WO2017138277A1 - Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device - Google Patents

Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device Download PDF

Info

Publication number
WO2017138277A1
WO2017138277A1 PCT/JP2016/089023 JP2016089023W WO2017138277A1 WO 2017138277 A1 WO2017138277 A1 WO 2017138277A1 JP 2016089023 W JP2016089023 W JP 2016089023W WO 2017138277 A1 WO2017138277 A1 WO 2017138277A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram recording
hologram
carbazole
azobenzene
rewritable
Prior art date
Application number
PCT/JP2016/089023
Other languages
French (fr)
Japanese (ja)
Inventor
堤 直人
憲司 木梨
侑樹 藪原
さつき 元石
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2017566546A priority Critical patent/JP6855069B2/en
Publication of WO2017138277A1 publication Critical patent/WO2017138277A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes

Definitions

  • the present invention relates to a rewritable hologram recording material and a recording medium.
  • the present invention also relates to a hologram recording / erasing method and a hologram recording apparatus for use in the method.
  • the photorefractive effect is a change in the refractive index of a substance due to the Pockels effect when irradiated with laser light or the like.
  • the crossed beams interfere with each other, and periodic interference fringes are formed in the medium.
  • this interference fringe a bright place and a dark place appear alternately.
  • the medium is photoexcited to generate charge carriers, and the generated charge carriers drift from the bright place by an external electric field applied to the medium. And trapped in the dark. This causes a periodic charge density distribution in the medium.
  • This periodic charge density distribution induces a periodic change in refractive index in the medium via the Pockels effect.
  • Materials having such a photorefractive effect can be used for imaging of a distorted object, real-time holography, super-multiplex hologram recording, 3D display, 3D printer, optical amplification, and optical neural network using the photorefractive effect. It is used in many fields such as nonlinear optical information processing, pattern recognition, optical limiting, and storage of high-density optical data.
  • photoisomerization a phenomenon in which a certain molecule changes to an isomer by absorbing light
  • photoisomerization can induce a periodic change in refractive index in the absence of an electric field.
  • Some substances are colored or changed in color by irradiation with light, and then restored by heat or light having a wavelength different from that of the light that caused the coloration or color change.
  • the substance having the photochromic property usually has a defect that there is a problem in stability and information recorded in a short time is lost.
  • Patent Documents 1 and 2 rewritable hologram materials made of a polymer having a polymer azobenzene liquid crystal or a liquid crystal component and a photochromic component are disclosed as materials that overcome the above-mentioned drawbacks.
  • a carbazole azobenzene moiety is present in the skeleton, and a substituent such as a nitro group or a cyano group is present at the para position of benzene.
  • a material composed of an introduced low-molecular compound is disclosed (Patent Document 3).
  • carbazole azobenzene (3-[(4-nitrophenyl) azo] -9H-carbazole-9-ethanol (NACzE)), in which the substituent at the para-position of benzene is a nitro group, is used as a material for rewritable hologram displays.
  • hologram recording is performed using a material dispersed and dissolved in methyl methacrylate (PMMA) as a photorefractive material (Patent Documents 4 and 5, Non-Patent Documents 1, 2, and 3).
  • PMMA methyl methacrylate
  • Patent Documents 4 and 5 Non-Patent Documents 1, 2, and 3.
  • carbazole azobenzene is dispersed and dissolved has a defect that the recorded hologram information disappears over time and lacks memory.
  • a rewritable hologram material having improved memory characteristics including a copolymer having carbazole azobenzene in the side chain and an acrylic polymer such as PMMA as the main chain, has been developed. ing.
  • the material containing the above-mentioned copolymer has improved memory performance, it has a problem of low photoresponsiveness and a long light irradiation time required for start-up.
  • the present inventors have conducted intensive research and introduced a copolymer having carbazole azobenzene introduced into a part of the side chain of the acrylic polymer, and the copolymer.
  • the inventors have found that by containing a carbazole azobenzene molecule that is the same or different from carbazole azobenzene, the photoresponsiveness can be improved while maintaining the memory property, and the present invention has been conceived.
  • the present inventors use circularly polarized light for erasing recorded hologram information, so that diffraction efficiency is reduced even when hologram information is recorded again after erasure and erased again.
  • the inventors have found that the time required for erasing can be shortened and the time until recording can be performed again can be shortened, and the present invention has been achieved.
  • the present invention includes a rewritable hologram recording material, a recording medium, a method for recording / erasing a hologram, and a hologram recording apparatus described in [1] to [14] below.
  • a copolymer obtained by introducing carbazole azobenzene into a part of a side chain of an acrylic polymer, and a carbazole azobenzene molecule that is the same or different from the carbazole azobenzene introduced into the copolymer.
  • a rewritable hologram recording material (Here, carbazole azobenzene is represented by the following formula (1).)
  • a striped pattern on a spatial light modulator is formed using a single beam of laser light, or coherent object light and reference light. Are caused to form interference fringes in the hologram recording element, and a hologram is recorded on the hologram recording element by irradiating polarized light to the hologram recording element.
  • SLM spatial light modulator
  • the rewritable hologram recording material is a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of an acrylic polymer, and
  • a hologram recording element made of a material further containing a carbazole azobenzene molecule of the same kind or different from the carbazole azobenzene introduced into the copolymer,
  • the hologram recording / erasing method according to [11] wherein in the step of reproducing the recorded hologram, the polarized light applied to the recording element on which the hologram is recorded is circularly polarized light.
  • a hologram recording apparatus for using a hologram recording / erasing method by two-beam interference in order to perform the hologram recording / erasing method according to any one of [9] to [12].
  • a hologram recording apparatus comprising: a mechanism for irradiating circularly polarized light to the hologram recording element through the circularly polarizing element at least in the erasing step.
  • the hologram recording device according to [13], wherein the mechanism for irradiating the circularly polarized light is a ⁇ / 4 plate.
  • the rewritable hologram recording material of the present invention has excellent photoresponsiveness while maintaining excellent memory properties capable of holding recorded data for a long time or improving memory properties, and is capable of recording holograms. There is an effect that the rise time can be shortened.
  • the hologram recording / erasing method of the present invention can reduce the time required for erasing the hologram, and prevent a decrease in response speed and diffraction efficiency in re-recording after the erasure, which usually decreases. There is an effect that can be.
  • Examples 1 to 3 and Comparative Examples 1 and 2 writing light: 300 mW / 532 nm, reading light (probe light): 1 mW / 640 nm, a striped pattern on the spatial light modulator (SLM) Shows the relationship between diffraction efficiency and time from the start of light irradiation in the short-time rise from the start of light irradiation, which is the result of measuring the rise of the diffracted light when irradiating a rewritable hologram recording material with laser light.
  • SLM spatial light modulator
  • Examples 1 to 3 and Comparative Examples 1 and 2 writing light: 300 mW / 532 nm, reading light (probe light): 1 mW / 640 nm, a striped pattern on the spatial light modulator (SLM) Relationship between diffraction efficiency and time from the start of light irradiation when a long time has elapsed from the start of light irradiation, which is the result of measuring the rise of diffracted light when irradiated to a rewritable hologram recording material using laser light FIG.
  • SLM spatial light modulator
  • Example 4 a writing grating (object light and reference light): 25 mW / 532 nm, reading light (probe light): ⁇ 1 mW / 632.8 nm, using a two-beam interference, a diffraction grating was produced, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating.
  • Example 4 since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%.
  • Example 5 writing light (object light and reference light): 25 mW / 532 nm, reading light (probe light): ⁇ 1 mW / 632.8 nm, a two-beam interference was used to produce a diffraction grating, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating.
  • Example 5 since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%.
  • a diffraction grating is produced using two-beam interference, and its diffraction
  • Embodiment 1 Rewriteable hologram recording material
  • the rewritable hologram recording material according to Embodiment 1 of the present invention is introduced into a copolymer obtained by introducing carbazole azobenzene (NACzE) into a part of the side chain of an acrylic polymer, and the copolymer. It contains the same or different carbazole azobenzene molecule as the carbazole azobenzene.
  • NACzE carbazole azobenzene
  • carbazole azobenzene which is not introduced into the copolymer other than carbazole azobenzene introduced into the copolymer and is contained in the rewritable hologram recording material of the present invention in the form of a molecule. Is also referred to as a “carbazole azobenzene molecule”.
  • the copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material of the present invention have photochromic properties.
  • the entire rewritable hologram recording material of the present invention also has photochromic properties.
  • the constituent element derived from the carbazole azobenzene constitutes a part of the side chain of the copolymer.
  • the carbazole azobenzene may be one type or two or more types.
  • a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer in the rewritable hologram recording material of the present invention (hereinafter also referred to as “copolymer A in the present invention”) has the following formula ( As shown in 2), it has a structure in which carbazole azobenzene is introduced into part of the side chain of the acrylic polymer.
  • the acrylic polymer constituting the copolymer A in the present invention is a polymer obtained by polymerizing an acrylic ester or methacrylic ester as a monomer (hereinafter also referred to as “acrylic molecule”). It is.
  • the said monomer is not specifically limited, For example, methyl acrylate (MA), methyl methacrylate (MMA), ethyl methacrylate (EMA) etc. can be mentioned. That is, examples of the acrylic polymer constituting the copolymer in the present invention include polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), and polyethyl methacrylate (PEMA).
  • the acrylic polymer constituting the copolymer in the present invention may be a polymer obtained by polymerizing one kind of monomer or a copolymer obtained by polymerizing two or more kinds of monomers.
  • carbazole azobenzene introduced into the side chain of the copolymer A in the present invention or contained in the form of a molecule in the rewritable hologram recording material of the present invention hereinafter also referred to as “carbazole azobenzene molecule”
  • carbazole azobenzene molecule contained in the form of a molecule in the rewritable hologram recording material of the present invention
  • the carbazole azobenzene is not particularly limited as long as it has a skeleton structure represented by the above formula (1).
  • X in the above formula (1) is a nitro group (—NO 2 ), a cyano group ( -CN), a methoxy group (-OCH 3 ), an amino group (-NH 2 ), a hydroxy group (-OH), and carbazole azobenzene, wherein X is a nitro group, a cyano group or Carbazole azobenzene having a structure that is a methoxy group is preferable, and carbazole azobenzene having a structure in which X is a cyano group or a methoxy group is more preferable.
  • the carbazole azobenzene may be one type or two or more types.
  • carbazole azobenzene introduced into the side chain of the copolymer in the present invention and the carbazole azobenzene (carbazole azobenzene molecule) contained in the form of molecules in the rewritable hologram recording material of the present invention are of the same type. Although they may be different or different, they are preferably the same from the viewpoint of the compatibility between the copolymer and the carbazole azobenzene molecule in the rewritable hologram recording material of the present invention.
  • the carbazole azobenzene and the carbazole azobenzene molecule introduced into the side chain of the copolymer of the present invention are particularly preferably one kind of carbazole azobenzene.
  • a group derived from carbazole azobenzene contained in the copolymer with respect to the total weight of the copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material is 5 ⁇ 10 ⁇ 4 mol / g or more and 2.0 ⁇ 10 ⁇ 3 mol / g or less, more preferably 7 ⁇ 10 ⁇ 4 mol / g or more, It is 1.5 ⁇ 10 ⁇ 3 mol / g or less, more preferably 1 ⁇ 10 ⁇ 3 mol / g or more and 1.3 ⁇ 10 ⁇ 3 mol / g or less.
  • the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer is 0.5 or more and 2.0 or less, preferably 0.8. It is 7 or more and 1.6 or less, More preferably, it is 0.9 or more and 1.2 or less.
  • the weight average molecular weight (Mw) of the copolymer in the present invention is preferably 10,000 to 100,000, and more preferably 20,000 to 100,000.
  • the rewritable hologram recording material of the present invention is suitable as a rewritable hologram recording material, which is a film having a preferable thickness described later. Is preferable.
  • the dispersion degree (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the molecular weight distribution of the copolymer in the present invention is smaller in terms of uniformity of the rewritable hologram recording material of the present invention.
  • the value of Mw / Mn is preferably 1 to 3.
  • the rewritable hologram recording material of the present invention is preferably in the form of a film (thin film).
  • the film thickness is more preferably 10 ⁇ m to 200 ⁇ m, and further preferably 20 ⁇ m to 100 ⁇ m.
  • the rewritable hologram recording material of the present invention may contain various additives in addition to the copolymer and the carbazole azobenzene molecule.
  • the additive may be any additive that can be generally used in a hologram recording material, and is not particularly limited. Examples of the additive include (photo) sensitizers, nonlinear optical dyes, plasticizers, and photosensitive dyes.
  • the reason why the rewritable hologram recording material containing the copolymer is excellent in memory property is that the orientation of the carbazole azobenzene introduced into the side chain of the copolymer is more limited than the free carbazole azobenzene molecule. Therefore, it is considered that the photo-aligned carbazole azobenzene is difficult to return to the alignment before the light irradiation even after a lapse of time. However, as for details, we have to wait for more detailed elucidation of the operation in the future.
  • the rewritable hologram recording material of the present invention contains the copolymer and carbazole azobenzene molecule of the present invention, the memory performance is further improved, and in addition, the photoresponsiveness is improved, and the start of hologram recording Time is shortened.
  • the reason why the above-mentioned memory property is further improved is that the photo-oriented carbazole azobenzene molecule forms a mesophase in which the carbazole azobenzene molecule introduced into the side chain of the copolymer and the free carbazole azobenzene molecule interact with each other. It is conceivable that the carbazole azobenzene that has been photo-aligned is prevented from returning to the alignment prior to light irradiation over time by becoming stable in terms of energy (pinning effect).
  • the degree of freedom of orientation of the carbazole azobenzene molecule is greater than that of the carbazole azobenzene introduced into the side chain of the copolymer, and the photo orientation of the carbazole azobenzene molecule is introduced into the side chain of the copolymer upon light irradiation. It occurs in preference to carbazole azobenzene. From the above-mentioned matters, it is considered that the start of hologram recording of the rewritable hologram recording material of the present invention is accelerated by photoalignment of the carbazole azobenzene molecules even with short-time light irradiation. However, as for details, we have to wait for more detailed elucidation of the operation in the future.
  • the method for producing the rewritable hologram recording material of the present invention is not particularly limited, and methods known to those skilled in the art can be used.
  • the rewritable hologram recording material of the present invention can be produced, for example, by a method including the following steps (1) and (2).
  • operation in each process shown below can be implemented by a method known to those skilled in the art.
  • the method for preparing a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer contained in the rewritable hologram recording material of the present invention is not particularly limited, but includes, for example, the following steps: A method can be mentioned.
  • THF tetrahydrofuran
  • DMF dry dimethylfuran
  • AIBN azoisobutylnitrile
  • the rewritable hologram recording material of the present invention can be prepared using the copolymer prepared in the step (1) and carbazole azobenzene molecules. Although the preparation method is not specifically limited, For example, the following method can be used.
  • the method for removing the solvent is not particularly limited, but for example, a method for obtaining a cast film on a plate, specifically, casting a solution in which each component is dissolved on a glass plate, Thereafter, the solvent is evaporated at room temperature, followed by natural drying overnight, followed by vacuum drying at a high temperature using a vacuum dryer or the like to further evaporate the solvent.
  • spacers for example, polyimide, thickness: 50 ⁇ m
  • spacers for example, polyimide, thickness: 50 ⁇ m
  • a sandwich-type rewritable hologram recording material can also be prepared by pressure bonding with a press.
  • a recording medium according to Embodiment 2 of the present invention is a recording medium having a hologram recording element, and the hologram recording element includes the rewritable hologram recording material according to Embodiment 1 of the present invention.
  • the recording medium according to Embodiment 2 of the present invention is a hologram formed by forming the rewritable hologram recording material according to Embodiment 1 of the present invention into a sheet-like film sandwiched between transparent plates such as glass. Contains a recording element.
  • the recording medium of the present invention contains a rewritable hologram recording material excellent in both photoresponsiveness and memory performance as a hologram recording element, has a short rise time when recording a hologram, and Long-term storage is possible.
  • a method for producing the recording medium of the present invention a method common to those skilled in the art, for example, a die, a doctor, etc., except that the rewritable hologram recording material according to Embodiment 1 of the present invention is used as the hologram recording element. It can be manufactured by a sheet forming method using a blade or the like.
  • Embodiment 3 Hologram Recording / Erasing Method
  • a stripe pattern on a spatial light modulator (SLM) is converted into a single beam of laser light in a hologram recording element containing a rewritable hologram recording material.
  • a coherent object beam and reference beam to interfere (two-beam interference) to form interference fringes in the hologram recording element, and recording the hologram on the hologram recording element, and by applying polarized light.
  • a hologram recording / erasing method including a step of erasing the hologram, wherein the rewritable hologram recording material is a copolymer obtained by introducing carbazole azobenzene into a part of a side chain of an acrylic polymer, and the above The same or different carbazole azobenzene as the above carbazole azobenzene introduced into the copolymer
  • the hologram recording element made of a material that further contains molecules, characterized in that at least a step of erasing the hologram by irradiation of circularly polarized light.
  • the acrylic polymer may be one type or two or more types.
  • the carbazole azobenzene may be one kind or two or more kinds. Further, the carbazole azobenzene molecule may also be one kind or two or more kinds.
  • the spatial light modulator is a two-dimensional array of microelements called “light modulation elements”, and a space such as the amplitude, phase, and polarization of light from the light source. It is a device that modulates light by electrically controlling the general distribution.
  • the spatial light modulator include products of Holoeye and Hamatsu Photonics.
  • the recorded hologram is erased by recording circularly polarized light having the same phase as either the object light or the reference light used for recording the hologram. This is done by irradiating the element.
  • the rewritable hologram recording material is introduced into a copolymer formed by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer, and into the side chain of the copolymer.
  • the hologram recording element is made of a material further containing the same kind or different kind of carbazole azobenzene molecule as the carbazole azobenzene, that is, the rewritable hologram recording material according to Embodiment 1 of the present invention.
  • copolymer and carbazole azobenzene molecule obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer described above are the copolymer and carbazole in the rewritable hologram recording material according to Embodiment 1 of the present invention. Copolymers and molecules similar to azobenzene molecules can be used.
  • a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer is prepared in the step described in step (1) in the above [Method for producing rewritable hologram recording material].
  • a rewritable hologram recording material containing a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the above-mentioned acrylic polymer and a carbazole azobenzene molecule is the above [Method for producing rewritable hologram recording material].
  • the hologram recording / erasing method of the present invention reduces the time required for erasing the hologram by performing at least the hologram erasing step by irradiation with circularly polarized light, and the response speed and diffraction in the re-recording after the erasing. A decrease in efficiency can be prevented.
  • hologram recording / erasing method of the present invention it is preferable to perform not only hologram erasing but also hologram recording by irradiation with circularly polarized light.
  • Performing hologram recording by applying circularly polarized light can improve diffraction efficiency by about 2 to 5 times compared to recording hologram by linearly polarized light at the same time, making it brighter and clearer. It is preferable in terms of recording a simple hologram.
  • the hologram recording / erasing method of the present invention may include a step of reproducing the recorded hologram.
  • the step of reproducing the recorded hologram is performed by irradiating the recording element on which the hologram is recorded with reading light (polarized light) having the same phase as the reference light.
  • the reading light is preferably circularly polarized light.
  • the number of diffraction points of the diffracted light representing the hologram image generated in the reproducing step is confirmed when using linearly polarized light, whereas only one is confirmed when using circularly polarized light,
  • the intensity of the diffracted light is also greater when circularly polarized light is used. Therefore, it is preferable that the reading light is circularly polarized in terms of a brighter and clearer reproduced hologram.
  • a hologram recording apparatus uses a hologram recording / erasing method based on two-beam interference to perform the hologram recording / erasing method according to Embodiment 3 of the present invention. Then, at least in the erasing step, a mechanism for irradiating circularly polarized light to the hologram recording element through the circularly polarizing element is provided.
  • the hologram recording apparatus of the present invention is normally used in the field to which the present invention belongs, except that it includes a mechanism for irradiating the hologram recording element with circularly polarized light through the circularly polarizing element at least in the process of erasing the recorded hologram.
  • the hologram recording apparatus can be the same as the hologram recording apparatus to be used.
  • the hologram recording apparatus of the present invention includes a hologram recording element made of a rewritable hologram recording material, irradiating the hologram recording element with coherent object light and reference light, and interference fringes in the hologram recording element. And a mechanism for recording the hologram, and a mechanism for erasing the hologram by irradiating the recording element on which the hologram is recorded with circularly polarized light.
  • the hologram recording apparatus of the present invention may further include a mechanism for reproducing the recorded hologram by irradiating the recording element on which the hologram is recorded with reading light.
  • the mechanism for erasing the recorded hologram includes a member for obtaining linearly polarized light by converting a linearly polarized laser light source or the like into circularly polarized light.
  • the member for obtaining the circularly polarized light is not particularly limited, and examples thereof include a ⁇ / 4 plate (1 ⁇ 4 wavelength plate), a phase difference plate, and the like. From the viewpoint of easy installation, the ⁇ / 4 plate is used. preferable.
  • the hologram recording apparatus of the present invention can include a member for obtaining circularly polarized light with respect to the hologram recording element even in the mechanism for recording the hologram.
  • the member for obtaining the circularly polarized light in the mechanism for recording the hologram can be the same member as the member for obtaining the circularly polarized light in the mechanism for erasing the recorded hologram.
  • the hologram recording apparatus of the present invention may include a mechanism for reproducing the recorded hologram by irradiating the recording element on which the hologram is recorded with reading light (polarized light).
  • the mechanism for reproducing the recorded hologram preferably includes a member for obtaining circularly polarized light as the reading light.
  • the member for obtaining circularly polarized light in the mechanism for reproducing the recorded hologram can be the same member as the member for obtaining circularly polarized light in the mechanism for erasing the recorded hologram.
  • each member such as a member that irradiates light in each of the above-described mechanisms can be a member that is common in the field to which the present invention belongs.
  • the mechanism for recording a hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism that performs two-beam interference using linearly polarized light or circularly polarized light.
  • the mechanism for erasing the recorded hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism for irradiating one beam of circularly polarized light.
  • the mechanism for reproducing the recorded hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism for irradiating linearly polarized light or circularly polarized light with one light beam.
  • FIG. 7 is a diagram showing a schematic configuration of the hologram recording apparatus of the present invention.
  • a hologram recording / reproducing / erasing apparatus which is an example of a hologram recording apparatus of the present invention, irradiates a holographic display device (Sample) for recording and displaying a hologram image, and object light and reference light to the holographic display device.
  • the recording means erasing means
  • the reproducing means for reproducing the hologram image recorded by the recording means by irradiating the holographic display device with the probe light.
  • “means” is intended to be “apparatus” or “mechanism”.
  • the recording means for recording the hologram image includes a laser oscillator 1 that oscillates a laser, a first fixed mirror 2 that reflects a laser beam oscillated from the laser oscillator 1, and a laser that is reflected by the first fixed mirror 2.
  • a first half-wave plate 3 disposed on the optical axis of the beam, and a first and second polarization of p-polarized light and s-polarized light by dividing the laser beam that has passed through the first half-wave plate 3
  • the second fixed mirror includes a second fixed mirror 7 that reflects the circularly polarized first polarized laser beam that passes through the quarter wavelength plate 6 Reflected by 7 Was first polarized laser beam circularly polarized is irradiated to the holographic display device (Sample)
  • the recording means for recording the hologram image includes a second quarter-wave plate 8 on the optical axis of the second polarized laser beam, and circularly polarized light passing through the second quarter-wave plate 8.
  • the second circularly polarized light reflected by the third fixed mirror 9 is included in the recording means for recording the hologram image.
  • a polarized laser beam is applied to a holographic display device (Sample) as reference light. That is, the laser beam oscillated from the laser oscillator 1 is divided into a circularly polarized first polarized laser beam (object light) and a circularly polarized second polarized laser beam (reference light).
  • the object light is irradiated onto the holographic display device together with the reference light, and the spatial information of the object light is recorded in the holographic display device using the spatial intensity distribution and phase distribution included in the object light as interference fringes.
  • the reproducing means for reproducing the recorded hologram image includes a laser oscillator 10 that oscillates a laser, a half-wave plate 11 for probe light arranged on the optical axis of the laser beam oscillated from the laser oscillation device 10, and probe light.
  • the fourth fixed mirror 12 reflects the laser beam that has passed through the half-wave plate 11 for use.
  • the laser beam oscillated from the laser oscillator 10 is converted into p-polarized light by the probe light half-wave plate 11 and reflected by the fourth fixed mirror 12.
  • the spatial information written (recorded) by the recording means is read out as a hologram image with p-polarized probe light and reproduced.
  • the object light When erasing the hologram, the object light is blocked by closing the mechanical shutter, and the circularly polarized reference light is used as the erasing light. Further, the object beam and the reference beam of the overwritten hologram image to be written next may be used as the erasing beam.
  • the reaction mixture was returned to room temperature (around 20-25 ° C.) with stirring and stirred overnight. After completion of the stirring, the solvent was removed from the reaction mixture under reduced pressure, and the resulting crude product was dissolved in chloroform. This was washed several times with a saturated aqueous sodium bicarbonate solution and distilled water, and dried over anhydrous magnesium sulfate. Thereafter, suction filtration was performed, and the solvent was distilled off from the filtrate under reduced pressure to obtain an orange powder (yield 87.6%).
  • the glass transition temperature of the copolymer obtained by DSC measurement was 103 ° C.
  • the weight average molecular weight was 18,660 g / mol
  • the degree of dispersion was 1.58 by GPC measurement.
  • DSC measurement was performed using DSC2920 manufactured by TA Instruments, and GPC measurement was performed using Showdex GPC KF-805 manufactured by Showa Denko.
  • a cyano group coordinated to the para-position of the benzene ring is prepared, but as described above, as a substituent coordinated to the para-position of the benzene ring, other than the cyano group (—CN), A nitro group (—NO 2 ), a methoxy group (—OCH 3 ), an amino group (—NH 2 ), a hydroxy group (—OH), or the like can be used.
  • carbazole azobenzene As the carbazole azobenzene, carbazole azobenzene having a structure in which the substituent is a nitro group, a cyano group, or a methoxy group is preferable, and carbazole azobenzene having a structure in which the substituent is a cyano group or a methoxy group is more preferable.
  • the carbazole azobenzene may be one type or two or more types.
  • PMMA polymethyl methacrylate
  • PMMA polyethyl methacrylate
  • PMA polymethyl acrylate
  • Example 1 [Preparation of rewritable hologram recording material]
  • Poly (CACzE-MMA) obtained in Production Example 1 and CACzE were mixed at a weight ratio of 50: 5, and the resulting mixture was dissolved in THF to obtain a cast solution.
  • the cast solution was cast on a petri dish (product name: glass petri dish made from TOP) and then allowed to stand at room temperature (25 ° C.) for 48 hours to evaporate the solvent (THF) to obtain a uniform film. Subsequently, the uniform film was further air-dried overnight, and then dried under reduced pressure at a temperature of about 80 ° C. in a vacuum drier to further evaporate the solvent (THF).
  • spacers for example, polyimide, thickness: 50 ⁇ m
  • spacers for example, polyimide, thickness: 50 ⁇ m
  • another glass substrate glass plate (product name: Tempax heat-resistant glass)
  • the sandwich-type rewritable hologram recording material 1 having a uniform film thickness was prepared by pressure bonding with a vacuum press machine while applying appropriate heat (temperature).
  • the film thickness was 80 ⁇ m.
  • the molar concentration of the total of the carbazole azobenzene molecule 9.7 ⁇ 10 -4 mol / g Met.
  • the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 0.38.
  • the obtained rewritable hologram recording material is used as a hologram recording element, and a hologram recording apparatus is used to irradiate light for 20 seconds under the following conditions to record a hologram. It measured using.
  • the relationship between the time after the start of light irradiation and the diffraction efficiency is shown in FIG.
  • FIG. 2 shows the time course of diffraction efficiency and recording hologram retention characteristics (memory characteristics).
  • Example 2 A rewritable hologram recording material 2 was prepared in the same manner as in Example 1 except that Poly (CACzE-MMA) obtained in Production Example 1 and CACzE were mixed at a weight ratio of 50:10. The thickness was measured. In addition, diffraction efficiency was measured in the same manner as in Example 1 using the rewritable hologram recording material 2. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
  • the film thickness of the rewritable hologram recording material 2 was 80 ⁇ m.
  • the molar concentration of the total of the carbazole azobenzene molecule met 1.1 ⁇ 10 -3 mol / g It was.
  • the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 0.76.
  • the film thickness of the rewritable hologram recording material 3 was 80 ⁇ m.
  • the total molar concentration of the group derived from carbazole azobenzene contained in the copolymer and the carbazole azobenzene molecule was 1.4 ⁇ 10 ⁇ 3 mol / g. It was. Further, the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 1.52.
  • Example 1 except that Poly (CACzE-MMA) obtained in Production Example 1 was used alone instead of the mixture of Poly (CACzE-MMA) obtained in Production Example 1 and CACzE. Similarly, a rewritable hologram recording material 4 was prepared and its film thickness was measured. Further, diffraction efficiency was measured by the same method as in Example 1 using the rewritable hologram recording material 4. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
  • the film thickness of the rewritable hologram recording material 4 was 82 ⁇ m.
  • the molar concentration of the group derived from the carbazole azobenzene contained in the copolymer was 7 ⁇ 10 ⁇ 4 mol / g.
  • Example 2 The same as Example 1 except that polymethyl methacrylate (PMMA) was used instead of Poly (CACzE-MMA) obtained in Production Example 1 and the weight ratio of PMMA to CACzE was mixed at 70:30. Then, a rewritable hologram recording material 5 was prepared, and its film thickness was measured. Further, diffraction efficiency was measured by the same method as in Example 1 using the rewritable hologram recording material 5. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
  • the film thickness of the rewritable hologram recording material 5 was 80 ⁇ m.
  • the number of moles of the above-mentioned carbazole azobenzene molecule is the molar concentration of the group derived from the acrylic molecule constituting the above acrylic polymer is 8.8 ⁇ 10 ⁇ 4 mol / g. Met.
  • the rewritable hologram recording material comprising the CACzE / (CACzE-MMA) copolymer prepared in Examples 1 to 3 was obtained from the (CACzE-MMA) copolymer alone in the comparative example. It was found that the photoresponsiveness was higher than the hologram recording material (Comparative Example 1) and the CACzE dispersion type hologram recording material (Comparative Example 2), and the rise time in hologram recording was shorter.
  • the hologram recording material (Comparative Example 1) and the CACzE dispersion type hologram recording material (Comparative Example 2) each consisting of a (CACzE-MMA) copolymer alone have a long time elapsed from light irradiation. Then, while the diffraction efficiency is lowered, the rewritable hologram recording material made of the CACzE / (CACzE-MMA) copolymer prepared in Examples 1 to 3 is diffracted even after a long time. It was found that the efficiency was hardly attenuated and the memory performance was superior.
  • a hologram recording is performed by irradiating hologram recording material 3 as a recording element with hologram recording light (object light and reference light) for 50 seconds under the following conditions: After that, the hologram recording material 3 was irradiated with circularly polarized light for erasing the hologram for 50 seconds to erase the recorded hologram.
  • FIG. 3 shows the relationship between the time from the first light irradiation and the diffraction efficiency obtained as a result.
  • Example 5 Diffraction efficiency was measured in the same manner as in Example 4 except that the time for irradiating the circularly polarized light for erasing the hologram was extended to 450 seconds and the above set was repeated a total of two times.
  • FIG. 4 shows the relationship between the time from the first light irradiation and the diffraction efficiency obtained as a result.
  • the hologram recording material and hologram recording / erasing method of the present invention can preferably improve the rising speed in hologram recording, and can improve the memory performance in hologram recording. Further, re-recording after erasing the hologram can be facilitated. Therefore, it is suitable for use in manufacturing a hologram recording apparatus that has a short rise time when recording a hologram, can store the hologram recording for a long period of time, and can repeatedly record and erase the hologram. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Holo Graphy (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A rewritable hologram recording material having characteristics in which fast responsiveness and long-term memory are both achieved, wherein the rewritable hologram recording material is characterized by containing: a copolymer obtained by introducing a carbazole azobenzene in a portion of the side chain of an acrylic polymer; and a carbazole azobenzene molecule that is the same type or a different type as the above-noted carbazole azobenzene.

