WO2013080539A1 - 光音響画像生成装置および光音響画像生成方法 - Google Patents

光音響画像生成装置および光音響画像生成方法 Download PDF

Info

Publication number
WO2013080539A1
WO2013080539A1 PCT/JP2012/007634 JP2012007634W WO2013080539A1 WO 2013080539 A1 WO2013080539 A1 WO 2013080539A1 JP 2012007634 W JP2012007634 W JP 2012007634W WO 2013080539 A1 WO2013080539 A1 WO 2013080539A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
coordinates
photoacoustic image
signal
trigger signal
Prior art date
Application number
PCT/JP2012/007634
Other languages
English (en)
French (fr)
Inventor
辻田 和宏
白水 豪
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013080539A1 publication Critical patent/WO2013080539A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Definitions

  • the present invention relates to a photoacoustic image generation apparatus and a photoacoustic image generation method for generating a photoacoustic image based on a photoacoustic wave generated due to light irradiation.
  • an ultrasonic image is generated by detecting ultrasonic waves reflected in the subject by irradiating the subject with ultrasonic waves.
  • Ultrasonic imaging for obtaining a morphological tomographic image is known.
  • development of an apparatus that displays not only a morphological tomographic image but also a functional tomographic image has been advanced in recent years.
  • One of such devices is a device using a photoacoustic analysis method.
  • This photoacoustic analysis method irradiates a subject with pulsed light having a predetermined wavelength (for example, wavelength band of visible light, near-infrared light, or mid-infrared light), and a specific substance in the subject is irradiated with the pulsed light.
  • the photoacoustic wave which is an elastic wave generated as a result of absorption of the energy, is detected, and the concentration of the specific substance is quantitatively measured.
  • the specific substance in the subject is, for example, glucose or hemoglobin contained in blood.
  • Such a technique for detecting a photoacoustic wave and generating a photoacoustic image based on the detection signal is called photoacoustic imaging (PAI) or photoacoustic tomography (PAT).
  • an ultrasonic transducer in the case of photoacoustic imaging, a light irradiation unit such as an optical fiber is used.
  • a hand-held ultrasonic probe (probe) having is widely performed.
  • Patent Document 1 discloses a three-dimensional ultrasonic image obtained by detecting a motion state of a probe when generating an ultrasonic image, acquiring an ultrasonic image signal at a predetermined interval based on the motion state.
  • a method for generating data is disclosed. Thereby, an ultrasonic image can be generated at a constant interval regardless of the scanning speed of the probe.
  • Patent Document 2 discloses a method of guiding pulsed laser light to the tip of a probe using a bundle fiber obtained by bundling a plurality of thin quartz optical fibers having a core and a cladding.
  • Patent Document 1 adopts a method of extracting (sampling) an ultrasonic signal at a predetermined cycle while constantly generating reflected ultrasonic waves reflected in a subject and constantly receiving them by an ultrasonic transmission / reception unit.
  • a method such as Patent Document 1 is employed in photoacoustic imaging, measurement light for generating a photoacoustic signal must always be output. In such a case, although the photoacoustic signal is not sampled, that is, not used for generating a photoacoustic image, the measurement light must be output, so that there is a problem that optical energy is wasted.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a photoacoustic image generation apparatus and a photoacoustic image generation method capable of efficiently using light energy in photoacoustic imaging. To do.
  • a photoacoustic image generation apparatus includes: A light source unit that outputs measurement light; A light irradiation means for irradiating the subject with measurement light, and a probe having an ultrasonic transducer for detecting a photoacoustic wave generated in the subject by irradiation of the measurement light; Coordinate acquisition means for sequentially acquiring coordinates in the real space of the probe; Control means for transmitting a first trigger signal to the light source unit when coordinates satisfying a predetermined condition are acquired; Photoacoustic image generation means for generating a photoacoustic image of the photoacoustic signal based on the photoacoustic signal of the photoacoustic wave detected by the probe, and The light source unit outputs measurement light in conjunction with reception of the first trigger signal.
  • control unit generates a storage unit that stores generated coordinates, which are already generated photoacoustic images, and coordinates newly acquired by the coordinate acquisition unit. It is preferable to include a determination unit that determines whether or not the coordinates coincide with the completed coordinates.
  • the determination means performs the above determination before transmitting the first trigger signal.
  • the control means may employ a configuration in which the first trigger signal is not transmitted when a determination result indicating that the newly acquired coordinates match the generated coordinates is obtained.
  • the photoacoustic image generation unit generates the newly acquired coordinate and the generated image when the determination result that the newly acquired coordinate matches the generated coordinate is obtained. It is possible to employ a configuration in which the calculated values of the photoacoustic signals related to the coordinates are used as the pixel values of the photoacoustic image.
  • the photoacoustic image generation unit if a determination result indicating that the newly acquired coordinate matches the generated coordinate is obtained, the photoacoustic image generation unit generates the light related to the newly acquired coordinate.
  • a configuration in which an acoustic signal is used as a pixel value of a photoacoustic image can be employed.
  • the photoacoustic image generation apparatus includes image display means,
  • the control means preferably displays the generated coordinates on the image display means.
  • the light source unit is an acquisition timing at which the coordinate acquisition unit acquires the coordinates, and an acquisition timing after the first trigger signal is transmitted and an output timing of the measurement light It is preferable to have a light emission control means for controlling the output timing so as to match.
  • the photoacoustic image generation apparatus includes sampling means for sampling the photoacoustic signal detected by the probe,
  • the control means transmits the second trigger signal to the sampling means together with the transmission of the first trigger signal.
  • the sampling means preferably samples the photoacoustic signal in conjunction with reception of the second trigger signal.
  • the sampling means has sampling control means for controlling the start timing so that the following Expression 1 is satisfied and the sampling start timing is before the output timing.
  • Equation 1 ⁇ L represents the time from when the first trigger signal is transmitted until the measurement light is output, and ⁇ S is the time when the first trigger signal is transmitted and the photoacoustic signal sampling is started. This represents the time until.
  • the probe detects reflected ultrasonic waves with respect to ultrasonic waves transmitted to the subject, It is preferable to further include an ultrasonic image generation unit that generates an ultrasonic image based on an ultrasonic signal of reflected ultrasonic waves detected by the probe.
  • a photoacoustic image generation method includes: Obtain the coordinates of the probe in real space sequentially, When the coordinates satisfying the predetermined condition are acquired, the first trigger signal is transmitted to the light source unit, and the measurement light is output from the light source unit in conjunction with the reception of the first trigger signal. The measurement light is emitted toward the subject, Detect photoacoustic waves generated in the subject due to the emission of measurement light, A photoacoustic image of the photoacoustic signal is generated based on the photoacoustic signal of the photoacoustic wave detected by the probe and the coordinates relating to the photoacoustic signal.
  • generated is memorize
  • the above determination is performed before transmission of the first trigger signal.
  • a determination result indicating that the newly acquired coordinates match the generated coordinates is obtained, a configuration in which the first trigger signal is not transmitted can be employed.
  • the photoacoustic signal related to each of the newly acquired coordinates and the generated coordinates is obtained, the photoacoustic signal related to each of the newly acquired coordinates and the generated coordinates. It is possible to adopt a configuration in which the calculation value between them is the pixel value of the photoacoustic image.
  • the photoacoustic signal related to the newly acquired coordinate is used as the pixel of the photoacoustic image.
  • a value configuration can be adopted.
  • the generated coordinates are displayed on the image display means.
  • the output timing is such that the acquisition timing after acquiring the coordinates and the acquisition timing after the first trigger signal is transmitted coincide with the output timing of the measurement light. Is preferably controlled.
  • the second trigger signal is transmitted to the sampling means for sampling the photoacoustic signal detected by the probe, together with the transmission of the first trigger signal. It is preferable to sample the photoacoustic signal by the sampling means in conjunction with the reception of the second trigger signal by the sampling means.
  • the reflected ultrasonic wave with respect to the ultrasonic wave transmitted to the subject is detected, It is preferable to generate an ultrasonic image based on the detected ultrasonic signal of the reflected ultrasonic wave.
  • the photoacoustic image generation apparatus and the photoacoustic image generation method according to the present invention acquire coordinates in a real space of a probe, and obtain a first trigger signal as a light source unit when coordinates satisfying a predetermined condition are acquired.
  • the measurement light is output from the light source unit in conjunction with the reception of the first trigger signal. Accordingly, since the measurement light is output only when it is desired to receive the photoacoustic signal, the opportunity for outputting the measurement light is reduced regardless of the generation of the photoacoustic image. As a result, light energy can be used efficiently in photoacoustic imaging.
  • FIG. 1 is a block diagram showing the configuration of the first embodiment of the photoacoustic image generation apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the laser unit.
  • FIG. 3 is a schematic diagram showing the configuration of the probe.
  • FIG. 4 is a block diagram illustrating a configuration example of the AD conversion unit 22.
  • the photoacoustic image generation apparatus 10 of this embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, an image display unit 14, coordinate acquisition units 15, 41, and 42, and Input means 16 is provided.
  • the laser unit 13 outputs, for example, pulsed laser light L as measurement light for irradiating the subject M.
  • the laser unit 13 corresponds to the light source unit in the present invention.
  • the laser unit 13 is configured to receive the trigger signal from the control means 29 and output the pulsed laser light L. That is, the laser unit 13 outputs the pulsed laser light L in conjunction with the reception of the trigger signal from the trigger control circuit 30.
  • outputting measurement light “in conjunction with reception of a trigger signal” means outputting measurement light immediately after the trigger signal is received, or a predetermined minute time has elapsed after the trigger signal is received.
  • Means that the measurement light is output when The pulsed laser light L output from the laser unit 13 is guided to the probe 11 using a light guide means 40 such as an optical fiber, and is irradiated to the subject M from the probe 11.
  • the laser unit 13 controls, for example, a laser rod 51, a flash lamp (FL) 52, mirrors 53 and 54 constituting a resonator, a Q switch (Qsw) 55, and an output of pulsed laser light.
  • the light emission control unit 61 is configured.
  • the laser rod 51 is a laser medium.
  • the laser rod 51 for example, alexandrite crystal, Cr: LiSAF (Cr-doped LiSrAlF 6 ) crystal, Cr: LiCAF (Cr-doped LiCaAlF 6 ) crystal, or Ti-doped Sapphire crystal can be used.
