WO2013081101A1 - Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate - Google Patents

Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate Download PDF

Info

Publication number
WO2013081101A1
WO2013081101A1 PCT/JP2012/081075 JP2012081075W WO2013081101A1 WO 2013081101 A1 WO2013081101 A1 WO 2013081101A1 JP 2012081075 W JP2012081075 W JP 2012081075W WO 2013081101 A1 WO2013081101 A1 WO 2013081101A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
optical film
meth
active energy
acrylate
Prior art date
Application number
PCT/JP2012/081075
Other languages
French (fr)
Japanese (ja)
Inventor
谷内 健太郎
貴之 竹本
望月 克信
加藤 久雄
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR1020147017610A priority Critical patent/KR20140099294A/en
Priority to CN201280059166.XA priority patent/CN104024294A/en
Publication of WO2013081101A1 publication Critical patent/WO2013081101A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an active energy ray-curable composition used for forming an optical film, an optical film obtained by curing the composition, and a polarizing plate using the same as a polarizer protective film. Belongs.
  • the “optical film” in the present invention means “optical film or sheet”, and the thickness is not particularly limited. Further, acrylate or methacrylate is represented as (meth) acrylate.
  • the TAC film has a retardation in the thickness direction, although the retardation with respect to the incident light in the front direction is small. Such retardation significantly affects viewing angle characteristics as the size of liquid crystal displays increases. Therefore, a material that can achieve both a low photoelastic coefficient and a low retardation is required.
  • Patent Document 1 discloses that photoelasticity is reduced by blending an acrylic resin having negative photoelasticity with a cellulose ester resin having positive photoelasticity.
  • Patent Document 2 a low photoelastic coefficient and a low retardation are achieved by blending polyvinyl pyrrolidone with a cellulose ester resin.
  • Patent Document 3 discloses that an optical film made of urethane (meth) acrylate has a small photoelastic coefficient.
  • the retardation is large and the low photoelastic coefficient and the low retardation cannot be achieved at the same time.
  • the heat and moisture resistance is not sufficient, and when a polarizing plate using the film as a polarizer protective film is used at high temperature or high humidity, the polarizing plate may be deformed, There is a drawback that the performance of the polarizing plate such as the degree of polarization and the hue deteriorates.
  • the invention described in Patent Document 2 since it is a combination of a cellulose ester resin and polyvinylpyrrolidone, there is a problem that the heat and humidity resistance is worse than that of the composition described in Patent Document 1.
  • the absolute value of the photoelastic coefficient is as large as TAC (13 ⁇ 10 ⁇ 12 Pa ⁇ 1 ), which is not satisfactory. Further, the retardation is large, and a low photoelastic coefficient and a low retardation cannot be achieved at the same time.
  • optical films that have been studied as materials for polarizer protective films that replace conventional triacetyl cellulose do not have both a low photoelastic coefficient and a low retardation, or have sufficient moisture and heat resistance even if they are compatible.
  • the active energy ray-curable composition for forming an optical film of the present invention is a urethane (meth) acrylate (A) having the following photoelastic coefficient 1 of 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less of the cured product, and the following photoelastic coefficient.
  • A urethane
  • 2 has a value of 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less and includes a polymer (B) other than the component (A), and the photoelastic coefficient 1 of the cured product of the composition is 10 ⁇ 10 ⁇ 12 Pa ⁇ .
  • the photoelastic coefficient 1 means a photoelastic coefficient at 23 ° C.
  • the photoelastic coefficient 2 is an optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used.
  • the value of the photoelastic coefficient at 23 ° C. is measured and extrapolated from a linear graph of the added quantity and the photoelastic coefficient, and means a value when the added quantity is 100%.
  • the active energy ray hardening-type composition for optical film formation which can make compatible the low photoelastic coefficient and low retardation, and can obtain the optical film excellent in heat-and-moisture resistance can be provided. Moreover, according to this invention, it can use suitably for a polarizer protective film use, and can provide the optical film excellent in the viewing angle characteristic, and excellent in heat-and-moisture resistance and adhesiveness.
  • the active energy ray-curable composition for forming an optical film of the present invention (hereinafter also simply referred to as “composition”) is a urethane (meta) having a photoelastic coefficient 1 of 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less of the cured product. ) Acrylate (A) [hereinafter also referred to simply as “component (A)”. And the following photoelastic coefficient 2 has a value of 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and the polymer (B) other than the component (A) [hereinafter also simply referred to as “component (B)”.
  • the cured product of the composition has a photoelastic coefficient 1 of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less and is measured at a thickness of 40 ⁇ m
  • the front surface of the cured product and an in-plane retardation and thickness of 40 ° obliquely are measured. All of the retardation in the length direction is 5 nm or less.
  • the photoelastic coefficient 1 means a photoelastic coefficient at 23 ° C.
  • the photoelastic coefficient 2 is an optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used. The value of the photoelastic coefficient at 23 ° C.
  • cured product a crosslinked product and a cured product obtained by irradiating the composition with active energy rays are collectively referred to as a “cured product”.
  • the component (A) is a urethane (meth) acrylate having a photoelastic coefficient 1 of a cured product of 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient 1 of the cured product of the composition is 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. It can be.
  • cured material of (A) component is 5 * 10 ⁇ -12 > Pa ⁇ -1 > or more.
  • the photoelastic coefficient 1 of the cured product (A) is preferably 10 ⁇ 10 ⁇ 12 to 20 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably 10 ⁇ 10 ⁇ 12 to 15 ⁇ 10 ⁇ 12 Pa ⁇ 1 . is there.
  • the photoelastic coefficient is a coefficient representing the ease of change of birefringence due to external force
  • the photoelastic coefficient 1 is a photoelastic coefficient at 23 ° C. The closer the value of the photoelastic coefficient is to zero, the smaller the change in birefringence due to external force.
  • the photoelastic coefficient 1 (C) is a value defined by the following equation (1), where ⁇ is an extensional stress and ⁇ n is a birefringence when stress is applied.
  • ⁇ n n 1 ⁇ n 2
  • the photoelastic coefficient 1 in this invention means the value measured at the temperature of 23 degreeC.
  • an optical film obtained by curing the composition of the present invention or a film obtained by curing only the component (A) may be measured by a known birefringence meter.
  • an optical film obtained by curing the composition of the present invention or a film obtained by curing only the component (A) is cut into 15 mm ⁇ 60 mm, and an automatic birefringence meter (KOBRA-WR, Oji Scientific Instruments) is cut out.
  • the in-plane retardation value when the five-point tension ⁇ is changed in the range of 0N to 10N at room temperature is measured using the A method for obtaining the elastic modulus 1 is preferred.
  • the component (A) As a component, the reaction material of a polyol, organic polyisocyanate, and a hydroxyl-containing (meth) acrylate etc. are mentioned, A raw material is selected so that the compound obtained may satisfy the above-mentioned photoelastic coefficient 1.
  • the component (A) is preferably a urethane (meth) acrylate having two or more (meth) acryloyl groups, and more preferably two (meth) acryloyl groups are urethane (meth) acrylates.
  • urethane (meth) acrylate having no aromatic group is preferable because of low photoelasticity.
  • a urethane (meth) acrylate having no aromatic group can be produced by using a compound having no aromatic group as a raw material polyol and organic polyisocyanate.
  • the weight average molecular weight (hereinafter referred to as “Mw”) of the component (A) is preferably 1,000 to 15,000, more preferably 1,000 to 10,000.
  • Mw is the value which converted the molecular weight measured by the gel permeation chromatography (henceforth "GPC") into polystyrene.
  • GPC gel permeation chromatography
  • a component may use only 1 type or may use 2 or more types together.
  • the polyol, the organic polyisocyanate and the hydroxyl group-containing (meth) acrylate, and the method for producing the component (A), which are the raw material compounds of the component (A), will be described.
  • polyol polyol a diol is preferably used, and various diols can be used.
  • diol include aliphatic diols having 2 to 12 carbon atoms, alicyclic diols having 2 to 12 carbon atoms, polycarbonate diols, polyester diols, and polyether diols.
  • Examples of the aliphatic diol having 2 to 12 carbon atoms include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, poly Tetramethylene glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-ethyl-1,3-hexaneglycol, 2,2,4- Examples include trimethyl-1,3-pentanediol, 3,3-dimethylolheptane, 1,9-nonanediol, and 2-methyl-1,8-octanediol.
  • Examples of the alicyclic diol having 2 to 12 carbon atoms include cyclohexanedimethanol, hydrogenated bisphenol A, tricyclo [5.2.1.0 2,6 ] decanedimethanol (common name: tricyclodecanedimethanol), 1, 4-decahydronaphthalenediol, 1,5-decahydronaphthalenediol, 1,6-decahydronaphthalenediol, 2,6-decahydronaphthalenediol, 2,7-decahydronaphthalenediol, decahydronaphthalenediol, norbornane Diol, norbornanedimethanol, decalin dimethanol, adamantanediol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (common name) Spiroglycol), isosorbide, isomannide, , 2-bis (4-hydroxycyclohexy
  • Examples of the polycarbonate diol include a reaction product of a low molecular weight diol or / and a polyether diol and a dialkyl ester carbonate such as ethylene carbonate and dibutyl carbonate.
  • examples of the low molecular weight diol include ethylene glycol, propylene glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,5-pentanediol, 1,6-hexanediol, and the like.
  • polyether diols examples include polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and block or random polymer diols such as polyethylene polypropoxy block polymer diols.
  • the polyester diol is an ester of the low molecular weight diol or / and the polyether diol with an acid component such as a dipic acid such as adipic acid, succinic acid, tetrahydrophthalic acid and hexahydrophthalic acid or an anhydride thereof. And the like.
  • polyether diols examples include polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; block diols such as polyethylene polypropoxy block polymer diols, and random polymer diols.
  • the polyol it is preferable to use a triol in addition to the diol in order to improve the mechanical strength of the cured product.
  • Triols include 1,2,6-hexanetriol, 1,2,3-heptanetriol, 1,2,4-butanetriol, trimethylolpropane, trimethylolethane, kacilitol, pyrogallol, glycerin and tris (2-hydroxy).
  • Ethyl) isocyanurate, and adducts of these triols such as ⁇ -caprolactone, ethylene oxide and propylene oxide.
  • the caprolactone adduct of triol a caprolactone adduct of trimethylolpropane and a caprolactone adduct of glycerin are preferable.
  • the triol caprolactone adduct is preferably a compound having an average hydroxyl value of 300 to 600 mgKOH / g and an average of 3 hydroxyl groups.
  • the above-mentioned caprolactone adduct of triol is commercially available, and examples thereof include Plaxel 303, 305, 308, 312 and L320ML (manufactured by Daicel Chemical Industries, Ltd.).
  • polyols may use only 1 type or may use 2 or more types together.
  • component (A) it is more preferable to use an aliphatic diol having 2 to 12 carbon atoms or an alicyclic diol having 2 to 12 carbon atoms as the polyol.
  • the number average molecular weight hereinafter referred to as “P”
  • P the number average molecular weight
  • -Mn is preferably used in combination with a polyol having 500 or more and a polyol having P-Mn of less than 500.
  • the P—Mn (number average molecular weight) of the polyol is a value determined according to the following formula.
  • examples of the polyol having a P—Mn of 500 or more include polycarbonate diol and polyester diol, and examples of the polyol having a P—Mn of less than 500 include an aliphatic diol having 2 to 12 carbon atoms and 2 to 12 carbon atoms. These alicyclic diols are mentioned, and these are used in combination.
  • the polyol having P—Mn of 500 or more is preferably a polyol having P—Mn of 500 or more and 10,000 or more.
  • the polyol having P—Mn of less than 500 is preferably a polyol having P—Mn of 62 or more and less than 500.
  • Organic polyisocyanate As organic polyisocyanate, organic diisocyanate is preferable, and non-yellowing type organic diisocyanate is more preferable.
  • non-yellowing organic diisocyanate include aliphatic diisocyanates such as hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate (hereinafter also referred to as “IPDI”), and the like.
  • Examples thereof include alicyclic diisocyanates such as 4,4′-methylenebis (cyclohexyl isocyanate), norbornane diisocyanate, and ⁇ , ⁇ ′-diisocyanate dimethylcyclohexane.
  • organic polyisocyanates may be used alone or in combination of two or more.
  • IPDI is preferable because it is excellent in mechanical strength and optical properties of the cured product.
  • Hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxy Hexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, pentaerythritol tri, di or mono (meth) acrylate, and hydroxyalkyl (meth) acrylates such as trimethylolpropane di or mono (meth) acrylate, and caprolactone of these compounds Examples include adducts.
  • 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like are excellent in curability of the composition and flexibility of the cured product.
  • a caprolactone adduct of 2-hydroxyethyl acrylate is preferred.
  • the component may be manufactured according to the conventional method.
  • a polyol and an organic polyisocyanate are reacted to produce an isocyanate group-containing compound, which is reacted with a hydroxyl group-containing (meth) acrylate (hereinafter also referred to as “compound A1”), polyol.
  • compound A1 hydroxyl group-containing (meth) acrylate
  • compound A2 Organic polyisocyanate and hydroxyl group-containing (meth) acrylate compound
  • the compound A1 is preferred because the molecular weight is easy to control.
  • the polyol and organic polyisocyanate to be used are heated and stirred for addition reaction, and further, hydroxyalkyl (meth) acrylate is added, and heated and stirred for addition reaction.
  • a urethanization catalyst such as dibutyltin dilaurate
  • the method for producing compound A2 include a method in which a polyol, an organic polyisocyanate, and a hydroxyalkyl (meth) acrylate are simultaneously added and heated and stirred in the presence of the same catalyst as described above.
  • component (A) is a polycarbonate diol or polyester diol (hereinafter also collectively referred to as “diol a”), aliphatic having 2 to 12 carbon atoms, among those described above
  • urethane (meth) acrylate which is a reaction product of alicyclic diol (hereinafter collectively referred to as “diol b”), non-yellowing organic diisocyanate and hydroxyl group-containing (meth) acrylate is preferable.
  • the component (A) has excellent mechanical strength and light resistance by using diol a as a polyol, diol b as a short-chain diol, and non-yellowing type as an organic diisocyanate.
  • diol a include the aforementioned polycarbonate diol and polyester diol
  • diol b include the above-described aliphatic diol having 2 to 12 carbon atoms and the alicyclic diol having 2 to 12 carbon atoms. These diols a and b may be used alone or in combination of two or more.
  • the ratio of diols a and b is preferably diol a: 5 to 50 mol% and diol b: 50 to 95 mol%, more preferably diol a: 5 to 40 mol% and diol b: 60 to 95 mol%. is there. Further, when triol is used in combination, the ratio of triol is preferably the sum of diols a and b: 50 to 95 mol% and triol: 5 to 50 mol%, more preferably diol a and / or b: 60 to 95 mol% and triol: 5 to 40 mol%.
  • the diol a and the diol b and a non-yellowing organic diisocyanate are reacted to produce an isocyanate group-containing compound, and a compound obtained by reacting this with a hydroxyl group-containing (meth) acrylate ( Compounds (compound A-II) obtained by reacting compound AI), diol a and diol b, non-yellowing organic diisocyanate, and hydroxyl group-containing (meth) acrylate at the same time, and the compound because the molecular weight is easy to control. AI is preferred.
  • a reaction product of a caprolactone adduct of diol b (a diol having P-Mn of less than 500), a non-yellowing organic diisocyanate, and a hydroxyl group-containing (meth) acrylate
  • urethane (meth) acrylate Particularly preferred is urethane (meth) acrylate.
  • the cured product of the composition is excellent due to brittleness and flexibility.
  • the diol b is preferably a polyol having P-Mn of 62 or more and 400 or less.
  • the compound include aliphatic diols having 2 to 6 carbon atoms such as 1,4-butanediol, tricyclo [5.2.1.0 2,6 ] decandimethanol, and 3,9-bis (1 , 1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane and other alicyclic diols having a plurality of rings are preferable, and the strength of the cured product is excellent. 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (common name; spiroglycol) is particularly preferred.
  • the caprolactone adduct of hydroxyl group-containing (meth) acrylate is preferably a caprolactone adduct of hydroxyalkyl (meth) acrylate. Furthermore, the reaction ratio of caprolactone to the hydroxyl group-containing (meth) acrylate is preferably greater than 0.1 mol and less than 2.0 mol.
  • the method for producing the component (A) may be carried out in the same manner as described above, and the preferred production method is also the same as described above.
  • the component (B) is a polymer having a photoelastic coefficient 2 of 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and is a polymer other than the component (A). Further, the photoelastic coefficient 2 of the component (B) is preferably ⁇ 15 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more.
  • the photoelastic coefficient 2 is the value of the photoelastic coefficient at 23 ° C. of the optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used as described above. And the value when the addition amount is 100% extrapolated from the linear graph of the addition amount and the photoelastic coefficient is meant.
  • the graph can be prepared by the least square method.
  • the photoelastic coefficient can be directly measured using an automatic birefringence system. Can not be measured directly, the photoelastic coefficient 2 is the photoelastic coefficient.
  • the cured product of component (A) has a positive photoelastic coefficient of 1 of 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, preferably 10 ⁇ 10 ⁇ 12 to 30 ⁇ 10 ⁇ 12 Pa ⁇ 1. Therefore, by blending the component (B) having a photoelastic coefficient 2 of 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, the photoelastic coefficient 2 of the cured product of the composition is 10 ⁇ 10 ⁇ . It can be 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient 2 of the component (B) is preferably ⁇ 10 ⁇ 10 ⁇ 12 to 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 , more preferably ⁇ 10 ⁇ 10 ⁇ 12 to 2 ⁇ 10 ⁇ 12 Pa ⁇ 1 . More preferably, it is ⁇ 10 ⁇ 10 ⁇ 12 to ⁇ 2 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the Mw of the component (B) may be appropriately set depending on the purpose, and is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
  • Mw 1,000 or more the amount of the polymerization initiator and the chain transfer agent can be reduced at the time of producing the component (B), thereby preventing an increase in the photoelastic coefficient 1 and coloring problems of the cured product.
  • 100,000 or less it is excellent in compatibility with the component (A), and the turbidity of the cured product can be prevented.
  • various compounds can be used as long as the polymer has a photoelastic coefficient of 2, and a homopolymer or copolymer of a monomer having a (meth) acryloyl group, N-vinyl-2-pyrrolidone, Examples include copolymers, homopolymers or copolymers of ⁇ -methylstyrene, and ethylene-tetracyclododecene copolymers.
  • the monomer having a (meth) acryloyl group include (meth) acrylic acid; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meta ) (Meth) acrylates such as acrylate, dicyclopentenyl (meth) acrylate, glycidyl (meth) acrylate; Hydroxyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate; N- (meth) acryloylmorpholine; and (meth)
  • a copolymer of a monomer having a (meth) acryloyl group a copolymer having an amide structure or a carboxyl group has a large negative photoelastic coefficient 2 and is excellent in compatibility with the component (A). preferable.
  • the amide structure is preferably a morpholine structure.
  • a copolymer of (meth) acrylate and N- (meth) acryloylmorpholine is preferable.
  • the proportion of the monomer having an amide structure is preferably 5 to 50 parts by weight with respect to 100 parts by weight as a total of all monomers used.
  • a copolymer having a carboxyl group a copolymer of (meth) acrylate and acrylic acid or methacrylic acid is preferable.
  • the acid value is preferably from 5 to 65 mgKOH / g.
  • the homopolymer or copolymer of the monomer having a (meth) acryloyl group a commercially available product can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR87, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.), etc.
  • Dianal is a copolymer of monomers having a (meth) acryloyl group
  • BR83, BR87 and BR88 are commercially available copolymers having a carboxyl group.
  • N-vinyl-2-pyrrolidone copolymer examples include vinyl acetate and alkyl (meth) acrylate.
  • Specific examples of the N-vinyl-2-pyrrolidone copolymer include vinyl pyrrolidone / vinyl acetate copolymer, vinyl pyrrolidone / methyl (meth) acrylate copolymer, vinyl pyrrolidone / ethyl (meth) acrylate copolymer, vinyl A pyrrolidone butyl (meth) acrylate copolymer etc. can be mentioned.
  • N-vinyl-2-pyrrolidone copolymer a commercially available product can also be used.
  • PVP / VA S-630 manufactured by IPS Japan Co., Ltd.
  • the like can be mentioned.
  • (B) component there is no restriction
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature is preferably 30 to 100 ° C. for suspension or emulsion polymerization and 80 to 300 ° C. for bulk or solution polymerization. Furthermore, the polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • a polymer having an ethylenically unsaturated group (hereinafter also referred to as “(UB) component”.
  • the (UB) component is chemically cross-linked with the (A) component by irradiation with active energy rays. Therefore, when a polymer having a negative photoelastic coefficient 2 having no ethylenically unsaturated group is blended, there is a problem that the flexibility and brittleness of the obtained cured product are reduced. It becomes possible to mix more polymers having a negative value of the coefficient 2, and the photoelastic coefficient 2 of the cured product can be greatly reduced.
  • the (UB) component will be described.
  • Examples of the ethylenically unsaturated group in the (UB) component (UB) component include a vinyl group, a vinyl ether group, a (meth) acryloyl group, and a (meth) acrylamide group.
  • the (meth) acryloyl group is particularly preferable, and the acryloyl group is more preferable because the component (B) is easy to produce and has excellent curability by active energy rays.
  • polymer UB1 To a polymer containing a carboxyl group (hereinafter also referred to as “carboxyl group-containing prepolymer”) and / or a polymer containing a hydroxyl group (hereinafter also referred to as “hydroxyl group-containing prepolymer”).
  • Polymer 2 obtained by adding a compound having an isocyanate group and an ethylenically unsaturated group (hereinafter also referred to as “isocyanate-based unsaturated compound”) 2)
  • Polymer UB2 epoxy group and ethylenic group to carboxyl group-containing prepolymer
  • Polymer 3 obtained by adding a compound having an unsaturated group (hereinafter also referred to as “epoxy unsaturated compound”)
  • Polymer UB3 Polymer containing epoxy group (hereinafter referred to as “epoxy group-containing prepolymer”) And a compound having a carboxyl group and an ethylenically unsaturated group (hereinafter referred to as “carboxyl unsaturated group”). Also referred to as objects ".)
  • the following polymer obtained by adding, described polymer UB1 ⁇ UB3.
  • a monomer whose photoelastic coefficient 2 of the obtained prepolymer is 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less may be appropriately selected.
  • (meth) acryloyl A compound having a group can be preferably used.
  • the manufacturing method of a carboxyl group-containing prepolymer, a hydroxyl group-containing prepolymer, and an epoxy group-containing prepolymer will be described.
  • the carboxyl group-containing prepolymer used in the production of the polymer UB1 and polymer UB2 includes a carboxyl-based unsaturated compound and other ethylenically unsaturated compounds (hereinafter referred to as “other unsaturated compounds”). And a polymer containing a carboxyl group at the terminal obtained by polymerizing another unsaturated compound in the presence of a chain transfer agent having a carboxyl group (hereinafter referred to as a terminal carboxyl group-containing polymer). Can be mentioned.
  • carboxyl unsaturated compounds include (meth) acrylic acid, modified polycaprolactone of (meth) acrylic acid, and carboxyl groups such as monohydroxyethyl (meth) acrylate phthalate and monohydroxyethyl (meth) acrylate succinate ( And (meth) acrylate.
  • (meth) acrylic acid is preferably used because the photoelastic coefficient 2 of the (UB) component obtained is particularly low.
  • the other unsaturated compound is not particularly limited as long as the photoelastic coefficient 2 of the obtained (UB) component is 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, but is excellent in copolymerizability with the above carboxyl-based unsaturated compound. Therefore, a compound having a (meth) acryloyl group is preferred.
  • Examples of the compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl ( (Meth) acrylates such as (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, glycidyl (meth) acrylate; N- (meth) acryloylmorpholine; Acrylamides such as (meth) acrylamide, N-methylol acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide; and (meth) Examples include
  • compounds other than the compound having a (meth) acryloyl group can also be used, and examples thereof include styrene, ⁇ -methylstyrene, and vinyl acetate.
  • examples thereof include styrene, ⁇ -methylstyrene, and vinyl acetate.
  • the prepolymer may further be a copolymer of a compound having a hydroxyl group and an ethylenically unsaturated group (hereinafter, also referred to as “hydroxy acid unsaturated compound”).
  • Hydroxy unsaturated compounds include hydroxyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and hydroxyhexyl (meth) acrylate, And hydroxyalkyl vinyl ethers such as hydroxybutyl vinyl ether.
  • the method for producing a copolymer of a carboxyl unsaturated compound and other unsaturated compounds is not particularly limited, and known methods such as suspension polymerization, emulsion polymerization, bulk polymerization, solution polymerization and the like are used without any limitation.
  • the method can be used.
  • the solution polymerization method is preferable because the polymer can be easily produced and does not contain extra impurities such as an emulsifier.
  • the raw material monomer to be used is dissolved in an organic solvent, a thermal polymerization initiator is added, and the mixture is heated and stirred.
  • a thermal radical polymerization initiator is added, and the mixture is heated and stirred.
  • a chain transfer agent can be used to adjust the molecular weight of the polymer, if necessary.
  • Organic solvents used in the solution polymerization method include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and butyl acetate; ethers such as propylene glycol monomethyl ether; aromatic carbonization such as toluene and xylene. Hydrogen; and aliphatic hydrocarbons such as hexane, heptane and mineral spirit.
  • thermal polymerization initiators include azo initiators such as azobisisobutyronitrile, azobisisovaleronitrile, azobiscyclohexanecarbonitrile, and azobiscyanovaleric acid; Organic peroxides such as t-butyl peroxypivalate, t-hexyl peroxypivalate, dilauroyl peroxide, di (2-ethylhexyl) peroxydicarbonate, di-t-butyl peroxide and dicumyl peroxide And hydrogen peroxide-iron (II) salt, peroxodisulfate-sodium hydrogen sulfite, cumene hydroperoxide-iron (II) salt, and the like.
  • azo initiators such as azobisisobutyronitrile, azobisisovaleronitrile, azobiscyclohexanecarbonitrile, and azobiscyanovaleric acid
  • Organic peroxides such as t-butyl per
  • the use ratio of the thermal polymerization initiator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight in total of all monomers used.
  • the chain transfer agent may be used as necessary to adjust to the above-mentioned Mw range, but the use of the chain transfer agent may increase the photoelastic coefficient 2 of the component (B). It is preferable to adjust the chain transfer agent in as small an amount as possible.
  • a known chain transfer agent can be used as the chain transfer agent.
  • chain transfer agents such as dodecyl mercaptan, lauryl mercaptan, glycidyl mercaptan, 2-mercaptoethanol, 3-mercaptopropionic acid, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, ⁇ - And methyl styrene dimer.
  • chain transfer agents may be used alone or in combination of two or more.
  • the amount of the chain transfer agent used may be the same as the amount normally used, and is preferably 0.01 to 7 parts by weight as a total of 100 parts by weight of all monomers used.
  • the polymer obtained as described above is a polymer having a carboxyl group in the side chain. What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce
  • the amount of carboxyl unsaturated compound is preferably 1 to 40% by weight and the other unsaturated compound 60 to 99% by weight with respect to 100% by weight.
  • the Mw of the copolymer of the carboxyl unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50,000. It is more preferable that
  • Examples of the method for producing the terminal carboxyl group-containing polymer include a method of polymerizing other unsaturated compounds in the presence of a chain transfer agent having a carboxyl group.
  • Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
  • Examples of the chain transfer agent having a carboxyl group include 3-mercaptopropionic acid and mercaptoacetic acid.
  • the ratio of the chain transfer agent having a carboxyl group may be appropriately set according to the ratio of the ethylenically unsaturated group to be finally introduced, and is 0.01 to 100 parts by weight with respect to a total of 100 parts by weight of all monomers used. 7 parts by weight is preferred.
  • As the polymerization method the same method as described above can be employed.
  • the polymer obtained as described above is a polymer having a carboxyl group at the terminal.
  • the Mw of the terminal carboxyl group-containing polymer may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, more preferably 10,000 to 50,000.
  • the carboxyl group-containing prepolymer is preferably a terminal carboxyl group-containing polymer because the number and position of ethylenically unsaturated groups introduced into one molecule can be controlled.
  • Method for Producing Hydroxyl-Containing Prepolymer Hydroxyl-containing prepolymer used in polymer UB1 includes a copolymer of a hydroxy unsaturated compound and other unsaturated compounds, and other unsaturated compounds in the presence of a chain transfer agent having a hydroxyl group. And a polymer containing a hydroxyl group at the terminal obtained by polymerizing (hereinafter also referred to as “terminal hydroxyl group-containing polymer”).
  • Examples of the hydroxy unsaturated compound include the same compounds as described above.
  • Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
  • the copolymer obtained as described above is a copolymer having a hydroxyl group in the side chain. What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce
  • the amount of the hydroxy unsaturated compound is 1 to 40% by weight and the other unsaturated compound is 60 to 99% by weight with respect to 100% by weight of the total compound.
  • the Mw of the copolymer of the hydroxy unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50, More preferably, it is 000.
  • Examples of the method for producing a terminal hydroxyl group-containing polymer include a method of polymerizing other unsaturated compounds in the presence of a chain transfer agent having a hydroxyl group.
  • Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
  • Examples of the chain transfer agent having a hydroxyl group include 2-mercaptoethanol.
  • the ratio of the chain transfer agent having a hydroxyl group may be appropriately set according to the ratio of the ethylenically unsaturated group to be finally introduced. Part by weight is preferred.
  • the polymerization method the same method as described above can be employed.
  • the polymer obtained as described above is a polymer having a hydroxyl group at the terminal.
  • the Mw of the terminal hydroxyl group-containing polymer may be appropriately set depending on the purpose, and is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
  • hydroxyl group-containing prepolymer a terminal hydroxyl group-containing polymer is preferable because the number and position of ethylenically unsaturated groups introduced into one molecule can be controlled.
  • epoxy group-containing prepolymer used in the polymer UB3 include a copolymer of an epoxy unsaturated compound and other unsaturated compounds.
  • epoxy unsaturated compound examples include epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and cyclohexene oxide-containing (meth) acrylate.
  • epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and cyclohexene oxide-containing (meth) acrylate.
  • examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
  • the copolymer obtained as described above is a copolymer having an epoxy group in the side chain. What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce
  • the amount of the epoxy unsaturated compound is 1 to 40% by weight and the other unsaturated compound is 60 to 99% by weight with respect to the amount of 100% by weight.
  • the Mw of the copolymer of the epoxy unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50,000. It is more preferable that
  • the production method (UB) of component are carboxyl group-containing prepolymer, hydroxyl group-containing prepolymer, with respect to the epoxy group-containing prepolymer, a compound having a functional group and an ethylenically unsaturated group capable of reacting with these prepolymers Is introduced by addition reaction.
  • a conventional method as a method of addition reaction For example, in any case, it can be produced by adding each compound to a prepolymer in an organic solvent, in an aqueous medium or without a solvent.
  • a reaction temperature, a reaction time, and a catalyst may be selected according to each reaction.
  • the addition reaction will be described.
  • Polymer UB1 is produced by adding an isocyanate-based unsaturated compound to a carboxyl group-containing prepolymer and / or a hydroxyl group-containing prepolymer by a urethanization reaction.
  • isocyanate-based unsaturated compound examples include the organic polyisocyanates mentioned in the preparation of the component (A), preferably 2-isocyanatoethyl (meth) acrylate, monoadducts of IPDI and 2-hydroxyethyl acrylate, and the like. Can be mentioned.
  • Examples of the catalyst for the urethanization reaction include organometallic compounds.
  • organometallic compounds include di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin, di-n-butyltin diacetate, di-n-octyltin oxide, di-n-octyltin dilaurate, Organic tin compounds such as monobutyltin trichloride, di-n-butyltin dialkyl mercaptan, di-n-octyltin dialkyl mercaptan; organic lead compounds such as lead oleate, lead 2-ethylhexanoate, lead naphthenate, lead octenoate An organic bismuth compound such as bismuth octylate;
  • the proportion of the catalyst used in the urethanization reaction is preferably 0.001 to 0.5 parts by weight, and preferably 0.001 to 0.5 parts per 100 parts by weight of the total amount of the carboxyl group-containing prepolymer and the isocyanate unsaturated compound. 1 part by weight is more preferred.
  • the reaction ratio of the isocyanate-based unsaturated compound to the carboxyl group-containing prepolymer is preferably 0.8 to 1.0 mol of the isocyanate-based unsaturated compound with respect to a total of 1 mol of carboxyl groups in the carboxyl group-containing prepolymer.
  • the reaction ratio of the isocyanate unsaturated compound to the hydroxyl group-containing prepolymer is preferably 0.8 to 1.0 mol of the isocyanate unsaturated compound with respect to 1 mol of hydroxyl groups in the hydroxyl group-containing prepolymer.
  • the (UB) component is converted into a polymer having a carboxyl group and / or a hydroxyl group can do.
  • Polymer B2 is produced by adding an epoxy unsaturated compound to a carboxyl group-containing prepolymer.
  • the polymer B3 is produced by adding a carboxyl unsaturated compound to an epoxy group-containing prepolymer.
  • Examples of the epoxy unsaturated compound include the same compounds as described above, and examples of the carboxyl unsaturated compound include the same compounds as described above.
  • Catalysts for the addition reaction of carboxyl group and epoxy group include tertiary amines such as triethylamine, tripropylamine, tributylamine, dimethyllaurylamine, triethylenediamine and tetramethylethylenediamine; triethylbenzylammonium chloride, trimethylcetylammonium bromide, tetra Quaternary ammonium salts such as butylammonium bromide, quaternary phosphonium salts such as triphenylbutylphosphonium bromide and tetrabutylphosphonium bromide; and phosphine compounds such as triphenylphosphine and tributylphosphine. Among these, it is preferable to use triphenylphosphine because the resin is less colored.
  • the total amount of the carboxyl group-containing prepolymer and the epoxy unsaturated compound is 100 parts by weight, or the total amount of the epoxy group-containing prepolymer and the carboxyl unsaturated compound is 100 parts by weight.
  • 0.1 to 5.0 parts by weight is preferable, and 0.1 to 3.0 parts by weight is more preferable.
  • the reaction ratio of the epoxy unsaturated compound to the carboxyl group-containing prepolymer is preferably 0.8 to 1.2 mol of the epoxy unsaturated compound with respect to 1 mol of the total carboxyl groups in the carboxyl group-containing prepolymer.
  • the reaction ratio of the carboxyl unsaturated compound to the epoxy group-containing prepolymer is preferably 0.8 to 1.2 mol of the carboxyl unsaturated compound with respect to a total of 1 mol of epoxy groups in the epoxy group-containing prepolymer.
  • the above addition reaction can be carried out in any case following the production of the prepolymer, preferably following the solution polymerization.
  • a polymerization inhibitor is used to suppress polymerization during the addition reaction.
  • the polymerization inhibitor include dibutylhydroxytoluene, hydroquinone, hydroquinone monomethyl ether and the like, and it is preferable to add 50 to 1,000 ppm with respect to the reaction solution.
  • the average number of ethylenically unsaturated groups in the (UB) component is preferably 0.5 to 5.0 on average per molecule, more preferably 1.0 to 3.0 on average. It is. When the number of ethylenically unsaturated groups in one molecule is 0.5 or more on average, it is sufficiently incorporated into the matrix of the component (A), and heat resistance, moist heat resistance and brittleness are sufficient.
  • the average number (f) of ethylenically unsaturated groups in the (UB) component can be represented by the following formula (3).
  • the compound unit having a reactive group in the prepolymer is a carboxyl group-containing compound unit A monomer unit derived from a carboxyl unsaturated compound if it is a prepolymer, a monomer unit derived from a hydroxyl unsaturated compound if it is a hydroxyl group-containing prepolymer, or a monomer unit derived from an epoxy unsaturated compound if it is an epoxy group-containing prepolymer Means each.
  • the terminal carboxyl group-containing polymer or terminal hydroxyl group-containing polymer is used as a prepolymer from the viewpoint that both brittleness and photoelastic coefficient 2 can be achieved at high dimensions
  • a polymer produced from a polymer (hereinafter also referred to as a macromonomer) is preferred.
  • the macromonomer include polymers B1 and B2 produced from a terminal carboxyl group-containing polymer, and polymer B1 produced from a terminal hydroxyl group-containing polymer, and these f values are 1.0.
  • the active energy ray-curable composition for forming an optical film is an active energy ray-curable composition for forming an optical film comprising the component (A) and the component (B) as essential components.
  • a manufacturing method of a composition what is necessary is just to follow a conventional method, using (A) component and (B) component, using other components further as needed, and obtaining these by stirring and mixing. it can.
  • the photoelastic coefficient 1 of the cured product needs to be 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. Thereby, a hardened
  • the photoelastic coefficient 1 of the cured product of the composition of the present invention is preferably ⁇ 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more.
  • all of the front surface of the cured product, the oblique in-plane retardation of 40 ° and the retardation in the thickness direction when measured at a thickness of 40 ⁇ m must be 5 nm or less.
  • the liquid crystal display excellent in the viewing angle characteristic can be obtained.
  • a cured product having a retardation larger than 5 nm has a problem of poor viewing angle characteristics.
  • the in-plane retardation of the cured product when measured at a thickness of 40 ⁇ m is 1 nm or less
  • the in-plane retardation at an oblique angle of 40 ° is 5 nm or less
  • the retardation in the thickness direction is 5 nm or less.
  • the retardation values are preferably -5 nm or more.
  • the retardation means a phase difference caused by birefringence when the transmitted light is considered to be decomposed into two linearly polarized lights orthogonal to each other when the linearly polarized light enters the optical film.
  • the in-plane retardation (Re) and the thickness direction retardation (Rth) are nx, ny (where nx ⁇ ny), and nz is the refractive index in the thickness direction.
  • the film thickness is d, it is a value defined by the following formula.
  • the in-plane retardation at an angle of 40 ° means an in-plane retardation when linearly polarized light is incident on the optical film at an angle of 40 °.
  • the proportion of the component (A) and the component (B) may be appropriately set according to the purpose, but the amount of the component (A) is 30 to 90% by weight based on the total amount of the component (A) and the component (B).
  • Component (B) is preferably 10 to 70% by weight, more preferably 40 to 80% by weight of component (A) and 20 to 60% by weight of component (B).
  • the composition of the present invention essentially comprises the component (A) and the component (B), but various components can be blended depending on the purpose. Specifically, an ethylenically unsaturated compound other than the component (A) [hereinafter also referred to as the component (C). ], Photopolymerization initiator [hereinafter also referred to as component (D). ] Organic solvent [hereinafter also referred to as component (E). ], A polymerization inhibitor or / and an antioxidant, a light resistance improver, and the like.
  • component (C) ethylenically unsaturated compound other than the component (A)
  • C ethylenically unsaturated compound other than the component (C).
  • Photopolymerization initiator hereinafter also referred to as component (D).
  • Organic solvent hereinafter also referred to as component (E).
  • these components will be described.
  • Component (C) is an ethylenically unsaturated compound other than the component (A).
  • a component is a component mix
  • component (C) examples include (meth) acrylates other than the component (A) [hereinafter also referred to as “other (meth) acrylates”. And N-vinyl-2-pyrrolidone.
  • (meth) acrylates compounds having one (meth) acryloyl group [hereinafter also referred to as “monofunctional (meth) acrylates”. ] Or a compound having two or more (meth) acryloyl groups [hereinafter also referred to as “polyfunctional (meth) acrylate”. ] Etc. are mentioned.
  • monofunctional (meth) acrylates include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, 1- Adamantyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth)
  • a compound having a homopolymer photoelastic coefficient 1 smaller than the component (A) is preferable, and a compound having a homopolymer photoelastic coefficient 1 negative is more preferable.
  • Specific examples of the compound are particularly preferably isobornyl (meth) acrylate, t-butyl (meth) acrylate, N- (meth) acryloylmorpholine and N-vinyl-2-pyrrolidone.
  • the proportion of the component (C) may be appropriately set according to the purpose, and may be an amount that does not reduce the flexibility of the resulting cured product, but the total amount of the component (A) and the component (B) is 100 weights.
  • the amount is preferably 1 to 100% by weight, more preferably 1 to 80% by weight, based on the part.
  • a component is a photoinitiator.
  • a component is a component mix
  • Component (D) includes benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methyl Vinyl) phenyl] propanone, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropan-1-one, 2-methyl-1- [4 -(Methylthio)] phenyl] -2-morpholinopropan-1-one, 2-benzene Dil-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one
  • a blending ratio of the component (D), when the component (C) is included with respect to a total of 100 parts by weight of the component (A) and the component (B), the component (A), the component (B), and ( C) 0.01 to 10% by weight is preferable with respect to 100 parts by weight of the total amount of components, and more preferably 0.1 to 5% by weight.
  • the blending ratio of component (D) By setting the blending ratio of component (D) to 0.01% by weight or more, the composition can be cured with an appropriate amount of ultraviolet light or visible light, and the productivity can be improved. By doing, it can be made the thing excellent in the weather resistance and transparency of hardened
  • composition of the present invention preferably contains an organic solvent as the component (E) for the purpose of improving the coating property to the substrate.
  • component (E) examples include hydrocarbon solvents such as n-hexane, benzene, toluene, xylene, ethylbenzene and cyclohexane; Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, 2-butoxy Ethanol, 2-isopentyloxyethanol, 2-hexyloxyethanol, 2-phenoxyethanol, 2-benzyloxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1 -Methoxy-2-propanol, 1-ethoxy-2-propanol and propylene glycol monomethyl Alcohol solvents such as ether;
  • Ketone solvents Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, methyl glycol acetate, propylene glycol monomethyl ether acetate, cellosolve acetate;
  • Examples include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone.
  • component (E) one or more of the aforementioned compounds can be used.
  • an organic solvent you may add separately and you may use as it is, without isolate
  • the ratio of the component (E) may be set as appropriate, but is preferably 10 to 90% by weight, more preferably 40 to 80% by weight in the composition.
  • Polymerization inhibitor or / and antioxidant It is preferable to add a polymerization inhibitor or / and an antioxidant to the composition of the present invention because the storage stability of the composition of the present invention can be improved.
  • a polymerization inhibitor hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, and various phenolic antioxidants are preferable, but sulfur secondary antioxidants, phosphorus secondary antioxidants are preferable. Subsequent antioxidants can also be added.
  • the total blending ratio of these polymerization inhibitors or / and antioxidants includes the component (C) with respect to a total of 100 parts by weight of the component (A) and the component (B), the component (A),
  • the content is preferably 0.001 to 3% by weight, more preferably 0.01 to 0.5% by weight, based on 100 parts by weight of the total amount of the component (B) and the component (C).
  • the light resistance improving agent such as an ultraviolet absorber or light stabilizer
  • ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2- (2 Benzotriazole compounds such as'-hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole; Triazine compounds such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctyloxyphenyl) -s-triazine; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4,4'-tri Hydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone,
  • Examples of the light stabilizer include N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2,2,6). , 6-Pentamethyl-4-piperidyl) -2- (3,5-ditertiarybutyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (1,2,2,6,6-pentamethyl-4 Low molecular weight hindered amine compounds such as -piperidinyl) sebacate; N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N'-diformylhexamethylenediamine, bis (1,2 Hindered amine light stabilizers such as high molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl) sebacate.
  • the blending ratio of the light fastness improver includes the component (A), the component (B) and the component (C) when the component (C) is included with respect to 100 parts by weight of the component (A) and the component (B). ) It is preferably 0 to 5% by weight, more preferably 0 to 1% by weight, based on 100 parts by weight of the total amount of the components.
  • composition of the present invention can employ various methods of use depending on the purpose of forming the optical film. Specifically, a method of applying a composition to a substrate and irradiating it with an active energy ray to cure, applying a composition to a substrate and bonding it to another substrate, and further irradiating with an active energy ray And a curing method, a method of pouring the composition into a mold having a recess, and curing by irradiation with active energy rays.
  • any of a peelable substrate and a substrate having no releasability can be used.
  • the peelable substrate include a release-treated film, a peelable surface untreated film, a metal (hereinafter also referred to as “release material”), and the like.
  • the release material include silicone-treated polyethylene terephthalate film, surface untreated polyethylene terephthalate film, surface untreated cycloolefin polymer film, and surface untreated OPP film (polypropylene).
  • the surface roughness (centerline average roughness) Ra is 150 nm or less as a peelable substrate. It is preferable to use a material, and a substrate having an Ra of 1 to 100 nm is more preferable. Furthermore, the haze is preferably 3.0% or less. Moreover, it is preferable that a haze is 0.01% or more. Specific examples of the substrate include a surface untreated polyethylene terephthalate film and a surface untreated OPP film (polypropylene). In the present invention, the surface roughness Ra means a value obtained by measuring the surface roughness of the film and calculating an average roughness.
  • non-releasable substrate examples include various plastics other than those described above, such as cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, polyarylate, polyethersulfone, norbornene and the like. And cyclic polyolefin resins having a cyclic olefin as a monomer.
  • plastics other than those described above such as cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, polyarylate, polyethersulfone, norbornene and the like.
  • cyclic polyolefin resins having a cyclic olefin as a monomer.
  • the obtained optical film has a raw material component. It is preferable to use a purified product after stirring and mixing.
  • a method for purifying the composition a method of filtering the composition is simple and preferable. Examples of the filtration method include pressure filtration. The filtration accuracy is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. The smaller the filtration accuracy, the better. However, if the filtration accuracy is too small, the filter is likely to be clogged, and the filter replacement frequency increases and the productivity is lowered. Therefore, the lower limit is preferably 0.1 ⁇ m.
  • the coating method may be appropriately set according to the purpose, and conventionally known bar coat, applicator, doctor blade, knife coater, comma coater, reverse roll coater, die coater, lip coater, gravure coater, micro gravure coater, etc. The method of coating with is mentioned.
  • Examples of active energy rays include electron beams, ultraviolet rays and visible rays.
  • an electron beam is more preferable in that it is not always necessary to add a photopolymerization initiator and the cured product is excellent in heat resistance and light resistance.
  • the irradiation conditions such as dose and irradiation intensity in the active energy ray irradiation may be appropriately set according to the composition to be used, the substrate, the purpose and the like.
  • composition of the present invention can be preferably used for the production of an optical film.
  • optical film will be described.
  • a part of the description will be given with reference to FIGS. 1 and 2.
  • Manufacturing method of optical film As a manufacturing method of an optical film, a conventional method may be followed. For example, the composition may be applied to a substrate and then irradiated with active energy rays.
  • FIG. 1 is a schematic view showing an example of a preferred method for producing an optical film composed of a release material / cured product.
  • (1) means a release material.
  • the composition is a solventless type (FIG. 1: F1)
  • the composition is applied to a release material [FIG. 1: (1)].
  • the composition contains an organic solvent or the like (FIG. 1: F2)
  • the composition is applied to a release material [FIG. 1: (1)] and then dried to evaporate the organic solvent or the like (FIG. 1: 1). -1).
  • cured material is obtained.
  • the active energy ray is usually irradiated from the composition layer side, but can also be irradiated from the release material side.
  • a release material is used as the substrate (1), an optical film composed of a release material / cured product can be produced.
  • the coating amount of the composition of the present invention may be appropriately selected according to the application to be used, but it is preferable that the coating is performed so that the film thickness after drying the organic solvent or the like is 5 to 200 ⁇ m.
  • the thickness is preferably 10 to 100 ⁇ m.
  • the composition When the composition contains an organic solvent or the like, it is heated and dried after coating to evaporate the organic solvent or the like.
  • a heating / drying method a method of passing through a furnace equipped with a heating device, or it can be carried out by blowing air,
  • the heating / drying conditions may be appropriately set according to the organic solvent used, and examples thereof include a method of heating to a temperature of 40 to 150 ° C.
  • the proportion of the organic solvent is preferably 1% by weight or less.
  • the irradiation conditions such as dose and irradiation intensity in the active energy ray irradiation may be appropriately set according to the composition to be used, the substrate, the purpose and the like.
  • FIG. 2 is a schematic view showing an example of a preferable method for producing an optical film composed of a release material / cured product / release material.
  • (1), (3), and (4) mean release materials.
  • the composition is a solventless type (FIG. 2: F1)
  • the composition is applied to a release material [FIG. 2: (1)].
  • the composition contains an organic solvent or the like (FIG. 2: F2)
  • the composition is applied to a release material [FIG. 2: (1)] and then dried to evaporate the organic solvent (FIG. 2: 2). -1).
  • the composition layer (2) is laminated with the release material (3) and then irradiated with active energy rays, or after being irradiated with the active energy rays, the release material (4) is laminated to obtain a release material, a cured product and a release material. An optical film formed in this order is obtained.
  • an optical film can also be manufactured using a non-molding property base material.
  • a non-releasable base material is used in place of the release material of (1) and is cured by irradiation with active energy rays in the same manner as described above, and is composed of a non-releasable base material / cured product.
  • An optical film can also be manufactured.
  • a mold release material of any of (1), (3), and (4) a non-mold release substrate is used, and it is cured by irradiation with active energy rays in the same manner as described above.
  • An optical film composed of a release material / cured product / non-releasing substrate and an optical film composed of a non-releasing substrate / cured material / non-releasing substrate can also be produced.
  • Specific examples of the embodiment include a method in which a polarizer is used as a non-releasing substrate, a composition is applied and irradiated with active energy rays, and a protective film is directly formed on the polarizer.
  • a transparent plastic film is used as a non-releasing substrate, a composition is applied, and then a metal mold is bonded to the coating film as a release material. Examples include a method of irradiating active energy rays from the side.
  • the optical film is produced by applying the composition to a substrate.
  • the composition is formed on a mold having a specific recess.
  • An optical film can also be produced by pouring an object and irradiating active energy rays in the same manner as described above to cure the composition.
  • optical film formed from the composition of the present invention can be used for various optical uses, more specifically, a polarizer protective film for polarizing plates used in liquid crystal display devices, etc. Examples include a support film for a prism sheet and a light guide film. Other uses include lens sheets such as Fresnel lenses and lenticular lenses, and the lenticular lenses can be used for naked-eye 3D displays.
  • a polarizing plate using a polarizer protective film (hereinafter, also simply referred to as “protective film”) formed from the composition of the present invention will be described.
  • the polarizing plate is a structure in which a protective film is laminated on at least one surface of a polarizer.
  • the polarizing plate may be manufactured by directly coating and curing the composition of the present invention on a polarizer to form a protective film, or may be manufactured by bonding a polarizer and a protective film.
  • polarizer various materials can be used as long as they have a function of selectively transmitting linearly polarized light in one direction from natural light.
  • an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye is coated.
  • examples include a fixed coating type polarizer.
  • These iodine-based polarizing films, dye-based polarizing films, and coating-type polarizers have a function of selectively transmitting linearly polarized light in one direction from natural light and absorbing linearly polarized light in the other direction.
  • the polarizing plate of the present invention is a polarizing plate in which the optical film of the present invention is laminated as a protective film on at least one surface of a polarizer, and is bonded by an adhesive.
  • any adhesive can be used in consideration of each adhesive property.
  • the adhesive include polyvinyl alcohol-based aqueous adhesives, solvent-based adhesives, hot-melt adhesives, and solvent-free adhesives.
  • Solvent-free active energy ray-curable adhesives It can be used suitably.
  • the active energy ray curable adhesive include a photo cation curable adhesive, a photo radical curable adhesive, and a hybrid adhesive using both photo cation curing and photo radical curing.
  • the photo cation curable adhesive include photo cation curable compounds such as epoxy compounds and oxetane compounds, and adhesives including a photo cation polymerization initiator.
  • photo-radical curable adhesive examples include photo-radical curable compounds such as (meth) acrylates, vinyl ethers, vinyl compounds, and adhesives containing a photo-radical polymerization initiator.
  • the hybrid adhesive examples include an adhesive containing the above-described photocationic curable compound, photoradical curable compound, photocationic polymerization initiator, and photoradical polymerization initiator.
  • the protective film of the present invention can be used on one side and a protective film other than the protective film of the present invention (hereinafter also referred to as “other protective film”) can be used on the other side.
  • other protective films include cellulose acetate resin films such as triacetyl cellulose and diacetyl cellulose, acrylic resin films, polyester resin films, and cyclic polyolefin resin films containing cyclic olefins such as norbornene as monomers.
  • the film which has phase difference may be sufficient.
  • parts means parts by weight.
  • Polycarbonate diol [Duranol T-5651 manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight 1,000]: 43.0 g, 1,4-butanediol: 33.5 g and methyl ethyl ketone (hereinafter also referred to as “MEK”) as an alcohol solution. ): 65.0 g of the mixed solution was added dropwise so that the internal temperature became 75 ° C. or lower, and then reacted at an internal temperature of 80 ° C. for 2 hours.
  • MEK methyl ethyl ketone
  • 2-hydroxyethyl acrylate (hereinafter also referred to as “HEA”): 57.6 g, 2,6-di-t-butyl-4-methylphenol (hereinafter also referred to as “BHT”) as a polymerization inhibitor.
  • MEK 5.0 g
  • dibutyltin dilaurate 0.07 g of a mixed solution was added dropwise so that the internal temperature was 75 ° C. or lower, and reacted for 3 hours to obtain an infrared absorption spectrum apparatus (FT-manufactured by Perkin Elmer). The spectrum was measured by IR Spectrum 100), and it was confirmed that the isocyanate groups were completely consumed.
  • FT-manufactured by Perkin Elmer infrared absorption spectrum apparatus
  • UA-1 solid content 80% containing urethane acrylate
  • Mw weight average molecular weight
  • Production Example A2 [Production of Component (A)]
  • IPDI as the isocyanate: 127.8 g
  • Duranol T5651 as the alcohol solution: 37.6 g
  • a MEK solution (solid content 80%) containing urethane acrylate (hereinafter referred to as “UA-2”) was obtained in the same manner except that MEK: 65.0 g mixed solution and HEA: 50.5 g were used.
  • Mw was 2,300 and the photoelastic coefficient 1 was 9.7 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • Production Example A3 [Production of Component (A)]
  • IPDI 151.4 g as isocyanate, polycaprolactone triol (manufactured by Daicel Chemical Industries, Ltd.) Plaxel 303, number average molecular weight 300): 18.3 g, Duranol T5651: 20.4 g, 1,
  • a MEK solution containing urethane acrylate (hereinafter referred to as “UA-3”) was carried out in the same manner except that a mixed solution of 4-butanediol: 28.2 g and MEK: 65.0 g and HEA: 61.6 g were used. (Solid content 80%) was obtained.
  • Mw and photoelastic coefficient 1 of the obtained UA-3 were measured in the same manner as in Production Example A1, and as a result, Mw was 2,400 and photoelastic coefficient 1 was 13.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • Production Example A4 [Production of Component (A)]
  • a MEK solution (solid content) containing urethane acrylate (hereinafter referred to as “UA-4”) was carried out in the same manner except that a mixed solution of diol: 30.4 g and MEK: 65.0 g and HEA: 58.7 g were used. 80%).
  • Mw was 1,900 and photoelastic coefficient 1 was 12.6 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • Production Example A5 [Production of Component (A)]
  • UA-5 MEK solution (80% solid content) containing urethane acrylate
  • Production Example A6 [Production of Component (A)] In Production Example A1, except that IPDI: 134 g as isocyanate, 1,4-butanediol: 34.2 g and MEK: 65.0 g as a solution of alcohol, and FA1DDM: 104.8 g as hydroxyl group-containing acrylate were used. The same operation was performed to obtain a MEK solution (solid content 80%) containing urethane acrylate (hereinafter referred to as “UA-6”). The Mw and photoelastic coefficient 1 of the obtained UA-6 were measured in the same manner as in Production Example A1, and as a result, the Mw was 2,200 and the photoelastic coefficient 1 was 17.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • HEA 104.5 g
  • BHT 0.09 g
  • MMA methyl methacrylate
  • ACMO N-acryloylmorpholine
  • MIBK methyl isobutyl ketone
  • MMA 80.0 g was consumed for 4 hours, and ACMO: 80.0 g was applied for 3 hours.
  • a polymerization initiator solution consisting of 10 g of V-65 [2,2′-azobis-2,4-dimethylvaleronitrile, manufactured by Wako Pure Chemical Industries, Ltd.] and 40 parts of MIBK was added over 5 hours. Feeded continuously. After completion of continuous supply, aging was performed for 3 hours while maintaining the internal temperature at 92 ° C. As a result, a solution (solid content 47%) containing a polymer having a negative photoelastic coefficient 2 (hereinafter referred to as “LP-1”) Obtained.
  • LP-1 negative photoelastic coefficient 2
  • the Mw of the obtained LP-1 was measured in the same manner as in Production Example A1, and as a result, the Mw was 10,000. Further, the photoelastic coefficient 2 of LP-1 was measured according to the following, and found to be ⁇ 5.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 . In addition, about the photoelastic coefficient 2 of (B) component, the photoelastic coefficient value in 23 degreeC of the optical film obtained by adding (B) component in arbitrary ratios with respect to the used urethane acrylate was measured, The photoelastic coefficient value when the addition amount was 100% extrapolated from the linear graph of the addition amount and the photoelastic coefficient was calculated and described.
  • Examples 1 to 12 and Comparative Examples 1 to 7 (Production of Composition) Components shown in Table 1 below were charged in a stainless steel container in the proportions shown in Table 1, and stirred with a magnetic stirrer while heating to obtain a composition.
  • LP-2 polymethyl methacrylate resin, Mitsubishi Rayon Co., Ltd.
  • Dianal BR-87 solid content: 100%, Mw; 25,000, acid value: 10.5 mg KOH / g, photoelastic coefficient 2; -6 ⁇ 10 -12 Pa -1
  • LP-3 N-vinyl-2-pyrrolidone / vinyl acetate copolymer, PVP / VA S-630 (solid content: 100%, Mw: 45,000, photoelastic coefficient 2) manufactured by IS Japan Co., Ltd. -9 ⁇ 10 -12 Pa -1 ]
  • Dc1173 2-hydroxy-2-methyl-1-phenylpropan-1-one, DAROCUR-1173 manufactured by BASF Japan Ltd.
  • Examples F1 to F10 and Comparative Examples F1 to F6 (Production of optical film by electron beam curing)
  • a film “Lumirror 50-T60” surface untreated polyethylene terephthalate film, thickness 50 ⁇ m, hereinafter referred to as “Lumirror”) manufactured by Toray Industries, Inc., having a width of 300 mm and a length of 300 mm, was used in Examples 1 to 10 and Comparative Examples 1 to The composition obtained in 6 was coated with an applicator so that the film thickness after drying at 80 ° C. for 10 minutes was 40 ⁇ m.
  • Examples F11 to F12 and Comparative Example 7 (Production of optical film by ultraviolet curing)
  • the UV curable composition obtained in Examples 11 to 12 and Comparative Example 7 was applied to a Lumirror having a width of 300 mm and a length of 300 mm with an applicator so that the film thickness after drying at 80 ° C. for 10 minutes was 40 ⁇ m. did.
  • a conveyor type ultraviolet irradiation device high pressure mercury lamp, lamp height 12 cm, 365 nm irradiation intensity 400 mW / cm 2 ) manufactured by Eye Graphics Co., Ltd.
  • ⁇ n C ⁇ ⁇ (In the formula, ⁇ n represents stress birefringence, ⁇ represents tension, and C represents photoelastic coefficient 1.) Moreover, about the photoelastic coefficient 1 of the hardened
  • Examples F1 to F12 are optical films obtained from the compositions of Examples 1 to 12 which are the compositions of the present invention, and the photoelastic coefficient 1 is the light of a TAC conventionally used as a polarizer protective film.
  • the elastic modulus was smaller than 13 ⁇ 10 ⁇ 12 Pa ⁇ 1 of 1 , and there was no concern about light leakage or white spots. Further, the thickness direction retardation was smaller than the Rth of TAC (40 ⁇ m) of 30 to 40 nm, and the viewing angle characteristics were excellent.
  • Comparative Examples F1 to F5 did not contain the component (B), and therefore, the photoelastic coefficient 1 or the thickness direction retardation was large, and both could not be reduced simultaneously.
  • Comparative Examples F6 to F7 although the component (B) was included, the photoelastic coefficient 1 of UA-5 alone was large, so the photoelastic coefficient 1 could not be sufficiently reduced.
  • MMA methyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • MAA methacrylic acid
  • MPA 3-mercaptopropionic acid
  • MIBK methyl isobutyl ketone
  • V-65 2,2′-azobis-2,4-dimethylvaleronitrile
  • a polymerization initiator solution composed of 6.4 g and MEK: 80 g was continuously added over 5.5 hours. After completion of the continuous addition, aging was carried out for 2 hours while maintaining the internal temperature at 92 ° C.
  • LP-4 carboxyl group-containing prepolymer
  • Mn, Mw, and photoelastic coefficient 2 of the obtained LP-4 were measured in the same manner as in Production Example B1, and as a result, Mn was 3,200, Mw was 5,800, and photoelastic coefficient 2 was 0.2 ⁇ 10 ⁇ 12. -Pa -1 .
  • the results are shown in Table 3.
  • the numbers in Table 3 are described as ratios when converted to a ratio of 100% by weight of the whole monomers used, and the used organic solvents and their ratios are omitted.
  • Production Example B3 [ Production of carboxyl group-containing prepolymer]
  • the same operation was carried out except that the raw materials used were changed as shown in Table 3, and a carboxyl group-containing prepolymer having a negative photoelastic coefficient 2 (hereinafter referred to as “LP-5”).
  • Solution solid content 62%) was obtained.
  • Mn, Mw, and photoelastic coefficient 2 of LP-5 obtained were measured in the same manner as in Production Example B1. As a result, Mn was 4,400, Mw was 11,000, and photoelastic coefficient 2 was ⁇ 2.0 ⁇ 10 ⁇ . 12 ⁇ Pa ⁇ 1 .
  • the results are shown in Table 3.
  • MMA: 400.0 g, MPA: 5.8 g, and MIBK: 640.0 g were charged into a 1 L reaction vessel equipped with a stirrer, a thermometer, and a condenser, and uniformly dissolved at room temperature. While stirring the contents of the flask, the internal temperature was raised to 92 ° C. under a nitrogen atmosphere, and after the internal temperature became constant, MMA: 400.0 g and MPA: 8.64 g were added over 3 hours.
  • a polymerization initiator solution (1) consisting of V-65: 1.3 g and MEK: 32 g was added for 4 hours, and a polymerization initiator solution (2) consisting of V-65: 5.2 g and MEK: 128.0 g. Each was added continuously over 2 hours. After completion of the continuous addition, aging was performed for 2 hours while maintaining the internal temperature at 92 ° C., and a solution of a terminal carboxyl group-containing polymer (hereinafter referred to as “LP-6”) having a negative photoelastic coefficient of 2 (solid content 51). %).
  • LP-6 a solution of a terminal carboxyl group-containing polymer
  • Mn, Mw, and photoelastic coefficient 2 of the obtained LP-6 were measured in the same manner as in Production Example B1, and as a result, Mn was 6,000, Mw was 12,000, and photoelastic coefficient 2 was ⁇ 4.0 ⁇ 10 ⁇ . 12 ⁇ Pa ⁇ 1 .
  • the results are shown in Table 3.
  • Production Examples B6 to 16 [Production of component (B)]
  • the same procedure was followed except that the types and ratios of the monomers used in the prepolymer production were changed as described in Tables 4 and 5 and the types and ratios of the compounds used in the addition reaction were changed. And a solution of component (B) (solid content 51 to 64%) was obtained.
  • the Mn, Mw, f value and photoelastic coefficient 2 of the obtained ULP-2 to 12 were measured by the same method as in Production Example B6. The results are shown in Table 4 and Table 5 together with the unsaturated group introduction site.
  • F in Table 4 and Table 5 is the average number of ethylenically unsaturated groups in one molecule.
  • the abbreviations in Tables 3 to 5 including those defined above are shown below.
  • MMA methyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • MAA methacrylic acid
  • MA methyl acrylate
  • GMA glycidyl methacrylate
  • ACMO acryloylmorpholine
  • V-65 2,2′-azobis-2,4-dimethyl Valeronitrile
  • MPA 3-mercaptopropionic acid
  • MTG 2-mercaptoethanol
  • DM dodecyl mercaptan
  • AOI 2-acryloyloxyethyl isocyanate
  • AA acrylic acid
  • MOI 2-methacryloyloxyethyl isocyanate
  • DBTDL Dibutyltin dilaurate
  • TBAB Tetrabutylammonium bromide
  • M309 means trimethylolpropane triacrylate [Aronix M-309 manufactured by Toagosei Co., Ltd.].
  • Examples UF1 to UF20 and Comparative Examples UF1 and UF2 production of optical film by electron beam curing
  • Examples U1-U20 and Comparative Examples U1- The composition obtained in U2 was coated with an applicator so that the film thickness after drying at 120 ° C. for 10 minutes was 40 ⁇ m. Then, after laminating 300 mm width x 300 mm length on the composition layer, an acceleration voltage of 200 kV and a dose of 150 kGy (adjusted by the beam current and the conveyance speed), oxygen by an electron beam irradiation apparatus manufactured by NHV Corporation, oxygen Electron beam irradiation was performed under conditions of a concentration of 300 ppm or less to obtain an optical film. After curing, the film was peeled off from the Lumirror, and the photoelastic coefficient 1, in-plane and thickness direction retardation were evaluated by the same method as described above. Further, cutting property and bending resistance were evaluated according to the following methods.
  • Examples UF1 to UF17 are optical films obtained from the compositions of Examples U1 to U17, which are the compositions of the present invention, and the photoelastic coefficient 1 is the light of TAC conventionally used as a polarizer protective film.
  • the elastic modulus was smaller than 13 ⁇ 10 ⁇ 12 Pa ⁇ 1 of 1 , and there was no concern about light leakage or white spots. Further, the thickness direction retardation was smaller than the Rth of TAC (40 ⁇ m) of 30 to 40 nm, and the viewing angle characteristics were excellent. Furthermore, it was excellent in flexibility.
  • Examples UF18 to UF20 are compositions having a component (B) ′ having no ethylenically unsaturated group although it is a polymer having a low photoelastic coefficient 1 or a negative value (Comparative Example).
  • Comparative Example UF1 is an optical film produced from a composition (Comparative Example U1) that does not contain the component (B), and has a large photoelastic coefficient 1 and thickness direction retardation, and both cannot be simultaneously reduced.
  • Comparative example UF2 is an optical film manufactured from a composition (comparative example U2) using a urethane acrylate different from component (A), and has a large photoelastic coefficient 1.
  • the degree of polarization and the single transmittance were measured using a spectrophotometer with a polarizing prism (UV-2200, manufactured by Shimadzu Corporation), and found to be 99.99% and 43.1%, respectively. there were.
  • adhesive UVX1 A curable adhesive (hereinafter referred to as adhesive UVX1) was obtained.
  • Conveyor speed by conveyor type ultraviolet irradiation device (high pressure mercury lamp, lamp height 15 cm, 365 nm irradiation intensity 370 mW / cm 2 (measured value of UV POWER PUCK manufactured by Fusion UV Systems Japan Co., Ltd.)) was adjusted, and ultraviolet rays with an integrated light quantity of 220 mJ / cm 2 were applied to obtain a polarizing plate (width 100 mm ⁇ length 100 mm). In addition, no corona treatment was performed on any of the polarizer protective films.
  • Examples P1 and P2 are polarizing plates using the optical films obtained in Examples F3 and F5, which are the compositions of the present invention. The performance of the polarizer P is maintained, and the adhesiveness and heat and humidity resistance are high. It was good.
  • Comparative Example P1 is a polarizing plate using the optical film obtained in Comparative Example F6, but the performance of the polarizer P is maintained and the adhesiveness is good, but the heat and humidity resistance is reduced. did.
  • Example P3 to Example P12 (Production of polarizing plate) A polarizing plate was prepared in the same manner as in Example P1 except that the optical films obtained in Examples F1, F2, F4, and F6 to F12 were used as the polarizer protective film, and the wet heat resistance was evaluated. All the polarizing plates of Examples P3 to P12 had good wet heat resistance.
  • Example UP1, UP2 and Comparative Example UP1 (Production of Polarizing Plate) A polarizing plate (width 100 mm ⁇ length 100 mm) was used in the same manner as in Example P1, except that the optical films obtained in Examples UF7, UF10 and Comparative Example UF2 were used as the polarizer protective film, and UVX2 was used as the adhesive. ) In addition, no corona treatment was performed on any of the polarizer protective films. About the polarizing plate obtained by the Example and the comparative example, a polarization degree and single-piece
  • permeability are measured by the method similar to the said Example P1, and the adhesiveness of a polarizer protective film and a polarizer is the same as the above. In addition, the heat and humidity resistance of the polarizing plate was evaluated. The results are shown in Table 12.
  • Examples UP1 and UP2 are polarizing plates using the optical film obtained in Examples UF7 and UF10, which are the compositions of the present invention.
  • the performance of the polarizer P is maintained, and the adhesiveness and heat and humidity resistance are high. It was good and effective as a protective film for a polarizer.
  • Comparative Example UP1 is a polarizing plate using the optical film obtained in Comparative Example UF2, but the performance of the polarizer P is maintained and the adhesiveness is good, but the heat and humidity resistance is reduced. did.
  • Example UP3 to Example UP20 (Production of Polarizing Plate) A polarizing plate was prepared in the same manner as in Example UP1 except that the optical films obtained in Examples UF1 to UF6, UF8, UF9, and UF11 to F20 were used as the polarizer protective film, and the moisture and heat resistance was evaluated. All the polarizing plates of Examples UP3 to UP20 had good heat and humidity resistance.
  • the active energy ray-curable composition for forming an optical film of the present invention can be suitably used for the production of an optical film. Furthermore, as described in detail above, the optical film of the present invention is suitably used in a polarizer protective film application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

[Problem] To provide: an active energy beam-curable composition for optical films that combines a low photoelastic coefficient and low retardation, good resistance to moist heat, and outstanding flexibility; an optical film obtained using said composition; a polarizer protective film; and a polarizing plate. [Solution] An energy beam-curable composition for forming optical films, containing: (A) urethane (meth)acrylate (A) having a photoelastic coefficient at 23°C when cured (hereinafter merely referred to as the "photoelastic coefficient") not exceeding 30 x 10-12Pa-1, and (B) a polymer other than the component (A) and which has a photoelastic coefficient not exceeding 5 x 10-12Pa-1. The photoelastic coefficient when cured does not exceed 10 x 10-12Pa-1, in-plane retardation at the front and at a diagonal of 40° and total retardation in the thickness direction when cured as measured at a thickness of 40μm does not exceed 5nm.