Description

書き換え型ホログラム記録材料、並びに、ホログラムの記録・消去方法およびホログラム記録装置Rewritable hologram recording material, hologram recording / erasing method, and hologram recording apparatus
 本発明は、書き換え型ホログラム記録材料および記録媒体に関する。また、本発明は、ホログラムの記録・消去方法および上記方法に使用するためのホログラム記録装置に関する。 The present invention relates to a rewritable hologram recording material and a recording medium. The present invention also relates to a hologram recording / erasing method and a hologram recording apparatus for use in the method.
 ある種の物質は良好な電荷輸送能を有することが知られており、その応用事例としてフォトリフラクティブ効果がある。フォトリフラクティブ効果とは、レーザー光などを照射するとポッケルス効果によって物質の屈折率が変化することである。具体的には2本のコヒーレントなレーザー光を交差させて媒体に照射する場合が挙げられる。交差したビームは互いに干渉し、媒体に周期的な干渉縞が形成される。この干渉縞においては、交互に明所と暗所が現れ、明所では媒体が光励起されて電荷キャリアが生成され、生成された電荷キャリアは、媒体に印加された外部電場によって明所からドリフト移動し、暗所でトラップされる。これにより、媒体には、周期的な電荷密度の分布が生じる。この周期的な電荷密度の分布は、ポッケルス効果を介して媒体に屈折率の周期的な変化を誘起する。 Certain substances are known to have good charge transporting ability, and there is a photorefractive effect as an application example. The photorefractive effect is a change in the refractive index of a substance due to the Pockels effect when irradiated with laser light or the like. Specifically, there is a case where two coherent laser beams are crossed and irradiated onto the medium. The crossed beams interfere with each other, and periodic interference fringes are formed in the medium. In this interference fringe, a bright place and a dark place appear alternately. In the bright place, the medium is photoexcited to generate charge carriers, and the generated charge carriers drift from the bright place by an external electric field applied to the medium. And trapped in the dark. This causes a periodic charge density distribution in the medium. This periodic charge density distribution induces a periodic change in refractive index in the medium via the Pockels effect.
 このようなフォトリフラクティブ効果を備える物質は、そのフォトリフラクティブ効果を利用して、歪曲した物体のイメージング、実時間ホログラフィー、超多重ホログラム記録、3Dディスプレイ、3Dプリンター、さらには光増幅、光ニューラルネットワークを含む非線形光情報処理、パターン認識、光リミッティング、高密度光データの記憶等、多くの分野にて活用されている。 Materials having such a photorefractive effect can be used for imaging of a distorted object, real-time holography, super-multiplex hologram recording, 3D display, 3D printer, optical amplification, and optical neural network using the photorefractive effect. It is used in many fields such as nonlinear optical information processing, pattern recognition, optical limiting, and storage of high-density optical data.
 しかしながら、従来のフォトリフラクティブ効果を用いたデバイスでは、フォトリフラクティブ素子に数十V/μm(数MV/cm、例えば100μmの厚さの素子では数kVの電圧に相当)の高電場を印加することが必要であり、高電場での絶縁破壊を生じるおそれが高いという欠点がある。 However, in a device using the conventional photorefractive effect, a high electric field of several tens of V / μm (equivalent to a voltage of several kV for an element having a thickness of several MV / cm, for example, 100 μm) is applied to the photorefractive element. Is necessary, and there is a disadvantage that there is a high risk of causing breakdown in a high electric field.
 上記欠点を克服する材料として、光異性化(ある分子が光を吸収することによって異性体に変化する現象)により、無電場で、屈折率の周期的な変化を誘起することができる、フォトクロミック性(ある物質が,光の照射によって着色されるか、あるいは色調が変化し、その後、熱または、当該着色または当該色調の変化をもたらした光とは異なる波長の光によってもとに戻る性質をもつこと)を備える物質から構成される材料の開発が進められている。ここで、上記フォトクロミック性を備える物質は、通常、安定性に問題があり短時間で記録した情報が消えてしまうという欠点を有している。 As a material to overcome the above drawbacks, photoisomerization (a phenomenon in which a certain molecule changes to an isomer by absorbing light) can induce a periodic change in refractive index in the absence of an electric field. (Some substances are colored or changed in color by irradiation with light, and then restored by heat or light having a wavelength different from that of the light that caused the coloration or color change. Development of materials composed of substances comprising Here, the substance having the photochromic property usually has a defect that there is a problem in stability and information recorded in a short time is lost.
 そこで、上記欠点を克服した材料として、高分子アゾベンゼン液晶や液晶成分とフォトクロミック成分を有するポリマーからなる書き換え型ホログラム材料が開示されている(特許文献1、2)。 Therefore, rewritable hologram materials made of a polymer having a polymer azobenzene liquid crystal or a liquid crystal component and a photochromic component are disclosed as materials that overcome the above-mentioned drawbacks (Patent Documents 1 and 2).
 また、特許文献1、2に開示された高分子型ホログラム材料と異なる、低分子型ホログラム材料として、カルバゾールアゾベンゼン部位を骨格に有し、ベンゼンのパラ位にニトロ基、シアノ基などの置換基が導入された低分子化合物からなる材料が開示されている(特許文献3)。さらに、書き換え型ホログラムディスプレイ用の材料として、ベンゼンのパラ位の置換基がニトロ基であるカルバゾールアゾベンゼン(3-[(4-nitrophenyl)azo]-9H-carbazole-9-ethanol (NACzE))をポリメチルメタクリレート(PMMA)に分散・溶解させた材料をフォトリフラクティブ材料として用いてホログラムの記録を行うことが開示されている(特許文献4、5、非特許文献1、2、3)。しかし、上述のカルバゾールアゾベンゼンを分散・溶解させた材料には、記録されたホログラムの情報が時間経過とともに消えていく、メモリ性の欠如という欠点を有している。 Further, as a low molecular hologram material different from the polymer hologram materials disclosed in Patent Documents 1 and 2, a carbazole azobenzene moiety is present in the skeleton, and a substituent such as a nitro group or a cyano group is present at the para position of benzene. A material composed of an introduced low-molecular compound is disclosed (Patent Document 3). In addition, carbazole azobenzene (3-[(4-nitrophenyl) azo] -9H-carbazole-9-ethanol (NACzE)), in which the substituent at the para-position of benzene is a nitro group, is used as a material for rewritable hologram displays. It is disclosed that hologram recording is performed using a material dispersed and dissolved in methyl methacrylate (PMMA) as a photorefractive material ( Patent Documents 4 and 5, Non-Patent Documents 1, 2, and 3). However, the above-described material in which carbazole azobenzene is dispersed and dissolved has a defect that the recorded hologram information disappears over time and lacks memory.
 そこで、上記欠点を解決する手段として、カルバゾールアゾベンゼンを側鎖に備え、PMMA等のアクリル系ポリマーを主鎖とする共重合体を含む、メモリ性が改善された書き換え型ホログラム材料の開発が進められている。 Therefore, as a means for solving the above-mentioned drawbacks, development of a rewritable hologram material having improved memory characteristics, including a copolymer having carbazole azobenzene in the side chain and an acrylic polymer such as PMMA as the main chain, has been developed. ing.
日本国公開特許公報「特開2001-265199号公報(2001年9月28日公開)」Japanese Patent Publication “JP 2001-265199 A (published on September 28, 2001)” 日本国公開特許公報「特開2004-252327号公報(2004年9月9日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2004-252327 (published on September 9, 2004)” 日本国公開特許公報「特開2014-142393号公報(2014年8月7日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2014-142393 (published on August 7, 2014)” 国際公開公報「WO2013/080883号(2013年6月6日公開)」International Publication Gazette “WO2013 / 080883 (released on June 6, 2013)” 日本国公開特許公報「特開2014-240861号公報(2014年12月25日公開)」Japanese Patent Gazette “Japanese Unexamined Patent Application Publication No. 2014-240861 (December 25, 2014)”
 しかしながら、上述の共重合体を含む材料は、メモリ性は改善されるものの、光応答性が低く、立ち上がりに必要な光照射時間が長いという問題を有する。 However, although the material containing the above-mentioned copolymer has improved memory performance, it has a problem of low photoresponsiveness and a long light irradiation time required for start-up.
 また、上述の共重合体からなる材料のように、メモリ性が良好な材料では、記録したホログラム情報を消去するのに時間がかかるという問題がある。すなわち、記録時の応答性とメモリ性とを両立し、また、記録データの消去を迅速に行えるという課題を解決したという報告はない。例えば、上記消去は、通常、直線偏光の照射により行われるが、上述の消去では、消去後に再度ホログラム情報を記録し、再び消去することを繰り返し行った場合に回折効率が低下する、並びに、当該ホログラム情報の消去に時間が必要となり、再度の記録までに必要な時間および再記録時の応答速度が低下する、などの問題がある。 In addition, there is a problem that it takes time to erase the recorded hologram information in the case of a material having a good memory property such as the above-mentioned copolymer material. In other words, there has been no report that the problem of achieving both responsiveness during recording and memory performance and solving the problem of erasing recorded data quickly can be solved. For example, the erasure is usually performed by irradiation with linearly polarized light. However, in the erasure described above, the hologram information is recorded again after erasure, and the erasure is repeated again. There is a problem that it takes time to erase the hologram information, and the time required for re-recording and the response speed at the time of re-recording are lowered.
 本発明者らは、上記の問題を解決するために、鋭意研究を行い、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入した共重合体、および、上記共重合体に導入されているカルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有することによって、メモリ性を保ちつつ、光応答性を改善することができることを見出し、本発明に想到した。また、本発明者らは、記録されたホログラム情報の消去に、円偏光を使用することによって、消去後に再度ホログラム情報を記録し、再び消去することを繰り返し行った場合においても、回折効率が低下せず、消去に必要な時間も短くすることができ、再度記録できるまでの時間も短縮できることを見出し、本発明に想到した。 In order to solve the above problems, the present inventors have conducted intensive research and introduced a copolymer having carbazole azobenzene introduced into a part of the side chain of the acrylic polymer, and the copolymer. The inventors have found that by containing a carbazole azobenzene molecule that is the same or different from carbazole azobenzene, the photoresponsiveness can be improved while maintaining the memory property, and the present invention has been conceived. In addition, the present inventors use circularly polarized light for erasing recorded hologram information, so that diffraction efficiency is reduced even when hologram information is recorded again after erasure and erased again. Thus, the inventors have found that the time required for erasing can be shortened and the time until recording can be performed again can be shortened, and the present invention has been achieved.
 本発明は、以下の〔1〕~〔14〕に記載の書き換え型ホログラム記録材料、記録媒体、ホログラムを記録・消去する方法およびホログラム記録装置を含む。
〔1〕アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体、および、上記共重合体に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有することを特徴とする、書き換え型ホログラム記録材料。
(ここで、カルバゾールアゾベンゼンは、以下の式(1)にて表される。)
The present invention includes a rewritable hologram recording material, a recording medium, a method for recording / erasing a hologram, and a hologram recording apparatus described in [1] to [14] below.
[1] A copolymer obtained by introducing carbazole azobenzene into a part of a side chain of an acrylic polymer, and a carbazole azobenzene molecule that is the same or different from the carbazole azobenzene introduced into the copolymer. A rewritable hologram recording material.
(Here, carbazole azobenzene is represented by the following formula (1).)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔2〕上記カルバゾールアゾベンゼンが、上記式(1)におけるXがシアノ基、ニトロ基またはメトキシ基であるカルバゾールアゾベンゼンである、〔1〕に記載の書き換え型ホログラム記録材料。
〔3〕上記共重合体の側鎖に導入されているカルバゾールアゾベンゼンと、上記カルバゾールアゾベンゼン分子とが同種である、〔1〕または〔2〕に記載の書き換え型ホログラム記録材料。
〔4〕上記アクリル系ポリマーが、ポリメチルメタクリレート、ポリエチルメタクリレートおよびポリメチルアクリレートからなる群から少なくとも1種選択される、〔1〕~〔3〕の何れか1つに記載の書き換え型ホログラム記録材料。
〔5〕上記書き換え型ホログラム記録材料に含有される上記共重合体と上記カルバゾールアゾベンゼン分子との合計重量に対する、上記共重合体に含まれる上記カルバゾールアゾベンゼンに由来する基と上記カルバゾールアゾベンゼン分子との合計のモル濃度が、5×10-4mol/g以上、2.0×10-3mol/g以下である、〔1〕~〔4〕の何れか1つに記載の書き換え型ホログラム記録材料。
〔6〕上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する、上記カルバゾールアゾベンゼン分子のモル比率が、0.5以上、2.0以下である、〔1〕~〔5〕の何れか1つに記載の書き換え型ホログラム記録材料。
〔7〕上記共重合体の重量平均分子量が10,000以上、200,000以下である、〔1〕~〔6〕の何れか1つに記載の書き換え型ホログラム記録材料。
〔8〕ホログラム記録素子を有する記録媒体であって、
 上記ホログラム記録素子は、〔1〕~〔7〕の何れか1つに記載の書き換え型ホログラム記録材料を含有することを特徴とする、記録媒体。
〔9〕書き換え型ホログラム記録材料を含有するホログラム記録素子内で、空間光変調器(SLM)上の縞模様のパターンを1光束のレーザー光を用いて、あるいは、可干渉な物体光および参照光を干渉させること(2光束干渉)により、当該ホログラム記録素子内に干渉縞を形成させ、上記ホログラム記録素子にホログラムを記録する工程および上記ホログラム記録素子に対して偏光を照射することによって当該ホログラムを消去する工程を含むホログラムの記録・消去方法であって、
 上記書き換え型ホログラム記録材料が、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体、および、
 上記共重合体に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子をさらに含有する材料からなるホログラム記録素子に対して、
 少なくとも当該ホログラムを消去する工程を円偏光の照射によって行うことを特徴とする、ホログラムの記録・消去方法。
〔10〕上記記録する工程における上記物体光および上記参照光が、円偏光である、〔9〕に記載のホログラムの記録・消去方法。
〔11〕ホログラムを記録した上記ホログラム記録素子に対して、上記参照光と同位相の偏光を照射することによって、記録したホログラムを再生する工程をさらに含む、〔9〕または〔10〕に記載のホログラムの記録・消去方法。
〔12〕上記記録したホログラムを再生する工程において、ホログラムを記録した記録素子に対して照射する偏光が、円偏光である、〔11〕に記載のホログラムの記録・消去方法。
〔13〕〔9〕~〔12〕の何れか1つに記載のホログラムの記録・消去方法を行うために、2光束干渉によるホログラムの記録・消去方法を使用するためのホログラム記録装置であって、
 少なくとも上記消去する工程において、円偏光用素子を通して、上記ホログラム記録素子に対して、円偏光を照射する機構を備えることを特徴とする、ホログラム記録装置。
〔14〕上記円偏光を照射する機構が、λ/4板である、〔13〕に記載のホログラム記録装置。
[2] The rewritable hologram recording material according to [1], wherein the carbazole azobenzene is carbazole azobenzene in which X in the formula (1) is a cyano group, a nitro group or a methoxy group.
[3] The rewritable hologram recording material according to [1] or [2], wherein the carbazole azobenzene introduced into the side chain of the copolymer is the same as the carbazole azobenzene molecule.
[4] The rewritable hologram recording according to any one of [1] to [3], wherein the acrylic polymer is at least one selected from the group consisting of polymethyl methacrylate, polyethyl methacrylate, and polymethyl acrylate. material.
[5] The sum of the group derived from the carbazole azobenzene and the carbazole azobenzene molecule contained in the copolymer with respect to the total weight of the copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material molar concentration, 5 × 10 -4 mol / g or more, 2.0 × is 10 -3 mol / g or less, (1) a rewritable hologram recording material according to any one of to [4].
[6] Any one of [1] to [5], wherein a molar ratio of the carbazole azobenzene molecule to a group derived from carbazole azobenzene contained in the copolymer is 0.5 or more and 2.0 or less. 2. The rewritable hologram recording material described in 1.
[7] The rewritable hologram recording material according to any one of [1] to [6], wherein the copolymer has a weight average molecular weight of 10,000 or more and 200,000 or less.
[8] A recording medium having a hologram recording element,
The hologram recording element contains a rewritable hologram recording material according to any one of [1] to [7].
[9] In a hologram recording element containing a rewritable hologram recording material, a striped pattern on a spatial light modulator (SLM) is formed using a single beam of laser light, or coherent object light and reference light. Are caused to form interference fringes in the hologram recording element, and a hologram is recorded on the hologram recording element by irradiating polarized light to the hologram recording element. A method for recording and erasing a hologram including a erasing step,
The rewritable hologram recording material is a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of an acrylic polymer, and
For a hologram recording element made of a material further containing a carbazole azobenzene molecule of the same kind or different from the carbazole azobenzene introduced into the copolymer,
A method of recording and erasing a hologram, wherein at least the step of erasing the hologram is performed by irradiation with circularly polarized light.
[10] The hologram recording / erasing method according to [9], wherein the object light and the reference light in the recording step are circularly polarized light.
[11] The method according to [9] or [10], further including a step of reproducing the recorded hologram by irradiating the hologram recording element on which the hologram is recorded with polarized light having the same phase as the reference light. Hologram recording / erasing method.
[12] The hologram recording / erasing method according to [11], wherein in the step of reproducing the recorded hologram, the polarized light applied to the recording element on which the hologram is recorded is circularly polarized light.
[13] A hologram recording apparatus for using a hologram recording / erasing method by two-beam interference in order to perform the hologram recording / erasing method according to any one of [9] to [12]. ,
A hologram recording apparatus comprising: a mechanism for irradiating circularly polarized light to the hologram recording element through the circularly polarizing element at least in the erasing step.
[14] The hologram recording device according to [13], wherein the mechanism for irradiating the circularly polarized light is a λ / 4 plate.
 本発明の書き換え型ホログラム記録材料は、記録データの長時間保持が可能な優れたメモリ性を保ちつつ、あるいは、メモリ性をより向上させつつ、優れた光応答性を有し、ホログラムの記録の立ち上がり時間を短縮することができるという効果を奏する。 The rewritable hologram recording material of the present invention has excellent photoresponsiveness while maintaining excellent memory properties capable of holding recorded data for a long time or improving memory properties, and is capable of recording holograms. There is an effect that the rise time can be shortened.
 また、本発明のホログラムの記録・消去方法は、ホログラムの消去に必要な時間を短縮することができ、通常は低下する、当該消去後の再度の記録における応答速度、回折効率の低下を防ぐことができるという効果を奏する。 In addition, the hologram recording / erasing method of the present invention can reduce the time required for erasing the hologram, and prevent a decrease in response speed and diffraction efficiency in re-recording after the erasure, which usually decreases. There is an effect that can be.
