電導線材の温度が上昇する。そのため、温度が上昇した超電導線材の周囲では常電導転移が促進されて、常電導状態の領域が拡大する(クエンチ現象)。
 特許文献1には、超電導体が熱攪乱等により常電導状態に転移したクエンチする直前の僅かな温度上昇を検出するため、超電導体上にカーボン膜を設け、カーボン膜の電圧から微小な温度変化を検知する方法が記載されている。しかしながら、特許文献1に記載の方法は、液体ヘリウムの温度から数K(ケルビン)程度という極低温領域では、カーボン膜の温度に対する電気抵抗値が著しく大きいという性質(特許文献1の図7参照)を利用している。このため、臨界温度が77K以上(例えば100K程度)の高温超電導体に適用することは困難である。
 特許文献2には、超電導線材に巻き付いた光ファイバに光源から偏光光線を入射させ、光ファイバからの偏光の位相差を検出し、光ファイバ中を透過した光の偏光状態の異常を検出する超電導体クエンチ検出方法が記載されている。
 また、特許文献3(特に第四の発明参照)には、次のような超電導線のクエンチ検出方法が記載されている。すなわち、光ファイバが超電導線の外部に取り付けられ、超電導線に通電した際の異常部分における機械的変位に基づく光ファイバの変形部分からの反射光または光ファイバの他端からの透過光を測定して、超電導線の異常を検知する方法である。
 しかしながら、特許文献2,3に記載の方法は、クエンチが原因で超電導線材が動き、光ファイバの位置ズレおよび変形が増大することにより、光ファイバの異常の有無を判定できるだけであり、クエンチが生じた位置を特定することはできない。
 特許文献4および非特許文献1には、ファイバブラッググレーティング(FBG)を用いた光ファイバ型温度センサによる極低温での温度計測方法が記載されている。FBGとは、光ファイバのコアに周期的な屈折率変化(グレーティング)を形成した光ファイバ型デバイスであり、コアの実効屈折率とグレーティング周期で決まる特定の波長(ブラッグ波長)を選択的に反射する性質を有する。FBGは、周囲温度が変化すると、コアの実効屈折率とグレーティング周期が変化するため、ブラッグ波長が変化する。したがって、周囲温度とブラッグ波長の関係をあらかじめ求めておくことで、温度センサとして活用できる。
 特許文献4では、光ファイバのFBGの周囲に、光ファイバの主成分であるシリカよりも熱膨張係数(TEC)の大きいアルミニウム(Al)およびポリメチルメタクリレート(PMMA)等の被覆材(コーティング)を設けている。これにより、温度によるブラッグ波長の変化を増大させ、温度センサの感度を向上させている。また、非特許文献1では、ひずみ、温度、線膨張の計測例が示されている。
日本国特許第2577682号公報 日本国特開平8-304271号公報 日本国特開平7-170721号公報 米国特許第6072922号明細書
Wolfgang Ecke et al., "Fiber optic grating sensors for structural health monitoring at cryogenic temperatures", Proc. SPIE, 2007, Vol. 6530, 653002
 特許文献4および非特許文献1に開示されているFBGを備えた光ファイバ型温度センサでクエンチに伴う超電導線材の温度変化を計測できれば、クエンチを検出することが可能と考えられる。しかしながら、超電導線材は、通常、数百メートル単位で用いられる。数百メートル単位の部位にクエンチが生じると、超電導線材の特性(臨界温度、臨界電流等)は、超電導線材の運転状況(冷却温度、通電電流等)にもよるが、数メートル程度クエンチが伝播する間にクエンチ起点部は600~700Kの温度に到達し、その結果、超電導線材の特性劣化や焼損が起こるおそれがある。したがって、超電導線材の特性劣化および焼損が生じる前にクエンチを検知するためには、クエンチ起点部から長くとも数メートル以内で温度変化を検出する必要がある。
 すなわち、FBGを用いた光ファイバ型温度センサの場合は、センシングヘッドとなるFBGを数メートル間隔で多点配置する必要がある。例えば、300mの超電導線材に1本の光ファイバを配し、この光ファイバに1m間隔でFBGを設けると、FBG総数は300点になる。しかしながら、FBGを1本の光ファイバに多点配置する手法は、以下のような問題がある。
 ブラッグ波長の異なるFBGを多点配置する波長分割多重(Wavelength Division Multiplexing, WDM)方式では、FBG多点数が、割り当てられる波長帯域に制限されるため、最大でも20点程度となる。
 同一ブラッグ波長のFBGを所定のファイバ間隔で多点配置する時分割多重(Time Division Multiplexing, TDM)方式では、測定光として用いるパルス光源のパルス幅性能を考慮すると、FBG間のファイバ間隔が2m以上必要になる。また、測定器の性能を考慮するとFBG多点数が100点程度に限られる。
 同一ブラッグ波長のFBGを任意のファイバ間隔で多点配置する光周波数領域反射測定(Optical Frequency Domain Reflectometry, OFDR)方式では、測定可能なファイバ長が、測定光として用いるチューナブルレーザの時間コヒーレンシーに制限され、おおよそ100m程度に限られる。
 したがって、例示した300mの超電導線材に対して1m間隔で合計300点のFBGを配置してクエンチを検出することは、いずれの計測方式を用いても不可能である。
 本発明は、上記事情に鑑み、光ファイバを用いて、常電導転移の発生を検出し、さらには常電導転移を生じた位置を特定することが可能な超電導線材の常電導転移の検出方法を提供する。
 本発明の一態様は、基材と、77K以上の臨界温度を有する超電導層と、金属安定化層とを備える超電導線材の常電導転移の検出方法であって、光ファイバが超電導線材に配置され、光ファイバに測定光を入射し、測定光のアンチストークスラマン散乱光の強度を計測し、超電導線材に常電導転移が生じたことを、アンチストークスラマン散乱光の強度の変化から検出する。
 超電導線材に常電導転移が生じたことを、アンチストークスラマン散乱光の強度が所定値以上に増大したことから、検出することも可能である。
 測定光にパルス光を用い、測定光のアンチストークスラマン散乱光の強度を、時間分解して計測することにより、光ファイバの長手方向に沿って常電導転移が生じた位置を特定することも可能である。
 光ファイバがコア径50μm以上のマルチモードファイバであることも可能である。
 超電導線材をコイル状とすることも可能である。
 上記本発明の一態様によれば、超電導線材に配置した光ファイバ中に生じたアンチストークスラマン散乱光の強度の変化に基づいて、超電導線材に生じた常電導転移を、高い応答性で検出することが可能である。また、超電導線材がコイル状であっても、高精度の検出が可能である。
 アンチストークスラマン散乱光の強度を時間分解して計測することにより、光ファイバの長手方向に沿って常電導転移が生じた位置を特定することも可能である。