  • the flash lamp 52 is an excitation light source and irradiates the laser rod 51 with excitation light.
  • the mirrors 53 and 54 are opposed to each other with the laser rod 51 interposed therebetween, and the mirrors 53 and 54 constitute an optical resonator.
  • the mirror 54 is an output side mirror.
  • the light emission control unit 61 controls the flash lamp 52 to be activated when the light trigger signal is received from the trigger control circuit 30.
  • the flash lamp 52 is lit, the laser rod 51 is excited.
  • the light output from the excited laser rod 51 is enhanced while resonating between the mirrors 53 and 54.
  • the light emission control unit 61 controls to open Qsw.
  • the pulse laser beam L is output from the mirror 54 side.
  • This Qsw trigger signal corresponds to the first trigger signal in the present invention.
  • the laser unit 13 preferably outputs pulsed light having a pulse width of 1 to 100 nsec as pulsed laser light.
  • the pulse width of the pulsed laser light L is controlled by, for example, Qsw.
  • the wavelength of the pulse laser beam is appropriately determined depending on the light absorption characteristics of the substance in the subject to be measured.
  • the hemoglobin in the living body generally absorbs light of 360 nm to 1000 nm, although the optical absorption characteristics differ depending on the state (oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, etc.). Therefore, it is preferable that the wavelength of the laser light is 600 to 1000 nm in which the absorption of other biological substances is relatively small when measuring hemoglobin in a living body. Further, from the viewpoint of reaching the deep part of the subject, the wavelength of the laser light is preferably 700 to 1000 nm.
  • a light emitting element such as a semiconductor laser (LD), a solid-state laser, a gas laser, or the like that generates a specific wavelength component or monochromatic light including the component can be used.
  • LD semiconductor laser
  • solid-state laser solid-state laser
  • gas laser gas laser
  • the probe 11 irradiates the subject M with the pulsed laser light L output from the laser unit 13 and then the photoacoustic wave U (generated by the light absorber in the subject M absorbing the pulsed laser light L. A photoacoustic signal) is detected.
  • the probe 11 has, for example, a plurality of ultrasonic transducers 20a (transducer array 20) arranged one-dimensionally or two-dimensionally.
  • the probe 11 is a hand-held probe, and is configured to be manually scanned by an operator. The scanning is not limited to manual scanning, and may be performed by a mechanical mechanism.
  • the probe 11 includes an optical fiber 40, a light guide plate 43, and the transducer array 20, and detects a photoacoustic wave U from the subject M.
  • the probe 11 is appropriately selected from a sector scanning type, a linear scanning type, a convex scanning type, and the like according to the subject M to be diagnosed.
  • the probe 11 includes a magnetic sensor 42 that constitutes a part of the coordinate acquisition unit.
  • the light guide plate 43 is an optical element as light irradiation means for irradiating the subject M with the pulsed laser light L from the vicinity of the transducer array 20.
  • the light guide plate 43 is connected to the tip of the optical fiber 40 that guides the pulsed laser light L output from the laser unit 13 to the vicinity of the transducer array 20.
  • the light guide plate 43 is arranged along the periphery of the transducer array 20, for example.
  • the subject M may be irradiated with the pulsed laser light L emitted from the distal end portion of the optical fiber 40 as it is.
  • another optical element is used as a light irradiation means. You may comprise so that it may provide in a front-end
  • the transducer array 20 is a detection element that detects the photoacoustic wave U generated in the subject M.
  • the transducer array 20 includes a plurality of ultrasonic transducers 20 a arranged one-dimensionally.
  • the ultrasonic transducer 20a is a piezoelectric element made of a polymer film such as piezoelectric ceramics or polyvinylidene fluoride (PVDF).
  • vibrator 20a has the function to convert the photoacoustic signal into an electric signal, when the photoacoustic wave U is detected. This electrical signal is output to the receiving circuit 21 described later.
  • Irradiation with pulsed laser light can be performed for each partial region of the subject M, for example.
  • a plurality of light guide plates 43 are provided corresponding to each of the regions A, B, and C (FIG. 3).
  • the light guide plate 43a corresponding to the region A irradiates the region A with pulsed laser light when the region A is selected.
  • the light guide plate 43b corresponding to the region B irradiates the region B with the pulse laser beam when the region B is selected.
  • the light guide plate 43c corresponding to the region C irradiates the region C with pulsed laser light when the region C is selected.
  • the pulse laser beam irradiation may be performed simultaneously by, for example, the entire light irradiation means (all the light guide plates 43 in FIG. 3).
  • the coordinate acquisition means sequentially acquires coordinates (hereinafter simply referred to as coordinates) that define the position and orientation of the probe 11 in the real space while detecting the photoacoustic signal while the probe 11 is scanned.
  • “Acquiring coordinates” means acquiring information necessary for specifying the coordinates.
  • the coordinate acquisition unit is a magnetic sensor unit, and includes a coordinate acquisition unit 15, a magnetic field generation unit 41, and a magnetic sensor 42.
  • the magnetic sensor unit includes a relative position (x, y, z) of the magnetic sensor with respect to the magnetic field generation unit and a posture (angle) of the magnetic sensor ( ⁇ , ⁇ , ⁇ ) can be obtained.
  • the acquired information may be only the relative position.
  • the coordinate acquisition unit 15 sets the position and orientation of the probe 11 at that time to the origin in the coordinate space.
  • This coordinate space is, for example, a (x, y, z) triaxial space when considering only parallel movement, and (x, y, z, ⁇ , ⁇ , ⁇ ) when considering rotational movement. ) 6-axis system space.
  • the origin may be set such that the axis of the coordinate space is along the array direction of the transducer array 20 (direction in which the ultrasonic transducers 20a are arranged) or the elevation direction (direction perpendicular to the array direction and parallel to the detection surface).
  • the coordinate acquisition means may be configured to acquire coordinates using an acceleration sensor, an infrared sensor, or the like in addition to the magnetic sensor unit.
  • the coordinate acquisition means always acquires the coordinates of the probe 11 at a predetermined cycle (coordinate acquisition cycle), for example.
  • the acquired coordinates are transmitted to the control means 29. These coordinates are used when generating three-dimensional volume data based on photoacoustic signals, generating tomographic data from the volume data, and arranging two-dimensional photoacoustic images in order according to position. Is done.
  • the output of the pulse laser beam is controlled based on the coordinates.
  • the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a photoacoustic image reconstruction unit 24, a detection / logarithm conversion unit 27, a photoacoustic image construction unit 28, a control unit 29, an image synthesis unit 38, and Observation method selection means 39 is provided.
  • the reception circuit 21, AD conversion means 22, reception memory 23, photoacoustic image reconstruction means 24, detection / logarithmic conversion means 27, and photoacoustic image construction means 28 together correspond to the photoacoustic image generation means in the present invention.
  • the control means 29 controls each part of the photoacoustic image generation apparatus 10, and includes a trigger control circuit 30 in this embodiment.
  • the trigger control circuit 30 sends a light trigger signal to the laser unit 13 when the photoacoustic image generation apparatus is activated, for example.
  • the flash lamp 52 is turned on in the laser unit 13 and the excitation of the laser rod 51 is started.
  • the excited state of the laser rod 51 is maintained, and the laser unit 13 is in a state capable of outputting pulsed laser light.
  • the control means 29 determines whether or not the coordinates transmitted from the coordinate acquisition unit 15 satisfy a predetermined condition.
  • the predetermined condition is a condition for coordinates, and is a condition for generating a photoacoustic image at a predetermined position or a predetermined interval on the subject.
  • a condition that the acquired coordinates coincide with a specific coordinate based on a preset origin or a specific periodic coordinate based on the scanning start point of the probe 11 is used. Can be adopted.
  • the former condition is used when, for example, it is desired to generate a photoacoustic image at a specific position on the subject
  • the latter condition is used when, for example, it is desired to generate a photoacoustic image at regular intervals from the scanning start point of the probe 11.
  • the control means 29 determines whether or not the state of the probe 11 has reached the scale of the virtual scale in the coordinate space defined by the specific coordinates as described above. Since the scale of the virtual scale corresponds to a specific coordinate interval, the pixel density of the volume data is improved as the scale of the virtual scale is finer when generating volume data.
  • the control means 29 calculates the movement state (scanning direction, scanning speed, etc.) of the probe 11 based on the most recently acquired coordinates, and first estimates that it has passed through the scale.
  • the acquired coordinates are handled as coordinates satisfying the predetermined condition.
  • the control unit 29 transmits a Qsw trigger signal from the trigger control circuit 30 to the laser unit 13 when the coordinates transmitted from the coordinate acquisition unit 15 satisfy a predetermined condition. That is, the control means 29 controls the output timing of the pulsed laser light from the laser unit 13 by this Qsw trigger signal.
  • the control unit 29 transmits the sampling trigger signal to the AD conversion unit 22 simultaneously with the transmission of the Qsw trigger signal.
  • the sampling trigger signal serves as a cue for the start timing of the photoacoustic signal sampling in the AD conversion means 22. In this way, by using the sampling trigger signal, it is possible to sample the photoacoustic signal in synchronization with the output of the pulse laser beam.
  • the receiving circuit 21 receives the photoacoustic signal detected by the probe 11.
  • the photoacoustic signal received by the receiving circuit 21 is transmitted to the AD conversion means 22.
  • the AD conversion means 22 is a sampling means, which samples the photoacoustic signal received by the receiving circuit 21 and converts it into a digital signal.
  • the AD conversion means 22 includes a sampling control unit 44 and an AD converter 45 as shown in FIG.
  • the reception signal received by the reception circuit 21 is converted into a digitized sampling signal by the AD converter 45.
  • the AD converter 45 is controlled by the sampling control unit 44, and is configured to perform sampling in conjunction with the sampling trigger signal when the sampling control unit 44 receives the sampling trigger signal.
  • “sampling in conjunction with reception of a trigger signal” means that sampling is started immediately after the trigger signal is received, or when a predetermined minute time has elapsed after the trigger signal is received. Means to start sampling.
  • the AD converter 22 samples the received signal at a predetermined sampling period based on, for example, an AD clock signal having a predetermined frequency input from the outside.
