WO2013080741A1 - Photopolymerizable composition and pattern forming method using same - Google Patents

Photopolymerizable composition and pattern forming method using same Download PDF

Info

Publication number
WO2013080741A1
WO2013080741A1 PCT/JP2012/078457 JP2012078457W WO2013080741A1 WO 2013080741 A1 WO2013080741 A1 WO 2013080741A1 JP 2012078457 W JP2012078457 W JP 2012078457W WO 2013080741 A1 WO2013080741 A1 WO 2013080741A1
Authority
WO
WIPO (PCT)
Prior art keywords
photopolymerizable composition
group
siloxane compound
integer
substrate
Prior art date
Application number
PCT/JP2012/078457
Other languages
French (fr)
Japanese (ja)
Inventor
毅 小川
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013080741A1 publication Critical patent/WO2013080741A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means

Definitions

  • the present invention relates to a photopolymerizable composition for nanoimprint applications and a pattern forming method using a nanoimprint process using the same.
  • Nanoimprinting involves directly pressing a master with a microfabricated pattern (hereinafter sometimes referred to simply as a pattern) against a substrate coated with a transfer material such as a resin, so that the pattern of the master (hereinafter referred to as the master pattern) is applied to the substrate.
  • a master pattern called a template, mold or stamp is formed in advance with a finely processed original pattern, which is then transferred to a transfer material such as a resin or resin precursor applied to the substrate.
  • a pattern is obtained on the substrate.
  • a transfer pattern is obtained by applying an original pattern of a template to a resin or resin precursor applied to a substrate.
  • nanoimprinting For nanoimprinting, optical nanoimprinting using a photopolymerizable composition (hereinafter sometimes referred to as nanoimprint lithography), thermal nanoimprinting using a thermoplastic resin as a transfer material, and a highly viscous resin called spin-on-glass (SOG) are used.
  • lithography photopolymerizable composition
  • SOG spin-on-glass
  • room temperature nanoimprint There are various types such as room temperature nanoimprint.
  • Patent Document 1 describes optical nanoimprint
  • Patent Document 2 describes thermal nanoimprint
  • Patent Document 3 describes room temperature nanoimprint.
  • optical nanoimprints are listed as candidates for microfabrication in next-generation semiconductors in the International Semiconductor Technology Roadmap (Non-Patent Document 1) issued by the International Semiconductor Technology Roadmap (ITRS) Committee.
  • the process throughput processing capacity per unit time of the process
  • optical nanoimprint does not require an expensive exposure apparatus and is economically advantageous, unlike extreme ultraviolet light (wavelength: 13.5 nm) lithography, which is a candidate for fine processing in the other next-generation semiconductor.
  • the formation of a transfer pattern by photo-nanoimprinting involves applying a template original pattern to a liquid photopolymerizable composition, which is a transfer material applied to a substrate, and irradiating light through the template to cure the photopolymerizable composition.
  • a transfer pattern is obtained. If an electron beam is used, it is possible to obtain an original pattern on the template with an accuracy of 20 nm or less.
  • quartz or sapphire that transmits light having a wavelength necessary for photopolymerization is used.
  • the photopolymerizable composition includes a film-forming composition containing a polymeric silicon compound that causes a photocuring reaction described in Patent Document 4, a fluorine-based surfactant, a silicone-based surfactant, or fluorine described in Patent Document 5.
  • a curable composition for optical nanoimprint lithography containing a silicone type surfactant and the ultraviolet curable resin material in which pattern transfer of patent document 6 is possible are mentioned.
  • transfer material to the substrate in optical nanoimprinting
  • precise transferability and alignment accuracy of fine structures are important, transfer pattern accuracy is excellent in in-plane uniformity and throughput is improved.
  • the ink jet method is often adopted because the reduction of pattern defects can be achieved.
  • the ink jet method is a film in which the photopolymerizable composition is sprayed as droplets on a substrate with a nozzle, and the composition is cured by irradiating light in a state where the template pattern on the template is applied to the coated surface. Get on the substrate.
  • the volume of droplets to be sprayed is on the order of picoliter, and the photopolymerizable composition is required to be a liquid having low viscosity and vapor pressure.
  • the filling of the template of the photopolymerizable composition into the original plate pattern is performed spontaneously by capillary action when the template is applied to the coating film of the photopolymerizable composition on the substrate, so it is necessary to pressurize the template. There is no.
  • the transfer pattern is often used as a mask pattern for a metal thin film or the like formed in the lower layer of the pattern.
  • a thin film to which the original pattern is transferred is obtained by etching the thin film after nanoimprinting.
  • Inkjet optical nanoimprinting equipment includes the product name IMPLO of US Molecular Imprints, which employs step-and-flash imprint lithography, and uses a drop-on-demand system that controls the amount of coating by inkjet based on the accuracy of the template original pattern. Adopted to improve the flatness and throughput of the transfer pattern and reduce pattern defects.
  • a photopolymerizable composition composed of various polymerizable acrylate compounds and a photopolymerization initiator is generally used.
  • the chemical structure or composition of the photopolymerizable composition is adjusted, the cured product after photopolymerization can be used as a permanent member.
  • the resulting cured product of the siloxane resin is excellent in durability, such as insulation, mechanical strength, and acid / alkaline resistance.
  • a polymerizable acrylate compound it can be used as a permanent member, for example, an insulating film.
  • the physical property required for the photopolymerizable composition containing the siloxane compound is a liquid having a low viscosity and a low vapor pressure. It is also important that it can be used in industry, such as easy synthesis and easy handling.
  • Optical nanoimprint may be referred to as a low dielectric constant interlayer insulating film (hereinafter referred to as Low-k film) in a back-end process (hereinafter sometimes referred to as BEOL) for forming a multilayer wiring structure of a state-of-the-art logic semiconductor or memory. ),
  • BEOL back-end process
  • the number of steps can be reduced.
  • the first problem is that the liquid photopolymerizable composition has a high viscosity and is difficult to apply to the substrate by the ink jet method.
  • the viscosity of the composition that can be applied by inkjet is 30 m ⁇ Pa ⁇ s or less at 25 ° C. If it exceeds 30 m ⁇ Pa ⁇ s, it is difficult to apply a uniform film thickness by the ink jet method, and the ink jet nozzle may be blocked.
  • an organic solvent is added to the photopolymerizable composition to reduce the viscosity, the vapor pressure increases, and a coating film with a smooth surface cannot be obtained due to volatilization of droplets ejected by inkjet onto the substrate. The accuracy of the transfer pattern on the substrate is reduced. Moreover, adding a large amount of an organic solvent may cause a decrease in physical properties of the cured product.
  • the second problem is that it is difficult to synthesize a photopolymerizable composition.
  • the following polysubstituted cage-type silsesquioxane can introduce a substituent at each apex, has a wide range of molecular design, and has been studied for use in photopolymerizable compositions of photonanoimprint.
  • X represents two or more kinds of polymerizable substituents
  • the multi-substituted cage-type silsesquioxane is the same when a plurality of polymerizable substituents X are introduced into one molecule except when a polymerizable substituent X is introduced at a specific ratio. Things are hard to get.
  • X is an acryloyl group and a maleimide group, each represented by a molar ratio of 50:50, and introduced into one molecule
  • the resulting product can be seen at the molecular level and the acryloyl group and the maleimide group can be obtained.
  • optical imprinting there is a problem in that not only the desired physical properties cannot be obtained in the cured product due to biased substituents, but also the curing condition and physical properties vary between lots.
  • the photopolymerizable composition containing a siloxane compound used in the prior art uses a siloxane compound or a multifunctional cage silsesquioxane produced by a sol-gel method, and these compounds have a desired chemical structure and A synthesis method for obtaining physical properties with good reproducibility has not been established. Therefore, it is difficult to employ in industrial production, and it is difficult to industrially use it as a transfer material for optical nanoimprint.
  • the present invention solves the above problems, has a low viscosity and low vapor pressure at room temperature (25 ° C.), can be suitably used as a transfer material for optical nanoimprint, and is based on an ink jet system even in a state not containing an organic solvent.
  • An object of the present invention is to provide a photopolymerizable composition which can be applied and from which a polymerized cured product as a silicon resin can be obtained with good reproducibility when photopolymerized by irradiation with high energy rays. And it aims at obtaining the pattern formation method by the photo nanoimprint using the said photopolymerizable composition.
  • the present invention comprises the following inventions 1 to 6.
  • a photopolymerizable composition for photo-nanoimprint use comprising a photopolymerization initiator and a siloxane compound, wherein the siloxane compound is a siloxane compound (A) represented by the general formula (1) and the general formula (2)
  • a photopolymerizable composition which is at least one selected from the group consisting of siloxane compounds (B) represented by:
  • group A is a polymerizable group
  • m is an integer of 1 to 10
  • n is an integer of 1 to 10
  • p is an integer of 0 to 5.
  • group B is a polymerizable group
  • q is an integer of 1 to 10
  • r is an integer of 0 to 5).
  • Invention 2 The photopolymerizable composition of Invention 1, wherein the group A and the group B are each independently an acryloyl group, a methacryloyl group, a vinyl group, a vinyl ether group, an epoxy group, or an oxetane group.
  • invention 4 The photopolymerizable composition according to inventions 1 to 3, having a vapor pressure at 25 ° C. of 267 Pa or less.
  • [Invention 5] A step of spraying the photopolymerizable composition of the inventions 1 to 4 on the substrate in the form of droplets with a nozzle, and applying the photopolymerizable composition on the substrate;
  • a substrate comprising: a step of polymerizing and curing the photopolymerizable composition by irradiating the photopolymerizable composition with a high energy light through the template in a state of contact with the photopolymerizable composition applied to the substrate; and a step of separating the template from the substrate.
  • a pattern forming method for transferring a template pattern onto the top
  • invention 6 The method of the invention 5, wherein the high energy light is an electromagnetic wave or an electron beam having a wavelength of 420 nm or less.
  • a photopolymerizable composition containing a photopolymerization initiator and a siloxane compound having a specific branched or cyclic structure can be used as an optical nanoimprint transfer material.
  • the siloxane compound which is a constituent of the photopolymerizable composition of the present invention, is synthesized with good reproducibility and can be polymerized by the action of a photopolymerization initiator irradiated with high energy light.
  • the siloxane compound is a low-viscosity and low vapor pressure liquid around room temperature (around 25 ° C.), and can be applied by an inkjet nozzle.
  • the photopolymerizable composition for nanoimprinting of the present invention and a pattern forming method using the same will be described below.
  • Photopolymerizable composition for nanoimprint The photopolymerizable composition for use in photonanoimprinting of the present invention comprises a photopolymerization initiator and a siloxane compound.
  • the siloxane compound contained in the photopolymerizable composition of the present invention includes a siloxane compound (A) represented by the general formula (1) having a branched chain structure and a general formula (2) having a cyclic structure. And at least one siloxane compound selected from the group consisting of siloxane compounds (B).
  • the group A is a polymerizable group
  • m is an integer of 1 to 10
  • n is an integer of 1 to 10
  • p is an integer of 0 to 5.
  • the group B is a polymerizable group
  • q is an integer of 1 to 10
  • r is an integer of p to 5.
  • siloxane compound (A) and the siloxane compound (B) contained in the photopolymerizable composition of the present invention are cured after photopolymerization, they become a silicon resin having a siloxane bond, and have excellent heat resistance and low water absorption. Showing gender. Since the siloxane compound (A) and the siloxane compound (B) are molecular chain or cyclic, they are less viscous in the same temperature range than the linear siloxane compound having the same molecular weight.
  • the siloxane compound (A) is a liquid having a low viscosity and a low vapor pressure at room temperature (25 ° C.).
  • the cured product after photopolymerization has a low dielectric constant, and the shrinkage rate upon photocuring is low, so that a precise transfer pattern can be obtained.
  • the siloxane compound (B) is a liquid having a low viscosity and a low vapor pressure at room temperature (25 ° C.). Furthermore, since it has the functional group B radially from the cyclic structure, the cured product after photopolymerization has a high crosslinking density, no glass transition temperature, no crystallinity, and is amorphous, and has excellent mechanical properties.
  • the polymerizable groups A and B of the siloxane compound (A) and the siloxane compound (B) that are constituents of the photopolymerizable composition of the present invention are each independently an acryloyl group, a methacryloyl group, a vinyl group, a vinyl ether group, It is preferably an epoxy group or an oxetane group.
  • These photopolymerizable groups may be directly bonded to the silicon atom of the siloxane compound (A) and the siloxane compound (B), or may be bonded via an alkylene group.