本発明の超電導線材の常電導転移の検出方法を実施する形態の一例を示す構成図である。 光ファイバを超電導線材の金属安定化層上に配置した状態の一例を示す断面図である。 ラマン光時間領域反射測定方式により計測したストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の温度依存性を示すグラフである。 実施形態で用いた超電導線材の常電導転移の検出方法を実施する形態の一例を示す構成図である。 実施形態で用いた超電導線材の常電導転移の検出方法を実施する常電導転移部の形態の一例を示す詳細構成図である。 図5AのS-S線に沿う断面図である。 実施例1で計測した常電導転移前のストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の光ファイバ位置依存性を示すグラフである。 実施例1で計測した常電導転移時のストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の光ファイバ位置依存性を示すグラフである。 実施例1で計測した常電導転移前と常電導転移時のアンチストークスラマン散乱光強度の光ファイバ位置依存性を示すグラフである。 実施例1で計測した常電導転移前と常電導転移時のストークスラマン散乱光強度の光ファイバ位置依存性を示すグラフである。 実施例2で計測した常電導転移前のストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の光ファイバ位置依存性を示すグラフである。 実施例2で計測した常電導転移時のストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の光ファイバ位置依存性を示すグラフである。 実施例2で計測した常電導転移前と常電導転移時のアンチストークスラマン散乱光強度の光ファイバ位置依存性を示すグラフである。 実施例2で計測した常電導転移前と常電導転移時のストークスラマン散乱光強度の光ファイバ位置依存性を示すグラフである。
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
 図1は、光ファイバ3と温度計測器10を用いて超電導線材1の常電導転移の検出方法を実施する形態の一例を示す構成図である。また、図2は、光ファイバ3を超電導線材1の金属安定化層1c上に配した一例を示す断面図である。
《超電導線材》
 超電導線材1は、基材1aと、77K以上の臨界温度を有する超電導層1bと、金属安定化層1cを少なくとも備える。
 本実施形態の超電導線材1に適用できる基材1aは、通常の超電導線材の基材として使用でき、高強度であれば良い。また、基材1aは、長尺のケーブルとするためにテープ状であることが好ましく、超電導体の成膜プロセス等に要求される耐熱性を備えた金属からなることが好ましい。金属としては、例えば、銀、白金、ステンレス鋼、銅、ハステロイ(登録商標)等のニッケル合金等の各種金属材料、もしくはこれら各種金属材料上にセラミックスを配置した構成等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材1aの厚さは、目的に応じて適宜調整すれば良く、通常は、10~500μmである。
 超電導層1bを構成する超電導体は、77K以上の臨界温度を有していれば公知の超電導体で良い。具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)で表される組成の超電導体であれば良い。この超電導層として、Y123(YBaCu7-X)またはGd123(GdBaCu7-X)等がある。また、その他の酸化物超電導体、例えば、BiSrCan-1Cu4+2n+δで表される組成等に代表される臨界温度の高い他の酸化物超電導体からなる組成を用いても良い。
 超電導層1bの厚みは、特に限定されないが、例えば0.5~5μm程度であって、均一な厚みであることが好ましい。
 超電導層1bは、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、パルスレーザ堆積法(PLD法)、イオンビームアシスト蒸着法(IBAD法)、化学気相成長法(CVD法)等で積層でき、なかでも生産性の観点から、PLD法またはIBAD法が好ましい。
 また、金属有機酸塩を塗布後熱分解させる熱塗布分解法(MOD法)は、金属成分の有機化合物を均一に溶解した溶液を基材上に塗布した後、この基材を加熱して熱分解させることにより基材上に薄膜を形成する方法である。MOD法は、真空プロセスを必要とせず、低コストで高速成膜が可能であるため長尺のテープ状超電導導体の製造に適している。
 超電導層1bの上に積層されている金属安定化層1cは、良導電性の金属材料を含み、超電導層1bが超電導状態から常電導状態に遷移する際に、超電導層1bの電流が転流するバイパスとして機能する。金属安定化層1cを構成する金属材料としては、良導電性を有していればよく、特に限定されないが、銅、黄銅(Cu-Zn合金)等の銅合金、ステンレス等の比較的安価な材料を用いることが好ましい。中でも高い導電性を有し、安価である銅がより好ましい。これにより、材料コストを低く抑えながら金属安定化層1cの膜厚を厚くすることが可能となり、事故電流に耐える超電導線材1を安価に得ることができる。金属安定化層1cの厚さは10~300μmであれば好ましい。金属安定化層1cは、公知の方法で形成でき、例えばスパッタ法、銅等の金属テープを半田付けする方法により形成できる。
 基材1aと超電導層1bとの間には、拡散防止層、ベッド層、中間層、キャップ層等から選ばれる任意の層を1または2以上介在させても良い。
 拡散防止層は、基材の構成元素の拡散を防止するために形成され、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成される。拡散防止層は、例えばスパッタリング法等の成膜法により形成され、厚さは例えば10~400nmである。
 ベッド層は、界面反応性を低減して、ベッド層上に配される膜の配向性を得るために形成され、例えば、酸化イットリウム(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al)等から構成される。ベッド層は、例えばスパッタリング法等の成膜法により形成され、厚さは例えば10~200nmである。
 中間層は、超電導層の結晶配向性を制御するために2軸配向する物質から形成される。
 中間層は、単層構造あるいは複層構造のいずれでも良い。好ましい材質としては、例えばGdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が挙げられる。また、中間層は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(IBAD法)、化学気相成長法(CVD)等の物理的蒸着法、熱塗布分解法(MOD法)等の公知の方法で積層できる。中間層の厚さは、適宜調整できるが、通常は0.005~2μmの範囲が好ましい。
