WO2013080883A1 - Three-dimensional holographic display system, and 3d display apparatus - Google Patents
Three-dimensional holographic display system, and 3d display apparatus Download PDFInfo
- Publication number
- WO2013080883A1 WO2013080883A1 PCT/JP2012/080290 JP2012080290W WO2013080883A1 WO 2013080883 A1 WO2013080883 A1 WO 2013080883A1 JP 2012080290 W JP2012080290 W JP 2012080290W WO 2013080883 A1 WO2013080883 A1 WO 2013080883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- holographic display
- laser beam
- display device
- light
- photorefractive
- Prior art date
Links
- 239000002131 composite material Substances 0.000 claims abstract description 63
- 239000000523 sample Substances 0.000 claims abstract description 43
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims description 77
- 230000005684 electric field Effects 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 230000004043 responsiveness Effects 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 13
- 239000002904 solvent Substances 0.000 description 30
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 22
- 239000004926 polymethyl methacrylate Substances 0.000 description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 239000011521 glass Substances 0.000 description 15
- 230000004044 response Effects 0.000 description 13
- 239000004014 plasticizer Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000002608 ionic liquid Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- HNGIZKAMDMBRKJ-UHFFFAOYSA-N 2-acetamido-3-(1h-indol-3-yl)propanamide Chemical compound C1=CC=C2C(CC(NC(=O)C)C(N)=O)=CNC2=C1 HNGIZKAMDMBRKJ-UHFFFAOYSA-N 0.000 description 7
- 241001602876 Nata Species 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- -1 aromatic tertiary amine Chemical class 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 5
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- HOQAPVYOGBLGOC-UHFFFAOYSA-N 1-ethyl-9h-carbazole Chemical compound C12=CC=CC=C2NC2=C1C=CC=C2CC HOQAPVYOGBLGOC-UHFFFAOYSA-N 0.000 description 2
- UNBOSJFEZZJZLR-UHFFFAOYSA-N 4-(4-nitrophenylazo)aniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=C([N+]([O-])=O)C=C1 UNBOSJFEZZJZLR-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- 230000005697 Pockels effect Effects 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- DWNAQMUDCDVSLT-UHFFFAOYSA-N diphenyl phthalate Chemical compound C=1C=CC=C(C(=O)OC=2C=CC=CC=2)C=1C(=O)OC1=CC=CC=C1 DWNAQMUDCDVSLT-UHFFFAOYSA-N 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- AATYCRRVMKWSAC-MDZDMXLPSA-N n,n-diethyl-4-[(e)-2-nitroethenyl]aniline Chemical compound CCN(CC)C1=CC=C(\C=C\[N+]([O-])=O)C=C1 AATYCRRVMKWSAC-MDZDMXLPSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NVBYMKRVALHWMV-UHFFFAOYSA-N (4-methoxy-2,5-dimethylphenyl)-(4-nitrophenyl)diazene Chemical compound C1=C(C)C(OC)=CC(C)=C1N=NC1=CC=C([N+]([O-])=O)C=C1 NVBYMKRVALHWMV-UHFFFAOYSA-N 0.000 description 1
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- VHQGURIJMFPBKS-UHFFFAOYSA-N 2,4,7-trinitrofluoren-9-one Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C2C3=CC=C([N+](=O)[O-])C=C3C(=O)C2=C1 VHQGURIJMFPBKS-UHFFFAOYSA-N 0.000 description 1
- LNXVNZRYYHFMEY-UHFFFAOYSA-N 2,5-dichlorocyclohexa-2,5-diene-1,4-dione Chemical compound ClC1=CC(=O)C(Cl)=CC1=O LNXVNZRYYHFMEY-UHFFFAOYSA-N 0.000 description 1
- SENUUPBBLQWHMF-UHFFFAOYSA-N 2,6-dimethylcyclohexa-2,5-diene-1,4-dione Chemical compound CC1=CC(=O)C=C(C)C1=O SENUUPBBLQWHMF-UHFFFAOYSA-N 0.000 description 1
- SCGKCGMVFXMMSF-UHFFFAOYSA-N 2-[(diphenylhydrazinylidene)methyl]-n,n-diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1C=NN(C=1C=CC=CC=1)C1=CC=CC=C1 SCGKCGMVFXMMSF-UHFFFAOYSA-N 0.000 description 1
- FHHPJULQMHZPMF-UHFFFAOYSA-N 2-[2,5-dimethyl-4-[(4-nitrophenyl)diazenyl]phenoxy]ethanol Chemical compound C1=C(OCCO)C(C)=CC(N=NC=2C=CC(=CC=2)[N+]([O-])=O)=C1C FHHPJULQMHZPMF-UHFFFAOYSA-N 0.000 description 1
- UAWDYRPQXCAZKV-UHFFFAOYSA-N 2-[3-[(4-nitrophenyl)diazenyl]carbazol-9-yl]ethanol Chemical compound C=1C=C2N(CCO)C3=CC=CC=C3C2=CC=1N=NC1=CC=C([N+]([O-])=O)C=C1 UAWDYRPQXCAZKV-UHFFFAOYSA-N 0.000 description 1
- PDZWFZVIXVODRY-UHFFFAOYSA-N 2-amino-3-phenylprop-2-enenitrile Chemical class N#CC(N)=CC1=CC=CC=C1 PDZWFZVIXVODRY-UHFFFAOYSA-N 0.000 description 1
- ASPMBYOMNHUILU-UHFFFAOYSA-N 2-hydroxy-3-(2,4,7-trinitrofluoren-9-ylidene)butanedinitrile Chemical compound C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1C(=C(C#N)C(C#N)O)C1=CC([N+]([O-])=O)=CC=C12 ASPMBYOMNHUILU-UHFFFAOYSA-N 0.000 description 1
- PPQGGNKDTCBVGL-AATRIKPKSA-N 4-[(e)-2-nitroethenyl]aniline Chemical compound NC1=CC=C(\C=C\[N+]([O-])=O)C=C1 PPQGGNKDTCBVGL-AATRIKPKSA-N 0.000 description 1
- CZTDMUFBFVUWIK-UHFFFAOYSA-N C(NN)(=O)CCOC(CC)=O Chemical compound C(NN)(=O)CCOC(CC)=O CZTDMUFBFVUWIK-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- ATLMFJTZZPOKLC-UHFFFAOYSA-N C70 fullerene Chemical compound C12=C(C3=C4C5=C67)C8=C9C%10=C%11C%12=C%13C(C%14=C%15C%16=%17)=C%18C%19=C%20C%21=C%22C%23=C%24C%21=C%21C(C=%25%26)=C%20C%18=C%12C%26=C%10C8=C4C=%25C%21=C5C%24=C6C(C4=C56)=C%23C5=C5C%22=C%19C%14=C5C=%17C6=C5C6=C4C7=C3C1=C6C1=C5C%16=C3C%15=C%13C%11=C4C9=C2C1=C34 ATLMFJTZZPOKLC-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- INDFXCHYORWHLQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butyl-3-methylimidazol-3-ium Chemical compound CCCCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F INDFXCHYORWHLQ-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- JGOAZQAXRONCCI-SDNWHVSQSA-N n-[(e)-benzylideneamino]aniline Chemical compound C=1C=CC=CC=1N\N=C\C1=CC=CC=C1 JGOAZQAXRONCCI-SDNWHVSQSA-N 0.000 description 1
- ZOQXMEDOTSCWAG-UHFFFAOYSA-N n-phenyl-n-(2-phenylethenyl)aniline Chemical compound C=1C=CC=CC=1N(C=1C=CC=CC=1)C=CC1=CC=CC=C1 ZOQXMEDOTSCWAG-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0486—Improving or monitoring the quality of the record, e.g. by compensating distortions, aberrations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H2001/026—Recording materials or recording processes
- G03H2001/0264—Organic recording material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0402—Recording geometries or arrangements
- G03H2001/0413—Recording geometries or arrangements for recording transmission holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0486—Improving or monitoring the quality of the record, e.g. by compensating distortions, aberrations
- G03H2001/0491—Improving or monitoring the quality of the record, e.g. by compensating distortions, aberrations by monitoring the hologram formation, e.g. via a feed-back loop
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2260/00—Recording materials or recording processes
- G03H2260/50—Reactivity or recording processes
- G03H2260/54—Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2270/00—Substrate bearing the hologram
- G03H2270/20—Shape
- G03H2270/24—Having particular size, e.g. microscopic
Definitions
- the present invention relates to a three-dimensional holographic display system that stereoscopically displays a still image or a moving image as a three-dimensional image, and a 3D display device using this system.
- the photorefractive effect is a change in the refractive index of a substance due to the Pockels effect when irradiated with a visible light laser.
- the crossed beams interfere with each other, and periodic interference fringes are formed in the medium.
- the light place and dark place cross each other, and in the light place, the medium is photoexcited to generate charge carriers, and the generated charge carriers are generated from the bright place by an external electric field applied to the medium. It drifts and is trapped in the dark. This causes a periodic charge density distribution in the medium.
- This periodic charge density distribution induces a periodic change in refractive index in the medium via the Pockels effect.
- nonlinear optical information including phase conjugation, imaging from distorted media, real-time holography, super-multiplex hologram recording, 3D display, 3D printer, optical amplification, and optical neutral network
- processing, pattern recognition, optical limiting, storage of high-density optical data, and the like are expected.
- Examples of techniques for recording and reproducing a three-dimensional image using a photorefractive medium include the following.
- a spatial light modulator and a hologram recording medium are provided, and on this hologram recording medium, a phase-encoded carrier using a complex conjugate of statistically independent phase distribution is superimposed and recorded.
- An optical device for reproducing a stereoscopic image from a medium is described.
- a spatial light modulator is used as an object light generation source for holograms, and 0th-order light transmitted through the spatial light modulator is blocked from light incident on the spatial light modulator, and diffracted by the spatial light modulator.
- a three-dimensional hologram display device using only the object light, and means for sequentially storing a plurality of object lights produced by a spatial light modulator on a recording medium having a photorefractive effect, and the plurality of object lights accumulated Describes a three-dimensional hologram display device comprising means for reproducing all of the above.
- Patent Document 3 discloses a device for displaying a three-dimensional image by a hologram, and calculates an optical path dividing means for dividing light generated from a light source into first and second optical paths, and a hologram image to be displayed by calculation.
- a hologram calculating means for displaying the calculated hologram image, and a display means for emitting reflected light or transmitted light of the displayed image as scattered light by being irradiated with the light divided into the first optical path;
- a hologram recording means having a photorefractive effect, wherein non-scattered light is incident in synchronization with scattered light emitted from the display means, whereby interference fringes of the incident light are recorded as holograms;
- the light divided into optical paths is further divided into a plurality of optical paths to generate a plurality of non-scattered lights, and the hologram recording means is configured to generate the plurality of non-scattered lights at different incident angles.
- JP-A-7-181878 Japanese Patent No. 3487499 JP 2001-34148 A
- a photorefractive crystal of an inorganic material is used for the recording medium of the optical device of Patent Literature 1, the three-dimensional hologram display device of Patent Literature 2, and the stereoscopic image display device of Patent Literature 3. Since the photorefractive crystal is about several centimeters, it is very difficult to increase the area of the display when the devices described in Patent Documents 1 to 3 are used. Therefore, there is a problem that the cost is extremely high and the 3D display device cannot be mass-produced.
- the present invention provides a three-dimensional holographic display system and a 3D display device that can be manufactured at low cost and can be mass-produced as an easy display with a large area. For the purpose.
- the three-dimensional holographic display system of the present invention irradiates the holographic display device with a holographic display device provided with a photorefractive composite mainly composed of a photorefractive polymer, and object light and reference light. And a display means for displaying the hologram image recorded by the recording means by irradiating the holographic display device with probe light.
- a holographic display device in which a hologram image is recorded by object light and reference light and the hologram image is displayed by probe light is used in a photo that has a photorefractive polymer as a main component. Since the refractive composite is used, the area of the holographic display device can be easily increased.
- the recording means passed through a laser oscillator that oscillates a laser beam, a first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator, and the first half-wave plate
- a beam splitter that splits a laser beam into first and second polarized laser beams, a second half-wave plate disposed on the optical axis of the first polarized laser beam, and the second half-wavelength
- a first optical system that expands the beam diameter of the first polarized laser beam that has passed through the plate and irradiates the object with the object beam, and expands the second polarized laser beam as the reference light.
- a second optical system With this configuration of the recording means, the hologram image of the object can be clearly recorded on the holographic display device.
- the recording means includes a laser oscillator that oscillates a laser beam, a first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator, and the first half-wave plate.
- a first optical system for expanding the beam diameter of the laser beam and a laser beam expanded by the first optical system to be divided into first and second polarized laser beams, and the second polarized laser beam A reference beam, a spatial light modulator that converts the first polarized laser beam into the object light, and a second optical system that focuses the object light on the holographic display device.
- the hologram image of the display object displayed on the spatial modulator can be clearly recorded on the holographic display device.
- a laser oscillator that oscillates a laser beam, a half-wave plate for probe light disposed on the optical axis of the laser beam oscillated from the laser oscillation device, and the half-wave plate for probe light are passed through And an optical system for probe light that expands the beam diameter of the laser beam and uses it as the probe light.
- the hologram image recorded by the recording means can be clearly displayed on the holographic display device.
- An electric field applying device for applying an electric field may be provided in the holographic display device.
- the response speed can be increased.
- Examples of the photorefractive composite include those composed of components that allow the recording means to rewrite the hologram image.
- the hologram image can be rewritten to the holographic display device, and different hologram images can be displayed without replacing the holographic display device.
- Examples of the photorefractive composite include those composed of components that allow the recording means to rewrite the holographic image without applying an electric field. In this case, an electric field applying device for applying a voltage is not necessary, and the cost of the three-dimensional holographic display system can be further reduced.
- Examples of the photorefractive composite include those having responsive components that follow a video rate of 30 frames per second when an electric field is applied. In this case, the responsiveness of the holographic display device can be significantly improved.
- the holographic display device may be configured in any form, for example, a photorefractive composite formed in a plate shape with a photorefractive polymer as a main component and two sheets sandwiching the photorefractive composite What is comprised with the base material of this is mentioned.
- a 3D display device is a 3D display device configured using a three-dimensional holographic display system, wherein the three-dimensional holographic display system is the above-described three-dimensional holographic display system. .
- the 3D display device of the present invention since it is configured using a 3D holographic display system that can be easily increased in area, the cost can be increased even when a 3D display device with a large screen is manufactured. It becomes cheap and can be mass-produced.
- a photorefractive composite mainly composed of a photorefractive polymer is applied to a holographic display device in which a hologram image is recorded by object light and reference light and the hologram image is displayed by probe light. Therefore, the area of the holographic display device can be easily increased. Therefore, it can be manufactured at low cost and can be mass-produced.
- FIG. 1 is a schematic configuration diagram of a three-dimensional holographic display system according to a first embodiment of the present invention. It is a cross-sectional schematic diagram of a holographic display device. It is a schematic block diagram of the three-dimensional holographic display system which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the three-dimensional holographic display system which concerns on 3rd Embodiment of this invention. It is a cross-sectional schematic diagram of the holographic display device of the three-dimensional holographic display system which concerns on 3rd Embodiment. It is a schematic block diagram of the three-dimensional holographic display system which concerns on 4th Embodiment of this invention.
- FIG. 1 is a schematic configuration diagram of a three-dimensional holographic display system 1 (3D display device) according to the first embodiment of the present invention.
- the three-dimensional holographic display system 1 includes a holographic display device 2 that records and displays a hologram image, a recording unit 3 that records a hologram image by irradiating the holographic display device 2 with object light and reference light, The holographic display device 2 is irradiated with the probe light to mainly display the hologram image recorded by the recording means 3.
- the recording means 3 of this embodiment for recording a hologram image includes a laser oscillator 10 that oscillates a laser, a first fixed mirror 11 that reflects a laser beam oscillated from the laser oscillator 10, and the first fixed mirror.
- the first half-wave plate 12 disposed on the optical axis of the laser beam reflected by the laser beam 11, and the laser beam that has passed through the first half-wave plate 12 are split to obtain p-polarized light and s-polarized first light.
- the first optical system 16 as light B11, the second optical system 17 that expands the beam diameter of the second polarized laser beam B2, and the laser beam expanded by the second optical system 17 are reflected. It is comprised with the 3rd fixed mirror 18 used as the reference beam B21.
- the first optical system 16 includes an objective lens 19 and a lens 20 that expand the beam diameter of the laser beam
- the second optical system 17 includes a lens 21 and a lens 22 that expand the beam diameter of the laser beam.
- the number and types of lenses constituting these optical systems are not limited.
- the laser beam oscillated from the laser oscillator 10 is reflected by the first fixed mirror 11, passes through the first half-wave plate 12, is divided by the beam splitter 13, and the p-polarized first polarized laser beam B 1 is The beam travels straight through the beam splitter 13, and the s-polarized second laser beam B 2 is reflected by the beam splitter 13.
- a p-polarized first polarized laser beam B1 traveling straight through the beam splitter 13 and an s-polarized second polarized laser beam B2 reflected by the beam splitter 13 are used.
- the intensity ratio can be changed.
- the p-polarized first polarized laser beam B 1 that has passed through the beam splitter 13 is converted into s-polarized light by the second half-wave plate 14.
- the s-polarized first polarized laser beam B 1 converted by the second half-wave plate 14 is reflected by the second fixed mirror 15.
- the beam diameter of the s-polarized first polarized laser beam B 1 reflected by the second fixed mirror 15 is enlarged by the objective lens 19 and the lens 20.
- the s-polarized first polarized laser beam B1 having an enlarged beam diameter is irradiated onto the object 5 and becomes object light B11.
- the second s-polarized laser beam B2 reflected by the beam splitter 13 passes through the lens 21 and the lens 22, and then the beam diameter is expanded.
- the s-polarized second polarized laser beam B2 whose beam diameter is enlarged is reflected by the third fixed mirror 18 and becomes reference light B21.
- the holographic display device 2 is irradiated with the object light B11 together with the reference light B21, and the spatial information of the object light B11 is obtained by using the spatial intensity distribution and phase distribution included in the object light B11 as interference fringes. Is written (recorded) in the holographic display device 2.
- the display means 4 of the present embodiment for displaying the recorded hologram image includes a laser oscillator 24 that oscillates a laser, and a half wavelength for probe light that is arranged on the optical axis of the laser beam oscillated from the laser oscillation device 24.
- the optical system 27 includes a fifth fixed mirror 28 that reflects the laser beam magnified by the probe light optical system 27 to obtain probe light B31.
- the probe light optical system 27 includes two lenses 29 and 30, but the number and types of lenses constituting the optical system are not limited.
- the laser beam oscillated from the laser oscillator 24 is converted into p-polarized light by the half-wave plate 25 for probe light and reflected by the fourth fixed mirror 26.
- the diameter of the reflected p-polarized laser beam is enlarged by the lens 29 and the lens 30.
- the p-polarized laser beam whose beam diameter is enlarged is reflected by the fifth fixed mirror 28 and becomes probe light B31.
- the spatial information written (recorded) by the recording means 3 is read as a hologram image by the p-polarized probe light B31 and displayed on the holographic display device 2.
- the response speed is changed by changing the wavelength of the object light and the reference light and the intensity ratio of the object light and the reference light.
- the wavelengths of the object light and the reference light are preferably 450 to 700 nm, and more preferably 500 to 600 nm. This is because sufficient response speed cannot be obtained when the wavelengths of the object light and the reference light are less than 450 nm or more than 700 nm.
- FIG. 2 is a schematic sectional view of the holographic display device 2.
- the holographic display device 2 includes a photorefractive composite 6 and two substrates 7 and 7 sandwiching the photorefractive composite 6.
- Each of the base materials 7 and 7 is a glass plate formed in a quadrilateral shape.
- the photorefractive composite 6 can be obtained by adding a sensitizer, a non-linear optical dye or the like to the photorefractive polymer 8, or comprising a polymer or other compound having a photorefractive function.
- the photorefractive composite 6 capable of rewriting the hologram image is used.
- Photorefractive complex examples thereof include photorefractive Cz polymer composites in which polyvinyl carbazole (PVCz) and vinyl polymers having carbazole in the side chain are dispersed and mixed with a sensitizer, a nonlinear optical dye and a plasticizer.