Description

光学フィルム形成用活性エネルギー線硬化型組成物、光学フィルム、偏光子保護フィルム及び偏光板Active energy ray-curable composition for optical film formation, optical film, polarizer protective film, and polarizing plate
 本発明は、光学フィルムの形成に使用される活性エネルギー線硬化型組成物、当該組成物を硬化して得られる光学フィルム、及びこれを偏光子保護フィルムとして用いた偏光板に関し、これら技術分野に属する。
 尚、本発明における「光学フィルム」とは、「光学フィルム又はシート」を意味し、厚さに特に制限はない。又、アクリレート又はメタクリレートを、(メタ)アクリレートと表す。
The present invention relates to an active energy ray-curable composition used for forming an optical film, an optical film obtained by curing the composition, and a polarizing plate using the same as a polarizer protective film. Belongs.
The “optical film” in the present invention means “optical film or sheet”, and the thickness is not particularly limited. Further, acrylate or methacrylate is represented as (meth) acrylate.
 近年、液晶ディスプレイの大型化に伴い、偏光子保護フィルムや液晶を光学補償する位相差フィルム等の光学フィルムの大型化も必要となってきている。
 しかしながら、光学フィルムを大型化すると、外力の偏りが生じるため、光学フィルムが外力による複屈折変化を生じやすい材料からなる場合、複屈折の分布が生じ、コントラストが不均一となるという問題がある。外力による複屈折変化の生じやすさは、光弾性係数の絶対値によって表されるが、偏光子保護フィルムとして一般的に用いられているトリアセチルセルロース(以下、「TAC」ともいう。)フィルムは、光弾性係数の絶対値が大きく、偏光子収縮に伴う応力複屈折の発生により、光漏れ・白抜けが起こる。
In recent years, with the increase in size of liquid crystal displays, it has become necessary to increase the size of optical films such as polarizer protective films and retardation films that optically compensate liquid crystals.
However, when the size of the optical film is increased, the bias of external force is generated. Therefore, when the optical film is made of a material that easily changes birefringence due to the external force, there is a problem that birefringence distribution occurs and the contrast becomes non-uniform. The ease with which birefringence changes due to external force are expressed by the absolute value of the photoelastic coefficient, but a triacetyl cellulose (hereinafter also referred to as “TAC”) film generally used as a polarizer protective film. The absolute value of the photoelastic coefficient is large, and light leakage and white spots occur due to the generation of stress birefringence accompanying the polarizer contraction.
 また、TACフィルムは正面方向の入射光に対するレタデーションは小さいものの、厚さ方向のレタデーションを有する。かかるレタデーションは、液晶ディスプレイの大型化が進むにしたがって、顕著に視野角特性に影響を及ぼすようになっている。
 そこで、低光弾性係数と低レタデーションを両立できる材料が求められている。
Moreover, the TAC film has a retardation in the thickness direction, although the retardation with respect to the incident light in the front direction is small. Such retardation significantly affects viewing angle characteristics as the size of liquid crystal displays increases.
Therefore, a material that can achieve both a low photoelastic coefficient and a low retardation is required.
 特許文献1には、正の光弾性を有するセルロースエステル樹脂に対して、負の光弾性を有するアクリル樹脂をブレンドすることで光弾性を低減することが開示されている。 Patent Document 1 discloses that photoelasticity is reduced by blending an acrylic resin having negative photoelasticity with a cellulose ester resin having positive photoelasticity.
 特許文献2には、セルロースエステル樹脂に対して、ポリビニルピロリドンをブレンドすることで低光弾性係数と低レタデーションを両立している。 In Patent Document 2, a low photoelastic coefficient and a low retardation are achieved by blending polyvinyl pyrrolidone with a cellulose ester resin.
 特許文献3には、ウレタン(メタ)アクリレートからなる光学フィルムの光弾性係数が小さいと開示されている。 Patent Document 3 discloses that an optical film made of urethane (meth) acrylate has a small photoelastic coefficient.
再公表特許WO2009/081607号公報Republished patent WO2009 / 081607 特開2008-111056号公報JP 2008-111056 A 特開2011-145330号公報JP 2011-145330 A
 特許文献1に記載された発明では、レタデーションが大きく、低光弾性係数と低レタデーションを両立できていない。また、吸水率が高いセルロースをベースにしているため、耐湿熱性が充分でなく、当該フィルムを偏光子保護フィルムとして用いた偏光板を高温又は高湿下において使用すると、偏光板が変形したり、偏光度や色相等の偏光板の性能が低下するという欠点がある。
 特許文献2に記載された発明では、セルロースエステル樹脂とポリビニルピロリドンの組み合わせであるため、特許文献1に記載された組成物よりも耐湿熱性が悪化するという問題がある。
 特許文献3に記載された発明では、光弾性係数の絶対値はTAC(13×10-12Pa-1)並みと大きく、充分満足できるものではなかった。また、レタデーションが大きく、低光弾性係数と低レタデーションとを両立できていない。
 前記した通り従来からのトリアセチルセルロースに代わる偏光子保護フィルムの材料として検討されている光学フィルムは、低光弾性係数と低レタデーションを両立できていないか、両立できたとしても耐湿熱性が充分でなく、当該フィルムを偏光子保護フィルムとして用いた偏光板を高温又は高湿下において使用すると、偏光板が変形したり、偏光度や色相等の偏光板性能が低下するという欠点があった。
In the invention described in Patent Document 1, the retardation is large and the low photoelastic coefficient and the low retardation cannot be achieved at the same time. In addition, because it is based on cellulose with a high water absorption rate, the heat and moisture resistance is not sufficient, and when a polarizing plate using the film as a polarizer protective film is used at high temperature or high humidity, the polarizing plate may be deformed, There is a drawback that the performance of the polarizing plate such as the degree of polarization and the hue deteriorates.
In the invention described in Patent Document 2, since it is a combination of a cellulose ester resin and polyvinylpyrrolidone, there is a problem that the heat and humidity resistance is worse than that of the composition described in Patent Document 1.
In the invention described in Patent Document 3, the absolute value of the photoelastic coefficient is as large as TAC (13 × 10 −12 Pa −1 ), which is not satisfactory. Further, the retardation is large, and a low photoelastic coefficient and a low retardation cannot be achieved at the same time.
As described above, optical films that have been studied as materials for polarizer protective films that replace conventional triacetyl cellulose do not have both a low photoelastic coefficient and a low retardation, or have sufficient moisture and heat resistance even if they are compatible. However, when a polarizing plate using the film as a polarizer protective film is used at a high temperature or under high humidity, there are disadvantages that the polarizing plate is deformed and polarizing plate performance such as degree of polarization and hue is lowered.
 本発明は、低光弾性係数と低レタデーションとを両立し、耐湿熱性に優れた光学フィルムを得ることができる光学フィルム形成用活性エネルギー線硬化型組成物を提供することを目的とする。
 また、本発明は、偏光子保護フィルム用途に好適に使用することができ、視野角特性に優れ、耐湿熱性及び接着性に優れた光学フィルムを提供することを目的とする。
An object of the present invention is to provide an active energy ray-curable composition for forming an optical film that can achieve an optical film having both a low photoelastic coefficient and a low retardation and excellent in heat and moisture resistance.
Another object of the present invention is to provide an optical film that can be suitably used for polarizer protective film applications, has excellent viewing angle characteristics, and has excellent moisture and heat resistance and adhesiveness.
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、下記に示す活性エネルギー線硬化型組成物が、前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の光学フィルム形成用活性エネルギー線硬化型組成物は、硬化物の下記光弾性係数1が30×10-12Pa-1以下のウレタン(メタ)アクリレート(A)、及び、下記光弾性係数2が5×10-12Pa-1以下の値を有し、かつ(A)成分以外のポリマー(B)を含み、組成物の硬化物の下記光弾性係数1が10×10-12Pa-1以下であり、厚さ40μmで測定した場合における硬化物の正面及び斜め40°の面内レタデーション並びに厚さ方向のレタデーションの全てが5nm以下である。
 尚、光弾性係数1は、23℃における光弾性係数を意味し、光弾性係数2は、使用した(A)成分に対し任意の割合で(B)成分を添加して得られた光学フィルムの23℃における光弾性係数の値を測定し、その添加量と光弾性係数との直線グラフから外挿した、添加量が100%のときの値を意味する。
As a result of intensive studies to solve the above problems, the present inventors have found that the following active energy ray-curable composition can solve the above problems, and have completed the present invention.
The active energy ray-curable composition for forming an optical film of the present invention is a urethane (meth) acrylate (A) having the following photoelastic coefficient 1 of 30 × 10 −12 Pa −1 or less of the cured product, and the following photoelastic coefficient. 2 has a value of 5 × 10 −12 Pa −1 or less and includes a polymer (B) other than the component (A), and the photoelastic coefficient 1 of the cured product of the composition is 10 × 10 −12 Pa −. It is 1 or less, and all of the front surface of the cured product and the in-plane retardation at an angle of 40 ° and the retardation in the thickness direction when measured at a thickness of 40 μm are 5 nm or less.
The photoelastic coefficient 1 means a photoelastic coefficient at 23 ° C., and the photoelastic coefficient 2 is an optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used. The value of the photoelastic coefficient at 23 ° C. is measured and extrapolated from a linear graph of the added quantity and the photoelastic coefficient, and means a value when the added quantity is 100%.
 本発明によれば、低光弾性係数と低レタデーションとを両立し、耐湿熱性に優れた光学フィルムを得ることができる光学フィルム形成用活性エネルギー線硬化型組成物を提供することができる。
 また、本発明によれば、偏光子保護フィルム用途に好適に使用することができ、視野角特性に優れ、耐湿熱性及び接着性に優れた光学フィルムを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the active energy ray hardening-type composition for optical film formation which can make compatible the low photoelastic coefficient and low retardation, and can obtain the optical film excellent in heat-and-moisture resistance can be provided.
Moreover, according to this invention, it can use suitably for a polarizer protective film use, and can provide the optical film excellent in the viewing angle characteristic, and excellent in heat-and-moisture resistance and adhesiveness.
本発明の組成物を使用した光学フィルムの製造の1例を示す模式図である。It is a schematic diagram which shows one example of manufacture of the optical film which uses the composition of this invention. 本発明の組成物を使用した光学フィルムの製造の他の1例を示す模式図である。It is a schematic diagram which shows another example of manufacture of the optical film which uses the composition of this invention.
 本発明の光学フィルム形成用活性エネルギー線硬化型組成物(以下、単に「組成物」ともいう。)は、硬化物の下記光弾性係数1が30×10-12Pa-1以下のウレタン(メタ)アクリレート(A)〔以下、単に「(A)成分」ともいう。〕、及び、下記光弾性係数2が5×10-12Pa-1以下の値を有し、かつ(A)成分以外のポリマー(B)〔以下、単に「(B)成分」ともいう。〕を含み、組成物の硬化物の下記光弾性係数1が10×10-12Pa-1以下であり、厚さ40μmで測定した場合における硬化物の正面及び斜め40°の面内レタデーション並びに厚さ方向のレタデーションの全てが5nm以下である。
 尚、光弾性係数1は、23℃における光弾性係数を意味し、光弾性係数2は、使用した(A)成分に対し任意の割合で(B)成分を添加して得られた光学フィルムの23℃における光弾性係数の値を測定し、その添加量と光弾性係数との直線グラフから外挿した、添加量が100%のときの値を意味する。
 以下、本発明を詳細に説明する。尚、本明細書では、組成物に活性エネルギー線照射して得られる架橋物及び硬化物を、まとめて「硬化物」と表す。
The active energy ray-curable composition for forming an optical film of the present invention (hereinafter also simply referred to as “composition”) is a urethane (meta) having a photoelastic coefficient 1 of 30 × 10 −12 Pa −1 or less of the cured product. ) Acrylate (A) [hereinafter also referred to simply as “component (A)”. And the following photoelastic coefficient 2 has a value of 5 × 10 −12 Pa −1 or less, and the polymer (B) other than the component (A) [hereinafter also simply referred to as “component (B)”. In the case where the cured product of the composition has a photoelastic coefficient 1 of 10 × 10 −12 Pa −1 or less and is measured at a thickness of 40 μm, the front surface of the cured product and an in-plane retardation and thickness of 40 ° obliquely are measured. All of the retardation in the length direction is 5 nm or less.
The photoelastic coefficient 1 means a photoelastic coefficient at 23 ° C., and the photoelastic coefficient 2 is an optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used. The value of the photoelastic coefficient at 23 ° C. is measured and extrapolated from a linear graph of the added quantity and the photoelastic coefficient, and means a value when the added quantity is 100%.
Hereinafter, the present invention will be described in detail. In the present specification, a crosslinked product and a cured product obtained by irradiating the composition with active energy rays are collectively referred to as a “cured product”.
1.(A)成分
 (A)成分は、硬化物の光弾性係数1が30×10-12Pa-1以下のウレタン(メタ)アクリレートである。
 (A)成分の硬化物の光弾性係数1として30×10-12Pa-1以下の化合物を使用することにより、組成物の硬化物の光弾性係数1を10×10-12Pa-1以下とすることができる。また、(A)成分の硬化物の光弾性係数1は、5×10-12Pa-1以上であることが好ましい。
 (A)成分の硬化物の光弾性係数1としては、10×10-12~20×10-12Pa-1が好ましく、より好ましくは10×10-12~15×10-12Pa-1である。
1. Component (A) The component (A) is a urethane (meth) acrylate having a photoelastic coefficient 1 of a cured product of 30 × 10 −12 Pa −1 or less.
By using a compound having a photoelastic coefficient 1 of 30 × 10 −12 Pa −1 or less as the photoelastic coefficient 1 of the cured product (A), the photoelastic coefficient 1 of the cured product of the composition is 10 × 10 −12 Pa −1 or less. It can be. Moreover, it is preferable that the photoelastic coefficient 1 of the hardened | cured material of (A) component is 5 * 10 < -12 > Pa < -1 > or more.
The photoelastic coefficient 1 of the cured product (A) is preferably 10 × 10 −12 to 20 × 10 −12 Pa −1 , more preferably 10 × 10 −12 to 15 × 10 −12 Pa −1 . is there.
 本発明において光弾性係数とは、外力による複屈折の変化の生じやすさを表す係数であり、光弾性係数1は、23℃における光弾性係数である。光弾性係数の値がゼロに近いほど、外力による複屈折の変化が小さいことを意味する。
 具体的には、光弾性係数1(C)は、σを伸張応力、△nを応力付加時の複屈折としたとき、下式(1)で定義される値である。
 C[Pa-1]=△n/σ ・・・(1)
 ここで、△nは、n1を伸張方向と平行な方向の屈折率、n2を伸張方向と垂直な方向の屈折率としたとき、下式(2)で定義される。
 △n=n1-n2  ・・・(2)
 尚、本発明における光弾性係数1は、温度23℃で測定した値を意味する。
 光弾性係数1の測定方法としては、本発明の組成物を硬化させた光学フィルム、又は、(A)成分のみを硬化させたフィルムを公知の複屈折率計により測定すればよい。具体的には、例えば、本発明の組成物を硬化させた光学フィルム、又は、(A)成分のみを硬化させたフィルムを15mm×60mmに切り出し、自動複屈折計(KOBRA-WR、王子計測機器(株)製)を用いて、室温で0N~10Nの範囲で5点張力σを変えたときの面内位相差値をそれぞれ測定し、前記式(1)に従って作製した近似直線の傾きから光弾性係数1を求める方法が好ましく挙げられる。
In the present invention, the photoelastic coefficient is a coefficient representing the ease of change of birefringence due to external force, and the photoelastic coefficient 1 is a photoelastic coefficient at 23 ° C. The closer the value of the photoelastic coefficient is to zero, the smaller the change in birefringence due to external force.
Specifically, the photoelastic coefficient 1 (C) is a value defined by the following equation (1), where σ is an extensional stress and Δn is a birefringence when stress is applied.
C [Pa −1 ] = Δn / σ (1)
Here, Δn is defined by the following equation (2), where n 1 is the refractive index in the direction parallel to the stretching direction and n 2 is the refractive index in the direction perpendicular to the stretching direction.
Δn = n 1 −n 2 (2)
In addition, the photoelastic coefficient 1 in this invention means the value measured at the temperature of 23 degreeC.
As a measuring method of the photoelastic coefficient 1, an optical film obtained by curing the composition of the present invention or a film obtained by curing only the component (A) may be measured by a known birefringence meter. Specifically, for example, an optical film obtained by curing the composition of the present invention or a film obtained by curing only the component (A) is cut into 15 mm × 60 mm, and an automatic birefringence meter (KOBRA-WR, Oji Scientific Instruments) is cut out. The in-plane retardation value when the five-point tension σ is changed in the range of 0N to 10N at room temperature is measured using the A method for obtaining the elastic modulus 1 is preferred.
 (A)成分としては、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物等が挙げられ、得られる化合物が前記した光弾性係数1を満たすように原料が選択される。
 (A)成分としては、2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートであることが好ましく、2個の(メタ)アクリロイル基をウレタン(メタ)アクリレートであることがより好ましい。
 (A)成分としては、芳香族基を有しないウレタン(メタ)アクリレートが、低光弾性となるため好ましい。芳香族基を有しないウレタン(メタ)アクリレートは、原料のポリオール及び有機ポリイソシアネートとして、芳香族基を有しない化合物を使用することにより製造することができる。
 (A)成分の重量平均分子量(以下、「Mw」という)としては、1,000~15,000のものが好ましく、より好ましくは1,000~10,000である。
 尚、本発明において、Mwとは、ゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)により測定した分子量をポリスチレン換算した値である。
 (A)成分は、1種のみを使用しても、2種以上を併用してもよい。
 以下、(A)成分の原料化合物である、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレート、並びに(A)成分の製造方法について説明する。
(A) As a component, the reaction material of a polyol, organic polyisocyanate, and a hydroxyl-containing (meth) acrylate etc. are mentioned, A raw material is selected so that the compound obtained may satisfy the above-mentioned photoelastic coefficient 1.
The component (A) is preferably a urethane (meth) acrylate having two or more (meth) acryloyl groups, and more preferably two (meth) acryloyl groups are urethane (meth) acrylates.
As the component (A), urethane (meth) acrylate having no aromatic group is preferable because of low photoelasticity. A urethane (meth) acrylate having no aromatic group can be produced by using a compound having no aromatic group as a raw material polyol and organic polyisocyanate.
The weight average molecular weight (hereinafter referred to as “Mw”) of the component (A) is preferably 1,000 to 15,000, more preferably 1,000 to 10,000.
In addition, in this invention, Mw is the value which converted the molecular weight measured by the gel permeation chromatography (henceforth "GPC") into polystyrene.
(A) A component may use only 1 type or may use 2 or more types together.
Hereinafter, the polyol, the organic polyisocyanate and the hydroxyl group-containing (meth) acrylate, and the method for producing the component (A), which are the raw material compounds of the component (A), will be described.
1-1.ポリオール
 ポリオールとしては、ジオールを用いることが好ましく、各種ジオールを用いることができる。
 ジオールとしては、炭素数2~12の脂肪族ジオール、炭素数2~12の脂環族ジオール、ポリカーボネートジオール、ポリエステルジオール及びポリエーテルジオールを挙げることができる。
1-1. As the polyol polyol, a diol is preferably used, and various diols can be used.
Examples of the diol include aliphatic diols having 2 to 12 carbon atoms, alicyclic diols having 2 to 12 carbon atoms, polycarbonate diols, polyester diols, and polyether diols.
 炭素数2~12の脂肪族ジオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリテトラメチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、3,3-ジメチロールヘプタン、1,9-ノナンジオール及び2-メチル-1,8-オクタンジオール等が挙げられる。 Examples of the aliphatic diol having 2 to 12 carbon atoms include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, poly Tetramethylene glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-ethyl-1,3-hexaneglycol, 2,2,4- Examples include trimethyl-1,3-pentanediol, 3,3-dimethylolheptane, 1,9-nonanediol, and 2-methyl-1,8-octanediol.
 炭素数2~12の脂環族ジオールとしては、シクロヘキサンジメタノール、水添ビスフェノールA、トリシクロ[5.2.1.02,6]デカンジメタノール(通称;トリシクロデカンジメタノール)、1,4-デカヒドロナフタレンジオール、1,5-デカヒドロナフタレンジオール、1,6-デカヒドロナフタレンジオール、2,6-デカヒドロナフタレンジオール、2,7-デカヒドロナフタレンジオール、デカヒドロナフタレンジメタノール、ノルボルナンジオール、ノルボルナンジメタノール、デカリンジメタノール、アダマンタンジオール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(通称;スピログリコール)、イイソソルビド、イソマンニド、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(通称;水添ビスフェノールA)、4,4’-ジヒドロキシジシクロヘキシルメタン(通称;水添ビスフェノールF)、1,1-ビス(4-ヒドロキシシクロヘキシル)-1,1-ジシクロヘキシルメタン(通称;水添ビスフェノールZ)及び4,4-ビシクロヘキサノール等の脂環族ジオール等が挙げられる。 Examples of the alicyclic diol having 2 to 12 carbon atoms include cyclohexanedimethanol, hydrogenated bisphenol A, tricyclo [5.2.1.0 2,6 ] decanedimethanol (common name: tricyclodecanedimethanol), 1, 4-decahydronaphthalenediol, 1,5-decahydronaphthalenediol, 1,6-decahydronaphthalenediol, 2,6-decahydronaphthalenediol, 2,7-decahydronaphthalenediol, decahydronaphthalenediol, norbornane Diol, norbornanedimethanol, decalin dimethanol, adamantanediol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (common name) Spiroglycol), isosorbide, isomannide, , 2-bis (4-hydroxycyclohexyl) propane (common name; hydrogenated bisphenol A), 4,4′-dihydroxydicyclohexylmethane (common name; hydrogenated bisphenol F), 1,1-bis (4-hydroxycyclohexyl) -1 , 1-dicyclohexylmethane (common name; hydrogenated bisphenol Z), and alicyclic diols such as 4,4-bicyclohexanol.
 ポリカーボネートジオールとしては、低分子量ジオール又は/及びポリエーテルジオールと、エチレンカーボネート及び炭酸ジブチルエステル等の炭酸ジアルキルエステルの反応物等が挙げられる。
 ここで、低分子量ジオールとしては、エチレングリコール、プロピレングリコール、シクロヘキサンジメタノール及び3-メチル-1,5-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等が挙げられる。
 ポリエーテルジオールとしては、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコール等のポリアルキレングリコール、並びにポリエチレンポリプロポキシブロックポリマージオール等のブロック又はランダムポリマーのジオール等が挙げられる。
Examples of the polycarbonate diol include a reaction product of a low molecular weight diol or / and a polyether diol and a dialkyl ester carbonate such as ethylene carbonate and dibutyl carbonate.
Here, examples of the low molecular weight diol include ethylene glycol, propylene glycol, cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,5-pentanediol, 1,6-hexanediol, and the like.
Examples of polyether diols include polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and block or random polymer diols such as polyethylene polypropoxy block polymer diols.
 ポリエステルジオールとしては、前記低分子量ジオール又は/及び前記ポリエーテルジオールと、アジピン酸、コハク酸、テトラヒドルフタル酸及びヘキサヒドロフタル酸等の二塩基酸又はその無水物等の酸成分とのエステル化反応物等が挙げられる。 The polyester diol is an ester of the low molecular weight diol or / and the polyether diol with an acid component such as a dipic acid such as adipic acid, succinic acid, tetrahydrophthalic acid and hexahydrophthalic acid or an anhydride thereof. And the like.
 ポリエーテルジオールとしては、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコール等のポリアルキレングリコール;ポリエチレンポリプロポキシブロックポリマージオール等のブロック又はランダムポリマーのジオール等が挙げられる。 Examples of polyether diols include polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; block diols such as polyethylene polypropoxy block polymer diols, and random polymer diols.
 ポリオールとしては、硬化物の機械強度を向上させるため、ジオール以外にもトリオールを併用することが好ましい。 As the polyol, it is preferable to use a triol in addition to the diol in order to improve the mechanical strength of the cured product.
 トリオールとしては、1,2,6-ヘキサントリオール、1,2,3-ヘプタントリオール、1,2,4-ブタントリオール、トリメチロールプロパン、トリメチロールエタン、カシリトール、ピロガロール、グリセリン及びトリス(2-ヒドロキシエチル)イソシアヌレートが挙げられ、これらトリオールのε-カプロラクトン、エチレンオキサイド及びプロピレンオキサイド等の付加物等が挙げられる。 Triols include 1,2,6-hexanetriol, 1,2,3-heptanetriol, 1,2,4-butanetriol, trimethylolpropane, trimethylolethane, kacilitol, pyrogallol, glycerin and tris (2-hydroxy). Ethyl) isocyanurate, and adducts of these triols such as ε-caprolactone, ethylene oxide and propylene oxide.
 トリオールのカプロラクトン付加物としては、トリメチロールプロパンのカプロラクトン付加物、グリセリンのカプロラクトン付加物が好ましい。当該トリオールのカプロラクトン付加物としては、平均水酸基価300~600mgKOH/g、平均水酸基数3の化合物が好ましい。
 上記トリオールのカプロラクトン付加物は市販品されており、例えばプラクセル303、305、308、312、L320ML(ダイセル化学工業(株)製)等が挙げられる。
As the caprolactone adduct of triol, a caprolactone adduct of trimethylolpropane and a caprolactone adduct of glycerin are preferable. The triol caprolactone adduct is preferably a compound having an average hydroxyl value of 300 to 600 mgKOH / g and an average of 3 hydroxyl groups.
The above-mentioned caprolactone adduct of triol is commercially available, and examples thereof include Plaxel 303, 305, 308, 312 and L320ML (manufactured by Daicel Chemical Industries, Ltd.).
 これらのポリオールは、1種のみを使用しても、2種以上を併用しても良い。
 (A)成分として脆性・柔軟性が要求される場合には、前記ポリオールとしては、炭素数2~12の脂肪族ジオール又は炭素数2~12の脂環族ジオールを用いることがより好ましい。
 (A)成分として、機械物性が要求される場合、より具体的には破断強度及び引張弾性率に優れるものが要求される場合には、ポリオールとして水酸基価基準の数平均分子量(以下、「P-Mn」ともいう。)が500以上のポリオールとP-Mnが500未満のポリオールを組み合わせて使用することが好ましい。
 尚、本発明においてポリオールのP-Mn(数平均分子量)とは、下式に従って求めた値をいう。
These polyols may use only 1 type or may use 2 or more types together.
When brittleness and flexibility are required as the component (A), it is more preferable to use an aliphatic diol having 2 to 12 carbon atoms or an alicyclic diol having 2 to 12 carbon atoms as the polyol.
In the case where mechanical properties are required as the component (A), more specifically, when excellent in breaking strength and tensile modulus are required, the number average molecular weight (hereinafter referred to as “P”) is used as the polyol. -Mn ") is preferably used in combination with a polyol having 500 or more and a polyol having P-Mn of less than 500.
In the present invention, the P—Mn (number average molecular weight) of the polyol is a value determined according to the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 より具体的には、P-Mnが500以上のポリオールとして、ポリカーボネートジオール及びポリエステルジオールが挙げられ、P-Mnが500未満のポリオールとして、炭素数2~12の脂肪族ジオール及び炭素数2~12の脂環族ジオールが挙げられ、これらを組み合わせて使用する。P-Mnが500以上のポリオールは、P-Mnが500以上10,000以上のポリオールであることが好ましい。また、P-Mnが500未満のポリオールは、P-Mnが62以上500未満のポリオールであることが好ましい。 More specifically, examples of the polyol having a P—Mn of 500 or more include polycarbonate diol and polyester diol, and examples of the polyol having a P—Mn of less than 500 include an aliphatic diol having 2 to 12 carbon atoms and 2 to 12 carbon atoms. These alicyclic diols are mentioned, and these are used in combination. The polyol having P—Mn of 500 or more is preferably a polyol having P—Mn of 500 or more and 10,000 or more. The polyol having P—Mn of less than 500 is preferably a polyol having P—Mn of 62 or more and less than 500.
1-2.有機ポリイソシアネート
 有機ポリイソシアネートとしては、有機ジイソシアネートが好ましく、無黄変型有機ジイソシアネートがより好ましい。
 無黄変型有機ジイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート(以下、「IPDI」ともいう。)、4,4’-メチレンビス(シクロヘキシルイソシアネート)、ノルボルナンジイソシアネート及びω,ω’-ジイソシアネートジメチルシクロヘキサン等の脂環族ジイソシアネート等が挙げられる。
1-2. Organic polyisocyanate As organic polyisocyanate, organic diisocyanate is preferable, and non-yellowing type organic diisocyanate is more preferable.
Examples of the non-yellowing organic diisocyanate include aliphatic diisocyanates such as hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate (hereinafter also referred to as “IPDI”), and the like. Examples thereof include alicyclic diisocyanates such as 4,4′-methylenebis (cyclohexyl isocyanate), norbornane diisocyanate, and ω, ω′-diisocyanate dimethylcyclohexane.
 これらの有機ポリイソシアネートは、1種のみを使用しても、2種以上を併用しても良い。 These organic polyisocyanates may be used alone or in combination of two or more.
 前記した化合物の中でも、硬化物の機械強度と光学特性に優れるという点で、IPDIが好ましい。 Among the above-mentioned compounds, IPDI is preferable because it is excellent in mechanical strength and optical properties of the cured product.
1-3.水酸基含有(メタ)アクリレート
 水酸基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシオクチル(メタ)アクリレート、ペンタエリスリトールトリ、ジ又はモノ(メタ)アクリレート、及びトリメチロールプロパンジ又はモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、並びにこれら化合物のカプロラクトン付加物等が挙げられる。
 前記した化合物の中でも、組成物の硬化性と硬化物の柔軟性に優れるという点で、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート及び2-ヒドロキシエチルアクリレートのカプロラクトン付加物が好ましい。
1-3. Hydroxyl group-containing (meth) acrylates Hydroxyl group-containing (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxy Hexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, pentaerythritol tri, di or mono (meth) acrylate, and hydroxyalkyl (meth) acrylates such as trimethylolpropane di or mono (meth) acrylate, and caprolactone of these compounds Examples include adducts.
Among the compounds described above, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like are excellent in curability of the composition and flexibility of the cured product. A caprolactone adduct of 2-hydroxyethyl acrylate is preferred.
1-4.(A)成分の製造方法
 (A)成分は、常法に従い製造されたものでよい。
 (A)成分としては、ポリオールと有機ポリイソシアネートを反応させてイソシアネート基含有化合物を製造し、これと水酸基含有(メタ)アクリレートを反応させた化合物(以下、「化合物A1」ともいう。)、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートを同時に反応させた化合物(以下、「化合物A2」ともいう。)等が挙げられ、分子量を制御しやすいという理由で化合物A1が好ましい。
 化合物A1を製造する場合は、ジブチルスズジラウレート等のウレタン化触媒存在下、使用するポリオール及び有機ポリイソシアネートを加熱撹拌し付加反応させ、さらにヒドロキシアルキル(メタ)アクリレートを添加し、加熱撹拌し付加反応させる方法等が挙げられ、化合物A2を製造する場合は、前記と同様の触媒の存在下に、ポリオール、有機ポリイソシアネート及びヒドロキシアルキル(メタ)アクリレートを同時に添加して加熱撹拌する方法等が挙げられる。
1-4. (A) Manufacturing method of component (A) The component may be manufactured according to the conventional method.
As the component (A), a polyol and an organic polyisocyanate are reacted to produce an isocyanate group-containing compound, which is reacted with a hydroxyl group-containing (meth) acrylate (hereinafter also referred to as “compound A1”), polyol. , Organic polyisocyanate and hydroxyl group-containing (meth) acrylate compound (hereinafter also referred to as “compound A2”), and the like, and the compound A1 is preferred because the molecular weight is easy to control.
In the case of producing compound A1, in the presence of a urethanization catalyst such as dibutyltin dilaurate, the polyol and organic polyisocyanate to be used are heated and stirred for addition reaction, and further, hydroxyalkyl (meth) acrylate is added, and heated and stirred for addition reaction. Examples of the method for producing compound A2 include a method in which a polyol, an organic polyisocyanate, and a hydroxyalkyl (meth) acrylate are simultaneously added and heated and stirred in the presence of the same catalyst as described above.
1-5.好ましい(A)成分
 本発明において、(A)成分としては、前記したものの中でも、ポリカーボネートジオール又はポリエステルジオール(以下、これらをまとめて「ジオールa」ともいう。)、炭素数2~12の脂肪族又は脂環族ジオール(以下、これらをまとめて「ジオールb」ともいう。)、無黄変型有機ジイソシアネート及び水酸基含有(メタ)アクリレートの反応物であるウレタン(メタ)アクリレートが好ましい。
 当該(A)成分は、他のウレタン(メタ)アクリレートと比較して、ポリオールとしてジオールa、短鎖ジオールとしてジオールb、有機ジイソシアネートとして無黄変型を使用することにより、機械強度に優れ、耐光性試験後の黄変度が小さいものとなり、さらに組成物の硬化物の光弾性係数1が低いものとすることができる。
 ジオールaとしては、前記したポリカーボネートジオール及びポリエステルジオールが挙げられ、ジオールbとしては、前記した炭素数2~12の脂肪族ジオール及び炭素数2~12の脂環族ジオールが挙げられる。
 これらのジオールa及びbは、1種のみを使用しても、2種以上を併用しても良い。
1-5. Preferable component (A) In the present invention, the component (A) is a polycarbonate diol or polyester diol (hereinafter also collectively referred to as “diol a”), aliphatic having 2 to 12 carbon atoms, among those described above Alternatively, urethane (meth) acrylate which is a reaction product of alicyclic diol (hereinafter collectively referred to as “diol b”), non-yellowing organic diisocyanate and hydroxyl group-containing (meth) acrylate is preferable.
Compared with other urethane (meth) acrylates, the component (A) has excellent mechanical strength and light resistance by using diol a as a polyol, diol b as a short-chain diol, and non-yellowing type as an organic diisocyanate. The degree of yellowing after the test is small, and the photoelastic coefficient 1 of the cured product of the composition can be low.
Examples of the diol a include the aforementioned polycarbonate diol and polyester diol, and examples of the diol b include the above-described aliphatic diol having 2 to 12 carbon atoms and the alicyclic diol having 2 to 12 carbon atoms.
These diols a and b may be used alone or in combination of two or more.
 ジオールa及びbの割合としては、ジオールa:5~50モル%及びジオールb:50~95モル%が好ましく、より好ましくはジオールa:5~40モル%及びジオールb:60~95モル%である。
 さらに、トリオールを併用する場合には、トリオールの割合としては、ジオールa及びbの合計:50~95モル%及びトリオール:5~50モル%好ましく、より好ましくはジオールa及び/又はb:60~95モル%及びトリオール:5~40モル%である。
The ratio of diols a and b is preferably diol a: 5 to 50 mol% and diol b: 50 to 95 mol%, more preferably diol a: 5 to 40 mol% and diol b: 60 to 95 mol%. is there.
Further, when triol is used in combination, the ratio of triol is preferably the sum of diols a and b: 50 to 95 mol% and triol: 5 to 50 mol%, more preferably diol a and / or b: 60 to 95 mol% and triol: 5 to 40 mol%.
 当該(A)成分としては、前記と同様に、ジオールa及びジオールbと無黄変型有機ジイソシアネートを反応させてイソシアネート基含有化合物を製造し、これと水酸基含有(メタ)アクリレートを反応させた化合物(化合物A-I)、ジオールa及びジオールb、無黄変型有機ジイソシアネート及び水酸基含有(メタ)アクリレートを同時に反応させた化合物(化合物A-II)等が挙げられ、分子量を制御しやすいという理由で化合物A-Iが好ましい。 As the component (A), as described above, the diol a and the diol b and a non-yellowing organic diisocyanate are reacted to produce an isocyanate group-containing compound, and a compound obtained by reacting this with a hydroxyl group-containing (meth) acrylate ( Compounds (compound A-II) obtained by reacting compound AI), diol a and diol b, non-yellowing organic diisocyanate, and hydroxyl group-containing (meth) acrylate at the same time, and the compound because the molecular weight is easy to control. AI is preferred.
 さらに、本発明において、(A)成分としては、前記したものの中でも、ジオールb(P-Mnが500未満のジオール)、無黄変型有機ジイソシアネート及び水酸基含有(メタ)アクリレートのカプロラクトン付加物の反応物であるウレタン(メタ)アクリレートが特に好ましい。当該(A)成分は、組成物の硬化物が脆性・柔軟性により優れたものとなる。
 この場合のジオールbとしては、P-Mnが62以上400以下のポリオールが好ましい。
 当該化合物の具体例としては、1,4-ブタンジオール等の炭素数2~6の脂肪族ジオール、トリシクロ[5.2.1.02,6]デカンジメタノール及び3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等の複数の環を有する脂環族ジオールが好ましく、硬化物の強度に優れる点で、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(通称;スピログリコール)が特に好ましい。
 ヒドロキシル基含有(メタ)アクリレートのカプロラクトン付加物としては、ヒドロキシアルキル(メタ)アクリレートのカプロラクトン付加物が好ましい。さらに、ヒドロキシル基含有(メタ)アクリレートに対するカプロラクトンの反応割合として、0.1モルより大きく、2.0モルより小さいものが好ましい。