 キャップ層は、中間層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されることが好ましい。このようなキャップ層は、金属酸化物層からなる中間層よりも高い面内配向度が得られるため、超電導層をキャップ層の上に形成することが好ましい。キャップ層の材質は、上記機能を果たせば特に限定されないが、具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が好ましい。また、CeOにおけるCeの一部が他の金属原子または金属イオンで置換されたCe-M-O系酸化物を含んでいても良い。
 超電導層1bと金属安定化層1cとの間には、金属安定化基層として、Ag等の良電導性であり、かつ超電導層1bと接触抵抗(界面間の電気抵抗)が低く、なじみの良い金属材料からなる層を形成することもできる。金属安定化基層は、スパッタ法等の公知の方法で形成でき、厚さは1~30μmであれば好ましい。
《光ファイバ》
 本実施形態の超電導線材1に対して、光ファイバ3は、金属安定化層1cの上に配される。光ファイバ3は、石英ガラスであることが好ましい。石英ガラス系光ファイバを構成する材質は、純粋石英ガラス、ゲルマニウム(Ge)等の屈折率を上昇する添加剤を用いた石英ガラス、フッ素(F)等の屈折率を下降する添加剤を用いた石英ガラス等から適宜選択することが可能である。
 一般的に、光ファイバには、コア径が約10μmのシングルモード光ファイバと、コア径が約50μmのマルチモード光ファイバとがあり、それらのいずれもが本発明の光ファイバ3に適用可能である。ただし、後記するアンチストークスラマン散乱光強度を高くするため、コア径が50μm以上のマルチモード光ファイバを用いることが好ましい。マルチモード光ファイバのコア径は、特に限定されないが、例えば50μm、62.5μm、100μm等が市販されている。また、マルチモード光ファイバには、コア屈折率が径方向に対して二次関数的に連続変化するグレーテッド・インデックス(Graded Index,GI)型と、コアとクラッドの界面のみで屈折率が変わる(すなわちコア屈折率は径方向に対して一定である)ステップ・インデックス(Step Index,SI)型とがある。本発明ではいずれの屈折率型であっても適用可能であるが、後記するラマン光時間領域反射測定方式を用いる場合は、伝搬モード間の速度差が小さいGI型が好ましい。
 クラッドの周囲には、断面で同心円状となるように被覆材を設けることもできる。被覆材の具体例としては、紫外線(UV)硬化型アクリレート、シリコーン、ポリイミド等の樹脂や、銅(Cu)、ニッケル(Ni)等の金属が挙げられる。
 光ファイバ3は、超電導線材1のうち金属安定化層1cに接触または近接して配置されることが好ましい。また、超電導線材1に対する位置の変動を抑制するため、光ファイバ3を超電導線材1に固定することが好ましい。光ファイバ3の固定には、低温での耐久性が優れた部材を用いることが望ましい。テープで光ファイバ3と超電導線材1の周囲を覆って固定する場合にはカプトンテープ(商品名)、グリスで光ファイバ3を超電導線材1に接触または近接させる場合にはアピエゾングリス(商品名)、接着剤で光ファイバ3を超電導線材1に接触または近接させる場合にはポリイミド等の樹脂や接合用金属等が挙げられる。これらの固定手段は複数組み合わせて用いても良い。
 図2では、グリスおよび接着剤に代表される固定部材4を光ファイバ3と金属安定化層1cとの間に介在させて、光ファイバ3を金属安定化層1cに接触または近接して配置する形態を示している。また、図5Bでは、光ファイバ3を超電導線材1に固定した複合線材2の周囲を、テープに代表される被覆部材5で覆って、光ファイバ3を金属安定化層1cに接触または近接して配置する形態を示している。
《超電導線材の常電導転移の検出方法》
 本実施形態で用いられる超電導線材の常電導転移の検出方法においては、図1に示す温度計測器10により、超電導線材1に配した光ファイバ3に測定光を入射し、測定光のアンチストークスラマン散乱光の強度を計測する。これにより、アンチストークスラマン散乱光の強度の変化から、超電導線材1に生じる発熱(すなわち常電導転移や、常電導転移を起点としたクエンチ)を検出できる。また、測定光としてパルス光を用い、アンチストークスラマン散乱光の強度を時間分解して計測することにより、超電導線材1に生じた発熱の位置を特定できる。さらに、この超電導線材の常電導転移の検出方法により超電導線材1を継続的に監視することで、常電導転移の発生をリアルタイムで検出できる。
 温度計測器10は、アンチストークスラマン散乱光強度を計測できればいかなる構成でもよい。さらにストークスラマン散乱光強度を計測できる構成であってもよい。例えば、ラマン光時間領域反射測定(Raman Optical Time Domain Reflectometry, ROTDR)方式を用いることができる。この方式では、測定光としてパルス光を用い、アンチストークスラマン散乱光強度およびストークスラマン散乱光強度を時間分解して計測することにより、これらの散乱光強度の光ファイバ位置依存性を算出できる。
 具体的には、光ファイバへのパルス光の入射から散乱光の受光までの時間差(戻り時間)と、光ファイバの実効屈折率nに応じた光ファイバ内を光が伝播する速度(v=c/n)とから、温度計測器10と散乱光発生位置との間を往復する距離を算出する。これにより、光ファイバ3の長手方向に沿った位置を特定できる。戻り時間T、光速c、光ファイバの実効屈折率nに対して、温度計測器10(詳しくは受光器)からの距離Dは、D=cT/2nにより、求めることができる。
 なお、本発明において、アンチストークスラマン散乱光とは、ラマン散乱光のアンチストークス線を意味し、ストークスラマン散乱光とは、ラマン散乱光のストークス線を意味する。
 ストークスラマン散乱光およびアンチストークスラマン散乱光は、光ファイバにFBGのような構造を設けることなく、ファイバ全長にわたって一様な断面構造を有する光ファイバであっても任意の位置から発生させることができる。このため、光ファイバの長手方向に沿った空間分解能は、パルス光のパルス幅を短くし、光ファイバ3に生じた散乱光が温度計測器10に戻ってくるまでの時間の精度を向上させることにより、例えば1~2m程度、またはそれ以下に短くすることが可能である。
 ストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比は、いずれも光ファイバ3の周囲の温度に対して変化する特性(温度依存性)がある。
 図3は、公知のROTDR方式により計測したストークスラマン散乱光強度、アンチストークスラマン散乱光強度およびこれらの強度比の温度依存性を示すグラフである。このグラフでは、220~370Kの温度範囲では光ファイバを恒温槽に設置し、77Kでは液体窒素に浸漬して、各散乱光強度を計測する。さらに、アンチストークスラマン散乱光強度をストークスラマン散乱光強度で除して強度比を算出している。