  • the reception memory 23 stores the photoacoustic signal sampled by the AD conversion means 22 (that is, the sampling signal). In the present embodiment, the reception memory 23 also stores the coordinates of the probe 11 acquired by the coordinate acquisition unit 15. Then, the reception memory 23 outputs the photoacoustic signal detected by the probe 11 to the photoacoustic image reconstruction unit 24.
  • the photoacoustic image reconstruction means 24 reads the photoacoustic signal from the reception memory 23 and generates data of each line of the photoacoustic image based on the photoacoustic signal detected by the transducer array 20 of the probe 11.
  • the photoacoustic image reconstruction means 24 adds, for example, data from 64 ultrasonic transducers of the probe 11 with a delay time corresponding to the position of the ultrasonic transducer, and generates data for one line (delay). Addition method).
  • the photoacoustic image reconstruction unit 24 may perform reconstruction by a CBP method (Circular Back Projection) instead of the delay addition method. Alternatively, the photoacoustic image reconstruction unit 24 may perform reconstruction using the Hough transform method or the Fourier transform method.
  • the detection / logarithm conversion means 27 obtains the envelope of the data of each line, and logarithmically transforms the obtained envelope.
  • the photoacoustic image construction means 28 constructs a photoacoustic image for one frame based on the data of each line subjected to logarithmic transformation.
  • the photoacoustic image construction means 28 constructs a photoacoustic image by converting, for example, a position in the time axis direction of the photoacoustic signal (peak portion) into a position in the depth direction in the photoacoustic image.
  • the observation method selection means 39 is for selecting the display mode of the photoacoustic image.
  • Examples of the volume data display mode for the photoacoustic signal include a mode as a three-dimensional image, a mode as a cross-sectional image, and a mode as a graph on a predetermined axis.
  • the display mode is selected according to the initial setting or the input from the input means 16 by the operator.
  • the image composition means 38 generates volume data using the photoacoustic signal and position information acquired at each position.
  • the volume data is generated by assigning the signal value of each photoacoustic signal to the virtual space according to the coordinates related to each photoacoustic signal.
  • the “coordinates related to the photoacoustic signal” means coordinates associated with the photoacoustic signal when the photoacoustic signal is received. For example, the coordinates when the Qsw trigger signal is transmitted (that is, when the predetermined condition regarding the coordinates is satisfied), the coordinates when light is actually output, and the time when sampling of the photoacoustic signal is started Coordinates and the like are associated with the photoacoustic signal.
  • the image composition unit 38 performs necessary processing (for example, scale correction and coloring according to the voxel value) on the generated volume data.
  • FIG. 5A is a three-dimensional image IMa showing the value of volume data when viewed from a predetermined viewpoint in the virtual space.
  • a method of observing a three-dimensional absorption distribution is selected by the observation method selection unit 39, a three-dimensional image IMa as shown in FIG. 5A is displayed.
  • the viewpoint in the virtual space that defines the three-dimensional image IMa is set in the observation method selection means 39, for example, as an initial setting or by an input from the input means 16 by the operator, and this information is also transmitted to the image composition means 38.
  • the FIG. 5B is a cross-sectional image IMb showing values in a cross section by a predetermined two-dimensional plane.
  • a cross-sectional image IMb as shown in FIG. 5B is displayed.
  • the two-dimensional plane that defines the cross-sectional image IMb is set in the observation method selection unit 39, for example, as an initial setting or by input from the input unit 16 by the operator, and this information is also transmitted to the image synthesis unit 38.
  • FIG. 5C is a graph IMc showing the value of volume data along a predetermined one-dimensional axis.
  • a graph IMc as shown in FIG. 5C is displayed.
  • the one-dimensional axis that defines the graph IMc is set in the observation method selection unit 39, for example, as an initial setting or by an input from the input unit 16 by an operator, and this information is also transmitted to the image synthesis unit 38.
  • the photoacoustic image generated according to the selected observation method becomes a final image (display image) to be displayed on the image display means 14.
  • the operator it is naturally possible for the operator to rotate or move the image as necessary after the photoacoustic image is once generated. That is, when a three-dimensional image as shown in FIG. 5A is displayed, the photoacoustic image is recalculated by the operator sequentially specifying or moving the viewpoint direction using the input means 16. As a result, the three-dimensional image is rotated. It is also possible for the operator to change the observation method as appropriate using the input means 16.
  • the image display means 14 displays the display image generated by the image composition means 38.
  • FIG. 6 shows a situation in which the acquisition timing 46 of the coordinate acquisition means is generated every coordinate acquisition cycle ⁇ t.
  • FIG. 6 shows a case where photoacoustic images are generated at equal intervals from the scanning start point of the probe 11 while scanning the probe 11 at a constant speed.
  • the control unit 29 always determines whether or not the coordinates transmitted from the coordinate acquisition unit 15 coincide with the specific periodic coordinates based on the scanning start point of the probe 11.
  • symbol 47 of FIG. 6 is the time which reached
  • the control unit 29 transmits the Qsw trigger signal to the laser unit 13 and the sampling trigger signal to the AD conversion unit 22.
  • the laser unit 13 outputs the pulsed laser light 48 in conjunction with the reception of the Qsw trigger signal (first trigger signal), and the AD converter 22 interlocks with the reception of the sampling trigger signal (second trigger signal).
  • the sampling of the photoacoustic signal is started. This sampling is performed during a certain sampling period 49. Thereafter, the same operation is repeated every time 47 when the position where the photoacoustic image should be acquired is reached. In this way, a photoacoustic image can be generated at equal intervals from the scanning start point of the probe 11.
  • the photoacoustic image generation apparatus and the photoacoustic image generation method according to the present invention acquire the coordinates in the real space of the probe, particularly when the coordinates satisfying the predetermined condition are acquired.
  • a trigger signal is transmitted to the light source unit, and measurement light is output from the light source unit in conjunction with reception of the first trigger signal. Accordingly, since the measurement light is output only when it is desired to receive the photoacoustic signal, the opportunity for outputting the measurement light is reduced regardless of the generation of the photoacoustic image. As a result, light energy can be used efficiently in photoacoustic imaging.
  • sampling trigger signal (second trigger signal) at the same time for each transmission of the Qsw trigger signal (first trigger signal).
  • first trigger signal the sampling trigger signal
  • sampling may be performed continuously during a series of scans, and then the sampling signal may be divided in accordance with, for example, each measurement light irradiation.
  • the partial signal and the coordinates related to the partial signal are associated with each divided partial signal.
  • control unit includes a storage unit and a determination unit. Therefore, a detailed description of the same components as those in the first embodiment will be omitted unless particularly necessary.
  • FIG. 7 is a block diagram illustrating a configuration of the photoacoustic image generation apparatus according to the second embodiment.
  • the photoacoustic image generation apparatus 10 of this embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, an image display unit 14, coordinate acquisition units 15, 41, and 42, and Input means 16 is provided.
  • the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a photoacoustic image reconstruction unit 24, a detection / logarithm conversion unit 27, a photoacoustic image construction unit 28, a control unit 29, an image synthesis unit 38, and Observation method selection means 39 is provided.
  • the control unit 29 controls each unit of the photoacoustic image generation apparatus 10 and includes a trigger control circuit 30, a determination circuit 31, and a storage memory 32 in the present embodiment.
  • the storage memory 32 stores coordinates (generated coordinates) for which a photoacoustic image has already been generated.
  • This storage memory 32 corresponds to the storage means in the present invention.
  • the photoacoustic image construction unit 28 transmits the fact to the control unit 29 when the generation of the photoacoustic image is completed.
  • the generated coordinates are coordinates associated with the photoacoustic image.
  • the determination circuit 31 determines whether or not the coordinates newly acquired by the coordinate acquisition means match the generated coordinates. This determination circuit 31 corresponds to the determination means in the present invention.
  • the trigger control circuit 30 transmits a Qsw trigger signal and a sampling trigger signal after the result of the determination is obtained.
  • the determination circuit 31 performs the above determination before transmitting the Qsw trigger signal, and the control means obtains a determination result that the newly acquired coordinate matches the generated coordinate.
  • a configuration that does not transmit the Qsw trigger signal and the sampling trigger signal can be adopted. When such a configuration is adopted, when the same place is scanned a plurality of times, it is possible to avoid the output of measurement light that overlaps with the coordinates where the photoacoustic image has already been generated.
  • 8A and 8B are conceptual diagrams showing the relationship among the acquisition timing of the coordinate acquisition unit, the output timing of the laser unit, and the sampling timing of the AD conversion means in this embodiment.
  • Reference numeral 47a in FIG. 8A indicates the time when the photoacoustic image is actually generated, which is the time when the coordinate used as a guideline for acquiring the photoacoustic image is reached (or passed).
  • the reference numeral 47b in FIG. 8A indicates the time when the photoacoustic image is not actually generated when the coordinate reached as a guideline for obtaining the photoacoustic image (or when the photoacoustic image is passed).
  • an interval between the time 47a and the time 47b can be output from a repetition cycle that can be output by the laser unit 13 (for example, when a pulse laser beam is output at 100 Hz, this cycle is 10 msec). Is also assumed to be short.
  • the control unit 29 or the laser unit 13 determines that the pulse laser beam is not output, and the photoacoustic image is lost at the time 47b.
  • the pulse laser beam is not output at the time 47a corresponding to the generated coordinates during the second scan, which is a guideline for generating a photoacoustic image.
  • Pulse laser light is output only at time 47c corresponding to coordinates that are coordinates that are not already generated coordinates (FIG. 8B).
  • the coordinates at which the photoacoustic image is generated by the second scanning are stored in the storage memory 32 as newly generated coordinates.
  • the photoacoustic image generation unit when the determination result that the newly acquired coordinate matches the generated coordinate is obtained, the newly acquired coordinate and generation It is possible to adopt a configuration in which the calculated values of the photoacoustic signals related to each of the completed coordinates are used as the pixel values of the photoacoustic image.
  • the control unit 29 transmits the Qsw trigger signal and the sampling trigger signal regardless of the determination result by the determination circuit 31.
  • overlapping photoacoustic images are generated at the same coordinates, but the results obtained by a plurality of scans can be averaged.
  • the photoacoustic image generation unit if a determination result indicating that the newly acquired coordinate matches the generated coordinate is obtained, the photoacoustic image generation unit generates the light related to the newly acquired coordinate.