 当該(A)成分の製造方法も、前記と同様に実施すればよく、好ましい製造方法も前記と同様である。
Further, in the present invention, as the component (A), among the above-mentioned components, a reaction product of a caprolactone adduct of diol b (a diol having P-Mn of less than 500), a non-yellowing organic diisocyanate, and a hydroxyl group-containing (meth) acrylate Particularly preferred is urethane (meth) acrylate. In the component (A), the cured product of the composition is excellent due to brittleness and flexibility.
In this case, the diol b is preferably a polyol having P-Mn of 62 or more and 400 or less.
Specific examples of the compound include aliphatic diols having 2 to 6 carbon atoms such as 1,4-butanediol, tricyclo [5.2.1.0 2,6 ] decandimethanol, and 3,9-bis (1 , 1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane and other alicyclic diols having a plurality of rings are preferable, and the strength of the cured product is excellent. 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (common name; spiroglycol) is particularly preferred.
The caprolactone adduct of hydroxyl group-containing (meth) acrylate is preferably a caprolactone adduct of hydroxyalkyl (meth) acrylate. Furthermore, the reaction ratio of caprolactone to the hydroxyl group-containing (meth) acrylate is preferably greater than 0.1 mol and less than 2.0 mol.
The method for producing the component (A) may be carried out in the same manner as described above, and the preferred production method is also the same as described above.
2.(B)成分
 (B)成分は、光弾性係数2が5×10-12Pa-1以下の値を有するポリマーであって、(A)成分以外のポリマーである。また、(B)成分の光弾性係数2は、-15×10-12Pa-1以上であることが好ましい。
 本発明において光弾性係数2とは、前記した通り、使用した(A)成分に対し任意の割合で(B)成分を添加して得られた光学フィルムの23℃における光弾性係数の値を測定し、その添加量と光弾性係数との直線グラフから外挿した、添加量が100%のときの値を意味する。
 (A)成分及び(B)成分の添加量と光弾性係数との関係を直線グラフする際は、測定値を3点以上求めることが好ましく、また、直線グラフは最小二乗法により作製することが好ましい。
 (A)成分の硬化物や組成物の硬化物は成膜できるため、自動複屈折系を使用して光弾性係数を直接測定できるが、(B)成分は成膜が困難なため光弾性係数を直接測定できないため、上記光弾性係数2を光弾性係数とする。
2. Component (B) The component (B) is a polymer having a photoelastic coefficient 2 of 5 × 10 −12 Pa −1 or less, and is a polymer other than the component (A). Further, the photoelastic coefficient 2 of the component (B) is preferably −15 × 10 −12 Pa −1 or more.
In the present invention, the photoelastic coefficient 2 is the value of the photoelastic coefficient at 23 ° C. of the optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used as described above. And the value when the addition amount is 100% extrapolated from the linear graph of the addition amount and the photoelastic coefficient is meant.
When graphing the relationship between the addition amount of the component (A) and the component (B) and the photoelastic coefficient, it is preferable to obtain three or more measured values, and the graph can be prepared by the least square method. preferable.
Since the cured product of the component (A) and the cured product of the composition can be formed into a film, the photoelastic coefficient can be directly measured using an automatic birefringence system. Can not be measured directly, the photoelastic coefficient 2 is the photoelastic coefficient.
 前記した通り、(A)成分の硬化物は、30×10-12Pa-1以下の正の光弾性係数1、好ましくは10×10-12~30×10-12Pa-1の範囲の正の光弾性係数1を有するため、光弾性係数2が5×10-12Pa-1以下である(B)成分を配合することにより、組成物の硬化物の光弾性係数2を10×10-12Pa-1以下とすることができる。 As described above, the cured product of component (A) has a positive photoelastic coefficient of 1 of 30 × 10 −12 Pa −1 or less, preferably 10 × 10 −12 to 30 × 10 −12 Pa −1. Therefore, by blending the component (B) having a photoelastic coefficient 2 of 5 × 10 −12 Pa −1 or less, the photoelastic coefficient 2 of the cured product of the composition is 10 × 10 −. It can be 12 Pa −1 or less.
 (B)成分の光弾性係数2としては、-10×10-12~5×10-12Pa-1が好ましく、より好ましくは-10×10-12~2×10-12Pa-1であり、更に好ましくは-10×10-12~-2×10-12Pa-1である。 The photoelastic coefficient 2 of the component (B) is preferably −10 × 10 −12 to 5 × 10 −12 Pa −1 , more preferably −10 × 10 −12 to 2 × 10 −12 Pa −1 . More preferably, it is −10 × 10 −12 to −2 × 10 −12 Pa −1 .
 (B)成分のMwは、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましい。
 Mwを1,000以上とすることで、(B)成分製造時に重合開始剤や連鎖移動剤の量を少なくでき、これにより硬化物の光弾性係数1の上昇や着色の問題を防止することができ、一方、100,000以下とすることで、(A)成分との相溶性に優れ、硬化物の濁りを防止することができる。
The Mw of the component (B) may be appropriately set depending on the purpose, and is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
By making Mw 1,000 or more, the amount of the polymerization initiator and the chain transfer agent can be reduced at the time of producing the component (B), thereby preventing an increase in the photoelastic coefficient 1 and coloring problems of the cured product. On the other hand, by making it 100,000 or less, it is excellent in compatibility with the component (A), and the turbidity of the cured product can be prevented.
 (B)成分としては、前記した光弾性係数2を有するポリマーであれば種々の化合物が使用でき、(メタ)アクリロイル基を有するモノマーの単独重合体又は共重合体、N-ビニル-2-ピロリドン共重合体、α-メチルスチレンの単独重合体又は共重合体、エチレン-テトラシクロドデセン共重合体等が挙げられる。 As the component (B), various compounds can be used as long as the polymer has a photoelastic coefficient of 2, and a homopolymer or copolymer of a monomer having a (meth) acryloyl group, N-vinyl-2-pyrrolidone, Examples include copolymers, homopolymers or copolymers of α-methylstyrene, and ethylene-tetracyclododecene copolymers.
 (メタ)アクリロイル基を有するモノマーとしては、具体的には(メタ)アクリル酸;
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリシジル(メタ)アクリレート等の(メタ)アクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;
 N-(メタ)アクリロイルモルホリン;並びに
 (メタ)アクリルアミド、N-メチロールアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアクリルアミド類等が挙げられる。
Specific examples of the monomer having a (meth) acryloyl group include (meth) acrylic acid;
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meta ) (Meth) acrylates such as acrylate, dicyclopentenyl (meth) acrylate, glycidyl (meth) acrylate;
Hydroxyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate;
N- (meth) acryloylmorpholine; and (meth) acrylamide, N-methylol acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide And acrylamides.
 (メタ)アクリロイル基を有するモノマーの共重合体としては、アミド構造又はカルボキシル基を有する共重合体が、負の光弾性係数2の値が大きく、(A)成分との相溶性に優れる点で好ましい。
 アミド構造を有する共重合体において、アミド構造としてはモルホリン構造が好ましい。アミド構造を有する共重合体の具体例としては、(メタ)アクリレートとN-(メタ)アクリロイルモルホリンとの共重合体が好ましい。
 アミド構造を有する共重合体の場合、アミド構造を有する単量体の割合としては、使用する全モノマーの合計100重量部に対して、5~50重量部が好ましい。
 カルボキシル基を有する共重合体の具体例としては、(メタ)アクリレートとアクリル酸又はメタクリル酸の共重合体が好ましい。
 カルボキシル基を有する共重合体の場合、酸価としては、5~65mgKOH/gが好ましい。
As a copolymer of a monomer having a (meth) acryloyl group, a copolymer having an amide structure or a carboxyl group has a large negative photoelastic coefficient 2 and is excellent in compatibility with the component (A). preferable.
In the copolymer having an amide structure, the amide structure is preferably a morpholine structure. As a specific example of the copolymer having an amide structure, a copolymer of (meth) acrylate and N- (meth) acryloylmorpholine is preferable.
In the case of a copolymer having an amide structure, the proportion of the monomer having an amide structure is preferably 5 to 50 parts by weight with respect to 100 parts by weight as a total of all monomers used.
As a specific example of the copolymer having a carboxyl group, a copolymer of (meth) acrylate and acrylic acid or methacrylic acid is preferable.
In the case of a copolymer having a carboxyl group, the acid value is preferably from 5 to 65 mgKOH / g.
 (メタ)アクリロイル基を有するモノマーの単独重合体又は共重合体としては、市販のものも使用することができる。例えば、デルペット60N、80N〔旭化成ケミカルズ(株)製〕、ダイヤナールBR52、BR80,BR83,BR85,BR87,BR88〔三菱レイヨン(株)製〕、KT75〔電気化学工業(株)製〕等が挙げられる。
 ダイヤナールは、(メタ)アクリロイル基を有するモノマーの共重合体であって、BR83,BR87,BR88はカルボキシル基を有する共重合体の市販品である。
As the homopolymer or copolymer of the monomer having a (meth) acryloyl group, a commercially available product can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR87, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.), etc. Can be mentioned.
Dianal is a copolymer of monomers having a (meth) acryloyl group, and BR83, BR87 and BR88 are commercially available copolymers having a carboxyl group.
 N-ビニル-2-ピロリドン共重合体において、N-ビニル-2-ピロリドンの共重合モノマーとしては、酢酸ビニル及びアルキル(メタ)アクリレート等が挙げられる。
 N-ビニル-2-ピロリドン共重合体の具体例としては、ビニルピロリドン・酢酸ビニル共重合体、ビニルピロリドン・メチル(メタ)アクリレート共重合体、ビニルピロリドン・エチル(メタ)アクリレート共重合体、ビニルピロリドン・ブチル(メタ)アクリレート共重合体等を挙げることができる。
In the N-vinyl-2-pyrrolidone copolymer, examples of N-vinyl-2-pyrrolidone copolymer monomers include vinyl acetate and alkyl (meth) acrylate.
Specific examples of the N-vinyl-2-pyrrolidone copolymer include vinyl pyrrolidone / vinyl acetate copolymer, vinyl pyrrolidone / methyl (meth) acrylate copolymer, vinyl pyrrolidone / ethyl (meth) acrylate copolymer, vinyl A pyrrolidone butyl (meth) acrylate copolymer etc. can be mentioned.
 N-ビニル-2-ピロリドン共重合体としては、市販のものも使用することができる。例えば、PVP/VA S-630〔アイエスピー・ジャパン(株)製〕等が挙げられる。 As the N-vinyl-2-pyrrolidone copolymer, a commercially available product can also be used. For example, PVP / VA S-630 (manufactured by IPS Japan Co., Ltd.) and the like can be mentioned.
 (B)成分の製造方法としては、特に制限はなく、前記した単量体を使用して、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いてもよい。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。 There is no restriction | limiting in particular as a manufacturing method of (B) component, Any of well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization, may be used using the above-mentioned monomer. . Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used.
 重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~300℃で実施することが好ましい。さらに、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The polymerization temperature is preferably 30 to 100 ° C. for suspension or emulsion polymerization and 80 to 300 ° C. for bulk or solution polymerization. Furthermore, the polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 本発明における(B)成分としては、エチレン性不飽和基を有するポリマー〔以下、「(UB)成分」ともいう。)が好ましい。
 (UB)成分は、活性エネルギー線の照射によって(A)成分と化学的に架橋する。従って、エチレン性不飽和基を持たない光弾性係数2が負の値を有するポリマーを配合する場合において、得られる硬化物の柔軟性や脆性が低下してしまうという問題があったが、光弾性係数2が負の値を有するポリマーをより多く配合することが可能になり、硬化物の光弾性係数2をより大きく低減することができる。
 以下、(UB)成分について説明する。
As the component (B) in the present invention, a polymer having an ethylenically unsaturated group [hereinafter also referred to as “(UB) component”. Is preferred.
The (UB) component is chemically cross-linked with the (A) component by irradiation with active energy rays. Therefore, when a polymer having a negative photoelastic coefficient 2 having no ethylenically unsaturated group is blended, there is a problem that the flexibility and brittleness of the obtained cured product are reduced. It becomes possible to mix more polymers having a negative value of the coefficient 2, and the photoelastic coefficient 2 of the cured product can be greatly reduced.
Hereinafter, the (UB) component will be described.
2-1.(UB)成分
 (UB)成分中のエチレン性不飽和基としては、ビニル基、ビニルエーテル基、(メタ)アクリロイル基、及び(メタ)アクリルアミド基等が挙げられる。これらの中でも、(B)成分の製造が容易で、活性エネルギー線による硬化性に優れる点から、特に(メタ)アクリロイル基が好ましく、より好ましくはアクリロイル基である。
2-1. Examples of the ethylenically unsaturated group in the (UB) component (UB) component include a vinyl group, a vinyl ether group, a (meth) acryloyl group, and a (meth) acrylamide group. Among these, the (meth) acryloyl group is particularly preferable, and the acryloyl group is more preferable because the component (B) is easy to produce and has excellent curability by active energy rays.
 (UB)成分としては、光弾性係数2が5×10-12Pa-1以下で、かつエチレン性不飽和基を有するポリマーであれば種々の化合物が使用でき、例えば、下記に示すポリマーを挙げることができる。
1)ポリマーUB1:カルボキシル基を含有する重合体(以下、「カルボキシル基含有プレポリマー」ともいう。)及び/又は水酸基を含有する重合体(以下、「水酸基含有プレポリマー」ともいう。)に、イソシアネート基及びエチレン性不飽和基を有する化合物(以下、「イソシアネート系不飽和化合物」ともいう。)を付加して得られたポリマー
2)ポリマーUB2:カルボキシル基含有プレポリマーに、エポキシ基及びエチレン性不飽和基を有する化合物(以下「エポキシ系不飽和化合物」ともいう。)を付加して得られたポリマー
3)ポリマーUB3:エポキシ基を含有する重合体(以下、「エポキシ基含有プレポリマー」ともいう。)に、カルボキシル基及びエチレン性不飽和基を有する化合物(以下「カルボキシル系不飽和化合物」ともいう。)を付加して得られたポリマー
 以下、ポリマーUB1~UB3について説明する。
As the (UB) component, various compounds can be used as long as the photoelastic coefficient 2 is 5 × 10 −12 Pa −1 or less and the polymer has an ethylenically unsaturated group, and examples thereof include the following polymers. be able to.
1) Polymer UB1: To a polymer containing a carboxyl group (hereinafter also referred to as “carboxyl group-containing prepolymer”) and / or a polymer containing a hydroxyl group (hereinafter also referred to as “hydroxyl group-containing prepolymer”). Polymer 2 obtained by adding a compound having an isocyanate group and an ethylenically unsaturated group (hereinafter also referred to as “isocyanate-based unsaturated compound”) 2) Polymer UB2: epoxy group and ethylenic group to carboxyl group-containing prepolymer Polymer 3 obtained by adding a compound having an unsaturated group (hereinafter also referred to as “epoxy unsaturated compound”) Polymer UB3: Polymer containing epoxy group (hereinafter referred to as “epoxy group-containing prepolymer”) And a compound having a carboxyl group and an ethylenically unsaturated group (hereinafter referred to as “carboxyl unsaturated group”). Also referred to as objects ".) The following polymer obtained by adding, described polymer UB1 ~ UB3.
2-1-1.プレポリマーの製造方法
 プレポリマーを構成するモノマーは、得られるプレポリマーの光弾性係数2が5×10-12Pa-1以下であるモノマーを適宜選択すればよいが、その中でも、(メタ)アクリロイル基を有する化合物を好適に用いることができる。
 以下、カルボキシル基含有プレポリマー、水酸基含有プレポリマー及びエポキシ基含有プレポリマーの製造方法について説明する。
2-1-1. Production method of prepolymer As the monomer constituting the prepolymer, a monomer whose photoelastic coefficient 2 of the obtained prepolymer is 5 × 10 −12 Pa −1 or less may be appropriately selected. Among them, (meth) acryloyl A compound having a group can be preferably used.
Hereinafter, the manufacturing method of a carboxyl group-containing prepolymer, a hydroxyl group-containing prepolymer, and an epoxy group-containing prepolymer will be described.
2-1-1-1.カルボキシル基含有プレポリマーの製造方法
 ポリマーUB1及びポリマーUB2の製造で使用する、カルボキシル基含有プレポリマーとしては、カルボキシル系不飽和化合物とこれ以外のエチレン性不飽和化合物(以下、「その他不飽和化合物」ともいう。)との共重合体、及びカルボキシル基を有する連鎖移動剤の存在下にその他不飽和化合物を重合した末端にカルボキシル基を含有する重合体(以下、末端カルボキシル基含有重合体)等が挙げられる。
2-1-1-1. Production method of carboxyl group-containing prepolymer The carboxyl group-containing prepolymer used in the production of the polymer UB1 and polymer UB2 includes a carboxyl-based unsaturated compound and other ethylenically unsaturated compounds (hereinafter referred to as “other unsaturated compounds”). And a polymer containing a carboxyl group at the terminal obtained by polymerizing another unsaturated compound in the presence of a chain transfer agent having a carboxyl group (hereinafter referred to as a terminal carboxyl group-containing polymer). Can be mentioned.
 まずカルボキシル系不飽和化合物とその他不飽和化合物との共重合体について説明する。 First, a copolymer of a carboxyl unsaturated compound and other unsaturated compounds will be described.
 カルボキシル系不飽和化合物としては、(メタ)アクリル酸、(メタ)アクリル酸のポリカプロラクトン変性物及びフタル酸モノヒドロキシエチル(メタ)アクリレート、コハク酸モノヒドロキシエチル(メタ)アクリレート等のカルボキシル基含有(メタ)アクリレート等が挙げられる。
 これらの中でも、特に得られる(UB)成分の光弾性係数2がより低いものとなることから、(メタ)アクリル酸を用いることが好ましい。
Examples of carboxyl unsaturated compounds include (meth) acrylic acid, modified polycaprolactone of (meth) acrylic acid, and carboxyl groups such as monohydroxyethyl (meth) acrylate phthalate and monohydroxyethyl (meth) acrylate succinate ( And (meth) acrylate.
Among these, (meth) acrylic acid is preferably used because the photoelastic coefficient 2 of the (UB) component obtained is particularly low.
 その他不飽和化合物としては、得られる(UB)成分の光弾性係数2が5×10-12Pa-1以下であれば特に限定されないが、上記のカルボキシル系不飽和化合物との共重合性に優れることから(メタ)アクリロイル基有する化合物が好ましい。
 (メタ)アクリロイル基有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリシジル(メタ)アクリレート等の(メタ)アクリレート;
N-(メタ)アクリロイルモルホリン;
 (メタ)アクリルアミド、N-メチロールアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアクリルアミド類;並びに
 (メタ)アクリロニトリル等が挙げられる。
 必要に応じて、(メタ)アクリロイル基有する化合物以外の化合物も使用することができ、スチレン、α-メチルスチレン及び酢酸ビニル等が挙げられる。
 これらの中でも、特に得られる(B)成分の光弾性係数2がより低いものとなることから、メチル(メタ)アクリレート及びN-(メタ)アクリロイルモルホリンを用いることが好ましい。
The other unsaturated compound is not particularly limited as long as the photoelastic coefficient 2 of the obtained (UB) component is 5 × 10 −12 Pa −1 or less, but is excellent in copolymerizability with the above carboxyl-based unsaturated compound. Therefore, a compound having a (meth) acryloyl group is preferred.
Examples of the compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl ( (Meth) acrylates such as (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, glycidyl (meth) acrylate;
N- (meth) acryloylmorpholine;
Acrylamides such as (meth) acrylamide, N-methylol acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide; and (meth) Examples include acrylonitrile.
If necessary, compounds other than the compound having a (meth) acryloyl group can also be used, and examples thereof include styrene, α-methylstyrene, and vinyl acetate.
Among these, it is preferable to use methyl (meth) acrylate and N- (meth) acryloylmorpholine because the photoelastic coefficient 2 of the component (B) obtained is particularly low.
 当該プレポリマーとしては、さらに、水酸基及びエチレン性不飽和基を有する化合物(以下「水酸系不飽和化合物」ともいう。)を共重合したものであってもよい。
 水酸系不飽和化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート及びヒドロキシヘキシル(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート、並びにヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル等が挙げられる。
The prepolymer may further be a copolymer of a compound having a hydroxyl group and an ethylenically unsaturated group (hereinafter, also referred to as “hydroxy acid unsaturated compound”).
Hydroxy unsaturated compounds include hydroxyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and hydroxyhexyl (meth) acrylate, And hydroxyalkyl vinyl ethers such as hydroxybutyl vinyl ether.
 カルボキシル系不飽和化合物とその他不飽和化合物との共重合体の製造方法としては、特に制限は無く、前記した化合物を使用して、懸濁重合、乳化重合、塊状重合、溶液重合等の公知の方法を用いることができる。
 これらの中でも、重合体の製造が容易、かつ乳化剤等の余計な不純物を含まない点で溶液重合法が好ましい。
The method for producing a copolymer of a carboxyl unsaturated compound and other unsaturated compounds is not particularly limited, and known methods such as suspension polymerization, emulsion polymerization, bulk polymerization, solution polymerization and the like are used without any limitation. The method can be used.
Among these, the solution polymerization method is preferable because the polymer can be easily produced and does not contain extra impurities such as an emulsifier.
 溶液重合法で製造する場合は、使用する原料モノマーを有機溶剤に溶解し、熱重合開始剤を添加し、加熱撹拌することにより得られる。溶液重合法でラジカル重合により合成する場合は、使用する原料モノマーを有機溶剤に溶解し、熱ラジカル重合開始剤を添加し、加熱撹拌することにより得られる。又、必要に応じて、重合体の分子量を調節するために連鎖移動剤を使用することができる。 In the case of producing by a solution polymerization method, the raw material monomer to be used is dissolved in an organic solvent, a thermal polymerization initiator is added, and the mixture is heated and stirred. In the case of synthesizing by radical polymerization by a solution polymerization method, the raw material monomer to be used is dissolved in an organic solvent, a thermal radical polymerization initiator is added, and the mixture is heated and stirred. Further, a chain transfer agent can be used to adjust the molecular weight of the polymer, if necessary.
 溶液重合法に用いられる有機溶剤としては、アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;プロピレングリコールモノメチルエーテル等のエーテル類;トルエン、キシレン等の芳香族炭化水素類;並びにヘキサン、ヘプタン及びミネラルスピリット等の脂肪族炭化水素類等が挙げられる。 Organic solvents used in the solution polymerization method include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and butyl acetate; ethers such as propylene glycol monomethyl ether; aromatic carbonization such as toluene and xylene. Hydrogen; and aliphatic hydrocarbons such as hexane, heptane and mineral spirit.
 熱重合開始剤としては、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、アゾビスシクロヘキサンカルボニトリル及びアゾビスシアノバレリックアシッド等のアゾ系開始剤;
 t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、ジラウロイルパーオキシド、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ-t-ブチルパーオキシド及びジクミルパーオキシド等の有機過酸化物;並びに
 過酸化水素-鉄(II)塩、ペルオキソ二硫酸塩-亜硫酸水素ナトリウム、クメンヒドロペルオキシド-鉄(II)塩等が挙げられる。
 熱重合開始剤の使用割合は、目標とする分子量に応じて適宜設定すればよい。熱重合開始剤の使用割合は、使用する全モノマーの合計100重量部に対して、0.1~10重量部が好ましい。
Examples of thermal polymerization initiators include azo initiators such as azobisisobutyronitrile, azobisisovaleronitrile, azobiscyclohexanecarbonitrile, and azobiscyanovaleric acid;
Organic peroxides such as t-butyl peroxypivalate, t-hexyl peroxypivalate, dilauroyl peroxide, di (2-ethylhexyl) peroxydicarbonate, di-t-butyl peroxide and dicumyl peroxide And hydrogen peroxide-iron (II) salt, peroxodisulfate-sodium hydrogen sulfite, cumene hydroperoxide-iron (II) salt, and the like.
What is necessary is just to set suitably the usage-amount of a thermal-polymerization initiator according to the target molecular weight. The use ratio of the thermal polymerization initiator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight in total of all monomers used.
 連鎖移動剤は、上述のMwの範囲に調整するために必要に応じて使用してもよいが、連鎖移動剤の使用により、(B)成分の光弾性係数2が増加することがあるため、連鎖移動剤を極力少ない量で調整することが好ましい。
 連鎖移動剤としては、公知の連鎖移動剤を用いることができる。例えば、ドデシルメルカプタン、ラウリルメルカプタン、グリシジルメルカプタン、2-メルカプトエタノール、3-メルカプトプロピオン酸、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール等のメルカプタン類の他、α-メチルスチレンダイマー等が挙げられる。
 これら連鎖移動剤は、単独又は2種以上の組み合わせで使用してもよい。
 連鎖移動剤の使用割合は、通常用いられる使用量と同程度であればよく、使用する全モノマーの合計100重量部として、0.01~7重量部が好ましい。
The chain transfer agent may be used as necessary to adjust to the above-mentioned Mw range, but the use of the chain transfer agent may increase the photoelastic coefficient 2 of the component (B). It is preferable to adjust the chain transfer agent in as small an amount as possible.
A known chain transfer agent can be used as the chain transfer agent. For example, in addition to mercaptans such as dodecyl mercaptan, lauryl mercaptan, glycidyl mercaptan, 2-mercaptoethanol, 3-mercaptopropionic acid, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, α- And methyl styrene dimer.
These chain transfer agents may be used alone or in combination of two or more.
The amount of the chain transfer agent used may be the same as the amount normally used, and is preferably 0.01 to 7 parts by weight as a total of 100 parts by weight of all monomers used.
 以上のようにして得られた重合体は、側鎖にカルボキシル基を有する重合体である。
 カルボキシル系不飽和化合物とその他不飽和化合物との共重合割合としては、最終的に導入するエチレン性不飽和基の割合に応じて適宜設定すればよく、カルボキシル系不飽和化合物とその他不飽和化合物合計量100重量に対して、カルボキシル系不飽和化合物が1~40重量%とその他不飽和化合物60~99重量%が好ましい。
 カルボキシル系不飽和化合物とその他不飽和化合物との共重合体のMwとしては、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましい。
The polymer obtained as described above is a polymer having a carboxyl group in the side chain.
What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce | transduced as a copolymerization ratio of a carboxyl type unsaturated compound and other unsaturated compounds, and a carboxyl type unsaturated compound and other unsaturated compounds total The amount of carboxyl unsaturated compound is preferably 1 to 40% by weight and the other unsaturated compound 60 to 99% by weight with respect to 100% by weight.
The Mw of the copolymer of the carboxyl unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50,000. It is more preferable that
 次に末端カルボキシル基含有重合体の製造方法について説明する。
 末端カルボキシル基含有重合体の製造方法としては、例えばカルボキシル基を有する連鎖移動剤の存在下に、その他不飽和化合物を重合する方法等が挙げられる。
 その他不飽和化合物としては、前記と同様の化合物を挙げることができ、前記と同様の化合物が好ましい。
 カルボキシル基を有する連鎖移動剤としては、3-メルカプトプロピオン酸、メルカプト酢酸等が挙げられる。
 カルボキシル基を有する連鎖移動剤の割合としては、最終的に導入するエチレン性不飽和基の割合に応じて適宜設定すればよく、使用する全モノマーの合計100重量部に対して、0.01~7重量部が好ましい。
 重合方法としては、前記と同様の方法が採用できる。
Next, the manufacturing method of a terminal carboxyl group containing polymer is demonstrated.
Examples of the method for producing the terminal carboxyl group-containing polymer include a method of polymerizing other unsaturated compounds in the presence of a chain transfer agent having a carboxyl group.
Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
Examples of the chain transfer agent having a carboxyl group include 3-mercaptopropionic acid and mercaptoacetic acid.
The ratio of the chain transfer agent having a carboxyl group may be appropriately set according to the ratio of the ethylenically unsaturated group to be finally introduced, and is 0.01 to 100 parts by weight with respect to a total of 100 parts by weight of all monomers used. 7 parts by weight is preferred.
As the polymerization method, the same method as described above can be employed.
 以上のようにして得られた重合体は、末端にカルボキシル基を有する重合体である。
 末端カルボキシル基含有重合体のMwとしては、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、10,000~50,000であることがより好ましい。
The polymer obtained as described above is a polymer having a carboxyl group at the terminal.
The Mw of the terminal carboxyl group-containing polymer may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, more preferably 10,000 to 50,000.
 カルボキシル基含有プレポリマーとしては、1分子中に導入するエチレン性不飽和基の数と位置を制御できるという理由で、末端カルボキシル基含有重合体が好ましい。 The carboxyl group-containing prepolymer is preferably a terminal carboxyl group-containing polymer because the number and position of ethylenically unsaturated groups introduced into one molecule can be controlled.
2-1-1-2.水酸基含有プレポリマーの製造方法
 ポリマーUB1で使用する水酸基含有プレポリマーとしては、水酸系不飽和化合物とその他不飽和化合物の共重合体、及び水酸基を有する連鎖移動剤の存在下にその他不飽和化合物を重合した末端に水酸基を含有する重合体(以下、「末端水酸基含有重合体」ともいう。)等が挙げられる。
2-1-1-2. Method for Producing Hydroxyl-Containing Prepolymer Hydroxyl-containing prepolymer used in polymer UB1 includes a copolymer of a hydroxy unsaturated compound and other unsaturated compounds, and other unsaturated compounds in the presence of a chain transfer agent having a hydroxyl group. And a polymer containing a hydroxyl group at the terminal obtained by polymerizing (hereinafter also referred to as “terminal hydroxyl group-containing polymer”).
 水酸系不飽和化合物としては、前記と同様の化合物が挙げられる。
 その他不飽和化合物としては、前記と同様の化合物を挙げることができ、前記と同様の化合物が好ましい。
Examples of the hydroxy unsaturated compound include the same compounds as described above.
Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
 水酸系不飽和化合物とその他不飽和化合物の共重合体の製造方法としては、前記と同様の方法に従い製造することができる。 As a method for producing a copolymer of a hydroxyl-based unsaturated compound and another unsaturated compound, it can be produced according to the same method as described above.
 以上のようにして得られた共重合体は、側鎖に水酸基を有する共重合体である。
 水酸系不飽和化合物とその他不飽和化合物との共重割合としては、最終的に導入するエチレン性不飽和基の割合に応じて適宜設定すればよく、水酸系不飽和化合物とその他不飽和化合物合計量100重量に対して、水酸系不飽和化合物が1~40重量%とその他不飽和化合物60~99重量%とである。
 水酸系不飽和化合物とその他不飽和化合物との共重合体のMwとしては、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましい。
The copolymer obtained as described above is a copolymer having a hydroxyl group in the side chain.
What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce | transduced as a copolymerization ratio of a hydroxyl-type unsaturated compound and other unsaturated compounds, and a hydroxyl-type unsaturated compound and other unsaturated compounds The amount of the hydroxy unsaturated compound is 1 to 40% by weight and the other unsaturated compound is 60 to 99% by weight with respect to 100% by weight of the total compound.
The Mw of the copolymer of the hydroxy unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50, More preferably, it is 000.
 次に、末端水酸基含有重合体の製造方法について説明する。
 末端水酸基含有重合体の製造方法としては、例えば水酸基を有する連鎖移動剤の存在下に、その他不飽和化合物を重合する方法等が挙げられる。
 その他不飽和化合物としては、前記と同様の化合物を挙げることができ、前記と同様の化合物が好ましい。
 水酸基を有する連鎖移動剤としては、2-メルカプトエタノール等が挙げられる。
 水酸基を有する連鎖移動剤の割合としては、最終的に導入するエチレン性不飽和基の割合に応じて適宜設定すればよく、使用する全モノマーの合計100重量部に対して、0.01~7重量部が好ましい。
 重合方法としては、前記と同様の方法が採用できる。
Next, the manufacturing method of a terminal hydroxyl group containing polymer is demonstrated.
Examples of the method for producing a terminal hydroxyl group-containing polymer include a method of polymerizing other unsaturated compounds in the presence of a chain transfer agent having a hydroxyl group.
Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
Examples of the chain transfer agent having a hydroxyl group include 2-mercaptoethanol.
The ratio of the chain transfer agent having a hydroxyl group may be appropriately set according to the ratio of the ethylenically unsaturated group to be finally introduced. Part by weight is preferred.
As the polymerization method, the same method as described above can be employed.
 以上のようにして得られた重合体は、末端に水酸基を有する重合体である。
 末端水酸基含有重合体のMwとしては、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましい。
The polymer obtained as described above is a polymer having a hydroxyl group at the terminal.
The Mw of the terminal hydroxyl group-containing polymer may be appropriately set depending on the purpose, and is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
 水酸基含有プレポリマーとしては、1分子中に導入するエチレン性不飽和基の数と位置を制御できるという理由で、末端水酸基含有重合体が、好ましい。 As the hydroxyl group-containing prepolymer, a terminal hydroxyl group-containing polymer is preferable because the number and position of ethylenically unsaturated groups introduced into one molecule can be controlled.
2-1-1-3.エポキシ基含有プレポリマーの製造方法
 ポリマーUB3で使用するエポキシ基含有プレポリマーとしては、エポキシ系不飽和化合物とその他不飽和化合物の共重合体が挙げられる。
2-1-1-3. Production Method of Epoxy Group-Containing Prepolymer Examples of the epoxy group-containing prepolymer used in the polymer UB3 include a copolymer of an epoxy unsaturated compound and other unsaturated compounds.
 エポキシ系不飽和化合物としては、グリシジル(メタ)アクリレート及びシクロヘキセンオキサイド含有(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート等が挙げられる。
 その他不飽和化合物としては、前記と同様の化合物を挙げることができ、前記と同様の化合物が好ましい。
Examples of the epoxy unsaturated compound include epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and cyclohexene oxide-containing (meth) acrylate.
Examples of other unsaturated compounds include the same compounds as described above, and the same compounds as described above are preferable.
 エポキシ系不飽和化合物とその他不飽和化合物の共重合体の製造方法としては、前記と同様の方法に従い製造することができる。 As a method for producing a copolymer of an epoxy unsaturated compound and other unsaturated compounds, it can be produced according to the same method as described above.
 以上のようにして得られた共重合体は、側鎖にエポキシ基を有する共重合体である。
 エポキシ系不飽和化合物とその他不飽和化合物との共重割合としては、最終的に導入するエチレン性不飽和基の割合に応じて適宜設定すればよく、エポキシ系不飽和化合物とその他不飽和化合物合計量100重量に対して、エポキシ系不飽和化合物が1~40重量%とその他不飽和化合物60~99重量%とである。
 エポキシ系不飽和化合物とその他不飽和化合物との共重合体のMwとしては、目的に応じて適宜設定すればよく、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましい。
The copolymer obtained as described above is a copolymer having an epoxy group in the side chain.
What is necessary is just to set suitably according to the ratio of the ethylenically unsaturated group finally introduce | transduced as a co-weight ratio of an epoxy type unsaturated compound and other unsaturated compounds, and an epoxy type unsaturated compound and other unsaturated compounds total The amount of the epoxy unsaturated compound is 1 to 40% by weight and the other unsaturated compound is 60 to 99% by weight with respect to the amount of 100% by weight.
The Mw of the copolymer of the epoxy unsaturated compound and the other unsaturated compound may be appropriately set according to the purpose, and is preferably 1,000 to 100,000, preferably 1,000 to 50,000. It is more preferable that
2-1-2.(UB)成分の製造方法
 (UB)成分は、カルボキシル基含有プレポリマー、水酸基含有プレポリマー、エポキシ基含有プレポリマーに対し、これらプレポリマーと反応しうる官能基とエチレン性不飽和基を有する化合物を付加反応することによって導入される。
 付加反応の方法としては、常法に従えばよい。
 例えば、いずれの場合においても、有機溶媒中、水媒体中又は無溶剤で、プレポリマーに各化合物を付加することにより製造することができる。各付加反応の条件としては、各反応に応じて反応温度、反応時間及び触媒を選択すればよい。
 以下、付加反応について説明する。
2-1-2. (UB) the production method (UB) of component are carboxyl group-containing prepolymer, hydroxyl group-containing prepolymer, with respect to the epoxy group-containing prepolymer, a compound having a functional group and an ethylenically unsaturated group capable of reacting with these prepolymers Is introduced by addition reaction.