 およそ250~350Kの温度範囲では、ストークスラマン散乱光強度もアンチストークスラマン散乱光強度も温度に対してほぼ線形に変化する。そのため、ストークスラマン散乱光とアンチストークスラマン散乱光との強度比の温度依存性をあらかじめ求めておくことで、実際に計測した強度比の値から、光ファイバ3の長手方向に沿った各点での光ファイバ周囲の温度を算出できる。
 しかしながら、このROTDR方式の温度計測器は、超電導線材1の臨界温度(およそ77~100K)の計測に用いる場合、250Kよりも低い温度ではアンチストークスラマン散乱光強度が温度に対して非線形的に低下し、さらに100Kよりも低い温度になると、散乱光強度が検出下限を下回る(ノイズレベル)。このため、ROTDR方式の温度計測器は、一般的には約250Kが計測の限界(下限値)である。
 ストークスラマン散乱光は、約77Kの低温でも十分検出可能な光強度を示すが、温度依存性の傾き(感度)が低い。このため、ストークスラマン散乱光強度の温度依存性から光ファイバ周囲の温度を算出すると、常電導転移を検出するために十分な精度が得られない。
 臨界温度以下において超電導線材1に通電した場合、超電導層1bは超電導状態にあり、抵抗値が0であるため、電流はこの超電導層1bを流れ、超電導線材1は発熱しない。
 超電導線材1において、万が一、何らかの理由により、超電導層1bが超電導状態から常電導状態に遷移する常電導転移が発生した場合、超電導層1bに抵抗が生じ、電流は抵抗が比較的小さい金属安定化層1cを流れる。その際、金属安定化層1cでは、電流値と抵抗値に応じたジュール熱が発生し、発熱が起こる。
 このように、超電導線材1に常電導転移が生じると、線材の温度が臨界温度から急激に上昇する。また、アンチストークスラマン散乱光強度は、検出下限以上となる約100K以上であれば、温度計測も可能な精度が得られる。これより、アンチストークスラマン散乱光の強度の変化から、超電導線材に生じた常電導転移を検出できる。また、常電導転移を検出した後は、引き続き超電導線材1の温度変化を温度計測器10により計測することも可能である。
 超電導線材1の温度が、臨界温度を超える所定温度以上に上昇すれば、アンチストークスラマン散乱光強度が、検出下限を超える所定値以上に増大する。このことから、アンチストークスラマン散乱光強度のしきい値として、検出下限を超える所定値を設定し、アンチストークスラマン散乱光強度がしきい値を超えたかどうかにより、超電導線材の常電導転移の有無を判定できる。
 アンチストークスラマン散乱光強度は、上述したように時間分解した計測により、光ファイバ位置依存性を計測することが可能である。これより、アンチストークスラマン散乱光強度が所定のしきい値を超えた位置を算出することにより、常電導転移が生じた位置を特定することも可能である。
 アンチストークスラマン散乱光強度は、上述したように液体窒素温度付近では弱く、散乱光強度が検出下限を下回る状態(ノイズレベル)以下であることが通常である。しかし、超電導状態に保たれている間でも、確率的に検出下限より約1dB程度高いレベルの強度を観測することがある。このため、上記所定のしきい値については、例えば検出下限より約2dB以上、またはそれ以上の強度のときに常電導転移が生じたと判断することが好ましい。
 また、所定のしきい値は、超電導状態に保たれているときのアンチストークスラマン散乱光強度の最大値よりも、ある程度大きいレベルに設定することが好ましい。アンチストークスラマン散乱光強度の最大値は、超電導線材1が超電導状態に保たれている間のアンチストークスラマン散乱光強度を一定時間継続して計測した場合の最大値である。これにより、超電導状態に保たれている場合にはしきい値を超える強度が計測されにくく、誤検出を抑制できる。
 この場合、上記所定のしきい値については、対象の超電導線材についてアンチストークスラマン散乱光強度の計測を開始する前にあらかじめ特定された値を使用することもできる。しかし、長期的な経時変化の影響を抑制する等のため、対象の超電導線材について計測を続けている間に超電導線材1が超電導状態に保たれている間のアンチストークスラマン散乱光強度を計測した過去の結果を統計的に処理し、所定のしきい値の値を定期的または不定期に更新してもよい。
 また、光ファイバ位置(2点またはそれ以上の地点)ごとにアンチストークスラマン散乱光強度を、期間を継続して計測し、超電導線材1が超電導状態に保たれている間の散乱光強度の計測結果から、それぞれの光ファイバ位置ごとに、異なるしきい値を設定することも可能である。
 上述したように、常電導転移による発熱は、金属安定化層1cに流れる電流値と金属安定化層1cの抵抗値に応じたジュール熱が主であり、発熱量は電流値に強く依存する。そのため、常電導転移が発生したか否かを判定するための所定のしきい値は、超電導線材に通電する電流値ごとに異なる値を設定することも可能である。
《超電導保護装置》
 本実施形態の超電導線材の常電導転移の検出方法は、運転中の超電導線材の保護装置に利用できる。
 超電導保護装置は、図1の温度計測器10に計測したアンチストークスラマン散乱光強度を電気信号に変換し、電気信号を受け取って、上述の常電導転移の検出方法に従って自動的に解析するコンピュータ等の解析装置、異常を検知した場合に電流を制限(低下)あるいは遮断(停止)させる等して超電導線材への通電量を制御する制御装置、異常を検知した場合に作業者に警報を発する警報装置、運転状況の表示装置等を備えることができる。これにより、万一、常電導転移が発生しても超電導線材1の溶断や焼損を防止し、超電導線材1を良好な状態で保護できる。
 また、超電導線材に焼損や特性劣化が生じた場合、または生じるおそれがある場合でも、常電導転移が発生した位置を特定できる。そのため、点検、補修、修理、交換等の必要な作業を、より迅速かつ的確に行うことが可能になる。
《超電導コイル》
 本実施形態は、超電導線材をコイル状とし、超電導線材に電流を通電させることで電磁力(フープ応力)を発生させることができる超電導コイルにも適用可能である。
 超電導コイルは、例えば超電導線材を超電導線材の厚さ方向に湾曲させ、同心円状に多数回巻回させたパンケーキ型のコイル体であっても良い。また、コイル体を2個または3個以上積層させても良い。
 特許文献4や非特許文献1に記載されているFBGを用いた光ファイバ型温度センサは、ブラッグ波長変化から温度変化を検知する。ただし、フープ応力により光ファイバの長手方向に生じるひずみによってもFBGのブラッグ波長が変化する可能性がある。
 すなわち、温度変化とフープ応力を同じブラッグ波長変化として捉えるため、誤作動の可能性がある。これに対して、ラマン散乱光は、光ファイバ長手方向のひずみ(フープ応力)によって強度変化を生じないので、強度変化から温度変化のみを計測できる。このため、超電導コイルに適用した場合であっても常電導転移の検出が容易である。