  • a configuration in which an acoustic signal is used as a pixel value of a photoacoustic image can be employed.
  • the photoacoustic signal as the pixel value of the photoacoustic image means obtaining the pixel value based only on the value of the signal, and necessary signal processing (for example, A / D conversion processing) for the value of the signal. Or logarithmic conversion processing) may be performed as necessary.
  • control means 29 transmits the Qsw trigger signal and the sampling trigger signal regardless of the determination result by the determination circuit 31.
  • control unit 29 may be configured to display the generated coordinates on the image display unit 14.
  • the coordinate range used as a guideline for generating the photoacoustic image is displayed as a one-dimensional or two-dimensional image, and the color corresponding to the generated coordinate and the region other than the generated coordinate are displayed differently. It is easy for the user to recognize coordinates that are to be generated as a photoacoustic image but are not generated coordinates, and generated coordinates, and volume data can be easily generated.
  • the third embodiment is different from the first embodiment in that the laser unit outputs a pulse laser beam after a predetermined time after receiving the Qsw trigger signal. Therefore, a detailed description of the same components as those in the first embodiment will be omitted unless particularly necessary.
  • the photoacoustic image generation apparatus 10 of this embodiment has the same configuration as that of the apparatus of the first embodiment shown in FIG. 1, for example. Even if the laser unit 13 receives the Qsw trigger signal, the laser unit 13 may not be able to output the pulse laser beam immediately due to restrictions on the apparatus. In such a case, the output timing at which the pulse laser beam is actually output is delayed from the coordinate acquisition timing at the time when the Qsw trigger signal is transmitted, resulting in a deviation between the output timing and the acquisition timing. In order to eliminate such a shift, in this embodiment, the light emission control unit 61 performs control such that the pulse laser beam is output after a predetermined time ⁇ L intentionally after receiving the Qsw trigger signal. .
  • This predetermined time ⁇ L is a time that can ensure a sufficient time for the output of the laser unit 13.
  • the light emission control unit 61 performs control so that the predetermined time ⁇ L becomes the coordinate acquisition cycle ⁇ t of the acquisition timing.
  • the output timing coincides with the acquisition timing next to the acquisition timing when the Qsw trigger signal is transmitted (FIG. 9).
  • the AD conversion means 22 also starts sampling at a predetermined time ⁇ S after receiving the sampling trigger signal according to the predetermined time ⁇ L.
  • the sampling control unit 44 can adjust the predetermined time ⁇ S.
  • the predetermined time ⁇ S is preferably determined so as to satisfy the following formula 2, for example. In this case, the time from when sampling is started until the photoacoustic signal is received becomes constant, and signal processing such as delay addition processing becomes easy.
  • FIG. 10 is a block diagram showing a configuration of the fourth embodiment of the photoacoustic image generation apparatus. This embodiment is different from the second embodiment in that an ultrasonic image is generated in addition to the photoacoustic image. Therefore, a detailed description of the same components as those of the second embodiment will be omitted unless particularly necessary.
  • the photoacoustic image generation apparatus 10 of this embodiment includes an ultrasonic probe (probe) 11, an ultrasonic unit 12, a laser unit 13, an image display unit 14, coordinate acquisition units 15, 41 and 42, and an input unit 16. .
  • the ultrasonic unit 12 of the present embodiment includes a transmission control circuit 33, a data separation unit 34, an ultrasonic image reconstruction unit 35, a detection / logarithm conversion unit 36, And an ultrasonic image constructing means 37.
  • the probe 11 performs output (transmission) of ultrasonic waves to the subject and detection (reception) of reflected ultrasonic waves from the subject with respect to the transmitted ultrasonic waves.
  • the ultrasonic transducer for transmitting and receiving ultrasonic waves the ultrasonic transducer according to the present invention may be used, or a new ultrasonic transducer separately provided in the probe 11 for transmitting and receiving ultrasonic waves is used. May be.
  • transmission and reception of ultrasonic waves may be separated. For example, ultrasonic waves may be transmitted from a position different from the probe 11, and reflected ultrasonic waves with respect to the transmitted ultrasonic waves may be received by the probe 11.
  • the trigger control circuit 30 sends an ultrasonic transmission trigger signal for instructing ultrasonic transmission to the transmission control circuit 33 when generating an ultrasonic image.
  • the transmission control circuit 33 Upon receiving this trigger signal, the transmission control circuit 33 transmits an ultrasonic wave from the probe 11.
  • the probe 11 detects the reflected ultrasonic wave from the subject after transmitting the ultrasonic wave.
  • the reflected ultrasonic waves detected by the probe 11 are input to the AD conversion means 22 via the receiving circuit 21.
  • the trigger control circuit 30 sends a sampling trigger signal to the AD conversion means 22 in synchronization with the timing of ultrasonic transmission, and starts sampling of reflected ultrasonic waves.