What is necessary is just to follow a conventional method as a method of addition reaction.
For example, in any case, it can be produced by adding each compound to a prepolymer in an organic solvent, in an aqueous medium or without a solvent. As conditions for each addition reaction, a reaction temperature, a reaction time, and a catalyst may be selected according to each reaction.
Hereinafter, the addition reaction will be described.
 ポリマーUB1は、カルボキシル基含有プレポリマー及び/又は水酸基含有プレポリマーに、イソシアネート系不飽和化合物をウレタン化反応で付加して製造する。 Polymer UB1 is produced by adding an isocyanate-based unsaturated compound to a carboxyl group-containing prepolymer and / or a hydroxyl group-containing prepolymer by a urethanization reaction.
 イソシアネート系不飽和化合物としては、前記(A)成分の製造で挙げた有機ポリイソシアネートが挙げられ、好ましくは、2-イソシアネートエチル(メタ)アクリレート、IPDIと2-ヒドロキシエチルアクリレートとのモノアダクト体等を挙げることができる。 Examples of the isocyanate-based unsaturated compound include the organic polyisocyanates mentioned in the preparation of the component (A), preferably 2-isocyanatoethyl (meth) acrylate, monoadducts of IPDI and 2-hydroxyethyl acrylate, and the like. Can be mentioned.
 ウレタン化反応の触媒としては、例えば有機金属化合物を挙げることができる。
 有機金属化合物としては、ジ-n-ブチルスズオキシド、ジ-n-ブチルスズジラウレート、ジ-n-ブチルスズ、ジ-n-ブチルスズジアセテート、ジ-n-オクチルスズオキシド、ジ-n-オクチルスズジラウレート、モノブチルスズトリクロリド、ジ-n-ブチルスズジアルキルメルカプタン、ジ-n-オクチルスズジアルキルメルカプタン等の有機スズ化合物;オレイン酸鉛、2-エチルヘキサン酸鉛、ナフテン酸鉛、オクテン酸鉛等の有機鉛化合物;オクチル酸ビスマス等の有機ビスマス化合物等が挙げられる。
Examples of the catalyst for the urethanization reaction include organometallic compounds.
Examples of organometallic compounds include di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin, di-n-butyltin diacetate, di-n-octyltin oxide, di-n-octyltin dilaurate, Organic tin compounds such as monobutyltin trichloride, di-n-butyltin dialkyl mercaptan, di-n-octyltin dialkyl mercaptan; organic lead compounds such as lead oleate, lead 2-ethylhexanoate, lead naphthenate, lead octenoate An organic bismuth compound such as bismuth octylate;
 ウレタン化反応における触媒使用の割合としては、カルボキシル基含有プレポリマー及びイソシアネート系不飽和化合物の合計量100重量部に対して、0.001~0.5重量部が好ましく、0.001~0.1重量部がより好ましい。 The proportion of the catalyst used in the urethanization reaction is preferably 0.001 to 0.5 parts by weight, and preferably 0.001 to 0.5 parts per 100 parts by weight of the total amount of the carboxyl group-containing prepolymer and the isocyanate unsaturated compound. 1 part by weight is more preferred.
 カルボキシル基含有プレポリマーに対する、イソシアネート系不飽和化合物の反応割合としては、カルボキシル基含有プレポリマー中のカルボキシル基合計1モルに対して、イソシアネート系不飽和化合物0.8~1.0モルが好ましい。
 水酸基含有プレポリマーに対する、イソシアネート系不飽和化合物の反応割合としては、水酸基含有プレポリマー中の水酸基合計1モルに対して、イソシアネート系不飽和化合物0.8~1.0モルが好ましい。
 プレポリマー中のカルボキシル基又は/及び水酸基1モルに対して、イソシアネート系不飽和化合物の反応割合を1モル未満にすることにより、(UB)成分を、カルボキシル基及び/又は水酸基を有する重合体とすることができる。
The reaction ratio of the isocyanate-based unsaturated compound to the carboxyl group-containing prepolymer is preferably 0.8 to 1.0 mol of the isocyanate-based unsaturated compound with respect to a total of 1 mol of carboxyl groups in the carboxyl group-containing prepolymer.
The reaction ratio of the isocyanate unsaturated compound to the hydroxyl group-containing prepolymer is preferably 0.8 to 1.0 mol of the isocyanate unsaturated compound with respect to 1 mol of hydroxyl groups in the hydroxyl group-containing prepolymer.
By making the reaction ratio of the isocyanate-based unsaturated compound less than 1 mol with respect to 1 mol of the carboxyl group and / or hydroxyl group in the prepolymer, the (UB) component is converted into a polymer having a carboxyl group and / or a hydroxyl group can do.
 ポリマーB2では、カルボキシル基含有プレポリマーに、エポキシ系不飽和化合物を付加して製造する。
 又、ポリマーB3では、エポキシ基含有プレポリマーに、カルボキシル系不飽和化合物を付加して製造する。
Polymer B2 is produced by adding an epoxy unsaturated compound to a carboxyl group-containing prepolymer.
In addition, the polymer B3 is produced by adding a carboxyl unsaturated compound to an epoxy group-containing prepolymer.
 エポキシ系不飽和化合物としては、前記と同様の化合物が挙げられ、カルボキシル系不飽和化合物も前記と同様の化合物が挙げられる。 Examples of the epoxy unsaturated compound include the same compounds as described above, and examples of the carboxyl unsaturated compound include the same compounds as described above.
 カルボキシル基とエポキシ基との付加反応の触媒としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジメチルラウリルアミン、トリエチレンジアミン及びテトラメチルエチレンジアミン等の3級アミン;トリエチルベンジルアンモニウムクロリド、トリメチルセチルアンモニウムブロミド、テトラブチルアンモニウムブロミド等の4級アンモニウム塩、トリフェニルブチルホスホニウムブロミド及びテトラブチルホスホニウムブロミド等の4級ホスホニウム塩;並びにトリフェニルホスフィン及びトリブチルホスフィン等のホスフィン化合物が挙げられる。これらの中でも、樹脂の着色が少ない点から、トリフェニルホスフィンを用いることが好ましい。 Catalysts for the addition reaction of carboxyl group and epoxy group include tertiary amines such as triethylamine, tripropylamine, tributylamine, dimethyllaurylamine, triethylenediamine and tetramethylethylenediamine; triethylbenzylammonium chloride, trimethylcetylammonium bromide, tetra Quaternary ammonium salts such as butylammonium bromide, quaternary phosphonium salts such as triphenylbutylphosphonium bromide and tetrabutylphosphonium bromide; and phosphine compounds such as triphenylphosphine and tributylphosphine. Among these, it is preferable to use triphenylphosphine because the resin is less colored.
 反応における触媒の割合としては、カルボキシル基含有プレポリマー及びエポキシ系不飽和化合物の合計量を100重量部、又は、エポキシ基含有プレポリマー及びカルボキシル系不飽和化合物の合計量を100重量部に対して、0.1~5.0重量部が好ましく、0.1~3.0重量部がより好ましい。 As a ratio of the catalyst in the reaction, the total amount of the carboxyl group-containing prepolymer and the epoxy unsaturated compound is 100 parts by weight, or the total amount of the epoxy group-containing prepolymer and the carboxyl unsaturated compound is 100 parts by weight. 0.1 to 5.0 parts by weight is preferable, and 0.1 to 3.0 parts by weight is more preferable.
 カルボキシル基含有プレポリマーに対する、エポキシ系不飽和化合物の反応割合としては、カルボキシル基含有プレポリマー中のカルボキシル基合計1モルに対して、エポキシ系不飽和化合物0.8~1.2モルが好ましい。
 エポキシ基含有プレポリマーに対する、カルボキシル系不飽和化合物の反応割合としては、エポキシ基含有プレポリマー中のエポキシ基合計1モルに対して、カルボキシル系不飽和化合物0.8~1.2モルが好ましい。
The reaction ratio of the epoxy unsaturated compound to the carboxyl group-containing prepolymer is preferably 0.8 to 1.2 mol of the epoxy unsaturated compound with respect to 1 mol of the total carboxyl groups in the carboxyl group-containing prepolymer.
The reaction ratio of the carboxyl unsaturated compound to the epoxy group-containing prepolymer is preferably 0.8 to 1.2 mol of the carboxyl unsaturated compound with respect to a total of 1 mol of epoxy groups in the epoxy group-containing prepolymer.
 上記付加反応においては、いずれの場合も前記したプレポリマーの製造に引き続いて、好ましくは溶液重合に引き続いて実施することができる。
 その際には重合禁止剤を用いて、付加反応時の重合を抑制する。重合禁止剤としては、ジブチルヒドロキシトルエン、ハイドロキノン、ハイドロキノンモノメチルエーテル等が挙げられ、反応溶液に対して、50~1,000ppm添加することが好ましい。
The above addition reaction can be carried out in any case following the production of the prepolymer, preferably following the solution polymerization.
In that case, a polymerization inhibitor is used to suppress polymerization during the addition reaction. Examples of the polymerization inhibitor include dibutylhydroxytoluene, hydroquinone, hydroquinone monomethyl ether and the like, and it is preferable to add 50 to 1,000 ppm with respect to the reaction solution.
2-3.(UB)成分中のエチレン性不飽和基
 (UB)成分中のエチレン性不飽和基の平均数としては、目的に応じて適宜設定すればよい。
 (UB)成分中のエチレン性不飽和基の平均数としては、1分子中に、平均0.5~5.0個であることが好ましく、より好ましくは平均1.0個~3.0個である。1分子内に有するエチレン性不飽和基数が平均0.5個以上であると、十分に(A)成分のマトリックスに組み込まれ、耐熱性・耐湿熱性・脆性が十分となる。平均5.0個以下であると、架橋密度が適度であり、フィルムとしての靱性に優れ、組成物の硬化物の光弾性係数1も低くすることができる。
 (UB)成分中のエチレン性不飽和基の平均数(f)は、下式(3)で表すことができる。
2-3. What is necessary is just to set suitably according to the objective as an average number of the ethylenically unsaturated groups in a (UB) component (UB) component.
The average number of ethylenically unsaturated groups in the (UB) component is preferably 0.5 to 5.0 on average per molecule, more preferably 1.0 to 3.0 on average. It is. When the number of ethylenically unsaturated groups in one molecule is 0.5 or more on average, it is sufficiently incorporated into the matrix of the component (A), and heat resistance, moist heat resistance and brittleness are sufficient. When the average is 5.0 or less, the crosslinking density is appropriate, the film is excellent in toughness, and the photoelastic coefficient 1 of the cured product of the composition can be lowered.
The average number (f) of ethylenically unsaturated groups in the (UB) component can be represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 X:GPCで測定したプレポリマーの数平均分子量Mn
 Y:プレポリマー中の反応性基を有する化合物単位の分子量
 Z:プレポリマー中の反応性基を有する化合物単位の重量部数
 尚、プレポリマー中の反応性基を有する化合物単位とは、カルボキシル基含有プレポリマーであればカルボキシル系不飽和化合物由来のモノマー単位、水酸基含有プレポリマーであれば水酸系不飽和化合物由来のモノマー単位、エポキシ基含有プレポリマーであればエポキシ系不飽和化合物由来のモノマー単位をそれぞれ意味する。
X: Number average molecular weight Mn of prepolymer measured by GPC
Y: Molecular weight of the compound unit having a reactive group in the prepolymer Z: Number of parts by weight of the compound unit having a reactive group in the prepolymer The compound unit having a reactive group in the prepolymer is a carboxyl group-containing compound unit A monomer unit derived from a carboxyl unsaturated compound if it is a prepolymer, a monomer unit derived from a hydroxyl unsaturated compound if it is a hydroxyl group-containing prepolymer, or a monomer unit derived from an epoxy unsaturated compound if it is an epoxy group-containing prepolymer Means each.
 (UB)成分としては、分子末端に効率よくエチレン性不飽和基を導入できるため、脆性と光弾性係数2を高次元で両立できる点から、プレポリマーとして末端カルボキシル基含有重合体又は末端水酸基含有重合体から製造されたポリマー(以下、マクロモノマーともいう。)が好ましい。
 マクロモノマーとしては、具体的には末端カルボキシル基含有重合体から製造されたポリマーB1及びB2、末端水酸基含有重合体から製造されたポリマーB1が挙げられ、これらのf値は1.0である。
As the (UB) component, since an ethylenically unsaturated group can be efficiently introduced into the molecular terminal, the terminal carboxyl group-containing polymer or terminal hydroxyl group-containing polymer is used as a prepolymer from the viewpoint that both brittleness and photoelastic coefficient 2 can be achieved at high dimensions A polymer produced from a polymer (hereinafter also referred to as a macromonomer) is preferred.
Specific examples of the macromonomer include polymers B1 and B2 produced from a terminal carboxyl group-containing polymer, and polymer B1 produced from a terminal hydroxyl group-containing polymer, and these f values are 1.0.
3.光学フィルム形成用活性エネルギー線硬化型組成物
 本発明は、前記(A)成分及び(B)成分を必須成分として含む光学フィルム形成用活性エネルギー線硬化型組成物である。
 組成物の製造方法としては、常法に従えばよく、(A)成分及び(B)成分を使用し、必要に応じてその他の成分をさらに使用し、これらを撹拌・混合して得ることができる。
3. The active energy ray-curable composition for forming an optical film The present invention is an active energy ray-curable composition for forming an optical film comprising the component (A) and the component (B) as essential components.
As a manufacturing method of a composition, what is necessary is just to follow a conventional method, using (A) component and (B) component, using other components further as needed, and obtaining these by stirring and mixing. it can.
 本発明の組成物は、硬化物の光弾性係数1が10×10-12Pa-1以下である必要がある。これにより、硬化物が外力による複屈折変化を生じにくいものとなり、偏光子保護フィルムとして使用した場合、光漏れや白抜けを防止することができる。また、本発明の組成物の硬化物の光弾性係数1は、-10×10-12Pa-1以上であることが好ましい。 In the composition of the present invention, the photoelastic coefficient 1 of the cured product needs to be 10 × 10 −12 Pa −1 or less. Thereby, a hardened | cured material becomes what becomes difficult to produce the birefringence change by external force, and when used as a polarizer protective film, light leakage and white spot can be prevented. The photoelastic coefficient 1 of the cured product of the composition of the present invention is preferably −10 × 10 −12 Pa −1 or more.
 本発明の組成物は、厚さ40μmで測定した場合における硬化物の正面及び斜め40°の面内レタデーション並びに厚さ方向のレタデーションの全てが5nm以下である必要がある。これにより、偏光子保護フィルムとして用いた場合、視野角特性に優れた液晶ディスプレイを得ることができる。硬化物のレタデーションが5nmより大きいものは、視野角特性が劣るという問題がある。
 さらに、厚さ40μmで測定した場合における硬化物の正面の面内レタデーションが1nm以下で、斜め40°の面内レタデーションが5nm以下で、厚さ方向のレタデーションが5nm以下であるものが好ましい。また、当該レタデーションの値は、いずれも-5nm以上であることが好ましい。
In the composition of the present invention, all of the front surface of the cured product, the oblique in-plane retardation of 40 ° and the retardation in the thickness direction when measured at a thickness of 40 μm must be 5 nm or less. Thereby, when it uses as a polarizer protective film, the liquid crystal display excellent in the viewing angle characteristic can be obtained. A cured product having a retardation larger than 5 nm has a problem of poor viewing angle characteristics.
Further, it is preferable that the in-plane retardation of the cured product when measured at a thickness of 40 μm is 1 nm or less, the in-plane retardation at an oblique angle of 40 ° is 5 nm or less, and the retardation in the thickness direction is 5 nm or less. The retardation values are preferably -5 nm or more.
 本発明においてレタデーションとは、光学フィルムに直線偏光が入射したとき透過光を直交する2つの直線偏光に分解して考えたときの複屈折により生じる位相差を意味する。
 具体的には、面内のレタデーション(Re)及び厚さ方向のレタデーション(Rth)は、フィルム面内の主屈折率をnx、ny(但し、nx≧ny)、厚さ方向の屈折率をnz、フィルム厚さをdとしたとき、下式で定義される値である。
  Re=(nx-ny)×d
  Rth={(nx+ny)/2-nz}×d
 さらに、本発明において、斜め40°の面内レタデーションとは、光学フィルムに対して斜め40°で直線偏光を入射したときの面内レタデーションを意味する。
In the present invention, the retardation means a phase difference caused by birefringence when the transmitted light is considered to be decomposed into two linearly polarized lights orthogonal to each other when the linearly polarized light enters the optical film.
Specifically, the in-plane retardation (Re) and the thickness direction retardation (Rth) are nx, ny (where nx ≧ ny), and nz is the refractive index in the thickness direction. When the film thickness is d, it is a value defined by the following formula.
Re = (nx−ny) × d
Rth = {(nx + ny) / 2−nz} × d
Furthermore, in the present invention, the in-plane retardation at an angle of 40 ° means an in-plane retardation when linearly polarized light is incident on the optical film at an angle of 40 °.
 (A)成分及び(B)成分の割合としては、目的に応じて適宜設定すればよいが、(A)成分及び(B)成分の合計量を基準として(A)成分30~90重量%及び(B)成分10~70重量%が好ましく、より好ましくは(A)成分40~80重量%及び(B)成分20~60重量%である。
 (A)成分の割合が30重量%以上とすることで、得られる硬化物の機械物性に優れるものとすることができ、他方90重量%以下とすることで、低光弾性係数と低レタデーションを両立することができる。
The proportion of the component (A) and the component (B) may be appropriately set according to the purpose, but the amount of the component (A) is 30 to 90% by weight based on the total amount of the component (A) and the component (B). Component (B) is preferably 10 to 70% by weight, more preferably 40 to 80% by weight of component (A) and 20 to 60% by weight of component (B).
By making the ratio of the component (A) 30% by weight or more, the cured product obtained can be excellent in mechanical properties, and on the other hand, by making it 90% by weight or less, a low photoelastic coefficient and a low retardation are obtained. It can be compatible.
 本発明の組成物は、前記(A)成分及び(B)成分を必須とするものであるが、目的に応じて種々の成分を配合することができる。
 具体的には、(A)成分以外のエチレン性不飽和化合物〔以下、(C)成分ともいう。〕、光重合開始剤〔以下、(D)成分ともいう。〕、有機溶剤〔以下、(E)成分ともいう。〕、重合禁止剤又は/及び酸化防止剤、耐光性向上剤等を挙げることができる。
 以下これらの成分について説明する。
The composition of the present invention essentially comprises the component (A) and the component (B), but various components can be blended depending on the purpose.
Specifically, an ethylenically unsaturated compound other than the component (A) [hereinafter also referred to as the component (C). ], Photopolymerization initiator [hereinafter also referred to as component (D). ] Organic solvent [hereinafter also referred to as component (E). ], A polymerization inhibitor or / and an antioxidant, a light resistance improver, and the like.
Hereinafter, these components will be described.
(C)成分
 (C)成分は、(A)成分以外のエチレン性不飽和化合物である。
 (C)成分は、組成物全体の粘度を低下させる目的や、その他の物性を調整する目的で必要に応じて配合する成分である。
Component (C) The component (C) is an ethylenically unsaturated compound other than the component (A).
(C) A component is a component mix | blended as needed for the purpose of reducing the viscosity of the whole composition and adjusting the other physical properties.
 (C)成分の具体例としては、(A)成分以外の(メタ)アクリレート〔以下、「その他(メタ)アクリレート」ともいう。〕やN-ビニル-2-ピロリドン等が挙げられる。 Specific examples of the component (C) include (meth) acrylates other than the component (A) [hereinafter also referred to as “other (meth) acrylates”. And N-vinyl-2-pyrrolidone.
 その他(メタ)アクリレートとしては、1個の(メタ)アクリロイル基を有する化合物〔以下、「単官能(メタ)アクリレート」ともいう。〕や2個以上の(メタ)アクリロイル基を有する化合物〔以下、「多官能(メタ)アクリレート」ともいう。〕等が挙げられる。 As other (meth) acrylates, compounds having one (meth) acryloyl group [hereinafter also referred to as “monofunctional (meth) acrylates”. ] Or a compound having two or more (meth) acryloyl groups [hereinafter also referred to as “polyfunctional (meth) acrylate”. ] Etc. are mentioned.
 単官能(メタ)アクリレートの具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、アリル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、о-フェニルフェノールEO変性(n=1~4)(メタ)アクリレート、p-クミルフェノールEO変性(n=1~4)(メタ)アクリレート、フェニル(メタ)アクリレート、о-フェニルフェニル(メタ)アクリレート、p-クミルフェニル(メタ)アクリレート、N-(メタ)アクリロイルモルホリン、N-ビニルホルムアミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド等が挙げられる。 Specific examples of monofunctional (meth) acrylates include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, 1- Adamantyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, hexyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, glycidyl (meth) acrylate , Dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, benzyl (meth) acrylate, allyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, о-phenylphenol EO modification (N = 1-4) (meth) acrylate, p-cumylphenol EO modified (n = 1-4) (meth) acrylate, phenyl (meth) acrylate, о-phenylphenyl (meth) acrylate, p-cumylphenyl ( And (meth) acrylate, N- (meth) acryloylmorpholine, N-vinylformamide, N- (meth) acryloyloxyethylhexahydrophthalimide, N- (meth) acryloyloxyethyltetrahydrophthalimide, and the like.
 多官能(メタ)アクリレートの具体例としては、ビスフェノールA EO変性(n=1~2)ジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(n=5~14)ジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(n=5~14)ジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリブチレングリコール(n=3~16)ジ(メタ)アクリレート、ポリ(1-メチルブチレングリコール)(n=5~20)ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレートの二官能(メタ)アクリレート等が挙げられる。
 尚、上記においてEO変性とは、エチレンオキサイド変性を意味し、nはアルキレンオキサイド単位の繰返し数を意味する。
Specific examples of the polyfunctional (meth) acrylate include bisphenol A EO modified (n = 1 to 2) di (meth) acrylate, bisphenol A di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) Acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (n = 5-14) di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol (n = 5 to 14) di (meth) acrylate, 1,3-butylene glycol Di (meth) acrylate, 1,4-butanediol di (meth) acrylate, polybutylene glycol (n = 3 to 16) di (meth) acrylate, poly (1-methylbutylene glycol) (n = 5 to 20) di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, Examples thereof include bifunctional (meth) acrylates of tricyclodecane dimethylol di (meth) acrylate.
In the above, EO modification means ethylene oxide modification, and n means the number of repeating alkylene oxide units.
 (C)成分としては、前記した化合物の1種のみを使用しても、2種以上を併用してもよい。 (C) As a component, only 1 type of the above-mentioned compound may be used, or 2 or more types may be used together.
 (C)成分としては、前記した化合物の中でも、ホモポリマーの光弾性係数1が(A)成分より小さい化合物が好ましく、より好ましくはホモポリマーの光弾性係数1が負である化合物である。
 当該化合物の具体例としては、特に、イソボルニル(メタ)アクリレート、t-ブチル(メタ)アクリレート、N-(メタ)アクリロイルモルホリン及びN-ビニル-2-ピロリドンが好ましい。
As the component (C), among the compounds described above, a compound having a homopolymer photoelastic coefficient 1 smaller than the component (A) is preferable, and a compound having a homopolymer photoelastic coefficient 1 negative is more preferable.
Specific examples of the compound are particularly preferably isobornyl (meth) acrylate, t-butyl (meth) acrylate, N- (meth) acryloylmorpholine and N-vinyl-2-pyrrolidone.
 (C)成分の割合としては、目的に応じて適宜設定すればよく、得られる硬化物の柔軟性を低下させない量であればよいが、(A)成分及び(B)成分の合計量100重量部に対して1~100重量%が好ましく、より好ましくは1~80重量%である。 The proportion of the component (C) may be appropriately set according to the purpose, and may be an amount that does not reduce the flexibility of the resulting cured product, but the total amount of the component (A) and the component (B) is 100 weights. The amount is preferably 1 to 100% by weight, more preferably 1 to 80% by weight, based on the part.
(D)成分
 (D)成分は、光重合開始剤である。
 (D)成分は、活性エネルギー線として紫外線及び可視光線を用いた場合に配合する成分である。活性エネルギー線として電子線を使用する場合は、必ずしも(D)成分を配合する必要はないが、硬化性改良のため必要に応じて(D)成分を少量配合することもできる。
(D) Component (D) A component is a photoinitiator.
(D) A component is a component mix | blended when an ultraviolet-ray and visible light are used as an active energy ray. When an electron beam is used as the active energy ray, it is not always necessary to add the component (D), but a small amount of the component (D) can be added as necessary for improving curability.
 (D)成分としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン、アデカオプトマーN-1414((株)ADEKA製)、フェニルグリオキシリックアシッドメチルエステル、エチルアントラキノン、フェナントレンキノン等の芳香族ケトン化合物;
 ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
 ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル]オキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物;
 アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン系化合物;
 1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]及びエタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル類;
 2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-フェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体及び2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;並びに
 9-フェニルアクリジン及び1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体等が挙げられる。
Component (D) includes benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, oligo [2-hydroxy-2-methyl-1- [4-1- (methyl Vinyl) phenyl] propanone, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one, 2-methyl-1- [4 -(Methylthio)] phenyl] -2-morpholinopropan-1-one, 2-benzene Dil-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) Aromatic ketone compounds such as butan-1-one, Adekaoptomer N-1414 (manufactured by ADEKA Corporation), phenylglyoxylic acid methyl ester, ethyl anthraquinone, phenanthrenequinone;
Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 4- (methylphenylthio) phenylphenylmethane, methyl-2-benzophenone, 1- [4- (4-Benzoylphenylsulfanyl) phenyl] -2-methyl-2- (4-methylphenylsulfonyl) propan-1-one, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis Benzophenones such as (diethylamino) benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone and 4-methoxy-4′-dimethylaminobenzophenone Compound;
Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate and bis (2,6- Acylphosphine oxide compounds such as dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide;
Thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3- [3,4-dimethyl-9-oxo-9H-thioxanthone-2-yl] oxy]- Thioxanthone compounds such as 2-hydroxypropyl-N, N, N-trimethylammonium chloride and fluorothioxanthone;
Acridone compounds such as acridone, 10-butyl-2-chloroacridone;
1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)] and ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] Oxime esters such as -1- (O-acetyloxime);
2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-phenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2 2,4,5-triarylimidazole such as 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer and 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer Dimer; and acridine derivatives such as 9-phenylacridine and 1,7-bis (9,9′-acridinyl) heptane.
 これらの化合物は、1種又は2種以上を併用することもできる。 These compounds can be used alone or in combination of two or more.
 (D)成分の配合割合としては、(A)成分及び(B)成分の合計100重量部に対して、前記(C)成分を含む場合には、(A)成分、(B)成分及び(C)成分の合計量100重量部に対して、0.01~10重量%が好ましく、より好ましくは0.1~5重量%である。
 (D)成分の配合割合を0.01重量%以上とすることにより、適量な紫外線又は可視光線量で組成物を硬化させることができ生産性を向上させることができ、一方10重量%以下とすることで、硬化物の耐候性や透明性に優れたものとすることができる。
As a blending ratio of the component (D), when the component (C) is included with respect to a total of 100 parts by weight of the component (A) and the component (B), the component (A), the component (B), and ( C) 0.01 to 10% by weight is preferable with respect to 100 parts by weight of the total amount of components, and more preferably 0.1 to 5% by weight.
By setting the blending ratio of component (D) to 0.01% by weight or more, the composition can be cured with an appropriate amount of ultraviolet light or visible light, and the productivity can be improved. By doing, it can be made the thing excellent in the weather resistance and transparency of hardened | cured material.
(E)成分
 本発明の組成物は、基材への塗工性を改善する等の目的で、(E)成分である有機溶剤を含むものが好ましい。
(E) Component The composition of the present invention preferably contains an organic solvent as the component (E) for the purpose of improving the coating property to the substrate.
 (E)成分の具体例としては、n-ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン及びシクロヘキサン等の炭化水素系溶剤;
 メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、2-イソペンチルオキシエタノール、2-ヘキシルオキシエタノール、2-フェノキシエタノール、2-ベンジルオキシエタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール及びプロピレングリコールモノメチルエーテル等のアルコール系溶剤;
 テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ビス(2-メトキシエチル)エーテル、ビス(2-エトキシエチル)エーテル及びビス(2-ブトキシエチル)エーテル等のエーテル系溶剤;
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、ジエチルケトン、ブチルメチルケトン、メチルイソブチルケトン、メチルペンチルケトン、ジ-n-プロピルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノン等のケトン系溶剤;
 酢酸エチル、酢酸ブチル、酢酸イソブチル、メチルグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸セロソルブ等のエステル系溶剤;
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン等の非プロトン性極性溶剤が挙げられる。
Specific examples of the component (E) include hydrocarbon solvents such as n-hexane, benzene, toluene, xylene, ethylbenzene and cyclohexane;
Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethanol, 2-isopropoxyethanol, 2-butoxy Ethanol, 2-isopentyloxyethanol, 2-hexyloxyethanol, 2-phenoxyethanol, 2-benzyloxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1 -Methoxy-2-propanol, 1-ethoxy-2-propanol and propylene glycol monomethyl Alcohol solvents such as ether;
Ether solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, bis (2-methoxyethyl) ether, bis (2-ethoxyethyl) ether and bis (2-butoxyethyl) ether;
Acetone, methyl ethyl ketone, methyl-n-propyl ketone, diethyl ketone, butyl methyl ketone, methyl isobutyl ketone, methyl pentyl ketone, di-n-propyl ketone, diisobutyl ketone, phorone, isophorone, cyclopentanone, cyclohexanone, methylcyclohexanone, etc. Ketone solvents;
Ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, methyl glycol acetate, propylene glycol monomethyl ether acetate, cellosolve acetate;
Examples include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and γ-butyrolactone.
 (E)成分としては、前記した化合物の1種又は2種以上用いることができる。
 有機溶剤としては、別途添加してもよく、又、(A)成分の製造で使用する有機溶剤を分離することなくそのまま使用してもよい。
As the component (E), one or more of the aforementioned compounds can be used.
As an organic solvent, you may add separately and you may use as it is, without isolate | separating the organic solvent used by manufacture of (A) component.
 (E)成分の割合としては、適宜設定すればよいが、組成物中に10~90重量%が好ましく、より好ましくは40~80重量%である。 The ratio of the component (E) may be set as appropriate, but is preferably 10 to 90% by weight, more preferably 40 to 80% by weight in the composition.
重合禁止剤又は/及び酸化防止剤
 本発明の組成物には、重合禁止剤又は/及び酸化防止剤を添加することが、本発明の組成物の保存安定性を向上させことができ、好ましい。
 重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、並びに種々のフェノール系酸化防止剤が好ましいが、イオウ系二次酸化防止剤、リン系二次酸化防止剤等を添加することもできる。
 これら重合禁止剤又は/及び酸化防止剤の総配合割合は、(A)成分及び(B)成分の合計100重量部に対して、前記(C)成分を含む場合には、(A)成分、(B)成分及び(C)成分の合計量100重量部に対して、0.001~3重量%であることが好ましく、より好ましくは0.01~0.5重量%である。
Polymerization inhibitor or / and antioxidant It is preferable to add a polymerization inhibitor or / and an antioxidant to the composition of the present invention because the storage stability of the composition of the present invention can be improved.
As the polymerization inhibitor, hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, and various phenolic antioxidants are preferable, but sulfur secondary antioxidants, phosphorus secondary antioxidants are preferable. Subsequent antioxidants can also be added.
When the total blending ratio of these polymerization inhibitors or / and antioxidants includes the component (C) with respect to a total of 100 parts by weight of the component (A) and the component (B), the component (A), The content is preferably 0.001 to 3% by weight, more preferably 0.01 to 0.5% by weight, based on 100 parts by weight of the total amount of the component (B) and the component (C).
耐光性向上剤
 本発明の組成物には、紫外線吸収剤や光安定剤等の耐光性向上剤を添加してもよい。
 紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール化合物;
 2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-s-トリアジン等のトリアジン化合物;
 2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’-テトラヒドロキシベンゾフェノン、又は2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等のベンゾフェノン化合物等を挙げることができる。
 光安定性剤としては、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジターシャリーブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の低分子量ヒンダードアミン化合物;N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N’-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の高分子量ヒンダードアミン化合物等のヒンダードアミン系光安定剤を挙げることができる。
 耐光性向上剤の配合割合は、(A)成分及び(B)成分の合計100重量部に対して、前記(C)成分を含む場合には、(A)成分、(B)成分及び(C)成分の合計量100重量部に対して、0~5重量%であることが好ましく、より好ましくは0~1重量%である。
The composition of the light resistance improver present invention, the light resistance improving agent such as an ultraviolet absorber or light stabilizer may be added.
Examples of ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2- (2 Benzotriazole compounds such as'-hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole;
Triazine compounds such as 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctyloxyphenyl) -s-triazine;
2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4,4'-tri Hydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3', 4,4'-tetrahydroxybenzophenone, or 2,2'- Examples include benzophenone compounds such as dihydroxy-4,4′-dimethoxybenzophenone.
Examples of the light stabilizer include N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N′-diformylhexamethylenediamine, bis (1,2,2,6). , 6-Pentamethyl-4-piperidyl) -2- (3,5-ditertiarybutyl-4-hydroxybenzyl) -2-n-butylmalonate, bis (1,2,2,6,6-pentamethyl-4 Low molecular weight hindered amine compounds such as -piperidinyl) sebacate; N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) -N, N'-diformylhexamethylenediamine, bis (1,2 Hindered amine light stabilizers such as high molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl) sebacate.
The blending ratio of the light fastness improver includes the component (A), the component (B) and the component (C) when the component (C) is included with respect to 100 parts by weight of the component (A) and the component (B). ) It is preferably 0 to 5% by weight, more preferably 0 to 1% by weight, based on 100 parts by weight of the total amount of the components.
4.使用方法
 本発明の組成物は、光学フィルム形成の目的に応じて種々の使用方法を採用することができる。
 具体的には、基材に組成物を塗工し活性エネルギー線を照射して硬化させる方法、基材に組成物を塗工し別の基材と貼り合せた後さらに活性エネルギー線を照射して硬化させる方法、凹部を有する型枠に組成物を流し込み、活性エネルギー線を照射して硬化させる方法等が挙げられる。
4). Method of Use The composition of the present invention can employ various methods of use depending on the purpose of forming the optical film.