 すなわち、本発明においては、光ファイバの変形およびひずみとは無関係に散乱光強度を計測する。従って、超電導線材がコイル状であるか直線状であるか、超電導線材のコイルが内側から巻枠等で支持されているか、または、コイルが中空であるかによらず、常電導転移を検出できる。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されない。
(実施例1)
 図4は、実施例で用いた超電導線材1の常電導転移の検出方法を実施する形態を示す構成図である。図5Aは、超電導線材1に対して意図的に常電導転移を発生させる常電導転移部の形態を示す構成図の詳細である。
 本実施例において、超電導線材1の基材1aには、幅5mm、厚さ0.1mmのハステロイC276を用いた。超電導層1bには、幅5mm、厚さ0.001mm(すなわち1μm)のGdBCO(GdBaCu7-x)を用いた。この超電導層の臨界温度は約90K、臨界電流は約230A(温度77K、磁場0T環境下における値)である。金属安定化層1cには、幅5mm、厚さ0.3mmの銅を用いた。
 光ファイバ3は、Geをドープした石英ガラスからなるコアの外径が50μm、純粋石英ガラスからなるクラッドの外径が125μmのGI型マルチモード光ファイバである。この光ファイバ3は、クラッド周囲がポリイミドからなる外径150μmの被覆層で覆われている。
 温度計測器10としては、横河電機株式会社製のROTDR方式温度計測器AQ8940(型番)を用いた。
 超電導線材1に対して意図的に常電導転移を発生させる常電導転移部に配した光ファイバ3bは、図5Bに示すように、固定部材4としてアピエゾンN(商品名)グリスを用い、金属安定化層1c上に近接して配置される。さらにカプトンテープ(商品名)により、超電導線材1とともに光ファイバ3bの周囲を覆って、光ファイバ3bは超電導線材1に固定した。常電導転移部に配した光ファイバ3bの全長は約0.4mであり、図5Aに示すように直径0.26mのガラス繊維強化プラスチック製の巻枠13の外周にコイル状に固定した。また、光ファイバ3bのほぼ中央にハステロイ製の抵抗加熱ヒータ14を設けた。
 温度計測器10と常電導転移部との間に設けた約304mの光ファイバ3a、および、温度計測器10からみて光ファイバ3の出力端側に設けた約25mの光ファイバ3cの大部分(光ファイバ3aと温度計測器10との接続部、光ファイバ3cの端末を除いた部分)を超電導線材1に配する。さらに、これらの光ファイバは、超電導線材1とともに直径0.26mのガラス繊維強化プラスチック製の巻枠13の外周にコイル状に固定した。
 光ファイバ3a、3b、3cの全長において散乱光強度に基づく超電導線材1の温度変化の計測が可能なように、光ファイバ3aおよび光ファイバ3cも金属安定化層1c上に近接して配置した。なお、光ファイバ3a,3b,3cは、コアおよびクラッドが連続してつながった1本の光ファイバ3から構成される。
 光ファイバ3a,3b,3cに対応する3つの巻枠13、13、13が、それぞれ低温容器11内の液体窒素12に浸漬されて77Kに保持した。
 次いで、常電導転移部の光ファイバ3bを配した部分にのみ、超電導線材1に約160Aの直流電流を通電した。この通電のため、超電導線材1にはあらかじめ電流端子が設けられており、これを電源に接続した(図示せず)。
 なお、図4に示すように、超電導線材1と光ファイバ3は、3つの巻枠13に分割して固定されている。これは、常電導転移およびクエンチの生じ得る位置を、光ファイバ3bとヒータ14とを配した常電導転移部の範囲内に制限し、温度計測器10で計測される常電導転移の発生位置の計測値と比較することで、常電導転移の発生位置(温度計測器10からの光ファイバ3に沿った距離)が特定できたかの検証を容易にするためである。
 実施例1では、温度計測器10から光ファイバ3に対して218回(26万2144回)パルス光を入射し、それぞれのパルス光を時間分解して、ストークスラマン散乱光強度とアンチストークスラマン散乱光強度の光ファイバ位置依存性とを計測した。得られた散乱光強度の光ファイバ位置依存性を全てのパルス光(218パルス)で平均化する測定の工程を1サイクルとして、それぞれの散乱光強度を計測した。図6および図7は、それぞれ常電導転移前および常電導転移時に相当する1サイクルの測定結果を示す。
 1サイクル当たりの測定時間は45秒であり、計測繰り返し速度は0.022サイクル/秒(すなわち0.022Hz)である。
 図6に、常電導転移前に計測した、ストークスラマン散乱光強度、アンチストークスラマン散乱光強度、および、これらの強度比の光ファイバ位置依存性を示す。本実施例では、ROTDR方式の計測を光ファイバ3の全長にわたって光ファイバ位置が特定されるように実施している。しかし、グラフでは、光ファイバ3aの一部、光ファイバ3bの全体、光ファイバ3cの一部にあたる、275~325mの区間の結果のみを示している。
 なお、光ファイバ3aの長さが上述したように約304mであるため、長さが約0.4mの光ファイバ3bは、横軸におけるファイバ位置で、304m付近に位置する。
 いずれの位置においても、アンチストークスラマン散乱光強度は検出下限の値を示した。すなわち、アンチストークスラマン散乱光強度が温度計測器10のノイズレベル以下の強度であることから、超電導線材1が液体窒素温度(77K)に保持されていると判断できる。
 次に、ヒータ14に通電して、常電導転移部の超電導線材1に常電導転移を生じさせた。図7に、常電導転移が生じた際に計測した、ストークスラマン散乱光強度、アンチストークスラマン散乱光強度、および、これらの強度比の光ファイバ位置依存性を示す。図7の計測条件は、図6と同様である。
 また、図8には、常電導転移前と常電導転移時のアンチストークスラマン散乱光強度の光ファイバ位置依存性を対比して示す。図9には、常電導転移前と常電導転移時のストークスラマン散乱光強度の光ファイバ位置依存性を対比して示す。
 温度計測器10側の光ファイバ3aと、端末側の光ファイバ3cでは、図6、図7のグラフに示した範囲はもちろん、グラフに示されない範囲を含めて、常電導転移の前後を通じ、アンチストークスラマン散乱光強度がノイズレベル以下の値を示していた。
 図8に示すように、304m地点のアンチストークスラマン散乱光がノイズレベルより約6dB高い強度を示したことから、この地点で光ファイバ3bの温度上昇があると判断した。すなわち、この時点で超電導線材1が温度上昇し、常電導転移を生じたと判断した。本実施例で計測により常電導転移の発生位置と特定した304m地点は、上述したように、常電導転移部の光ファイバ3bの位置に対応している。従って、アンチストークスラマン散乱光強度の変化から超電導線材1の常電導転移を検出できることが実証された。
 図9では、縦軸の目盛りが0.2dB/Div.(1目盛りあたり)であり、散乱光強度が、図8の2dB/Div.よりも拡大して表示されている。
 304m地点が常電導転移の発生位置であるが、ストークスラマン散乱光強度を計測した場合、常電導転移時においても、常電導転移前に比べて温度上昇に伴う光強度の増大が見られず、むしろ0.05dB程度という微小の強度低下が見られた。