実施例1~3、比較例1、2における、書き込み光:300mW/532nm、読み出し光(プローブ光):1mW/640nmにて、空間光変調器(SLM)上の縞模様のパターンを1光束のレーザー光を用いて書き換え型ホログラム記録材料に照射した際の回折光の立ち上がりを計測した結果である、光照射開始から短時間の立ち上がりにおける、回折効率と光照射開始からの時間との関係を示す図である。In Examples 1 to 3 and Comparative Examples 1 and 2, writing light: 300 mW / 532 nm, reading light (probe light): 1 mW / 640 nm, a striped pattern on the spatial light modulator (SLM) Shows the relationship between diffraction efficiency and time from the start of light irradiation in the short-time rise from the start of light irradiation, which is the result of measuring the rise of the diffracted light when irradiating a rewritable hologram recording material with laser light. FIG. 実施例1~3、比較例1、2における、書き込み光:300mW/532nm、読み出し光(プローブ光):1mW/640nmにて、空間光変調器(SLM)上の縞模様のパターンを1光束のレーザー光を用いて書き換え型ホログラム記録材料に照射した際の回折光の立ち上がりを計測した結果である、光照射開始から長時間が経過したときの、回折効率と光照射開始からの時間との関係を示す図である。なお、実施例1~3、比較例1、2においては、格子間隔が格子厚みに対して広いために、ラマン-ナス回折となり、理論上の最大回折効率は16%である。In Examples 1 to 3 and Comparative Examples 1 and 2, writing light: 300 mW / 532 nm, reading light (probe light): 1 mW / 640 nm, a striped pattern on the spatial light modulator (SLM) Relationship between diffraction efficiency and time from the start of light irradiation when a long time has elapsed from the start of light irradiation, which is the result of measuring the rise of diffracted light when irradiated to a rewritable hologram recording material using laser light FIG. In Examples 1 to 3 and Comparative Examples 1 and 2, since the lattice spacing is wide with respect to the lattice thickness, Raman-Nath diffraction is obtained, and the theoretical maximum diffraction efficiency is 16%. 実施例4における、書き込み光(物体光と参照光):25mW/532nm、読み出し光(プローブ光):<1mW/632.8nmにて、2光束干渉を用いて、回折格子を作製し、その回折格子からの回折強度の時間プロフィールを測定した結果である、最初の光照射からの時間と、回折効率との関係を示す図である。なお、実施例4においては、格子間隔が格子厚みに対して狭いために、ブラッグ回折となり、理論上の最大回折効率は100%である。In Example 4, a writing grating (object light and reference light): 25 mW / 532 nm, reading light (probe light): <1 mW / 632.8 nm, using a two-beam interference, a diffraction grating was produced, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating. In Example 4, since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%. 実施例5における、書き込み光(物体光と参照光):25mW/532nm、読み出し光(プローブ光):<1mW/632.8nmにて、2光束干渉を用いて、回折格子を作製し、その回折格子からの回折強度の時間プロフィールを測定した結果である、最初の光照射からの時間と、回折効率との関係を示す図である。なお、実施例5においては、格子間隔が格子厚みに対して狭いために、ブラッグ回折となり、理論上の最大回折効率は100%である。In Example 5, writing light (object light and reference light): 25 mW / 532 nm, reading light (probe light): <1 mW / 632.8 nm, a two-beam interference was used to produce a diffraction grating, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating. In Example 5, since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%. 比較例3における、書き込み光(物体光と参照光):25mW/532nm、読み出し光(プローブ光):<1mW/632.8nmにて、2光束干渉を用いて、回折格子を作製し、その回折格子からの回折強度の時間プロフィールを測定した結果である、最初の光照射からの時間と、回折効率との関係を示す図である。なお、比較例3においては、格子間隔が格子厚みに対して狭いために、ブラッグ回折となり、理論上の最大回折効率は100%である。In Comparative Example 3, writing light (object light and reference light): 25 mW / 532 nm, reading light (probe light): <1 mW / 632.8 nm, a diffraction grating is produced using two-beam interference, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating. In Comparative Example 3, since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%. 比較例4における、書き込み光(物体光と参照光):25mW/532nm、読み出し光(プローブ光):<1mW/632.8nmにて、2光束干渉を用いて、回折格子を作製し、その回折格子からの回折強度の時間プロフィールを測定した結果である、最初の光照射からの時間と、回折効率との関係を示す図である。なお、比較例4においては、格子間隔が格子厚みに対して狭いために、ブラッグ回折となり、理論上の最大回折効率は100%である。In Comparative Example 4, a writing grating (object light and reference light): 25 mW / 532 nm, reading light (probe light): <1 mW / 632.8 nm, a two-beam interference was used to produce a diffraction grating, and its diffraction It is a figure which shows the relationship between the time from the first light irradiation and the diffraction efficiency which are the results of measuring the time profile of the diffraction intensity from the grating. In Comparative Example 4, since the grating interval is narrower than the grating thickness, Bragg diffraction occurs, and the theoretical maximum diffraction efficiency is 100%. 本発明のホログラム記録装置の概略の構成を示す図である。It is a figure which shows the schematic structure of the hologram recording apparatus of this invention.
 [実施形態1:書き換え型ホログラム記録材料]
 本発明の実施形態1に係る書き換え型ホログラム記録材料は、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼン(NACzE)を導入してなる共重合体、および、上記共重合体に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有することを特徴とする。
[Embodiment 1: Rewriteable hologram recording material]
The rewritable hologram recording material according to Embodiment 1 of the present invention is introduced into a copolymer obtained by introducing carbazole azobenzene (NACzE) into a part of the side chain of an acrylic polymer, and the copolymer. It contains the same or different carbazole azobenzene molecule as the carbazole azobenzene.
 なお、本明細書にて、共重合体に導入されているカルバゾールアゾベンゼン以外の、共重合体に導入されておらず、分子の形態にて本発明の書き換え型ホログラム記録材料に含有されるカルバゾールアゾベンゼンを、「カルバゾールアゾベンゼン分子」とも称する。 In addition, in this specification, carbazole azobenzene which is not introduced into the copolymer other than carbazole azobenzene introduced into the copolymer and is contained in the rewritable hologram recording material of the present invention in the form of a molecule. Is also referred to as a “carbazole azobenzene molecule”.
 本発明の書き換え型ホログラム記録材料に含まれる上記共重合体および上記カルバゾールアゾベンゼン分子は、フォトクロミック性を備える。上記共重合体および上記カルバゾールアゾベンゼン分子がフォトクロミック性を備えることによって、本発明の書き換え型ホログラム記録材料全体もまた、フォトクロミック性を備えることとなる。 The copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material of the present invention have photochromic properties. When the copolymer and the carbazole azobenzene molecule have photochromic properties, the entire rewritable hologram recording material of the present invention also has photochromic properties.
 上記共重合体において、上記カルバゾールアゾベンゼンに由来する構成要素は、上記共重合体の側鎖の一部を構成している。上記カルバゾールアゾベンゼンは、1種類であってもよく、2種類以上であってもよい。 In the copolymer, the constituent element derived from the carbazole azobenzene constitutes a part of the side chain of the copolymer. The carbazole azobenzene may be one type or two or more types.
 本発明の書き換え型ホログラム記録材料におけるアクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体(以下、「本発明における共重合体A」とも称する)は、以下の式(2)に示すように、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンが導入された構造を備える。 A copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer in the rewritable hologram recording material of the present invention (hereinafter also referred to as “copolymer A in the present invention”) has the following formula ( As shown in 2), it has a structure in which carbazole azobenzene is introduced into part of the side chain of the acrylic polymer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明における共重合体Aを構成するアクリル系ポリマーは、アクリル酸エステルまたはメタクリル酸エステルを単量体(以下、「アクリル系分子」とも称する)として、当該単量体が重合してなる重合体である。上記単量体は、特に限定されないが、例えば、メチルアクリレート(MA)、メチルメタクリレート(MMA)、エチルメタクリレート(EMA)などを挙げることができる。すなわち、本発明における共重合体を構成するアクリル系ポリマーとしては、例えば、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)などを挙げることができる。なお、本発明における共重合体を構成するアクリル系ポリマーは、1種類の単量体を重合してなる重合体でもよく、2種類以上の単量体が重合してなる共重合体でもよい。 The acrylic polymer constituting the copolymer A in the present invention is a polymer obtained by polymerizing an acrylic ester or methacrylic ester as a monomer (hereinafter also referred to as “acrylic molecule”). It is. Although the said monomer is not specifically limited, For example, methyl acrylate (MA), methyl methacrylate (MMA), ethyl methacrylate (EMA) etc. can be mentioned. That is, examples of the acrylic polymer constituting the copolymer in the present invention include polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), and polyethyl methacrylate (PEMA). The acrylic polymer constituting the copolymer in the present invention may be a polymer obtained by polymerizing one kind of monomer or a copolymer obtained by polymerizing two or more kinds of monomers.
 本発明における共重合体Aの側鎖に導入されている、あるいは、本発明の書き換え型ホログラム記録材料に分子の形態にて含有されているカルバゾールアゾベンゼン(以下、「カルバゾールアゾベンゼン分子」とも称する)は、以下の式(1)に示す骨格構造を備える。 The carbazole azobenzene introduced into the side chain of the copolymer A in the present invention or contained in the form of a molecule in the rewritable hologram recording material of the present invention (hereinafter also referred to as “carbazole azobenzene molecule”) And a skeleton structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記カルバゾールアゾベンゼンは、上記式(1)に表される骨格構造を備えていればよく、特に限定されないが、例えば、上記式(1)におけるXが、ニトロ基(-NO)、シアノ基(-CN)、メトキシ基(-OCH)、アミノ基(-NH)、ヒドロキシ基(-OH)、である構造を備えるカルバゾールアゾベンゼンが挙げられ、そのうち、当該Xが、ニトロ基、シアノ基またはメトキシ基である構造を備えるカルバゾールアゾベンゼンが好ましく、当該Xが、シアノ基またはメトキシ基である構造を備えるカルバゾールアゾベンゼンがより好ましい。なお、上記カルバゾールアゾベンゼンは、1種類でもよいし、2種類以上でもよい。 The carbazole azobenzene is not particularly limited as long as it has a skeleton structure represented by the above formula (1). For example, X in the above formula (1) is a nitro group (—NO 2 ), a cyano group ( -CN), a methoxy group (-OCH 3 ), an amino group (-NH 2 ), a hydroxy group (-OH), and carbazole azobenzene, wherein X is a nitro group, a cyano group or Carbazole azobenzene having a structure that is a methoxy group is preferable, and carbazole azobenzene having a structure in which X is a cyano group or a methoxy group is more preferable. The carbazole azobenzene may be one type or two or more types.
 また、本発明における共重合体の側鎖に導入されているカルバゾールアゾベンゼンと、本発明の書き換え型ホログラム記録材料に分子の形態にて含有されているカルバゾールアゾベンゼン(カルバゾールアゾベンゼン分子)とは、同種であってもよく、あるいは異種であってもよいが、本発明の書き換え型ホログラム記録材料における上記共重合体と上記カルバゾールアゾベンゼン分子との相溶性の面から、同種であることが好ましい。従って、本発明の書き換え型ホログラム記録材料において、本発明における共重合体の側鎖に導入されているカルバゾールアゾベンゼンおよび上記カルバゾールアゾベンゼン分子は、1種類のカルバゾールアゾベンゼンであることが特に好ましい。 Further, the carbazole azobenzene introduced into the side chain of the copolymer in the present invention and the carbazole azobenzene (carbazole azobenzene molecule) contained in the form of molecules in the rewritable hologram recording material of the present invention are of the same type. Although they may be different or different, they are preferably the same from the viewpoint of the compatibility between the copolymer and the carbazole azobenzene molecule in the rewritable hologram recording material of the present invention. Therefore, in the rewritable hologram recording material of the present invention, the carbazole azobenzene and the carbazole azobenzene molecule introduced into the side chain of the copolymer of the present invention are particularly preferably one kind of carbazole azobenzene.
 本発明の書き換え型ホログラム記録材料において、上記書き換え型ホログラム記録材料に含有される上記共重合体と上記カルバゾールアゾベンゼン分子との合計重量に対する、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基と、上記カルバゾールアゾベンゼン分子との合計のモル濃度は、5×10-4mol/g以上、2.0×10-3mol/g以下であり、より好ましくは、7×10-4mol/g以上、1.5×10-3mol/g以下であり、さらに好ましくは1×10-3mol/g以上、1.3×10-3mol/g以下である。 In the rewritable hologram recording material of the present invention, a group derived from carbazole azobenzene contained in the copolymer with respect to the total weight of the copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material, The total molar concentration with the carbazole azobenzene molecule is 5 × 10 −4 mol / g or more and 2.0 × 10 −3 mol / g or less, more preferably 7 × 10 −4 mol / g or more, It is 1.5 × 10 −3 mol / g or less, more preferably 1 × 10 −3 mol / g or more and 1.3 × 10 −3 mol / g or less.
 本発明の書き換え型ホログラム記録材料において、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する上記カルバゾールアゾベンゼン分子のモル比率は、0.5以上、2.0以下であり、好ましくは、0.7以上、1.6以下であり、さらに好ましくは0.9以上、1.2以下である。 In the rewritable hologram recording material of the present invention, the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer is 0.5 or more and 2.0 or less, preferably 0.8. It is 7 or more and 1.6 or less, More preferably, it is 0.9 or more and 1.2 or less.
 本発明における共重合体の重量平均分子量(Mw)は、10,000~100,000であることが好ましく、20,000~100,000であることがより好ましい。本発明における共重合体の重量平均分子量を上述の範囲とすることは、本発明の書き換え型ホログラム記録材料を、書き換え型ホログラム記録材料として好適な、後述する好ましい厚さを有するフィルム状にする面において好ましい。 The weight average molecular weight (Mw) of the copolymer in the present invention is preferably 10,000 to 100,000, and more preferably 20,000 to 100,000. When the weight average molecular weight of the copolymer in the present invention is in the above range, the rewritable hologram recording material of the present invention is suitable as a rewritable hologram recording material, which is a film having a preferable thickness described later. Is preferable.
 また、本発明における共重合体の分子量分布の分散度(重量平均分子量(Mw)/数平均分子量(Mn))の値は、本発明の書き換え型ホログラム記録材料の均一性の面において、小さい方が好ましく、具体的には、Mw/Mnの値は1~3が好ましい。 Further, the dispersion degree (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the molecular weight distribution of the copolymer in the present invention is smaller in terms of uniformity of the rewritable hologram recording material of the present invention. Specifically, the value of Mw / Mn is preferably 1 to 3.
 本発明の書き換え型ホログラム記録材料は、フィルム状(薄膜状)であることが好ましい。また、その膜厚は、10μm~200μmであることがより好ましく、20μm~100μmであることがさらに好ましい。 The rewritable hologram recording material of the present invention is preferably in the form of a film (thin film). The film thickness is more preferably 10 μm to 200 μm, and further preferably 20 μm to 100 μm.
 本発明の書き換え型ホログラム記録材料は、上記共重合体および上記カルバゾールアゾベンゼン分子の他に、種々の添加剤を含有し得る。上記添加剤は、ホログラム記録材料にて、一般に使用し得る添加剤であればよく、特に限定されない。上記添加剤は、例えば、(光)増感剤、非線形光学色素、可塑剤、光感光性色素などを挙げることができる。 The rewritable hologram recording material of the present invention may contain various additives in addition to the copolymer and the carbazole azobenzene molecule. The additive may be any additive that can be generally used in a hologram recording material, and is not particularly limited. Examples of the additive include (photo) sensitizers, nonlinear optical dyes, plasticizers, and photosensitive dyes.
 上記共重合体を含有する書き換え型ホログラム記録材料が、メモリ性に優れる理由としては、上記共重合体の側鎖に導入されたカルバゾールアゾベンゼンが、遊離のカルバゾールアゾベンゼン分子よりも、配向性がより制限されていることから、光配向したカルバゾールアゾベンゼンが、時間経過しても光照射前の配向に戻り難くなっていることが考えられる。しかし、詳細なことは、これからのより詳細な動作解明を待たねばならない。 The reason why the rewritable hologram recording material containing the copolymer is excellent in memory property is that the orientation of the carbazole azobenzene introduced into the side chain of the copolymer is more limited than the free carbazole azobenzene molecule. Therefore, it is considered that the photo-aligned carbazole azobenzene is difficult to return to the alignment before the light irradiation even after a lapse of time. However, as for details, we have to wait for more detailed elucidation of the operation in the future.
 本発明の書き換え型ホログラム記録材料は、本発明における共重合体およびカルバゾールアゾベンゼン分子を含有していることによって、メモリ性がさらに向上し、加えて、光応答性が向上し、ホログラムの記録の立ち上がり時間が短縮される。 Since the rewritable hologram recording material of the present invention contains the copolymer and carbazole azobenzene molecule of the present invention, the memory performance is further improved, and in addition, the photoresponsiveness is improved, and the start of hologram recording Time is shortened.
 上述のメモリ性がさらに向上する理由としては、光配向したカルバゾールアゾベンゼン分子が、共重合体の側鎖に導入されているカルバゾールアゾベンゼンとフリーのカルバゾールアゾベンゼン分子とが分子間相互作用したメソフェーズを形成し、エネルギー的に安定な状態になる(ピン止め効果)ことによって、光配向したカルバゾールアゾベンゼンが、時間経過により、光照射前の配向に戻ることが阻害されることが考えられる。 The reason why the above-mentioned memory property is further improved is that the photo-oriented carbazole azobenzene molecule forms a mesophase in which the carbazole azobenzene molecule introduced into the side chain of the copolymer and the free carbazole azobenzene molecule interact with each other. It is conceivable that the carbazole azobenzene that has been photo-aligned is prevented from returning to the alignment prior to light irradiation over time by becoming stable in terms of energy (pinning effect).
 また、カルバゾールアゾベンゼン分子の配向の自由度が、上記共重合体の側鎖に導入されたカルバゾールアゾベンゼンよりも大きく、光照射により上記カルバゾールアゾベンゼン分子の光配向が、上記共重合体の側鎖に導入されたカルバゾールアゾベンゼンよりも優先して発生する。上述の事項から、短時間の光照射でも、上記カルバゾールアゾベンゼン分子が光配向することにより、本発明の書き換え型ホログラム記録材料のホログラムの記録の立ち上がりが高速となると考えられる。しかし、詳細なことは、これからのより詳細な動作解明を待たねばならない。 In addition, the degree of freedom of orientation of the carbazole azobenzene molecule is greater than that of the carbazole azobenzene introduced into the side chain of the copolymer, and the photo orientation of the carbazole azobenzene molecule is introduced into the side chain of the copolymer upon light irradiation. It occurs in preference to carbazole azobenzene. From the above-mentioned matters, it is considered that the start of hologram recording of the rewritable hologram recording material of the present invention is accelerated by photoalignment of the carbazole azobenzene molecules even with short-time light irradiation. However, as for details, we have to wait for more detailed elucidation of the operation in the future.
 [書き換え型ホログラム記録材料の製造方法]
 本発明の書き換え型ホログラム記録材料の製造方法は、当業者にとって既知の方法を使用することができ、特に限定されない。本発明の書き換え型ホログラム記録材料は、例えば、以下の工程(1)および工程(2)を含む方法によって製造することができる。なお、以下に示す各工程における操作は、当業者にとって既知の方法にて実施することができる。