Specifically, a method of applying a composition to a substrate and irradiating it with an active energy ray to cure, applying a composition to a substrate and bonding it to another substrate, and further irradiating with an active energy ray And a curing method, a method of pouring the composition into a mold having a recess, and curing by irradiation with active energy rays.
 基材としては、剥離可能な基材及び離型性を有しない基材(以下、「非離型性基材」ともいう。)のいずれも使用することができる。
 剥離可能な基材としては、離型処理されたフィルム、剥離性を有する表面未処理フィルム及び金属(以下、まとめて「離型材」ともいう。)等が挙げられる。
 離型材としては、シリコーン処理ポリエチレンテレフタレートフィルム、表面未処理ポリエチレンテレフタレートフィルム、表面未処理シクロオレフィンポリマーフィルム及び表面未処理OPPフィルム(ポリプロピレン)等が挙げられる。
 本発明の組成物の硬化物のヘイズを1.0%以下に抑えるためには、表面未処理ポリエチレンテレフタレートフィルムや表面未処理OPPフィルム(ポリプロピレン)を使用することが好ましい。
As the substrate, any of a peelable substrate and a substrate having no releasability (hereinafter, also referred to as “non-releasable substrate”) can be used.
Examples of the peelable substrate include a release-treated film, a peelable surface untreated film, a metal (hereinafter also referred to as “release material”), and the like.
Examples of the release material include silicone-treated polyethylene terephthalate film, surface untreated polyethylene terephthalate film, surface untreated cycloolefin polymer film, and surface untreated OPP film (polypropylene).
In order to suppress the haze of the cured product of the composition of the present invention to 1.0% or less, it is preferable to use a surface untreated polyethylene terephthalate film or a surface untreated OPP film (polypropylene).
 本発明の組成物から得られる光学フィルムに対して、低いヘイズにしたり表面平滑性を付与するためには、剥離可能な基材として表面粗さ(中心線平均粗さ)Raが150nm以下の基材を使用することが好ましく、Raが1~100nmの基材がより好ましい。さらに、ヘイズとしては3.0%以下が好ましい。また、ヘイズは、0.01%以上であることが好ましい。
 当該基材の具体例としては、表面未処理ポリエチレンテレフタレートフィルムや表面未処理OPPフィルム(ポリプロピレン)等が挙げられる。
 尚、本発明において表面粗さRaとは、フィルムの表面の凹凸を測定し、平均の粗さを計算したものを意味する。
In order to achieve low haze or impart surface smoothness to the optical film obtained from the composition of the present invention, the surface roughness (centerline average roughness) Ra is 150 nm or less as a peelable substrate. It is preferable to use a material, and a substrate having an Ra of 1 to 100 nm is more preferable. Furthermore, the haze is preferably 3.0% or less. Moreover, it is preferable that a haze is 0.01% or more.
Specific examples of the substrate include a surface untreated polyethylene terephthalate film and a surface untreated OPP film (polypropylene).
In the present invention, the surface roughness Ra means a value obtained by measuring the surface roughness of the film and calculating an average roughness.
 非離型性基材としては、前記以外の各種プラスチックが挙げられ、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂等が挙げられる。 Examples of the non-releasable substrate include various plastics other than those described above, such as cellulose acetate resins such as polyvinyl alcohol, triacetyl cellulose and diacetyl cellulose, acrylic resin, polyester, polycarbonate, polyarylate, polyethersulfone, norbornene and the like. And cyclic polyolefin resins having a cyclic olefin as a monomer.
 本発明の組成物の塗工に当たって、組成物としては、得られる光学フィルムを、異物の混入防止や空隙等の欠陥の発生を防止したり、光学物性の優れたものとするため、原料成分を撹拌・混合した後、精製したものを使用することが好ましい。
 組成物の精製方法としては、組成物をろ過する方法が簡便であり好ましい。ろ過の方法としては、加圧ろ過等が挙げられる。
 ろ過精度は、好ましくは10μm以下、より好ましくは5μm以下である。ろ過精度は小さいほど好ましいが、小さすぎるとフィルターが目詰まりし易くなり、フィルターの交換頻度が増え生産性が低下するため、下限は0.1μmが好ましい。
In coating the composition of the present invention, as a composition, in order to prevent the generation of defects such as mixing of foreign substances and voids, and to have excellent optical properties, the obtained optical film has a raw material component. It is preferable to use a purified product after stirring and mixing.
As a method for purifying the composition, a method of filtering the composition is simple and preferable. Examples of the filtration method include pressure filtration.
The filtration accuracy is preferably 10 μm or less, more preferably 5 μm or less. The smaller the filtration accuracy, the better. However, if the filtration accuracy is too small, the filter is likely to be clogged, and the filter replacement frequency increases and the productivity is lowered. Therefore, the lower limit is preferably 0.1 μm.
 塗工方法としては、目的に応じて適宜設定すればよく、従来公知のバーコート、アプリケーター、ドクターブレード、ナイフコーター、コンマコーター、リバースロールコーター、ダイコーター、リップコーター、グラビアコーター及びマイクログラビアコーター等で塗工する方法が挙げられる。 The coating method may be appropriately set according to the purpose, and conventionally known bar coat, applicator, doctor blade, knife coater, comma coater, reverse roll coater, die coater, lip coater, gravure coater, micro gravure coater, etc. The method of coating with is mentioned.
 活性エネルギー線としては、電子線、紫外線及び可視光線等が挙げられる。これらの中でも、光重合開始剤を必ずしも配合する必要がなく硬化物の耐熱性や耐光性に優れるという点で、電子線がより好ましい。 Examples of active energy rays include electron beams, ultraviolet rays and visible rays. Among these, an electron beam is more preferable in that it is not always necessary to add a photopolymerization initiator and the cured product is excellent in heat resistance and light resistance.
 活性エネルギー線照射における、線量や照射強度等の照射条件は、使用する組成物、基材及び目的等に応じて適宜設定すればよい。 The irradiation conditions such as dose and irradiation intensity in the active energy ray irradiation may be appropriately set according to the composition to be used, the substrate, the purpose and the like.
5.光学フィルム
 本発明の組成物は、光学フィルムの製造に好ましく使用できる。
 以下、光学フィルムについて説明する。
 尚、以下においては、図1及び図2に基づき一部説明する。
5). Optical Film The composition of the present invention can be preferably used for the production of an optical film.
Hereinafter, the optical film will be described.
Hereinafter, a part of the description will be given with reference to FIGS. 1 and 2.
5-1.光学フィルムの製造方法
 光学フィルムの製造方法としては常法に従えばよく、例えば、組成物を基材に塗布した後、活性エネルギー線を照射して製造することができる。
5-1. Manufacturing method of optical film As a manufacturing method of an optical film, a conventional method may be followed. For example, the composition may be applied to a substrate and then irradiated with active energy rays.
 図1は、離型材/硬化物から構成される光学フィルムの好ましい製造方法の一例を示す模式図である。
 図1において、(1)は離型材を意味する。
 組成物が無溶剤型の場合(図1:F1)は、組成物を離型材〔図1:(1)〕に塗工する。組成物が有機溶剤等を含む場合(図1:F2)は、組成物を離型材〔図1:(1)〕に塗工した後に、乾燥させて有機溶剤等を蒸発させる(図1:1-1)。
 離型材に組成物層(2)が形成されてなるシートに対して活性エネルギー線を照射することで、離型材/硬化物から構成される光学フィルムが得られる。活性エネルギー線の照射は、通常、組成物層側から照射するが、離型材側からも照射できる。
 上記において、基材(1)として離型材を使用すれば、離型材/硬化物から構成される光学フィルムを製造することができる。
FIG. 1 is a schematic view showing an example of a preferred method for producing an optical film composed of a release material / cured product.
In FIG. 1, (1) means a release material.
When the composition is a solventless type (FIG. 1: F1), the composition is applied to a release material [FIG. 1: (1)]. When the composition contains an organic solvent or the like (FIG. 1: F2), the composition is applied to a release material [FIG. 1: (1)] and then dried to evaporate the organic solvent or the like (FIG. 1: 1). -1).
By irradiating an active energy ray with respect to the sheet | seat in which a composition layer (2) is formed in a mold release material, the optical film comprised from a mold release material / hardened | cured material is obtained. The active energy ray is usually irradiated from the composition layer side, but can also be irradiated from the release material side.
In the above, if a release material is used as the substrate (1), an optical film composed of a release material / cured product can be produced.
 本発明の組成物の塗工量としては、使用する用途に応じて適宜選択すればよいが、有機溶剤等を乾燥した後の膜厚が5~200μmとなるよう塗工するのが好ましく、より好ましくは10~100μmである。 The coating amount of the composition of the present invention may be appropriately selected according to the application to be used, but it is preferable that the coating is performed so that the film thickness after drying the organic solvent or the like is 5 to 200 μm. The thickness is preferably 10 to 100 μm.
 組成物が有機溶剤等を含む場合は、塗布後に加熱・乾燥させ、有機溶剤等を蒸発させる。
 加熱・乾燥方法としては、加熱装置を備えた炉内を通過させる方法や、又、送風により実施することもできる、
 加熱・乾燥条件は、使用する有機溶剤等に応じて適宜設定すれば良く、40~150℃の温度に加熱する方法等が挙げられる。
 加熱・乾燥後の組成物としては、有機溶剤の割合を1重量%以下とすることが好ましい。
When the composition contains an organic solvent or the like, it is heated and dried after coating to evaporate the organic solvent or the like.
As a heating / drying method, a method of passing through a furnace equipped with a heating device, or it can be carried out by blowing air,
The heating / drying conditions may be appropriately set according to the organic solvent used, and examples thereof include a method of heating to a temperature of 40 to 150 ° C.
As the composition after heating and drying, the proportion of the organic solvent is preferably 1% by weight or less.
 活性エネルギー線照射における、線量や照射強度等の照射条件は、使用する組成物、基材及び目的等に応じて適宜設定すればよい。 The irradiation conditions such as dose and irradiation intensity in the active energy ray irradiation may be appropriately set according to the composition to be used, the substrate, the purpose and the like.
 図2は、離型材/硬化物/離型材から構成される光学フィルムの好ましい製造方法の一例を示す模式図である。
 図2において、(1)、(3)、(4)は離型材を意味する。
 組成物が無溶剤型の場合(図2:F1)は、組成物を離型材〔図2:(1)〕に塗工する。組成物が有機溶剤等を含む場合(図2:F2)は、組成物を離型材〔図2:(1)〕に塗工した後に、乾燥させて有機溶剤等を蒸発させる(図2:2-1)。組成物層(2)には離型材(3)をラミネートした後活性エネルギー線照射したり、活性エネルギー線照射した後に離型材(4)をラミネートすることで、離型材、硬化物及び離型材が、この順に形成されてなる光学フィルムが得られる。
FIG. 2 is a schematic view showing an example of a preferable method for producing an optical film composed of a release material / cured product / release material.
In FIG. 2, (1), (3), and (4) mean release materials.
When the composition is a solventless type (FIG. 2: F1), the composition is applied to a release material [FIG. 2: (1)]. When the composition contains an organic solvent or the like (FIG. 2: F2), the composition is applied to a release material [FIG. 2: (1)] and then dried to evaporate the organic solvent (FIG. 2: 2). -1). The composition layer (2) is laminated with the release material (3) and then irradiated with active energy rays, or after being irradiated with the active energy rays, the release material (4) is laminated to obtain a release material, a cured product and a release material. An optical film formed in this order is obtained.
 上記図1及び2では基材として離型材を使用した例を記載したが、非離型性基材を使用して、光学フィルムを製造することもできる。
 例えば、図1において、(1)の離型材に代え非離型性基材を使用し、前記と同様に活性エネルギー線照射して硬化させ、非離型性基材/硬化物から構成される光学フィルムを製造することもできる。
 又、図2において、(1)、(3)及び(4)のいずれかの離型材として、非離型性基材を使用し、前記と同様の方法で活性エネルギー線照射して硬化させ、離型材/硬化物/非離型性基材から構成される光学フィルムや、非離型性基材/硬化物/非離型性基材から構成される光学フィルムを製造することもできる。
 当該実施態様の具体例としては、非離型性基材として偏光子を使用し、組成物を塗工して活性エネルギー線を照射し、偏光子に保護膜を直接形成させる方法等が挙げられる。
 又、レンズシートを製造する場合は、非離型性基材として、透明プラスチックフィルムを使用し、組成物を塗工した後、当該塗膜に離型材として金属金型を貼り合せ、透明プラスチックフィルム側から活性エネルギー線を照射する方法等が挙げられる。
Although the example which used the mold release material as a base material was described in the said FIG.1 and 2, an optical film can also be manufactured using a non-molding property base material.
For example, in FIG. 1, a non-releasable base material is used in place of the release material of (1) and is cured by irradiation with active energy rays in the same manner as described above, and is composed of a non-releasable base material / cured product. An optical film can also be manufactured.
Moreover, in FIG. 2, as a mold release material of any of (1), (3), and (4), a non-mold release substrate is used, and it is cured by irradiation with active energy rays in the same manner as described above. An optical film composed of a release material / cured product / non-releasing substrate and an optical film composed of a non-releasing substrate / cured material / non-releasing substrate can also be produced.
Specific examples of the embodiment include a method in which a polarizer is used as a non-releasing substrate, a composition is applied and irradiated with active energy rays, and a protective film is directly formed on the polarizer. .
In the case of producing a lens sheet, a transparent plastic film is used as a non-releasing substrate, a composition is applied, and then a metal mold is bonded to the coating film as a release material. Examples include a method of irradiating active energy rays from the side.
 又、前記の例では、組成物を基材に塗工して光学フィルムを製造する例を挙げたが、膜厚が大きい光学フィルムを製造する場合は、特定の凹部を有する型枠等に組成物を流し込み、前記と同様にして活性エネルギー線を照射して組成物を硬化させ光学フィルムを製造することもできる。 In the above example, the optical film is produced by applying the composition to a substrate. However, when producing an optical film having a large film thickness, the composition is formed on a mold having a specific recess. An optical film can also be produced by pouring an object and irradiating active energy rays in the same manner as described above to cure the composition.
5-2.光学フィルムの用途
 本発明の組成物から形成される光学フィルムは、種々の光学用途に使用できるものであり、より具体的には、液晶表示装置等に使用される偏光板の偏光子保護フィルム、プリズムシート用支持フィルム及び導光フィルム等が挙げられる。又、これ以外の用途としては、フレネルレンズ及びレンチキュラーレンズ等のレンズシート等が挙げられ、レンチキュラーレンズは、さらに裸眼3Dディスプレにも使用することができる。
5-2. Use of optical film The optical film formed from the composition of the present invention can be used for various optical uses, more specifically, a polarizer protective film for polarizing plates used in liquid crystal display devices, etc. Examples include a support film for a prism sheet and a light guide film. Other uses include lens sheets such as Fresnel lenses and lenticular lenses, and the lenticular lenses can be used for naked-eye 3D displays.
 以下、本発明の組成物から形成される偏光子保護フィルム(以下、単に「保護フィルム」ともいう。)を使用した偏光板について説明する。 Hereinafter, a polarizing plate using a polarizer protective film (hereinafter, also simply referred to as “protective film”) formed from the composition of the present invention will be described.
偏光板
 偏光板は、偏光子の少なくとも片面に保護フィルムが積層された構成である。
 偏光板としては、偏光子に、本発明の組成物を直接塗工し硬化させて保護フィルムを形成して製造したものでも、偏光子と保護フィルムを接着して製造したものでもよい。
The polarizing plate is a structure in which a protective film is laminated on at least one surface of a polarizer.
The polarizing plate may be manufactured by directly coating and curing the composition of the present invention on a polarizer to form a protective film, or may be manufactured by bonding a polarizer and a protective film.
 偏光子としては、自然光からある一方向の直線偏光を選択的に透過する機能を有するものであれば種々の材料が使用できる。
 例えば、ポリビニルアルコール系フィルムにヨウ素を吸着・配向させたヨウ素系偏光フィルム、ポリビニルアルコール系フィルムに二色性の染料を吸着・配向させた染料系偏光フィルム、二色性染料をコーティングし、配向・固定化した塗布型偏光子等が挙げられる。これら、ヨウ素系偏光フィルム、染料系偏光フィルム及び塗布型偏光子は、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収する機能を有するもので、吸収型偏光子と呼ばれている。これらの偏光子の中でも、視認性に優れている吸収型偏光子を用いるのが好ましい。吸収型偏光子の厚みは、5~40μmが好ましい。
 本発明の偏光板は、偏光子の少なくとも片面に、保護フィルムとして本発明の光学フィルムが積層された偏光板であって、接着剤により接着される。
As the polarizer, various materials can be used as long as they have a function of selectively transmitting linearly polarized light in one direction from natural light.
For example, an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye is coated. Examples include a fixed coating type polarizer. These iodine-based polarizing films, dye-based polarizing films, and coating-type polarizers have a function of selectively transmitting linearly polarized light in one direction from natural light and absorbing linearly polarized light in the other direction. It is called a polarizer. Among these polarizers, it is preferable to use an absorption type polarizer having excellent visibility. The thickness of the absorptive polarizer is preferably 5 to 40 μm.
The polarizing plate of the present invention is a polarizing plate in which the optical film of the present invention is laminated as a protective film on at least one surface of a polarizer, and is bonded by an adhesive.
 偏光子と保護フィルムとの接着に用いる接着剤は、それぞれの接着性を考慮して任意のものを用いることができる。
 接着剤としては、具体的には、ポリビニルアルコール系水系接着剤、溶剤系接着剤、ホットメルト系接着剤及び無溶剤系接着剤等が挙げられ、無溶剤系の活性エネルギー線硬化型接着剤を好適に用いることができる。
 活性エネルギー線硬化型接着剤としては、光カチオン硬化型接着剤、光ラジカル硬化型接着剤、及び光カチオン硬化と光ラジカル硬化を併用するハイブリッド型接着剤が挙げられる。
 光カチオン硬化型接着剤としては、エポキシ化合物及びオキセタン化合物等の光カチオン硬化性化合物、並びに光カチオン重合開始剤を含む接着剤等が挙げられる。
 光ラジカル硬化型接着剤としては、(メタ)アクリレート、ビニルエーテル、ビニル化合物等の光ラジカル硬化性化合物、並びに光ラジカル重合開始剤を含む接着剤等が挙げられる。
 ハイブリッド型接着剤としては、前記した光カチオン硬化性化合物、光ラジカル硬化性化合物、光カチオン重合開始剤及び光ラジカル重合開始剤を含む接着剤等が挙げられる。
As the adhesive used for bonding the polarizer and the protective film, any adhesive can be used in consideration of each adhesive property.
Specific examples of the adhesive include polyvinyl alcohol-based aqueous adhesives, solvent-based adhesives, hot-melt adhesives, and solvent-free adhesives. Solvent-free active energy ray-curable adhesives It can be used suitably.
Examples of the active energy ray curable adhesive include a photo cation curable adhesive, a photo radical curable adhesive, and a hybrid adhesive using both photo cation curing and photo radical curing.
Examples of the photo cation curable adhesive include photo cation curable compounds such as epoxy compounds and oxetane compounds, and adhesives including a photo cation polymerization initiator.
Examples of the photo-radical curable adhesive include photo-radical curable compounds such as (meth) acrylates, vinyl ethers, vinyl compounds, and adhesives containing a photo-radical polymerization initiator.
Examples of the hybrid adhesive include an adhesive containing the above-described photocationic curable compound, photoradical curable compound, photocationic polymerization initiator, and photoradical polymerization initiator.
 偏光子の両面に保護フィルムを有する場合、本発明の保護フィルムを両面に有するものが最も好ましい。但し、必要に応じて本発明の保護フィルムを片面に使用し、もう片面には本願発明の保護フィルム以外の保護フィルム(以下、「その他保護フィルム」ともいう。)を使用することもできる。
 その他保護フィルムとしては、例えば、トリアセチルセルロースやジアセチルセルロースのようなセルロースアセテート樹脂フィルム、アクリル樹脂フィルム、ポリエステル樹脂フィルム、ノルボルネンのような環状オレフィンをモノマーとする環状ポリオレフィン樹脂フィルム等が挙げられる。又、これらをディスプレイ側の保護フィルムとして使用する場合には位相差を有するフィルムであってもよい。
When it has a protective film on both surfaces of a polarizer, what has the protective film of this invention on both surfaces is the most preferable. However, if necessary, the protective film of the present invention can be used on one side and a protective film other than the protective film of the present invention (hereinafter also referred to as “other protective film”) can be used on the other side.
Examples of other protective films include cellulose acetate resin films such as triacetyl cellulose and diacetyl cellulose, acrylic resin films, polyester resin films, and cyclic polyolefin resin films containing cyclic olefins such as norbornene as monomers. Moreover, when using these as a protective film of a display side, the film which has phase difference may be sufficient.
 以下に、実施例及び比較例を挙げ、本発明をより具体的に説明する。尚、下記において「部」とは、重量部を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the following, “parts” means parts by weight.
○製造例A1〔(A)成分の製造〕
 撹拌機、温度計、冷却器を備えた500mL反応容器に、室温(25℃、以下同様である。)でイソシアネートとしてIPDI:145.9g、触媒としてジブチルスズジラウレート:0.07gを仕込み、5容量%の酸素を含む窒素の雰囲気下、これらを撹拌しながら液温が70℃になるまで加温した。
 アルコール溶液としてポリカーボネートジオール〔旭化成ケミカルズ(株)製デュラノールT-5651、数平均分子量1,000〕:43.0g、1,4-ブタンジオール:33.5g及びメチルエチルケトン(以下、「MEK」ともいう。):65.0gの混合溶液を内温が75℃以下となるように滴下した後、内温80℃で2時間反応させた。
 その後、2-ヒドロキシエチルアクリレート(以下、「HEA」ともいう。):57.6g、重合禁止剤として2,6-ジ-t-ブチル-4-メチルフェノール(以下、「BHT」ともいう。):0.28g、MEK:5.0g及びジブチルスズジラウレート:0.07gの混合溶液を内温が75℃以下となるように滴下した後3時間反応させ、赤外線吸収スペクトル装置(Perkin Elmer社製FT-IR Spectrum100)によりスペクトルを測定し、イソシアネート基が完全に消費されたことを確認し、ウレタンアクリレート(以下、「UA-1」という。)を含むMEK溶液(固形分80%)を得た。
 UA-1のポリスチレン換算重量平均分子量(以下、Mwともいう。)を、GPC(溶媒:テトラヒドロフラン、カラム:Waters社製HSPgel HR MB-L)により測定した結果、2,300であった。
 光弾性係数1を後記に従い測定した結果、12.3×10-12Pa-1であった。
○ Production Example A1 [Production of Component (A)]
A 500 mL reaction vessel equipped with a stirrer, a thermometer and a condenser was charged with IPDI: 145.9 g as an isocyanate and dibutyltin dilaurate: 0.07 g as a catalyst at room temperature (25 ° C., the same applies hereinafter), and 5% by volume. These were heated under stirring in a nitrogen atmosphere containing oxygen until the liquid temperature reached 70 ° C.
Polycarbonate diol [Duranol T-5651 manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight 1,000]: 43.0 g, 1,4-butanediol: 33.5 g and methyl ethyl ketone (hereinafter also referred to as “MEK”) as an alcohol solution. ): 65.0 g of the mixed solution was added dropwise so that the internal temperature became 75 ° C. or lower, and then reacted at an internal temperature of 80 ° C. for 2 hours.
Thereafter, 2-hydroxyethyl acrylate (hereinafter also referred to as “HEA”): 57.6 g, 2,6-di-t-butyl-4-methylphenol (hereinafter also referred to as “BHT”) as a polymerization inhibitor. : 0.28 g, MEK: 5.0 g and dibutyltin dilaurate: 0.07 g of a mixed solution was added dropwise so that the internal temperature was 75 ° C. or lower, and reacted for 3 hours to obtain an infrared absorption spectrum apparatus (FT-manufactured by Perkin Elmer). The spectrum was measured by IR Spectrum 100), and it was confirmed that the isocyanate groups were completely consumed. Thus, a MEK solution (solid content 80%) containing urethane acrylate (hereinafter referred to as “UA-1”) was obtained.
The weight average molecular weight (hereinafter also referred to as Mw) of UA-1 was 2,300 as a result of measurement by GPC (solvent: tetrahydrofuran, column: HSPgel HR MB-L manufactured by Waters).
As a result of measuring the photoelastic coefficient 1 according to the following description, it was 12.3 × 10 −12 Pa −1 .
○製造例A2〔(A)成分の製造〕
 製造例A1において、イソシアネートとしてIPDI:127.8g、アルコール溶液としてデュラノールT5651:37.6g、トリシクロ[5.2.1.02,6]デカンジメタノール(オクセア社製TCDDM):64.1g及びMEK:65.0gの混合溶液、HEA:50.5gとした以外は同様の操作を行い、ウレタンアクリレート(以下、「UA-2」という。)を含むMEK溶液(固形分80%)を得た。
 得られたUA-2のMw及び光弾性係数1を製造例A1と同様に測定した結果、Mwが2,300、光弾性係数1が9.7×10-12Pa-1であった。
○ Production Example A2 [Production of Component (A)]
In Production Example A1, IPDI as the isocyanate: 127.8 g, Duranol T5651 as the alcohol solution: 37.6 g, tricyclo [5.2.1.0 2,6 ] decanedimethanol (OCDEA TCDDM): 64.1 g and A MEK solution (solid content 80%) containing urethane acrylate (hereinafter referred to as “UA-2”) was obtained in the same manner except that MEK: 65.0 g mixed solution and HEA: 50.5 g were used. .
As a result of measuring Mw and photoelastic coefficient 1 of the obtained UA-2 in the same manner as in Production Example A1, the Mw was 2,300 and the photoelastic coefficient 1 was 9.7 × 10 −12 Pa −1 .
○製造例A3〔(A)成分の製造〕
 製造例A1において、イソシアネートとしてIPDI:151.4g、アルコール溶液としてポリカプロラクトントリオール〔ダイセル化学工業(株)製〕プラクセル303、数平均分子量300):18.3g、デュラノールT5651:20.4g、1,4-ブタンジオール:28.2g及びMEK:65.0gの混合溶液、HEA:61.6gとした以外は同様の操作を行い、ウレタンアクリレート(以下、「UA-3」という。)を含むMEK溶液(固形分80%)を得た。
 得られたUA-3のMw及び光弾性係数1を製造例A1と同様に測定した結果、Mwが2,400、光弾性係数1が13.5×10-12Pa-1であった。
○ Production Example A3 [Production of Component (A)]
In Production Example A1, IPDI: 151.4 g as isocyanate, polycaprolactone triol (manufactured by Daicel Chemical Industries, Ltd.) Plaxel 303, number average molecular weight 300): 18.3 g, Duranol T5651: 20.4 g, 1, A MEK solution containing urethane acrylate (hereinafter referred to as “UA-3”) was carried out in the same manner except that a mixed solution of 4-butanediol: 28.2 g and MEK: 65.0 g and HEA: 61.6 g were used. (Solid content 80%) was obtained.
Mw and photoelastic coefficient 1 of the obtained UA-3 were measured in the same manner as in Production Example A1, and as a result, Mw was 2,400 and photoelastic coefficient 1 was 13.5 × 10 −12 Pa −1 .
○製造例A4〔(A)成分の製造〕
 製造例A1において、イソシアネートとしてIPDI:148.8g、アルコール溶液としてポリエステルジオール〔DIC(株)製Exp4358、アジピン酸とエチレングリコールのエステル化物、数平均分子量500〕:42.1g、1,4-ブタンジオール:30.4g及びMEK:65.0gの混合溶液、HEA:58.7gとした以外は同様の操作を行い、ウレタンアクリレート(以下、「UA-4」という。)を含むMEK溶液(固形分80%)を得た。
 得られたUA-4のMw及び光弾性係数1を製造例A1と同様に測定した結果、Mwが1,900、光弾性係数1が12.6×10-12Pa-1であった。
○ Production Example A4 [Production of Component (A)]
In Production Example A1, IPDI as isocyanate: 148.8 g, polyester diol as alcohol solution [Exp4358 manufactured by DIC Corporation, esterified product of adipic acid and ethylene glycol, number average molecular weight 500]: 42.1 g, 1,4-butane A MEK solution (solid content) containing urethane acrylate (hereinafter referred to as “UA-4”) was carried out in the same manner except that a mixed solution of diol: 30.4 g and MEK: 65.0 g and HEA: 58.7 g were used. 80%).
As a result of measuring Mw and photoelastic coefficient 1 of the obtained UA-4 in the same manner as in Production Example A1, Mw was 1,900 and photoelastic coefficient 1 was 12.6 × 10 −12 Pa −1 .
○製造例A5〔(A)成分の製造〕
 製造例A1において、イソシアネートとしてIPDI:99.6g及びMEK:50.0gの混合溶液、アルコールとしてスピログリコール(水酸基価:369mgKOH/g、P-Mn:304)〔三菱ガス化学(株)製SPG〕:74.4g及びMEK(粉体であるSPGを添加後に反応容器に付着した洗浄に使用):25.5g、ヒドロキシル含有アクリレートとして2-ヒドロキシエチルアクリレートのε-カプロラクトン1モル付加物〔(株)ダイセル製FA1DDM〕:95.6g及びMEK:5.0gの混合溶液とした以外は同様の操作を行い、ウレタンアクリレート(以下、「UA-5」という。)を含むMEK溶液(固形分80%)を得た。
 得られたUA-5のMw及び光弾性係数1を製造例A1と同様にして測定した結果、Mwが2,400、光弾性係数1が11.6×10-12Pa-1であった。
○ Production Example A5 [Production of Component (A)]
In Production Example A1, a mixed solution of IPDI: 99.6 g and MEK: 50.0 g as isocyanate, spiroglycol (hydroxyl value: 369 mg KOH / g, P-Mn: 304) as alcohol (SPG manufactured by Mitsubishi Gas Chemical Co., Inc.) : 74.4 g and MEK (used for washing adhering to the reaction vessel after addition of SPG powder): 25.5 g, ε-caprolactone 1 mol adduct of 2-hydroxyethyl acrylate as hydroxyl-containing acrylate [Corporation] Daicel FA1DDM]: MEK solution (80% solid content) containing urethane acrylate (hereinafter referred to as “UA-5”), except that a mixed solution of 95.6 g and MEK: 5.0 g was used. Got.
As a result of measuring Mw and photoelastic coefficient 1 of the obtained UA-5 in the same manner as in Production Example A1, Mw was 2,400 and photoelastic coefficient 1 was 11.6 × 10 −12 Pa −1 .
○製造例A6〔(A)成分の製造〕
 製造例A1において、イソシアネートとしてIPDI:134g、アルコールの溶液として1,4-ブタンジオール:34.2g及びMEK:65.0gの混合溶液、ヒドロキシル基含有アクリレートとしてFA1DDM:104.8gを用いた以外は同様の操作を行い、ウレタンアクリレート(以下、「UA-6」という。)を含むMEK溶液(固形分80%)を得た。
 得られたUA-6のMw及び光弾性係数1を製造例A1と同様にして測定した結果、Mwが2,200、光弾性係数1が17.5×10-12Pa-1であった。
○ Production Example A6 [Production of Component (A)]
In Production Example A1, except that IPDI: 134 g as isocyanate, 1,4-butanediol: 34.2 g and MEK: 65.0 g as a solution of alcohol, and FA1DDM: 104.8 g as hydroxyl group-containing acrylate were used. The same operation was performed to obtain a MEK solution (solid content 80%) containing urethane acrylate (hereinafter referred to as “UA-6”).
The Mw and photoelastic coefficient 1 of the obtained UA-6 were measured in the same manner as in Production Example A1, and as a result, the Mw was 2,200 and the photoelastic coefficient 1 was 17.5 × 10 −12 Pa −1 .
○製造例A’1〔(A)成分以外のウレタンアクリレートの製造〕
 撹拌機、温度計、冷却器を備えた500mL反応容器に、室温でイソシアネートとしてIPDI:196.0g、触媒としてジブチルスズジラウレート:0.035gを仕込み、5容量%の酸素を含む窒素の雰囲気下、これらを撹拌しながら液温が70℃になるまで加温した。
 アルコールとしてデュラノールT5651:49.5gを内温が75℃以下となるよう滴下した後、内温80℃で2時間反応させた。
 その後、HEA:104.5g及びBHT:0.09gを内温が75℃以下となるように滴下した後3時間反応させ、ウレタンアクリレート(以下、「UA’1」という。)を得た。
 得られたUA’1のMw及び光弾性係数1を製造例A1と同様に測定した結果、Mwが4,400、光弾性係数1が153×10-12Pa-1であった。
○ Production Example A′1 [ Production of urethane acrylate other than component (A)]
A 500 mL reaction vessel equipped with a stirrer, a thermometer, and a condenser was charged with IPDI: 196.0 g as an isocyanate and dibutyltin dilaurate: 0.035 g as a catalyst at room temperature under an atmosphere of nitrogen containing 5% oxygen by volume. Was stirred until the liquid temperature reached 70 ° C.
After dropping 49.5 g of Duranol T5651 as alcohol so that the internal temperature became 75 ° C. or lower, the reaction was carried out at an internal temperature of 80 ° C. for 2 hours.
Thereafter, HEA: 104.5 g and BHT: 0.09 g were added dropwise so that the internal temperature was 75 ° C. or lower, and reacted for 3 hours to obtain urethane acrylate (hereinafter referred to as “UA′1”).
As a result of measuring Mw and photoelastic coefficient 1 of UA′1 obtained in the same manner as in Production Example A1, Mw was 4,400 and photoelastic coefficient 1 was 153 × 10 −12 Pa −1 .
○製造例B1〔(B)成分の製造〕
 撹拌機、温度計、冷却器を備えた500mL反応容器に、メタクリル酸メチル(以下、「MMA」ともいう。):20.0g、N-アクリロイルモルホリン(以下、「ACMO」ともいう。):20.0g、メチルイソブチルケトン(以下、「MIBK」ともいう。):200gを仕込み、室温で均一に溶解させた。
 フラスコの内容物を撹拌しながら、窒素雰囲気下で内温を92℃まで昇温し、内温が一定になった後、MMA:80.0gを4時間、ACMO:80.0gを3時間かけて供給し、他方でV-65〔和光純薬工業(株)製2,2’-アゾビス-2,4-ジメチルバレロニトリル〕10gとMIBK40部からなる重合開始剤溶液を5時間かけて、それぞれ連続的に供給した。
 連続供給終了後、内温を92℃に保って熟成を3時間行った結果、負の光弾性係数2を有するポリマー(以下、「LP-1」という)を含む溶液(固形分47%)を得た。
 得られたLP-1のMwを製造例A1と同様に測定した結果、Mwが10,000であった。又、LP-1の光弾性係数2を下記に従い測定した結果、-5.0×10-12Pa-1であった。
 尚、(B)成分の光弾性係数2については、使用したウレタンアクリレートに対し任意の割合で(B)成分を添加して得られた光学フィルムの23℃における光弾性係数値を測定し、その添加量と光弾性係数との直線グラフから外挿した、添加量が100%のときの光弾性係数値を算出し、記載した。
○ Production Example B1 [Production of Component (B)]
In a 500 mL reaction vessel equipped with a stirrer, a thermometer, and a condenser, methyl methacrylate (hereinafter also referred to as “MMA”): 20.0 g, N-acryloylmorpholine (hereinafter also referred to as “ACMO”): 20 0.0 g, methyl isobutyl ketone (hereinafter also referred to as “MIBK”): 200 g was charged and uniformly dissolved at room temperature.
While stirring the contents of the flask, the internal temperature was raised to 92 ° C. in a nitrogen atmosphere. After the internal temperature became constant, MMA: 80.0 g was consumed for 4 hours, and ACMO: 80.0 g was applied for 3 hours. On the other hand, a polymerization initiator solution consisting of 10 g of V-65 [2,2′-azobis-2,4-dimethylvaleronitrile, manufactured by Wako Pure Chemical Industries, Ltd.] and 40 parts of MIBK was added over 5 hours. Feeded continuously.
After completion of continuous supply, aging was performed for 3 hours while maintaining the internal temperature at 92 ° C. As a result, a solution (solid content 47%) containing a polymer having a negative photoelastic coefficient 2 (hereinafter referred to as “LP-1”) Obtained.
The Mw of the obtained LP-1 was measured in the same manner as in Production Example A1, and as a result, the Mw was 10,000. Further, the photoelastic coefficient 2 of LP-1 was measured according to the following, and found to be −5.0 × 10 −12 Pa −1 .
In addition, about the photoelastic coefficient 2 of (B) component, the photoelastic coefficient value in 23 degreeC of the optical film obtained by adding (B) component in arbitrary ratios with respect to the used urethane acrylate was measured, The photoelastic coefficient value when the addition amount was 100% extrapolated from the linear graph of the addition amount and the photoelastic coefficient was calculated and described.
(1)実施例1~12及び比較例1~7(組成物の製造)
 後記表1に示す成分を表1に示す割合でステンレス製容器に投入し、加温しながらマグネチックスターラーで均一になるまで撹拌し、組成物を得た。
(1) Examples 1 to 12 and Comparative Examples 1 to 7 (Production of Composition)
Components shown in Table 1 below were charged in a stainless steel container in the proportions shown in Table 1, and stirred with a magnetic stirrer while heating to obtain a composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1における略号は、下記を意味する。
・LP-2:ポリメチルメタクリレート系樹脂、三菱レイヨン(株)ダイヤナールBR-87〔固形分;100%、Mw;25,000、酸価;10.5mgKOH/g、光弾性係数2;-6×10-12Pa-1
・LP-3:N-ビニル-2-ピロリドン/酢酸ビニル共重合体、アイエスピー・ジャパン(株)製PVP/VA S-630〔固形分;100%、Mw;45,000、光弾性係数2;-9×10-12Pa-1
・Dc1173:2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、BASFジャパン(株)製DAROCUR-1173
The abbreviations in Table 1 mean the following.
LP-2: polymethyl methacrylate resin, Mitsubishi Rayon Co., Ltd. Dianal BR-87 [solid content: 100%, Mw; 25,000, acid value: 10.5 mg KOH / g, photoelastic coefficient 2; -6 × 10 -12 Pa -1 ]
LP-3: N-vinyl-2-pyrrolidone / vinyl acetate copolymer, PVP / VA S-630 (solid content: 100%, Mw: 45,000, photoelastic coefficient 2) manufactured by IS Japan Co., Ltd. -9 × 10 -12 Pa -1 ]
Dc1173: 2-hydroxy-2-methyl-1-phenylpropan-1-one, DAROCUR-1173 manufactured by BASF Japan Ltd.
(2)実施例F1~F10及び比較例F1~F6(電子線硬化による光学フィルムの製造)