 この結果は、常電導転移前から304m地点の光ファイバ3bに限って局所的な損失(例えば巻枠13への固定に伴う曲げ損失)が存在し、常電導転移による温度上昇の際に超電導線材1が変形して、光ファイバ3bの曲げ損失に影響したためであると考えられる。しかし、このような現象は、光ファイバ3a、3b、3cを別々の巻枠13に固定するという本実施例の構成に起因するとも考えられる。従って、一般的には、ストークスラマン散乱光強度の変化から超電導線材1の常電導転移を検出することは不可能といえる。
(実施例2)
 実施例1と同様の構成で超電導線材1の常電導転移の検出を行った。ただし、本実施例では、1サイクルに温度計測器10から光ファイバ3に対してパルス光を入射する回数を212回(4096回)とした。
 すなわち、実施例2では、温度計測器10から光ファイバ3に対して212回(4096回)パルス光を入射し、それぞれのパルス光を時間分解して、ストークスラマン散乱光強度とアンチストークスラマン散乱光強度の光ファイバ位置依存性を計測した。得られた散乱光強度の光ファイバ位置依存性を全てのパルス光(212パルス)で平均化する測定の工程を1サイクルとして、それぞれの散乱光強度を計測した。
 1サイクル当たりの測定時間は2.5秒であり、計測繰り返し速度は0.4サイクル/秒(すなわち0.4Hz)である。
 図10に、常電導転移前に計測した、ストークスラマン散乱光強度、アンチストークスラマン散乱光強度、および、これらの強度比の光ファイバ位置依存性を示す。本実施例では、ROTDR方式の計測を光ファイバ3の全長にわたって光ファイバ位置が特定されるように実施している。しかし、グラフでは、光ファイバ3aの一部、光ファイバ3bの全体、光ファイバ3cの一部にあたる、275~325mの区間の結果のみを示している。
 なお、光ファイバ3aの長さが上述したように約304mであるため、長さが約0.4mの光ファイバ3bは、横軸におけるファイバ位置で、304m付近に位置する。
 いずれの位置においても、アンチストークスラマン散乱光強度は検出下限の値を示した。すなわち、アンチストークスラマン散乱光強度が温度計測器10のノイズレベル以下の強度であることから、超電導線材1が液体窒素温度(77K)に保持されていると判断できる。
 次に、ヒータ14に通電して、常電導転移部の超電導線材1に常電導転移を生じさせた。図11に、常電導転移が生じた際に計測した、ストークスラマン散乱光強度、アンチストークスラマン散乱光強度、および、これらの強度比の光ファイバ位置依存性を示す。図11の計測条件は、図10と同様である。
 また、図12には、常電導転移前と常電導転移時のアンチストークスラマン散乱光強度の光ファイバ位置依存性を対比して示す。図13には、常電導転移前と常電導転移時のストークスラマン散乱光強度の光ファイバ位置依存性を対比して示す。
 図12に示すように、304m地点のアンチストークスラマン散乱光がノイズレベルより約3dB高い強度を示すことから、この地点で光ファイバ3bの温度上昇があったと判断した。すなわち、この時点で超電導線材1が温度上昇し、常電導転移を生じたと判断した。実施例2でも、実施例1と同様に、常電導転移の発生位置を、常電導転移部の光ファイバ3bの位置に対応している304m地点と特定することができた。
 図13では、縦軸の目盛りが0.2dB/Div.(1目盛りあたり)であり、散乱光強度が、図12の2dB/Div.よりも拡大して表示されている。
 304m地点が常電導転移の発生位置であるが、ストークスラマン散乱光強度を計測した場合、常電導転移の前後で、明確な光強度の変化が観測されなかった。
 なお、実施例1では、常電導転移を検出した304m地点の信号強度とノイズレベルの比(S/N比)が約6dBであったのに対し、実施例2では、このS/N比が約3dBであった。これは、実施例2では、1サイクルの平均回数が実施例1よりも少ないため、ノイズレベルが上昇したためである。しかしながら、実施例2では、1サイクルの平均回数を少なくしたことにより、非常に短時間(2.5秒)で繰り返し計測を行うことが可能である。
 S/N比は、値が高いほど常電導転移の検出精度が向上することを意味する。一方、計測繰り返し速度は、値が速いほど常電導転移を早期に検出できることを意味する。したがって、超電導線材の特性(臨界温度、臨界電流等)、および、超電導線材の運転状況(冷却温度、通電電流等)に応じて要求される検出精度と検出時間に合わせて、1サイクルの平均回数を設定することが望ましい。
 以上説明した実施例1,2によると、全長約325mの超電導線材の約0.4mの区間に生じる常電導転移および常電導転移に伴うクエンチを、アンチストークスラマン散乱光強度の計測により、高い応答性で検出できた。したがって、本発明では、上述のように長さ300mの超電導線材に対して1m間隔で常電導転移を検出することが可能である。
 本発明は、超電導線材の常電導転移の検出方法に適用できる。
 1  超電導線材
 1a  基材
 1b  超電導層
 1c  金属安定化層
 2  複合線材
 3  光ファイバ
 4  固定部材
 5  被覆部材
 10  温度計測器
 11  低温容器
 12  液体窒素
 13  巻枠
 14  ヒータ

Claims (5)

  1.  基材と、77K以上の臨界温度を有する超電導層と、金属安定化層とを備える超電導線材の常電導転移の検出方法であって、
     光ファイバが前記超電導線材に配置され、
     前記光ファイバに測定光を入射し、
     前記測定光のアンチストークスラマン散乱光の強度を計測し、
     前記超電導線材に常電導転移が生じたことを、前記アンチストークスラマン散乱光の強度の変化に基づいて検出する、超電導線材の常電導転移の検出方法。
  2.  前記超電導線材に前記常電導転移が生じたことを、前記アンチストークスラマン散乱光の強度が所定値以上に増大したことに基づいて検出する、請求項1に記載の超電導線材の常電導転移の検出方法。
  3.  前記測定光にパルス光を用い、前記測定光のアンチストークスラマン散乱光の強度を、時間分解して計測することにより、前記光ファイバの長手方向に沿って常電導転移が生じた位置を特定する、請求項1または2に記載の超電導線材の常電導転移の検出方法。
  4.  前記光ファイバがコア径50μm以上のマルチモードファイバである、請求項1~3のいずれか1項に記載の超電導線材の常電導転移の検出方法。
  5.  前記超電導線材がコイル状である、請求項1~4のいずれか1項に記載の超電導線材の常電導転移の検出方法。
PCT/JP2012/081138 2011-12-01 2012-11-30 超電導線材の常電導転移の検出方法 WO2013081123A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12853605.9A EP2787341A4 (en) 2011-12-01 2012-11-30 METHOD FOR DETECTING TRANSITIONS TO NORMAL CABLES IN SUPERCONDUCTIVE ROPE WIRES