[Method for producing rewritable hologram recording material]
The method for producing the rewritable hologram recording material of the present invention is not particularly limited, and methods known to those skilled in the art can be used. The rewritable hologram recording material of the present invention can be produced, for example, by a method including the following steps (1) and (2). In addition, operation in each process shown below can be implemented by a method known to those skilled in the art.
 <工程(1)共重合体の調製>
 本発明の書き換え型ホログラム記録材料に含有されるアクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体を調製する方法は、特に限定されないが、例えば、以下の工程を含む方法を挙げることができる。
<Step (1) Preparation of Copolymer>
The method for preparing a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer contained in the rewritable hologram recording material of the present invention is not particularly limited, but includes, for example, the following steps: A method can be mentioned.
 工程(i):カルバゾールアゾベンゼンをテトラヒドロフラン(THF)に溶解し、0℃に冷却した状態で撹拌し、N,N-ジメチル-4-アミノピリジン(DMAP)およびトリエチルアミンを加える工程;
 工程(ii):工程(i)にて得られた溶液にアクリル酸塩またはメタクリル酸塩を各1mLずつ、0℃以下の温度にて、例えば15分毎に4回滴下し、反応混合液を攪拌しながら室温まで戻し、一晩撹拌する工程;
 工程(iii):工程(ii)にて得られた溶液から、減圧乾燥により溶媒を除去し、得られる粗体をクロロホルムに溶解させる工程;
 工程(iv):工程(iii)にて得られたクロロホルム溶液を、飽和炭酸水素ナトリウム水溶液および蒸留水で数回洗浄し、無水硫酸マグネシウムで乾燥させ、カルバゾールアゾベンゼン-(メタ)アクリル酸の化合物を得る工程;
 工程(v):工程(iv)にて得られたカルバゾールアゾベンゼン-(メタ)アクリル酸の化合物を乾燥ジメチルフラン(DMF)に溶解させ、さらにアクリル酸またはメタクリル酸、および重合開始剤としてアゾイソブチルニトリル(AIBN)を加え、共重合反応を開始し、凍結脱気を行った後、60℃で15時間攪拌し、室温まで液温を戻して共重合反応を停止させる工程;
 工程(vi):工程(v)にて得られた、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体が溶解している溶液から、当該共重合体を再沈澱させ、ろ別し、乾燥させることによって、当該共重合体を回収する工程。
Step (i): Dissolving carbazole azobenzene in tetrahydrofuran (THF), stirring in a state cooled to 0 ° C., and adding N, N-dimethyl-4-aminopyridine (DMAP) and triethylamine;
Step (ii): 1 mL each of acrylate or methacrylate is added dropwise to the solution obtained in step (i) at a temperature of 0 ° C. or less, for example, four times every 15 minutes, and the reaction mixture is added. Returning to room temperature with stirring and stirring overnight;
Step (iii): A step of removing the solvent from the solution obtained in Step (ii) by drying under reduced pressure, and dissolving the resulting crude product in chloroform;
Step (iv): The chloroform solution obtained in step (iii) is washed several times with a saturated aqueous sodium hydrogen carbonate solution and distilled water, dried over anhydrous magnesium sulfate, and a carbazole azobenzene- (meth) acrylic acid compound is obtained. Obtaining step;
Step (v): The carbazole azobenzene- (meth) acrylic acid compound obtained in step (iv) is dissolved in dry dimethylfuran (DMF), and then acrylic acid or methacrylic acid, and azoisobutylnitrile as a polymerization initiator. (AIBN) is added, the copolymerization reaction is started, freeze deaeration is performed, the mixture is stirred at 60 ° C. for 15 hours, and the liquid temperature is returned to room temperature to stop the copolymerization reaction;
Step (vi): Reprecipitation of the copolymer obtained from the solution obtained by dissolving the copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer obtained in the step (v). Recovering the copolymer by filtering, filtering and drying.
 <工程(2):書き換え型ホログラム記録材料の調製>
 工程(1)にて調製された当該共重合体と、カルバゾールアゾベンゼン分子とを用いて、本発明の書き換え型ホログラム記録材料を調製することができる。その調製方法は、特に限定されないが、例えば、以下の方法を使用することができる。
<Step (2): Preparation of rewritable hologram recording material>
The rewritable hologram recording material of the present invention can be prepared using the copolymer prepared in the step (1) and carbazole azobenzene molecules. Although the preparation method is not specifically limited, For example, the following method can be used.
 工程(vii):工程(vi)にて得られた当該共重合体およびカルバゾールアゾベンゼン分子を含む本発明の書き換え型ホログラム記録材料の各成分を、沸点が100℃以上の溶媒に溶解させ、塗付溶液を得る工程;
 工程(viii):工程(vii)にて得られた塗付溶液を基板上に塗布し、当該溶媒を除去することによって、薄膜状の書き換え型ホログラム記録材料を調製する工程。ここで、溶媒を除去する方法としては、特に限定されないが、例えば板材上でキャストフィルムを得るようにする方法、具体的には、ガラス板上に各成分が溶解された溶液を流延し、その後室温で溶媒を蒸発させ、続いてこれを一晩自然乾燥させ、その後、真空乾燥器等を使用して高温にて減圧乾燥させ、当該溶媒をさらに蒸発させる方法が挙げられる。
Step (vii): Each component of the rewritable hologram recording material of the present invention containing the copolymer and carbazole azobenzene molecules obtained in step (vi) is dissolved in a solvent having a boiling point of 100 ° C. or more and applied. Obtaining a solution;
Step (viii): A step of preparing a thin-film rewritable hologram recording material by applying the coating solution obtained in the step (vii) onto a substrate and removing the solvent. Here, the method for removing the solvent is not particularly limited, but for example, a method for obtaining a cast film on a plate, specifically, casting a solution in which each component is dissolved on a glass plate, Thereafter, the solvent is evaporated at room temperature, followed by natural drying overnight, followed by vacuum drying at a high temperature using a vacuum dryer or the like to further evaporate the solvent.
 また、溶媒を留去した後、例えば四隅にスペーサー(例えばポリイミド、厚さ:50μm)を配置して、その後もう一枚のガラス基材を上に乗せ、適度な熱(温度)をかけながら真空プレス機で圧着することによって、サンドイッチ型の書き換え型ホログラム記録材料を調製することもできる。 In addition, after the solvent is distilled off, spacers (for example, polyimide, thickness: 50 μm) are arranged at the four corners, for example, and another glass substrate is placed thereon, and vacuum is applied while applying appropriate heat (temperature). A sandwich-type rewritable hologram recording material can also be prepared by pressure bonding with a press.
 [実施形態2:記録媒体]
 本発明の実施形態2に係る記録媒体は、ホログラム記録素子を有する記録媒体であって、上記ホログラム記録素子は、本発明の実施形態1に係る書き換え型ホログラム記録材料を含有することを特徴とする。具体的には、本発明の実施形態2に係る記録媒体は、本発明の実施形態1に係る書き換え型ホログラム記録材料を、ガラスなどの透明板により挟み込む形でシート状に膜化して形成したホログラム記録素子を含有する。従って、本発明の記録媒体は、光応答性およびメモリ性の双方に優れる書き換え型ホログラム記録材料をホログラム記録素子として含有しており、ホログラムを記録するときの立ち上がり時間が短く、かつ、ホログラム記録の長期保存が可能である。なお、本発明の記録媒体の製造方法としては、ホログラム記録素子として、本発明の実施形態1に係る書き換え型ホログラム記録材料を使用すること以外は、当業者にとって一般的な方法、例えばダイ、ドクターブレード等によるシート形成法によって製造され得る。
[Embodiment 2: Recording medium]
A recording medium according to Embodiment 2 of the present invention is a recording medium having a hologram recording element, and the hologram recording element includes the rewritable hologram recording material according to Embodiment 1 of the present invention. . Specifically, the recording medium according to Embodiment 2 of the present invention is a hologram formed by forming the rewritable hologram recording material according to Embodiment 1 of the present invention into a sheet-like film sandwiched between transparent plates such as glass. Contains a recording element. Therefore, the recording medium of the present invention contains a rewritable hologram recording material excellent in both photoresponsiveness and memory performance as a hologram recording element, has a short rise time when recording a hologram, and Long-term storage is possible. As a method for producing the recording medium of the present invention, a method common to those skilled in the art, for example, a die, a doctor, etc., except that the rewritable hologram recording material according to Embodiment 1 of the present invention is used as the hologram recording element. It can be manufactured by a sheet forming method using a blade or the like.
 [実施形態3:ホログラムの記録・消去方法]
 本発明の実施形態3に係るホログラムの記録・消去方法は、書き換え型ホログラム記録材料を含有するホログラム記録素子内で、空間光変調器(SLM)上の縞模様のパターンを1光束のレーザー光を用いて、あるいは、可干渉な物体光および参照光を干渉させること(2光束干渉)により、当該ホログラム記録素子内に干渉縞を形成させ、上記ホログラム記録素子にホログラムを記録する工程および偏光照射によって当該ホログラムを消去する工程を含むホログラムの記録・消去方法であって、上記書き換え型ホログラム記録材料が、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体、および、上記共重合体に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子をさらに含有する材料からなるホログラム記録素子に対して、少なくとも当該ホログラムを消去する工程を円偏光の照射によって行うことを特徴とする。
[Embodiment 3: Hologram Recording / Erasing Method]
In the hologram recording / erasing method according to Embodiment 3 of the present invention, a stripe pattern on a spatial light modulator (SLM) is converted into a single beam of laser light in a hologram recording element containing a rewritable hologram recording material. Or by causing a coherent object beam and reference beam to interfere (two-beam interference) to form interference fringes in the hologram recording element, and recording the hologram on the hologram recording element, and by applying polarized light. A hologram recording / erasing method including a step of erasing the hologram, wherein the rewritable hologram recording material is a copolymer obtained by introducing carbazole azobenzene into a part of a side chain of an acrylic polymer, and the above The same or different carbazole azobenzene as the above carbazole azobenzene introduced into the copolymer The hologram recording element made of a material that further contains molecules, characterized in that at least a step of erasing the hologram by irradiation of circularly polarized light.
 上記アクリル系ポリマーは、1種類であってもよく、2種類以上であってもよい。 The acrylic polymer may be one type or two or more types.
 上記カルバゾールアゾベンゼンは、1種類であってもよく、2種類以上であってもよい。また、上記カルバゾールアゾベンゼン分子もまた、1種類であってもよく、2種類以上であってもよい。 The carbazole azobenzene may be one kind or two or more kinds. Further, the carbazole azobenzene molecule may also be one kind or two or more kinds.
 本発明のホログラムの記録・消去方法における、空間光変調器(SLM)は、“光変調素子”と呼ばれる微小素子を2次元的に複数並べて、光源からの光の振幅、位相、偏光などの空間的な分布を電気的に制御することにより、光を変調させる機器である。上記空間光変調器(SLM)としては、例えば、Holoeye社やHamatsu Photonicsの製品などが挙げられる。 In the hologram recording and erasing method of the present invention, the spatial light modulator (SLM) is a two-dimensional array of microelements called “light modulation elements”, and a space such as the amplitude, phase, and polarization of light from the light source. It is a device that modulates light by electrically controlling the general distribution. Examples of the spatial light modulator (SLM) include products of Holoeye and Hamatsu Photonics.
 本発明のホログラムの記録・消去方法において、記録されたホログラムの消去は、ホログラムの記録に使用する物体光および参照光のいずれか一方と位相が同一の円偏光を、当該ホログラムが記録された記録素子に照射することによって行われる。 In the hologram recording and erasing method of the present invention, the recorded hologram is erased by recording circularly polarized light having the same phase as either the object light or the reference light used for recording the hologram. This is done by irradiating the element.
 本発明のホログラムの記録・消去方法において、書き換え型ホログラム記録材料は、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体と、上記共重合体の側鎖に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子をさらに含有する材料からなるホログラム記録素子であり、すなわち、本発明の実施形態1に係る書き換え型ホログラム記録材料である。 In the hologram recording / erasing method of the present invention, the rewritable hologram recording material is introduced into a copolymer formed by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer, and into the side chain of the copolymer. The hologram recording element is made of a material further containing the same kind or different kind of carbazole azobenzene molecule as the carbazole azobenzene, that is, the rewritable hologram recording material according to Embodiment 1 of the present invention.
 なお、上述のアクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体およびカルバゾールアゾベンゼン分子については、本発明の実施形態1に係る書き換え型ホログラム記録材料における共重合体およびカルバゾールアゾベンゼン分子と同様の共重合体および分子であり得る。 The copolymer and carbazole azobenzene molecule obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer described above are the copolymer and carbazole in the rewritable hologram recording material according to Embodiment 1 of the present invention. Copolymers and molecules similar to azobenzene molecules can be used.
 また、上述のアクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体は、上記[書き換え型ホログラム記録材料の製造方法]における工程(1)に記載された工程にて調製され得る。さらに、上述のアクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体およびカルバゾールアゾベンゼン分子を含有する書き換え型ホログラム記録材料は、上の[書き換え型ホログラム記録材料の製造方法]に記載の方法に従って、製造され得る。 Further, a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer is prepared in the step described in step (1) in the above [Method for producing rewritable hologram recording material]. Can be done. Furthermore, a rewritable hologram recording material containing a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the above-mentioned acrylic polymer and a carbazole azobenzene molecule is the above [Method for producing rewritable hologram recording material]. Can be produced according to the method described in 1).
 本発明のホログラムの記録・消去方法は、少なくともホログラムを消去する工程を円偏光の照射によって行うことによって、ホログラムの消去に必要な時間を短縮し、当該消去後の再度の記録における応答速度、回折効率の低下を防ぐことができる。 The hologram recording / erasing method of the present invention reduces the time required for erasing the hologram by performing at least the hologram erasing step by irradiation with circularly polarized light, and the response speed and diffraction in the re-recording after the erasing. A decrease in efficiency can be prevented.
 記録したホログラムの消去を直線偏光の照射により行う場合、消去のための直線偏光の照射によりホログラム記録材料中のフォトクロミック性を有する分子または基の配向が固定されてしまい、当該消去と再度の記録を繰り返すことにより、回折効率が徐々に低下して、応答速度が低下し、再記録可能な状態にするためには長時間の光照射や熱を加えることが必要となると考えられる。 When erasing a recorded hologram by irradiation with linearly polarized light, the alignment of the molecules or groups having photochromic properties in the hologram recording material is fixed by irradiation with linearly polarized light for erasure, and the erasure and recording are performed again. By repeating, it is considered that the diffraction efficiency is gradually lowered, the response speed is lowered, and it is necessary to apply light irradiation and heat for a long time in order to obtain a re-recordable state.
 一方、記録したホログラムの消去を円偏光の照射により行う場合には、ホログラム記録材料中のフォトクロミック性を有する分子または基の配向がランダム化し、当該配向が固定化されないことから、上述のような回折効率の低下、応答速度の低下を防ぎ、再記録が可能な状態となるまでの時間を短縮させることができると考えられる。しかし、詳細なことは、これからのより詳細な動作解明を待たねばならない。 On the other hand, when the recorded hologram is erased by irradiation with circularly polarized light, the orientation of molecules or groups having photochromic properties in the hologram recording material is randomized and the orientation is not fixed. It is considered that it is possible to prevent a decrease in efficiency and a decrease in response speed and to shorten a time until a re-recording is possible. However, as for details, we have to wait for more detailed elucidation of the operation in the future.
 本発明のホログラムの記録・消去方法においては、ホログラムの消去だけでなく、ホログラムの記録においても、円偏光の照射により行うことが好ましい。ホログラムの記録を円偏光の照射により行うことは、同じ時間の直線偏光の照射によるホログラムの記録と比較して、回折効率を約2~5倍に向上させることができるため、より明るく、より明確なホログラムを記録することができる面において好ましい。 In the hologram recording / erasing method of the present invention, it is preferable to perform not only hologram erasing but also hologram recording by irradiation with circularly polarized light. Performing hologram recording by applying circularly polarized light can improve diffraction efficiency by about 2 to 5 times compared to recording hologram by linearly polarized light at the same time, making it brighter and clearer. It is preferable in terms of recording a simple hologram.
 また、本発明のホログラムの記録・消去方法は、記録したホログラムを再生する工程を含み得る。上記記録したホログラムを再生する工程は、ホログラムを記録した記録素子に対して、上記参照光と同位相の読み取り光(偏光)を照射することによって行われる。上記読み取り光は、円偏光であることが好ましい。上記再生する工程において生じるホログラムの像を表す回折光の回折点の数が、直線偏光を使用する場合は複数確認されるのに対して、円偏光を使用する場合には1つのみ確認され、当該回折光の強度も、円偏光を使用した場合の方が大きくなる。従って、上記読み取り光が円偏光であることは、再生されるホログラムがより明るく、より明確となる面において好ましい。 Further, the hologram recording / erasing method of the present invention may include a step of reproducing the recorded hologram. The step of reproducing the recorded hologram is performed by irradiating the recording element on which the hologram is recorded with reading light (polarized light) having the same phase as the reference light. The reading light is preferably circularly polarized light. The number of diffraction points of the diffracted light representing the hologram image generated in the reproducing step is confirmed when using linearly polarized light, whereas only one is confirmed when using circularly polarized light, The intensity of the diffracted light is also greater when circularly polarized light is used. Therefore, it is preferable that the reading light is circularly polarized in terms of a brighter and clearer reproduced hologram.
 [実施形態4:ホログラム記録装置]
 本発明の実施形態4に係るホログラム記録装置は、本発明の実施形態3に係るホログラムの記録・消去方法を行うために、2光束干渉によるホログラムの記録・消去方法を使用するためのホログラム記録装置であって、少なくとも上記消去する工程において、円偏光用素子を通して、上記ホログラム記録素子に対して、円偏光を照射する機構を備えることを特徴とする。
[Embodiment 4: Hologram recording apparatus]
A hologram recording apparatus according to Embodiment 4 of the present invention uses a hologram recording / erasing method based on two-beam interference to perform the hologram recording / erasing method according to Embodiment 3 of the present invention. Then, at least in the erasing step, a mechanism for irradiating circularly polarized light to the hologram recording element through the circularly polarizing element is provided.