  • the siloxane compound (A) and the siloxane compound (B) used in the photopolymerizable composition of the present invention can be used either alone or as a mixture.
  • the ratio is not particularly limited and can be mixed at an arbitrary ratio. For example, when it is desired to reduce the relative dielectric constant of the cured product after photopolymerization, the ratio of the siloxane compound (A) is increased, and when the mechanical strength of the cured product after photopolymerization is desired to be increased, the siloxane compound (B ) Is easy to control the physical properties of the resulting cured product.
  • the photopolymerization initiator used in the photopolymerizable composition of the present invention is a polymerizable group that the siloxane compound (A) has by generating radicals or acids by irradiation with high-energy light. It acts on the polymerizable group B of A or the siloxane compound (B) to polymerize the siloxane compound (A) or the siloxane compound (B).
  • Specific examples include a photo radical polymerization initiator and a photo cationic polymerization initiator.
  • Photoradical polymerization initiators include an intramolecular cleavage type in which intramolecular bonds are cleaved to generate radicals, and a hydrogen abstraction type in which hydrogen donors such as tertiary amines and ethers are used in combination to generate radicals. Any of them can be used in the present invention.
  • the intramolecular cleavage type 2-hydroxy-2-methyl-1-phenylpropan-1-one (Ciba Specialty Chemicals Co., Ltd., trade name Darocur 1173)
  • the carbon-carbon bond is cleaved by light irradiation. To generate radicals.
  • Examples of the hydrogen abstraction type include benzophenone, methyl orthobenzoin benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and the like, and generate radicals by a bimolecular reaction with a hydrogen donor by light irradiation.
  • radicals the double bond of acryloyl group, methacryloyl group or vinyl group is cleaved, and siloxane compound (A) or siloxane compound (B) is polymerized.
  • the photoradical polymerization generator is not particularly limited as long as it is a compound that generates radicals by absorbing light, and a commercially available photopolymerization initiator can be used, for example, manufactured by Ciba Specialty Chemicals Co., Ltd. From the photopolymerization initiator Darocur series, the trade names Irgacure 127, Irgacure 184, Irgacure 2959, Irgacure 369, Irgacure 379, Irgacure 907, Irgacure 1700, Irgacure 1800, Irgacure 1850, Irgacure 1265 or Irgacure 1265 can be used.
  • a commercially available photopolymerization initiator can be used, for example, manufactured by Ciba Specialty Chemicals Co., Ltd. From the photopolymerization initiator Darocur series, the trade names Irgacure 127, Irgacure 184,
  • Examples of the cationic photopolymerization initiator include onium salt compounds such as diazonium salts, iodonium salts, sulfonium salts, and phosphonium salts. These compounds generate acids after being excited by irradiation with light.
  • the siloxane compound (A) or (B) is polymerized by cleavage of the epoxy group or oxetane group or cleavage of the double bond of the vinyl ether group by these acids.
  • the cationic photopolymerization initiator is not particularly limited as long as it is a compound that generates an acid by absorbing light, and a commercially available photopolymerization initiator can be used, for example, a light produced by Ciba Specialty Chemicals Co., Ltd. From polymerization initiator Irgacure series, trade name, Irgacure261, or photopolymerization initiator of Midori Chemical Co., Ltd., trade names BBI-103, MPI-103, TPS-103, MDS-103, DTS-103, NAT-103 or NDS-103 can be used.
  • the proportion of the photopolymerization initiator used as a constituent of the photopolymerizable composition of the present invention is in the range of 0.1% by mass to 7% by mass based on the total mass of the photopolymerizable composition.
  • the content is less than 0.1% by mass, it is difficult to obtain a cured product by a photopolymerization reaction.
  • it exceeds 7 mass% the physical property of the hardened
  • the photopolymerizable composition of the present invention has a low viscosity of 30 m ⁇ Pa ⁇ s or less at 25 ° C. When the viscosity exceeds 30 m ⁇ Pa ⁇ s, it becomes difficult to control the volume of the droplets ejected by the ink jet. In some cases, the inkjet nozzle is blocked.
  • the photopolymerizable composition of the present invention has a low vapor pressure of 267 Pa or less at 25 ° C. If the vapor pressure exceeds 267 Pa, volatilization of droplets cannot be ignored when ejected onto a substrate by inkjet, and it is difficult to form a film with a uniform film thickness. As a result, the reproducibility of the original pattern becomes difficult in the transfer pattern by optical nanoimprint.
  • the photopolymerizable composition of the present invention undergoes a polymerization reaction by the action of a photopolymerization initiator when irradiated with high energy light, and becomes a cured product.
  • High energy light used for light irradiation is ultraviolet light including a near ultraviolet region, specifically, ultraviolet light of 420 nm or less. Practically, ultraviolet light having a wavelength of 200 nm or more and 420 nm or less is easy to use, and light sources that emit ultraviolet light in these wavelength ranges include high pressure mercury lamps, ultrahigh pressure mercury lamps, medium pressure mercury lamps, low pressure mercury lamps, metal halide lamps, xenon.
  • a flash lamp or an ultraviolet light emitting diode (LED) can be mentioned and can be used for curing the photopolymerizable composition of the present invention.
  • the template used in the nanoimprint of the present invention needs to be made of a material that transmits wavelengths below the ultraviolet light region, and specifically includes quartz and sapphire.
  • the pattern forming method of the present invention comprises a step of spraying the photopolymerizable composition of the inventions 1 to 4 on a substrate in a droplet state with a nozzle, and applying the photopolymerizable composition on the substrate; A step of polymerizing and curing the photopolymerizable composition by irradiating the photopolymerizable composition through the template with the template on which the original pattern is formed in contact with the photopolymerizable composition applied on the substrate; A pattern forming method for transferring a pattern of the template onto the substrate.
  • the photopolymerizable composition of the inventions 1 to 4 is sprayed onto a substrate in the form of droplets from an inkjet nozzle, and a template on which an original pattern is formed is applied to the substrate in accordance with optical nanoimprint.
  • the photopolymerizable composition is cured, and the template is separated from the cured body to form a transfer pattern on the substrate.
  • the high energy light is preferably an electromagnetic wave or an electron beam having a wavelength of 420 nm or less, having an energy for polymerizing a siloxane compound by acting on a photopolymerization initiator to generate radicals or acids.
  • the transfer pattern formed by photo-nanoimprinting and polymerizing the photopolymerizable composition of the present invention is used as a low dielectric constant interlayer insulating film used in a semiconductor device.
  • the semiconductor device includes a logic semiconductor such as a microprocessor, a volatile memory such as a DRAM (Dynamic Random Access Memory), or a flash memory.
  • a photopolymerization initiator was added to obtain a photopolymerizable composition of the present invention.
  • Example 1 the siloxane compound (A-1) belonging to the siloxane compound (A) having a branched structure and the siloxane compound (B-1) belonging to the siloxane compound (B) having a cyclic structure were irradiated with light.
  • a polymerization initiator was added to obtain a photopolymerizable composition (1) of the present invention.
  • Example 2 in order to obtain a cured product with higher strength, a photopolymerization initiator was added to the siloxane compound (B-1) to obtain a photopolymerizable composition (2) of the present invention.
  • the viscosity of the photopolymerizable composition was measured with a vibration viscometer (manufactured by Seconic Corporation, product name, VM-100A). Vapor pressure was determined by sealing the photopolymerizable composition in a stainless steel 10 ml cylinder of Swagelok, USA, and repeating the operation of degassing the dissolved air three times while cooling with liquid nitrogen. was measured with a diaphragm-type pressure gauge (manufactured by Nippon KS Co., Ltd., product name, Baratron 626B).
  • a UV irradiation device manufactured by Moritex Co., Ltd., product name, MUV-351U was used as a light source for polymerizing the photopolymerizable composition to obtain a cured product.
  • the relative permittivity of the cured product is a thin film-shaped cured product, and a metal electrode is created with a conductive paste (made by Fujikura Kasei Co., Ltd., trade name Dotite) on the upper and lower portions thereof. 4294A), the capacitance value at a frequency of 1 MHz was measured and calculated.
  • a 5% mass reduction temperature in a thermal mass curve obtained by a differential thermobalance TG-DTA manufactured by Rigaku Corporation, TG8120
  • the glass transition temperature was measured using a differential scanning calorimeter (manufactured by Seiko Instruments Inc., product name, DSC6200).
  • the mechanical strength was measured by preparing a cured product in the form of a thin film on a silicon substrate and nanoindentation (trade name: Triboindenter, manufactured by Eattron, USA). The water absorption was calculated from the amount of mass change before and after immersion after the cured product was dried in an oven at 120 ° C. overnight, and then the cured product was immersed in pure water for 24 hours.
  • the photocuring shrinkage before and after curing of the photopolymerization composition was calculated by measuring the amount of change in film thickness before and after photocuring on the silicon substrate with an optical interference film thickness meter (manufactured by Sentec Germany, FTP500).
  • Example 1 [Synthesis of photopolymerizable siloxane compound] A siloxane compound (A-1) represented by the formula (3) belonging to the siloxane compound (A) having a branched structure was synthesized according to a known synthesis method (Non-patent Document 3).
  • the siloxane compound (A-1) represented by the formula (3) is available from the University of Texas as the product name Si-12 methacryl.
  • siloxane compound (B-1) represented by the formula (4) belonging to the photopolymerizable siloxane compound (B) having a cyclic structure was synthesized.
  • a photopolymerization initiator represented by the formula (5) was added to the siloxane compound (A-1) and the siloxane compound (B-1) shown above.
  • the photopolymerization initiator is commercially available under the trade name Darocur 1173 from Ciba Specialty Chemicals.
  • the photocurable composition is expressed in terms of mass ratio so that the ratio of siloxane compound (A-1): siloxane compound (B-1): photopolymerization initiator is 49: 49: 2. Prepared.
  • Example 2 The same procedure as in Example 1 was performed, except that only the photopolymerizable siloxane compound (B-1) was used as the photopolymerizable siloxane compound.
  • photopolymerizable composition The photopolymerizable siloxane compound (B-1) having a cyclic structure and the photopolymerization initiator used in Example 1 were represented by a mass ratio, and the siloxane compound (B-1): photopolymerization initiator was 98: 2.
  • the photopolymerizable composition was prepared so that it might become a ratio.
  • Table 1 shows the measurement results of the viscosity and vapor pressure of the photopolymerizable compositions (1) and (2), and Table 2 shows the relative dielectric constant and heat resistance of the cured products (1) and (2) after photopolymerization. The measurement results of properties, glass transition temperature, mechanical strength, photocuring shrinkage and water absorption are shown.
  • Both the photopolymerizable compositions (1) and (2) have a viscosity of 30 m ⁇ Pa ⁇ s (30 cP) or less and a vapor pressure of 267 Pa (2 Torr) or less, and can be applied to a substrate by inkjet in optical nanoimprint. there were. Further, the relative permittivity, heat resistance, glass transition temperature, mechanical strength, photocuring shrinkage, and water absorption of the cured product after photopolymerization were values that could be used as a low dielectric constant interlayer insulating film.
  • a quartz template on which a nano-order master pattern was formed was prepared.
  • a toluene solution containing 1.0% by mass of tridecafluoro-1,1,2,2-tetrahydrooctyldimethylchlorosilane (manufactured by Gelest, USA) was prepared, and the template was immersed in the solution for 1 hour to obtain a surface of the template. Processed.
  • a silicon substrate was prepared, and a coating solution (trade name mr-APS1, manufactured by Microresist Technology, Germany) for forming an adhesion layer corresponding to the lower layer film of the optical nanoimprint was applied onto the silicon substrate at a rotational speed of 5000 rpm. Spin coating was performed for 60 seconds, and heating was performed at 150 ° C. for 60 seconds to form an adhesion layer.
  • the above photopolymerizable compositions (1) and (2) were respectively applied onto such two silicon substrates, and the template was slowly brought into contact therewith from above. Subsequently, the photopolymerizable composition was cured by irradiating ultraviolet light with an intensity of 20 mW / cm 2 for 180 seconds from the upper side of the template. The template was pulled away from the cured product to obtain a transfer pattern by optical nanoimprint on the silicon substrate. When the pattern was observed with an optical microscope and an electron microscope, good transferability was confirmed.
  • Comparative Example 1 Synthesis of photopolymerizable siloxane compound
  • the photopolymerizable siloxane compound (C-1) represented by the formula (6) was synthesized according to a known synthesis method (Non-patent Document 3).
  • the photopolymerizable siloxane compound (C-1) represented by the formula (6) is available as a trade name OMPS from Myatereals, USA. This compound has a cage-type molecular structure formed by a siloxane bond, and is generally called a cage-type silsesquioxane.
  • photopolymerizable composition The photopolymerizable siloxane compound (C-1) and the photopolymerization initiator represented by the formula (5) are represented by mass ratio, and the siloxane compound (C-1): photopolymerization initiator is represented by mass ratio.
  • a photopolymerizable composition was prepared so as to have a ratio of 98: 2.
  • the viscosity of the obtained photopolymerizable composition was as high as 280 m ⁇ Pa ⁇ s at 25 ° C., and the viscosity was too high to be applied to the ink jet optical nanoimprint.