CN201280058234.0A CN103959044A (zh) 2011-12-01 2012-11-30 超导线材的常导过渡的检测方法
US14/289,836 US20140268130A1 (en) 2011-12-01 2014-05-29 Method for detecting non-superconducting transition of superconducting wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263580 2011-12-01
JP2011263580 2011-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/289,836 Continuation US20140268130A1 (en) 2011-12-01 2014-05-29 Method for detecting non-superconducting transition of superconducting wire

Publications (1)

Publication Number Publication Date
WO2013081123A1 true WO2013081123A1 (ja) 2013-06-06

Family

ID=48535571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081138 WO2013081123A1 (ja) 2011-12-01 2012-11-30 超電導線材の常電導転移の検出方法

Country Status (5)

Country Link
US (1) US20140268130A1 (ja)
EP (1) EP2787341A4 (ja)
JP (1) JPWO2013081123A1 (ja)
CN (1) CN103959044A (ja)
WO (1) WO2013081123A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100155A (ko) * 2016-01-08 2018-09-07 노쓰 캐롤라이나 스테이트 유니버시티 저온 센싱을 위한 향상된 광섬유
GB201618333D0 (en) 2016-10-31 2016-12-14 Tokamak Energy Ltd Quench protection in superconducting magnets
US10141493B2 (en) * 2017-04-11 2018-11-27 Microsoft Technology Licensing, Llc Thermal management for superconducting interconnects
WO2018211505A1 (en) * 2017-05-15 2018-11-22 Nova Measuring Instruments Ltd. Raman spectroscopy based measurement system
GB2588901A (en) 2019-11-12 2021-05-19 Tokamak Energy Ltd Strain-based quench detection
CN114487952A (zh) * 2022-04-14 2022-05-13 安徽中科昊音智能科技有限公司 一种利用声光纤的失超检测系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382939A (ja) * 1989-08-25 1991-04-08 Hitachi Ltd 超電導コイル監視システム
JPH05264370A (ja) * 1992-03-17 1993-10-12 Sumitomo Electric Ind Ltd 光ファイバの温度分布測定システム
JPH07170721A (ja) 1992-06-26 1995-07-04 Canon Inc 超伝導モーター、超伝導マグネット装置、超伝導アクチュエーター、超伝導線のクエンチ検出方法及び超伝導線
JPH08304271A (ja) 1995-05-11 1996-11-22 Canon Inc 超伝導体クエンチ検出装置及び検出方法
JP2577682B2 (ja) 1992-04-20 1997-02-05 株式会社日立製作所 超電導体の温度測定方法及び装置並びに超電導マグネットのクエンチ予知方法及び装置
US6072922A (en) 1998-06-19 2000-06-06 Science And Engineering Applications Company, Inc. Cryogenic fiber optic temperature sensor
JP2001228264A (ja) * 2000-02-17 2001-08-24 Mitsubishi Cable Ind Ltd 路面凍結予測システム
JP2003247943A (ja) * 2002-02-26 2003-09-05 Mitsubishi Heavy Ind Ltd セラミックス被覆材の非破壊検査法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940506A (ja) * 1982-08-30 1984-03-06 Sumitomo Electric Ind Ltd 超電導マグネツトのクエンチ検知装置
US20040266628A1 (en) * 2003-06-27 2004-12-30 Superpower, Inc. Novel superconducting articles, and methods for forming and using same
DE102006025700B4 (de) * 2006-06-01 2009-04-16 Siemens Ag Optische Messeinrichtung zur Temperaturbestimmung in einer kryogenen Umgebung und temperaturüberwachbare Wickelanordnung
US8809237B2 (en) * 2008-02-19 2014-08-19 Superpower, Inc. Method of forming an HTS article
WO2011129245A1 (ja) * 2010-04-12 2011-10-20 株式会社フジクラ 超電導線材、超電導コイル、及び超電導保護装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382939A (ja) * 1989-08-25 1991-04-08 Hitachi Ltd 超電導コイル監視システム
JPH05264370A (ja) * 1992-03-17 1993-10-12 Sumitomo Electric Ind Ltd 光ファイバの温度分布測定システム