 本発明のホログラム記録装置は、少なくとも記録したホログラムを消去する工程において、円偏光用素子を通して、ホログラム記録素子に対して、円偏光を照射する機構を備える以外は、本発明の属する分野において通常使用されるホログラム記録装置と同様のホログラム記録装置であり得る。 The hologram recording apparatus of the present invention is normally used in the field to which the present invention belongs, except that it includes a mechanism for irradiating the hologram recording element with circularly polarized light through the circularly polarizing element at least in the process of erasing the recorded hologram. The hologram recording apparatus can be the same as the hologram recording apparatus to be used.
 すなわち、本発明のホログラム記録装置は、書き換え型ホログラム記録材料からなるホログラム記録素子、当該ホログラム記録素子に対して、可干渉な物体光および参照光を照射して、当該ホログラム記録素子内に干渉縞を形成し、当該ホログラムを記録する機構、当該ホログラムが記録された記録素子に円偏光を照射することによって当該ホログラムを消去する機構を含む。また、本発明のホログラム記録装置は、当該ホログラムが記録された記録素子に読み取り光を照射して記録された当該ホログラムを再生する機構をさらに含み得る。 That is, the hologram recording apparatus of the present invention includes a hologram recording element made of a rewritable hologram recording material, irradiating the hologram recording element with coherent object light and reference light, and interference fringes in the hologram recording element. And a mechanism for recording the hologram, and a mechanism for erasing the hologram by irradiating the recording element on which the hologram is recorded with circularly polarized light. In addition, the hologram recording apparatus of the present invention may further include a mechanism for reproducing the recorded hologram by irradiating the recording element on which the hologram is recorded with reading light.
 上記記録されたホログラムを消去する機構は、直線偏光のレーザー光源などを円偏光に変換し、円偏光を得るための部材を備える。上記円偏光を得るための部材は、特に限定されないが、例えば、λ/4板(1/4波長板)、位相差板などが挙げられ、設置の簡易性などの観点からλ/4板が好ましい。 The mechanism for erasing the recorded hologram includes a member for obtaining linearly polarized light by converting a linearly polarized laser light source or the like into circularly polarized light. The member for obtaining the circularly polarized light is not particularly limited, and examples thereof include a λ / 4 plate (¼ wavelength plate), a phase difference plate, and the like. From the viewpoint of easy installation, the λ / 4 plate is used. preferable.
 また、本発明のホログラム記録装置は、ホログラムを記録する機構においても、ホログラム記録素子に対して、円偏光を得るための部材を備え得る。なお、ホログラムを記録する機構における円偏光を得るための部材は、記録したホログラムを消去する機構における円偏光を得るための部材と同様の部材を使用することができる。 Also, the hologram recording apparatus of the present invention can include a member for obtaining circularly polarized light with respect to the hologram recording element even in the mechanism for recording the hologram. In addition, the member for obtaining the circularly polarized light in the mechanism for recording the hologram can be the same member as the member for obtaining the circularly polarized light in the mechanism for erasing the recorded hologram.
 さらに、本発明のホログラム記録装置は、ホログラムが記録された記録素子に読み取り光(偏光)を照射して、記録されたホログラムを再生する機構を備え得る。さらに加えて、上記記録されたホログラムを再生する機構において、上記読み取り光として円偏光を得るための部材を備えることが好ましい。なお、記録したホログラムを再生する機構における円偏光を得るための部材も、記録したホログラムを消去する機構における円偏光を得るための部材と同様の部材を使用することができる。 Furthermore, the hologram recording apparatus of the present invention may include a mechanism for reproducing the recorded hologram by irradiating the recording element on which the hologram is recorded with reading light (polarized light). In addition, the mechanism for reproducing the recorded hologram preferably includes a member for obtaining circularly polarized light as the reading light. The member for obtaining circularly polarized light in the mechanism for reproducing the recorded hologram can be the same member as the member for obtaining circularly polarized light in the mechanism for erasing the recorded hologram.
 なお、上述の各機構における、光を照射する部材などの各部材は、本発明の属する分野において一般的な部材を使用することができる。 In addition, each member such as a member that irradiates light in each of the above-described mechanisms can be a member that is common in the field to which the present invention belongs.
 本発明のホログラム記録装置におけるホログラムを記録する機構は、例えば、直線偏光または円偏光を使用して2光束干渉を行う機構が挙げられる。 The mechanism for recording a hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism that performs two-beam interference using linearly polarized light or circularly polarized light.
 本発明のホログラム記録装置における記録したホログラムを消去する機構は、例えば、1光束の円偏光を照射する機構が挙げられる。 The mechanism for erasing the recorded hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism for irradiating one beam of circularly polarized light.
 本発明のホログラム記録装置における記録したホログラムを再生する機構は、例えば、1光束の、直線偏光または円偏光を照射する機構が挙げられる。 The mechanism for reproducing the recorded hologram in the hologram recording apparatus of the present invention includes, for example, a mechanism for irradiating linearly polarized light or circularly polarized light with one light beam.
 ここで、本発明のホログラム記録装置の構成に関して、図7を挙げて具体的に説明する。図7は、本発明のホログラム記録装置の概略の構成を示す図である。 Here, the configuration of the hologram recording apparatus of the present invention will be specifically described with reference to FIG. FIG. 7 is a diagram showing a schematic configuration of the hologram recording apparatus of the present invention.
 本発明のホログラム記録装置の一例である、ホログラム記録・再生・消去装置は、ホログラム像を記録かつ表示させるホログラフィック表示デバイス(Sample)と、物体光および参照光をホログラフィック表示デバイスに照射することによりホログラム像を記録する記録手段(消去手段)と、プローブ光をホログラフィック表示デバイスに照射することにより、記録手段で記録されたホログラム像を再生する再生手段とで主に構成されている。なお、本明細書において「手段」は「装置」または「機構」を意図している。 A hologram recording / reproducing / erasing apparatus, which is an example of a hologram recording apparatus of the present invention, irradiates a holographic display device (Sample) for recording and displaying a hologram image, and object light and reference light to the holographic display device. The recording means (erasing means) for recording the hologram image by the above and the reproducing means for reproducing the hologram image recorded by the recording means by irradiating the holographic display device with the probe light. In this specification, “means” is intended to be “apparatus” or “mechanism”.
 ホログラム像を記録する記録手段は、レーザーを発振するレーザー発振器1と、このレーザー発振器1から発振されたレーザービームを反射させる第1の固定ミラー2と、この第1の固定ミラー2で反射したレーザービームの光軸上に配置された第1の半波長板3と、この第1の半波長板3を通過したレーザービームを分割してp-偏光とs-偏光の第1および第2の偏光レーザービームとするビームスプリッター4と、第1の偏光レーザービームの光軸上に配置された第2の半波長板5と、1/4波長板6と、この第2の半波長板と第1の1/4波長板6を通過して円偏光された第1の偏光レーザービームを反射させる第2の固定ミラー7とを含み、上記ホログラム像を記録する記録手段において、当該第2の固定ミラー7により反射された、円偏光された第1の偏光レーザービームが、物体光としてホログラフィック表示デバイス(Sample)に照射される。また、上記ホログラム像を記録する記録手段は、第2の偏光レーザービームの光軸上に第2の1/4波長板8と、当該第2の1/4波長板8を通過して円偏光された第2の偏光レーザービームを反射させる第3の固定ミラー9を含み、上記ホログラム像を記録する記録手段において、当該第3の固定ミラー9にて反射された、円偏光された第2の偏光レーザービームが、参照光としてホログラフィック表示デバイス(Sample)に照射される。すなわち、レーザー発振器1から発振されたレーザービームは円偏光された第1の偏光レーザービーム(物体光)と円偏光された第2の偏光レーザービーム(参照光)に分割される。 The recording means for recording the hologram image includes a laser oscillator 1 that oscillates a laser, a first fixed mirror 2 that reflects a laser beam oscillated from the laser oscillator 1, and a laser that is reflected by the first fixed mirror 2. A first half-wave plate 3 disposed on the optical axis of the beam, and a first and second polarization of p-polarized light and s-polarized light by dividing the laser beam that has passed through the first half-wave plate 3 A beam splitter 4 as a laser beam, a second half-wave plate 5 arranged on the optical axis of the first polarized laser beam, a quarter-wave plate 6, the second half-wave plate and the first In the recording means for recording the hologram image, the second fixed mirror includes a second fixed mirror 7 that reflects the circularly polarized first polarized laser beam that passes through the quarter wavelength plate 6 Reflected by 7 Was first polarized laser beam circularly polarized is irradiated to the holographic display device (Sample) as object light. The recording means for recording the hologram image includes a second quarter-wave plate 8 on the optical axis of the second polarized laser beam, and circularly polarized light passing through the second quarter-wave plate 8. In the recording means for recording the hologram image, the second circularly polarized light reflected by the third fixed mirror 9 is included in the recording means for recording the hologram image. A polarized laser beam is applied to a holographic display device (Sample) as reference light. That is, the laser beam oscillated from the laser oscillator 1 is divided into a circularly polarized first polarized laser beam (object light) and a circularly polarized second polarized laser beam (reference light).
 そして、物体光が参照光と共にホログラフィック表示デバイスに照射され、物体光に含まれる空間的な強度分布及び位相分布を干渉縞として、物体光の空間情報が、ホログラフィック表示デバイスに記録される。 Then, the object light is irradiated onto the holographic display device together with the reference light, and the spatial information of the object light is recorded in the holographic display device using the spatial intensity distribution and phase distribution included in the object light as interference fringes.
 記録されたホログラム像を再生する再生手段は、レーザーを発振するレーザー発振器10と、レーザー発振装置10から発振されたレーザービームの光軸上に配置されたプローブ光用半波長板11と、プローブ光用半波長板11を通過したレーザービームを反射させる第4の固定ミラー12とで構成されている。レーザー発振器10から発振されたレーザービームは、プローブ光用半波長板11でp-偏光に変換され、第4の固定ミラー12で反射される。そして、記録手段によって書き込まれた(記録された)空間情報は、p-偏光のプローブ光でホログラム像として読み出され、再生される。 The reproducing means for reproducing the recorded hologram image includes a laser oscillator 10 that oscillates a laser, a half-wave plate 11 for probe light arranged on the optical axis of the laser beam oscillated from the laser oscillation device 10, and probe light. The fourth fixed mirror 12 reflects the laser beam that has passed through the half-wave plate 11 for use. The laser beam oscillated from the laser oscillator 10 is converted into p-polarized light by the probe light half-wave plate 11 and reflected by the fourth fixed mirror 12. Then, the spatial information written (recorded) by the recording means is read out as a hologram image with p-polarized probe light and reproduced.
 ホログラムの消去時には、メカニカルシャッターが閉じることによって物体光を遮断し、円偏光された参照光が消去光として用いられる。また、次に書き込む上書き用のホログラム像の物体光と参照光を、消去光として用いてもよい。 When erasing the hologram, the object light is blocked by closing the mechanical shutter, and the circularly polarized reference light is used as the erasing light. Further, the object beam and the reference beam of the overwritten hologram image to be written next may be used as the erasing beam.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 [A:書き換え型ホログラム記録材料]
 [製造例1]
 以下のスキームに従って、ベンゼン環のパラ位にシアノ基が配位したカルバゾールアゾベンゼン(CACzE)(下記スキームの左図を参照)を、ポリメチルメタクリレート(PMMA)の側鎖の一部に導入した共重合体(Poly(CACzE-MMA))(下記スキームの右図を参照)を調製した。
[A: Rewriteable hologram recording material]
[Production Example 1]
In accordance with the following scheme, a carbazole azobenzene (CACzE) in which a cyano group is coordinated to the para-position of the benzene ring (see the left figure of the following scheme) is introduced into a part of the side chain of polymethyl methacrylate (PMMA). A union (Poly (CACzE-MMA)) (see the right figure of the scheme below) was prepared.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 具体的な方法は以下の通りである。 The specific method is as follows.
 ・アクリル酸-2-[3-(4-シアノ-フェニラゾ)-カルバゾール-9-イル]-エチルエステル(CACzE-MMA)(上記スキームの中央図を参照)の合成
 CACzE1.97g(5.79mmol)をTHF80mLに溶解し、0℃に冷却した状態で撹拌し、DMAP0.042g(0.34mmol)およびトリエチルアミン1.26g(12.45mmol)を加えた。そこにアクリロイルクロライド1mL(12.36mmol)を0℃以下に保ちながら、15分毎に4回滴下した。反応混合液を攪拌しながら室温(20~25℃付近)まで戻し、一晩撹拌した。撹拌終了後、減圧下で反応混合液から溶媒を除去し、得られた粗体をクロロホルムに溶解した。これを飽和炭酸水素ナトリウム水溶液および蒸留水で数回洗浄し、無水硫酸マグネシウムで乾燥させた.その後、吸引濾過を行い、減圧下で濾液から溶媒を留去し、橙色の粉末(収率87.6%)を得た。
Synthesis of acrylic acid-2- [3- (4-cyano-phenylazo) -carbazol-9-yl] -ethyl ester (CACzE-MMA) (see central diagram in the above scheme) CACzE 1.97 g (5.79 mmol) Was dissolved in 80 mL of THF and stirred while being cooled to 0 ° C., and 0.042 g (0.34 mmol) of DMAP and 1.26 g (12.45 mmol) of triethylamine were added. Thereto, 1 mL (12.36 mmol) of acryloyl chloride was added dropwise every 15 minutes while keeping the temperature below 0 ° C. The reaction mixture was returned to room temperature (around 20-25 ° C.) with stirring and stirred overnight. After completion of the stirring, the solvent was removed from the reaction mixture under reduced pressure, and the resulting crude product was dissolved in chloroform. This was washed several times with a saturated aqueous sodium bicarbonate solution and distilled water, and dried over anhydrous magnesium sulfate. Thereafter, suction filtration was performed, and the solvent was distilled off from the filtrate under reduced pressure to obtain an orange powder (yield 87.6%).
 得られた橙色の粉末に対して、NMR測定(核磁気共鳴装置AV-300製を使用)を行い、分子構造の同定を行った。その結果、CACzE-MMAが合成されたことが確認された。
NMR測定:使用溶媒CDCl、磁場300MHz
測定結果:8.73 (bs, 1H, carbazole ring), 8.16 (m, 2H, carbazole ring), 8.02 (m, 2H, PhCN ring), 7.82 (m, 2H, PhCN ring), 7.55 (m, 3H, carbazole ring), 7.32 (m, 1H, carbazole ring), 4.00-4.82 (m, 4H, CH2CH2O), 3.47-3.99 (m, 3H,COOCH3), 1.71-2.00 (m, 3H, CH3)ppm] 。
The obtained orange powder was subjected to NMR measurement (using a nuclear magnetic resonance apparatus AV-300) to identify the molecular structure. As a result, it was confirmed that CACzE-MMA was synthesized.
NMR measurement: solvent CDCl 3 used, magnetic field 300 MHz
Measurement results: 8.73 (bs, 1H, carbazole ring), 8.16 (m, 2H, carbazole ring), 8.02 (m, 2H, PhCN ring), 7.82 (m, 2H, PhCN ring), 7.55 (m, 3H, carbazole ring), 7.32 (m, 1H, carbazole ring), 4.00-4.82 (m, 4H, CH 2 CH 2 O), 3.47-3.99 (m, 3H, COOCH 3 ), 1.71-2.00 (m, 3H, CH 3 ) ppm].
 ・Poly(CACzE-MMA)の合成
 CACzE-MMA0.5gを乾燥DMF20mlに溶解させ、この溶液にMMA1.17gおよびAIBN0.03gを加えた。この混合溶液中の酸素を取り除くため、液体窒素を用いて凍結脱気を4回行った。凍結脱気後、60℃で15時間攪拌し、室温(20~25℃)まで液温を戻して共重合反応を停止させた。得られたDMF溶液を500mlのメタノールに滴下し、共重合物を再沈澱させて濾別回収した。この操作を再度(合計2回)繰り返し、乾燥を行い共重合物0.81g(収率66.4%)を得た。
Synthesis of Poly (CACzE-MMA) 0.5 g of CACzE-MMA was dissolved in 20 ml of dry DMF, and 1.17 g of MMA and 0.03 g of AIBN were added to this solution. In order to remove oxygen in the mixed solution, freeze deaeration was performed four times using liquid nitrogen. After freeze degassing, the mixture was stirred at 60 ° C. for 15 hours, the liquid temperature was returned to room temperature (20 to 25 ° C.), and the copolymerization reaction was stopped. The obtained DMF solution was added dropwise to 500 ml of methanol, and the copolymer was reprecipitated and recovered by filtration. This operation was repeated again (2 times in total) and dried to obtain 0.81 g of copolymer (yield 66.4%).
 DSC測定より得られた共重合体のガラス転移温度は103℃、GPC測定より重量平均分子量は18,660g/mol、分散度は1.58であった。なお、DSC測定は、TAインスツルメンツ社製のDSC2920を使用して行い、GPC測定は、昭和電工製のショウデックスGPC KF-805を使用して行った。 The glass transition temperature of the copolymer obtained by DSC measurement was 103 ° C., the weight average molecular weight was 18,660 g / mol, and the degree of dispersion was 1.58 by GPC measurement. DSC measurement was performed using DSC2920 manufactured by TA Instruments, and GPC measurement was performed using Showdex GPC KF-805 manufactured by Showa Denko.
 ここではベンゼン環のパラ位にシアノ基が配位したものを調製しているが、上述したように、ベンゼン環のパラ位に配位する置換基として、シアノ基(-CN)以外には、ニトロ基(-NO)、メトキシ基(-OCH)、アミノ基(-NH)、ヒドロキシ基(-OH)などを用いることができる。上記カルバゾールアゾベンゼンとしては、上記置換基が、ニトロ基、シアノ基またはメトキシ基である構造を備えるカルバゾールアゾベンゼンが好ましく、シアノ基またはメトキシ基である構造を備えるカルバゾールアゾベンゼンがより好ましい。なお、上記カルバゾールアゾベンゼンは、1種類でもよいし、2種類以上でもよい。 Here, a cyano group coordinated to the para-position of the benzene ring is prepared, but as described above, as a substituent coordinated to the para-position of the benzene ring, other than the cyano group (—CN), A nitro group (—NO 2 ), a methoxy group (—OCH 3 ), an amino group (—NH 2 ), a hydroxy group (—OH), or the like can be used. As the carbazole azobenzene, carbazole azobenzene having a structure in which the substituent is a nitro group, a cyano group, or a methoxy group is preferable, and carbazole azobenzene having a structure in which the substituent is a cyano group or a methoxy group is more preferable. The carbazole azobenzene may be one type or two or more types.
 また、ここではアクリル系ポリマーとして、ポリメチルメタクリレート(PMMA)を用いたが、上述したようにポリエチルメタクリレート(PEMA)およびポリメチルアクリレート(PMA)等のうちの1種類以上のアクリル系ポリマーを用いることもできる。 Here, polymethyl methacrylate (PMMA) is used as the acrylic polymer, but as described above, one or more acrylic polymers of polyethyl methacrylate (PMMA), polymethyl acrylate (PMA), and the like are used. You can also.
 [実施例1]
 [書き換え型ホログラム記録材料の調製]
 製造例1にて得られたPoly(CACzE-MMA)と、CACzEとを、重量比50:5にて混合し、得られた混合物をTHFに溶解させてキャスト溶液を得た。当該キャスト溶液をシャーレ(製品名:TOP製ガラスシャーレ)上に流延し、その後、室温(25℃)にて48時間放置し、溶媒(THF)を蒸発させ、均一な膜を得た。続いて、上記均一な膜をさらに一晩自然乾燥させた後、減圧乾燥器内において、約80℃の温度にて、減圧乾燥を行い、さらに溶媒(THF)を蒸発させた。その後、得られた膜の四隅にスペーサー(例えばポリイミド、厚さ:50μm)を配置して、その後もう一枚のガラス基材(ガラス板(製品名:テンパックス耐熱ガラス))をその上に乗せ、適度な熱(温度)をかけながら真空プレス機で圧着して、均一な膜厚を有するサンドイッチ型の書き換え型ホログラム記録材料1を調製した。上記書き換え型ホログラム記録材料1の膜厚を、マイクロメーターを用いて測定した結果、当該膜厚は、80μmであった。
[Example 1]
[Preparation of rewritable hologram recording material]