 幅300mm×長さ300mmの東レ(株)製フィルム「ルミラー50-T60」(表面未処理ポリエチレンテレフタレートフィルム、厚さ50μm、以下「ルミラー」という。)に、実施例1~10及び比較例1~6で得られた組成物を、80℃で10分乾燥した後の膜厚が40μmになるようアプリケーターで塗工した。
 その後、組成物層に、幅300mm×長さ300mmのルミラーをラミネートした後、(株)NHVコーポレーション製の電子線照射装置により、加速電圧200kV、線量50kGy(ビーム電流及び搬送速度により調整)、酸素濃度300ppm以下の条件下で電子線照射を行い、光学フィルムを得た。
 硬化後、ルミラーから剥離し、後記する光弾性係数1、面内及び厚さ方向レタデーションの評価に用いた。
(2) Examples F1 to F10 and Comparative Examples F1 to F6 (Production of optical film by electron beam curing)
A film “Lumirror 50-T60” (surface untreated polyethylene terephthalate film, thickness 50 μm, hereinafter referred to as “Lumirror”) manufactured by Toray Industries, Inc., having a width of 300 mm and a length of 300 mm, was used in Examples 1 to 10 and Comparative Examples 1 to The composition obtained in 6 was coated with an applicator so that the film thickness after drying at 80 ° C. for 10 minutes was 40 μm.
Then, after laminating 300 mm width x 300 mm length on the composition layer, an acceleration voltage of 200 kV, a dose of 50 kGy (adjusted by the beam current and the conveyance speed), oxygen by an electron beam irradiation apparatus manufactured by NHV Corporation, oxygen Electron beam irradiation was performed under conditions of a concentration of 300 ppm or less to obtain an optical film.
After curing, the film was peeled off from Lumirror and used for evaluation of photoelastic coefficient 1, in-plane and thickness direction retardation described later.
(3)実施例F11~F12及び比較例7(紫外線硬化による光学フィルムの製造)
 幅300mm×長さ300mmのルミラーに、実施例11~12及び比較例7で得られた紫外線硬化型組成物を、80℃で10分乾燥した後の膜厚が40μmになるようアプリケーターで塗工した。
 その後、組成物層に、幅300mm×長さ300mmのルミラーをラミネートした後、アイグラフィックス(株)製のコンベア式紫外線照射装置(高圧水銀灯、ランプ高さ12cm、365nmの照射強度400mW/cm2(フュージョンUVシステムズ・ジャパン(株)社製UV POWER PUCKの測定値))によりコンベア速度を調整して、積算光量1,000mJ/cm2の紫外線照射を行い、紫外線硬化型光学フィルムを得た。
 硬化後、ルミラーから剥離し、後記する評価に用いた。
(3) Examples F11 to F12 and Comparative Example 7 (Production of optical film by ultraviolet curing)
The UV curable composition obtained in Examples 11 to 12 and Comparative Example 7 was applied to a Lumirror having a width of 300 mm and a length of 300 mm with an applicator so that the film thickness after drying at 80 ° C. for 10 minutes was 40 μm. did.
Then, after laminating 300 mm width x 300 mm length on the composition layer, a conveyor type ultraviolet irradiation device (high pressure mercury lamp, lamp height 12 cm, 365 nm irradiation intensity 400 mW / cm 2 ) manufactured by Eye Graphics Co., Ltd. (Measurement value of UV POWER PUCK manufactured by Fusion UV Systems Japan Co., Ltd.) was adjusted to carry out ultraviolet irradiation with an integrated light quantity of 1,000 mJ / cm 2 to obtain an ultraviolet curable optical film.
After curing, it was peeled off from Lumirror and used for the evaluation described later.
〔光弾性係数1〕
 実施例及び比較例で得られた光学フィルムを15mm×60mmに切り出し、自動複屈折計(KOBRA-WR、王子計測機器(株)製)を用いて、室温で0N~10Nの範囲で5点張力σを変えたときの面内位相差値をそれぞれ測定し、下記式に従って作製した近似直線の傾きから光弾性係数1を求めた。結果を表2に示す。
 △n=C・σ
(式中、△nは応力複屈折、σは張力、Cは光弾性係数1を表す。)
 また、(A)成分の硬化物の光弾性係数1については、(A)成分のみを前記電子線硬化による光学フィルムの製造と同様な方法により硬化させフィルムを作製し、上記と同様に測定した。
[Photoelastic coefficient 1]
The optical films obtained in Examples and Comparative Examples were cut into 15 mm × 60 mm, and using an automatic birefringence meter (KOBRA-WR, manufactured by Oji Scientific Instruments Co., Ltd.), a 5-point tension in the range of 0N to 10N at room temperature. The in-plane retardation value when σ was changed was measured, and the photoelastic coefficient 1 was obtained from the slope of the approximate straight line prepared according to the following formula. The results are shown in Table 2.
Δn = C · σ
(In the formula, Δn represents stress birefringence, σ represents tension, and C represents photoelastic coefficient 1.)
Moreover, about the photoelastic coefficient 1 of the hardened | cured material of (A) component, only the (A) component was hardened by the method similar to manufacture of the optical film by the said electron beam hardening, a film was produced, and it measured similarly to the above. .
〔面内及び厚さ方向レタデーション〕
 実施例及び比較例で得られた光学フィルムについて、位相差測定器(王子計測機器(株)製KOBRA-21ADH)を用いて正面及び斜め40°の面内レタデーション(以下、それぞれ「0°Re」及び「40°Re」ともいう。)及び厚さ方向レタデーション(以下、「Rth」ともいう。)を測定した。それらの結果を表2に示す。
[In-plane and thickness direction retardation]
For the optical films obtained in Examples and Comparative Examples, front and oblique in-plane retardation (hereinafter, “0 ° Re” respectively) using a phase difference measuring device (KOBRA-21ADH manufactured by Oji Scientific Instruments). And “40 ° Re”) and thickness direction retardation (hereinafter also referred to as “Rth”). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例F1~F12は、本発明の組成物である実施例1~12から組成物から得られた光学フィルムであり、光弾性係数1は、従来偏光子保護フィルムとして使用されているTACの光弾性係数1の13×10-12Pa-1よりも小さく、光漏れや白抜の懸念のないものであった。又、厚さ方向レタデーションは、TAC(40μm)のRthの30~40nmよりも小さく、視野角特性に優れるものであった。
 これに対して、比較例F1~F5は、(B)成分を含まないため、光弾性係数1又は厚さ方向レタデーションが大きく、双方を同時に小さくすることはできなかった。また、比較例F6~F7は、(B)成分を含むものの、UA-5単体の光弾性係数1が大きいため、光弾性係数1を充分に低減することはできなかった。
Examples F1 to F12 are optical films obtained from the compositions of Examples 1 to 12 which are the compositions of the present invention, and the photoelastic coefficient 1 is the light of a TAC conventionally used as a polarizer protective film. The elastic modulus was smaller than 13 × 10 −12 Pa −1 of 1 , and there was no concern about light leakage or white spots. Further, the thickness direction retardation was smaller than the Rth of TAC (40 μm) of 30 to 40 nm, and the viewing angle characteristics were excellent.
On the other hand, Comparative Examples F1 to F5 did not contain the component (B), and therefore, the photoelastic coefficient 1 or the thickness direction retardation was large, and both could not be reduced simultaneously. In Comparative Examples F6 to F7, although the component (B) was included, the photoelastic coefficient 1 of UA-5 alone was large, so the photoelastic coefficient 1 could not be sufficiently reduced.
○製造例B2〔カルボキシル基含有プレポリマー製造〕
 撹拌機、温度計、冷却器を備えた1L反応容器に、メタクリル酸メチル(以下、「MMA」ともいう。):52.0g、2-ヒドロキシエチルメタクリレート(以下、「HEMA」ともいう。):16.0g、メタクリル酸(以下、「MAA」ともいう。):12.0g、3-メルカプトプロピオン酸(以下、「MPA」ともいう。):3.2g、メチルイソブチルケトン(以下、「MIBK」ともいう。):480gを仕込み、室温で均一に溶解させた。
 フラスコの内容物を撹拌しながら、窒素雰囲気下で内温を92℃まで昇温し、内温が一定になった後、MMA:468.0g、HEMA:144.0、MAA:108.0、MPA:28.8gの混合液748.8gを5時間かけて添加し、他方で2,2’-アゾビス-2,4-ジメチルバレロニトリル〔和光純薬工業(株)製V-65。以下、「V-65」ともいう。〕:6.4gとMEK:80gからなる重合開始剤溶液を5.5時間かけて、それぞれ連続的に添加した。
 連続添加終了後、内温を92℃に保って熟成を2時間行い、カルボキシル基含有プレポリマー(以下、「LP-4」という。)の溶液(固形分62%)を得た。
 得られたLP-4のMn、Mw、光弾性係数2を製造例B1と同様に測定した結果、Mnが3,200、Mwが5,800、光弾性係数2が0.2×10-12・Pa-1であった。
 それらの結果を表3に示す。尚、表3における数字は、使用したモノマー全体の割合100重量%に換算した場合の割合として記載し、使用した有機溶媒及びその割合を省略して記載している。
○ Production Example B2 [ Production of carboxyl group-containing prepolymer]
In a 1 L reaction vessel equipped with a stirrer, a thermometer and a condenser, methyl methacrylate (hereinafter also referred to as “MMA”): 52.0 g, 2-hydroxyethyl methacrylate (hereinafter also referred to as “HEMA”): 16.0 g, methacrylic acid (hereinafter also referred to as “MAA”): 12.0 g, 3-mercaptopropionic acid (hereinafter also referred to as “MPA”): 3.2 g, methyl isobutyl ketone (hereinafter referred to as “MIBK”) 480g was charged and dissolved uniformly at room temperature.
While stirring the contents of the flask, the internal temperature was raised to 92 ° C. under a nitrogen atmosphere, and after the internal temperature became constant, MMA: 468.0 g, HEMA: 144.0, MAA: 108.0, MPA: 748.8 g of a mixture of 28.8 g was added over 5 hours, while 2,2′-azobis-2,4-dimethylvaleronitrile [V-65 manufactured by Wako Pure Chemical Industries, Ltd.]. Hereinafter, it is also referred to as “V-65”. ]: A polymerization initiator solution composed of 6.4 g and MEK: 80 g was continuously added over 5.5 hours.
After completion of the continuous addition, aging was carried out for 2 hours while maintaining the internal temperature at 92 ° C. to obtain a solution (solid content: 62%) of a carboxyl group-containing prepolymer (hereinafter referred to as “LP-4”).
Mn, Mw, and photoelastic coefficient 2 of the obtained LP-4 were measured in the same manner as in Production Example B1, and as a result, Mn was 3,200, Mw was 5,800, and photoelastic coefficient 2 was 0.2 × 10 −12. -Pa -1 .
The results are shown in Table 3. In addition, the numbers in Table 3 are described as ratios when converted to a ratio of 100% by weight of the whole monomers used, and the used organic solvents and their ratios are omitted.
○製造例B3〔カルボキシル基含有プレポリマー製造〕
 製造例B2において、用いた原料を表3に記載したように変更した以外は同様の操作を行い、負の光弾性係数2を有するカルボキシル基含有プレポリマー(以下、「LP-5」という。)の溶液(固形分62%)を得た。
 得られたLP-5のMn、Mw、光弾性係数2を製造例B1と同様に測定した結果、Mnが4,400、Mwが11,000、光弾性係数2が-2.0×10-12・Pa-1であった。それらの結果を表3に示す。
○ Production Example B3 [ Production of carboxyl group-containing prepolymer]
In Production Example B2, the same operation was carried out except that the raw materials used were changed as shown in Table 3, and a carboxyl group-containing prepolymer having a negative photoelastic coefficient 2 (hereinafter referred to as “LP-5”). Solution (solid content 62%) was obtained.
Mn, Mw, and photoelastic coefficient 2 of LP-5 obtained were measured in the same manner as in Production Example B1. As a result, Mn was 4,400, Mw was 11,000, and photoelastic coefficient 2 was −2.0 × 10 −. 12 · Pa −1 . The results are shown in Table 3.
○製造例B4〔末端カルボキシル基含有重合体の製造〕
 撹拌機、温度計、冷却器を備えた1L反応容器に、MMA:400.0g、MPA:5.8g、MIBK:640.0gを仕込み、室温で均一に溶解させた。
 フラスコの内容物を撹拌しながら、窒素雰囲気下で内温を92℃まで昇温し、内温が一定になった後、MMA:400.0g、MPA:8.64gを3時間かけて添加し、他方でV-65:1.3gとMEK:32gからなる重合開始剤溶液(1)を4時間、V-65:5.2gとMEK:128.0gからなる重合開始剤溶液(2)を2時間かけて、それぞれ連続的に添加した。
 連続添加終了後、内温を92℃に保って熟成を2時間行い、負の光弾性係数2を有する末端カルボキシル基含有重合体(以下、「LP-6」という。)の溶液(固形分51%)を得た。
 得られたLP-6のMn、Mw、光弾性係数2を製造例B1と同様に測定した結果、Mnが6,000、Mwが12,000、光弾性係数2が-4.0×10-12・Pa-1であった。それらの結果を表3に示す。
○ Production Example B4 [ Production of terminal carboxyl group-containing polymer]
MMA: 400.0 g, MPA: 5.8 g, and MIBK: 640.0 g were charged into a 1 L reaction vessel equipped with a stirrer, a thermometer, and a condenser, and uniformly dissolved at room temperature.
While stirring the contents of the flask, the internal temperature was raised to 92 ° C. under a nitrogen atmosphere, and after the internal temperature became constant, MMA: 400.0 g and MPA: 8.64 g were added over 3 hours. On the other hand, a polymerization initiator solution (1) consisting of V-65: 1.3 g and MEK: 32 g was added for 4 hours, and a polymerization initiator solution (2) consisting of V-65: 5.2 g and MEK: 128.0 g. Each was added continuously over 2 hours.
After completion of the continuous addition, aging was performed for 2 hours while maintaining the internal temperature at 92 ° C., and a solution of a terminal carboxyl group-containing polymer (hereinafter referred to as “LP-6”) having a negative photoelastic coefficient of 2 (solid content 51). %).
Mn, Mw, and photoelastic coefficient 2 of the obtained LP-6 were measured in the same manner as in Production Example B1, and as a result, Mn was 6,000, Mw was 12,000, and photoelastic coefficient 2 was −4.0 × 10 −. 12 · Pa −1 . The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
○製造例B5〔(B)成分の製造〕
 撹拌機、温度計、冷却器を備えた1L反応容器に、LP-4:350.0g(固形分62%)を仕込み、92℃に昇温後、5%酸素窒素混合気を吹き込みながら180rpmで1時間攪拌した。その後、重合禁止剤としてBHT:0.11g、触媒としてDBTDL:0.05g、2-アクリロイルオキシエチルイソシアナート〔昭和電工(株)製カレンズAOI。以下、「AOI」ともいう。〕:43.0gを一括で仕込み、4時間撹拌した。
 このウレタン化反応の終了は溶液中のイソシアネート基の消失を赤外分光法で確認した。このようにして(B)成分(以下、「ULP-1」という。)の溶液(固形分64%)を得た。
 得られたULP-1のMn、Mw、光弾性係数2を製造例B1と同様に測定した。又、ULP-1のf値を式(3)に従い算出した。
 ULP-1のMn、Mw、f値、不飽和基導入箇所及び光弾性係数2の結果を表4に示す。
 尚、表4における数字は、プレポリマー製造で使用したモノマー全体の割合100重量%に換算した場合の割合として記載し、使用した溶媒及びその割合を省略して記載している。
○ Production Example B5 [Production of Component (B)]
LP-4: 350.0 g (solid content 62%) was charged into a 1 L reaction vessel equipped with a stirrer, a thermometer, and a cooler, heated to 92 ° C. Stir for 1 hour. Thereafter, BHT: 0.11 g as a polymerization inhibitor, DBTDL: 0.05 g as a catalyst, 2-acryloyloxyethyl isocyanate [Karenz AOI manufactured by Showa Denko KK]. Hereinafter, it is also referred to as “AOI”. ]: 43.0 g was charged all at once and stirred for 4 hours.
Completion of this urethanization reaction confirmed the disappearance of the isocyanate group in the solution by infrared spectroscopy. In this way, a solution (solid content 64%) of component (B) (hereinafter referred to as “ULP-1”) was obtained.
Mn, Mw, and photoelastic coefficient 2 of the obtained ULP-1 were measured in the same manner as in Production Example B1. Also, the f value of ULP-1 was calculated according to equation (3).
Table 4 shows the results of Mn, Mw, f value of ULP-1, unsaturated group introduction site, and photoelastic coefficient 2.
In addition, the numbers in Table 4 are described as ratios in terms of 100% by weight of the total monomers used in the prepolymer production, and the used solvents and their ratios are omitted.
○製造例B6~16〔(B)成分の製造〕
 製造例B5において、プレポリマー製造で用いたモノマーの種類及び割合を表4及び表5に記載したように変更し、付加反応で使用する化合物の種類及び割合を変更する以外は、同様の操作を行い、(B)成分の溶液(固形分51~64%)を得た。
 得られたULP-2~12のMn、Mw、f値及び光弾性係数2を製造例B6と同様の方法で測定した。それらの結果を、不飽和基導入箇所と合わせて表4及び表5に示す。
 尚、製造例B11及びB14において、カルボキシル基とエポキシ基の反応の終了は、オートタイトレーター〔COM-900、平沼産業(株)製〕を使用して、反応溶液中の酸価の消失を確認した。
○ Production Examples B6 to 16 [Production of component (B)]
In Production Example B5, the same procedure was followed except that the types and ratios of the monomers used in the prepolymer production were changed as described in Tables 4 and 5 and the types and ratios of the compounds used in the addition reaction were changed. And a solution of component (B) (solid content 51 to 64%) was obtained.
The Mn, Mw, f value and photoelastic coefficient 2 of the obtained ULP-2 to 12 were measured by the same method as in Production Example B6. The results are shown in Table 4 and Table 5 together with the unsaturated group introduction site.
In Production Examples B11 and B14, the completion of the reaction between the carboxyl group and the epoxy group was confirmed by using an autotitrator [COM-900, manufactured by Hiranuma Sangyo Co., Ltd.] to confirm the disappearance of the acid value in the reaction solution. did.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4及び表5におけるfは、1分子中の平均エチレン性不飽和基数である。
 尚、表3~5における略号を、前記で定義したものを含めて下記に示す。
・MMA:メチルメタクリレート
・HEMA:2-ヒドロキシエチルメタクリレート
・MAA:メタクリル酸
・MA:メチルアクリレート
・GMA:グリシジルメタクリレート
・ACMO:アクリロイルモルホリン
・V-65:2,2’-アゾビス-2,4-ジメチルバレロニトリル
・MPA:3-メルカプトプロピオン酸
・MTG:2-メルカプトエタノール
・DM:ドデシルメルカプタン
・AOI:2-アクリロイルオキシエチルイソシアナート
・AA:アクリル酸
・MOI:2-メタクロイルオキシエチルイソシアナート
・DBTDL:ジブチルスズジラウレート
・TBAB:テトラブチルアンモニウムブロマイド
・BHT:2,6-ジ-t-ブチル-4-メチルフェノール
F in Table 4 and Table 5 is the average number of ethylenically unsaturated groups in one molecule.
The abbreviations in Tables 3 to 5 including those defined above are shown below.
• MMA: methyl methacrylate • HEMA: 2-hydroxyethyl methacrylate • MAA: methacrylic acid • MA: methyl acrylate • GMA: glycidyl methacrylate • ACMO: acryloylmorpholine • V-65: 2,2′-azobis-2,4-dimethyl Valeronitrile, MPA: 3-mercaptopropionic acid, MTG: 2-mercaptoethanol, DM: dodecyl mercaptan, AOI: 2-acryloyloxyethyl isocyanate, AA: acrylic acid, MOI: 2-methacryloyloxyethyl isocyanate, DBTDL : Dibutyltin dilaurate • TBAB: Tetrabutylammonium bromide • BHT: 2,6-di-t-butyl-4-methylphenol
(4)実施例U1~同U20及び比較例U1~同U2(組成物の製造)
 後記表6~9に示す成分を表6~9に示す割合でステンレス製容器に投入し、加温しながらマグネチックスターラーで均一になるまで撹拌し、組成物を得た。
(4) Examples U1 to U20 and Comparative Examples U1 to U2 (Production of compositions)
The components shown in Tables 6 to 9 below were charged in a stainless steel container in the proportions shown in Tables 6 to 9, and stirred with a magnetic stirrer while heating to obtain a composition.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7において、M309は、トリメチロールプロパントリアクリレート〔東亞合成(株)製アロニックスM-309〕を意味する。 In Table 7, M309 means trimethylolpropane triacrylate [Aronix M-309 manufactured by Toagosei Co., Ltd.].
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(5)実施例UF1~UF20及び比較例UF1及びUF2(電子線硬化による光学フィルムの製造)
 幅300mm×長さ300mmの東レ(株)製フィルム「ルミラー50-T60」(表面未処理ポリエチレンテレフタレートフィルム、厚さ50μm、以下「ルミラー」という。)に、実施例U1~U20及び比較例U1~U2で得られた組成物を、120℃で10分乾燥した後の膜厚が40μmになるようアプリケーターで塗工した。
 その後、組成物層に、幅300mm×長さ300mmのルミラーをラミネートした後、(株)NHVコーポレーション製の電子線照射装置により、加速電圧200kV、線量150kGy(ビーム電流及び搬送速度により調整)、酸素濃度300ppm以下の条件下で電子線照射を行い、光学フィルムを得た。
 硬化後、ルミラーから剥離し、前記と同様の方法で光弾性係数1、面内及び厚さ方向レタデーションを評価した。又、下記方法に従って、カッティング性及び耐折り曲げ性を評価した。
(5) Examples UF1 to UF20 and Comparative Examples UF1 and UF2 (production of optical film by electron beam curing)
Examples U1-U20 and Comparative Examples U1- The composition obtained in U2 was coated with an applicator so that the film thickness after drying at 120 ° C. for 10 minutes was 40 μm.
Then, after laminating 300 mm width x 300 mm length on the composition layer, an acceleration voltage of 200 kV and a dose of 150 kGy (adjusted by the beam current and the conveyance speed), oxygen by an electron beam irradiation apparatus manufactured by NHV Corporation, oxygen Electron beam irradiation was performed under conditions of a concentration of 300 ppm or less to obtain an optical film.
After curing, the film was peeled off from the Lumirror, and the photoelastic coefficient 1, in-plane and thickness direction retardation were evaluated by the same method as described above. Further, cutting property and bending resistance were evaluated according to the following methods.
〔カッティング性〕
 作製したフィルムの柔軟性を評価するため、カッターナイフで切った時のカッティング性を以下の基準で評価した。それらの結果を表10に示す。
  ○:スムーズにカットが可能な状態
  △:ややスムーズさに欠ける
  ×:カット時に断面にクラックが生じる状態
[Cutting]
In order to evaluate the flexibility of the produced film, the cutting property when cut with a cutter knife was evaluated according to the following criteria. The results are shown in Table 10.
○: A state in which cutting can be performed smoothly △: Slightly lacking in smoothness ×: A state in which a cross-section is cracked during cutting
〔耐折り曲げ性〕
 作製したフィルムの柔軟性を評価するため、15mm×150mmに切り出したフィルムを180°折り曲げた時の耐性を以下の基準で評価した。それらの結果を表10に示す。
  ○:3回で割れず
  △:1~2回で割れ
  ×:1回で割れ
[Bending resistance]
In order to evaluate the flexibility of the produced film, the resistance when the film cut into 15 mm × 150 mm was bent 180 ° was evaluated according to the following criteria. The results are shown in Table 10.
○: No cracking after 3 times Δ: Cracking once or twice ×: Cracking once
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例UF1~UF17は、本発明の組成物である実施例U1~U17から組成物から得られた光学フィルムであり、光弾性係数1は、従来偏光子保護フィルムとして使用されているTACの光弾性係数1の13×10-12Pa-1よりも小さく、光漏れや白抜の懸念のないものであった。又、厚さ方向レタデーションは、TAC(40μm)のRthの30~40nmよりも小さく、視野角特性に優れるものであった。さらに、柔軟性にも優れるものであった。
 これに対して、実施例UF18~UF20は、光弾性係数1が低い又は負の値を有するポリマーであるものの、エチレン性不飽和基を有さない(B)’成分を含む組成物(比較例U18~U20)から製造された光学フィルムであり、実施例と同様に光弾性係数1及びレタデーションに優れるものの、いずれも柔軟性に乏しいものであった。
 比較例UF1は、(B)成分を含まない組成物(比較例U1)から製造された光学フィルムであり、光弾性係数1及び厚さ方向レタデーションが大きく、双方を同時に小さくすることはできなかった。比較例UF2は、(A)成分と異なるウレタンアクリレートを使用した組成物(比較例U2)から製造された光学フィルムであり、光弾性係数1が大きいものであった。
Examples UF1 to UF17 are optical films obtained from the compositions of Examples U1 to U17, which are the compositions of the present invention, and the photoelastic coefficient 1 is the light of TAC conventionally used as a polarizer protective film. The elastic modulus was smaller than 13 × 10 −12 Pa −1 of 1 , and there was no concern about light leakage or white spots. Further, the thickness direction retardation was smaller than the Rth of TAC (40 μm) of 30 to 40 nm, and the viewing angle characteristics were excellent. Furthermore, it was excellent in flexibility.
On the other hand, Examples UF18 to UF20 are compositions having a component (B) ′ having no ethylenically unsaturated group although it is a polymer having a low photoelastic coefficient 1 or a negative value (Comparative Example). An optical film manufactured from U18 to U20), which was excellent in photoelastic coefficient 1 and retardation as in the Examples, but was poor in flexibility.
Comparative Example UF1 is an optical film produced from a composition (Comparative Example U1) that does not contain the component (B), and has a large photoelastic coefficient 1 and thickness direction retardation, and both cannot be simultaneously reduced. . Comparative example UF2 is an optical film manufactured from a composition (comparative example U2) using a urethane acrylate different from component (A), and has a large photoelastic coefficient 1.
○製造例PL1〔偏光子の製造〕
 厚さ80μmのポリビニルアルコールフィルムを、30℃の水浴で膨潤させた後、5重量%(重量比:ヨウ素/ヨウ化カリウム=1/10)のヨウ素水溶液中で染色した。次いで、3重量%のホウ酸及び2重量%ヨウ化カリウムを含む水溶液に浸漬し、さらに55℃の4重量%のホウ酸及び3重量%のヨウ化カリウムを含む水溶液中で5.5倍まで一軸延伸した後、5重量%のヨウ化カリウム水溶液に浸漬した。その後、70℃のオーブンで1分間乾燥を行い、厚さ30μmの偏光子(以下、偏光子Pという。)を得た。
 得られた偏光子Pについて、偏光プリズム付き分光光度計((株)島津製作所製UV-2200)を用いて偏光度及び単体透過率を測定したところ、それぞれ99.99%及び43.1%であった。
○ Production example PL1 [ Production of polarizer]
A polyvinyl alcohol film having a thickness of 80 μm was swelled in a 30 ° C. water bath and then dyed in an aqueous iodine solution of 5 wt% (weight ratio: iodine / potassium iodide = 1/10). Then, it is immersed in an aqueous solution containing 3% by weight boric acid and 2% by weight potassium iodide, and further 5.5 times in an aqueous solution containing 4% by weight boric acid and 3% by weight potassium iodide at 55 ° C. After uniaxial stretching, it was immersed in a 5 wt% potassium iodide aqueous solution. Then, it dried for 1 minute in 70 degreeC oven, and obtained the 30-micrometer-thick polarizer (henceforth the polarizer P).
For the obtained polarizer P, the degree of polarization and the single transmittance were measured using a spectrophotometer with a polarizing prism (UV-2200, manufactured by Shimadzu Corporation), and found to be 99.99% and 43.1%, respectively. there were.
○製造例V1〔紫外線硬化型接着剤の製造〕
 ビスフェノールAジグリシジルエーテル(ジャパンエポキシレジン(株)製jER807)50部、テトラヒドロフルフリルアクリレート(大阪有機化学工業(株)製THF-A)20部、4-ヒドロキシルブチルアクリレート(日本化成(株)製4-HBA)30部、光重合開始剤(以下、「光開始剤」ともいう。)のヨードニウム(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヘキサフルオルフォスフェート(BASFジャパン(株)製IRGACURE250)4部、2,4-ジエチルチオキサントン(日本化薬(株)製カヤキュアDETX-s)1部をステンレス製容器に投入し、マグネチックスターラーで均一になるまで撹拌し、紫外線硬化型接着剤(以下、接着剤UVX1という。)を得た。
○ Production Example V1 [ Production of UV-curable adhesive]
50 parts of bisphenol A diglycidyl ether (Japan Epoxy Resin Co., Ltd. jER807), 20 parts of tetrahydrofurfuryl acrylate (Osaka Organic Chemical Co., Ltd. THF-A), 4-hydroxylbutyl acrylate (Nippon Kasei Co., Ltd.) 30 parts of 4-HBA), iodonium (4-methylphenyl) [4- (2-methylpropyl) phenyl] hexafluorophosphate (BASF Japan) as a photopolymerization initiator (hereinafter also referred to as “photoinitiator”) 4 parts of IRGACURE250 manufactured by Co., Ltd. and 1 part of 2,4-diethylthioxanthone (Kayacure DETX-s manufactured by Nippon Kayaku Co., Ltd.) are placed in a stainless steel container and stirred with a magnetic stirrer until uniform. A curable adhesive (hereinafter referred to as adhesive UVX1) was obtained.
(6)実施例P1、同P2及び比較例P1(偏光板の製造)
 偏光子保護フィルムとして実施例F3及びF5及び比較例F6で得られた光学フィルムを用い、偏光子Pの両面に接着剤UVX1を膜厚5μmで塗布して光学フィルムを貼り合わせた後、アイグラフィックス(株)製のコンベア式紫外線照射装置(高圧水銀灯、ランプ高さ15cm、365nmの照射強度 370mW/cm2(フュージョンUVシステムズ・ジャパン(株)社製UV POWER PUCKの測定値))によりコンベア速度を調整して、積算光量220mJ/cm2の紫外線照射を行い、偏光板(幅100mm×長さ100mm)を得た。
 なお、いずれの偏光子保護フィルムに対してもコロナ処理は行わなかった。
(6) Examples P1, P2 and Comparative Example P1 (Production of Polarizing Plate)
Using the optical films obtained in Examples F3 and F5 and Comparative Example F6 as the polarizer protective film, adhesive UVX1 was applied to both sides of the polarizer P with a film thickness of 5 μm, and the optical films were bonded together. Conveyor speed by conveyor type ultraviolet irradiation device (high pressure mercury lamp, lamp height 15 cm, 365 nm irradiation intensity 370 mW / cm 2 (measured value of UV POWER PUCK manufactured by Fusion UV Systems Japan Co., Ltd.)) Was adjusted, and ultraviolet rays with an integrated light quantity of 220 mJ / cm 2 were applied to obtain a polarizing plate (width 100 mm × length 100 mm).
In addition, no corona treatment was performed on any of the polarizer protective films.
〔偏光度及び単体透過率の測定〕
 実施例及び比較例で得られた偏光板について、偏光プリズム付き分光光度計((株)島津製作所製UV-2200)を用いて偏光度及び単体透過率を測定した。それらの結果を表11に示す。
(Measurement of degree of polarization and single transmittance)
About the polarizing plate obtained by the Example and the comparative example, the polarization degree and the single-piece | unit transmittance were measured using the spectrophotometer with a polarizing prism (Shimadzu Corporation UV-2200). The results are shown in Table 11.
〔偏光子保護フィルムと偏光子の接着性〕
 実施例及び比較例で得られた偏光板における、偏光子保護フィルムと偏光子Pの接着性を手でひねりを加えてねじ切ったときの状態を以下の基準で評価した。それらの結果を表11に示す。
  ○:偏光子と偏光子保護フィルムとが一体化して剥がれが生じない。
  ×:偏光子と偏光子保護フィルムとの間に剥がれが認められる。
[Adhesiveness between polarizer protective film and polarizer]
In the polarizing plates obtained in the examples and comparative examples, the adhesive properties of the polarizer protective film and the polarizer P were evaluated by the following criteria when twisted by hand twisting. The results are shown in Table 11.
A: The polarizer and the polarizer protective film are integrated with each other so that peeling does not occur.
X: Peeling is recognized between the polarizer and the polarizer protective film.
〔偏光板の耐湿熱性〕
 実施例及び比較例で得られた偏光板を、60℃90%RHの恒温恒湿槽に120時間放置した後のサンプルの変形の有無を以下の基準で目視評価した。それらの結果を表11に示す。
  ○:変形は見られない。
  ×:変形が見られた。
[Moisture and heat resistance of polarizing plate]
The polarizing plates obtained in the examples and comparative examples were visually evaluated based on the following criteria for the presence or absence of deformation of the samples after leaving them in a constant temperature and humidity chamber at 60 ° C. and 90% RH for 120 hours. The results are shown in Table 11.
○: Deformation is not seen.
X: Deformation was observed.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例P1及びP2は、本発明の組成物である実施例F3及びF5で得られた光学フィルムを用いた偏光板であり、偏光子Pの性能が維持されており、接着性及び耐湿熱性が良好であった。
 これに対して、比較例P1は、比較例F6で得られた光学フィルムを用いた偏光板であるが、偏光子Pの性能が維持されており、接着性は良好なものの、耐湿熱性が低下した。
Examples P1 and P2 are polarizing plates using the optical films obtained in Examples F3 and F5, which are the compositions of the present invention. The performance of the polarizer P is maintained, and the adhesiveness and heat and humidity resistance are high. It was good.
On the other hand, Comparative Example P1 is a polarizing plate using the optical film obtained in Comparative Example F6, but the performance of the polarizer P is maintained and the adhesiveness is good, but the heat and humidity resistance is reduced. did.
(7)実施例P3~実施例P12(偏光板の製造)
 偏光子保護フィルムとして実施例F1、F2、F4及びF6~F12で得られた光学フィルムを用いた以外は、実施例P1と同様に偏光板をそれぞれ作製し、耐湿熱性を評価した。
 実施例P3~P12のいずれの偏光板も、耐湿熱性が良好であった。
(7) Example P3 to Example P12 (Production of polarizing plate)
A polarizing plate was prepared in the same manner as in Example P1 except that the optical films obtained in Examples F1, F2, F4, and F6 to F12 were used as the polarizer protective film, and the wet heat resistance was evaluated.
All the polarizing plates of Examples P3 to P12 had good wet heat resistance.
○製造例V2〔紫外線硬化型接着剤の製造〕
 ビスフェノールAジグリシジルエーテル(ジャパンエポキシレジン(株)製jER807)40部、テトラヒドロフルフリルアクリレート(大阪有機化学工業(株)製THF-A)20部、4-ヒドロキシルブチルアクリレート(日本化成(株)製4-HBA)30部、イソシアヌル酸エチレンオキサイド変性ジ及びトリアクリレート(東亞合成(株)製アロニックスM-313)10部、光開始剤のジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェートの50重量%プロピレンカーボネート溶液(サンアプロ製CPI-100P)6部、1-ヒドロキシシクロヘキシルフェニルケトン(BASF・ジャパン(株)製イルガキュア184)1部をステンレス製容器に投入し、マグネチックスターラーで均一になるまで撹拌し、紫外線硬化型接着剤(以下、接着剤UVX2という。)を得た。
○ Production Example V2 [ Production of UV-curable adhesive]
40 parts of bisphenol A diglycidyl ether (Japan Epoxy Resins Co., Ltd. jER807), 20 parts of tetrahydrofurfuryl acrylate (THF-A, Osaka Organic Chemical Co., Ltd.), 4-hydroxylbutyl acrylate (manufactured by Nippon Kasei Co., Ltd.) 4-HBA), 30 parts of isocyanuric acid ethylene oxide modified di- and triacrylate (Aronix M-313 manufactured by Toagosei Co., Ltd.), 50 weight of diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate as a photoinitiator 6 parts of a 1% propylene carbonate solution (CPI-100P manufactured by San Apro) and 1 part of 1-hydroxycyclohexyl phenyl ketone (Irgacure 184 manufactured by BASF Japan Ltd.) are put into a stainless steel container and uniformly mixed with a magnetic stirrer And stirred until the ultraviolet curing adhesive (hereinafter, referred to as adhesive UVX2.) Was obtained.
(8)実施例UP1、同UP2及び比較例同UP1(偏光板の製造)
 偏光子保護フィルムとして実施例UF7、同UF10及び比較例UF2で得られた光学フィルムを用い、接着剤としてUVX2を使用する以外は実施例P1と同様の方法で偏光板(幅100mm×長さ100mm)を得た。
 なお、いずれの偏光子保護フィルムに対してもコロナ処理は行わなかった。
 実施例及び比較例で得られた偏光板について、前記実施例P1と同様の方法で、偏光度及び単体透過率を測定し、前記と同様の方法で、偏光子保護フィルムと偏光子の接着性及び偏光板の耐湿熱性を評価した。それらの結果を表12に示す。
(8) Example UP1, UP2 and Comparative Example UP1 (Production of Polarizing Plate)
A polarizing plate (width 100 mm × length 100 mm) was used in the same manner as in Example P1, except that the optical films obtained in Examples UF7, UF10 and Comparative Example UF2 were used as the polarizer protective film, and UVX2 was used as the adhesive. )
In addition, no corona treatment was performed on any of the polarizer protective films.
About the polarizing plate obtained by the Example and the comparative example, a polarization degree and single-piece | unit transmittance | permeability are measured by the method similar to the said Example P1, and the adhesiveness of a polarizer protective film and a polarizer is the same as the above. In addition, the heat and humidity resistance of the polarizing plate was evaluated. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例UP1及びUP2は、本発明の組成物である実施例UF7及びUF10で得られた光学フィルムを用いた偏光板であり、偏光子Pの性能が維持されており、接着性及び耐湿熱性が良好であり、偏光子用保護フィルムとして有効であった。
 これに対して、比較例UP1は、比較例UF2で得られた光学フィルムを用いた偏光板であるが、偏光子Pの性能が維持されており、接着性は良好なものの、耐湿熱性が低下した。
Examples UP1 and UP2 are polarizing plates using the optical film obtained in Examples UF7 and UF10, which are the compositions of the present invention. The performance of the polarizer P is maintained, and the adhesiveness and heat and humidity resistance are high. It was good and effective as a protective film for a polarizer.
On the other hand, Comparative Example UP1 is a polarizing plate using the optical film obtained in Comparative Example UF2, but the performance of the polarizer P is maintained and the adhesiveness is good, but the heat and humidity resistance is reduced. did.
(9)実施例UP3~実施例UP20(偏光板の製造)
 偏光子保護フィルムとして実施例UF1~UF6、UF8、UF9及びUF11~F20で得られた光学フィルムを用いた以外は、実施例UP1と同様に偏光板をそれぞれ作製し、耐湿熱性を評価した。
 実施例UP3~UP20のいずれの偏光板も、耐湿熱性が良好であった。
(9) Example UP3 to Example UP20 (Production of Polarizing Plate)
A polarizing plate was prepared in the same manner as in Example UP1 except that the optical films obtained in Examples UF1 to UF6, UF8, UF9, and UF11 to F20 were used as the polarizer protective film, and the moisture and heat resistance was evaluated.
All the polarizing plates of Examples UP3 to UP20 had good heat and humidity resistance.
 本発明の光学フィルム形成用活性エネルギー線硬化型組成物は、光学フィルムの製造に好適に使用することができる。
 さらに、本発明の光学フィルムは、前記で詳述した通り、偏光子保護フィルム用途において好適に使用される。
The active energy ray-curable composition for forming an optical film of the present invention can be suitably used for the production of an optical film.
Furthermore, as described in detail above, the optical film of the present invention is suitably used in a polarizer protective film application.