JP2577682B2 (ja) 1992-04-20 1997-02-05 株式会社日立製作所 超電導体の温度測定方法及び装置並びに超電導マグネットのクエンチ予知方法及び装置
JPH07170721A (ja) 1992-06-26 1995-07-04 Canon Inc 超伝導モーター、超伝導マグネット装置、超伝導アクチュエーター、超伝導線のクエンチ検出方法及び超伝導線
JPH08304271A (ja) 1995-05-11 1996-11-22 Canon Inc 超伝導体クエンチ検出装置及び検出方法
US6072922A (en) 1998-06-19 2000-06-06 Science And Engineering Applications Company, Inc. Cryogenic fiber optic temperature sensor
JP2001228264A (ja) * 2000-02-17 2001-08-24 Mitsubishi Cable Ind Ltd 路面凍結予測システム
JP2003247943A (ja) * 2002-02-26 2003-09-05 Mitsubishi Heavy Ind Ltd セラミックス被覆材の非破壊検査法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787341A4
WOLFGANG ECKE ET AL.: "Fiber-optic Bragg grating sensors for structural health monitoring at cryogenic temperatures", PROCEEDINGS OF SPIE, vol. 6530, 2007, pages 653002

Also Published As

Publication number Publication date
JPWO2013081123A1 (ja) 2015-04-27
EP2787341A1 (en) 2014-10-08
US20140268130A1 (en) 2014-09-18
EP2787341A4 (en) 2015-05-27
CN103959044A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5393888B2 (ja) 超電導線材の常電導転移の検出方法
WO2013081123A1 (ja) 超電導線材の常電導転移の検出方法
Rai Temperature sensors and optical sensors
JP7048771B2 (ja) 高温超伝導ケーブルの温度測定システム
Scurti et al. Effects of metallic coatings on the thermal sensitivity of optical fiber sensors at cryogenic temperatures
Habisreuther et al. ORMOCER coated fiber-optic Bragg grating sensors at cryogenic temperatures
Scurti et al. Self-monitoring ‘SMART’(RE) Ba2Cu3O7− x conductor via integrated optical fibers
Zaynetdinov et al. A fiber Bragg grating temperature sensor for 2–400 K
EP3400467A1 (en) Enhanced optical fibers for low temperature sensing
Bagrets et al. Thermal properties of 2G coated conductor cable materials
Wang et al. Development of highly-sensitive and reliable fiber Bragg grating temperature sensors with gradient metallic coatings for cryogenic temperature applications
Liu et al. Temperature characteristics of FBG sensors with different coatings for High Temperature Superconductor Application
Freitas et al. A study on intermediate buffer layer of coated Fiber Bragg Grating cryogenic temperature sensors
Rajinikumar et al. Fiber Bragg gratings for sensing temperature and stress in superconducting coils
JP2007141713A (ja) 超電導機器
Zeisberger et al. Measurement of the thermal expansion of melt-textured YBCO using optical fibre grating sensors
US10753774B2 (en) Cryogenic fiber optic sensor device
Freitas Optical fiber temperature sensors for cryogenic applications
Soman et al. Design of Cryogenic Temperature Sensors using Copper-Coated Fiber Bragg Gratings
JP5977698B2 (ja) 光ファイバ温度センサ
Willsch et al. Fiber optical temperature and strain measurements for monitoring and quench detection of superconducting coils
JPH05267889A (ja) センサー用磁気シールド体
van Oort et al. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets
Grattan et al. Optical-fiber sensors: Temperature and pressure sensors
Colombo et al. Fiber-Optics Quench Detection Schemes in HTS Cables for Fusion Magnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012853605

Country of ref document: EP