Poly (CACzE-MMA) obtained in Production Example 1 and CACzE were mixed at a weight ratio of 50: 5, and the resulting mixture was dissolved in THF to obtain a cast solution. The cast solution was cast on a petri dish (product name: glass petri dish made from TOP) and then allowed to stand at room temperature (25 ° C.) for 48 hours to evaporate the solvent (THF) to obtain a uniform film. Subsequently, the uniform film was further air-dried overnight, and then dried under reduced pressure at a temperature of about 80 ° C. in a vacuum drier to further evaporate the solvent (THF). Thereafter, spacers (for example, polyimide, thickness: 50 μm) are arranged at the four corners of the obtained film, and then another glass substrate (glass plate (product name: Tempax heat-resistant glass)) is placed thereon. The sandwich-type rewritable hologram recording material 1 having a uniform film thickness was prepared by pressure bonding with a vacuum press machine while applying appropriate heat (temperature). As a result of measuring the film thickness of the rewritable hologram recording material 1 using a micrometer, the film thickness was 80 μm.
 また、得られた書き換え型ホログラム記録材料1における、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基と、上記カルバゾールアゾベンゼン分子との合計のモル濃度が、9.7×10-4mol/gであった。また、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する上記カルバゾールアゾベンゼン分子のモル比率は、0.38であった。 Further, in the obtained rewritable hologram recording material 1, and a group derived from a carbazole azobenzene contained in the copolymer, the molar concentration of the total of the carbazole azobenzene molecule, 9.7 × 10 -4 mol / g Met. The molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 0.38.
 [立ち上がり速度、メモリ性の測定]
 得られた書き換え型ホログラム記録材料をホログラム記録素子として使用し、ホログラム記録装置を使用して、以下の条件にて光を20秒間照射して、ホログラムの記録を行い、回折効率を、フォト検出器を用いて測定した。光照射を開始してからの時間と回折効率との関係を図1に示す。また、回折効率と記録ホログラムの保持特性(メモリ特性)の時間経過推移を図2に示す。
・測定条件
用いたレーザー:25mW/532nm
物体光、参照光:波長532nm、強度0.535W/cm
[Measurement of rising speed and memory]
The obtained rewritable hologram recording material is used as a hologram recording element, and a hologram recording apparatus is used to irradiate light for 20 seconds under the following conditions to record a hologram. It measured using. The relationship between the time after the start of light irradiation and the diffraction efficiency is shown in FIG. In addition, FIG. 2 shows the time course of diffraction efficiency and recording hologram retention characteristics (memory characteristics).
・ Laser used in measurement conditions: 25 mW / 532 nm
Object light, reference light: wavelength 532 nm, intensity 0.535 W / cm 2 .
 [実施例2]
 製造例1にて得られたPoly(CACzE-MMA)と、CACzEとを重量比50:10にて混合した以外は、実施例1と同様にして書き換え型ホログラム記録材料2を調製し、その膜厚を測定した。また、当該書き換え型ホログラム記録材料2を使用して、実施例1と同様の方法にて、回折効率を測定した。光照射を開始してからの時間と回折効率およびメモリ特性との関係を図1、2に示す。
[Example 2]
A rewritable hologram recording material 2 was prepared in the same manner as in Example 1 except that Poly (CACzE-MMA) obtained in Production Example 1 and CACzE were mixed at a weight ratio of 50:10. The thickness was measured. In addition, diffraction efficiency was measured in the same manner as in Example 1 using the rewritable hologram recording material 2. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
 書き換え型ホログラム記録材料2の膜厚は、80μmであった。得られた書き換え型ホログラム記録材料2における、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基と、上記カルバゾールアゾベンゼン分子との合計のモル濃度が、1.1×10-3mol/gであった。また、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する上記カルバゾールアゾベンゼン分子のモル比率は、0.76であった。 The film thickness of the rewritable hologram recording material 2 was 80 μm. In the obtained rewritable hologram recording material 2, and groups derived from carbazole azobenzene contained in the copolymer, the molar concentration of the total of the carbazole azobenzene molecule, met 1.1 × 10 -3 mol / g It was. The molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 0.76.
 [実施例3]
 製造例1にて得られたPoly(CACzE-MMA)と、CACzEとを、MMAに由来する成分:CACzEに由来する成分=70:30となるように混合した以外は、実施例1と同様にして書き換え型ホログラム記録材料3を調製し、その膜厚を測定した。また、当該書き換え型ホログラム記録材料3を使用して、実施例1と同様の方法にて、回折効率を測定した。光照射を開始してからの時間と回折効率およびメモリ特性との関係を図1、2に示す。
[Example 3]
Except that Poly (CACzE-MMA) obtained in Production Example 1 was mixed with CACzE so that the component derived from MMA: the component derived from CACzE = 70: 30, the same as Example 1 Thus, a rewritable hologram recording material 3 was prepared, and its film thickness was measured. In addition, diffraction efficiency was measured in the same manner as in Example 1 using the rewritable hologram recording material 3. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
 書き換え型ホログラム記録材料3の膜厚は、80μmであった。得られた書き換え型ホログラム記録材料3における、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基と、上記カルバゾールアゾベンゼン分子との合計のモル濃度が、1.4×10-3mol/gであった。また、上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する上記カルバゾールアゾベンゼン分子のモル比率は、1.52であった。 The film thickness of the rewritable hologram recording material 3 was 80 μm. In the obtained rewritable hologram recording material 3, the total molar concentration of the group derived from carbazole azobenzene contained in the copolymer and the carbazole azobenzene molecule was 1.4 × 10 −3 mol / g. It was. Further, the molar ratio of the carbazole azobenzene molecule to the group derived from carbazole azobenzene contained in the copolymer was 1.52.
 [比較例1]
 製造例1にて得られたPoly(CACzE-MMA)と、CACzEとの混合物の代わりに、製造例1にて得られたPoly(CACzE-MMA)を単独で使用した以外は、実施例1と同様にして書き換え型ホログラム記録材料4を調製し、その膜厚を測定した。また、当該書き換え型ホログラム記録材料4を使用して、実施例1と同様の方法にて、回折効率を測定した。光照射を開始してからの時間と回折効率およびメモリ特性との関係を図1、2に示す。
[Comparative Example 1]
Example 1 except that Poly (CACzE-MMA) obtained in Production Example 1 was used alone instead of the mixture of Poly (CACzE-MMA) obtained in Production Example 1 and CACzE. Similarly, a rewritable hologram recording material 4 was prepared and its film thickness was measured. Further, diffraction efficiency was measured by the same method as in Example 1 using the rewritable hologram recording material 4. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
 書き換え型ホログラム記録材料4の膜厚は、82μmであった。得られた書き換え型ホログラム記録材料4における、上記共重合体に含まれる上記カルバゾールアゾベンゼンに由来する基のモル濃度は、7×10-4mol/gであった。 The film thickness of the rewritable hologram recording material 4 was 82 μm. In the obtained rewritable hologram recording material 4, the molar concentration of the group derived from the carbazole azobenzene contained in the copolymer was 7 × 10 −4 mol / g.
 [比較例2]
 製造例1にて得られたPoly(CACzE-MMA)の代わりに、ポリメチルメタクリレート(PMMA)を使用し、PMMAとCACzEとの重量比を70:30として混合した以外は、実施例1と同様にして書き換え型ホログラム記録材料5を調製し、その膜厚を測定した。また、当該書き換え型ホログラム記録材料5を使用して、実施例1と同様の方法にて、回折効率を測定した。光照射を開始してからの時間と回折効率およびメモリ特性との関係を図1、2に示す。
[Comparative Example 2]
The same as Example 1 except that polymethyl methacrylate (PMMA) was used instead of Poly (CACzE-MMA) obtained in Production Example 1 and the weight ratio of PMMA to CACzE was mixed at 70:30. Then, a rewritable hologram recording material 5 was prepared, and its film thickness was measured. Further, diffraction efficiency was measured by the same method as in Example 1 using the rewritable hologram recording material 5. 1 and 2 show the relationship between the time from the start of light irradiation, the diffraction efficiency, and the memory characteristics.
 書き換え型ホログラム記録材料5の膜厚は、80μmであった。得られた書き換え型ホログラム記録材料5における、上記アルバゾールアゾベンゼン分子のモル数は、上記アクリル系ポリマーを構成するアクリル系分子に由来する基のモル濃度は、8.8×10-4mol/gであった。 The film thickness of the rewritable hologram recording material 5 was 80 μm. In the rewritable hologram recording material 5 obtained, the number of moles of the above-mentioned carbazole azobenzene molecule is the molar concentration of the group derived from the acrylic molecule constituting the above acrylic polymer is 8.8 × 10 −4 mol / g. Met.
 [結果]
 図1の記載から、実施例1~3にて調製された、CACzE/(CACzE-MMA)共重合体からなる書き換え型ホログラム記録材料は、比較例における、(CACzE-MMA)共重合体単独からなるホログラム記録材料(比較例1)、および、CACzE分散型ホログラム記録材料(比較例2)よりも、光応答性が高く、ホログラムの記録における立ち上がり時間がより短いことが分かった。
[result]
From the description of FIG. 1, the rewritable hologram recording material comprising the CACzE / (CACzE-MMA) copolymer prepared in Examples 1 to 3 was obtained from the (CACzE-MMA) copolymer alone in the comparative example. It was found that the photoresponsiveness was higher than the hologram recording material (Comparative Example 1) and the CACzE dispersion type hologram recording material (Comparative Example 2), and the rise time in hologram recording was shorter.
 また、図2の記載から、(CACzE-MMA)共重合体単独からなるホログラム記録材料(比較例1)、および、CACzE分散型ホログラム記録材料(比較例2)は、光照射から長時間が経過すると、回折効率が低下している一方、実施例1~3にて調製された、CACzE/(CACzE-MMA)共重合体からなる書き換え型ホログラム記録材料においては、長時間が経過しても回折効率がほぼ減衰せず、メモリ性により優れていることが分かった。 In addition, from the description of FIG. 2, the hologram recording material (Comparative Example 1) and the CACzE dispersion type hologram recording material (Comparative Example 2) each consisting of a (CACzE-MMA) copolymer alone have a long time elapsed from light irradiation. Then, while the diffraction efficiency is lowered, the rewritable hologram recording material made of the CACzE / (CACzE-MMA) copolymer prepared in Examples 1 to 3 is diffracted even after a long time. It was found that the efficiency was hardly attenuated and the memory performance was superior.
 [結論]
 上述の実施例1~3、および比較例1、2の結果から、アクリル系ポリマーの側鎖の一部に、カルバゾールアゾベンゼンを導入した共重合体、および、上記共重合体に導入されているカルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有する書き換え型ホログラム記録材料は、光応答性が高く、ホログラムの記録における立ち上がり時間がより短く、かつ、メモリ性により優れていることが分かった。
[Conclusion]
From the results of Examples 1 to 3 and Comparative Examples 1 and 2 described above, a copolymer having carbazole azobenzene introduced into a part of the side chain of the acrylic polymer, and the carbazole introduced into the copolymer It has been found that a rewritable hologram recording material containing a carbazole azobenzene molecule of the same kind or different kind from azobenzene has high photoresponsiveness, a shorter rise time in hologram recording, and superior memory performance.
 [B:円偏光による消去]
 [実施例4]
 2光束干渉ホログラム記録装置を使用して、以下の条件において、ホログラム記録用の光(物体光および参照光)を記録素子であるホログラム記録材料3に50秒間照射してホログラムを記録する工程を行った後、ホログラム消去用の円偏光を当該ホログラム記録材料3に50秒間照射して、記録したホログラムを消去する工程を行った。
・測定条件
記録用の光
用いたレーザー:25mW/532nm
物体光、参照光:波長532nm、強度0.535W/cm
消去用の光:波長532nm、強度0.268W/cm
[B: Erase by circularly polarized light]
[Example 4]
Using the two-beam interference hologram recording apparatus, a hologram recording is performed by irradiating hologram recording material 3 as a recording element with hologram recording light (object light and reference light) for 50 seconds under the following conditions: After that, the hologram recording material 3 was irradiated with circularly polarized light for erasing the hologram for 50 seconds to erase the recorded hologram.
・ Laser using light for recording measurement conditions: 25 mW / 532 nm
Object light, reference light: wavelength 532 nm, intensity 0.535 W / cm 2
Erasing light: wavelength 532 nm, intensity 0.268 W / cm 2 .
 続けて、上記ホログラムを記録する工程と、上記ホログラムを消去する工程とをセットとして、上記セットを最初の1セットを含めて計5回繰り返して行い、回折効率の測定を行った。その結果得られた、最初の光照射からの時間と、回折効率との関係を図3に示す。 Subsequently, the process of recording the hologram and the process of erasing the hologram were set as a set, and the set was repeated a total of 5 times including the first set, and the diffraction efficiency was measured. FIG. 3 shows the relationship between the time from the first light irradiation and the diffraction efficiency obtained as a result.
 [実施例5]
 ホログラム消去用の円偏光を照射する時間を450秒間に延長し、上記セットを繰り返す回数を計2回とした以外は、実施例4と同様にして、回折効率の測定を行った。その結果得られた、最初の光照射からの時間と、回折効率との関係を図4に示す。
[Example 5]
Diffraction efficiency was measured in the same manner as in Example 4 except that the time for irradiating the circularly polarized light for erasing the hologram was extended to 450 seconds and the above set was repeated a total of two times. FIG. 4 shows the relationship between the time from the first light irradiation and the diffraction efficiency obtained as a result.
 [比較例3、4]
 ホログラム記録用の光およびホログラム消去用の光を以下に示す直線偏光とした以外は、実施例4、5と同様の方法において、回折効率の測定を行った。その結果得られた、最初の光照射からの時間と、回折効率との関係を図5、6に示す。
・測定条件
記録用の光
用いたレーザー:25mW/532nm
物体光、参照光:波長532nm、強度0.535W/cm
消去用の光:波長532nm、強度0.268W/cm
[Comparative Examples 3 and 4]
Diffraction efficiency was measured in the same manner as in Examples 4 and 5, except that the hologram recording light and the hologram erasing light were linearly polarized light shown below. The relationship between the time from the first light irradiation and the diffraction efficiency obtained as a result is shown in FIGS.
・ Laser using light for recording measurement conditions: 25 mW / 532 nm
Object light, reference light: wavelength 532 nm, intensity 0.535 W / cm 2
Light for erasing: wavelength 532nm, intensity of 0.268W / cm 2.
 [結果]
 図3と図5との比較から、ホログラムの消去に直線偏光を使用した場合は、上記記録と消去のセットを繰り返し行うと回折効率が徐々に低下する一方、ホログラムの消去に円偏光を使用した場合には、上記記録と消去のセットを繰り返し行った場合においても、上述の回折効率の低下が発生しないことが分かった。
[result]
From comparison between FIG. 3 and FIG. 5, when linearly polarized light is used for erasing the hologram, the diffraction efficiency gradually decreases when the above recording and erasing set is repeated, while circularly polarized light is used for erasing the hologram. In this case, it was found that the above-described decrease in the diffraction efficiency did not occur even when the recording and erasing set was repeated.
 また、図4と図6との比較から、ホログラムの消去に直線偏光を使用した場合は、消去用の光を長時間照射すると、再度ホログラムを記録するときの回折効率が低下する一方、ホログラムの消去に円偏光を使用した場合には、消去用の光を長時間照射しても、再度ホログラムを記録するときの回折効率は低下しないことが分かった。従って、ホログラムの消去に直線偏光を使用した場合は、消去用の光を長時間照射した後、1回目と同様の性能にてホログラムの再記録を行うために記録素子を長時間放置したり、加熱したりすることが必要であるが、一方、ホログラムの消去に円偏光を使用した場合には、消去用の光を長時間照射した直後から、1回目と同様の性能にてホログラムの再記録を行うことができることが分かった。 4 and 6, when linearly polarized light is used for erasing the hologram, irradiating light for erasing for a long time reduces the diffraction efficiency when recording the hologram again, It has been found that when circularly polarized light is used for erasure, the diffraction efficiency when a hologram is recorded again is not lowered even when erasing light is irradiated for a long time. Therefore, when linearly polarized light is used for erasing the hologram, after irradiating the erasing light for a long time, the recording element can be left for a long time in order to re-record the hologram with the same performance as the first time, On the other hand, when circularly polarized light is used for erasing the hologram, the hologram is rerecorded with the same performance as the first time immediately after irradiating the erasing light for a long time. It turns out that can be done.
 [結論]
 実施例4、5および比較例3、4の結果から、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入した共重合体、および、上記共重合体に導入されているカルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有する書き換え型ホログラム記録材料を含有するホログラム記録素子を使用するホログラムの記録・消去方法において、ホログラムの消去に円偏光を使用することによって、ホログラムの消去に必要な時間を短縮することができ、かつ、通常は低下する、当該消去後の再度の記録における応答速度、回折効率の低下を防ぐことができることが分かった。
[Conclusion]
From the results of Examples 4 and 5 and Comparative Examples 3 and 4, a copolymer in which carbazole azobenzene was introduced into a part of the side chain of the acrylic polymer, and the same kind of carbazole azobenzene introduced into the copolymer, or In a hologram recording / erasing method using a hologram recording element containing a rewritable hologram recording material containing different kinds of carbazole azobenzene molecules, the time required for erasing the hologram is reduced by using circularly polarized light for erasing the hologram. It has been found that the reduction in response speed and diffraction efficiency in re-recording after the erasure, which can be shortened and normally reduced, can be prevented.
 本発明のホログラム記録材料およびホログラムの記録・消去方法は、ホログラムの記録における立ち上がり速度を好適に向上させることができ、ホログラムの記録におけるメモリ性を改善することができる。また、ホログラムを消去した後の再記録を容易にすることができる。従って、ホログラムを記録するときの立ち上がり時間が短く、かつ、ホログラム記録の長期保存が可能であり、ホログラムの記録と消去を繰り返し好適に行うことができるホログラム記録装置を製造するために、好適に活用することができる。 The hologram recording material and hologram recording / erasing method of the present invention can preferably improve the rising speed in hologram recording, and can improve the memory performance in hologram recording. Further, re-recording after erasing the hologram can be facilitated. Therefore, it is suitable for use in manufacturing a hologram recording apparatus that has a short rise time when recording a hologram, can store the hologram recording for a long period of time, and can repeatedly record and erase the hologram. can do.
 1 レーザー発振器
 2 第1の固定ミラー
 3 第1の半波長板
 4 ビームスプリッター
 5 第2の半波長板
 6 第1の1/4波長板
 7 第2の固定ミラー
 8 第2の1/4波長板
 9 第3の固定ミラー
10 レーザー発振器
11 プローブ光用半波長板
12 第4の固定ミラー
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 1st fixed mirror 3 1st half wave plate 4 Beam splitter 5 2nd half wave plate 6 1st 1/4 wavelength plate 7 2nd fixed mirror 8 2nd 1/4 wavelength plate 9 Third fixed mirror 10 Laser oscillator 11 Half-wave plate for probe light 12 Fourth fixed mirror