Abstract

This photopolymerizable composition contains a photopolymerization initiator and (A) a siloxane compound represented by general formula (1) or (B) a siloxane compound represented by general formula (2). This photopolymerizable composition has a low viscosity and a low vapor pressure at room temperature, and can be coated by an inkjet method even in a state where no organic solvent is contained. When this photopolymerizable composition is photopolymerized, a siloxane resin, which is the polymerization product thereof, can be obtained with good reproducibility. Consequently, this photopolymerizable composition is suitable for use in a pattern forming method by means of optical nanoimprint. (In formula (1), group A represents a polymerizable group; m represents an integer of 1-10; n represents an integer of 1-10; and p represents an integer of 0-5.) (In formula (2), group B represents a polymerizable group; q represents an integer of 1-10; and r represents an integer of 0-5.)

Description

光重合性組成物並びにそれを用いたパターン形成方法Photopolymerizable composition and pattern forming method using the same
 本発明は、ナノインプリント用途の光重合性組成物並びにそれを用いたナノインプリントプロセスによるパターン形成方法に関する。 The present invention relates to a photopolymerizable composition for nanoimprint applications and a pattern forming method using a nanoimprint process using the same.
 ナノインプリントは、微細加工パターン(以下、単にパターンと呼ぶことがある)がされた原版を直接、樹脂等の転写材料を塗布した基板に押し当てることで、基板に原版のパターン(以下、原版パターンと呼ぶことがある)を転写する技術であり、ナノ(nm)オーダーの加工が可能である。具体的には、テンプレート、モールドまたはスタンプと呼ばれる金型原版に、予め微細加工された原版パターンを形成しておき、それを基板に塗布した樹脂または樹脂の前駆体等の転写材料に接触させ転写パターンを基板に得る。例えば、テンプレートの原版パターンを基板に塗布した樹脂または樹脂の前駆体に当てることで、転写パターンを得るものである。 Nanoimprinting involves directly pressing a master with a microfabricated pattern (hereinafter sometimes referred to simply as a pattern) against a substrate coated with a transfer material such as a resin, so that the pattern of the master (hereinafter referred to as the master pattern) is applied to the substrate. (It may be called), and nano (nm) order processing is possible. Specifically, a master pattern called a template, mold or stamp is formed in advance with a finely processed original pattern, which is then transferred to a transfer material such as a resin or resin precursor applied to the substrate. A pattern is obtained on the substrate. For example, a transfer pattern is obtained by applying an original pattern of a template to a resin or resin precursor applied to a substrate.
 ナノインプリントには、光重合性組成物を用いる光ナノインプリント(以下、ナノインプリントリソグラフィと呼ぶことがある)、転写材料に熱可塑性樹脂を用いる熱ナノインプリント、およびスピンオングラス(SOG)とよばれる高粘性樹脂を用いる室温ナノインプリント等の種類があり、例えば、特許文献1に光ナノインプリント、特許文献2に熱ナノインプリント、特許文献3に室温ナノインプリントについて記載される。 For nanoimprinting, optical nanoimprinting using a photopolymerizable composition (hereinafter sometimes referred to as nanoimprint lithography), thermal nanoimprinting using a thermoplastic resin as a transfer material, and a highly viscous resin called spin-on-glass (SOG) are used. There are various types such as room temperature nanoimprint. For example, Patent Document 1 describes optical nanoimprint, Patent Document 2 describes thermal nanoimprint, and Patent Document 3 describes room temperature nanoimprint.
 中でも、光ナノインプリントは、国際半導体技術ロードマップ(ITRS)委員会が発行する国際半導体技術ロードマップ(非特許文献1)において、次世代半導体における微細加工の候補に挙げられており、他のナノインプリントと比較して、プロセスのスループット(工程の単位時間当たりの処理能力)に優れており、高精度のアライメント調整が可能である。また、光ナノインプリントは、もう一方の次世代半導体における微細加工の候補である、極端紫外光(波長13.5nm)リソグラフィと異なり、高価な露光装置を必要とせず、経済的な優位性がある。 In particular, optical nanoimprints are listed as candidates for microfabrication in next-generation semiconductors in the International Semiconductor Technology Roadmap (Non-Patent Document 1) issued by the International Semiconductor Technology Roadmap (ITRS) Committee. In comparison, the process throughput (processing capacity per unit time of the process) is excellent, and high-precision alignment adjustment is possible. In addition, optical nanoimprint does not require an expensive exposure apparatus and is economically advantageous, unlike extreme ultraviolet light (wavelength: 13.5 nm) lithography, which is a candidate for fine processing in the other next-generation semiconductor.
 光ナノインプリントによる転写パターンの形成は、基板に塗布された転写材料である液状の光重合性組成物に、テンプレートの原版パターンを当て、テンプレートを介して光照射し、光重合性組成物を硬化させ、転写パターンを得るものである。電子ビームを用いれば、テンプレートに20nm以下の精度で原版パターンを得ることが可能である。尚、テンプレートの材質には、光重合に必要な波長の光を透過させる石英またはサファイアが用いられる。前記光重合性組成物には、特許文献4に記載の光硬化反応を生じる高分子ケイ素化合物を含む膜形成組成物、特許文献5に記載のフッ素系界面活性剤、シリコーン系界面活性剤またはフッ素・シリコーン系界面活性剤を含む光ナノインプリントリソグラフィ用硬化性組成物、特許文献6に記載のパターン転写が可能な紫外線硬化性樹脂材が挙げられる。 The formation of a transfer pattern by photo-nanoimprinting involves applying a template original pattern to a liquid photopolymerizable composition, which is a transfer material applied to a substrate, and irradiating light through the template to cure the photopolymerizable composition. A transfer pattern is obtained. If an electron beam is used, it is possible to obtain an original pattern on the template with an accuracy of 20 nm or less. As the template material, quartz or sapphire that transmits light having a wavelength necessary for photopolymerization is used. The photopolymerizable composition includes a film-forming composition containing a polymeric silicon compound that causes a photocuring reaction described in Patent Document 4, a fluorine-based surfactant, a silicone-based surfactant, or fluorine described in Patent Document 5. -The curable composition for optical nanoimprint lithography containing a silicone type surfactant and the ultraviolet curable resin material in which pattern transfer of patent document 6 is possible are mentioned.
 光ナノインプリントにおける転写材料の基板への塗布方法には、複数の方式があるが、特に微細構造の精密な転写性、アライメント精度を重視する場合、転写パターン精度の面内均一性に優れ、スループット向上およびパターン欠陥の低減がはかれることより、インクジェット方式が採用されることが多い。 There are multiple methods for applying transfer material to the substrate in optical nanoimprinting, but especially when precise transferability and alignment accuracy of fine structures are important, transfer pattern accuracy is excellent in in-plane uniformity and throughput is improved. In addition, the ink jet method is often adopted because the reduction of pattern defects can be achieved.
 インクジェット方式は、基板にノズルで光重合性組成物を液滴として吹きつけ塗膜とし、テンプレートの原版パターンを塗布面に当てた状態で光照射し組成物を硬化させ、硬化体による転写パターンを基板上に得る。吹き付ける液滴の容量はピコリットルオーダーであり、光重合性組成物は粘性および蒸気圧が低い液体であることが求められる。また、光重合性組成物のテンプレートの原版パターンへの充填は、テンプレートを基板上の光重合性組成物の塗膜に当てた際、毛細管現象により自発的に行われるため、テンプレートを加圧する必要はない。最後に、テンプレートを基板から引き離し、基板上に転写パターンを得る。転写パターンは、パターンの下層に形成された金属薄膜等に対するマスクパターンとして用いられることが多く、この場合、ナノインプリント後に薄膜をエッチングすることで、原版パターンが転写された薄膜が得られる。 The ink jet method is a film in which the photopolymerizable composition is sprayed as droplets on a substrate with a nozzle, and the composition is cured by irradiating light in a state where the template pattern on the template is applied to the coated surface. Get on the substrate. The volume of droplets to be sprayed is on the order of picoliter, and the photopolymerizable composition is required to be a liquid having low viscosity and vapor pressure. In addition, the filling of the template of the photopolymerizable composition into the original plate pattern is performed spontaneously by capillary action when the template is applied to the coating film of the photopolymerizable composition on the substrate, so it is necessary to pressurize the template. There is no. Finally, the template is pulled away from the substrate to obtain a transfer pattern on the substrate. The transfer pattern is often used as a mask pattern for a metal thin film or the like formed in the lower layer of the pattern. In this case, a thin film to which the original pattern is transferred is obtained by etching the thin film after nanoimprinting.
 インクジェット方式の光ナノインプリント装置は、ステップアンドフラッシュインプリントリソグラフィー方式を採用した米国モレキュラーインプリンツ社の商品名インプリオが挙げられ、テンプレートの原版パターンの精度からインクジェットによる塗布量を制御するドロップオンデマンド方式を採用し、転写パターンの平坦性、スループットを向上させ、パターン欠陥を低減させている。 Inkjet optical nanoimprinting equipment includes the product name IMPLO of US Molecular Imprints, which employs step-and-flash imprint lithography, and uses a drop-on-demand system that controls the amount of coating by inkjet based on the accuracy of the template original pattern. Adopted to improve the flatness and throughput of the transfer pattern and reduce pattern defects.
 光ナノインプリントにおいて用いられる転写材料としては、各種重合性アクリレート化合物と光重合開始剤から構成される光重合性組成物が一般的である。しかしながら、光重合性組成物の化学構造または組成等を調整すれば、光重合後の硬化体を永久部材として使用することが可能である。 As a transfer material used in optical nanoimprint, a photopolymerizable composition composed of various polymerizable acrylate compounds and a photopolymerization initiator is generally used. However, if the chemical structure or composition of the photopolymerizable composition is adjusted, the cured product after photopolymerization can be used as a permanent member.
 例えば、光重合性化合物において、重合性アクリレート化合物の替わりにシロキサン化合物を用い重合させれば、得られたシロキサン樹脂の硬化体は、絶縁性、機械的強度および耐酸耐アルカリ等の耐久性に優れたものとなり、重合性アクリレート化合物を用いた場合と異なり、永久部材、例えば、絶縁膜として用いることが可能である。この際の、シロキサン化合物を含む光重合性組成物に要求される物性としては、低粘性且つ低蒸気圧の液体であることである。合成が容易でハンドリングしやすい等、工業に使用可能であることも重要である。 For example, in a photopolymerizable compound, if a siloxane compound is used for polymerization instead of a polymerizable acrylate compound, the resulting cured product of the siloxane resin is excellent in durability, such as insulation, mechanical strength, and acid / alkaline resistance. Unlike the case of using a polymerizable acrylate compound, it can be used as a permanent member, for example, an insulating film. In this case, the physical property required for the photopolymerizable composition containing the siloxane compound is a liquid having a low viscosity and a low vapor pressure. It is also important that it can be used in industry, such as easy synthesis and easy handling.
 光ナノインプリントを、最先端のロジック半導体やメモリーの多層配線構造を形成するバックエンドプロセス(以下、BEOLと呼ぶことがある)における低誘電率層間絶縁膜(以下、Low-k膜と呼ぶことがある)に用いれば、工程数を削減することが可能である。この際、光硬化後の硬化体がLow-k膜としての特性を発現する必要があり、Low-k膜としての機能を有する光重合性組成物が米国テキサス大学で検討され、非特許文献2、非特許文献3に報告されている。 Optical nanoimprint may be referred to as a low dielectric constant interlayer insulating film (hereinafter referred to as Low-k film) in a back-end process (hereinafter sometimes referred to as BEOL) for forming a multilayer wiring structure of a state-of-the-art logic semiconductor or memory. ), The number of steps can be reduced. At this time, it is necessary for the cured product after photocuring to express characteristics as a low-k film, and a photopolymerizable composition having a function as a low-k film has been studied at the University of Texas, USA. It is reported in Non-Patent Document 3.
 しかしながら、従来のシロキサン化合物を含む光重合性組成物は、以下の2つの問題のいずれかを有することが知られている。 However, it is known that a conventional photopolymerizable composition containing a siloxane compound has one of the following two problems.
 第1の問題は、液状の光重合性組成物の粘性が高く、インクジェット法による基板への塗布が難しいことである。前述の光ナノインプリント装置において、組成物のインクジェットにて塗布可能な粘度は25℃において30m・Pa・s以下である。30m・Pa・sを上回ると、インクジェット方式による均一な膜厚の塗布が難しく、且つインクジェットノズルの閉塞の虞がある。光重合性組成物に有機溶剤を添加して粘度を低下させると、蒸気圧が上昇してしまい、基板上にインクジェットで吐出した液滴の揮発により、表面滑らかな塗布膜が得られないで、基板の転写パターンの精度が低下する。また、有機溶剤を多く加えることは、硬化物の物性低下の懸念がある。 The first problem is that the liquid photopolymerizable composition has a high viscosity and is difficult to apply to the substrate by the ink jet method. In the above-described optical nanoimprint apparatus, the viscosity of the composition that can be applied by inkjet is 30 m · Pa · s or less at 25 ° C. If it exceeds 30 m · Pa · s, it is difficult to apply a uniform film thickness by the ink jet method, and the ink jet nozzle may be blocked. When an organic solvent is added to the photopolymerizable composition to reduce the viscosity, the vapor pressure increases, and a coating film with a smooth surface cannot be obtained due to volatilization of droplets ejected by inkjet onto the substrate. The accuracy of the transfer pattern on the substrate is reduced. Moreover, adding a large amount of an organic solvent may cause a decrease in physical properties of the cured product.
 第2の問題は、光重合性組成物の合成が難しいことである。 The second problem is that it is difficult to synthesize a photopolymerizable composition.
 例えば、以下に示す多置換性のかご型シルセスキオキサンは、各頂点に置換基を導入でき、分子設計の幅が広く、光ナノインプリントの光重合性組成物への使用が検討されている。
Figure JPOXMLDOC01-appb-C000003
(Xは2種類以上の重合性置換基を示す)