- Photorefractive Cz polymer composites are disclosed in, for example, JP-A-2005-227311, JP-A-2009-57528, JP-A-2010-21111, Naoto Tsutsumi, Akihito Dohi, Asato Nonomura, and Wataru Sakai, J. Polym. Sci.Part B: Polym. Phys. 49, pp. 414-420 (2011).
- a photorefractive PDAS composite in which a sensitizer, a non-linear optical dye, and a plasticizer are dispersed and mixed in poly (diphenylamino) styrene (PDAS).
- Photorefractive PDAS complexes are described, for example, in N. Tsutsumi, T. Murao, and W. Sakai, Macromolecules, 38 (17) pp.7521-7523 (2005).
- a photorefractive molecular glass complex in which a sensitizer, a nonlinear optical dye and a plasticizer are dispersed and mixed in a low molecular compound having a plurality of carbazole rings in the molecule.
- Photorefractive molecular glass composites are described in N. Tsutsumi, J. Eguchi, W.kaiSakai, Chem. Phys. Lett. 408, 269 (2005), JP-A-2005-227311.
- Examples include photorefractive triphenylamine polymer composites in which an addition polymer of an aromatic tertiary amine and an aldehyde is dispersed and mixed with a sensitizer and a non-linear optical dye.
- a photorefractive triphenylamine polymer composite is described in Japanese Patent Application Laid-Open No. 2001-255566.
- the photorefractive composite described above can rewrite a hologram image by applying an electric field.
- the photorefractive PDAS composite exhibits responsiveness to follow a video rate of 30 frames per second when an electric field is applied. be able to.
- Photorefractive composites capable of rewriting a hologram image without an electric field are a photorefractive Cz polymer composite, a photorefractive PDAS composite, and a photorefractive molecular glass composite.
- Photorefractive Cz polymer composites are described in Japanese Patent Application Laid-Open No. 2003-322886 and Japanese Patent No. 397964.
- the photorefractive PDAS complex is based on Naoto Tsutsumi, Yusuke Shimizu, Junya Eguchi, Takehiro Murao, Yoshito Nakajima and Wataru Sakai, Proceedings of SPIE, 6343 63432V (14 pages) (2006).
- Photorefractive molecular glass composites are described in N. Tsutsumi et al., Opt. Mater. Vol. 29pp. 435-438 (2006).
- photorefractive composites capable of rewriting a hologram image in the absence of an electric field.
- photorefractive composite material dispersed and mixed in polymethyl methacrylate (PMMA) or polyethyl methacrylate (PEMA).
- PMMA polymethyl methacrylate
- PEMA polyethyl methacrylate
- Examples include photorefractive composites in which a hemicyanine dye represented by the following formula (2) is dispersed and mixed in PVCz or PMMA.
- a photorefractive complex is described in J.-W. Lee et al. “Novel polymer composites with high optical gain based on pseudo-photorefraction”, Adv. Mater. 14 (2), pp. 144-147 (2002). The thing which was done is mentioned.
- This photorefractive complex is described in J. Jeong, K. Ohnishi, H. Sato, K. Ogino, Jpn. J. Appl. Phys. Part 2 No. 2B42 (2003) L179.
- Examples thereof include a silica glass photorefractive composite in which 2,5-dimethyl-4- (2-hydroxyethoxy) -4′-nitroazobenzene (DMHNAB) represented by the following formula (4) is dispersed and mixed.
- DHNAB 2,5-dimethyl-4- (2-hydroxyethoxy) -4′-nitroazobenzene
- Examples include photorefractive composites in which an ionic liquid is added to a matrix polymer.
- NACzE is dispersed and mixed in PMMA, and 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (1-butyl-3) which is an ionic liquid represented by the following formula (5) is added thereto. and -methylimidazolium / bis (trifluoromethanesulfonyl) imide) (BMIM).
- the mixing ratio is changed as appropriate.
- NACzE / PMMA / BMIM 10 to 40/40 to 70/5 to 20 (weight% ratio).
- [4- (4-Nitrophenylazo) -phenyl-diphenylamine] (NATA) represented by the following formula (6), which is a monolithic compound, is dispersed and mixed in PMMA.
- BMIM which is the above ionic liquid is added.
- the mixing ratio is changed as appropriate.
- An example is NATA / PMMA / BMIM: 10-40 / 40-70 / 5-20 (weight% ratio). If a complex in which an ionic liquid is added to a matrix polymer is used, the response speed becomes extremely fast, and a response on the order of milliseconds can be made possible.
- the sensitizer has performance as an electron acceptor, and is blended to enhance photorefractive properties.
- a sensitizer is blended, a charge transfer complex is formed by the sensitizer and the photorefractive polymer, and useful photorefractive properties are expressed.
- the photorefractive property without the control of molecular orientation can be expressed by the addition of the sensitizer.
- sensitizer examples include (2,4,7-trinitro-9-fluorenylidene) malonitrile (TNF-DM), [6,6] -phenyl C 61 butanoic acid methyl ester (PCBM), 2,4,7.
- TNF Trinitro-9-fluorenone
- fullerene C 60 fullerene C70
- TCBN tetracyanobenzene
- TCNQ tetracyanoquinodinomethane
- benzoquinone (BQ) benzoquinone
- MQ 2,6-dimethyl-p- Benzoquinone
- Cl 2 Q 2,5-dichloro-p-benzoquinone
- chloranil 2,3-dichloro-5,6-p- Examples include benzoquinone (DDQ).
- a sensitizer may be used individually by 1 type and may use 2 or more types together.
- the content of the sensitizer is preferably 0.1% by weight, more preferably 0.5% by weight, most preferably 1% by weight, and most preferably 100% by weight with respect to 100% by weight of the photorefractive polymer. Is preferably 30% by weight, more preferably 20% by weight, and most preferably 10% by weight.
- the content of the sensitizer is 0.1% by weight or less, the photorefractive property under no electric field is lowered.
- the concentration of the charge transfer complex by the sensitizer increases, so that the light absorption is increased and the light transmittance is significantly reduced. .
- a nonlinear optical dye is a donor-acceptor type molecule exhibiting second-order nonlinear optical characteristics, that is, a material whose refractive index changes with an electric field (second-order nonlinear optical material).
- the nonlinear optical dye include 2,5-dimethyl-4- (p-nitrophenylazo) anisole (DMNPAA), 4-amino-4′-nitroazobenzene (ANAB), s-( ⁇ )-1- ( 4-nitrophenyl) -2-pyrrolidine-methanol (NPP), 4- (diethylamino)-(E) - ⁇ -nitrostyrene (DEANST), (diethylamino) benzaldehyde diphenylhydrazone (DEH), PDCST, AODST, [[ And aminocyanostyrenes such as 4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile (7-DCST), TDDCST, DCD
- the content of the nonlinear optical dye is preferably 20% by weight, more preferably 25% by weight, more preferably 50% by weight, and preferably 40% by weight as the upper limit with respect to 100% by weight of the photorefractive polymer. More preferred is 30% by weight. If the content of the nonlinear optical dye is less than 20% by weight, the diffraction efficiency and gain coefficient necessary for the photorefractive effect may not be obtained. If the content of the nonlinear optical dye is more than 50% by weight, an imbalance in the amount ratio with other components may occur, which may adversely affect the design of the photorefractive composite.
- plasticizer serves to lower the glass transition temperature of the matrix.
- plasticizers include ethyl carbazole (ECZ), carbazoylethyl propionate (CzEPA), triphenylamine (TPA), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCP) tricresyl phosphate (TCP) N-alkyl-1-pyrrolidones such as diphenyl phthalate (DPP), N-methyl-1-pyrrolidone, N-octyl-1-pyrrolidone, N-dodecyl-1-pyrrolidone, and 2- (1,2- Cyclohexanedicarboximido) ethyl propionate) (AX22), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate, 2- (1,2-cyclohexanedicarboximido) ethyl benzoate
- the content of the plasticizer is preferably 10% by weight, more preferably 15% by weight, more preferably 40% by weight, and even more preferably 30% by weight as the lower limit with respect to 100% by weight of the photorefractive polymer. 20% by weight is most preferred.
- the content of the plasticizer is less than 10% by weight, the plastic effect, that is, the glass transition temperature of the matrix does not decrease, and the diffraction efficiency and gain coefficient necessary for the photorefractive effect may not be obtained.
- the content of the plasticizer is more than 40% by weight, an unbalance is generated in the amount ratio with other components, which may adversely affect the design of the photorefractive composite.
- the film thickness of the photorefractive composite 6 is preferably 50 to 100 ⁇ m. If the film thickness is less than 50 ⁇ m, it is difficult to satisfy the Bragg diffraction condition, and if it exceeds 100 ⁇ m, the applied voltage may increase or the absorption may increase. It is.
- a photorefractive composite according to a production method comprising a dissolution step of dissolving a photorefractive polymer, a nonlinear optical dye, a sensitizer and a plasticizer in a solvent, a solvent distillation step of distilling off the solvent, and a sandwich type device production step 6 is produced.
- Dissolution step A photorefractive polymer, a nonlinear optical dye, a sensitizer and a plasticizer are dissolved in a solvent at a predetermined ratio.
- the solvent is not particularly limited, and tetrahydrofuran (THF), N-methylpyrrolidone (NMP), dimethylformamide and the like are used, and THF is preferable.
- THF tetrahydrofuran
- NMP N-methylpyrrolidone
- dimethylformamide dimethylformamide
- the dissolution temperature may be about room temperature, and the solution may be stirred with a stirrer chip as necessary.
- solvent distillation step The solvent of the solution in which each component is dissolved is removed.
- the method for removing the solvent is not particularly limited, and for example, a cast film may be obtained. Specifically, a solution in which each component is dissolved is cast on a glass plate, and then the solvent is evaporated at room temperature. Subsequently, this is put in a vacuum dryer to further evaporate the solvent.
- spacers polyimide, thickness: 50 ⁇ m
- a photorefractive device is manufactured.
- the photorefractive composite 6 is manufactured by a manufacturing method including a dissolution step of dissolving NACzE and PMMA in a solvent, a solvent distillation step of distilling off the solvent, and a sandwich type device manufacturing step.
- NACzE, PMMA and the like are dissolved in a predetermined ratio of solvent.
- the solvent is not particularly limited, and tetrahydrofuran (THF), chloroform, N-methylpyrrolidone (NMP), dimethylformamide and the like are used, and THF is preferable.
- THF tetrahydrofuran
- the dissolution temperature may be about room temperature, and the solution may be stirred with a stirrer chip as necessary.
- solvent distillation step The solvent of the solution in which each component is dissolved is removed.
- the method for removing the solvent is not particularly limited, and for example, a cast film may be obtained. Specifically, a solution in which each component is dissolved is cast on a glass plate, and then the solvent is evaporated at room temperature, followed by natural drying overnight, followed by vacuum drying at about 80 ° C. for 12 hours, Evaporate the solvent.
- polyimide spacers for example, thickness: 50 ⁇ m
- a sandwich type photorefractive device is manufactured by pressure bonding.
- the holographic display device 2 is irradiated with the object light B11 and the reference light B21 by the recording means 3 and simultaneously with the probe light B31 by the display means 4.
- the hologram image can be displayed on the holographic display device 2. That is, the hologram image of the object 5 can be displayed on the holographic display device 2 in real time.
- the hologram in which the hologram image of the object 5 is recorded by the object beam B11 and the reference beam B21, and the hologram image is displayed by the probe beam B31. Since the photorefractive composite 6 mainly composed of the photorefractive polymer 8 is used for the graphic display device 2, the holographic display device 2 can be easily increased in area. Therefore, the 3D display device 1 can be manufactured at low cost, and mass production thereof can be realized.
- the three-dimensional holographic display system 1 can record and reproduce a hologram image in a few seconds even in the absence of an electric field, and can rewrite the hologram image. Therefore, it is not necessary to construct an electrolysis application device, and different hologram images can be displayed instantaneously without replacing the holographic display device 2 with it.
- FIG. 3 is a schematic configuration diagram of a three-dimensional holographic display system 50 according to the second embodiment of the present invention.
- the present embodiment is different from the first embodiment in that the recording unit 51 is provided with a spatial light modulator 52 and a hologram image is displayed on the screen 53.
- the holographic display device 2 is common to the first embodiment.
- the recording means 51 of this embodiment for recording a hologram image includes a laser oscillator 55 that oscillates a laser, and a first half-wave plate 56 that is disposed on the optical axis of the laser beam oscillated from the laser oscillation device 55.
- the first fixed mirror 57 that reflects the laser beam that has passed through the first half-wave plate 56 and the first optical system 58 that expands the beam diameter of the laser beam reflected by the first fixed mirror 57.
- a beam splitter 59 that splits the laser beam expanded by the first optical system 58 into p-polarized and s-polarized first and second polarized laser beams B5 and B6,
- the spatial light modulator 52 that converts the polarization state of the polarized laser beam B5 into the object light B51 and the second optical that condenses the object light B51 on the holographic display device 2.
- the system 60, the second fixed mirror 61 that reflects the object light B51 that has passed through the second optical system 60, and the second polarized laser beam B6 that is split by the beam splitter 59 are reflected as reference light B61.
- a third fixed mirror 62 that splits the laser beam expanded by the first optical system 58 into p-polarized and s-polarized first and second polarized laser beams B5 and B6,
- the spatial light modulator 52 that converts the polarization state of the polarized laser beam B5 into the object light B51 and the second optical that condenses the object light B51 on the hol
- the first optical system 58 includes a lens 63 and a lens 64 that expand the beam diameter of the laser beam
- the second optical system 60 includes a lens 65 that condenses the laser beam.
- the number and type of lenses constituting the optical system are not limited.
- the spatial light modulator 52 displays a moving image projected on a computer screen (not shown).
- the display means 67 is arranged behind the holographic display device 2 in addition to the configuration of the first embodiment in order to project the hologram image onto the screen 53 instead of directly viewing it.
- the color filter 68, the lens 69, the movable mirror 70, and the screen 53 are provided.
- the laser beam oscillated from the laser oscillator 55 is reflected by the first fixed mirror 57 after passing through the first half-wave plate 56.
- the beam diameter of the reflected laser beam is enlarged by the lens 63 and the lens 64.
- the expanded laser beam is split by the beam splitter 59, the p-polarized first polarized laser beam B 5 goes straight through the beam splitter 59, and the s-polarized second laser beam B 6 is reflected by the beam splitter 59.
- the By rotating the first half-wave plate 57 a p-polarized first polarized laser beam B5 traveling straight through the beam splitter 59 and an s-polarized second polarized laser beam B6 reflected by the beam splitter 59 are obtained.
- the intensity ratio can be changed.
- the s-polarized second laser beam B6 reflected by the beam splitter 59 is reflected by the third fixed mirror 62 to become reference light B61.
- the p-polarized first polarized laser beam B5 that has passed through the beam splitter 59 is applied to the spatial light modulator 52. Due to the polarization characteristics of the spatial light modulator 52, the p-polarized first polarized laser beam B5 is converted into an s-polarized laser beam and reflected.
- the s-polarized first polarized laser beam B5 reflected by the spatial light modulator 52 becomes object light B51, returns to the beam splitter 59, and is reflected.
- the object light B51 reflected by the beam splitter 59 is reflected by the second fixed mirror 61 while being condensed by the lens 65.
- the holographic display device 2 is irradiated with the object light B51 together with the reference light B61, and the spatial information of the object light B51 is obtained using the spatial intensity distribution and phase distribution included in the object light B51 as interference fringes. Is written (recorded) in the holographic display device 2.
- the laser beam oscillated from the laser oscillator 24 of the display means 67 is converted into p-polarized light by the half-wave plate 25 for probe light and reflected by the fourth fixed mirror 26.
- the diameter of the reflected p-polarized laser beam is enlarged by the lens 29 and the lens 30.
- the p-polarized laser beam whose beam diameter is enlarged is reflected by the fifth fixed mirror 28 and becomes probe light B71.
- the spatial information written by the recording means 51 is read out as a hologram image by the p-polarized probe light B 71 and displayed on the holographic display device 2.
- the light of the hologram image displayed on the holographic display device 2 passes through the color filter 68, is imaged by the lens 69, is reflected by the movable mirror 70, and is projected on the screen 53.
- the holographic display device 2 is irradiated with the object light B51 and the reference light B61 by the recording means 51 and simultaneously with the probe light B71 by the display means 67.
- the image displayed on the spatial light modulator 52 is recorded on the holographic display device 2 as a hologram image, and at the same time, the hologram image can be displayed on the holographic display device 2 and projected onto the screen 53. . That is, the hologram image of the image displayed on the spatial light modulator 52 can be displayed on the screen 53 in real time.
- a holographic display device 2 in which a hologram image is recorded by the object beam B51 and the reference beam B61 and the hologram image is displayed by the probe beam B71.
- the photorefractive composite 6 mainly composed of the photorefractive polymer 8 is used, the area of the holographic display device 2 can be easily increased. Therefore, the 3D display device 1 can be manufactured at low cost, and mass production thereof can be realized.
- the three-dimensional holographic display system 50 employs the holographic display device 2 described above, whereby a hologram image can be recorded and reproduced in a few seconds under no electric field, and can be rewritten. Therefore, it is not necessary to construct a voltage application device, and different hologram images can be displayed instantaneously without replacing the holographic display device.
- FIG. 4 is a schematic configuration diagram of a three-dimensional holographic display system 80 according to the third embodiment of the present invention
- FIG. 5 is a schematic sectional view of a holographic display device 81 used in the present embodiment.
- the present embodiment is different from the first embodiment in that an electric field applying device 82 for applying an electric field to the holographic display device 81 is provided, a hologram image is displayed on the screen 83, and the holographic display device 81 is configured. Is the point that has changed.
- the recording means 84 for recording a hologram image on the holographic display device 81 is common to the first embodiment.
- the display means 85 is arranged behind the holographic display device 81 in addition to the configuration of the first embodiment.
- a color filter 86, two lenses 87 and 88, a movable mirror 89, and a screen 83 are provided.
- the light of the hologram image displayed on the holographic display device 81 by such a display means 85 passes through the color filter 86, is imaged by the two lenses 87 and 88, is reflected by the movable mirror 89, and is screened.
- 83 is projected.
- An electric field is applied to the holographic display device 81 by the electric field applying device 82.
- the holographic display device 81 includes a photorefractive composite 90 and two electrode substrates 91 and 91 sandwiching the photorefractive composite 90.
- Each electrode base material 91 is composed of a glass plate material 92 formed in a square shape and ITO (indium-tin oxide film) 93 which is a transparent electrode film formed inside the glass plate material 92.
- ITO indium-tin oxide film
- the photorefractive composite 90 a photorefractive PDAS composite having responsiveness to follow a video rate of 30 frames per second when an electric field is applied is used.
- the holographic display device 81 When applying an electric field, the holographic display device 81 is rotated and adjusted so that an effective electric field is applied to the holographic display device 81. Since the photorefractive composite 90 having a high-speed response is used as described above, in the three-dimensional holographic display system 80 of this embodiment, the display speed of the hologram image of the object 5 is remarkably increased. Can be increased.
- FIG. 6 is a schematic configuration diagram of a three-dimensional holographic display system 95 according to the fourth embodiment of the present invention.
- the present embodiment is different from the second embodiment in that an electric field applying device 97 for applying an electric field to the holographic display device 96 is provided, and a video rate of 30 frames per second is applied to the photorefractive composite when an electric field is applied.
- the photorefractive PDAS composite which has the responsiveness which follows is used.
- the recording means and the display means are common to the second embodiment, and the same holographic display device 96 as that of the third embodiment is adopted.
- an electric field is applied to the holographic display device 96 by the electric field applying device 97.
- the holographic display device 96 is rotated and adjusted so that an effective electric field is applied to the holographic display device 96. Since a photorefractive composite having a high-speed response is used, in the three-dimensional holographic display system 95 of this embodiment, a hologram image of an image displayed on the spatial light modulator 52 is displayed. Speed can be greatly increased.
- Example 1 The same three-dimensional holographic display system as that of the first embodiment is produced, and the hologram light is recorded by irradiating the object light from the surface of the coin and the reference light onto the holographic display device, and at the same time, the probe light is holographic. Irradiate the display device to display. Then, turn the coin over and record the hologram image by irradiating the same part of the holographic display device with the object light and the reference light from the back of the coin, and simultaneously irradiate the holographic display device with the probe light. Displayed.