Claims (14)

  1.  アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体、および、
     上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子を含有することを特徴とする、書き換え型ホログラム記録材料。
    (ここで、カルバゾールアゾベンゼンは、以下の式(1)にて表される。)
    Figure JPOXMLDOC01-appb-C000001
    A copolymer obtained by introducing carbazole azobenzene into a part of the side chain of the acrylic polymer; and
    A rewritable hologram recording material comprising a carbazole azobenzene molecule of the same kind or different from the carbazole azobenzene.
    (Here, carbazole azobenzene is represented by the following formula (1).)
    Figure JPOXMLDOC01-appb-C000001
  2.  上記カルバゾールアゾベンゼンが、上記式(1)におけるXがシアノ基、ニトロ基またはメトキシ基であるカルバゾールアゾベンゼンである、請求項1に記載の書き換え型ホログラム記録材料。 The rewritable hologram recording material according to claim 1, wherein the carbazole azobenzene is carbazole azobenzene in which X in the formula (1) is a cyano group, a nitro group or a methoxy group.
  3.  上記共重合体の側鎖に導入されているカルバゾールアゾベンゼンと、上記カルバゾールアゾベンゼン分子とが同種である、請求項1または2に記載の書き換え型ホログラム記録材料。 The rewritable hologram recording material according to claim 1 or 2, wherein the carbazole azobenzene introduced into the side chain of the copolymer and the carbazole azobenzene molecule are of the same kind.
  4.  上記アクリル系ポリマーが、ポリメチルメタクリレート、ポリエチルメタクリレートおよびポリメチルアクリレートからなる群から少なくとも1種選択される、請求項1~3の何れか1項に記載の書き換え型ホログラム記録材料。 The rewritable hologram recording material according to any one of claims 1 to 3, wherein the acrylic polymer is selected from the group consisting of polymethyl methacrylate, polyethyl methacrylate, and polymethyl acrylate.
  5.  上記書き換え型ホログラム記録材料に含有される上記共重合体と上記カルバゾールアゾベンゼン分子との合計重量に対する、上記共重合体に含まれる上記カルバゾールアゾベンゼンに由来する基と上記カルバゾールアゾベンゼン分子との合計のモル濃度が、5×10-4mol/g以上、2.0×10-3mol/g以下である、請求項1~4の何れか1項に記載の書き換え型ホログラム記録材料。 The total molar concentration of the group derived from the carbazole azobenzene and the carbazole azobenzene molecule contained in the copolymer with respect to the total weight of the copolymer and the carbazole azobenzene molecule contained in the rewritable hologram recording material 5. The rewritable hologram recording material according to claim 1, wherein the rewritable hologram recording material is 5 × 10 −4 mol / g or more and 2.0 × 10 −3 mol / g or less.
  6.  上記共重合体に含まれるカルバゾールアゾベンゼンに由来する基に対する、上記カルバゾールアゾベンゼン分子のモル比率が、0.5以上、2.0以下である、請求項1~5の何れか1項に記載の書き換え型ホログラム記録材料。 The rewriting according to any one of claims 1 to 5, wherein a molar ratio of the carbazole azobenzene molecule to a group derived from carbazole azobenzene contained in the copolymer is 0.5 or more and 2.0 or less. Hologram recording material.
  7.  上記共重合体の重量平均分子量が10,000以上、200,000以下である、請求項1~6の何れか1項に記載の書き換え型ホログラム記録材料。 The rewritable hologram recording material according to any one of claims 1 to 6, wherein the copolymer has a weight average molecular weight of 10,000 or more and 200,000 or less.
  8.  ホログラム記録素子を有する記録媒体であって、
     上記ホログラム記録素子は、請求項1~7の何れか1項に記載の書き換え型ホログラム記録材料を含有することを特徴とする、記録媒体。
    A recording medium having a hologram recording element,
    8. A recording medium, wherein the hologram recording element contains the rewritable hologram recording material according to any one of claims 1 to 7.
  9.  書き換え型ホログラム記録材料を含有するホログラム記録素子内で、空間光変調器(SLM)上の縞模様のパターンを1光束のレーザー光を用いて、あるいは、可干渉な物体光および参照光を干渉させること(2光束干渉)により、当該ホログラム記録素子内に干渉縞を形成させ、上記ホログラム記録素子にホログラムを記録する工程および上記ホログラム記録素子に対して偏光を照射することによって当該ホログラムを消去する工程を含むホログラムの記録・消去方法であって、
     上記書き換え型ホログラム記録材料が、アクリル系ポリマーの側鎖の一部にカルバゾールアゾベンゼンを導入してなる共重合体、および、
     上記共重合体に導入されている上記カルバゾールアゾベンゼンと同種または異種のカルバゾールアゾベンゼン分子をさらに含有する材料からなるホログラム記録素子に対して、
     少なくとも当該ホログラムを消去する工程を円偏光の照射によって行うことを特徴とする、ホログラムの記録・消去方法。
    In a hologram recording element containing a rewritable hologram recording material, a striped pattern on a spatial light modulator (SLM) is caused to interfere with a coherent object beam and reference beam using a single beam of laser beam. (Two-beam interference) to form interference fringes in the hologram recording element, record the hologram on the hologram recording element, and erase the hologram by irradiating the hologram recording element with polarized light A hologram recording / erasing method including:
    The rewritable hologram recording material is a copolymer obtained by introducing carbazole azobenzene into a part of the side chain of an acrylic polymer, and
    For a hologram recording element made of a material further containing a carbazole azobenzene molecule of the same kind or different from the carbazole azobenzene introduced into the copolymer,
    A method of recording and erasing a hologram, wherein at least the step of erasing the hologram is performed by irradiation with circularly polarized light.
  10.  上記記録する工程における上記物体光および上記参照光が、円偏光である、請求項9に記載のホログラムの記録・消去方法。 10. The hologram recording / erasing method according to claim 9, wherein the object light and the reference light in the recording step are circularly polarized light.
  11.  ホログラムを記録した上記ホログラム記録素子に対して、上記参照光と同位相の偏光を照射することによって、記録したホログラムを再生する工程をさらに含む、請求項9または10に記載のホログラムの記録・消去方法。 The hologram recording / erasing according to claim 9 or 10, further comprising a step of reproducing the recorded hologram by irradiating the hologram recording element on which the hologram is recorded with polarized light having the same phase as the reference light. Method.
  12.  上記記録したホログラムを再生する工程において、ホログラムを記録した上記ホログラム記録素子に対して照射する偏光が、円偏光である、請求項11に記載のホログラムの記録・消去方法。 12. The hologram recording / erasing method according to claim 11, wherein in the step of reproducing the recorded hologram, the polarized light applied to the hologram recording element on which the hologram is recorded is circularly polarized light.
  13.  請求項9~12の何れか1項に記載のホログラムの記録・消去方法を行うために、2光束干渉によるホログラムの記録・消去方法を使用するためのホログラム記録装置であって、
     少なくとも上記消去する工程において、円偏光用素子を通して、上記ホログラム記録素子に対して、円偏光を得るための機構を備えることを特徴とする、ホログラム記録装置。
    A hologram recording apparatus for using a hologram recording / erasing method by two-beam interference to perform the hologram recording / erasing method according to any one of claims 9 to 12,
    A hologram recording apparatus comprising: a mechanism for obtaining circularly polarized light with respect to the hologram recording element through the element for circular polarization at least in the erasing step.
  14.  上記円偏光を得るための機構が、λ/4板である、請求項13に記載のホログラム記録装置。 The hologram recording apparatus according to claim 13, wherein the mechanism for obtaining the circularly polarized light is a λ / 4 plate.
PCT/JP2016/089023 2016-02-12 2016-12-28 Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device WO2017138277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566546A JP6855069B2 (en) 2016-02-12 2016-12-28 Rewritable hologram recording material, hologram recording / erasing method, and hologram recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016025264 2016-02-12
JP2016-025264 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138277A1 true WO2017138277A1 (en) 2017-08-17