しかしながら、多置換性のカゴ型シルセスキオキサンは、ある特定の割合で重合性置換基Xを導入した場合を除いて、複数の重合性置換基Xを1分子内に導入する際、同一のものが得られ難い。例えば、Xとして、アクリロイル基とマレイミド基を、各々モル比で表して50:50で、1分子内に導入した使用とした場合、得られる生成物を分子レベルで見れば、アクリロイル基とマレイミド基は50:50で均一に導入されず、偏った分布のものとなる。特に光インプリントにおいて、置換基が偏ることで、硬化体に所望の物性が得られないばかりか、硬化具合および物性がロット間でばらつくという問題があった。
For example, the following polysubstituted cage-type silsesquioxane can introduce a substituent at each apex, has a wide range of molecular design, and has been studied for use in photopolymerizable compositions of photonanoimprint.
Figure JPOXMLDOC01-appb-C000003
(X represents two or more kinds of polymerizable substituents)
However, the multi-substituted cage-type silsesquioxane is the same when a plurality of polymerizable substituents X are introduced into one molecule except when a polymerizable substituent X is introduced at a specific ratio. Things are hard to get. For example, when X is an acryloyl group and a maleimide group, each represented by a molar ratio of 50:50, and introduced into one molecule, the resulting product can be seen at the molecular level and the acryloyl group and the maleimide group can be obtained. Is not uniformly introduced at 50:50 and has a biased distribution. In particular, in optical imprinting, there is a problem in that not only the desired physical properties cannot be obtained in the cured product due to biased substituents, but also the curing condition and physical properties vary between lots.
 また、アルコキシシランをゾルゲル法により加水分解縮合させてなる、以下に示す化学構造を有する縮合物を光ナノインプリントの光重合性組成物へ使用することも検討されている。尚、波線部分はその先にもシロキサン結合が続くことを意味する。
Figure JPOXMLDOC01-appb-C000004
しかしながら、一般的に、ゾルゲル法による加水分解縮合物は多数のSi-OH基を含んでおり、得られる加水分解縮合物は極めて不安定なものである。その結果、光ナノインプリントにおいて、置換基が偏ることで、硬化体に所望の物性が得られないばかりか、硬化具合および物性がロット間でばらつくという問題があった。
In addition, the use of a condensate obtained by hydrolytic condensation of alkoxysilane by a sol-gel method and having the chemical structure shown below for a photopolymerizable composition for photo-nanoimprinting is also under study. The wavy line means that the siloxane bond continues beyond that.
Figure JPOXMLDOC01-appb-C000004
However, in general, the hydrolysis-condensation product by the sol-gel method contains a large number of Si—OH groups, and the resulting hydrolysis-condensation product is extremely unstable. As a result, in the optical nanoimprint, there is a problem that not only the desired physical properties cannot be obtained in the cured product but also the curing condition and physical properties vary between lots due to biased substituents.
米国特許第6334960号US Pat. No. 6,334,960 米国特許第5772905号U.S. Pat. No. 5,772,905 特開2003-100609号公報Japanese Patent Laid-Open No. 2003-100609 特開2007-72374号公報JP 2007-72374 A 特開2008-105414号公報JP 2008-105414 A 特開2011-48899号公報JP 2011-48899 A
 従来技術に用いられるシロキサン化合物を含む光重合性組成物は、ゾルゲル法により生成されたシロキサン化合物または多官能性のかご型シルセスキオキサンを用いており、これらの化合物は、所望の化学構造および物性を再現性よく得る合成方法が確立されていない。ゆえに工業生産に採用され難く、光ナノインプリントの転写材料として、産業上利用することが困難であった。 The photopolymerizable composition containing a siloxane compound used in the prior art uses a siloxane compound or a multifunctional cage silsesquioxane produced by a sol-gel method, and these compounds have a desired chemical structure and A synthesis method for obtaining physical properties with good reproducibility has not been established. Therefore, it is difficult to employ in industrial production, and it is difficult to industrially use it as a transfer material for optical nanoimprint.
 本発明は、上記問題を解決するものであり、室温(25℃)で低粘性且つ低蒸気圧であり、光ナノインプリントの転写材料として好適に使用でき、有機溶剤を含まない状態においてもインクジェット方式による塗布が可能であり、高エネルギー線の照射により光重合した際にシリコン樹脂としての重合硬化物が再現性よく得られる光重合性組成物を提供することを目的とする。および当該光重合性組成物を用いた光ナノインプリントによるパターン形成方法を得ることを目的とする。 The present invention solves the above problems, has a low viscosity and low vapor pressure at room temperature (25 ° C.), can be suitably used as a transfer material for optical nanoimprint, and is based on an ink jet system even in a state not containing an organic solvent. An object of the present invention is to provide a photopolymerizable composition which can be applied and from which a polymerized cured product as a silicon resin can be obtained with good reproducibility when photopolymerized by irradiation with high energy rays. And it aims at obtaining the pattern formation method by the photo nanoimprint using the said photopolymerizable composition.
 即ち、本発明は以下の発明1~6よりなる。 That is, the present invention comprises the following inventions 1 to 6.
 [発明1]
 光重合開始剤とシロキサン化合物とを含む、光ナノインプリント用途の光重合性組成物であって、シロキサン化合物が、一般式(1)で表されるシロキサン化合物(A)、および、一般式(2)で表されるシロキサン化合物(B)からなる群から選ばれる少なくとも一つである、光重合性組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、基Aは重合性基であり、mは1~10の整数、nは1~10の整数、pは0~5の整数である。)
Figure JPOXMLDOC01-appb-C000006
(式中、基Bは重合性基であり、qは1~10の整数、rは0~5の整数である。)
[Invention 1]
A photopolymerizable composition for photo-nanoimprint use, comprising a photopolymerization initiator and a siloxane compound, wherein the siloxane compound is a siloxane compound (A) represented by the general formula (1) and the general formula (2) A photopolymerizable composition which is at least one selected from the group consisting of siloxane compounds (B) represented by:
Figure JPOXMLDOC01-appb-C000005
(In the formula, group A is a polymerizable group, m is an integer of 1 to 10, n is an integer of 1 to 10, and p is an integer of 0 to 5.)
Figure JPOXMLDOC01-appb-C000006
(In the formula, group B is a polymerizable group, q is an integer of 1 to 10, and r is an integer of 0 to 5).
 [発明2]
 基Aおよび基Bが、それぞれ独立に、アクリロイル基、メタクリロイル基、ビニル基、ビニルエーテル基、エポキシ基またはオキセタン基である、発明1の光重合性組成物。
[Invention 2]
The photopolymerizable composition of Invention 1, wherein the group A and the group B are each independently an acryloyl group, a methacryloyl group, a vinyl group, a vinyl ether group, an epoxy group, or an oxetane group.
 [発明3]
 25℃における粘度が30m・Pa・s以下である、発明1または発明2の光重合性組成物。
[Invention 3]
The photopolymerizable composition of the invention 1 or the invention 2 having a viscosity at 25 ° C. of 30 m · Pa · s or less.
 [発明4]
 25℃における蒸気圧が267Pa以下である、発明1~3の光重合性組成物。
[Invention 4]
The photopolymerizable composition according to inventions 1 to 3, having a vapor pressure at 25 ° C. of 267 Pa or less.
 [発明5]
 発明1~4の光重合性組成物をノズルにて液滴の状態で基板上に吹き付けて、基板上に光重合性組成物を塗布する工程と、原版パターンが形成されたテンプレートを、基板上に塗布した光重合性組成物と接触させた状態で、テンプレートを介して光重合性組成物に高エネルギー光を照射して重合硬化させる工程と、基板からテンプレートを引き離す工程と、を含む、基板上にテンプレートのパターンを転写するパターン形成方法。
[Invention 5]
A step of spraying the photopolymerizable composition of the inventions 1 to 4 on the substrate in the form of droplets with a nozzle, and applying the photopolymerizable composition on the substrate; A substrate comprising: a step of polymerizing and curing the photopolymerizable composition by irradiating the photopolymerizable composition with a high energy light through the template in a state of contact with the photopolymerizable composition applied to the substrate; and a step of separating the template from the substrate. A pattern forming method for transferring a template pattern onto the top.
 [発明6]
 高エネルギー光が、波長420nm以下の電磁波または電子線である、発明5の方法。
[Invention 6]
The method of the invention 5, wherein the high energy light is an electromagnetic wave or an electron beam having a wavelength of 420 nm or less.
 本発明において、光重合開始剤と特定の分枝鎖状または環状の構造を有するシロキサン化合物を含む光重合性組成物を光ナノインプリントの転写材料に用いることができる。本発明の光重合性組成物の構成物であるシロキサン化合物は再現性よく合成され、高エネルギー光を照射された光重合開始剤の作用により重合することが可能である。当該シロキサン化合物は、室温付近(25℃前後)で低粘性且つ低蒸気圧の液体であり、インクジェットによるノズル塗布が可能である。 In the present invention, a photopolymerizable composition containing a photopolymerization initiator and a siloxane compound having a specific branched or cyclic structure can be used as an optical nanoimprint transfer material. The siloxane compound, which is a constituent of the photopolymerizable composition of the present invention, is synthesized with good reproducibility and can be polymerized by the action of a photopolymerization initiator irradiated with high energy light. The siloxane compound is a low-viscosity and low vapor pressure liquid around room temperature (around 25 ° C.), and can be applied by an inkjet nozzle.
 本発明のナノインプリント用の光重合性組成物、およびそれを用いたパターン形成方法について、以下に説明する。 The photopolymerizable composition for nanoimprinting of the present invention and a pattern forming method using the same will be described below.
 1.ナノインプリント用の光重合性組成物
 本発明の光ナノインプリント用途の光重合性組成物は、光重合開始剤とシロキサン化合物とを含む。
1. Photopolymerizable composition for nanoimprint The photopolymerizable composition for use in photonanoimprinting of the present invention comprises a photopolymerization initiator and a siloxane compound.
 1.1 シロキサン化合物
 本発明の光重合性組成物に含まれるシロキサン化合物は、分岐鎖構造を有する一般式(1)で表されるシロキサン化合物(A)、および、環状構造を有する一般式(2)で表されるシロキサン化合物(B)からなる群から選ばれる少なくとも一つのシロキサン化合物である。
Figure JPOXMLDOC01-appb-C000007
式中、基Aは重合性基であり、mは1~10の整数、nは1~10の整数、pは0~5の整数である。
Figure JPOXMLDOC01-appb-C000008
式中、基Bは重合性基、qは1~10の整数、rはp~5の整数である。
1.1 Siloxane Compound The siloxane compound contained in the photopolymerizable composition of the present invention includes a siloxane compound (A) represented by the general formula (1) having a branched chain structure and a general formula (2) having a cyclic structure. And at least one siloxane compound selected from the group consisting of siloxane compounds (B).
Figure JPOXMLDOC01-appb-C000007
In the formula, the group A is a polymerizable group, m is an integer of 1 to 10, n is an integer of 1 to 10, and p is an integer of 0 to 5.
Figure JPOXMLDOC01-appb-C000008
In the formula, the group B is a polymerizable group, q is an integer of 1 to 10, and r is an integer of p to 5.
 本発明の光重合性組成物に含まれる、シロキサン化合物(A)とシロキサン化合物(B)は、光重合後に硬化物とした際に、シロキサン結合を有するシリコン樹脂となり、優れた耐熱性および低吸水性を示す。シロキサン化合物(A)およびシロキサン化合物(B)は、分子鎖状または環状であるので、同じ分子量の直鎖状のシロキサン化合物に比べ、同じ温度域では低粘性である。 When the siloxane compound (A) and the siloxane compound (B) contained in the photopolymerizable composition of the present invention are cured after photopolymerization, they become a silicon resin having a siloxane bond, and have excellent heat resistance and low water absorption. Showing gender. Since the siloxane compound (A) and the siloxane compound (B) are molecular chain or cyclic, they are less viscous in the same temperature range than the linear siloxane compound having the same molecular weight.
 シロキサン化合物(A)は、常温(25℃)で低粘性且つ低蒸気圧の液体である。光重合後の硬化物は低誘電率であり、また、光硬化時の収縮率が低く精緻な転写パターンが得られる。 The siloxane compound (A) is a liquid having a low viscosity and a low vapor pressure at room temperature (25 ° C.). The cured product after photopolymerization has a low dielectric constant, and the shrinkage rate upon photocuring is low, so that a precise transfer pattern can be obtained.
 シロキサン化合物(B)は、常温(25℃)で低粘性且つ低蒸気圧の液体である。さらにその環状構造から放射状に官能基Bを有するため、光重合後の硬化体は架橋密度が高く、ガラス転移温度がなく結晶性を有せず非晶質であり、機械的特性に優れる。 The siloxane compound (B) is a liquid having a low viscosity and a low vapor pressure at room temperature (25 ° C.). Furthermore, since it has the functional group B radially from the cyclic structure, the cured product after photopolymerization has a high crosslinking density, no glass transition temperature, no crystallinity, and is amorphous, and has excellent mechanical properties.
 本発明の光重合性組成物の構成物であるシロキサン化合物(A)とシロキサン化合物(B)が有する重合性基AおよびBは、それぞれ独立に、アクリロイル基、メタクリロイル基、ビニル基、ビニルエーテル基、エポキシ基またはオキセタン基であることが好ましい。これらの光重合基は、シロキサン化合物(A)、およびシロキサン化合物(B)のシリコン原子に直接結合してもよく、アルキレン基を介して結合してもよい。 The polymerizable groups A and B of the siloxane compound (A) and the siloxane compound (B) that are constituents of the photopolymerizable composition of the present invention are each independently an acryloyl group, a methacryloyl group, a vinyl group, a vinyl ether group, It is preferably an epoxy group or an oxetane group. These photopolymerizable groups may be directly bonded to the silicon atom of the siloxane compound (A) and the siloxane compound (B), or may be bonded via an alkylene group.