- the holographic display device was manufactured as follows. A cast solution was obtained by mixing 70% polymethyl methacrylate and 30% NACzE shown in FIG. 3 and dissolving in tetrahydrofuran (THF). The cast solution is cast on a glass plate, and then the solvent is evaporated at room temperature to obtain a uniform film. Subsequently, this is naturally dried overnight and then dried under reduced pressure at about 80 ° C. for 12 hours to further evaporate the solvent. After distilling off the solvent, spacers (polyimide, thickness: 50 ⁇ m) are arranged at the four corners, and another glass plate is covered. This was pressure-bonded with a vacuum press machine while applying a required temperature to obtain a photorefractive composite with a uniform film thickness.
- THF tetrahydrofuran
- the laser beam irradiation conditions are as follows. With green laser light source with a wavelength of 532 nm (300 mW), the object light (area: 0.48 cm 2) of the light intensity 4.8mW (10mW / cm 2), the reference beam (area: 2.1 cm 2) light intensity of 14 mW ( The hologram image is recorded at 6.7 mW / cm 2 ). At the same time, a red laser (140 mW) having a wavelength of 642 nm is narrowed down to 10 to 50 mW as probe light, and this holographic display device is irradiated with the probe light to display a recorded hologram image on the holographic display device.
- FIG. 7A is a photograph before drawing a coin hologram image, and shows a state in which probe light is irradiated.
- FIG. 7B is a photograph displayed at the same time as recording the hologram image on the surface of the coin.
- FIG. 7C is a photograph in which the back surface of the coin is overwritten on the same portion where the hologram image on the surface of the coin in the holographic display device is recorded, and at the same time, the hologram image is displayed.
- FIG. 7D the coin is turned over, and the same surface where the hologram image on the back surface of the coin in the holographic display device is recorded is overwritten again on the coin surface, and at the same time, the hologram image is displayed. It is a photograph.
- the time required for recording, displaying, and erasing by overwriting the hologram images in FIGS. 7A to 7D was several seconds. From these results, it was recognized that the hologram image was recorded (written) in units of seconds, and simultaneously displayed (read) and erased.
- Example 2 The same three-dimensional holographic display system as in Example 1 was produced, and the holographic display device was irradiated with object light from the surface of the coin and reference light under the same conditions as in Example 1 to record a hologram image. . Thereafter, the recorded hologram image of the coin was displayed with probe light, and at the same time, the hand was held behind the holographic display device.
- FIG. 8 shows a holographic image and a hand photograph projected on the holographic display device. In the photograph of FIG. 8, it can be seen that it looks as if the coin is on the hand whose position is shifted with respect to the coin.
- Example 3 The same three-dimensional holographic display system as that of the fourth embodiment is produced, and a moving image (moving image of a cartoon cat running) displayed on a computer screen is displayed on a spatial light modulator, and the reflected light is displayed as an object.
- the light, the object light, and the reference light are applied to the holographic display device to record the hologram image, and at the same time, display the probe light.
- a holographic display device for applying an electric field was produced as follows.
- a sensitizer (TNF), a nonlinear optical dye (7-DCS), and a plasticizer were mixed with poly (N-vinylcarbazole) (PVCz), and dissolved in a solvent to obtain a cast solution.
- the electrode part is processed, and two ITO (indium-tin oxide film) electrode base materials which are transparent electrode films having a size of 30 ⁇ 30 mm are manufactured in advance.
- a cast solution is cast on one of the electrode substrates, and then the solvent is evaporated at room temperature to obtain a uniform film. The solvent is further removed in a dryer, and another ITO electrode substrate is covered.
- a 4 kg weight load was applied from above, and pressure bonding was performed while heating at 120 to 180 ° C., so that an electric field could be applied.
- FIG. 9 is a hologram image recorded and displayed on the holographic display device by time-lapse every 0.2 seconds. It was recognized that the movement of the cat was clearly time-lapsed. This indicates that the responsiveness of the holographic display device is faster than the time-lapse video rate.
- Example 4 The diffraction efficiency is measured using a non-degenerate four-wave mixing method.
- the wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
- the intensity ratio of the two light waves to be interfered is preferably 1 to 10, and more preferably 1 to 8. This is because a sufficient response speed cannot be obtained if the intensity ratio of the two light waves to be interfered is outside 1 to 8. More specifically, for example, a considerably fast response speed can be obtained under the condition that the wavelength of the two light waves to be interfered is 530 to 570 nm and the intensity ratio of the two light waves to be interfered is 1: (4 to 8).
- the holographic display device was manufactured as follows. NACzE, PMMA, and BMIM, which is an ionic liquid, were dissolved in a solvent to obtain a cast solution. The subsequent manufacturing method is the same as that of the first embodiment.
- the mixing ratio is NACzE / PMMA / BMIM: 30/60/10 (weight% ratio). A product without adding BMIM, an ionic liquid, was produced.
- the mixing ratio is NACzE / PMMA: 30/70.
- the laser beam irradiation conditions are as follows.
- the wavelength of the object light and the reference light was set to 561 nm, and the intensity ratio of the two light waves to be interfered was set to 1: 7.
- a mixture of NACzE / PMMA / BMIM had a diffraction efficiency of 69%. Fast response speed was obtained with this device.
- NACzE / PMMA alone was not added with an ionic liquid, the diffraction efficiency was 80%, but the response speed was about half.
- Example 5 The diffraction efficiency is measured using a non-degenerate four-wave mixing method.
- the wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
- the holographic display device was manufactured as follows. NATA, PMMA, and BMIM, which is an ionic liquid, were dissolved in a solvent to obtain a cast solution. The subsequent manufacturing method is the same as that of the first embodiment.
- the mixing ratio is NATA / PMMA / BMIM: 30/60/10 (weight% ratio).
- the mixing ratio is NATA / PMMA: 30/70.
- the laser beam irradiation conditions are as follows.
- the wavelength of the object light and the reference light was set to 561 nm, and the intensity ratio of the two light waves to be interfered was set to 1: 8.
- the diffraction efficiency was 4.6%, and the response time was about half that of the NACzE / PMMA / BMIM system.
- the diffraction efficiency was 14%, and the response time did not change much.
- the embodiments and examples disclosed above are illustrative and not restrictive.
- other devices and devices necessary for recording, displaying, and rewriting hologram images can be provided in the three-dimensional holographic display system.
- the photorefractive composite of the holographic display device may contain other components as long as the photorefractive property is not impaired in addition to the above components. Examples of such other components include an antioxidant and an ultraviolet absorber.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Polarising Elements (AREA)
Abstract
Provided is a three-dimensional holographic display system, which facilitates an area increase of a display, and which can be mass-produced at low cost. Also provided is a 3D display apparatus. A holographic display device (2) records a holographic image by radiating object light (B11) that has been reflected by an object (5), and reference light (B21), and at the same time, the holographic display device displays the holographic image by radiating probe light (B31). The holographic display device is configured of two base material pieces (7, 7), and a photorefractive composite body (6) sandwiched between the base material pieces (7, 7). Area of the holographic display device (2) can be made large by having photorefractive polymer (8) as a main component of the photorefractive composite body (6) in the holographic display device.
Description
本発明は、静止画像や動画像を3次元映像として立体表示させる3次元ホログラフィック表示システムと、このシステムを用いた3Dディスプレイ装置に関する。
The present invention relates to a three-dimensional holographic display system that stereoscopically displays a still image or a moving image as a three-dimensional image, and a 3D display device using this system.
ある種の物質は、良好な電荷輸送能を有することが知られており、その応用事例としてフォトリフラクティブ効果がある。フォトリフラクティブ効果とは、可視光レーザーを照射するとポッケルス効果によって物質の屈折率が変化することである。具体的には、例えば、2本のコヒーレントなレーザー光をクロスさせて媒体に照射する場合が挙げられる。クロスしたビームは互いに干渉し、媒体に周期的な干渉縞が形成される。この干渉縞においては、明所・暗所が交互に交差し、明所では、媒体が光励起されて電荷キャリアが生成され、生成された電荷キャリアは、媒体に印加された外部電場によって明所からドリフト移動し、暗所でトラップされる。これにより、媒体には、周期的な電荷密度の分布が生じる。この周期的な電荷密度の分布は、ポッケルス効果を介して媒体に屈折率の周期的な変化を誘起する。
Certain substances are known to have good charge transporting ability, and there is a photorefractive effect as an application example. The photorefractive effect is a change in the refractive index of a substance due to the Pockels effect when irradiated with a visible light laser. Specifically, for example, a case where two coherent laser beams are crossed and irradiated onto the medium can be mentioned. The crossed beams interfere with each other, and periodic interference fringes are formed in the medium. In this interference fringe, the light place and dark place cross each other, and in the light place, the medium is photoexcited to generate charge carriers, and the generated charge carriers are generated from the bright place by an external electric field applied to the medium. It drifts and is trapped in the dark. This causes a periodic charge density distribution in the medium. This periodic charge density distribution induces a periodic change in refractive index in the medium via the Pockels effect.
このようなフォトリフラクティブ効果を用いることで、位相共役や、歪曲した媒体からのイメージング、実時間ホログラフィー、超多重ホログラム記録、3Dディスプレイ、3Dプリンター、さらには光増幅、光ニュートラルネットワークを含む非線形光情報処理、パターン認識、光リミッティング、高密度光データの記憶等への応用が期待されている。
By using such a photorefractive effect, nonlinear optical information including phase conjugation, imaging from distorted media, real-time holography, super-multiplex hologram recording, 3D display, 3D printer, optical amplification, and optical neutral network Applications to processing, pattern recognition, optical limiting, storage of high-density optical data, and the like are expected.
フォトリフラクティブ媒体を用いて3次元画像を記録、再生する技術として、例えば以下のものが挙げられる。特許文献1には、空間光変調器とホログラム記録媒体を備え、このホログラム記録媒体に、互いに統計的に独立な位相分布の複素共役用いて位相符号化されたキャリアが重ねて記録され、ホログラム記録媒体から立体像を再生する光学装置が記載されている。
Examples of techniques for recording and reproducing a three-dimensional image using a photorefractive medium include the following. In Patent Document 1, a spatial light modulator and a hologram recording medium are provided, and on this hologram recording medium, a phase-encoded carrier using a complex conjugate of statistically independent phase distribution is superimposed and recorded. An optical device for reproducing a stereoscopic image from a medium is described.
特許文献2には、空間光変調器をホログラム用物体光発生源として用い、空間光変調器に入射した光のうち空間光変調器を透過した0次光を遮断し、空間光変調器で回折された物体光のみを用いた三次元ホログラム表示装置であって、空間光変調器で作製した複数の物体光をフォトリフラクティブ効果を有する記録媒体に逐次蓄積する手段と、蓄積された複数の物体光を一括再生する手段を備える三次元ホログラム表示装置が記載されている。
In Patent Document 2, a spatial light modulator is used as an object light generation source for holograms, and 0th-order light transmitted through the spatial light modulator is blocked from light incident on the spatial light modulator, and diffracted by the spatial light modulator. A three-dimensional hologram display device using only the object light, and means for sequentially storing a plurality of object lights produced by a spatial light modulator on a recording medium having a photorefractive effect, and the plurality of object lights accumulated Describes a three-dimensional hologram display device comprising means for reproducing all of the above.
特許文献3には、ホログラムによる立体映像を表示する装置であって、光源から発生された光を第1および第2の光路に分割する光路分割手段と、表示すべきホログラムの像を計算によって算出するホログラム計算手段と、算出されたホログラムの像を表示し、第1の光路に分割された光が照射されることによって表示された像の反射光または透過光を散乱光として出射する表示手段と、フォトリフラクティブ効果を有し、表示手段から出射された散乱光に同期して非散乱光が入射されることによって、これら入射光の干渉縞がホログラムとして記録されるホログラム記録手段と、第2の光路に分割された光を複数の光路にさらに分割し、複数の非散乱光を生成し、これら複数の非散乱光をそれぞれ異なる入射角で前記ホログラム記録手段に入射する非散乱光生成手段とを備える立体映像表示装置が記載されている。
Patent Document 3 discloses a device for displaying a three-dimensional image by a hologram, and calculates an optical path dividing means for dividing light generated from a light source into first and second optical paths, and a hologram image to be displayed by calculation. A hologram calculating means for displaying the calculated hologram image, and a display means for emitting reflected light or transmitted light of the displayed image as scattered light by being irradiated with the light divided into the first optical path; A hologram recording means having a photorefractive effect, wherein non-scattered light is incident in synchronization with scattered light emitted from the display means, whereby interference fringes of the incident light are recorded as holograms; The light divided into optical paths is further divided into a plurality of optical paths to generate a plurality of non-scattered lights, and the hologram recording means is configured to generate the plurality of non-scattered lights at different incident angles. Stereoscopic image display apparatus and a non-scattered light generating means for entering is described.
特許文献1の光学装置、特許文献2の三次元ホログラム表示装置、及び特許文献3の立体映像表示装置の記録媒体には、無機材料のフォトリフラクティブ結晶が用いられている。フォトリフラクティブ結晶は数cm程度のものであり、従って、特許文献1~3に記載の装置を用いた場合、ディスプレイの大面積化は非常に困難である。そのため、極めてコスト高となり、3Dディスプレイ装置を量産化することはできないという問題がある。
A photorefractive crystal of an inorganic material is used for the recording medium of the optical device of Patent Literature 1, the three-dimensional hologram display device of Patent Literature 2, and the stereoscopic image display device of Patent Literature 3. Since the photorefractive crystal is about several centimeters, it is very difficult to increase the area of the display when the devices described in Patent Documents 1 to 3 are used. Therefore, there is a problem that the cost is extremely high and the 3D display device cannot be mass-produced.
そこで本発明は、上記従来技術の問題点に鑑み、ディスプレイの大面積化を容易なものとして、低コストで製作でき、量産化が可能な3次元ホログラフィック表示システム、及び3Dディスプレイ装置を提供することを目的とする。
In view of the above-described problems of the prior art, the present invention provides a three-dimensional holographic display system and a 3D display device that can be manufactured at low cost and can be mass-produced as an easy display with a large area. For the purpose.
上記目的を達成するために次の技術的手段を講じた。
即ち、本発明の3次元ホログラフィック表示システムは、フォトリフラクティブポリマーを主成分とするフォトリフラクティブ複合体が設けられたホログラフィック表示デバイスと、物体光及び参照光を前記ホログラフィック表示デバイスに照射することによりホログラム像を記録する記録手段と、プローブ光を前記ホログラフィック表示デバイスに照射することにより前記記録手段で記録された前記ホログラム像を表示する表示手段と、を備えることを特徴とする。 In order to achieve the above objective, the following technical measures were taken.
That is, the three-dimensional holographic display system of the present invention irradiates the holographic display device with a holographic display device provided with a photorefractive composite mainly composed of a photorefractive polymer, and object light and reference light. And a display means for displaying the hologram image recorded by the recording means by irradiating the holographic display device with probe light.
即ち、本発明の3次元ホログラフィック表示システムは、フォトリフラクティブポリマーを主成分とするフォトリフラクティブ複合体が設けられたホログラフィック表示デバイスと、物体光及び参照光を前記ホログラフィック表示デバイスに照射することによりホログラム像を記録する記録手段と、プローブ光を前記ホログラフィック表示デバイスに照射することにより前記記録手段で記録された前記ホログラム像を表示する表示手段と、を備えることを特徴とする。 In order to achieve the above objective, the following technical measures were taken.
That is, the three-dimensional holographic display system of the present invention irradiates the holographic display device with a holographic display device provided with a photorefractive composite mainly composed of a photorefractive polymer, and object light and reference light. And a display means for displaying the hologram image recorded by the recording means by irradiating the holographic display device with probe light.
上記本発明の3次元ホログラフィック表示システムによれば、物体光及び参照光によってホログラム像が記録され、プローブ光によってホログラム像が表示されるホログラフィック表示デバイスに、フォトリフラクティブポリマーを主成分とするフォトリフラクティブ複合体を用いているので、当該ホログラフィック表示デバイスを容易に大面積化することができる。
According to the above-described three-dimensional holographic display system of the present invention, a holographic display device in which a hologram image is recorded by object light and reference light and the hologram image is displayed by probe light is used in a photo that has a photorefractive polymer as a main component. Since the refractive composite is used, the area of the holographic display device can be easily increased.
前記記録手段としては、レーザービームを発振するレーザー発振器と、このレーザー発振器から発振されたレーザービームの光軸上に配置された第1の半波長板と、前記第1の半波長板を通過したレーザービームを分割して第1、第2の偏光レーザービームとするビームスプリッターと、前記第1の偏光レーザービームの光軸上に配置された第2の半波長板と、前記第2の半波長板を通過した第1の偏光レーザービームのビーム径を拡大して前記物体へ照射し前記物体光とする第1の光学系と、前記第2の偏光レーザービームを拡大して前記参照光とする第2の光学系と、を有するものが挙げられる。この記録手段の構成によって、物体のホログラム像をホログラフィック表示デバイスへ明瞭に記録することができる。
The recording means passed through a laser oscillator that oscillates a laser beam, a first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator, and the first half-wave plate A beam splitter that splits a laser beam into first and second polarized laser beams, a second half-wave plate disposed on the optical axis of the first polarized laser beam, and the second half-wavelength A first optical system that expands the beam diameter of the first polarized laser beam that has passed through the plate and irradiates the object with the object beam, and expands the second polarized laser beam as the reference light. And a second optical system. With this configuration of the recording means, the hologram image of the object can be clearly recorded on the holographic display device.
前記記録手段としては、レーザービームを発振するレーザー発振器と、このレーザー発振装置から発振されたレーザービームの光軸上に配置された第1の半波長板と、前記第1の半波長板を通過したレーザービームのビーム径を拡大する第1の光学系と、前記第1の光学系で拡大されたレーザービームを分割して第1、第2の偏光レーザービームとし、当該第2の偏光レーザービームを前記参照光とするビームスプリッターと、前記第1の偏光レーザービームを変換して前記物体光とする空間光変調器と、前記物体光を前記ホログラフィック表示デバイスに集光させる第2の光学系と、を有するものが挙げられる。この記録手段の構成によって、空間変調器に表示された表示物のホログラム像をホログラフィック表示デバイスへ明瞭に記録することができる。
The recording means includes a laser oscillator that oscillates a laser beam, a first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator, and the first half-wave plate. A first optical system for expanding the beam diameter of the laser beam and a laser beam expanded by the first optical system to be divided into first and second polarized laser beams, and the second polarized laser beam A reference beam, a spatial light modulator that converts the first polarized laser beam into the object light, and a second optical system that focuses the object light on the holographic display device. And those having the following. With this configuration of the recording means, the hologram image of the display object displayed on the spatial modulator can be clearly recorded on the holographic display device.
前記表示手段としては、レーザービームを発振するレーザー発振器と、このレーザー発振装置から発振されたレーザービームの光軸上に配置されたプローブ光用半波長板と、このプローブ光用半波長板を通過したレーザービームのビーム径を拡大して前記プローブ光とするプローブ光用光学系と、を有するものが挙げられる。この場合、前記記録手段によって記録されたホログラム像をホログラフィック表示デバイスへ明瞭に表示させることができる。
As the display means, a laser oscillator that oscillates a laser beam, a half-wave plate for probe light disposed on the optical axis of the laser beam oscillated from the laser oscillation device, and the half-wave plate for probe light are passed through And an optical system for probe light that expands the beam diameter of the laser beam and uses it as the probe light. In this case, the hologram image recorded by the recording means can be clearly displayed on the holographic display device.
前記ホログラフィック表示デバイスに、電界を印加する電界印加装置を設けてもよい。ホログラフィック表示デバイスに電界を印加すると、応答速度を速くすることができる。
An electric field applying device for applying an electric field may be provided in the holographic display device. When an electric field is applied to the holographic display device, the response speed can be increased.
前記フォトリフラクティブ複合体として、前記記録手段による前記ホログラム画像の書き換えを可能とする成分からなるものが挙げられる。この場合、ホログラフィック表示デバイスへのホログラム画像の書き換えが可能となり、ホログラフィック表示デバイスを取り替えることなく、異なったホログラム画像を表示させることができる。
Examples of the photorefractive composite include those composed of components that allow the recording means to rewrite the hologram image. In this case, the hologram image can be rewritten to the holographic display device, and different hologram images can be displayed without replacing the holographic display device.