Family

ID=59563666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089023 WO2017138277A1 (en) 2016-02-12 2016-12-28 Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device

Country Status (2)

Country Link
JP (1) JP6855069B2 (en)
WO (1) WO2017138277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805762A (en) * 2022-05-30 2022-07-29 吉林建筑大学 Porous organic polymer containing azobenzene, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080883A1 (en) * 2011-11-29 2013-06-06 国立大学法人京都工芸繊維大学 Three-dimensional holographic display system, and 3d display apparatus
JP2014142393A (en) * 2013-01-22 2014-08-07 Toyo Kohan Co Ltd Manufacturing method of organic photorefractive member for hologram display
JP2014240861A (en) * 2013-06-11 2014-12-25 国立大学法人京都工芸繊維大学 Holographic display device and three-dimensional holographic display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080883A1 (en) * 2011-11-29 2013-06-06 国立大学法人京都工芸繊維大学 Three-dimensional holographic display system, and 3d display apparatus
JP2014142393A (en) * 2013-01-22 2014-08-07 Toyo Kohan Co Ltd Manufacturing method of organic photorefractive member for hologram display
JP2014240861A (en) * 2013-06-11 2014-12-25 国立大学法人京都工芸繊維大学 Holographic display device and three-dimensional holographic display device

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHI-JUNG CHANG: "Synthesis and Relationships between the Nonlinear Optical and Holographic Properties of Dual Functional Azocarbazole Chromophores Based on Photorefractive Polymers", MACROMOLECULES, vol. 32, no. 17, 30 July 1999 (1999-07-30), pages 5637 - 5646, XP000848683 *
CHRISTOPHER BARRETT: "Azocarbazole Polymethacrylates as Single-Component Electrooptic Materials", MACROMOLECULES, vol. 31, no. 15, 9 July 1998 (1998-07-09), pages 4845 - 4851, XP055408994 *
HUAWEI LI ET AL.: "Nonpoled Photoregractive Polymers", CHEMISTRY OF MATERIALS, vol. 21, no. 12, 1 May 2009 (2009-05-01), pages 2403 - 2409 *
JAEHOON HWANG: "Synthesis and Structural Effect of Multifunctional Photorefractive Polymers Containing Monolithic Chromophores", MACROMOLECULES, vol. 36, no. 21, 16 September 2003 (2003-09-16), pages 7970 - 7976, XP055409004 *
JIAN PING CHEN: "Highly Stable Optically Induced Birefringence and Holographic Surface Gratings on a New Azocarbazole-Based Polyimide", MACROMOLECULES, vol. 32, no. 25, 13 November 1999 (1999-11-13), pages 8572 - 8579, XP055409006 *
M.S.HO: "Synthesis and Optical Properties of poly{(4-nitrophenyl)-[3-[N-[2-(methacryloyloxy) ethyl]-carbazolyl]diazene", MACROMOLECULES, vol. 29, no. 13, 21 September 1995 (1995-09-21), pages 4613 - 4618, XP000589982 *
NAOTO TSUTSUMI: "Fully updatable three- dimensional holographic stereogram display device based on organic monolithic compound", OPTICS EXPRESS, vol. 21, no. 17, 16 August 2013 (2013-08-16), pages 19880 - 19884, XP055408992 *
NAOTO TSUTSUMI: "Real-time three-dimensional holographic display using a monolithic organic compound dispersed film", OPTICAL MATERIALS EXPRESS, vol. 2, no. 8, 3 July 2012 (2012-07-03), pages 1003 - 1010, XP055408991 *
SAKIKO MIURA: "New multicolor and rewritable holographic polymer film for three-dimentional holographic display", JOURNAL OF THE SOCIETY FOR INFOMATION DISPLAY, vol. 22, no. 12, 25 April 2014 (2014-04-25), pages 597 - 602, XP055409008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805762A (en) * 2022-05-30 2022-07-29 吉林建筑大学 Porous organic polymer containing azobenzene, and preparation method and application thereof
CN114805762B (en) * 2022-05-30 2023-06-27 吉林建筑大学 Porous organic polymer containing azobenzene and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2017138277A1 (en) 2018-12-06
JP6855069B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
Bruder et al. From the surface to volume: concepts for the next generation of optical–holographic data‐storage materials
JP4272260B2 (en) Photoaddressable substrates and photoaddressable side group polymers exhibiting highly induced birefringence
JP5774104B2 (en) Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum
EP1829035B1 (en) Photoactive film, its preparation and use, and preparation of surface relief and optically anisotropic structures by irradiating said film
KR19980018418A (en) High-sensitivity light-fastness side face polymer
JPH10505447A (en) A method for enhancing information in a side-chain polymer capable of inputting and outputting information by light
JP2007280490A (en) Optical recording method, optical reproducing method, and optical reproducing device
KR100774779B1 (en) Copolymers for optical data storage
Audorff et al. Holographic gratings and data storage in azobenzene-containing block copolymers and molecular glasses
KR101970730B1 (en) Azobenzen compound and composition for hologram recording comprising thereof
WO2017138277A1 (en) Rewritable hologram recording material, method for recording/erasing hologram, and hologram recording device
JP6040477B2 (en) 3D holographic display system and 3D display device
JP2005274628A (en) Optical recording material, optical recording medium and optical recording and reproducing apparatus
US5607799A (en) Optical photorefractive article
Tsutsumi et al. Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites
JP2005300680A (en) Optical recording material, optical recording medium, and optical recording and reproducing device
KR102311861B1 (en) Nitrogen heteroaromatic containing azobenzene compound and composition for blue hologram recording comprising thereof
KR101869388B1 (en) Photoisomerizable diphenyldiacetylene-azobenzen mesogens and polymers there of
Fukuda et al. Molecular design and synthesis of copolymers with large photoinduced birefringence
Li et al. Holographic data storage on azobenzene photopolymer film using nanosecond laser pulses
JPH10212324A (en) Highly inducible birefringent photoaddressable side chain polymer
KR102311860B1 (en) Nitrogen heteroaromatic containing azobenzene compound and composition for green hologram recording comprising thereof
JP2007045949A (en) Azobenzene monomer, polymer thereof, and holographic recording medium using the same
Zeng et al. The effect of PQ concentration on holographic data storage in PQ/PMMA material
JP2003322886A (en) Photorefractive material and method for manufacturing the same, and hologram using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889976

Country of ref document: EP

Kind code of ref document: A1