 本発明の光重合性組成物において用いられるシロキサン化合物(A)とシロキサン化合物(B)は、いずれかの一方単独で、または混合して使用することができ、混合させて使用する場合、その混合比率については特に限定されず、任意の比率で混合させることができる。例えば、光重合後の硬化体の比誘電率を低下させたい場合は、シロキサン化合物(A)の割合を高くし、光重合後の硬化物の機械的強度を上げたい場合は、シロキサン化合物(B)の割合を高くすることで、得られる硬化体の物性の制御が容易である。特に半導体デバイスに用いられる低誘電率層間絶縁膜に用いる場合、機械的強度に優れた硬化体を得るためにも、シロキサン化合物(B)の割合を高くすることが好ましい。質量比で表して、好ましくはシロキサン化合物(A):シロキサン化合物(B)=0~50:50~100である。さらに好ましくは、シロキサン化合物(A):シロキサン化合物(B)=1~50:50~99である。 The siloxane compound (A) and the siloxane compound (B) used in the photopolymerizable composition of the present invention can be used either alone or as a mixture. The ratio is not particularly limited and can be mixed at an arbitrary ratio. For example, when it is desired to reduce the relative dielectric constant of the cured product after photopolymerization, the ratio of the siloxane compound (A) is increased, and when the mechanical strength of the cured product after photopolymerization is desired to be increased, the siloxane compound (B ) Is easy to control the physical properties of the resulting cured product. In particular, when used for a low dielectric constant interlayer insulating film used in a semiconductor device, it is preferable to increase the ratio of the siloxane compound (B) in order to obtain a cured product having excellent mechanical strength. Expressed in terms of mass ratio, it is preferably siloxane compound (A): siloxane compound (B) = 0 to 50:50 to 100. More preferably, siloxane compound (A): siloxane compound (B) = 1 to 50:50 to 99.
 1.2 光重合開始剤
 本発明の光重合性組成物に用いられる光重合開始剤とは、高エネルギー光の照射により、ラジカルまたは酸を発生させて、シロキサン化合物(A)が有する重合性基Aまたはシロキサン化合物(B)が有する重合性基Bに作用して、シロキサン化合物(A)またはシロキサン化合物(B)を重合させることができるものである。具体的には光ラジカル重合開始剤と光カチオン重合開始剤が挙げられる。
1.2 Photopolymerization initiator The photopolymerization initiator used in the photopolymerizable composition of the present invention is a polymerizable group that the siloxane compound (A) has by generating radicals or acids by irradiation with high-energy light. It acts on the polymerizable group B of A or the siloxane compound (B) to polymerize the siloxane compound (A) or the siloxane compound (B). Specific examples include a photo radical polymerization initiator and a photo cationic polymerization initiator.
 光ラジカル重合開始剤には、分子内の結合が開裂してラジカルを生成する分子内開裂型と、3級アミンやエーテル等の水素供与体を併用することでラジカルを生成する水素引き抜き型があり、本発明においてはいずれも使用することができる。例えば、分子内開裂型である2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャリティケミカルズ株式会社製、商品名Darocur1173)は、光の照射によって炭素-炭素結合が開裂することでラジカルを生成する。また、水素引き抜き型としては、ベンゾフェノンやオルソベンゾイン安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド等があり、光照射による水素供与体との2分子反応によって、ラジカルを生成する。これらのラジカルによって、アクリロイル基、メタクリロイル基またはビニル基の二重結合が開裂し、シロキサン化合物(A)またはシロキサン化合物(B)は重合する。 Photoradical polymerization initiators include an intramolecular cleavage type in which intramolecular bonds are cleaved to generate radicals, and a hydrogen abstraction type in which hydrogen donors such as tertiary amines and ethers are used in combination to generate radicals. Any of them can be used in the present invention. For example, in the intramolecular cleavage type 2-hydroxy-2-methyl-1-phenylpropan-1-one (Ciba Specialty Chemicals Co., Ltd., trade name Darocur 1173), the carbon-carbon bond is cleaved by light irradiation. To generate radicals. Examples of the hydrogen abstraction type include benzophenone, methyl orthobenzoin benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and the like, and generate radicals by a bimolecular reaction with a hydrogen donor by light irradiation. By these radicals, the double bond of acryloyl group, methacryloyl group or vinyl group is cleaved, and siloxane compound (A) or siloxane compound (B) is polymerized.
 光ラジカル重合発生剤としては、光を吸収することでラジカルを発生する化合物であれば特に限定されず、市販の光重合開始剤を用いることができ、例えば、チバ・スペシャリティ・ケミカルズ株式社製の光重合開始剤Darocurシリーズから、前述の商品名Darocur1173、またはIrgacureシリーズから、商品名Irgacure127、Irgacure184、Irgacure2959、Irgacure369、Irgacure379、Irgacure907、Irgacure1700、Irgacure1800、Irgacure1850、Irgacure1870またはIrgacure4265を使用することができる。 The photoradical polymerization generator is not particularly limited as long as it is a compound that generates radicals by absorbing light, and a commercially available photopolymerization initiator can be used, for example, manufactured by Ciba Specialty Chemicals Co., Ltd. From the photopolymerization initiator Darocur series, the trade names Irgacure 127, Irgacure 184, Irgacure 2959, Irgacure 369, Irgacure 379, Irgacure 907, Irgacure 1700, Irgacure 1800, Irgacure 1850, Irgacure 1265 or Irgacure 1265 can be used.
 光カチオン重合開始剤は、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、ホスホニウム塩などのオニウム塩系の化合物が挙げられる。これらの化合物は光の照射によって、励起状態を経た後に酸を生成する。これらの酸によって、エポキシ基またはオキセタン基が開裂、またはビニルエーテル基の二重結合が開裂することによって、シロキサン化合物(A)または(B)は重合する。 Examples of the cationic photopolymerization initiator include onium salt compounds such as diazonium salts, iodonium salts, sulfonium salts, and phosphonium salts. These compounds generate acids after being excited by irradiation with light. The siloxane compound (A) or (B) is polymerized by cleavage of the epoxy group or oxetane group or cleavage of the double bond of the vinyl ether group by these acids.
 光カチオン重合開始剤は、光を吸収することで酸を発生する化合物であれば特に限定されず、市販の光重合開始剤を用いることができ、例えば、チバ・スペシャリティ・ケミカルズ株式会社製の光重合開始剤Irgacureシリーズから、商品名、Irgacure261、または、みどり化学株式社の光重合開始剤、商品名BBI-103、MPI-103、TPS-103、MDS-103、DTS-103、NAT-103またはNDS-103を使用することができる。 The cationic photopolymerization initiator is not particularly limited as long as it is a compound that generates an acid by absorbing light, and a commercially available photopolymerization initiator can be used, for example, a light produced by Ciba Specialty Chemicals Co., Ltd. From polymerization initiator Irgacure series, trade name, Irgacure261, or photopolymerization initiator of Midori Chemical Co., Ltd., trade names BBI-103, MPI-103, TPS-103, MDS-103, DTS-103, NAT-103 or NDS-103 can be used.
 本発明の光重合性組成物の構成成分として用いられる光重合開始剤の割合は、光重合性組成物の全質量を基準として、0.1質量%~7質量%の範囲内である。含有が0.1質量%を下回ると、光重合反応によって硬化物を得ることが難しくなる。7質量%を上回ると、光硬化後の硬化物の物性が低下し、ナノインプリントによって良好なパターン転写が難しくなる。 The proportion of the photopolymerization initiator used as a constituent of the photopolymerizable composition of the present invention is in the range of 0.1% by mass to 7% by mass based on the total mass of the photopolymerizable composition. When the content is less than 0.1% by mass, it is difficult to obtain a cured product by a photopolymerization reaction. When it exceeds 7 mass%, the physical property of the hardened | cured material after photocuring will fall, and a favorable pattern transfer will become difficult by nanoimprint.
 2.光重合性組成物の物性および光硬化
 本発明の光重合性組成物は25℃における粘度が30m・Pa・s以下の低粘性である。粘度が30m・Pa・sを上回ると、インクジェットによって吐出される液滴の体積をコントロールすることが難しくなる。場合によっては、インクジェットノズルの閉塞が生じる。
2. Physical properties and photocuring of the photopolymerizable composition The photopolymerizable composition of the present invention has a low viscosity of 30 m · Pa · s or less at 25 ° C. When the viscosity exceeds 30 m · Pa · s, it becomes difficult to control the volume of the droplets ejected by the ink jet. In some cases, the inkjet nozzle is blocked.
 本発明の光重合性組成物は25℃における蒸気圧が、267Pa以下の低蒸気圧である。蒸気圧が267Paを上回ると、基板上にインクジェットで吐出した際に、液滴の揮発が無視できなくなり、均一な膜厚の膜を作ることが難しい。その結果、光ナノインプリントによる転写パターンにおいて、原版パターンの再現性が難しくなる。 The photopolymerizable composition of the present invention has a low vapor pressure of 267 Pa or less at 25 ° C. If the vapor pressure exceeds 267 Pa, volatilization of droplets cannot be ignored when ejected onto a substrate by inkjet, and it is difficult to form a film with a uniform film thickness. As a result, the reproducibility of the original pattern becomes difficult in the transfer pattern by optical nanoimprint.
 本発明の光重合性組成物は、高エネルギー光照射を行うことで、光重合開始剤の作用により重合反応が進行し、硬化体となる。光照射に用いられる高エネルギー光としては、近紫外領域を含む紫外光であり、具体的には420nm以下の紫外光である。実用的には、波長200nm以上、420nm以下の紫外光が使いやすく、これらの波長域の紫外光を放射する光源には、高圧水銀灯、超高圧水銀灯、中圧水銀灯、低圧水銀灯、メタルハライドランプ、キセノンフラッシュランプまたは紫外発光ダイオード(LED)が挙げられ、本発明の光重合性組成物の硬化に使用することができる。 The photopolymerizable composition of the present invention undergoes a polymerization reaction by the action of a photopolymerization initiator when irradiated with high energy light, and becomes a cured product. High energy light used for light irradiation is ultraviolet light including a near ultraviolet region, specifically, ultraviolet light of 420 nm or less. Practically, ultraviolet light having a wavelength of 200 nm or more and 420 nm or less is easy to use, and light sources that emit ultraviolet light in these wavelength ranges include high pressure mercury lamps, ultrahigh pressure mercury lamps, medium pressure mercury lamps, low pressure mercury lamps, metal halide lamps, xenon. A flash lamp or an ultraviolet light emitting diode (LED) can be mentioned and can be used for curing the photopolymerizable composition of the present invention.
 本発明のナノインプリントにおいて用いられるテンプレートは、紫外光領域以下の波長が透過する材質である必要があり、具体的には石英およびサファイア等が挙げられる。 The template used in the nanoimprint of the present invention needs to be made of a material that transmits wavelengths below the ultraviolet light region, and specifically includes quartz and sapphire.
 3.パターン形成方法
 本発明のパターン形成方法は、発明1~4の光重合性組成物をノズルにて液滴の状態で基板上に吹き付けて、基板上に光重合性組成物を塗布する工程と、原版パターンが形成されたテンプレートを、基板上に塗布された光重合性組成物と接触させた状態で、テンプレートを介して光重合性組成物に高エネルギー光を照射して重合硬化させる工程と、基板からテンプレートを引き離す工程と、を含む、基板上にテンプレートのパターンを転写するパターン形成方法である。
3. Pattern Forming Method The pattern forming method of the present invention comprises a step of spraying the photopolymerizable composition of the inventions 1 to 4 on a substrate in a droplet state with a nozzle, and applying the photopolymerizable composition on the substrate; A step of polymerizing and curing the photopolymerizable composition by irradiating the photopolymerizable composition through the template with the template on which the original pattern is formed in contact with the photopolymerizable composition applied on the substrate; A pattern forming method for transferring a pattern of the template onto the substrate.
 即ち、発明1~4の光重合性組成物を、インクジェットノズルより液滴の状態で基板上へ吹き付け、光ナノインプリントに準じて、原版パターンが形成されたテンプレートを、基板に塗布された光重合性組成物に接触させた状態で高エネルギー光照射を行うことで、光重合性組成物を硬化させ、硬化体からテンプレートを引き離すことで、転写パターンを基板上に形成する。高エネルギー光は、光重合開始剤に作用しラジカルまたは酸を発生させ、シロキサン化合物を重合させるエネルギーを有する、波長420nm以下の電磁波または電子線であることが好ましい。 That is, the photopolymerizable composition of the inventions 1 to 4 is sprayed onto a substrate in the form of droplets from an inkjet nozzle, and a template on which an original pattern is formed is applied to the substrate in accordance with optical nanoimprint. By irradiating the composition with high energy light, the photopolymerizable composition is cured, and the template is separated from the cured body to form a transfer pattern on the substrate. The high energy light is preferably an electromagnetic wave or an electron beam having a wavelength of 420 nm or less, having an energy for polymerizing a siloxane compound by acting on a photopolymerization initiator to generate radicals or acids.
 4.用途
 光ナノインプリントによって形成された、本発明の光重合性組成物を重合させた転写パターンは、半導体デバイス中に用いられる低誘電率層間絶縁膜として使用される。当該半導体デバイスには、マイクロプロセッサー等のロジック半導体、DRAM(Dynamic Random Access Memory)等の揮発性メモリー、またはフラッシュメモリーが揚げられる。
4). Application The transfer pattern formed by photo-nanoimprinting and polymerizing the photopolymerizable composition of the present invention is used as a low dielectric constant interlayer insulating film used in a semiconductor device. The semiconductor device includes a logic semiconductor such as a microprocessor, a volatile memory such as a DRAM (Dynamic Random Access Memory), or a flash memory.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 始めに、分岐構造を有するシロキサン化合物(A)、環状構造を有するシロキサン化合物(B)を合成した後、光重合開始剤を加え、本発明の光重合性組成物を得た。 First, after synthesizing a siloxane compound (A) having a branched structure and a siloxane compound (B) having a cyclic structure, a photopolymerization initiator was added to obtain a photopolymerizable composition of the present invention.
 具体的には、実施例1で、分岐構造を有するシロキサン化合物(A)に属するシロキサン化合物(A-1)、および環状構造を有するシロキサン化合物(B)に属するシロキサン化合物(B-1)に光重合開始剤を加え、本発明の光重合性組成物(1)を得た。実施例2では、より高強度の硬化物を得るために、シロキサン化合物(B-1)に光重合開始剤を加え、本発明の光重合性組成物(2)を得た。 Specifically, in Example 1, the siloxane compound (A-1) belonging to the siloxane compound (A) having a branched structure and the siloxane compound (B-1) belonging to the siloxane compound (B) having a cyclic structure were irradiated with light. A polymerization initiator was added to obtain a photopolymerizable composition (1) of the present invention. In Example 2, in order to obtain a cured product with higher strength, a photopolymerization initiator was added to the siloxane compound (B-1) to obtain a photopolymerizable composition (2) of the present invention.
 次いで、光重合性組成物(1)および(2)の粘度、蒸気圧、硬化物の比誘電率、耐熱性、ガラス転移温度、強度および吸水率、並びに光重合組成物の硬化前後における光硬化収縮率を測定した。 Next, the viscosity of the photopolymerizable compositions (1) and (2), the vapor pressure, the relative dielectric constant of the cured product, the heat resistance, the glass transition temperature, the strength and the water absorption, and the photocuring before and after curing of the photopolymerizable composition. Shrinkage was measured.