前記フォトリフラクティブ複合体として、電界を印加することなく前記記録手段による前記ホログラフィック画像の書き換えを可能とする成分からなるものが挙げられる。この場合、電圧を印加するための電界印加装置が必要でなくなり、3次元ホログラフィック表示システムのコストをさらに低減させることができる。
Examples of the photorefractive composite include those composed of components that allow the recording means to rewrite the holographic image without applying an electric field. In this case, an electric field applying device for applying a voltage is not necessary, and the cost of the three-dimensional holographic display system can be further reduced.
前記フォトリフラクティブ複合体として、電界を印加時に30フレーム毎秒のビデオレートに追従する応答性を有する成分からなるものが挙げられる。この場合、ホログラフィック表示デバイスの応答性を格段に向上させることができる。
Examples of the photorefractive composite include those having responsive components that follow a video rate of 30 frames per second when an electric field is applied. In this case, the responsiveness of the holographic display device can be significantly improved.
前記ホログラフィック表示デバイスは、どのような形態で構成されていてもよく、例えば、フォトリフラクティブポリマーを主成分として板状に形成されたフォトリフラクティブ複合体と、このフォトリフラクティブ複合体を挟持する2枚の基材とで構成されているものが挙げられる。
The holographic display device may be configured in any form, for example, a photorefractive composite formed in a plate shape with a photorefractive polymer as a main component and two sheets sandwiching the photorefractive composite What is comprised with the base material of this is mentioned.
本発明の3Dディスプレイ装置は、3次元ホログラフィック表示システムを用いて構成された3Dディスプレイ装置であって、前記3次元ホログラフィック表示システムは上記の3次元ホログラフィック表示システムであることを特徴とする。
A 3D display device according to the present invention is a 3D display device configured using a three-dimensional holographic display system, wherein the three-dimensional holographic display system is the above-described three-dimensional holographic display system. .
上記本発明の3Dディスプレイ装置によれば、容易に大面積化することができる3次元ホログラフィック表示システムを用いて構成されているため、大画面の3Dディスプレイ装置を製造する場合であってもコスト安となり、量産化を可能とすることができる。
According to the 3D display device of the present invention, since it is configured using a 3D holographic display system that can be easily increased in area, the cost can be increased even when a 3D display device with a large screen is manufactured. It becomes cheap and can be mass-produced.
上記の通り、本発明によれば、物体光及び参照光によってホログラム像が記録され、プローブ光によってホログラム像が表示されるホログラフィック表示デバイスに、フォトリフラクティブポリマーを主成分とするフォトリフラクティブ複合体を用いているので、ホログラフィック表示デバイスを、容易に大面積化することができる。そのため、低コストで製作でき、量産化を可能とすることができる。
As described above, according to the present invention, a photorefractive composite mainly composed of a photorefractive polymer is applied to a holographic display device in which a hologram image is recorded by object light and reference light and the hologram image is displayed by probe light. Therefore, the area of the holographic display device can be easily increased. Therefore, it can be manufactured at low cost and can be mass-produced.
以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る3次元ホログラフィック表示システム1(3Dディスプレイ装置)の概略構成図である。この3次元ホログラフィック表示システム1は、ホログラム像を記録かつ表示させるホログラフィック表示デバイス2と、物体光及び参照光をホログラフィック表示デバイス2に照射することによりホログラム像を記録する記録手段3と、プローブ光をホログラフィック表示デバイス2に照射することにより、記録手段3で記録されたホログラム像を表示する表示手段4とで主に構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a three-dimensional holographic display system 1 (3D display device) according to the first embodiment of the present invention. The three-dimensional holographic display system 1 includes a holographic display device 2 that records and displays a hologram image, a recording unit 3 that records a hologram image by irradiating the holographic display device 2 with object light and reference light, The holographic display device 2 is irradiated with the probe light to mainly display the hologram image recorded by the recording means 3.
ホログラム像を記録する本実施形態の記録手段3は、レーザーを発振するレーザー発振器10と、このレーザー発振器10から発振されたレーザービームを反射させる第1の固定ミラー11と、この第1の固定ミラー11で反射したレーザービームの光軸上に配置された第1の半波長板12と、この第1の半波長板12を通過したレーザービームを分割してp-偏光とs-偏光の第1、第2の偏光レーザービームB1、B2とするビームスプリッター13と、第1の偏光レーザービームB1の光軸上に配置された第2の半波長板14と、この第2の半波長板14を通過した第1の偏光レーザービームB1を反射させる第2の固定ミラー15と、この第2の固定ミラー15で反射したレーザービームのビーム径を拡大して物体5へ照射し、物体光B11とする第1の光学系16と、第2の偏光レーザービームB2のビーム径を拡大する第2の光学系17と、この第2の光学系17で拡大されたレーザービームを反射させて参照光B21とする第3の固定ミラー18とで構成されている。このうち、第1の光学系16は、レーザービームのビーム径を拡大する対物レンズ19とレンズ20とからなり、第2の光学系17は、レーザービームのビーム径を拡大するレンズ21とレンズ22とからなるが、これらの光学系を構成するレンズの数、種類は限定するものではない。
The recording means 3 of this embodiment for recording a hologram image includes a laser oscillator 10 that oscillates a laser, a first fixed mirror 11 that reflects a laser beam oscillated from the laser oscillator 10, and the first fixed mirror. The first half-wave plate 12 disposed on the optical axis of the laser beam reflected by the laser beam 11, and the laser beam that has passed through the first half-wave plate 12 are split to obtain p-polarized light and s-polarized first light. , A second splitter laser beam B1 and a second splitter laser beam B2, a second half-wave plate 14 disposed on the optical axis of the first polarized laser beam B1, and the second half-wave plate 14 The second fixed mirror 15 that reflects the first polarized laser beam B1 that has passed through, and the beam diameter of the laser beam reflected by the second fixed mirror 15 is enlarged to irradiate the object 5, and the object The first optical system 16 as light B11, the second optical system 17 that expands the beam diameter of the second polarized laser beam B2, and the laser beam expanded by the second optical system 17 are reflected. It is comprised with the 3rd fixed mirror 18 used as the reference beam B21. Among these, the first optical system 16 includes an objective lens 19 and a lens 20 that expand the beam diameter of the laser beam, and the second optical system 17 includes a lens 21 and a lens 22 that expand the beam diameter of the laser beam. However, the number and types of lenses constituting these optical systems are not limited.
レーザー発振器10から発振されたレーザービームは第1の固定ミラー11で反射され、第1の半波長板12を通過後、ビームスプリッター13で分割され、p-偏光の第1の偏光レーザービームB1はビームスプリッター13を直進し、s-偏光の第2のレーザービームB2はビームスプリッター13で反射される。第1の半波長板12を回転させることによって、ビームスプリッター13を直進するp-偏光の第1の偏光レーザービームB1と、ビームスプリッター13で反射されるs-偏光の第2の偏光レーザービームB2の強度比を変えることができる。
The laser beam oscillated from the laser oscillator 10 is reflected by the first fixed mirror 11, passes through the first half-wave plate 12, is divided by the beam splitter 13, and the p-polarized first polarized laser beam B 1 is The beam travels straight through the beam splitter 13, and the s-polarized second laser beam B 2 is reflected by the beam splitter 13. By rotating the first half-wave plate 12, a p-polarized first polarized laser beam B1 traveling straight through the beam splitter 13 and an s-polarized second polarized laser beam B2 reflected by the beam splitter 13 are used. The intensity ratio can be changed.
ビームスプリッター13を通過したp-偏光の第1の偏光レーザービームB1は、第2の半波長板14でs-偏光に変換される。第2の半波長板14で変換されたs-偏光の第1の偏光レーザービームB1は、第2の固定ミラー15で反射される。第2の固定ミラー15で反射されたs-偏光の第1の偏光レーザービームB1のビーム径は、対物レンズ19とレンズ20で拡大される。ビーム径を拡大されたs-偏光の第1の偏光レーザービームB1は、物体5に照射され、物体光B11となる。
The p-polarized first polarized laser beam B 1 that has passed through the beam splitter 13 is converted into s-polarized light by the second half-wave plate 14. The s-polarized first polarized laser beam B 1 converted by the second half-wave plate 14 is reflected by the second fixed mirror 15. The beam diameter of the s-polarized first polarized laser beam B 1 reflected by the second fixed mirror 15 is enlarged by the objective lens 19 and the lens 20. The s-polarized first polarized laser beam B1 having an enlarged beam diameter is irradiated onto the object 5 and becomes object light B11.
ビームスプリッター13で反射したs-偏光の第2の偏光レーザービームB2は、レンズ21とレンズ22とを通過後、そのビーム径が拡大される。ビーム径が拡大されたs-偏光の第2の偏光レーザービームB2は、第3の固定ミラー18で反射され、参照光B21となる。
The second s-polarized laser beam B2 reflected by the beam splitter 13 passes through the lens 21 and the lens 22, and then the beam diameter is expanded. The s-polarized second polarized laser beam B2 whose beam diameter is enlarged is reflected by the third fixed mirror 18 and becomes reference light B21.
そして、上記物体光B11が、上記参照光B21と共にホログラフィック表示デバイス2に照射され、当該物体光B11に含まれる空間的な強度分布及び位相分布を干渉縞として、当該物体光B11の空間情報が、ホログラフィック表示デバイス2に書き込まれる(記録される)。
Then, the holographic display device 2 is irradiated with the object light B11 together with the reference light B21, and the spatial information of the object light B11 is obtained by using the spatial intensity distribution and phase distribution included in the object light B11 as interference fringes. Is written (recorded) in the holographic display device 2.
記録されたホログラム像を表示する本実施形態の表示手段4は、レーザーを発振するレーザー発振器24と、このレーザー発振装置24から発振されたレーザービームの光軸上に配置されたプローブ光用半波長板25と、このプローブ光用半波長板25を通過したレーザービームを反射させる第4の固定ミラー26と、この第4の固定ミラー26で反射されたレーザービームのビーム径を拡大するプローブ光用光学系27と、このプローブ光用光学系27で拡大されたレーザービームを反射させてプローブ光B31とする第5の固定ミラー28とで構成されている。このうち、プローブ光用光学系27は、2つのレンズ29、30からなるが、当該光学系を構成するレンズの数、種類は限定するものではない。
The display means 4 of the present embodiment for displaying the recorded hologram image includes a laser oscillator 24 that oscillates a laser, and a half wavelength for probe light that is arranged on the optical axis of the laser beam oscillated from the laser oscillation device 24. A plate 25, a fourth fixed mirror 26 that reflects the laser beam that has passed through the half-wave plate 25 for probe light, and a probe light that expands the beam diameter of the laser beam reflected by the fourth fixed mirror 26. The optical system 27 includes a fifth fixed mirror 28 that reflects the laser beam magnified by the probe light optical system 27 to obtain probe light B31. Of these, the probe light optical system 27 includes two lenses 29 and 30, but the number and types of lenses constituting the optical system are not limited.
レーザー発振器24から発振されたレーザービームは、プローブ光用半波長板25でp-偏光に変換され、第4の固定ミラー26で反射される。反射したp-偏光のレーザービームのビーム径は、レンズ29とレンズ30とで拡大される。ビーム径が拡大されたp-偏光のレーザービームは、第5の固定ミラー28で反射されてプローブ光B31となる。そして、記録手段3によって書き込まれた(記録された)空間情報は、p-偏光のプローブ光B31でホログラム像として読み出され、ホログラフィック表示デバイス2に表示される。
The laser beam oscillated from the laser oscillator 24 is converted into p-polarized light by the half-wave plate 25 for probe light and reflected by the fourth fixed mirror 26. The diameter of the reflected p-polarized laser beam is enlarged by the lens 29 and the lens 30. The p-polarized laser beam whose beam diameter is enlarged is reflected by the fifth fixed mirror 28 and becomes probe light B31. The spatial information written (recorded) by the recording means 3 is read as a hologram image by the p-polarized probe light B31 and displayed on the holographic display device 2.
物体光と参照光の波長、及び物体光と参照光の強度比を変更することによって、応答速度が変化する。物体光と参照光の波長は、450~700nmであることが好ましく、500~600nmがより好ましい。物体光と参照光の波長が、450nmを下回るか、700nmを上回ると十分な応答速度が得られないからである。
The response speed is changed by changing the wavelength of the object light and the reference light and the intensity ratio of the object light and the reference light. The wavelengths of the object light and the reference light are preferably 450 to 700 nm, and more preferably 500 to 600 nm. This is because sufficient response speed cannot be obtained when the wavelengths of the object light and the reference light are less than 450 nm or more than 700 nm.
図2はホログラフィック表示デバイス2の断面模式図である。このホログラフィック表示デバイス2はフォトリフラクティブ複合体6と、このフォトリフラクティブ複合体6を挟持する2枚の基材7、7とからなる。基材7、7はそれぞれ四方形状に形成されたガラス製の板材である。フォトリフラクティブ複合体6はフォトリフラクティブポリマー8に増感剤や非線形光学色素等を添加するか、又はフォトリフラクティブ機能を有するポリマーやその他の化合物で構成することによって得ることができる。本発明では、ホログラム像を書き換え可能なフォトリフラクティブ複合体6を用いている。
FIG. 2 is a schematic sectional view of the holographic display device 2. The holographic display device 2 includes a photorefractive composite 6 and two substrates 7 and 7 sandwiching the photorefractive composite 6. Each of the base materials 7 and 7 is a glass plate formed in a quadrilateral shape. The photorefractive composite 6 can be obtained by adding a sensitizer, a non-linear optical dye or the like to the photorefractive polymer 8, or comprising a polymer or other compound having a photorefractive function. In the present invention, the photorefractive composite 6 capable of rewriting the hologram image is used.
(フォトリフラクティブ複合体)
ポリビニルカルバゾ-ル(PVCz)やカルバゾールを側鎖に有するビニルポリマー類に増感剤、非線形光学色素及び可塑剤を分散混合させたフォトリフラクティブCzポリマー複合体が挙げられる。フォトリフラクティブCzポリマー複合体は、例えば特開2005-227311号公報、特開2009-57528号公報、特開2010-211191号公報、Naoto Tsutsumi,Akihito Dohi,Asato Nonomura,and Wataru Sakai,J.Polym.Sci.Part
B:Polym.Phys.49,pp.414-420(2011).に記載されている。 (Photorefractive complex)
Examples thereof include photorefractive Cz polymer composites in which polyvinyl carbazole (PVCz) and vinyl polymers having carbazole in the side chain are dispersed and mixed with a sensitizer, a nonlinear optical dye and a plasticizer. Photorefractive Cz polymer composites are disclosed in, for example, JP-A-2005-227311, JP-A-2009-57528, JP-A-2010-21111, Naoto Tsutsumi, Akihito Dohi, Asato Nonomura, and Wataru Sakai, J. Polym. Sci.Part
B: Polym. Phys. 49, pp. 414-420 (2011).
ポリビニルカルバゾ-ル(PVCz)やカルバゾールを側鎖に有するビニルポリマー類に増感剤、非線形光学色素及び可塑剤を分散混合させたフォトリフラクティブCzポリマー複合体が挙げられる。フォトリフラクティブCzポリマー複合体は、例えば特開2005-227311号公報、特開2009-57528号公報、特開2010-211191号公報、Naoto Tsutsumi,Akihito Dohi,Asato Nonomura,and Wataru Sakai,J.Polym.Sci.Part
B:Polym.Phys.49,pp.414-420(2011).に記載されている。 (Photorefractive complex)
Examples thereof include photorefractive Cz polymer composites in which polyvinyl carbazole (PVCz) and vinyl polymers having carbazole in the side chain are dispersed and mixed with a sensitizer, a nonlinear optical dye and a plasticizer. Photorefractive Cz polymer composites are disclosed in, for example, JP-A-2005-227311, JP-A-2009-57528, JP-A-2010-21111, Naoto Tsutsumi, Akihito Dohi, Asato Nonomura, and Wataru Sakai, J. Polym. Sci.Part
B: Polym. Phys. 49, pp. 414-420 (2011).
ポリ(ジフェニルアミノ)スチレン(PDAS)に増感剤、非線形光学色素及び可塑剤を分散混合させたフォトリフラクティブPDAS複合体が挙げられる。フォトリフラクティブPDAS複合体は、例えばN.Tsutsumi, T. Murao, and W. Sakai, Macromolecules, 38(17)pp.7521-7523(2005).に記載されている。
A photorefractive PDAS composite in which a sensitizer, a non-linear optical dye, and a plasticizer are dispersed and mixed in poly (diphenylamino) styrene (PDAS). Photorefractive PDAS complexes are described, for example, in N. Tsutsumi, T. Murao, and W. Sakai, Macromolecules, 38 (17) pp.7521-7523 (2005).
複数のカルバゾール環を分子内に有する低分子化合物に、増感剤、非線形光学色素及び可塑剤を分散混合させたフォトリフラクティブ分子ガラス複合体が挙げられる。フォトリフラクティブ分子ガラス複合体は、N. Tsutsumi, J. Eguchi, W. Sakai, Chem. Phys. Lett. 408, 269 (2005)、特開2005-227311号公報に記載されている。
A photorefractive molecular glass complex in which a sensitizer, a nonlinear optical dye and a plasticizer are dispersed and mixed in a low molecular compound having a plurality of carbazole rings in the molecule. Photorefractive molecular glass composites are described in N. Tsutsumi, J. Eguchi, W.kaiSakai, Chem. Phys. Lett. 408, 269 (2005), JP-A-2005-227311.
芳香族第3級アミンとアルデヒドとの付加重合体に、増感剤、非線形光学色素を分散混合させたフォトリフラクティブトリフェニルアミン類ポリマー複合体が挙げられる。フォトリフラクティブトリフェニルアミン類ポリマー複合体は、特開2001-255566号公報に記載されている。
Examples include photorefractive triphenylamine polymer composites in which an addition polymer of an aromatic tertiary amine and an aldehyde is dispersed and mixed with a sensitizer and a non-linear optical dye. A photorefractive triphenylamine polymer composite is described in Japanese Patent Application Laid-Open No. 2001-255566.
以上のフォトリフラクティブ複合体は、電界を印加してホログラム像の書き換えを行うことができ、その中でもフォトリフラクティブPDAS複合体では、電界を印加時に30フレーム毎秒のビデオレートに追従する応答性を発現させることができる。無電界でホログラム像の書き換えを行うことができるフォトリフラクティブ複合体は、フォトリフラクティブCzポリマー複合体、フォトリフラクティブPDAS複合体、フォトリフラクティブ分子ガラス複合体である。
The photorefractive composite described above can rewrite a hologram image by applying an electric field. Among them, the photorefractive PDAS composite exhibits responsiveness to follow a video rate of 30 frames per second when an electric field is applied. be able to. Photorefractive composites capable of rewriting a hologram image without an electric field are a photorefractive Cz polymer composite, a photorefractive PDAS composite, and a photorefractive molecular glass composite.
上記のフォトリフラクティブ複合体に関し、無電界でホログラム像の書き換えを行うことが記載された文献を挙げる。フォトリフラクティブCzポリマー複合体は、特開2003-322886号公報、特許第3973964号公報に記載されている。フォトリフラクティブPDAS複合体は、Naoto Tsutsumi, Yusuke Shimizu, Junya Eguchi, Takehiro Murao,
Yoshito Nakajima and Wataru Sakai, Proceedings of SPIE, 6343 63432V (14 pages)
(2006)に記載されている。フォトリフラクティブ分子ガラス複合体は、N.Tsutsumi他3名、Opt.Mater.Vol.29pp.435-438(2006)に記載されている。 With respect to the above photorefractive composite, there is a document describing rewriting of a hologram image without an electric field. Photorefractive Cz polymer composites are described in Japanese Patent Application Laid-Open No. 2003-322886 and Japanese Patent No. 397964. The photorefractive PDAS complex is based on Naoto Tsutsumi, Yusuke Shimizu, Junya Eguchi, Takehiro Murao,
Yoshito Nakajima and Wataru Sakai, Proceedings of SPIE, 6343 63432V (14 pages)
(2006). Photorefractive molecular glass composites are described in N. Tsutsumi et al., Opt. Mater. Vol. 29pp. 435-438 (2006).