  • the reflected ultrasonic waves reciprocate between the probe 11 and the ultrasonic reflection position, whereas the photoacoustic signal is one way from the generation position to the probe 11. Since the detection of the reflected ultrasonic wave takes twice as long as the detection of the photoacoustic signal generated at the same depth position, the sampling clock of the AD conversion means 22 is half the time when the photoacoustic signal is sampled, for example, It may be 20 MHz.
  • the AD conversion means 22 stores the reflected ultrasonic sampling signal in the reception memory 23. Either sampling of the photoacoustic signal or sampling of the reflected ultrasonic wave may be performed first.
  • the data separating means 34 separates the photoacoustic signal sampling signal and the reflected ultrasonic sampling signal stored in the reception memory 23.
  • the data separation unit 34 inputs a sampling signal of the separated photoacoustic signal to the photoacoustic image reconstruction unit 24.
  • the generation of the photoacoustic image is the same as that in the first embodiment.
  • the data separation unit 34 inputs the separated reflected ultrasound sampling signal to the ultrasound image reconstruction unit 35.
  • the ultrasonic image reconstruction unit 35 generates data of each line of the ultrasonic image based on the reflected ultrasonic waves (its sampling signals) detected by the plural ultrasonic transducers of the probe 11. For the generation of the data of each line, a delay addition method or the like can be used as in the generation of the data of each line in the photoacoustic image reconstruction means 24.
  • the detection / logarithm conversion means 36 obtains the envelope of the data of each line output from the ultrasonic image reconstruction means 35 and logarithmically transforms the obtained envelope.
  • the ultrasonic image construction means 37 generates an ultrasonic image based on the data of each line subjected to logarithmic transformation.
  • the ultrasonic image reconstruction unit 35, the detection / logarithm conversion unit 36, and the ultrasonic image construction unit 37 constitute an ultrasonic image generation unit that generates an ultrasonic image based on the reflected ultrasonic waves.
  • the image composition unit 38 synthesizes the photoacoustic image and the ultrasonic image.
  • the image composition unit 38 performs image composition by superimposing a photoacoustic image and an ultrasonic image, for example.
  • the synthesized image is displayed on the image display means 14. It is also possible to display the photoacoustic image and the ultrasonic image side by side on the image display means 14 without performing image synthesis, or to switch between the photoacoustic image and the ultrasonic image.
  • the photoacoustic image generation device generates an ultrasonic image in addition to the photoacoustic image.
  • the ultrasonic image By referring to the ultrasonic image, a portion that cannot be imaged in the photoacoustic image can be observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】光音響イメージングにおいて、光エネルギーを効率的に使用することを可能とする。 【解決手段】光音響画像生成装置(10)において、測定光(L)を出力する光源部(13)と、被検体(M)に測定光(L)を照射する光照射手段(43)、および、測定光(L)の照射により被検体(M)内で発生した光音響波(U)を検出する超音波振動子(20a)を有するプローブ(11)と、プローブ(11)の実空間における座標を順次取得する座標取得手段と、所定の条件を満たす座標が取得されたときに、第1のトリガ信号を光源部(13)へ送信する制御手段(29)と、プローブ(11)によって検出された光音響波(U)の光音響信号に基づいて、光音響信号についての光音響画像を生成する光音響画像生成手段とを備え、光源部(13)を、第1のトリガ信号の受信に連動して測定光(L)を出力するものとする。

Description

光音響画像生成装置および光音響画像生成方法
 本発明は、光の照射に起因して発生した光音響波に基づいて光音響画像を生成する光音響画像生成装置および光音響画像生成方法に関するものである。
 従来、被検体の内部の断層画像を取得する方法としては、超音波が被検体内に照射されることにより被検体内で反射した超音波を検出して超音波画像を生成し、被検体内の形態的な断層画像を得る超音波イメージングが知られている。一方、被検体の検査においては形態的な断層画像だけでなく機能的な断層画像を表示する装置の開発も近年進められている。そして、このような装置の一つに光音響分析法を利用した装置がある。この光音響分析法は、所定の波長(例えば、可視光、近赤外光又は中間赤外光の波長帯域)を有するパルス光を被検体に照射し、被検体内の特定物質がこのパルス光のエネルギーを吸収した結果生じる弾性波である光音響波を検出して、その特定物質の濃度を定量的に計測するものである。被検体内の特定物質とは、例えば血液中に含まれるグルコースやヘモグロビンなどである。このように光音響波を検出しその検出信号に基づいて光音響画像を生成する技術は、光音響イメージング(PAI:Photoacoustic Imaging)或いは光音響トモグラフィー(PAT:Photo Acoustic Tomography)と呼ばれる。
 超音波イメージングおよび光音響イメージングを利用した断層画像生成装置としては、例えば特許文献1および2に示されるように、超音波振動子(光音響イメージングの場合においては、さらに光ファイバ等の光照射部)を有するハンドヘルド型の超音波探触子(プローブ)を備えた装置の開発が広く行われている。
 例えば特許文献1には、超音波画像を生成している際のプローブの運動状態を検出し、その運動状態に基づいて所定の間隔で超音波画像信号を取得して、三次元の超音波画像データを生成する方法が開示されている。これにより、プローブの走査速度によらず一定間隔で超音波画像を生成することができる。
 また例えば特許文献2には、コアおよびクラッドを有する構造の細い石英光ファイバを多数本束ねたバンドルファイバを用いて、パルスレーザ光をプローブ先端まで導光する方法が開示されている。
特開2004-202260号公報 特開2010-12295号公報
 ところで、特許文献1では、被検体内で反射した反射超音波を常に発生させかつ超音波送受信部で常に受信しながら、所定の周期で超音波信号を抽出(サンプリング)する方法を採用している。しかしながら、光音響イメージングにおいて特許文献1のような方法を採用すると、光音響信号を発生させるための測定光を常に出力していなければならない。このような場合、光音響信号をサンプリングしない、つまり光音響画像の生成に供しないにも関わらず、測定光を出力しなければならないため、光エネルギーを無駄に消費してしまうという問題がある。
 本発明は上記問題に鑑みてなされたものであり、光音響イメージングにおいて、光エネルギーを効率的に使用することを可能とする光音響画像生成装置および光音響画像生成方法を提供することを目的とするものである。
 上記課題を解決するために、本発明に係る光音響画像生成装置は、
 測定光を出力する光源部と、
 被検体に測定光を照射する光照射手段、および、測定光の照射により被検体内で発生した光音響波を検出する超音波振動子を有するプローブと、
 プローブの実空間における座標を順次取得する座標取得手段と、
 所定の条件を満たす座標が取得されたときに、第1のトリガ信号を光源部へ送信する制御手段と、
 プローブによって検出された光音響波の光音響信号に基づいて、光音響信号についての光音響画像を生成する光音響画像生成手段とを備え、
 光源部が、第1のトリガ信号の受信に連動して測定光を出力するものであることを特徴とするものである。
 そして、本発明に係る光音響画像生成装置において、制御手段は、既に光音響画像が生成された座標である生成済み座標を記憶する記憶手段と、座標取得手段によって新たに取得された座標が生成済み座標と一致するか否かの判定を行う判定手段とを有するものであることが好ましい。
 この場合において、判定手段は、第1のトリガ信号の送信前に上記判定を行うものであり、
 制御手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、第1のトリガ信号を送信しないものである構成を採用することができる。
 或いは上記判定手段を有する場合において、光音響画像生成手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標および生成済み座標のそれぞれに係る光音響信号同士の演算値を光音響画像の画素値とするものである構成を採用することができる。
 或いは上記判定手段を有する場合において、光音響画像生成手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標に係る光音響信号を光音響画像の画素値とするものである構成を採用することができる。
 また、本発明に係る光音響画像生成装置は画像表示手段を備え、
 制御手段は、生成済み座標を画像表示手段に表示させるものであることが好ましい。
 また、本発明に係る光音響画像生成装置において、光源部は、座標取得手段が座標を取得する取得タイミングであって第1のトリガ信号が送信された後の取得タイミングと測定光の出力タイミングとが一致するように出力タイミングを制御する発光制御手段を有するものであることが好ましい。
 また、本発明に係る光音響画像生成装置は、プローブによって検出された光音響信号をサンプリングするサンプリング手段を備え、
 制御手段は、第1のトリガ信号の送信とともに、第2のトリガ信号をサンプリング手段へ送信するものであり、
 サンプリング手段は、第2のトリガ信号の受信に連動して光音響信号をサンプリングするものであることが好ましい。
 この場合において、サンプリング手段は、下記式1を満たしかつサンプリングの開始タイミングが出力タイミングよりも前になるように開始タイミングを制御するサンプリング制御手段を有するものであることが好ましい。
 Δτ-Δτ=一定     式1
 式1において、Δτは第1のトリガ信号が送信されてから測定光が出力されるまでの時間を表し、Δτは第1のトリガ信号が送信されてから光音響信号のサンプリングが開始されるまでの時間を表す。