 次いで、光重合性組成物(1)および(2)を用い、光ナノインプリントを行い転写パターンの観察を行った。 Next, using the photopolymerizable compositions (1) and (2), optical nanoimprinting was performed and the transfer pattern was observed.
 [物性の測定方法]
 測定方法を以下、詳細に示す。
[Measurement method of physical properties]
The measurement method is shown in detail below.
 光重合性組成物の粘度は振動式粘度計(株式会社セコニック製、品名、VM-100A)にて測定した。蒸気圧は、密閉可能な米国Swagelok社のステンレス製10mlシリンダーに光重合性組成物を封入し、液体窒素で冷却しながら溶存空気を減圧脱気する操作を3回繰り返した後、シリンダー内の圧力を隔膜式圧力計(日本エム・ケー・エス株式会社製、品名、バラトロン626B)にて測定した。 The viscosity of the photopolymerizable composition was measured with a vibration viscometer (manufactured by Seconic Corporation, product name, VM-100A). Vapor pressure was determined by sealing the photopolymerizable composition in a stainless steel 10 ml cylinder of Swagelok, USA, and repeating the operation of degassing the dissolved air three times while cooling with liquid nitrogen. Was measured with a diaphragm-type pressure gauge (manufactured by Nippon KS Co., Ltd., product name, Baratron 626B).
 光重合性組成物を重合させ硬化物を得る際の光源には、UV照射装置(株式会社モリテックス製、品名、MUV-351U)を用いた。 A UV irradiation device (manufactured by Moritex Co., Ltd., product name, MUV-351U) was used as a light source for polymerizing the photopolymerizable composition to obtain a cured product.
 硬化物の比誘電率は、薄膜形状の硬化物を作成し、その上下部分に導電性ペースト(藤倉化成株式会社製、商品名ドータイト)にて金属電極を作成し、LCRメーター(米国アジレント社製、4294A)を用いて、周波数1MHzにおける静電容量値を測定して、算出した。耐熱性は、示差熱天秤TG-DTA(株式会社リガク製、TG8120)によって得られた熱質量曲線における5%質量減少温度を、耐熱性の指標とした。ガラス転移温度は、示差走査熱量計(セイコーインスツル株式会社製、品名、DSC6200)を用いて測定した。機械的強度は、シリコン基板上に薄膜形状の硬化物を作成し、ナノインデンテーション法(米国ハイジトロン社製、商品名トライボインデンター)によって測定した。吸水率は、硬化物を120℃のオーブンにて一晩乾燥させた後、硬化物を純水中へ24時間浸漬させ、浸漬前後の質量変化量より算出した。 The relative permittivity of the cured product is a thin film-shaped cured product, and a metal electrode is created with a conductive paste (made by Fujikura Kasei Co., Ltd., trade name Dotite) on the upper and lower portions thereof. 4294A), the capacitance value at a frequency of 1 MHz was measured and calculated. For heat resistance, a 5% mass reduction temperature in a thermal mass curve obtained by a differential thermobalance TG-DTA (manufactured by Rigaku Corporation, TG8120) was used as an index of heat resistance. The glass transition temperature was measured using a differential scanning calorimeter (manufactured by Seiko Instruments Inc., product name, DSC6200). The mechanical strength was measured by preparing a cured product in the form of a thin film on a silicon substrate and nanoindentation (trade name: Triboindenter, manufactured by Heiditron, USA). The water absorption was calculated from the amount of mass change before and after immersion after the cured product was dried in an oven at 120 ° C. overnight, and then the cured product was immersed in pure water for 24 hours.
 光重合組成物の硬化前後における光硬化収縮率は、シリコン基板上における光硬化前後の膜厚変化量を光干渉方式膜厚計(ドイツセンテック社製、FTP500)にて測定し、算出した。 The photocuring shrinkage before and after curing of the photopolymerization composition was calculated by measuring the amount of change in film thickness before and after photocuring on the silicon substrate with an optical interference film thickness meter (manufactured by Sentec Germany, FTP500).
 実施例1
 [光重合性シロキサン化合物の合成]
 分岐構造を有するシロキサン化合物(A)に属する、式(3)で表されるシロキサン化合物(A-1)を、公知の合成法に従って合成した(非特許文献3)。
Figure JPOXMLDOC01-appb-C000009
尚、式(3)で示されるシロキサン化合物(A-1)は、米国テキサス大学より、品名、Si-12メタクリルとして入手可能である。
Example 1
[Synthesis of photopolymerizable siloxane compound]
A siloxane compound (A-1) represented by the formula (3) belonging to the siloxane compound (A) having a branched structure was synthesized according to a known synthesis method (Non-patent Document 3).
Figure JPOXMLDOC01-appb-C000009
The siloxane compound (A-1) represented by the formula (3) is available from the University of Texas as the product name Si-12 methacryl.
 次に、環状構造を有する光重合性シロキサン化合物(B)に属する、式(4)で表されるシロキサン化合物(B-1)の合成を行った。
Figure JPOXMLDOC01-appb-C000010
Next, a siloxane compound (B-1) represented by the formula (4) belonging to the photopolymerizable siloxane compound (B) having a cyclic structure was synthesized.
Figure JPOXMLDOC01-appb-C000010
 1Lのガラスフラスコに1,3,5,7-テトラメチルシクロテトラシロキサン(米国Gelest社製)を15.248g(0.063mol)、メタクリル酸アリル(東京化成株式会社製)を36.747g(0.2913mol)、トルエンを200ml仕込んだ後、溶液を撹拌しながら、触媒として白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(2質量%キシレン溶液)(米国シグマ-アルドリッチ社製)を30mg、滴下した。12時間撹拌した後、トルエン、および過剰のメタクリル酸アリルをエバポレーターにて減圧除去することで、目的とする光重合性シロキサン化合物(B-1)を収量41.906g、収率88.7質量%で得た。 In a 1 L glass flask, 15.248 g (0.063 mol) of 1,3,5,7-tetramethylcyclotetrasiloxane (manufactured by Gelest, USA) and 36.747 g (0,0) of allyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) 2913 mol), 200 ml of toluene was added, and the solution was stirred and platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (2% by mass xylene solution) was used as a catalyst. 30 mg of (Sigma-Aldrich, USA) was added dropwise. After stirring for 12 hours, toluene and excess allyl methacrylate were removed under reduced pressure using an evaporator, whereby the desired photopolymerizable siloxane compound (B-1) was obtained in a yield of 41.906 g and a yield of 88.7% by mass. Got in.
 [光重合性組成物の調製]
 上記に示したシロキサン化合物(A-1)およびシロキサン化合物(B-1)に、式(5)で表される光重合開始剤を添加した。尚、当該光重合開始剤は、米国チバ・スペシャリティ・ケミカルズ社より、商品名Darocur1173として市販されている。
Figure JPOXMLDOC01-appb-C000011
具体的には、質量比で表して、シロキサン化合物(A-1):シロキサン化合物(B-1):光重合開始剤が49:49:2の割合となるように、光硬化性組成物を調製した。
[Preparation of photopolymerizable composition]
A photopolymerization initiator represented by the formula (5) was added to the siloxane compound (A-1) and the siloxane compound (B-1) shown above. The photopolymerization initiator is commercially available under the trade name Darocur 1173 from Ciba Specialty Chemicals.
Figure JPOXMLDOC01-appb-C000011
Specifically, the photocurable composition is expressed in terms of mass ratio so that the ratio of siloxane compound (A-1): siloxane compound (B-1): photopolymerization initiator is 49: 49: 2. Prepared.
 実施例2
 光重合性シロキサン化合物として、光重合性シロキサン化合物(B-1)のみを用いた以外は、実施例1と同様の方法で実施した。
Example 2
The same procedure as in Example 1 was performed, except that only the photopolymerizable siloxane compound (B-1) was used as the photopolymerizable siloxane compound.
 [光重合性組成物の調製]
 実施例1で用いた環状構造を有する光重合性シロキサン化合物(B-1)と光重合開始剤を、質量比で表して、シロキサン化合物(B-1):光重合開始剤が98:2の割合となるように、光重合性組成物を調製した。
[Preparation of photopolymerizable composition]
The photopolymerizable siloxane compound (B-1) having a cyclic structure and the photopolymerization initiator used in Example 1 were represented by a mass ratio, and the siloxane compound (B-1): photopolymerization initiator was 98: 2. The photopolymerizable composition was prepared so that it might become a ratio.
 次いで、実施例1の光重合性組成物(1)、実施例2の光重合性組成物(2)および各々硬化物についての物性測定を行った。 Next, physical properties of the photopolymerizable composition (1) of Example 1, the photopolymerizable composition (2) of Example 2, and the respective cured products were measured.
 [光重合性組成物および硬化物の物性測定]
 表1に、光重合性組成物(1)および(2)の粘性、蒸気圧の測定結果を、表2に、光重合後の各々硬化物(1)および(2)の比誘電率、耐熱性、ガラス転移温度、機械的強度、光硬化収縮率および吸水率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
[Measurement of physical properties of photopolymerizable composition and cured product]
Table 1 shows the measurement results of the viscosity and vapor pressure of the photopolymerizable compositions (1) and (2), and Table 2 shows the relative dielectric constant and heat resistance of the cured products (1) and (2) after photopolymerization. The measurement results of properties, glass transition temperature, mechanical strength, photocuring shrinkage and water absorption are shown.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 光重合性組成物(1)および(2)はともに、粘性が30m・Pa・s(30cP)以下、蒸気圧が267Pa(2Torr)以下であり、光ナノインプリントにおけるインクジェットによる基板への塗布が可能であった。また、光重合後の硬化物の比誘電率、耐熱性、ガラス転移温度、機械的強度、光硬化収縮率、吸水率は低誘電率層間絶縁膜として利用することが可能な値あった。 Both the photopolymerizable compositions (1) and (2) have a viscosity of 30 m · Pa · s (30 cP) or less and a vapor pressure of 267 Pa (2 Torr) or less, and can be applied to a substrate by inkjet in optical nanoimprint. there were. Further, the relative permittivity, heat resistance, glass transition temperature, mechanical strength, photocuring shrinkage, and water absorption of the cured product after photopolymerization were values that could be used as a low dielectric constant interlayer insulating film.
 [光重合性組成物を用いた光ナノインプリント]
 ナノオーダーの原版パターンが形成された石英製のテンプレートを準備した。トリデカフルオロ-1,1,2,2-テトラハイドロオクチルジメチルクロロシラン(米国Gelest社製)を1.0質量%含有するトルエン溶液を準備し、そこへテンプレートを1時間浸漬させて、テンプレートの表面処理を行った。続いてシリコン基板を準備し、光ナノインプリントの下層膜に相当する密着層を形成するための塗布液(ドイツ国マイクロレジストテクノロジー社製、商品名mr-APS1)をシリコン基板上へ回転速度5000rpmにて60秒間スピンコートし、150℃で60秒加熱させ、密着層を形成した。このような2枚のシリコン基板上に、上記の光重合性組成物(1)および(2)を各々塗布し、そこへテンプレートを上からゆっくりと接触させた。続いてテンプレートの上部側より、前記UV照射装置を用い、紫外光を20mW/cm2の強度で180秒間、照射させることで、光重合性組成物を硬化させた。硬化物からテンプレートを引き離し、シリコン基板上に光ナノインプリントによる転写パターンを得た。光学顕微鏡、および電子顕微鏡にてパターンを観察したところ、良好な転写性を確認した。
[Photonanoimprint using photopolymerizable composition]
A quartz template on which a nano-order master pattern was formed was prepared. A toluene solution containing 1.0% by mass of tridecafluoro-1,1,2,2-tetrahydrooctyldimethylchlorosilane (manufactured by Gelest, USA) was prepared, and the template was immersed in the solution for 1 hour to obtain a surface of the template. Processed. Subsequently, a silicon substrate was prepared, and a coating solution (trade name mr-APS1, manufactured by Microresist Technology, Germany) for forming an adhesion layer corresponding to the lower layer film of the optical nanoimprint was applied onto the silicon substrate at a rotational speed of 5000 rpm. Spin coating was performed for 60 seconds, and heating was performed at 150 ° C. for 60 seconds to form an adhesion layer. The above photopolymerizable compositions (1) and (2) were respectively applied onto such two silicon substrates, and the template was slowly brought into contact therewith from above. Subsequently, the photopolymerizable composition was cured by irradiating ultraviolet light with an intensity of 20 mW / cm 2 for 180 seconds from the upper side of the template. The template was pulled away from the cured product to obtain a transfer pattern by optical nanoimprint on the silicon substrate. When the pattern was observed with an optical microscope and an electron microscope, good transferability was confirmed.
 比較例1
 [光重合性シロキサン化合物の合成]
 式(6)で表される光重合性シロキサン化合物(C-1)を、公知の合成法に従って合成した(非特許文献3)。
Figure JPOXMLDOC01-appb-C000014
尚、式(6)で示される光重合性シロキサン化合物(C-1)は、米国マイアテリアルズ社より商品名OMPSとして入手可能である。この化合物はシロキサン結合によってかご型の分子構造が形成されており、一般的には、かご型シルセスキオキサンと呼ばれるものである。
Comparative Example 1
[Synthesis of photopolymerizable siloxane compound]
The photopolymerizable siloxane compound (C-1) represented by the formula (6) was synthesized according to a known synthesis method (Non-patent Document 3).
Figure JPOXMLDOC01-appb-C000014
In addition, the photopolymerizable siloxane compound (C-1) represented by the formula (6) is available as a trade name OMPS from Myatereals, USA. This compound has a cage-type molecular structure formed by a siloxane bond, and is generally called a cage-type silsesquioxane.
 [光重合性組成物の調製]
 光重合性シロキサン化合物(C-1)と式(5)で示される光重合開始剤を、質量比で表して、シロキサン化合物(C-1):光重合開始剤が、質量比で表して、98:2の割合となるように、光重合性組成物を調製した。得られた光重合性組成物の粘性は、25℃において280m・Pa・sと高い値を示しており、粘性が高すぎて、インクジェット方式の光ナノインプリントには適用できなかった。
[Preparation of photopolymerizable composition]
The photopolymerizable siloxane compound (C-1) and the photopolymerization initiator represented by the formula (5) are represented by mass ratio, and the siloxane compound (C-1): photopolymerization initiator is represented by mass ratio. A photopolymerizable composition was prepared so as to have a ratio of 98: 2. The viscosity of the obtained photopolymerizable composition was as high as 280 m · Pa · s at 25 ° C., and the viscosity was too high to be applied to the ink jet optical nanoimprint.
 以上、本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。 The present invention has been described based on the specific embodiments. However, the present invention is not limited to the above embodiments, and includes various modifications and changes without departing from the spirit of the present invention.