Yoshito Nakajima and Wataru Sakai, Proceedings of SPIE, 6343 63432V (14 pages)
(2006)に記載されている。フォトリフラクティブ分子ガラス複合体は、N.Tsutsumi他3名、Opt.Mater.Vol.29pp.435-438(2006)に記載されている。 With respect to the above photorefractive composite, there is a document describing rewriting of a hologram image without an electric field. Photorefractive Cz polymer composites are described in Japanese Patent Application Laid-Open No. 2003-322886 and Japanese Patent No. 397964. The photorefractive PDAS complex is based on Naoto Tsutsumi, Yusuke Shimizu, Junya Eguchi, Takehiro Murao,
Yoshito Nakajima and Wataru Sakai, Proceedings of SPIE, 6343 63432V (14 pages)
(2006). Photorefractive molecular glass composites are described in N. Tsutsumi et al., Opt. Mater. Vol. 29pp. 435-438 (2006).
無電界でホログラム像の書き換えを行うことができる他のフォトリフラクティブ複合体を例示する。光導電性部位と非線形光学部位を一つの分子内に持つ分子である下記式(1)で表される3-[(4-ニトロフェニル)アゾ]-9H-カルバゾール-9-エタノール (NACzE)を、ポリメチルメタクリレート(PMMA)やポリエチルメタクリレート(PEMA)に分散混合させたフォトリフラクティブ複合材が挙げられる。このフォトリフラクティブ複合体は、A.Tanaka,J.Nishide,H.Sasabe、Mol.Cryst.Liq.Cryst.,504,44-51(2009).に記載されている。
Examples of other photorefractive composites capable of rewriting a hologram image in the absence of an electric field. 3-[(4-nitrophenyl) azo] -9H-carbazole-9-ethanol (NACzE) represented by the following formula (1), which is a molecule having a photoconductive portion and a nonlinear optical portion in one molecule: And photorefractive composite material dispersed and mixed in polymethyl methacrylate (PMMA) or polyethyl methacrylate (PEMA). This photorefractive complex is described in A. Tanaka, J. Nishide, H. Sasabe, Mol. Cryst. Liq. Cryst., 504, 44-51 (2009).
下記式(2)で表されるヘミシアニン色素を、PVCz又はPMMAに分散混合させたフォトリフラクティブ複合体が挙げられる。このようなフォトリフラクティブ複合体として、J.-W. Lee ら “Novel polymer composites with high optical gain based on pseudo-photorefraction”,Adv.Mater.14(2),pp.144-147(2002)に記載されたものが挙げられる。
Examples include photorefractive composites in which a hemicyanine dye represented by the following formula (2) is dispersed and mixed in PVCz or PMMA. Such a photorefractive complex is described in J.-W. Lee et al. “Novel polymer composites with high optical gain based on pseudo-photorefraction”, Adv. Mater. 14 (2), pp. 144-147 (2002). The thing which was done is mentioned.
電子受容性チオキサンソンと、下記式(3)で表される電子供与性4-(2-ニトロビニル)アニリン(TH-NVA)を分子内に有するモノリシック分子のフォトリフラクティブ分子ガラスが挙げられる。このフォトリフラクティブ複合体は、J.Jeong,K.Ohnishi,H.Sato,K.Ogino,Jpn.J.Appl.Phys.Part2 No.2B42(2003)L179.に記載されている。
A photorefractive molecular glass of a monolithic molecule having an electron accepting thioxanthone and an electron donating 4- (2-nitrovinyl) aniline (TH-NVA) represented by the following formula (3) in the molecule. This photorefractive complex is described in J. Jeong, K. Ohnishi, H. Sato, K. Ogino, Jpn. J. Appl. Phys. Part 2 No. 2B42 (2003) L179.
下記式(4)で表される2、5-ジメチル-4-(2-ヒドロキシエトキシ)-4’-ニトロアゾベンゼン(DMHNAB)を分散混合させたシリカガラスフォトリフラクティブ複合体が挙げられる。このシリカガラスフォトリフラクティブ複合体は、P.Cheben,“A photorefractive originally modified silica glass with high optical
gain”,Nature408,pp.64-67(2000)に記載されている。 Examples thereof include a silica glass photorefractive composite in which 2,5-dimethyl-4- (2-hydroxyethoxy) -4′-nitroazobenzene (DMHNAB) represented by the following formula (4) is dispersed and mixed. This silica glass photorefractive composite is described in P. Cheben, “A photorefractive originally modified silica glass with high optical.
gain ”, Nature 408, pp. 64-67 (2000).
gain”,Nature408,pp.64-67(2000)に記載されている。 Examples thereof include a silica glass photorefractive composite in which 2,5-dimethyl-4- (2-hydroxyethoxy) -4′-nitroazobenzene (DMHNAB) represented by the following formula (4) is dispersed and mixed. This silica glass photorefractive composite is described in P. Cheben, “A photorefractive originally modified silica glass with high optical.
gain ”, Nature 408, pp. 64-67 (2000).
マトリックスポリマーにイオン性液体を加えたフォトリフラクティブ複合体が挙げられる。具体的にはNACzEをPMMAに分散混合させ、これに下記式(5)で表されるイオン性液体である1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(1-butyl-3-methylimidazolium/bis(trifluoromethanesulfonyl)imide)(BMIM)を加えたものが挙げられる。混合比は適宜変更される。一例を挙げると、NACzE/PMMA/BMIM:10~40/40~70/5~20(重量%比)である。
Examples include photorefractive composites in which an ionic liquid is added to a matrix polymer. Specifically, NACzE is dispersed and mixed in PMMA, and 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (1-butyl-3) which is an ionic liquid represented by the following formula (5) is added thereto. and -methylimidazolium / bis (trifluoromethanesulfonyl) imide) (BMIM). The mixing ratio is changed as appropriate. For example, NACzE / PMMA / BMIM: 10 to 40/40 to 70/5 to 20 (weight% ratio).
モノシリック化合物である下記式(6)に示す[4-(4-ニトロフェニルアゾ)-フェニル]-ジフェニルアミン([4-(4-Nitrophenylazo)-phenyl-diphenylamine)(NATA)を、PMMAに分散混合させ、これに上記のイオン性液体であるBMIMを加えたものが挙げられる。混合比は適宜変更される。一例を挙げると、NATA/PMMA/BMIM:10~40/40~70/5~20(重量%比)である。マトリックスポリマーにイオン性液体を加えた複合体を用いれば、応答速度が極めて速くなりミリ秒オーダーの応答も可能とすることができる。
[4- (4-Nitrophenylazo) -phenyl-diphenylamine] (NATA) represented by the following formula (6), which is a monolithic compound, is dispersed and mixed in PMMA. In addition to this, BMIM which is the above ionic liquid is added. The mixing ratio is changed as appropriate. An example is NATA / PMMA / BMIM: 10-40 / 40-70 / 5-20 (weight% ratio). If a complex in which an ionic liquid is added to a matrix polymer is used, the response speed becomes extremely fast, and a response on the order of milliseconds can be made possible.
(増感剤)
増感剤は電子受容体としての性能を有しており、フォトリフラクティブ性を高めるために配合されるものである。増感剤が配合されると、当該増感剤と、フォトリフラクティブポリマーとにより、電荷移動錯体が形成され、有用なフォトリフラクティブ性が発現される。さらには、増感剤の配合により、分子配向の制御なし(無電界下)でのフォトリフラクティブ性をも発現させることができる。 (Sensitizer)
The sensitizer has performance as an electron acceptor, and is blended to enhance photorefractive properties. When a sensitizer is blended, a charge transfer complex is formed by the sensitizer and the photorefractive polymer, and useful photorefractive properties are expressed. Furthermore, the photorefractive property without the control of molecular orientation (under no electric field) can be expressed by the addition of the sensitizer.
増感剤は電子受容体としての性能を有しており、フォトリフラクティブ性を高めるために配合されるものである。増感剤が配合されると、当該増感剤と、フォトリフラクティブポリマーとにより、電荷移動錯体が形成され、有用なフォトリフラクティブ性が発現される。さらには、増感剤の配合により、分子配向の制御なし(無電界下)でのフォトリフラクティブ性をも発現させることができる。 (Sensitizer)
The sensitizer has performance as an electron acceptor, and is blended to enhance photorefractive properties. When a sensitizer is blended, a charge transfer complex is formed by the sensitizer and the photorefractive polymer, and useful photorefractive properties are expressed. Furthermore, the photorefractive property without the control of molecular orientation (under no electric field) can be expressed by the addition of the sensitizer.
増感剤の具体例として、(2,4,7-トリニトロ-9-フルレニィリデン)マロニトリル(TNF-DM)、[6,6]-フェニルC61ブタン酸メチルエステル(PCBM)、2,4,7-トリニトロ-9-フルオレノン(TNF)、フラーレンC60、フラーレンC70、テトラシアノベンゼン(TCBN)、テトラシアノキノジノメタン(TCNQ)、ベンゾキノン(BQ)、及びその誘導体、2、6-ジメチル-p-ベンゾキノン(MQ)、2、5-ジクロロ-p-ベンゾキノン(Cl2Q)、2、3、5、6-テトラクロロ-p-ベンゾキノン(クロラニル)、2、3-ジクロロ-5、6-p-ベンゾキノン(DDQ)等が挙げられる。これら具体例のうち、ホストマトリックスであるフォトリフラクティブポリマーに対する溶解性の点で、2,4,7-トリニトロ-9-フルオレノン(TNF)がより好ましい。なお、増感剤は、一種のものを単独で使用してもよく、2種類以上のものを併用しても良い。
Specific examples of the sensitizer include (2,4,7-trinitro-9-fluorenylidene) malonitrile (TNF-DM), [6,6] -phenyl C 61 butanoic acid methyl ester (PCBM), 2,4,7. -Trinitro-9-fluorenone (TNF), fullerene C 60 , fullerene C70, tetracyanobenzene (TCBN), tetracyanoquinodinomethane (TCNQ), benzoquinone (BQ), and derivatives thereof, 2,6-dimethyl-p- Benzoquinone (MQ), 2,5-dichloro-p-benzoquinone (Cl 2 Q), 2,3,5,6-tetrachloro-p-benzoquinone (chloranil), 2,3-dichloro-5,6-p- Examples include benzoquinone (DDQ). Among these specific examples, 2,4,7-trinitro-9-fluorenone (TNF) is more preferable from the viewpoint of solubility in the photorefractive polymer as the host matrix. In addition, a sensitizer may be used individually by 1 type and may use 2 or more types together.
増感剤の含有量としては、フォトリフラクティブポリマー100重量%に対して、下限値としては0.1重量%が好ましく、0.5重量%がさらに好ましく、1重量%が最も好ましく、上限値としては、30重量%が好ましく、20重量%がさらに好ましく、10重量%が最も好ましい。増感剤の含有量が、0.1重量%以下であると、無電界下でのフォトリフラクティブ性が低くなる。増感剤の含有量が、30重量%よりも多いと、増感剤による電荷移動錯体の濃度が高くなるため、光の吸収の増大が招来されて光の透過度が顕著に低下してしまう。
The content of the sensitizer is preferably 0.1% by weight, more preferably 0.5% by weight, most preferably 1% by weight, and most preferably 100% by weight with respect to 100% by weight of the photorefractive polymer. Is preferably 30% by weight, more preferably 20% by weight, and most preferably 10% by weight. When the content of the sensitizer is 0.1% by weight or less, the photorefractive property under no electric field is lowered. When the content of the sensitizer is more than 30% by weight, the concentration of the charge transfer complex by the sensitizer increases, so that the light absorption is increased and the light transmittance is significantly reduced. .
(非線形光学色素)
非線形光学色素とは2次の非線形光学特性を示すドナーアクセプター型分子、すなわち、電場によって屈折率が変化する材料(2次非線形光学材料)のことである。非線形光学色素の具体例として、2、5-ジメチル-4-(p-ニトロフェニルアゾ)アニソール(DMNPAA)、4-アミノ-4‘-ニトロアゾベンゼン(ANAB)、s-(-)-1-(4-ニトロフェニル)-2-ピロリジン-メタノール(NPP)、4-(ジエチルアミノ)-(E)-β-ニトロスチレン(DEANST)、(ジエチルアミノ)ベンツアルデヒドジフェニルヒドラゾン(DEH)、PDCST、AODCST、[[4-(ヘキサヒドロ-1H-アゼピン-1-イル)フェニル]メチレン]プロパンジニトリル(7-DCST)、TDDCST、DCDHF-6等のアミノシアノスチレン類が挙げられる。なお、非線形光学色素は、一種のものを単独で使用してもよく、2種類以上のものを併用しても良い。 (Nonlinear optical dye)
A nonlinear optical dye is a donor-acceptor type molecule exhibiting second-order nonlinear optical characteristics, that is, a material whose refractive index changes with an electric field (second-order nonlinear optical material). Specific examples of the nonlinear optical dye include 2,5-dimethyl-4- (p-nitrophenylazo) anisole (DMNPAA), 4-amino-4′-nitroazobenzene (ANAB), s-(−)-1- ( 4-nitrophenyl) -2-pyrrolidine-methanol (NPP), 4- (diethylamino)-(E) -β-nitrostyrene (DEANST), (diethylamino) benzaldehyde diphenylhydrazone (DEH), PDCST, AODST, [[ And aminocyanostyrenes such as 4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile (7-DCST), TDDCST, DCDHF-6, and the like. In addition, a nonlinear optical pigment | dye may be used individually by 1 type, and may use 2 or more types together.
非線形光学色素とは2次の非線形光学特性を示すドナーアクセプター型分子、すなわち、電場によって屈折率が変化する材料(2次非線形光学材料)のことである。非線形光学色素の具体例として、2、5-ジメチル-4-(p-ニトロフェニルアゾ)アニソール(DMNPAA)、4-アミノ-4‘-ニトロアゾベンゼン(ANAB)、s-(-)-1-(4-ニトロフェニル)-2-ピロリジン-メタノール(NPP)、4-(ジエチルアミノ)-(E)-β-ニトロスチレン(DEANST)、(ジエチルアミノ)ベンツアルデヒドジフェニルヒドラゾン(DEH)、PDCST、AODCST、[[4-(ヘキサヒドロ-1H-アゼピン-1-イル)フェニル]メチレン]プロパンジニトリル(7-DCST)、TDDCST、DCDHF-6等のアミノシアノスチレン類が挙げられる。なお、非線形光学色素は、一種のものを単独で使用してもよく、2種類以上のものを併用しても良い。 (Nonlinear optical dye)
A nonlinear optical dye is a donor-acceptor type molecule exhibiting second-order nonlinear optical characteristics, that is, a material whose refractive index changes with an electric field (second-order nonlinear optical material). Specific examples of the nonlinear optical dye include 2,5-dimethyl-4- (p-nitrophenylazo) anisole (DMNPAA), 4-amino-4′-nitroazobenzene (ANAB), s-(−)-1- ( 4-nitrophenyl) -2-pyrrolidine-methanol (NPP), 4- (diethylamino)-(E) -β-nitrostyrene (DEANST), (diethylamino) benzaldehyde diphenylhydrazone (DEH), PDCST, AODST, [[ And aminocyanostyrenes such as 4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile (7-DCST), TDDCST, DCDHF-6, and the like. In addition, a nonlinear optical pigment | dye may be used individually by 1 type, and may use 2 or more types together.
非線形光学色素の含有量としては、フォトリフラクティブポリマー100重量%に対して、下限値として、20重量%が好ましく、25重量%がさらに好ましく、上限値として、50重量%が好ましく、40重量%がさらに好ましく、30重量%が最も好ましい。非線形光学色素の含有量が20重量%よりも少ないと、フォトリフラクティブ効果に必要な回折効率や利得係数が得られない場合がある。非線形光学色素の含有量が、50重量%よりも多いと、他の成分との量比にアンバランスが生じて、フォトリフラクティブ複合体の設計に悪影響を及ぼす場合がある。
The content of the nonlinear optical dye is preferably 20% by weight, more preferably 25% by weight, more preferably 50% by weight, and preferably 40% by weight as the upper limit with respect to 100% by weight of the photorefractive polymer. More preferred is 30% by weight. If the content of the nonlinear optical dye is less than 20% by weight, the diffraction efficiency and gain coefficient necessary for the photorefractive effect may not be obtained. If the content of the nonlinear optical dye is more than 50% by weight, an imbalance in the amount ratio with other components may occur, which may adversely affect the design of the photorefractive composite.
(可塑剤)
可塑剤はマトリックスのガラス転移温度を低下させる役割を果たす。可塑剤の具体例として、エチルカルバゾール(ECZ)、又はプロピオン酸カルバゾイルエチル(CzEPA)、トリフェニルアミン(TPA)、フタル酸ベンジルブチル(BBP)、フタル酸ジシクロヘキシル(DCP)リン酸トリクレジル(TCP)、フタル酸ジフェニル(DPP)、N-メチル-1-ピロリドン、N-オクチル-1-ピロリドン、N-ドデシル-1-ピロリドン等のN-アルキル-1-ピロリドン類、並びに2-(1、2-シクロヘキサンジカルボキシイミド)エチルプロピオネート) (AX22)、2-(1、2-シクロヘキサンジカルボキシイミド)エチルブチレート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルベンゾエート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルアクリレート、2-(フタルイミド)エチルプロピオネート(AX23) 等のイミド化合物等が挙げられる。 (Plasticizer)
The plasticizer serves to lower the glass transition temperature of the matrix. Specific examples of plasticizers include ethyl carbazole (ECZ), carbazoylethyl propionate (CzEPA), triphenylamine (TPA), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCP) tricresyl phosphate (TCP) N-alkyl-1-pyrrolidones such as diphenyl phthalate (DPP), N-methyl-1-pyrrolidone, N-octyl-1-pyrrolidone, N-dodecyl-1-pyrrolidone, and 2- (1,2- Cyclohexanedicarboximido) ethyl propionate) (AX22), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate, 2- (1,2-cyclohexanedicarboximido) ethyl benzoate, 2- (1, 2-cyclohexanedicarboximido) ethyl acrylate, 2 Imide compounds such as (phthalimido) ethyl propionate (ax23) and the like.
可塑剤はマトリックスのガラス転移温度を低下させる役割を果たす。可塑剤の具体例として、エチルカルバゾール(ECZ)、又はプロピオン酸カルバゾイルエチル(CzEPA)、トリフェニルアミン(TPA)、フタル酸ベンジルブチル(BBP)、フタル酸ジシクロヘキシル(DCP)リン酸トリクレジル(TCP)、フタル酸ジフェニル(DPP)、N-メチル-1-ピロリドン、N-オクチル-1-ピロリドン、N-ドデシル-1-ピロリドン等のN-アルキル-1-ピロリドン類、並びに2-(1、2-シクロヘキサンジカルボキシイミド)エチルプロピオネート) (AX22)、2-(1、2-シクロヘキサンジカルボキシイミド)エチルブチレート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルベンゾエート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルアクリレート、2-(フタルイミド)エチルプロピオネート(AX23) 等のイミド化合物等が挙げられる。 (Plasticizer)
The plasticizer serves to lower the glass transition temperature of the matrix. Specific examples of plasticizers include ethyl carbazole (ECZ), carbazoylethyl propionate (CzEPA), triphenylamine (TPA), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCP) tricresyl phosphate (TCP) N-alkyl-1-pyrrolidones such as diphenyl phthalate (DPP), N-methyl-1-pyrrolidone, N-octyl-1-pyrrolidone, N-dodecyl-1-pyrrolidone, and 2- (1,2- Cyclohexanedicarboximido) ethyl propionate) (AX22), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate, 2- (1,2-cyclohexanedicarboximido) ethyl benzoate, 2- (1, 2-cyclohexanedicarboximido) ethyl acrylate, 2 Imide compounds such as (phthalimido) ethyl propionate (ax23) and the like.
可塑剤の含有量としては、フォトリフラクティブポリマー100重量%に対して、下限値として10重量%が好ましく、15重量%がさらに好ましく、上限値として40重量%が好ましく、30重量%がさらに好ましく、20重量%が最も好ましい。可塑剤の含有量が10重量%よりも少ないと、可塑効果すなわちマトリックスのガラス転移温度が低下せず、フォトリフラクティブ効果に必要な回折効率や利得係数が得られない場合がある。可塑剤の含有量が40重量%よりも多いと、他の成分との量比にアンバランスが生じてフォトリフラクティブ複合体の設計に悪影響を及ぼす場合がある。
The content of the plasticizer is preferably 10% by weight, more preferably 15% by weight, more preferably 40% by weight, and even more preferably 30% by weight as the lower limit with respect to 100% by weight of the photorefractive polymer. 20% by weight is most preferred. When the content of the plasticizer is less than 10% by weight, the plastic effect, that is, the glass transition temperature of the matrix does not decrease, and the diffraction efficiency and gain coefficient necessary for the photorefractive effect may not be obtained. When the content of the plasticizer is more than 40% by weight, an unbalance is generated in the amount ratio with other components, which may adversely affect the design of the photorefractive composite.