 また、本発明に係る光音響画像生成装置において、プローブは、被検体に対して送信された超音波に対する反射超音波を検出するものであり、
 プローブによって検出された反射超音波の超音波信号に基づいて超音波画像を生成する超音波画像生成手段を更に備えることが好ましい。
 本発明に係る光音響画像生成方法は、
 プローブの実空間における座標を順次取得し、
 所定の条件を満たす座標が取得されたときに、第1のトリガ信号を光源部へ送信せしめて、第1のトリガ信号の受信に連動して測定光を光源部から出力せしめ、
 被検体に向けて測定光を出射させ、
 測定光の出射に起因して被検体内で発生した光音響波を検出し、
 プローブによって検出された光音響波の光音響信号およびこの光音響信号に係る座標に基づいて、光音響信号についての光音響画像を生成することを特徴とするものである。
 そして、本発明に係る光音響画像生成方法において、既に光音響画像が生成された座標である生成済み座標を記憶し、新たに取得された座標が生成済み座標と一致するか否かの判定を行うことが好ましい。
 この場合において、第1のトリガ信号の送信前に上記判定を行い、
 新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、第1のトリガ信号を送信しない構成を採用することができる。
 或いは上記判定を行う場合において、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標および生成済み座標のそれぞれに係る光音響信号同士の演算値を光音響画像の画素値とする構成を採用することができる。
 或いは上記判定を行う場合において、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標に係る光音響信号を光音響画像の画素値とする構成を採用することができる。
 また、本発明に係る光音響画像生成方法において、生成済み座標を画像表示手段に表示させることが好ましい。
 また、本発明に係る光音響画像生成方法において、座標を取得する取得タイミングであって第1のトリガ信号が送信された後の取得タイミングと測定光の出力タイミングとが一致するように、出力タイミングを制御することが好ましい。
 また、本発明に係る光音響画像生成方法において、第1のトリガ信号の送信とともに、プローブによって検出された光音響信号をサンプリングするサンプリング手段へ第2のトリガ信号を送信せしめ、
 サンプリング手段による第2のトリガ信号の受信に連動して、サンプリング手段によって光音響信号をサンプリングすることが好ましい。
 この場合において、上記式1を満たしかつサンプリングの開始タイミングが出力タイミングよりも前になるように開始タイミングを制御することが好ましい。
 また、本発明に係る光音響画像生成方法において、被検体に対して送信された超音波に対する反射超音波を検出し、
 検出された反射超音波の超音波信号に基づいて超音波画像を生成することが好ましい。
 本発明に係る光音響画像生成装置および光音響画像生成方法は、特に、プローブの実空間における座標を取得し、所定の条件を満たす座標が取得されたときに、第1のトリガ信号を光源部へ送信せしめて、第1のトリガ信号の受信に連動して測定光を光源部から出力せしめることを特徴とする。これにより、光音響信号を受信したいときにのみ測定光を出力させるため、光音響画像の生成と無関係に測定光を出力する機会が減る。この結果、光音響イメージングにおいて、光エネルギーを効率的に使用することが可能となる。
第1の実施形態の光音響画像生成装置の構成を示すブロック図である。 レーザユニットの構成の例を示すブロック図である。 プローブの構成の例を示す概略図である。 第2の実施形態におけるAD変換手段の構成の例を示すブロック図である。 光音響画像の表示態様の例を示す概略図である。 光音響画像の表示態様の例を示す概略図である。 光音響画像の表示態様の例を示す概略図である。 第1の実施形態における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係を示す概念図である。 第2の実施形態の光音響画像生成装置の構成を示すブロック図である。 第2の実施形態の1回目のプローブ走査における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係を示す概念図である。 第2の実施形態の2回目のプローブ走査における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係を示す概念図である。 第3の実施形態における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係を示す概念図である。 第3の実施形態の光音響画像生成装置の構成を示すブロック図である。
 以下、本発明の実施形態について図面を用いて説明するが、本発明はこれに限られるものではない。なお、視認しやすくするため、図面中の各構成要素の縮尺等は実際のものとは適宜異ならせてある。
 「光音響画像生成装置の第1の実施形態」
 まず、本発明の光音響画像生成装置の第1の実施形態を詳細に説明する。図1は、本発明の光音響画像生成装置の第1の実施形態の構成を示すブロック図である。図2は、レーザユニットの構成を示すブロック図である。図3は、プローブの構成を示す概略図である。図4は、AD変換手段22の構成例を示すブロック図である。
 具体的には、本実施形態の光音響画像生成装置10は、超音波探触子(プローブ)11、超音波ユニット12、レーザユニット13、画像表示手段14、座標取得手段15、41および42並びに入力手段16を備える。
 <レーザユニット>
 レーザユニット13は、例えばパルスレーザ光Lを被検体Mに照射する測定光として出力する。このレーザユニット13が本発明における光源部に相当する。レーザユニット13は、制御手段29からのトリガ信号を受けてパルスレーザ光Lを出力するように構成されている。つまり、レーザユニット13は、トリガ制御回路30からのトリガ信号の受信に連動してパルスレーザ光Lを出力するものである。本明細書において「トリガ信号の受信に連動して」測定光を出力するとは、トリガ信号が受信された直後に測定光を出力すること、またはトリガ信号が受信された後所定の微小時間が経過した時に測定光を出力することを意味する。レーザユニット13が出力するパルスレーザ光Lは、例えば光ファイバなどの導光手段40を用いてプローブ11まで導光され、プローブ11から被検体Mに照射される。
 レーザユニット13は、図2に示されるように、例えばレーザロッド51、フラッシュランプ(FL)52、共振器を構成するミラー53、54、Qスイッチ(Qsw)55、およびパルスレーザ光の出力を制御する発光制御部61から構成される。
 レーザロッド51は、レーザ媒質である。レーザロッド51には、例えばアレキサンドライト結晶やCr:LiSAF(CrドープLiSrAlF)結晶、Cr:LiCAF(CrドープLiCaAlF)結晶、TiドープSapphire結晶を用いることができる。フラッシュランプ52は、励起光源であり、レーザロッド51に励起光を照射する。
 ミラー53、54は、レーザロッド51を挟んで対向しており、ミラー53、54により光共振器が構成される。ここではミラー54が、出力側ミラーであるものとする。
 発光制御部61は、トリガ制御回路30から光トリガ信号を受信すると、フラッシュランプ52を起動するように制御する。フラッシュランプ52が点灯すると、レーザロッド51が励起される。励起状態のレーザロッド51から出力された光は、ミラー53および54の間で共振しながら増強される。その後、発光制御部61は、トリガ制御回路30からQswトリガ信号を受信すると、Qswを開放するように制御する。そして、例えばミラー54側からパルスレーザ光Lが出力される。このQswトリガ信号が本発明における第1のトリガ信号に相当する。
 レーザユニット13は、パルスレーザ光として1~100nsecのパルス幅を有するパルス光を出力するものであることが好ましい。パルスレーザ光Lのパルス幅は、例えばQswによって制御される。パルスレーザ光の波長は、計測の対象となる被検体内の物質の光吸収特性によって適宜決定される。生体内のヘモグロビンは、その状態(酸素化ヘモグロビン、脱酸素化ヘモグロビン、メトヘモグロビン等)により光学的な吸収特性が異なるが、一般的には360nmから1000nmの光を吸収する。したがって、レーザ光の波長は、生体内でのヘモグロビンを計測する場合には、他の生体物質の吸収が比較的少ない600~1000nmであることが好ましい。さらに、被検体の深部まで届くという観点から、レーザ光の波長は700~1000nmであることが好ましい。
 なお、レーザユニット13としては、特定の波長成分又はその成分を含む単色光を発生する半導体レーザ(LD)、固体レーザ、ガスレーザ等の発光素子を用いることもできる。
 <プローブ(超音波探触子)>
 プローブ11は、レーザユニット13から出力されたパルスレーザ光Lが被検体Mに照射された後に、被検体M内の光吸収体がパルスレーザ光Lを吸収することで生じた光音響波U(光音響信号)を検出する。プローブ11は、例えば一次元または二次元に配列された複数の超音波振動子20a(振動子アレイ20)を有する。プローブ11は、ハンドヘルド型の探触子であり、操作者が手動で走査可能となるように構成されている。なお、走査は、手動による走査に限られず、メカニカル的な機構によって実施してもよい。
 プローブ11は、例えば図3に示されるように、光ファイバ40、導光板43および振動子アレイ20から構成され、被検体Mからの光音響波Uを検出するものである。プローブ11は、セクタ走査タイプ、リニア走査タイプ、コンベックス走査タイプ等の中から診断対象となる被検体Mに応じて適宜選択される。なお、本実施形態では、座標取得手段の一部を構成する磁気センサ42がプローブ11に内蔵されている。
 導光板43は、振動子アレイ20の近傍からパルスレーザ光Lを被検体Mに向けて照射する光照射手段としての光学要素である。例えば図3に示されるように、導光板43は、レーザユニット13から出力されたパルスレーザ光Lを振動子アレイ20の近傍に導光する光ファイバ40の先端部に接続される。導光板43は、例えば振動子アレイ20の周囲に沿って配列される。また、光ファイバ40の先端部から出射したパルスレーザ光Lをそのまま被検体Mに照射するように構成してもよく、導光板43に代えて他の光学要素を光照射手段として光ファイバ40の先端部に設けるように構成してもよい。
 振動子アレイ20は、被検体M内で発生した光音響波Uを検出する検出素子である。振動子アレイ20は、例えば図3に示されるように、1次元状に配列された複数の超音波振動子20aから構成される。超音波振動子20aは、例えば、圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。超音波振動子20aは、光音響波Uを検出した場合にその光音響信号を電気信号に変換する機能を有している。この電気信号は後述する受信回路21に出力される。
 パルスレーザ光の照射は、例えば被検体Mの部分領域ごとに行うことができる。このような場合、例えば導光板43は、領域A、領域Bおよび領域Cのそれぞれに対応して複数設けられる(図3)。その場合、領域Aに対応する導光板43aは領域Aの選択時にパルスレーザ光を領域Aに照射する。そして、領域Bに対応する導光板43bは領域Bの選択時にパルスレーザ光を領域Bに照射する。さらに、領域Cに対応する導光板43cは領域Cの選択時にパルスレーザ光を領域Cに照射する。或いは、パルスレーザ光の照射は、例えば光照射手段全体(図3においてすべての導光板43)によって同時に行われてもよい。
 <座標取得手段>
 座標取得手段は、プローブ11が走査されながら光音響信号を検出している間、プローブ11の実空間における位置およびその向きを規定する座標(以下、単に座標という。)を順次取得する。「座標を取得する」とは、当該座標を特定するために必要な情報を取得することを意味する。例えば本実施形態では、座標取得手段は、磁気センサユニットであり、座標取得部15、磁場発生部41および磁気センサ42から構成される。磁気センサユニットは、磁場発生部が形成するパルス磁場上の空間において、磁場発生部に対する磁気センサの相対的な位置(x、y、z)、および磁気センサの姿勢(角度)(α、β、γ)を取得することができる。なお、プローブ11の走査が平行移動のみである場合には、取得する情報は相対位置のみでもよい。座標取得部15は、プローブ11の走査の前に原点リセットの走査が行われると、その時のプローブ11の位置および向きを座標空間における原点に設定する。この座標空間は、例えば、平行移動のみを考える場合には(x、y、z)の3軸系の空間であり、回転移動も考える場合には(x、y、z、α、β、γ)の6軸系の空間となる。振動子アレイ20のアレイ方向(超音波振動子20aが配列した方向)またはエレベーション方向(アレイ方向に垂直で検出面に平行な方向)に座標空間の軸が沿うように原点を設定することが好ましい。座標取得手段は、磁気センサユニットの他、加速度センサや赤外線センサ等を使用して座標を取得するように構成してもよい。
 座標取得手段は、例えば所定の周期(座標取得周期)で常にプローブ11の座標を取得する。この座標取得周期が小さいほどプローブ11の正確な位置の把握が可能となる。取得された座標は、制御手段29に送信される。この座標は、光音響信号に基づいて三次元のボリュームデータを生成したり、当該ボリュームデータから断層データを生成したり、二次元の光音響画像を位置に応じて順番に並べたりする際に使用される。また、本発明においては、この座標に基づいてパルスレーザ光の出力が制御される。