Claims (23)

  1.  硬化物の下記光弾性係数1が30×10-12Pa-1以下のウレタン(メタ)アクリレート(A)、及び、
     下記光弾性係数2が5×10-12Pa-1以下の値を有し、かつ(A)成分以外のポリマー(B)を含み、
     組成物の硬化物の下記光弾性係数1が10×10-12Pa-1以下であり、
     厚さ40μmで測定した場合における硬化物の正面及び斜め40°の面内レタデーション並びに厚さ方向のレタデーションの全てが5nm以下である
     光学フィルム形成用活性エネルギー線硬化型組成物。
     尚、光弾性係数1は、23℃における光弾性係数を意味し、光弾性係数2は、使用した(A)成分に対し任意の割合で(B)成分を添加して得られた光学フィルムの23℃における光弾性係数の値を測定し、その添加量と光弾性係数との直線グラフから外挿した、添加量が100%のときの値を意味する。
    Urethane (meth) acrylate (A) having the following photoelastic coefficient 1 of the cured product of 30 × 10 −12 Pa −1 or less, and
    The following photoelastic coefficient 2 has a value of 5 × 10 −12 Pa −1 or less, and includes a polymer (B) other than the component (A),
    The following photoelastic coefficient 1 of the cured product of the composition is 10 × 10 −12 Pa −1 or less,
    An active energy ray-curable composition for forming an optical film, wherein the front surface of the cured product and the in-plane retardation at an angle of 40 ° and the retardation in the thickness direction when measured at a thickness of 40 μm are all 5 nm or less.
    The photoelastic coefficient 1 means a photoelastic coefficient at 23 ° C., and the photoelastic coefficient 2 is an optical film obtained by adding the component (B) at an arbitrary ratio to the component (A) used. The value of the photoelastic coefficient at 23 ° C. is measured and extrapolated from a linear graph of the added quantity and the photoelastic coefficient, and means a value when the added quantity is 100%.
  2.  前記(A)成分が、芳香族基を有しない化合物である請求項1記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to claim 1, wherein the component (A) is a compound having no aromatic group.
  3.  前記(A)成分が、2個以上の(メタ)アクリロイル基を有し、重量平均分子量1,000~15,000のオリゴマーである請求項1又は請求項2に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy for forming an optical film according to claim 1 or 2, wherein the component (A) is an oligomer having two or more (meth) acryloyl groups and having a weight average molecular weight of 1,000 to 15,000. Line curable composition.
  4.  前記(A)成分が、ポリオール、有機ポリイソシアネート及び水酸基含有(メタ)アクリレートの反応物である請求項1~請求項3のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to any one of claims 1 to 3, wherein the component (A) is a reaction product of a polyol, an organic polyisocyanate, and a hydroxyl group-containing (meth) acrylate. .
  5.  前記(A)成分において、
     ポリオールが、炭素数2~12の脂肪族若しくは脂環族ジオール、又はポリカーボネートジオール若しくはポリエステルジオールと炭素数2~12の脂肪族若しくは脂環族ジオールとであり、
     有機ポリイソシアネートが、無黄変型有機ジイソシアネートである
     請求項4記載の光学フィルム形成用活性エネルギー線硬化型組成物。
    In the component (A),
    The polyol is an aliphatic or alicyclic diol having 2 to 12 carbon atoms, or a polycarbonate diol or polyester diol and an aliphatic or alicyclic diol having 2 to 12 carbon atoms,
    The active energy ray-curable composition for forming an optical film according to claim 4, wherein the organic polyisocyanate is a non-yellowing organic diisocyanate.
  6.  前記(A)成分において、
     ポリオールが、数平均分子量が62以上500未満の炭素数2~12の脂肪族若しくは脂環族ジオールであり、
     有機ポリイソシアネートが、無黄変型有機ジイソシアネートであり、
     水酸基含有(メタ)アクリレートが、水酸基含有(メタ)アクリレートのカプロラクトン付加体である
     請求項4記載の光学フィルム形成用活性エネルギー線硬化型組成物。
    In the component (A),
    The polyol is an aliphatic or alicyclic diol having 2 to 12 carbon atoms having a number average molecular weight of 62 or more and less than 500,
    The organic polyisocyanate is a non-yellowing organic diisocyanate;
    The active energy ray-curable composition for forming an optical film according to claim 4, wherein the hydroxyl group-containing (meth) acrylate is a caprolactone adduct of the hydroxyl group-containing (meth) acrylate.
  7.  前記(B)成分が、(メタ)アクリロイル基を有するモノマーの単独重合体又は共重合体である請求項1~請求項6のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to any one of claims 1 to 6, wherein the component (B) is a homopolymer or a copolymer of a monomer having a (meth) acryloyl group. object.
  8.  前記(B)成分が、(メタ)アクリロイル基を有するモノマーの共重合体であって、アミド構造又はカルボキシル基を有する共重合体である請求項7に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray curable type for optical film formation according to claim 7, wherein the component (B) is a copolymer of a monomer having a (meth) acryloyl group, which is a copolymer having an amide structure or a carboxyl group. Composition.
  9.  前記(B)成分が、N-ビニル-2-ピロリドン共重合体である請求項1~請求項6のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to any one of claims 1 to 6, wherein the component (B) is an N-vinyl-2-pyrrolidone copolymer.
  10.  前記(B)成分が、エチレン性不飽和基を有するポリマーである請求項1~請求項9のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to any one of claims 1 to 9, wherein the component (B) is a polymer having an ethylenically unsaturated group.
  11.  前記(B)成分におけるエチレン性不飽和基が、(メタ)アクリロイル基である請求項10記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for forming an optical film according to claim 10, wherein the ethylenically unsaturated group in the component (B) is a (meth) acryloyl group.
  12.  前記(B)成分が、
     カルボキシル基を含有する重合体に、エポキシ基及びエチレン性不飽和基を有する化合物を付加して得られたポリマー、
     カルボキシル基を含有する重合体及び/又は水酸基を含有する重合体に、イソシアネート基及びエチレン性不飽和基を有する化合物を付加して得られたポリマー、並びに、
     エポキシ基を含有する重合体に、カルボキシル基及びエチレン性不飽和基を有する化合物を付加して得られたポリマー
    よりなる群から選択される1種以上である請求項11又は請求項12に記載の光学フィルム形成用活性エネルギー線硬化型組成物。
    The component (B) is
    A polymer obtained by adding a compound having an epoxy group and an ethylenically unsaturated group to a polymer containing a carboxyl group,
    A polymer obtained by adding a compound having an isocyanate group and an ethylenically unsaturated group to a polymer containing a carboxyl group and / or a polymer containing a hydroxyl group, and
    The polymer according to claim 11 or 12, which is at least one selected from the group consisting of polymers obtained by adding a compound having a carboxyl group and an ethylenically unsaturated group to a polymer containing an epoxy group. An active energy ray-curable composition for forming an optical film.
  13.  前記カルボキシル基を含有する重合体、水酸基を含有する重合体又はエポキシ基を含有する重合体が、(メタ)アクリロイル基を有する化合物の共重合体である請求項12記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy for forming an optical film according to claim 12, wherein the polymer containing a carboxyl group, the polymer containing a hydroxyl group, or the polymer containing an epoxy group is a copolymer of a compound having a (meth) acryloyl group. Line curable composition.
  14.  前記カルボキシル基を含有する重合体又は水酸基を含有する重合体が、それぞれ末端にカルボキシル基を含有する重合体又は末端に水酸基を含有する重合体である請求項12又は請求項13に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The optical film according to claim 12 or 13, wherein the polymer containing a carboxyl group or the polymer containing a hydroxyl group is a polymer containing a carboxyl group at a terminal or a polymer containing a hydroxyl group at a terminal, respectively. An active energy ray-curable composition for formation.
  15.  (A)成分及び(B)成分の合計量を基準として、(A)成分10~80重量%及び(B)成分20~90重量%で含む請求項1~請求項14のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 15. The composition according to claim 1, comprising 10 to 80% by weight of component (A) and 20 to 90% by weight of component (B) based on the total amount of component (A) and component (B). The active energy ray-curable composition for forming an optical film as described.
  16.  光学フィルム形成用電子線硬化型組成物である請求項1~請求項15のいずれか1項に記載の光学フィルム形成用活性エネルギー線硬化型組成物。 The active energy ray-curable composition for optical film formation according to any one of claims 1 to 15, which is an electron beam curable composition for optical film formation.
  17.  請求項1~請求項15のいずれか1項に記載の組成物の硬化物が、フィルム状又はシート状に形成されてなる光学フィルム。 An optical film obtained by forming a cured product of the composition according to any one of claims 1 to 15 into a film shape or a sheet shape.
  18.  請求項17記載の光学フィルムからなる偏光子保護フィルム。 A polarizer protective film comprising the optical film according to claim 17.
  19.  シート状基材に、請求項1~請求項15のいずれか1項に記載の組成物を塗布した後、塗工面側又はシート状基材側から活性エネルギー線を照射する光学フィルムの製造方法。 A method for producing an optical film, comprising: applying a composition according to any one of claims 1 to 15 to a sheet-like substrate; and irradiating active energy rays from the coated surface side or the sheet-like substrate side.
  20.  シート状基材が剥離可能な基材である請求項19記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 19, wherein the sheet-like substrate is a peelable substrate.
  21.  シート状基材に、請求項1~請求項15のいずれか1項に記載の組成物を塗布し、組成物の塗工面に他のシート状基材を貼合した後、前記シート状基材のいずれかの側から活性エネルギー線を照射する光学フィルムの製造方法。 A sheet-like substrate is coated with the composition according to any one of claims 1 to 15, and another sheet-like substrate is bonded to the coated surface of the composition, and then the sheet-like substrate. The manufacturing method of the optical film which irradiates an active energy ray from either side of these.
  22.  シート状基材のいずれか一方又は両方が剥離可能な基材である請求項21記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 21, wherein either one or both of the sheet-like base materials are peelable base materials.
  23.  ポリビニルアルコール系樹脂から形成される偏光子の少なくとも片面に、請求項18記載の偏光子保護フィルムが積層された偏光板であって、該偏光子が接着剤層を介して該偏光子保護フィルムに接着されてなる偏光板。 A polarizing plate in which the polarizer protective film according to claim 18 is laminated on at least one surface of a polarizer formed of a polyvinyl alcohol resin, and the polarizer is attached to the polarizer protective film via an adhesive layer. A bonded polarizing plate.
PCT/JP2012/081075 2011-12-01 2012-11-30 Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate WO2013081101A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147017610A KR20140099294A (en) 2011-12-01 2012-11-30 Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate
CN201280059166.XA CN104024294A (en) 2011-12-01 2012-11-30 Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011264072 2011-12-01
JP2011-264072 2011-12-01
JP2012-136836 2012-06-18
JP2012136836 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013081101A1 true WO2013081101A1 (en) 2013-06-06