フォトリフラクティブ複合体6の膜厚は50~100μmが好適であり、膜厚が50μm未満であればブラッグ回折条件を満たしにくく、100μmを超えると印加電圧の上昇や吸収の増大を招く恐れがあるからである。
The film thickness of the photorefractive composite 6 is preferably 50 to 100 μm. If the film thickness is less than 50 μm, it is difficult to satisfy the Bragg diffraction condition, and if it exceeds 100 μm, the applied voltage may increase or the absorption may increase. It is.
(フォトリフラクティブ複合体の製法)
非線形光学色素、増感剤等を用いるフォトリフラクティブCzポリマー複合体等の場合は下記のとおりである。フォトリフラクティブポリマー、非線形光学色素、増感剤及び可塑剤を溶媒に溶解させる溶解工程と、この溶媒を留去する溶媒留去工程と、サンドイッチ型デバイス作製工程とを含む製造方法によってフォトリフラクティブ複合体6が製作される。 (Production method of photorefractive composite)
In the case of a photorefractive Cz polymer composite using a non-linear optical dye, a sensitizer, etc., it is as follows. A photorefractive composite according to a production method comprising a dissolution step of dissolving a photorefractive polymer, a nonlinear optical dye, a sensitizer and a plasticizer in a solvent, a solvent distillation step of distilling off the solvent, and a sandwich typedevice production step 6 is produced.
非線形光学色素、増感剤等を用いるフォトリフラクティブCzポリマー複合体等の場合は下記のとおりである。フォトリフラクティブポリマー、非線形光学色素、増感剤及び可塑剤を溶媒に溶解させる溶解工程と、この溶媒を留去する溶媒留去工程と、サンドイッチ型デバイス作製工程とを含む製造方法によってフォトリフラクティブ複合体6が製作される。 (Production method of photorefractive composite)
In the case of a photorefractive Cz polymer composite using a non-linear optical dye, a sensitizer, etc., it is as follows. A photorefractive composite according to a production method comprising a dissolution step of dissolving a photorefractive polymer, a nonlinear optical dye, a sensitizer and a plasticizer in a solvent, a solvent distillation step of distilling off the solvent, and a sandwich type
(溶解工程)フォトリフラクティブポリマー、非線形光学色素、増感剤及び可塑剤を所定の割合にて溶媒に溶解する。溶媒としては特に限定されるものではなく、テトラヒドロフラン(THF)、N-メチルピロリドン(NMP)やジメチルホルムアミド等が使用され、好ましくはTHFである。溶解温度は室温程度であればよく、必要に応じてスターラーチップにより溶液を撹拌してもよい。
(Dissolution step) A photorefractive polymer, a nonlinear optical dye, a sensitizer and a plasticizer are dissolved in a solvent at a predetermined ratio. The solvent is not particularly limited, and tetrahydrofuran (THF), N-methylpyrrolidone (NMP), dimethylformamide and the like are used, and THF is preferable. The dissolution temperature may be about room temperature, and the solution may be stirred with a stirrer chip as necessary.
(溶媒留去工程)各成分が溶解された溶液の溶媒を除去する。溶媒を除去する方法としては特に限定されるものではなく、例えばキャストフィルムを得るようにすればよい。具体的には、ガラス板上に各成分が溶解された溶液を流延しその後、室温で溶媒を蒸発させ、続いてこれを真空乾燥器に入れて溶媒をさらに蒸発させる。
(Solvent distillation step) The solvent of the solution in which each component is dissolved is removed. The method for removing the solvent is not particularly limited, and for example, a cast film may be obtained. Specifically, a solution in which each component is dissolved is cast on a glass plate, and then the solvent is evaporated at room temperature. Subsequently, this is put in a vacuum dryer to further evaporate the solvent.
(サンドイッチ型デバイス作製工程)溶媒を留去後、四隅にスペーサー(ポリイミド,厚み:50μm)を配置してその後もう一枚のガラス基材を上に乗せ、温度をかけながら圧着して、サンドイッチ型のフォトリフラクティブデバイスを作製する。
(Sandwich type device manufacturing process) After distilling off the solvent, spacers (polyimide, thickness: 50 μm) are placed at the four corners, and then another glass substrate is placed on top. A photorefractive device is manufactured.
NACzEをPMMA等に分散混合させたフォトリフラクティブ複合材等の場合は下記のとおりである。NACzEとPMMA等を溶媒に溶解させる溶解工程と、この溶媒を留去する溶媒留去工程と、サンドイッチ型デバイス作製工程とを含む製造方法によってフォトリフラクティブ複合体6が製作される。
In the case of a photorefractive composite material in which NACzE is dispersed and mixed in PMMA or the like, it is as follows. The photorefractive composite 6 is manufactured by a manufacturing method including a dissolution step of dissolving NACzE and PMMA in a solvent, a solvent distillation step of distilling off the solvent, and a sandwich type device manufacturing step.
(溶解工程)NACzEとPMMA等を所定の割合の溶媒に溶解する。溶媒としては特に限定されるものではなく、テトラヒドロフラン(THF)、クロロホルム、N-メチルピロリドン(NMP)やジメチルホルムアミド等が使用され、好ましくはTHFである。溶解温度は室温程度であればよく、必要に応じてスターラーチップにより溶液を撹拌してもよい。
(Dissolution step) NACzE, PMMA and the like are dissolved in a predetermined ratio of solvent. The solvent is not particularly limited, and tetrahydrofuran (THF), chloroform, N-methylpyrrolidone (NMP), dimethylformamide and the like are used, and THF is preferable. The dissolution temperature may be about room temperature, and the solution may be stirred with a stirrer chip as necessary.
(溶媒留去工程)各成分が溶解された溶液の溶媒を除去する。溶媒を除去する方法としては特に限定されるものではなく、例えばキャストフィルムを得るようにすればよい。具体的にはガラス板上に各成分が溶解された溶液を流延しその後、室温で溶媒を蒸発させ、続いてこれを一晩自然乾燥後、約80℃で12時間減圧乾燥を行い、さらに溶媒を蒸発させる。
(Solvent distillation step) The solvent of the solution in which each component is dissolved is removed. The method for removing the solvent is not particularly limited, and for example, a cast film may be obtained. Specifically, a solution in which each component is dissolved is cast on a glass plate, and then the solvent is evaporated at room temperature, followed by natural drying overnight, followed by vacuum drying at about 80 ° C. for 12 hours, Evaporate the solvent.
(サンドイッチ型デバイス作製工程)溶媒を留去後、四隅に例えばポリイミドのスペーサー(例えば厚み:50μm)を配置してその後もう一枚のガラス基材を上に乗せ、温度をかけながら真空プレス機で圧着して、サンドイッチ型のフォトリフラクティブデバイスを作製する。
(Sandwich type device manufacturing process) After distilling off the solvent, for example, polyimide spacers (for example, thickness: 50 μm) are arranged at the four corners, and then another glass substrate is placed on top. A sandwich type photorefractive device is manufactured by pressure bonding.
以上の3次元ホログラフィック表示システム1の構成によって、ホログラフィック表示デバイス2へ、記録手段3による物体光B11と参照光B21とを照射するのと同時に、表示手段4によるプローブ光B31を照射することで、物体5のホログラム像を当該ホログラフィック表示デバイス2に記録するのと同時に、そのホログラム像をホログラフィック表示デバイス2に表示させることができる。即ち、ホログラフィック表示デバイス2へ、物体5のホログラム像をリアルタイムに表示させることができる。
With the configuration of the three-dimensional holographic display system 1 described above, the holographic display device 2 is irradiated with the object light B11 and the reference light B21 by the recording means 3 and simultaneously with the probe light B31 by the display means 4. Thus, simultaneously with recording the hologram image of the object 5 on the holographic display device 2, the hologram image can be displayed on the holographic display device 2. That is, the hologram image of the object 5 can be displayed on the holographic display device 2 in real time.
上記本実施形態の3次元ホログラフィック表示システム1(3Dディスプレイ装置)によれば、物体光B11及び参照光B21によって物体5のホログラム像が記録され、かつプローブ光B31によってホログラム像が表示されるホログラフィック表示デバイス2に、フォトリフラクティブポリマー8を主成分とするフォトリフラクティブ複合体6を用いているので、当該ホログラフィック表示デバイス2を容易に大面積化することができる。そのため、3Dディスプレイ装置1を低コストで製作でき、その量産化を可能とすることができる。
According to the three-dimensional holographic display system 1 (3D display device) of the present embodiment, the hologram in which the hologram image of the object 5 is recorded by the object beam B11 and the reference beam B21, and the hologram image is displayed by the probe beam B31. Since the photorefractive composite 6 mainly composed of the photorefractive polymer 8 is used for the graphic display device 2, the holographic display device 2 can be easily increased in area. Therefore, the 3D display device 1 can be manufactured at low cost, and mass production thereof can be realized.
それに加え、3次元ホログラフィック表示システム1は、ホログラフィック表示デバイス2を用いることにより、ホログラム像を無電界下においても数秒の間に記録、再生でき、かつ書き換えが可能である。そのため、電解印加装置を構築する必要がなく、それと共にホログラフィック表示デバイス2を取り替えることなく、異なったホログラム画像を瞬時に表示させることができる。
In addition, by using the holographic display device 2, the three-dimensional holographic display system 1 can record and reproduce a hologram image in a few seconds even in the absence of an electric field, and can rewrite the hologram image. Therefore, it is not necessary to construct an electrolysis application device, and different hologram images can be displayed instantaneously without replacing the holographic display device 2 with it.
図3は本発明の第2実施形態に係る3次元ホログラフィック表示システム50の概略構成図である。本実施形態が上記第1実施形態と異なる点は、記録手段51に空間光変調器52が備えられ、ホログラム像をスクリーン53に表示させている点である。ホログラフィック表示デバイス2は、第1の実施形態と共通する。
FIG. 3 is a schematic configuration diagram of a three-dimensional holographic display system 50 according to the second embodiment of the present invention. The present embodiment is different from the first embodiment in that the recording unit 51 is provided with a spatial light modulator 52 and a hologram image is displayed on the screen 53. The holographic display device 2 is common to the first embodiment.
ホログラム像を記録する本実施形態の記録手段51は、レーザーを発振するレーザー発振器55と、このレーザー発振装置55から発振されたレーザービームの光軸上に配置された第1の半波長板56と、この第1の半波長板56を通過したレーザービームを反射する第1の固定ミラー57と、この第1の固定ミラー57で反射されたレーザービームのビーム径を拡大する第1の光学系58と、この第1の光学系58で拡大されたレーザービームを分割してp-偏光とs-偏光の第1、第2の偏光レーザービームB5、B6とするビームスプリッター59と、このうち第1の偏光レーザービームB5の偏光状態を変換して物体光B51とする空間光変調器52と、この物体光B51をホログラフィック表示デバイス2に集光させる第2の光学系60と、第2の光学系60を通過した物体光B51を反射させる第2の固定ミラー61と、ビームスプリッター59で分割された第2の偏光レーザービームB6を反射させて参照光B61とする第3の固定ミラー62とを備えている。このうち、第1の光学系58は、レーザービームのビーム径を拡大するレンズ63とレンズ64とからなり、第2の光学系60は、レーザービームを集光させるレンズ65からなるが、これらの光学系を構成するレンズの数、種類は限定するものではない。
The recording means 51 of this embodiment for recording a hologram image includes a laser oscillator 55 that oscillates a laser, and a first half-wave plate 56 that is disposed on the optical axis of the laser beam oscillated from the laser oscillation device 55. The first fixed mirror 57 that reflects the laser beam that has passed through the first half-wave plate 56 and the first optical system 58 that expands the beam diameter of the laser beam reflected by the first fixed mirror 57. A beam splitter 59 that splits the laser beam expanded by the first optical system 58 into p-polarized and s-polarized first and second polarized laser beams B5 and B6, The spatial light modulator 52 that converts the polarization state of the polarized laser beam B5 into the object light B51 and the second optical that condenses the object light B51 on the holographic display device 2. The system 60, the second fixed mirror 61 that reflects the object light B51 that has passed through the second optical system 60, and the second polarized laser beam B6 that is split by the beam splitter 59 are reflected as reference light B61. And a third fixed mirror 62. Among these, the first optical system 58 includes a lens 63 and a lens 64 that expand the beam diameter of the laser beam, and the second optical system 60 includes a lens 65 that condenses the laser beam. The number and type of lenses constituting the optical system are not limited.
上記空間光変調器52には、図示しないコンピューターの画面上に映し出される動画が表示されるようになっている。本実施形態では、ホログラム像を直接的に見るのではなくスクリーン53に投影させるようにするため、表示手段67は、上記第1実施形態の構成に加えて、ホログラフィック表示デバイス2の後方に配置されたカラーフィルター68とレンズ69と可動ミラー70とスクリーン53とを備えている。
The spatial light modulator 52 displays a moving image projected on a computer screen (not shown). In the present embodiment, the display means 67 is arranged behind the holographic display device 2 in addition to the configuration of the first embodiment in order to project the hologram image onto the screen 53 instead of directly viewing it. The color filter 68, the lens 69, the movable mirror 70, and the screen 53 are provided.
レーザー発振器55から発振されたレーザービームは、第1の半波長板56を通過後、第1の固定ミラー57で反射される。反射したレーザービームのビーム径が、レンズ63とレンズ64とで拡大される。拡大されたレーザービームは、ビームスプリッター59で分割され、p-偏光の第1の偏光レーザービームB5はビームスプリッター59を直進し、s-偏光の第2のレーザービームB6はビームスプリッター59で反射される。第1の半波長板57を回転させることによって、ビームスプリッター59を直進するp-偏光の第1の偏光レーザービームB5と、ビームスプリッター59で反射されるs-偏光の第2の偏光レーザービームB6の強度比を変えることができる。ビームスプリッター59で反射されたs-偏光の第2のレーザービームB6は、第3の固定ミラー62で反射されて参照光B61となる。
The laser beam oscillated from the laser oscillator 55 is reflected by the first fixed mirror 57 after passing through the first half-wave plate 56. The beam diameter of the reflected laser beam is enlarged by the lens 63 and the lens 64. The expanded laser beam is split by the beam splitter 59, the p-polarized first polarized laser beam B 5 goes straight through the beam splitter 59, and the s-polarized second laser beam B 6 is reflected by the beam splitter 59. The By rotating the first half-wave plate 57, a p-polarized first polarized laser beam B5 traveling straight through the beam splitter 59 and an s-polarized second polarized laser beam B6 reflected by the beam splitter 59 are obtained. The intensity ratio can be changed. The s-polarized second laser beam B6 reflected by the beam splitter 59 is reflected by the third fixed mirror 62 to become reference light B61.
ビームスプリッター59を通過したp-偏光の第1の偏光レーザービームB5は、空間光変調器52に照射される。空間光変調器52の偏光特性によりp-偏光の第1の偏光レーザービームB5は、s-偏光のレーザービームに変換されて反射する。空間光変調器52で反射されたs-偏光の第1の偏光レーザービームB5は、物体光B51となり、ビームスプリッター59に戻り、反射される。ビームスプリッター59で反射された物体光B51は、レンズ65で集光されつつ、第2の固定ミラー61で反射される。
The p-polarized first polarized laser beam B5 that has passed through the beam splitter 59 is applied to the spatial light modulator 52. Due to the polarization characteristics of the spatial light modulator 52, the p-polarized first polarized laser beam B5 is converted into an s-polarized laser beam and reflected. The s-polarized first polarized laser beam B5 reflected by the spatial light modulator 52 becomes object light B51, returns to the beam splitter 59, and is reflected. The object light B51 reflected by the beam splitter 59 is reflected by the second fixed mirror 61 while being condensed by the lens 65.
そして、上記物体光B51が、上記参照光B61と共にホログラフィック表示デバイス2に照射され、当該物体光B51に含まれる空間的な強度分布及び位相分布を干渉縞として、当該物体光B51の空間情報が、ホログラフィック表示デバイス2に書き込まれる(記録される)。
Then, the holographic display device 2 is irradiated with the object light B51 together with the reference light B61, and the spatial information of the object light B51 is obtained using the spatial intensity distribution and phase distribution included in the object light B51 as interference fringes. Is written (recorded) in the holographic display device 2.
表示手段67のレーザー発振器24から発振されたレーザービームは、プローブ光用半波長板25でp-偏光に変換され、第4の固定ミラー26で反射される。反射したp-偏光のレーザービームのビーム径は、レンズ29とレンズ30とで拡大される。ビーム径が拡大されたp-偏光のレーザービームは、第5の固定ミラー28で反射されてプローブ光B71となる。そして、記録手段51によって書き込まれた空間情報が、p-偏光のプローブ光B71によってホログラム像として読み出され、ホログラフィック表示デバイス2に表示される。ホログラフィック表示デバイス2に表示されたホログラム像の光は、カラーフィルター68を通過し、レンズ69で結像されると共に可動ミラー70で反射されて、スクリーン53に投影される。
The laser beam oscillated from the laser oscillator 24 of the display means 67 is converted into p-polarized light by the half-wave plate 25 for probe light and reflected by the fourth fixed mirror 26. The diameter of the reflected p-polarized laser beam is enlarged by the lens 29 and the lens 30. The p-polarized laser beam whose beam diameter is enlarged is reflected by the fifth fixed mirror 28 and becomes probe light B71. Then, the spatial information written by the recording means 51 is read out as a hologram image by the p-polarized probe light B 71 and displayed on the holographic display device 2. The light of the hologram image displayed on the holographic display device 2 passes through the color filter 68, is imaged by the lens 69, is reflected by the movable mirror 70, and is projected on the screen 53.
以上の3次元ホログラフィック表示システム50の構成によって、ホログラフィック表示デバイス2へ、記録手段51による物体光B51と参照光B61とを照射するのと同時に、表示手段67によるプローブ光B71を照射することで、空間光変調器52に表示される画像をホログラム像として当該ホログラフィック表示デバイス2に記録するのと同時に、そのホログラム像をホログラフィック表示デバイス2へ表示させ、スクリーン53へ投影することができる。即ち、スクリーン53へ、空間光変調器52に表示される画像のホログラム像をリアルタイムに表示させることができる。
With the configuration of the three-dimensional holographic display system 50 described above, the holographic display device 2 is irradiated with the object light B51 and the reference light B61 by the recording means 51 and simultaneously with the probe light B71 by the display means 67. Thus, the image displayed on the spatial light modulator 52 is recorded on the holographic display device 2 as a hologram image, and at the same time, the hologram image can be displayed on the holographic display device 2 and projected onto the screen 53. . That is, the hologram image of the image displayed on the spatial light modulator 52 can be displayed on the screen 53 in real time.
上記本実施形態の3次元ホログラフィック表示システム50(3Dディスプレイ装置)によれば、物体光B51及び参照光B61によってホログラム像が記録され、プローブ光B71によってホログラム像が表示されるホログラフィック表示デバイス2に、フォトリフラクティブポリマー8を主成分とするフォトリフラクティブ複合体6を用いているので、当該ホログラフィック表示デバイス2を容易に大面積化することができる。そのため、3Dディスプレイ装置1を低コストで製作でき、その量産化を可能とすることができる。
According to the three-dimensional holographic display system 50 (3D display device) of the present embodiment, a holographic display device 2 in which a hologram image is recorded by the object beam B51 and the reference beam B61 and the hologram image is displayed by the probe beam B71. In addition, since the photorefractive composite 6 mainly composed of the photorefractive polymer 8 is used, the area of the holographic display device 2 can be easily increased. Therefore, the 3D display device 1 can be manufactured at low cost, and mass production thereof can be realized.
それに加え、3次元ホログラフィック表示システム50は、上記のホログラフィック表示デバイス2を採用することにより、ホログラム像を無電界下において数秒の間に記録、再生でき、かつ書き換えが可能である。そのため、電圧の印加装置を構築する必要がなく、それと共にホログラフィック表示デバイスを取り替えることなく、異なったホログラム画像を瞬時に表示させることができる。
In addition, the three-dimensional holographic display system 50 employs the holographic display device 2 described above, whereby a hologram image can be recorded and reproduced in a few seconds under no electric field, and can be rewritten. Therefore, it is not necessary to construct a voltage application device, and different hologram images can be displayed instantaneously without replacing the holographic display device.