 <超音波ユニット>
 超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、光音響画像再構成手段24、検波・対数変換手段27、光音響画像構築手段28、制御手段29、画像合成手段38および観察方式選択手段39を有する。受信回路21、AD変換手段22、受信メモリ23、光音響画像再構成手段24、検波・対数変換手段27および光音響画像構築手段28が一体として、本発明における光音響画像生成手段に相当する。
 制御手段29は、光音響画像生成装置10の各部を制御するものであり、本実施形態ではトリガ制御回路30を備える。トリガ制御回路30は、例えば光音響画像生成装置の起動の際に、レーザユニット13に光トリガ信号を送る。これによりレーザユニット13で、フラッシュランプ52が点灯し、レーザロッド51の励起が開始される。そして、レーザロッド51の励起状態は維持され、レーザユニット13はパルスレーザ光を出力可能な状態となる。
 一方、制御手段29は、座標取得部15から送信されてきた座標が所定の条件を満たすか否かの判断を随時行う。上記所定の条件は、座標に対する条件であって被検体上の所定の位置または所定の間隔で光音響画像が生成されるための条件である。例えばこのような条件としては、予め設定された原点を基準にした特定の座標に、またはプローブ11の走査開始点を基準にした特定の周期的な座標に、取得された座標が一致するという条件を採用することができる。前者の条件は、例えば被検体上の特定の位置の光音響画像を生成したい場合に採用され、後者の条件は、例えばプローブ11の走査開始点から一定間隔ごとに光音響画像を生成したい場合に採用される。言い換えれば、制御手段29は、上記のような特定の座標によって規定される座標空間の仮想スケールの目盛り上に、プローブ11の状態が到達したか否かを判断すると言える。この仮想スケールの目盛りは特定の座標の間隔に相当するため、ボリュームデータを生成する場合にはこの仮想スケールの目盛りが細かい程、ボリュームデータの画素密度が向上することとなる。なお、座標取得周期と仮想スケールの目盛り間隔が異なる場合には、プローブ11の状態が目盛り上にある瞬間の座標を取得することができない場合もある。例えばこのような場合には、制御手段29は、直近に取得された座標に基づいてプローブ11の運動状態(走査方向、走査速度等)を算出し、目盛りを通過したと推定された後最初に取得された座標を、上記所定の条件を満たす座標として取り扱う。
 そして、制御手段29は、座標取得部15から送信されてきた座標が所定の条件を満たす場合には、トリガ制御回路30からレーザユニット13へQswトリガ信号を送信する。つまり、制御手段29は、このQswトリガ信号によってレーザユニット13からのパルスレーザ光の出力タイミングを制御している。また本実施形態では、制御手段29は、Qswトリガ信号の送信と同時にサンプリングトリガ信号をAD変換手段22に送信する。サンプリングトリガ信号は、AD変換手段22における光音響信号のサンプリングの開始タイミングの合図となる。このように、サンプリングトリガ信号を使用することにより、パルスレーザ光の出力と同期して光音響信号をサンプリングすることが可能となる。
 受信回路21は、プローブ11で検出された光音響信号を受信する。受信回路21で受信された光音響信号はAD変換手段22に送信される。
 AD変換手段22は、サンプリング手段であり、受信回路21が受信した光音響信号をサンプリングしてデジタル信号に変換する。例えば、AD変換手段22は、図4に示されるように、サンプリング制御部44およびAD変換器45を有する。受信回路21によって受信された受信信号は、AD変換器45によってデジタル化されたサンプリング信号に変換される。AD変換器45は、サンプリング制御部44によって制御されており、サンプリング制御部44がサンプリングトリガ信号を受信したときに、当該サンプリングトリガ信号に連動してサンプリングを行うように構成されている。本明細書において「トリガ信号の受信に連動して」サンプリングを行うとは、トリガ信号が受信された直後にサンプリングを開始すること、またはトリガ信号が受信された後所定の微小時間が経過した時にサンプリングを開始することを意味する。AD変換手段22は、例えば外部から入力する所定周波数のADクロック信号に基づいて、所定のサンプリング周期で受信信号をサンプリングする。
 受信メモリ23は、AD変換手段22でサンプリングされた光音響信号(つまり上記サンプリング信号)を記憶する。また本実施形態では、受信メモリ23は、座標取得部15が取得したプローブ11の座標も記憶する。そして、受信メモリ23は、プローブ11によって検出された光音響信号を光音響画像再構成手段24に出力する。
 光音響画像再構成手段24は、受信メモリ23から光音響信号を読み出し、プローブ11の振動子アレイ20で検出された光音響信号に基づいて、光音響画像の各ラインのデータを生成する。光音響画像再構成手段24は、例えばプローブ11の64個の超音波振動子からのデータを、超音波振動子の位置に応じた遅延時間で加算し、1ライン分のデータを生成する(遅延加算法)。光音響画像再構成手段24は、遅延加算法に代えて、CBP法(Circular Back Projection)により再構成を行ってもよい。あるいは光音響画像再構成手段24は、ハフ変換法又はフーリエ変換法を用いて再構成を行ってもよい。
 検波・対数変換手段27は、各ラインのデータの包絡線を求め、求めた包絡線を対数変換する。
 光音響画像構築手段28は、対数変換が施された各ラインのデータに基づいて、1フレーム分の光音響画像を構築する。光音響画像構築手段28は、例えば光音響信号(ピーク部分)の時間軸方向の位置を光音響画像における深さ方向の位置に変換して光音響画像を構築する。
 観察方式選択手段39は、光音響画像の表示態様を選択するものである。光音響信号についてのボリュームデータの表示態様としては、例えば三次元画像としての態様、断面画像としての態様および所定の軸上のグラフとしての態様が挙げられる。いずれの態様によって表示するかは、初期設定或いは操作者による入力手段16からの入力に従って選択される。
 画像合成手段38は、それぞれの位置で取得された光音響信号および位置情報を使用して、ボリュームデータを生成する。ボリュームデータの生成は、それぞれの光音響信号の信号値をそれぞれの光音響信号に係る座標に従って、仮想空間に割り当てることにより行う。「光音響信号に係る座標」とは、光音響信号が受信された際に当該光音響信号に関連付けられた座標を意味する。例えば、Qswトリガ信号が送信された時(つまり座標についての上記所定の条件を満たした時)の座標、実際に光が出力された時の座標、および光音響信号のサンプリングが開始された時の座標等が光音響信号に関連付けられる。信号値を割り当てる際に、割り当てる場所が重複する場合には、その重複する場所の信号値として例えばそれらの信号値の平均値またはそれらのうちの最大値が採用される。また、必要に応じて、割り当てられる信号値がない場合には、その周辺の信号値を用いて補間することが好ましい。補間は、例えば、最近接点から順に4つの近接点の重み付き平均値を補間場所に割り当てることにより行う。これにより、より自然な形のボリュームデータを生成することができる。さらに、画像合成手段38は、生成されたボリュームデータに必要な処理(例えばスケールの補正およびボクセル値に応じた色付け等)を施す。
 また、画像合成手段38は、観察方式選択手段39によって選択された観察方式に従って光音響画像を生成する。図5Aから図5Cは、光音響画像の表示態様の例を示す概略図である。図5Aは、仮想空間における所定の視点から眺めた際のボリュームデータの値を示す三次元画像IMaである。観察方式選択手段39において三次元状の吸収分布を観察する方式が選択された場合に、図5Aのような三次元画像IMaが表示される。三次元画像IMaを規定する仮想空間における視点は、例えば初期設定として又は操作者による入力手段16からの入力によって、観察方式選択手段39に設定されており、この情報も画像合成手段38に送信される。また、図5Bは、所定の二次元平面による断面における値を示す断面画像IMbである。観察方式選択手段39において二次元状の吸収分布を観察する方式が選択された場合に、図5Bのような断面画像IMbが表示される。断面画像IMbを規定する二次元平面は、例えば初期設定として又は操作者による入力手段16からの入力によって、観察方式選択手段39に設定されており、この情報も画像合成手段38に送信される。また、図5Cは、所定の一次元軸に沿ったボリュームデータの値を示すグラフIMcである。観察方式選択手段39において一次元状の吸収分布を観察する方式が選択された場合に、図5CのようなグラフIMcが表示される。グラフIMcを規定する一次元軸は、例えば初期設定として又は操作者による入力手段16からの入力によって、観察方式選択手段39に設定されており、この情報も画像合成手段38に送信される。
 選択された観察方法に従って生成された光音響画像が、画像表示手段14に表示するための最終的な画像(表示画像)となる。なお、上記の光音響画像を生成方法において、一旦光音響画像が生成された後、操作者が必要に応じて当該画像を回転させたり移動させたりすることも当然可能である。つまり、図5Aに示されるような三次元画像が表示されている場合に、操作者が入力手段16を使用して視点とする方向を順次指定する或いは移動させることにより、光音響画像が再計算されて三次元画像が回転することになる。また、操作者が入力手段16を使用して適宜観察方法を変更することも可能である。
 画像表示手段14は、画像合成手段38によって生成された表示画像を表示するものである。
 ここで図6を用いて、本実施形態における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係について説明する。図6では、座標取得手段の取得タイミング46が座標取得周期Δtごとに発生している様子が示されている。
 例えば図6は、プローブ11を一定の速度で走査しながらプローブ11の走査開始点から等間隔の位置で光音響画像を生成する場合を示す。この場合、制御手段29は、座標取得部15から送信された座標について、プローブ11の走査開始点を基準にした周期的な特定の座標に一致するか否かを常に判断する。図6の符号47は、光音響画像を取得する目安とされた座標に到達した(または当該座標を通過した)時刻である。つまり、時刻47は、座標取得部15から送信された座標が、予め設定された特定の周期的な座標に一致した(または、周期的な座標のそれぞれを通過した)時刻を表す。そして、最初の時刻47において、制御手段29は、Qswトリガ信号をレーザユニット13へ、サンプリングトリガ信号をAD変換手段22へ送信する。その後、レーザユニット13ではQswトリガ信号(第1のトリガ信号)の受信に連動してパルスレーザ光48が出力され、AD変換手段22ではサンプリングトリガ信号(第2のトリガ信号)の受信に連動して光音響信号のサンプリングが開始される。このサンプリングは、一定のサンプリング期間49の間行われる。その後、光音響画像を取得するべき位置に到達した時刻47ごとに、同じ作業が繰り返される。このようにして、プローブ11の走査開始点から等間隔の位置で光音響画像の生成が可能となる。
 以上のように、本発明に係る光音響画像生成装置および光音響画像生成方法は、特に、プローブの実空間における座標を取得し、所定の条件を満たす座標が取得されたときに、第1のトリガ信号を光源部へ送信せしめて、第1のトリガ信号の受信に連動して測定光を光源部から出力せしめることを特徴とする。これにより、光音響信号を受信したいときにのみ測定光を出力させるため、光音響画像の生成と無関係に測定光を出力する機会が減る。この結果、光音響イメージングにおいて、光エネルギーを効率的に使用することが可能となる。
 (設計変更)
 なお、第1の実施形態では、制御手段29は、Qswトリガ信号(第1のトリガ信号)の送信ごとに同時にサンプリングトリガ信号(第2のトリガ信号)を送信する場合について説明したが、本発明はこれに限られない。例えば、一連の走査の間継続してサンプリングを行い、その後例えば測定光の照射ごとに対応させてサンプリング信号を分割してもよい。この場合には、分割後の部分信号ごとに、部分信号と当該部分信号に係る座標とが関連付けられる。
 「光音響画像生成装置の第2の実施形態」
 次に光音響画像生成装置の第2の実施形態について説明する。第2の実施形態は、制御手段が記憶手段と判定手段を有する点で、第1の実施形態と異なる。したがって、第1の実施形態と同様の構成要素についての詳細な説明は、特に必要がない限り省略する。
 図7は、第2の実施形態の光音響画像生成装置の構成を示すブロック図である。
 具体的には、本実施形態の光音響画像生成装置10は、超音波探触子(プローブ)11、超音波ユニット12、レーザユニット13、画像表示手段14、座標取得手段15、41および42並びに入力手段16を備える。
 <超音波ユニット>
 超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、光音響画像再構成手段24、検波・対数変換手段27、光音響画像構築手段28、制御手段29、画像合成手段38および観察方式選択手段39を有する。
 制御手段29は、光音響画像生成装置10の各部を制御するものであり、本実施形態ではトリガ制御回路30、判定回路31および記憶メモリ32を備える。
 記憶メモリ32は、既に光音響画像が生成された座標(生成済み座標)を記憶するものである。この記憶メモリ32が本発明における記憶手段に相当する。例えば、光音響画像構築手段28が光音響画像の生成の完了とともにその旨を制御手段29に送信する。生成済み座標は、当該光音響画像に関連付けられた座標となる。