Claims (6)

  1. 光重合開始剤とシロキサン化合物とを含む、光ナノインプリント用途の光重合性組成物であって、シロキサン化合物が、一般式(1)で表されるシロキサン化合物(A)、および、一般式(2)で表されるシロキサン化合物(B)からなる群から選ばれる少なくとも一つである、光重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、基Aは重合性基であり、mは1~10の整数、nは1~10の整数、pは0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、基Bは重合性基であり、qは1~10の整数、rは0~5の整数である。)
    A photopolymerizable composition for photo-nanoimprint use, comprising a photopolymerization initiator and a siloxane compound, wherein the siloxane compound is a siloxane compound (A) represented by the general formula (1) and the general formula (2) A photopolymerizable composition which is at least one selected from the group consisting of siloxane compounds (B) represented by:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, group A is a polymerizable group, m is an integer of 1 to 10, n is an integer of 1 to 10, and p is an integer of 0 to 5.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, group B is a polymerizable group, q is an integer of 1 to 10, and r is an integer of 0 to 5).
  2. 基Aおよび基Bが、それぞれ独立に、アクリロイル基、メタクリロイル基、ビニル基、ビニルエーテル基、エポキシ基またはオキセタン基である、請求項1に記載の光重合性組成物。 The photopolymerizable composition according to claim 1, wherein the group A and the group B are each independently an acryloyl group, a methacryloyl group, a vinyl group, a vinyl ether group, an epoxy group, or an oxetane group.
  3. 25℃における粘度が30m・Pa・s以下である、請求項1または請求項2に記載の光重合性組成物。 The photopolymerizable composition of Claim 1 or Claim 2 whose viscosity in 25 degreeC is 30 m * Pa * s or less.
  4. 25℃における蒸気圧が267Pa以下である、請求項1乃至請求項3のいずれか1項に記載の光重合性組成物。 The photopolymerizable composition according to any one of claims 1 to 3, wherein a vapor pressure at 25 ° C is 267 Pa or less.
  5. 請求項1乃至請求項4のいずれか1項に記載の光重合性組成物をノズルにて液滴の状態で基板上に吹き付けて、基板上に光重合性組成物を塗布する工程と、原版パターンが形成されたテンプレートを、基板上に塗布した光重合性組成物と接触させた状態で、テンプレートを介して光重合性組成物に高エネルギー光を照射して重合硬化させる工程と、基板からテンプレートを引き離す工程と、を含む、基板上にテンプレートのパターンを転写するパターン形成方法。 A step of spraying the photopolymerizable composition according to any one of claims 1 to 4 on a substrate in a droplet state with a nozzle and applying the photopolymerizable composition on the substrate; A process in which a template on which a pattern is formed is polymerized and cured by irradiating the photopolymerizable composition with high energy light through the template in a state where the template is in contact with the photopolymerizable composition applied on the substrate; A pattern forming method for transferring the pattern of the template onto the substrate.
  6. 高エネルギー光が、波長420nm以下の電磁波または電子線である、請求項5に記載の方法。 The method according to claim 5, wherein the high energy light is an electromagnetic wave or an electron beam having a wavelength of 420 nm or less.
PCT/JP2012/078457 2011-11-30 2012-11-02 Photopolymerizable composition and pattern forming method using same WO2013080741A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011262204 2011-11-30
JP2011-262204 2011-11-30
JP2012238211A JP2013138179A (en) 2011-11-30 2012-10-29 Photopolymerizable composition and pattern formation method using the same
JP2012-238211 2012-10-29