図4は本発明の第3実施形態に係る3次元ホログラフィック表示システム80の概略構成図であり、図5は本実施形態で用いるホログラフィック表示デバイス81の断面模式図である。本実施形態が上記第1実施形態と異なる点は、ホログラフィック表示デバイス81に電界を印加するための電界印加装置82が設けられ、ホログラム像をスクリーン83に表示し、ホログラフィック表示デバイス81の構成を変更している点である。ホログラフィック表示デバイス81にホログラム像を記録する記録手段84は、第1実施形態と共通する。
FIG. 4 is a schematic configuration diagram of a three-dimensional holographic display system 80 according to the third embodiment of the present invention, and FIG. 5 is a schematic sectional view of a holographic display device 81 used in the present embodiment. The present embodiment is different from the first embodiment in that an electric field applying device 82 for applying an electric field to the holographic display device 81 is provided, a hologram image is displayed on the screen 83, and the holographic display device 81 is configured. Is the point that has changed. The recording means 84 for recording a hologram image on the holographic display device 81 is common to the first embodiment.
本実施形態では、ホログラム像を直接的に見るのではなくスクリーン83に投影させるために、表示手段85は、上記第1実施形態の構成に加えて、ホログラフィック表示デバイス81の後方に配置されたカラーフィルター86と、2つのレンズ87、88と、可動ミラー89と、スクリーン83とを備えている。このような表示手段85によって、ホログラフィック表示デバイス81に表示されたホログラム像の光は、カラーフィルター86を通過し、2つのレンズ87、88で結像されると共に可動ミラー89で反射され、スクリーン83に投影される。電界印加装置82によって、ホログラフィック表示デバイス81に電界が印加されるようになっている。
In the present embodiment, in order to project the hologram image onto the screen 83 instead of directly viewing it, the display means 85 is arranged behind the holographic display device 81 in addition to the configuration of the first embodiment. A color filter 86, two lenses 87 and 88, a movable mirror 89, and a screen 83 are provided. The light of the hologram image displayed on the holographic display device 81 by such a display means 85 passes through the color filter 86, is imaged by the two lenses 87 and 88, is reflected by the movable mirror 89, and is screened. 83 is projected. An electric field is applied to the holographic display device 81 by the electric field applying device 82.
ホログラフィック表示デバイス81は、フォトリフラクティブ複合体90と、このフォトリフラクティブ複合体90を挟持する2枚の電極基材91、91とからなる。各電極基材91は、四方形状に形成されたガラス製の板材92と、このガラス製の板材92の内側に成膜された透明電極膜であるITO(インジウム-錫酸化膜)93とで構成されている。フォトリフラクティブ複合体90には、電界を印加時に30フレーム毎秒のビデオレートに追従する応答性を有するフォトリフラクティブPDAS複合体を用いている。
The holographic display device 81 includes a photorefractive composite 90 and two electrode substrates 91 and 91 sandwiching the photorefractive composite 90. Each electrode base material 91 is composed of a glass plate material 92 formed in a square shape and ITO (indium-tin oxide film) 93 which is a transparent electrode film formed inside the glass plate material 92. Has been. As the photorefractive composite 90, a photorefractive PDAS composite having responsiveness to follow a video rate of 30 frames per second when an electric field is applied is used.
電界を印加させる際には、ホログラフィック表示デバイス81を回転させて、当該ホログラフィック表示デバイス81に有効電場がかかるように調整する。そして、フォトリフラクティブ複合体90には、上記のとおり高速応答性を有するものが用いられているため、本実施形態の3次元ホログラフィック表示システム80では、物体5のホログラム像の表示速度を格段に高めることができる。
When applying an electric field, the holographic display device 81 is rotated and adjusted so that an effective electric field is applied to the holographic display device 81. Since the photorefractive composite 90 having a high-speed response is used as described above, in the three-dimensional holographic display system 80 of this embodiment, the display speed of the hologram image of the object 5 is remarkably increased. Can be increased.
図6は本発明の第4実施形態に係る3次元ホログラフィック表示システム95の概略構成図である。本実施形態が上記第2実施形態と異なる点は、ホログラフィック表示デバイス96に電界を印加するための電界印加装置97が設けられ、フォトリフラクティブ複合体に、電界を印加時に30フレーム毎秒のビデオレートに追従する応答性を有するフォトリフラクティブPDAS複合体を用いている点である。記録手段及び表示手段は、第2実施形態と共通し、ホログラフィック表示デバイス96は、第3実施形態と同じものを採用した。
FIG. 6 is a schematic configuration diagram of a three-dimensional holographic display system 95 according to the fourth embodiment of the present invention. The present embodiment is different from the second embodiment in that an electric field applying device 97 for applying an electric field to the holographic display device 96 is provided, and a video rate of 30 frames per second is applied to the photorefractive composite when an electric field is applied. The photorefractive PDAS composite which has the responsiveness which follows is used. The recording means and the display means are common to the second embodiment, and the same holographic display device 96 as that of the third embodiment is adopted.
本実施形態では、電界印加装置97によってホログラフィック表示デバイス96に電界が印加される。電界を印加させる際には、ホログラフィック表示デバイス96を回転させて、当該ホログラフィック表示デバイス96に有効電場がかかるように調整する。そして、フォトリフラクティブ複合体には、高速応答性を有するものが用いられているため、本実施形態の3次元ホログラフィック表示システム95では、空間光変調器52に表示される画像のホログラム像の表示速度を格段に高めることができる。
In this embodiment, an electric field is applied to the holographic display device 96 by the electric field applying device 97. When applying the electric field, the holographic display device 96 is rotated and adjusted so that an effective electric field is applied to the holographic display device 96. Since a photorefractive composite having a high-speed response is used, in the three-dimensional holographic display system 95 of this embodiment, a hologram image of an image displayed on the spatial light modulator 52 is displayed. Speed can be greatly increased.
以下、実施例によって本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.
(実施例1)
第1実施形態と同じ3次元ホログラフィック表示システムを制作し、コインの表面からの物体光と、参照光とをホログラフィック表示デバイスに照射してホログラム像を記録し、それと同時にプローブ光をホログラフィック表示デバイスに照射して表示させる。その後、コインを裏返して、コインの裏面からの物体光と、参照光とをホログラフィック表示デバイスの同じ部分に照射してホログラム像を記録し、それと同時にプローブ光をホログラフィック表示デバイスに照射して表示させた。 Example 1
The same three-dimensional holographic display system as that of the first embodiment is produced, and the hologram light is recorded by irradiating the object light from the surface of the coin and the reference light onto the holographic display device, and at the same time, the probe light is holographic. Irradiate the display device to display. Then, turn the coin over and record the hologram image by irradiating the same part of the holographic display device with the object light and the reference light from the back of the coin, and simultaneously irradiate the holographic display device with the probe light. Displayed.
第1実施形態と同じ3次元ホログラフィック表示システムを制作し、コインの表面からの物体光と、参照光とをホログラフィック表示デバイスに照射してホログラム像を記録し、それと同時にプローブ光をホログラフィック表示デバイスに照射して表示させる。その後、コインを裏返して、コインの裏面からの物体光と、参照光とをホログラフィック表示デバイスの同じ部分に照射してホログラム像を記録し、それと同時にプローブ光をホログラフィック表示デバイスに照射して表示させた。 Example 1
The same three-dimensional holographic display system as that of the first embodiment is produced, and the hologram light is recorded by irradiating the object light from the surface of the coin and the reference light onto the holographic display device, and at the same time, the probe light is holographic. Irradiate the display device to display. Then, turn the coin over and record the hologram image by irradiating the same part of the holographic display device with the object light and the reference light from the back of the coin, and simultaneously irradiate the holographic display device with the probe light. Displayed.
ホログラフィック表示デバイスの作製は、次のようにして行った。ポリメチルメタクリレート70%、図3に示すNACzE30%の重量比で混合し、テトラヒドロフラン(THF)に溶解させてキャスト溶液を得た。キャスト溶液をガラス板上に流延し、その後、室温で溶媒を蒸発させて均一な膜を得る。続いてこれを一晩自然乾燥後、約80℃で12時間減圧乾燥を行い、さらに溶媒を蒸発させる。溶媒を留去後、四隅にスペーサー(ポリイミド,厚み:50μm)を配置して、もう一枚のガラス板をかぶせる。これに、所要の温度をかけながら真空プレス機で圧着して、膜厚が均一なフォトリフラクティブ複合体を得た。
The holographic display device was manufactured as follows. A cast solution was obtained by mixing 70% polymethyl methacrylate and 30% NACzE shown in FIG. 3 and dissolving in tetrahydrofuran (THF). The cast solution is cast on a glass plate, and then the solvent is evaporated at room temperature to obtain a uniform film. Subsequently, this is naturally dried overnight and then dried under reduced pressure at about 80 ° C. for 12 hours to further evaporate the solvent. After distilling off the solvent, spacers (polyimide, thickness: 50 μm) are arranged at the four corners, and another glass plate is covered. This was pressure-bonded with a vacuum press machine while applying a required temperature to obtain a photorefractive composite with a uniform film thickness.
レーザービームの照射条件は以下のとおりである。波長532nmのグリーンレーザー光源(300mW)を用い、物体光(面積:0.48cm2)の光強度4.8mW(10mW/cm2)、参照光(面積:2.1cm2)の光強度14mW(6.7mW/cm2)でホログラム像の記録を行う。同時に、波長642nmのレッドレーザー(140mW)を10~50mWに絞り込んでプローブ光とし、このプローブ光をホログラフィック表示デバイスに照射し、当該ホログラフィック表示デバイスに記録したホログラム像を表示させる。
The laser beam irradiation conditions are as follows. With green laser light source with a wavelength of 532 nm (300 mW), the object light (area: 0.48 cm 2) of the light intensity 4.8mW (10mW / cm 2), the reference beam (area: 2.1 cm 2) light intensity of 14 mW ( The hologram image is recorded at 6.7 mW / cm 2 ). At the same time, a red laser (140 mW) having a wavelength of 642 nm is narrowed down to 10 to 50 mW as probe light, and this holographic display device is irradiated with the probe light to display a recorded hologram image on the holographic display device.
図7(a)はコインのホログラム像を描く前の写真であり、プローブ光を照射している状態である。図7(b)はコインの表面のホログラム像を記録するのと同時に、表示している写真である。図7(c)はホログラフィック表示デバイスにおけるコインの表面のホログラム像を記録したのと同一部分に、コインの裏面を上書きし、それと同時にそのホログラム像を表示している写真である。図7(d)はさらに、コインを裏返して、ホログラフィック表示デバイスにおけるコインの裏面のホログラム像を記録したのと同一部分に、コインの表面を再度上書きし、それと同時にそのホログラム像を表示している写真である。図7(a)~(d)のホログラム像の記録、表示、及び上書きのよる消去のそれぞれに要する時間は数秒であった。これらの結果から、秒単位でホログラム像が記録され(書き込まれ)、それと同時に表示され(読み出され)、消去されていることが認められた。
FIG. 7A is a photograph before drawing a coin hologram image, and shows a state in which probe light is irradiated. FIG. 7B is a photograph displayed at the same time as recording the hologram image on the surface of the coin. FIG. 7C is a photograph in which the back surface of the coin is overwritten on the same portion where the hologram image on the surface of the coin in the holographic display device is recorded, and at the same time, the hologram image is displayed. In FIG. 7D, the coin is turned over, and the same surface where the hologram image on the back surface of the coin in the holographic display device is recorded is overwritten again on the coin surface, and at the same time, the hologram image is displayed. It is a photograph. The time required for recording, displaying, and erasing by overwriting the hologram images in FIGS. 7A to 7D was several seconds. From these results, it was recognized that the hologram image was recorded (written) in units of seconds, and simultaneously displayed (read) and erased.
(実施例2)
実施例1と同じ3次元ホログラフィック表示システムを制作し、実施例1と同じ条件下で、コインの表面からの物体光と、参照光とをホログラフィック表示デバイスに照射し、ホログラム像を記録した。その後、記録したコインのホログラム像をプローブ光で表示させると同時に、ホログラフィック表示デバイスの後側に手をかざした。図8はホログラフィック表示デバイスに映し出されたホログラム像と手の写真である。図8の写真では、コインに対して位置がずれている手の上に、まるで当該コインが乗っているかのように見えているのがわかる。 (Example 2)
The same three-dimensional holographic display system as in Example 1 was produced, and the holographic display device was irradiated with object light from the surface of the coin and reference light under the same conditions as in Example 1 to record a hologram image. . Thereafter, the recorded hologram image of the coin was displayed with probe light, and at the same time, the hand was held behind the holographic display device. FIG. 8 shows a holographic image and a hand photograph projected on the holographic display device. In the photograph of FIG. 8, it can be seen that it looks as if the coin is on the hand whose position is shifted with respect to the coin.
実施例1と同じ3次元ホログラフィック表示システムを制作し、実施例1と同じ条件下で、コインの表面からの物体光と、参照光とをホログラフィック表示デバイスに照射し、ホログラム像を記録した。その後、記録したコインのホログラム像をプローブ光で表示させると同時に、ホログラフィック表示デバイスの後側に手をかざした。図8はホログラフィック表示デバイスに映し出されたホログラム像と手の写真である。図8の写真では、コインに対して位置がずれている手の上に、まるで当該コインが乗っているかのように見えているのがわかる。 (Example 2)
The same three-dimensional holographic display system as in Example 1 was produced, and the holographic display device was irradiated with object light from the surface of the coin and reference light under the same conditions as in Example 1 to record a hologram image. . Thereafter, the recorded hologram image of the coin was displayed with probe light, and at the same time, the hand was held behind the holographic display device. FIG. 8 shows a holographic image and a hand photograph projected on the holographic display device. In the photograph of FIG. 8, it can be seen that it looks as if the coin is on the hand whose position is shifted with respect to the coin.
(実施例3)
第4実施形態と同じ3次元ホログラフィック表示システムを制作し、コンピューターの画面上に映し出される動画(まんがの猫が走っている様子の動画)を空間光変調器に表示させ、その反射光を物体光と、この物体光と参照光とをホログラフィック表示デバイスに照射し、ホログラム像を記録するのと同時に、プローブ光によって表示させる。 (Example 3)
The same three-dimensional holographic display system as that of the fourth embodiment is produced, and a moving image (moving image of a cartoon cat running) displayed on a computer screen is displayed on a spatial light modulator, and the reflected light is displayed as an object. The light, the object light, and the reference light are applied to the holographic display device to record the hologram image, and at the same time, display the probe light.
第4実施形態と同じ3次元ホログラフィック表示システムを制作し、コンピューターの画面上に映し出される動画(まんがの猫が走っている様子の動画)を空間光変調器に表示させ、その反射光を物体光と、この物体光と参照光とをホログラフィック表示デバイスに照射し、ホログラム像を記録するのと同時に、プローブ光によって表示させる。 (Example 3)
The same three-dimensional holographic display system as that of the fourth embodiment is produced, and a moving image (moving image of a cartoon cat running) displayed on a computer screen is displayed on a spatial light modulator, and the reflected light is displayed as an object. The light, the object light, and the reference light are applied to the holographic display device to record the hologram image, and at the same time, display the probe light.
電界を印加するホログラフィック表示デバイスの作製は次のようにして行った。ポリ(N-ビニルカルバゾール)(PVCz)に、増感剤(TNF)、非線形光学色素(7-DCS)、及び可塑剤を混合し、溶媒に溶解させてキャスト溶液を得た。電極部が加工され、大きさ:30×30mmの透明電極膜であるITO(インジウム-錫酸化膜)電極基材を2枚製作しておく。このうち1枚の電極基材に、キャスト溶液を流延し、その後、室温で溶媒を蒸発させて均一な膜を得る。乾燥機中で溶媒をさらに除去し、もう一枚のITO電極基材をかぶせる。さらに、その上から4kg重の荷重をかけて、120~180℃で加熱しながら圧着し、電界を印加できるようにしたものを作製した。
A holographic display device for applying an electric field was produced as follows. A sensitizer (TNF), a nonlinear optical dye (7-DCS), and a plasticizer were mixed with poly (N-vinylcarbazole) (PVCz), and dissolved in a solvent to obtain a cast solution. The electrode part is processed, and two ITO (indium-tin oxide film) electrode base materials which are transparent electrode films having a size of 30 × 30 mm are manufactured in advance. A cast solution is cast on one of the electrode substrates, and then the solvent is evaporated at room temperature to obtain a uniform film. The solvent is further removed in a dryer, and another ITO electrode substrate is covered. Furthermore, a 4 kg weight load was applied from above, and pressure bonding was performed while heating at 120 to 180 ° C., so that an electric field could be applied.
レーザービームの照射条件は実施例1と同様であり、印加した電界(電場)は45V/μmである。図9はホログラフィック表示デバイスに0.2秒ごとにコマ撮りで記録及び表示したホログラム像である。猫の動きが明瞭にコマ撮りされていることが認められた。これは、ホログラフィック表示デバイスの応答性が、コマ撮りのビデオレート以上に高速であることを示しているものである。
The irradiation conditions of the laser beam are the same as in Example 1, and the applied electric field (electric field) is 45 V / μm. FIG. 9 is a hologram image recorded and displayed on the holographic display device by time-lapse every 0.2 seconds. It was recognized that the movement of the cat was clearly time-lapsed. This indicates that the responsiveness of the holographic display device is faster than the time-lapse video rate.
(実施例4)
非縮退4光波混合法を用いて、回折効率を測定する。干渉させる2光波の波長は561nm、回折効率をモニターするプローブ光の波長は642nmである。 (Example 4)
The diffraction efficiency is measured using a non-degenerate four-wave mixing method. The wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
非縮退4光波混合法を用いて、回折効率を測定する。干渉させる2光波の波長は561nm、回折効率をモニターするプローブ光の波長は642nmである。 (Example 4)
The diffraction efficiency is measured using a non-degenerate four-wave mixing method. The wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
干渉させる2光波の強度比は、1~10であることが好ましく、1~8がより好ましい。干渉させる2光波の強度比が、1~8を外れると十分な応答速度が得られないからである。より具体的には、例えば、干渉させる2光波の波長が530~570nm、干渉させる2光波の強度比が1:(4~8)の条件下で、かなり速い応答速度を得ることができる。
The intensity ratio of the two light waves to be interfered is preferably 1 to 10, and more preferably 1 to 8. This is because a sufficient response speed cannot be obtained if the intensity ratio of the two light waves to be interfered is outside 1 to 8. More specifically, for example, a considerably fast response speed can be obtained under the condition that the wavelength of the two light waves to be interfered is 530 to 570 nm and the intensity ratio of the two light waves to be interfered is 1: (4 to 8).
ホログラフィック表示デバイスの作製は、次のようにして行った。NACzEとPMMAと、イオン性液体であるBMIMを溶媒に溶解させてキャスト溶液を得た。その後の製作方法は実施例1と同様である。混合比は、NACzE/PMMA/BMIM:30/60/10(重量%比)である。イオン性液体であるBMIMを加えないものを製作した。その混合比は、NACzE/PMMA:30/70である。
The holographic display device was manufactured as follows. NACzE, PMMA, and BMIM, which is an ionic liquid, were dissolved in a solvent to obtain a cast solution. The subsequent manufacturing method is the same as that of the first embodiment. The mixing ratio is NACzE / PMMA / BMIM: 30/60/10 (weight% ratio). A product without adding BMIM, an ionic liquid, was produced. The mixing ratio is NACzE / PMMA: 30/70.
レーザービームの照射条件は以下のとおりである。物体光と参照光の波長を波長561nmとし、干渉させる2光波の強度比を1:7として行った。NACzE/PMMA/BMIMを混合したものでは、回折効率が69%であった。このデバイスで速い応答速度が得られた。イオン性液体を加えず、NACzE/PMMAのみでは、回折効率は80%であったが、応答速度は半分程度であった。
The laser beam irradiation conditions are as follows. The wavelength of the object light and the reference light was set to 561 nm, and the intensity ratio of the two light waves to be interfered was set to 1: 7. A mixture of NACzE / PMMA / BMIM had a diffraction efficiency of 69%. Fast response speed was obtained with this device. When NACzE / PMMA alone was not added with an ionic liquid, the diffraction efficiency was 80%, but the response speed was about half.