Family

ID=48535549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081075 WO2013081101A1 (en) 2011-12-01 2012-11-30 Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate

Country Status (5)

Country Link
JP (1) JPWO2013081101A1 (en)
KR (1) KR20140099294A (en)
CN (1) CN104024294A (en)
TW (1) TW201329628A (en)
WO (1) WO2013081101A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593717A (en) * 2013-09-30 2016-05-18 Lg化学株式会社 Polarizing plate and image display device comprising same
JP2016535319A (en) * 2013-09-30 2016-11-10 エルジー・ケム・リミテッド Polarizer
JP2017500593A (en) * 2013-09-30 2017-01-05 エルジー・ケム・リミテッド Polarizer
JP2017066380A (en) * 2015-09-24 2017-04-06 荒川化学工業株式会社 Optical active energy ray curable resin composition and optical film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554122B (en) * 2013-08-30 2022-03-01 日东电工株式会社 Curing adhesive for polarizing film, optical film, and image display device
CN107207901A (en) * 2015-02-06 2017-09-26 东曹株式会社 Coating urethane resin compositions and the feel coating using said composition
WO2019065560A1 (en) * 2017-09-28 2019-04-04 日本合成化学工業株式会社 Active energy ray-curable mold-release adhesive composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248221A (en) * 2006-10-31 2008-10-16 Hitachi Chem Co Ltd Resin composition for optical use and optical resin material using it
WO2009093679A1 (en) * 2008-01-24 2009-07-30 Hitachi Chemical Company, Ltd. Resin composition for production of clad layer, resin film for production of clad layer utilizing the resin composition, and optical waveguide and optical module each utilizing the resin composition or the resin film
JP2009173816A (en) * 2008-01-28 2009-08-06 Toray Ind Inc Transparent cross-linked film
JP2010128417A (en) * 2008-12-01 2010-06-10 Sumitomo Chemical Co Ltd Optical film
WO2011010599A1 (en) * 2009-07-22 2011-01-27 日立化成工業株式会社 Photocurable resin composition and cured product of same; resin sheet and production method for same; and display device
JP2011085894A (en) * 2009-09-18 2011-04-28 Sumitomo Chemical Co Ltd Optical film and method for manufacturing the same
JP2012194212A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam curable composition for lens sheet support film formation, lens sheet support film, and lens sheet
JP2012193220A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam-curable composition for forming optical film or sheet, optical film or sheet, and polarizer protecting film and sheet polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103195B2 (en) * 1987-10-14 1995-11-08 株式会社日立製作所 Optical material
JP3990433B2 (en) * 2005-11-28 2007-10-10 日東電工株式会社 Polarizing plate with optical compensation layer and image display device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248221A (en) * 2006-10-31 2008-10-16 Hitachi Chem Co Ltd Resin composition for optical use and optical resin material using it
WO2009093679A1 (en) * 2008-01-24 2009-07-30 Hitachi Chemical Company, Ltd. Resin composition for production of clad layer, resin film for production of clad layer utilizing the resin composition, and optical waveguide and optical module each utilizing the resin composition or the resin film
JP2009173816A (en) * 2008-01-28 2009-08-06 Toray Ind Inc Transparent cross-linked film
JP2010128417A (en) * 2008-12-01 2010-06-10 Sumitomo Chemical Co Ltd Optical film
WO2011010599A1 (en) * 2009-07-22 2011-01-27 日立化成工業株式会社 Photocurable resin composition and cured product of same; resin sheet and production method for same; and display device
JP2011085894A (en) * 2009-09-18 2011-04-28 Sumitomo Chemical Co Ltd Optical film and method for manufacturing the same
JP2012194212A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam curable composition for lens sheet support film formation, lens sheet support film, and lens sheet
JP2012193220A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam-curable composition for forming optical film or sheet, optical film or sheet, and polarizer protecting film and sheet polarizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593717A (en) * 2013-09-30 2016-05-18 Lg化学株式会社 Polarizing plate and image display device comprising same
JP2016535320A (en) * 2013-09-30 2016-11-10 エルジー・ケム・リミテッド Polarizing plate and image display device including the same
JP2016535319A (en) * 2013-09-30 2016-11-10 エルジー・ケム・リミテッド Polarizer
JP2017500593A (en) * 2013-09-30 2017-01-05 エルジー・ケム・リミテッド Polarizer
US10156667B2 (en) 2013-09-30 2018-12-18 Lg Chem, Ltd. Polarizing plate and image display device comprising same
JP2017066380A (en) * 2015-09-24 2017-04-06 荒川化学工業株式会社 Optical active energy ray curable resin composition and optical film

Also Published As

Publication number Publication date
KR20140099294A (en) 2014-08-11
TW201329628A (en) 2013-07-16
CN104024294A (en) 2014-09-03
JPWO2013081101A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6127490B2 (en) Polarizer
JP5983098B2 (en) Polarizer
JP5880304B2 (en) Method for producing optical film or sheet
WO2013081101A1 (en) Active energy beam-cured composition for optical film, optical film, polarizer protective film, and polarizing plate
JP6094193B2 (en) Active energy ray-curable composition for forming optical film or sheet, optical film or sheet, and polarizing plate
JP5811834B2 (en) Optical film or optical sheet, polarizer protective film, and polarizing plate
WO2014092095A1 (en) Active-energy-ray-curable composition for forming optical film, optical film, and polarizing plate
JP5589911B2 (en) Electron beam curable composition for optical film or sheet formation, optical film or sheet, polarizer protective film and polarizing plate
JP6493699B2 (en) Resin sheet and manufacturing method thereof
KR101860116B1 (en) Light curing type imprinting composition for fine patterning of light guide panel for display devices, imprinted light guide panel thereof, and back light unit and display device containing the same
JP2014048453A (en) Production method of low retardation optical film or sheet by heat treatment
JP2011068708A (en) Energy ray-curable resin composition for lens sheet excellent in light resistance, and cured material of the same
JP2013141820A (en) Production process of optical film or sheet
JP5803661B2 (en) Electron beam curable composition for optical film or optical sheet formation
JP2016117797A (en) Curable composition for producing resin sheet
JP5891972B2 (en) Optical film or sheet, polarizer protective film, and polarizing plate
WO2017150701A1 (en) Curable composition for producing resin sheet that imparts touch-cured product
JP6256021B2 (en) Active energy ray-curable composition for forming optical film or sheet and optical film or sheet
JP2014048454A (en) Production method of low retardation optical film or sheet
JP2014122987A (en) Active energy ray-curable composition for forming optical film or sheet, and optical film or sheet
JP6418053B2 (en) Manufacturing method of resin sheet
JP7120240B2 (en) Resin sheet and curable composition for producing same
JP2015011180A (en) Production method of low retardation optical film or sheet
JP2014122992A (en) Active energy ray-curable composition for forming lens sheet support film and/or lens sheet
WO2021149763A1 (en) Curable composition for production of resin sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147017610

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12854149

Country of ref document: EP

Kind code of ref document: A1