Publications (1)

Publication Number Publication Date
WO2013080741A1 true WO2013080741A1 (en) 2013-06-06

Family

ID=48535209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078457 WO2013080741A1 (en) 2011-11-30 2012-11-02 Photopolymerizable composition and pattern forming method using same

Country Status (3)

Country Link
JP (1) JP2013138179A (en)
TW (1) TW201333076A (en)
WO (1) WO2013080741A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064310A1 (en) * 2013-10-30 2015-05-07 日産化学工業株式会社 Imprint material containing modified silicone compound and silsesquioxane compound
WO2016098346A1 (en) * 2014-12-19 2016-06-23 Canon Kabushiki Kaisha Photocurable composition for imprint, method of producing cured film, method of producing optical component, method of producing circuit board, and method of producing electronic component
JP2020040408A (en) * 2017-11-22 2020-03-19 マクセルホールディングス株式会社 Composition for model material
JP2020040407A (en) * 2017-11-22 2020-03-19 マクセルホールディングス株式会社 Composition for model material
CN111234773A (en) * 2020-03-10 2020-06-05 烟台德邦科技有限公司 Silicone sealant with high environmental adaptability
US11597786B2 (en) 2017-11-22 2023-03-07 Maxell, Ltd. Composition for model material
WO2023037941A1 (en) * 2021-09-10 2023-03-16 ダウ・東レ株式会社 High energy ray-curable composition and use of same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650740B1 (en) * 2014-09-15 2016-08-24 한국화학연구원 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same
KR101607965B1 (en) 2015-07-07 2016-03-31 한국화학연구원 Photopolymerizable composition for roll-to-roll nanoimprint lithography and Wire-grid olarizer film comprising the same
JP6428677B2 (en) * 2016-02-23 2018-11-28 信越化学工業株式会社 Organosilicon compound and curable composition containing the same
IL267443B2 (en) * 2016-12-22 2023-10-01 Illumina Inc Imprinting apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517743A (en) * 2004-10-22 2008-05-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Method and system for transferring pattern material
JP2009083172A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Optical imprinting method
WO2009060862A1 (en) * 2007-11-07 2009-05-14 Showa Denko K.K. Epoxy group-containing organosiloxane compound, curable composition for transfer material, and fine pattern forming method using the composition
JP2009172921A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Setting method of discharge pulse
JP2010006870A (en) * 2008-06-24 2010-01-14 Fujifilm Corp Curable composition for nanoimprinting, cured product and method for producing the same
JP2010158843A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Liquid delivering apparatus and method for controlling the same
JP2011035346A (en) * 2009-08-06 2011-02-17 Showa Denko Kk Photocurable transfer sheet and method of photo-nanoimprint employing the same
WO2011049078A1 (en) * 2009-10-22 2011-04-28 日産化学工業株式会社 Film-forming composition containing silicon compound
JP2011199076A (en) * 2010-03-19 2011-10-06 Toshiba Corp Pattern forming method
WO2011129005A1 (en) * 2010-04-15 2011-10-20 東洋合成工業株式会社 Photocurable composition for formation of resin pattern, and pattern formation method using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517743A (en) * 2004-10-22 2008-05-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Method and system for transferring pattern material
JP2009083172A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Optical imprinting method
WO2009060862A1 (en) * 2007-11-07 2009-05-14 Showa Denko K.K. Epoxy group-containing organosiloxane compound, curable composition for transfer material, and fine pattern forming method using the composition
JP2009172921A (en) * 2008-01-25 2009-08-06 Seiko Epson Corp Setting method of discharge pulse
JP2010006870A (en) * 2008-06-24 2010-01-14 Fujifilm Corp Curable composition for nanoimprinting, cured product and method for producing the same
JP2010158843A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Liquid delivering apparatus and method for controlling the same
JP2011035346A (en) * 2009-08-06 2011-02-17 Showa Denko Kk Photocurable transfer sheet and method of photo-nanoimprint employing the same
WO2011049078A1 (en) * 2009-10-22 2011-04-28 日産化学工業株式会社 Film-forming composition containing silicon compound
JP2011199076A (en) * 2010-03-19 2011-10-06 Toshiba Corp Pattern forming method
WO2011129005A1 (en) * 2010-04-15 2011-10-20 東洋合成工業株式会社 Photocurable composition for formation of resin pattern, and pattern formation method using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANK PALMIERI ET AL.: "Multi-level Step and Flash Imprint Lithography for Direct Patterning of Dielectrics", PROC. OF SPIE, vol. 6151, 24 July 2006 (2006-07-24), pages 61510J-1 - 61510J-9, XP055072115 *
JIANJUN HAO ET AL.: "Photocurable Silicon- Based Materials for Imprint Lithography", PROC. OF SPIE, vol. 6517, 3 July 2007 (2007-07-03), pages 651729-1 - 651729-9, XP055072112 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102226670B1 (en) 2013-10-30 2021-03-11 닛산 가가쿠 가부시키가이샤 Imprint material containing modified silicone compound and silsesquioxane compound
KR20160078336A (en) * 2013-10-30 2016-07-04 닛산 가가쿠 고교 가부시키 가이샤 Imprint material containing modified silicone compound and silsesquioxane compound
JPWO2015064310A1 (en) * 2013-10-30 2017-03-09 日産化学工業株式会社 Imprint material containing silsesquioxane compound and modified silicone compound
US10351651B2 (en) 2013-10-30 2019-07-16 Nissan Chemical Industries, Ltd. Imprint material containing silsesquioxane compound and modified silicone compound
WO2015064310A1 (en) * 2013-10-30 2015-05-07 日産化学工業株式会社 Imprint material containing modified silicone compound and silsesquioxane compound
WO2016098346A1 (en) * 2014-12-19 2016-06-23 Canon Kabushiki Kaisha Photocurable composition for imprint, method of producing cured film, method of producing optical component, method of producing circuit board, and method of producing electronic component
US10571802B2 (en) 2014-12-19 2020-02-25 Canon Kabushiki Kaisha Photocurable composition for imprint, method of producing cured film, method of producing optical component, method of producing circuit board, and method of producing electronic component
JP2020040408A (en) * 2017-11-22 2020-03-19 マクセルホールディングス株式会社 Composition for model material
JP2020040407A (en) * 2017-11-22 2020-03-19 マクセルホールディングス株式会社 Composition for model material
US11597786B2 (en) 2017-11-22 2023-03-07 Maxell, Ltd. Composition for model material
CN111234773A (en) * 2020-03-10 2020-06-05 烟台德邦科技有限公司 Silicone sealant with high environmental adaptability
CN111234773B (en) * 2020-03-10 2021-09-17 烟台德邦科技股份有限公司 Silicone sealant with high environmental adaptability
WO2023037941A1 (en) * 2021-09-10 2023-03-16 ダウ・東レ株式会社 High energy ray-curable composition and use of same

Also Published As

Publication number Publication date
TW201333076A (en) 2013-08-16
JP2013138179A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
WO2013080741A1 (en) Photopolymerizable composition and pattern forming method using same
JP6756729B2 (en) New siloxane polymer compositions and their use
EP1808447B1 (en) Photocurable resin composition and a method for forming a pattern
JP5879086B2 (en) Replica mold for nanoimprint
KR101295858B1 (en) Method and materials for double patterning
CN109075033A (en) Pattern forming method, manufacturing method, the manufacturing method of optical module, the manufacturing method of circuit substrate, the manufacturing method of the manufacturing method of electronic building brick and imprint mold for processing substrate
TW200846824A (en) Curing composition for photonano-imprinting lithography and pattern forming method by using the same
TWI296127B (en) Method of patterning a conductive layer on a substrate
KR20120039693A (en) Composition for forming resist underlayer film for nanoimprint lithography
EP2246371A1 (en) Curable resin composition for nanoimprint
JP2015501296A (en) Polyfunctional polyhedral oligomeric silsesquioxane compound containing mercapto group, composition thereof, and soft template for imprinting
WO2020090346A1 (en) Ultraviolet curable organopolysiloxane composition and use thereof
TW201834065A (en) Substrate pretreatment compositions for nanoimprint lithography
JP6116912B2 (en) Branched siloxanes and methods for synthesis
JP2016164977A (en) Nanoimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing hardened material pattern, method for manufacturing optical component, method for manufacturing circuit board, and method for manufacturing electronic component
TW201329629A (en) Nanoimprinting method and resist composition employed in the nanoimprinting method
US9362126B2 (en) Process for making a patterned metal oxide structure
Ogawa et al. Ultraviolet curable branched siloxanes as low-k dielectrics for imprint lithography
WO2016187934A1 (en) Expansion polymerization imprinting glue for nano-imprinting
CN103221886A (en) Nanoscale photolithography
TWI714725B (en) Method for manufacturing pattern laminate, method for manufacturing reverse pattern, and pattern laminate
WO2020203472A1 (en) Photocurable resin composition for imprinting, production method for photocurable resin composition for imprinting, and production method for pattern-formed body
Lin et al. Fluorinated silsesquioxane-based photoresist as an ideal high-performance material for ultraviolet nanoimprinting
Palmieri et al. Multi-level step and flash imprint lithography for direct patterning of dielectrics
WO2015146710A1 (en) Curable composition for optical imprinting, pattern forming method and pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853266

Country of ref document: EP

Kind code of ref document: A1