(実施例5)
非縮退4光波混合法を用いて、回折効率を測定する。干渉させる2光波の波長は561nm、回折効率をモニターするプローブ光の波長は642nmである。 (Example 5)
The diffraction efficiency is measured using a non-degenerate four-wave mixing method. The wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
非縮退4光波混合法を用いて、回折効率を測定する。干渉させる2光波の波長は561nm、回折効率をモニターするプローブ光の波長は642nmである。 (Example 5)
The diffraction efficiency is measured using a non-degenerate four-wave mixing method. The wavelength of the two light waves to be interfered is 561 nm, and the wavelength of the probe light for monitoring the diffraction efficiency is 642 nm.
ホログラフィック表示デバイスの作製は、次のようにして行った。NATAとPMMAと、イオン性液体であるBMIMを溶媒に溶解させてキャスト溶液を得た。その後の製作方法は実施例1と同様である。混合比は、NATA/PMMA/BMIM:30/60/10(重量%比)である。イオン性液体であるBMIMを加えないものを製作した。その混合比は、NATA/PMMA:30/70である。
The holographic display device was manufactured as follows. NATA, PMMA, and BMIM, which is an ionic liquid, were dissolved in a solvent to obtain a cast solution. The subsequent manufacturing method is the same as that of the first embodiment. The mixing ratio is NATA / PMMA / BMIM: 30/60/10 (weight% ratio). A product without adding BMIM, an ionic liquid, was produced. The mixing ratio is NATA / PMMA: 30/70.
レーザービームの照射条件は以下のとおりである。物体光と参照光の波長を波長561nmとし、干渉させる2光波の強度比を1:8として行った。NATA/PMMA/BMIMを混合したものでは、回折効率が4.6%であり、応答時間は、NACzE/PMMA/BMIM系の半分程度であった。イオン性液体を加えないNATA/PMMAを混合したものでは、回折効率が14%であり、応答時間はあまり変わらなかった。
The laser beam irradiation conditions are as follows. The wavelength of the object light and the reference light was set to 561 nm, and the intensity ratio of the two light waves to be interfered was set to 1: 8. In a mixture of NATA / PMMA / BMIM, the diffraction efficiency was 4.6%, and the response time was about half that of the NACzE / PMMA / BMIM system. In the case of a mixture of NATA / PMMA to which no ionic liquid was added, the diffraction efficiency was 14%, and the response time did not change much.
上記で開示した実施形態、実施例は例示であり制限的なものではない。例えば、ホログラム像の記録、表示、及び書き換えに必要な他の装置や機器を3次元ホログラフィック表示システムに設けることができる。ホログラフィック表示デバイスのフォトリフラクティブ複合体は、上記各成分の他にフォトリフラクティブ性を損なわせない範囲内で、他の成分を含有していてもよい。このような他の成分としては、例えば、酸化防止剤や紫外線吸収剤等が挙げられる。
The embodiments and examples disclosed above are illustrative and not restrictive. For example, other devices and devices necessary for recording, displaying, and rewriting hologram images can be provided in the three-dimensional holographic display system. The photorefractive composite of the holographic display device may contain other components as long as the photorefractive property is not impaired in addition to the above components. Examples of such other components include an antioxidant and an ultraviolet absorber.
1、50、80、95 3次元ホログラフィック表示システム
2、81、96 ホログラフィック表示デバイス
3、51、84 記録手段
4、67、85 表示手段
5 物体
6、90 フォトリフラクティブ複合体
7 基材
8 フォトリフラクティブポリマー
10、24、55 レーザー発振器
11、57 第1の固定ミラー
12、56 第1の半波長板
13、59 ビームスプリッター
14 第2の半波長板
15、61 第2の固定ミラー
16、58 第1の光学系
17、60 第2の光学系
18、62 第3の固定ミラー
25 プローブ光用半波長板
26 第4の固定ミラー
27 プローブ光用光学系
28 第5の固定ミラー
52 空間光変調器
53、83 スクリーン
68、86 カラーフィルター
69、87、88 レンズ
70、89 可動ミラー
82、97 電界印加装置
91 電極基材
92 ガラス製の板材
93 ITO
B1 第1の偏光レーザービーム
B2 第2の偏光レーザービーム
B11 物体光
B21 参照光
B31 プローブ光
B5 第1の偏光レーザービーム
B6 第2の偏光レーザービーム
B51 物体光
B61 参照光
B71 プローブ光 DESCRIPTION OF SYMBOLS 1, 50, 80, 95 Three-dimensional holographic display system 2, 81, 96 Holographic display device 3, 51, 84 Recording means 4, 67, 85 Display means 5 Object 6, 90 Photorefractive composite 7 Base material 8 Photo Refractive polymer 10, 24, 55 Laser oscillator 11, 57 First fixed mirror 12, 56 First half- wave plate 13, 59 Beam splitter 14 Second half- wave plate 15, 61 Second fixed mirror 16, 58 First 1 optical system 17, 60 second optical system 18, 62 third fixed mirror 25 half-wave plate for probe light 26 fourth fixed mirror 27 optical system for probe light 28 fifth fixed mirror 52 spatial light modulator 53, 83 Screen 68, 86 Color filter 69, 87, 88 Lens 70, 89 Movable mirror 82 97 Electric field application device 91 Electrode base material 92 Glass plate material 93 ITO
B1 First polarized laser beam B2 Second polarized laser beam B11 Object light B21 Reference light B31 Probe light B5 First polarized laser beam B6 Second polarized laser beam B51 Object light B61 Reference light B71 Probe light
2、81、96 ホログラフィック表示デバイス
3、51、84 記録手段
4、67、85 表示手段
5 物体
6、90 フォトリフラクティブ複合体
7 基材
8 フォトリフラクティブポリマー
10、24、55 レーザー発振器
11、57 第1の固定ミラー
12、56 第1の半波長板
13、59 ビームスプリッター
14 第2の半波長板
15、61 第2の固定ミラー
16、58 第1の光学系
17、60 第2の光学系
18、62 第3の固定ミラー
25 プローブ光用半波長板
26 第4の固定ミラー
27 プローブ光用光学系
28 第5の固定ミラー
52 空間光変調器
53、83 スクリーン
68、86 カラーフィルター
69、87、88 レンズ
70、89 可動ミラー
82、97 電界印加装置
91 電極基材
92 ガラス製の板材
93 ITO
B1 第1の偏光レーザービーム
B2 第2の偏光レーザービーム
B11 物体光
B21 参照光
B31 プローブ光
B5 第1の偏光レーザービーム
B6 第2の偏光レーザービーム
B51 物体光
B61 参照光
B71 プローブ光 DESCRIPTION OF
B1 First polarized laser beam B2 Second polarized laser beam B11 Object light B21 Reference light B31 Probe light B5 First polarized laser beam B6 Second polarized laser beam B51 Object light B61 Reference light B71 Probe light
Claims (10)
- フォトリフラクティブポリマーを主成分とするフォトリフラクティブ複合体が設けられたホログラフィック表示デバイスと、
物体光及び参照光を前記ホログラフィック表示デバイスに照射することによりホログラム像を記録する記録手段と、
プローブ光を前記ホログラフィック表示デバイスに照射することにより前記記録手段で記録された前記ホログラム像を表示する表示手段と、
を備えることを特徴とする3次元ホログラフィック表示システム。 A holographic display device provided with a photorefractive composite mainly comprising a photorefractive polymer;
Recording means for recording a hologram image by irradiating the holographic display device with object light and reference light; and
Display means for displaying the hologram image recorded by the recording means by irradiating the holographic display device with probe light; and
A three-dimensional holographic display system comprising: - 前記記録手段は、
レーザービームを発振するレーザー発振器と、
このレーザー発振器から発振されたレーザービームの光軸上に配置された第1の半波長板と、
前記第1の半波長板を通過したレーザービームを分割して第1、第2の偏光レーザービームとするビームスプリッターと、
前記第1の偏光レーザービームの光軸上に配置された第2の半波長板と、
前記第2の半波長板を通過した第1の偏光レーザービームのビーム径を拡大して物体へ照射し前記物体光とする第1の光学系と、
前記第2の偏光レーザービームを拡大して前記参照光とする第2の光学系と、
を有することを特徴とする請求項1に記載の3次元ホログラフィック表示システム。 The recording means includes
A laser oscillator that oscillates a laser beam;
A first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator;
A beam splitter that splits the laser beam that has passed through the first half-wave plate into first and second polarized laser beams;
A second half-wave plate disposed on the optical axis of the first polarized laser beam;
A first optical system that enlarges the beam diameter of the first polarized laser beam that has passed through the second half-wave plate and irradiates the object with the object light;
A second optical system that expands the second polarized laser beam to serve as the reference light;
The three-dimensional holographic display system according to claim 1, comprising: - 前記記録手段は、
レーザービームを発振するレーザー発振器と、
このレーザー発振装置から発振されたレーザービームの光軸上に配置された第1の半波長板と、
前記第1の半波長板を通過したレーザービームのビーム径を拡大する第1の光学系と、
前記第1の光学系で拡大されたレーザービームを分割して第1、第2の偏光レーザービームとし、当該第2の偏光レーザービームを前記参照光とするビームスプリッターと、
前記第1の偏光レーザービームを変換して前記物体光とする空間光変調器と、
前記物体光を前記ホログラフィック表示デバイスに集光させる第2の光学系と、
を有することを特徴とする請求項1に記載の3次元ホログラフィック表示システム。 The recording means includes
A laser oscillator that oscillates a laser beam;
A first half-wave plate disposed on the optical axis of the laser beam oscillated from the laser oscillator;
A first optical system for enlarging a beam diameter of a laser beam that has passed through the first half-wave plate;
A beam splitter that divides the laser beam expanded by the first optical system into first and second polarized laser beams, and uses the second polarized laser beam as the reference light;
A spatial light modulator that converts the first polarized laser beam into the object light;
A second optical system that focuses the object light on the holographic display device;
The three-dimensional holographic display system according to claim 1, comprising: - 前記表示手段は、
レーザービームを発振するレーザー発振器と、
このレーザー発振装置から発振されたレーザービームの光軸上に配置されたプローブ光用半波長板と、
このプローブ光用半波長板を通過したレーザービームのビーム径を拡大して前記プローブ光とするプローブ光用光学系と、
を有することを特徴とする請求項1~3のいずれかに記載の3次元ホログラフィック表示システム。 The display means includes
A laser oscillator that oscillates a laser beam;
A half-wave plate for probe light disposed on the optical axis of the laser beam oscillated from the laser oscillation device;
An optical system for probe light that expands the beam diameter of the laser beam that has passed through the half-wave plate for probe light and makes the probe light,
The three-dimensional holographic display system according to any one of claims 1 to 3, characterized by comprising: - 前記ホログラフィック表示デバイスに電界を印加する電界印加装置を備えることを特徴とする請求項1~4のいずれかに記載の3次元ホログラフィック表示システム。 The three-dimensional holographic display system according to any one of claims 1 to 4, further comprising an electric field applying device that applies an electric field to the holographic display device.
- 前記フォトリフラクティブ複合体は、前記記録手段による前記ホログラム画像の書き換えを可能とする成分からなることを特徴とする請求項1~5のいずれかに記載の3次元ホログラフィック表示システム。 The three-dimensional holographic display system according to any one of claims 1 to 5, wherein the photorefractive composite is composed of a component that allows the recording means to rewrite the hologram image.
- 前記フォトリフラクティブ複合体は、電界を印加することなく前記記録手段による前記ホログラム画像の書き換えを可能とする成分からなることを特徴とする請求項1~4のいずれかに記載の3次元ホログラフィック表示システム。 The three-dimensional holographic display according to any one of claims 1 to 4, wherein the photorefractive composite is made of a component that enables the recording means to rewrite the hologram image without applying an electric field. system.
- 前記フォトリフラクティブ複合体は、電界を印加時に30フレーム毎秒のビデオレートに追従する応答性を有する成分からなることを特徴とする請求項1~5のいずれかに記載の3次元ホログラフィック表示システム。 The three-dimensional holographic display system according to any one of claims 1 to 5, wherein the photorefractive composite is composed of a component having responsiveness to follow a video rate of 30 frames per second when an electric field is applied.
- 前記ホログラフィック表示デバイスは、前記フォトリフラクティブポリマーを主成分として板状に形成された前記フォトリフラクティブ複合体と、このフォトリフラクティブ複合体を挟持する2枚の基材とで構成されていることを特徴とする請求項1~8のいずれかに記載の3次元ホログラフィック表示システム。 The holographic display device is composed of the photorefractive composite formed in a plate shape with the photorefractive polymer as a main component, and two substrates sandwiching the photorefractive composite. The three-dimensional holographic display system according to any one of claims 1 to 8.
- 3次元ホログラフィック表示システムを用いて構成された3Dディスプレイ装置であって、
前記3次元ホログラフィック表示システムは請求項1~9のいずれかに記載の3次元ホログラフィック表示システムであることを特徴とする3Dディスプレイ装置。 A 3D display device configured using a three-dimensional holographic display system,
The 3D holographic display system according to any one of claims 1 to 9, wherein the 3D holographic display system is the 3D holographic display system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013547124A JP6040477B2 (en) | 2011-11-29 | 2012-11-22 | 3D holographic display system and 3D display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011259704 | 2011-11-29 | ||
JP2011-259704 | 2011-11-29 | ||
JP2012-029521 | 2012-02-14 | ||
JP2012029521 | 2012-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080883A1 true WO2013080883A1 (en) | 2013-06-06 |
Family
ID=48535342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080290 WO2013080883A1 (en) | 2011-11-29 | 2012-11-22 | Three-dimensional holographic display system, and 3d display apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6040477B2 (en) |
WO (1) | WO2013080883A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014109687A (en) * | 2012-12-03 | 2014-06-12 | Kyoto Institute Of Technology | Three-dimensional hologram formation method and three-dimensional hologram formation device |
JP2014240861A (en) * | 2013-06-11 | 2014-12-25 | 国立大学法人京都工芸繊維大学 | Holographic display device and three-dimensional holographic display device |
CN105739281A (en) * | 2016-04-14 | 2016-07-06 | 京东方科技集团股份有限公司 | Image display system and image display method |
WO2017138277A1 (en) * | 2016-02-12 | 2017-08-17 | 国立大学法人京都工芸繊維大学 | Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254284A (en) * | 1985-06-14 | 1987-03-09 | ザ ボ−ド オブ トラステイ−ズ オブ ザ リ−ランド スタンフオ−ド ジユニア ユニバ−シテイ | Apparatus for stressing optical characteristic |
JP2005189845A (en) * | 2003-12-04 | 2005-07-14 | Okano Electric Wire Co Ltd | Hologram memory apparatus and method for recording hologram |
JP2005227311A (en) * | 2004-02-10 | 2005-08-25 | Nitto Denko Corp | Organic photorefractive material, and hologram recording medium using the same |
JP3973964B2 (en) * | 2002-04-30 | 2007-09-12 | 独立行政法人科学技術振興機構 | Photorefractive material, method for producing the same, and hologram using the same |
JP2009545007A (en) * | 2006-07-25 | 2009-12-17 | 日東電工株式会社 | Nonlinear optical device sensitive to green laser |
WO2010141323A1 (en) * | 2009-06-04 | 2010-12-09 | Nitto Denko Corporation | Three-dimensional holographic display device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114011A1 (en) * | 2006-03-20 | 2007-10-11 | Matsushita Electric Industrial Co., Ltd. | Information recording/reproducing device and hologram recording/reproducing method |
-
2012
- 2012-11-22 JP JP2013547124A patent/JP6040477B2/en not_active Expired - Fee Related
- 2012-11-22 WO PCT/JP2012/080290 patent/WO2013080883A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254284A (en) * | 1985-06-14 | 1987-03-09 | ザ ボ−ド オブ トラステイ−ズ オブ ザ リ−ランド スタンフオ−ド ジユニア ユニバ−シテイ | Apparatus for stressing optical characteristic |
JP3973964B2 (en) * | 2002-04-30 | 2007-09-12 | 独立行政法人科学技術振興機構 | Photorefractive material, method for producing the same, and hologram using the same |
JP2005189845A (en) * | 2003-12-04 | 2005-07-14 | Okano Electric Wire Co Ltd | Hologram memory apparatus and method for recording hologram |
JP2005227311A (en) * | 2004-02-10 | 2005-08-25 | Nitto Denko Corp | Organic photorefractive material, and hologram recording medium using the same |
JP2009545007A (en) * | 2006-07-25 | 2009-12-17 | 日東電工株式会社 | Nonlinear optical device sensitive to green laser |
WO2010141323A1 (en) * | 2009-06-04 | 2010-12-09 | Nitto Denko Corporation | Three-dimensional holographic display device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014109687A (en) * | 2012-12-03 | 2014-06-12 | Kyoto Institute Of Technology | Three-dimensional hologram formation method and three-dimensional hologram formation device |
JP2014240861A (en) * | 2013-06-11 | 2014-12-25 | 国立大学法人京都工芸繊維大学 | Holographic display device and three-dimensional holographic display device |
WO2017138277A1 (en) * | 2016-02-12 | 2017-08-17 | 国立大学法人京都工芸繊維大学 | Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device |
JPWO2017138277A1 (en) * | 2016-02-12 | 2018-12-06 | 国立大学法人京都工芸繊維大学 | Rewritable hologram recording material, hologram recording / erasing method, and hologram recording apparatus |
CN105739281A (en) * | 2016-04-14 | 2016-07-06 | 京东方科技集团股份有限公司 | Image display system and image display method |
WO2017177720A1 (en) * | 2016-04-14 | 2017-10-19 | 京东方科技集团股份有限公司 | Image display system and image display method |
CN105739281B (en) * | 2016-04-14 | 2018-12-21 | 京东方科技集团股份有限公司 | Image display system and image display method |
US10663922B2 (en) | 2016-04-14 | 2020-05-26 | Boe Technology Group Co., Ltd. | Image display system and image display method |
Also Published As
Publication number | Publication date |
---|---|
JP6040477B2 (en) | 2016-12-14 |
JPWO2013080883A1 (en) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pu et al. | Photochromic diarylethene for polarization holographic optical recording | |
Tsutsumi et al. | Real-time three-dimensional holographic display using a monolithic organic compound dispersed film | |
JP2012529078A (en) | 3D holographic display device | |
JP6040477B2 (en) | 3D holographic display system and 3D display device | |
Giang et al. | Photorefractive response and real-time holographic application of a poly (4-(diphenylamino) benzyl acrylate)-based composite | |
Tsujimura et al. | High-speed photorefractive response capability in triphenylamine polymer-based composites | |
EP2601556A1 (en) | Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum | |
Nedelchev et al. | Polarization holographic gratings with high diffraction efficiency recorded in azopolymer PAZO | |
Goldenberg et al. | Thermally stable holographic surface relief gratings and switchable optical anisotropy in films of an azobenzene-containing polyelectrolyte | |
Blanche | Holographic recording media and devices | |
Kinashi et al. | Molecular design of azo-carbazole monolithic dyes for updatable full-color holograms | |
Tsutsumi et al. | Updatable holographic diffraction of monolithic carbazole-azobenzene compound in poly (methyl methacrylate) matrix | |
Wu et al. | Nanoscale optical reinforcement for enhanced reversible holography | |
Tsutsumi et al. | Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites | |
JP6199555B2 (en) | Three-dimensional hologram forming method and three-dimensional hologram forming apparatus | |
Xie et al. | Photochromic diarylethene for reversible holographic recording | |
Kinashi et al. | Dynamic holographic images using photorefractive composites | |
Lyu et al. | Switchable biphotonic holographic recording in an azobenzene liquid crystal film | |
JP2014240861A (en) | Holographic display device and three-dimensional holographic display device | |
Hu et al. | Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser | |
Kang et al. | Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain | |
JP6855069B2 (en) | Rewritable hologram recording material, hologram recording / erasing method, and hologram recording device | |
JP3973964B2 (en) | Photorefractive material, method for producing the same, and hologram using the same | |
Tsutsumi et al. | Quickly updatable hologram images with high performance photorefractive polymer composites | |
Blanche et al. | Review of Organic Photorefractive Materials and Their Use for Updateable 3D Display. Materials 2021, 14, 5799 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852811 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547124 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12852811 Country of ref document: EP Kind code of ref document: A1 |