 判定回路31は、座標取得手段によって新たに取得された座標が生成済み座標と一致するか否かの判定を行う。この判定回路31が本発明における判定手段に相当する。トリガ制御回路30は、上記判定の結果が出た後にQswトリガ信号およびサンプリングトリガ信号を送信する。
 このように生成済み座標を記憶し、上記判定を行うことにより、同じ座標がプローブ11によって走査されたときにその後の信号処理を変更することが可能となる。
 例えば、判定回路31は、Qswトリガ信号の送信前に上記判定を行うものであり、制御手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、Qswトリガ信号およびサンプリングトリガ信号を送信しないものである構成を採用することができる。このような構成を採用すると、同じ場所を複数回走査する場合に、光音響画像が既に生成された座標で重複した測定光の出力を回避することができる。
 図8Aおよび図8Bを用いて、上記のような構成を採用した場合における画像生成の手順について説明する。図8Aおよび図8Bは、本実施形態における座標取得部の取得タイミングと、レーザユニットの出力タイミングと、AD変換手段のサンプリングタイミングとの関係を示した概念図である。図8Aの符号47aは、光音響画像を取得する目安とされた座標に到達した(または当該座標を通過した)時刻であって光音響画像が実際に生成された時刻を示す。一方図8Aの符号47bは、光音響画像を取得する目安とされた座標に到達した(または当該座標を通過した)時刻であって光音響画像が実際には生成されなかった時刻を示す。光音響画像が生成されない場合としては、例えば、時刻47aおよび時刻47bの間隔がレーザユニット13の出力可能な繰り返し周期(例えば、パルスレーザ光を100Hzで出力する場合、この周期は10msecとなる)よりも短い場合が想定される。この場合に、制御手段29またはレーザユニット13がパルスレーザ光を出力しない判断を行い、当該時刻47bでは、光音響画像が欠落した状態となる。しかしながら、生成済み座標が記憶メモリに記憶されているため、2回目の走査の際は、生成済み座標に対応する時刻47aではパルスレーザ光は出力されず、光音響画像を生成する目安とされた座標であって生成済み座標ではない座標に対応する時刻47cのみでパルスレーザ光が出力される(図8B)。そして、2回目の走査で光音響画像が生成された座標は、新たに生成済み座標として記憶メモリ32に記憶される。
 或いは上記判定回路31を有する場合において、光音響画像生成手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標および生成済み座標のそれぞれに係る光音響信号同士の演算値を光音響画像の画素値とするものである構成を採用することができる。この場合には、制御手段29は、判定回路31による判定結果に関わらず、Qswトリガ信号およびサンプリングトリガ信号を送信する。このような構成を採用すると、同じ座標において重複した光音響画像を生成することになるが、複数回の走査によって得られた結果を平均することができる。
 或いは上記判定手段を有する場合において、光音響画像生成手段は、新たに取得された座標が生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された座標に係る光音響信号を光音響画像の画素値とするものである構成を採用することができる。ここで、光音響信号を光音響画像の画素値とするとは、当該信号の値のみに基づいて当該画素値を得ることをいい、当該信号の値に対する必要な信号処理(例えばA/D変換処理や対数変換処理など)は必要に応じて実施されてもよい。この場合にも、制御手段29は、判定回路31による判定結果に関わらず、Qswトリガ信号およびサンプリングトリガ信号を送信する。このような構成を採用すると、ある回で光音響画像が生成できなかった座標があったとしても他の回で生成できるため、最新の光音響画像を活かしながら欠落なくボリュームデータを生成することができる。
 また、制御手段29は、生成済み座標を画像表示手段14に表示させるように構成してもよい。例えば、光音響画像を生成する目安とされた座標の範囲を一次元或いは二次元の画像で表示して、生成済み座標に相当する領域およびそうでない領域の色が相互に異なるように表示する。光音響画像を生成するべき座標であって生成済み座標ではない座標および生成済み座標をユーザが認識しやすくなり、ボリュームデータの生成が容易となる。
 「光音響画像生成装置の第3の実施形態」
 次に光音響画像生成装置の第3の実施形態について説明する。第3の実施形態は、レーザユニットがQswトリガ信号を受信した後所定の時間を置いてパルスレーザ光を出力する点で、第1の実施形態と異なる。したがって、第1の実施形態と同様の構成要素についての詳細な説明は、特に必要がない限り省略する。
 本実施形態の光音響画像生成装置10は、例えば図1に示される第1の実施形態の装置の構成と同じ構成を有する。レーザユニット13は、Qswトリガ信号を受信しても装置上の制約に起因して、すぐにパルスレーザ光を出力できない場合がある。このような場合、実際にパルスレーザ光が出力された出力タイミングが、Qswトリガ信号が送信された時の座標の取得タイミングから遅延し、出力タイミングと取得タイミングとのズレが生じることとなる。このようなズレを解消するため、本実施形態では、発光制御部61が、Qswトリガ信号を受信した後意図的に所定の時間Δτを置いてパルスレーザ光が出力されるような制御を行う。この所定の時間Δτは、レーザユニット13にとって出力に充分な間が確保できる時間とする。例えば、発光制御部61は、図9に示されるように、所定の時間Δτが取得タイミングの座標取得周期Δtとなるように制御する。この場合、出力タイミングは、Qswトリガ信号が送信された時の取得タイミングの次の取得タイミングと一致することになる(図9)。
 なお、AD変換手段22も、所定の時間Δτに応じて、サンプリングトリガ信号を受信した後所定の時間Δτを置いてサンプリングを開始することが好ましい。本実施形態では、例えばサンプリング制御部44が所定の時間Δτを調整することができる。所定の時間Δτは、例えば下記式2を満たすように決定することが好ましい。この場合、サンプリングが開始されてから光音響信号が受信されるまでの時間が一定となり、遅延加算処理等の信号処理が容易となる。なお、ΔτはΔτ≧Δτの範囲で調整する。
Δτ-Δτ=一定     式2
 「光音響画像生成装置の第4の実施形態」
 次に、本発明の光音響画像生成装置の第4の実施形態を詳細に説明する。図10は、光音響画像生成装置の第4の実施形態の構成を示すブロック図である。本実施形態は、光音響画像に加えて超音波画像も生成する点で、第2の実施形態と異なる。したがって、第2の実施形態と同様の構成要素についての詳細な説明は、特に必要がない限り省略する。
 本実施形態の光音響画像生成装置10は、超音波探触子(プローブ)11、超音波ユニット12、レーザユニット13、画像表示手段14、座標取得手段15、41および42並びに入力手段16を備える。
 <超音波ユニット>
 本実施形態の超音波ユニット12は、図1に示す光音響画像生成装置の構成に加えて、送信制御回路33、データ分離手段34、超音波画像再構成手段35、検波・対数変換手段36、および超音波画像構築手段37を備える。
 本実施形態では、プローブ11は、光音響信号の検出に加えて、被検体に対する超音波の出力(送信)、及び送信した超音波に対する被検体からの反射超音波の検出(受信)を行う。超音波の送受信を行う超音波振動子としては、本発明における超音波振動子を使用してもよいし、超音波の送受信用に別途プローブ11中に設けられた新たな超音波振動子を使用してもよい。また、超音波の送受信は分離してもよい。例えばプローブ11とは異なる位置から超音波の送信を行い、その送信された超音波に対する反射超音波をプローブ11で受信してもよい。
 トリガ制御回路30は、超音波画像の生成時は、送信制御回路33に超音波送信を指示する旨の超音波送信トリガ信号を送る。送信制御回路33は、このトリガ信号を受けると、プローブ11から超音波を送信させる。プローブ11は、超音波の送信後、被検体からの反射超音波を検出する。
 プローブ11が検出した反射超音波は、受信回路21を介してAD変換手段22に入力される。トリガ制御回路30は、超音波送信のタイミングに合わせてAD変換手段22にサンプリグトリガ信号を送り、反射超音波のサンプリングを開始させる。ここで、反射超音波はプローブ11と超音波反射位置との間を往復するのに対し、光音響信号はその発生位置からプローブ11までの片道である。反射超音波の検出には、同じ深さ位置で生じた光音響信号の検出に比して2倍の時間がかかるため、AD変換手段22のサンプリングクロックは、光音響信号サンプリング時の半分、例えば20MHzとしてもよい。AD変換手段22は、反射超音波のサンプリング信号を受信メモリ23に格納する。光音響信号のサンプリングと、反射超音波のサンプリングとは、どちらを先に行ってもよい。
 データ分離手段34は、受信メモリ23に格納された光音響信号のサンプリング信号と反射超音波のサンプリング信号とを分離する。データ分離手段34は、分離した光音響信号のサンプリング信号を光音響画像再構成手段24に入力する。光音響画像の生成は、第1の実施形態と同様である。一方、データ分離手段34は、分離した反射超音波のサンプリング信号を、超音波画像再構成手段35に入力する。
 超音波画像再構成手段35は、プローブ11の複数の超音波振動子で検出された反射超音波(そのサンプリング信号)に基づいて、超音波画像の各ラインのデータを生成する。各ラインのデータの生成には、光音響画像再構成手段24における各ラインのデータの生成と同様に、遅延加算法などを用いることができる。検波・対数変換手段36は、超音波画像再構成手段35が出力する各ラインのデータの包絡線を求め、求めた包絡線を対数変換する。
 超音波画像構築手段37は、対数変換が施された各ラインのデータに基づいて、超音波画像を生成する。超音波画像再構成手段35、検波・対数変換手段36、及び超音波画像構築手段37は、反射超音波に基づいて超音波画像を生成する超音波画像生成手段を構成する。
 画像合成手段38は、光音響画像と超音波画像とを合成する。画像合成手段38は、例えば光音響画像と超音波画像とを重畳することで画像合成を行う。合成された画像は、画像表示手段14に表示される。画像合成を行わずに、画像表示手段14に、光音響画像と超音波画像とを並べて表示し、或いは光音響画像と超音波画像とを切り替えて表示することも可能である。
 本実施形態では、光音響画像生成装置は、光音響画像に加えて超音波画像を生成する。超音波画像を参照することで、光音響画像では画像化することができない部分を観察することができる。

Claims (20)

  1.  測定光を出力する光源部と、
     被検体に前記測定光を照射する光照射手段、および、前記測定光の照射により前記被検体内で発生した光音響波を検出する超音波振動子を有するプローブと、
     前記プローブの実空間における座標を順次取得する座標取得手段と、
     所定の条件を満たす前記座標が取得されたときに、第1のトリガ信号を前記光源部へ送信する制御手段と、
     前記プローブによって検出された前記光音響波の光音響信号に基づいて、前記光音響信号についての光音響画像を生成する光音響画像生成手段とを備え、
     前記光源部が、前記第1のトリガ信号の受信に連動して前記測定光を出力するものであることを特徴とする光音響画像生成装置。
  2.  前記制御手段が、既に前記光音響画像が生成された前記座標である生成済み座標を記憶する記憶手段と、前記座標取得手段によって新たに取得された前記座標が前記生成済み座標と一致するか否かの判定を行う判定手段とを有するものであることを特徴とする請求項1に記載の光音響画像生成装置。
  3.  前記判定手段が、前記第1のトリガ信号の送信前に前記判定を行うものであり、
     前記制御手段が、新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、前記第1のトリガ信号を送信しないものであることを特徴とする請求項2に記載の光音響画像生成装置。
  4.  前記光音響画像生成手段が、新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された前記座標および該生成済み座標のそれぞれに係る前記光音響信号同士の演算値を前記光音響画像の画素値とするものであることを特徴とする請求項2に記載の光音響画像生成装置。
  5.  前記光音響画像生成手段が、新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された前記座標に係る前記光音響信号を前記光音響画像の画素値とするものであることを特徴とする請求項2に記載の光音響画像生成装置。
  6.  画像表示手段を備え、
     前記制御手段が、前記生成済み座標を前記画像表示手段に表示させるものであることを特徴とする請求項2から5いずれかに記載の光音響画像生成装置。
  7.  前記光源部が、前記座標取得手段が前記座標を取得する取得タイミングであって前記第1のトリガ信号が送信された後の前記取得タイミングと前記測定光の出力タイミングとが一致するように前記出力タイミングを制御する発光制御手段を有するものであることを特徴とする請求項1から6いずれかに記載の光音響画像生成装置。
  8.  前記プローブによって検出された前記光音響信号をサンプリングするサンプリング手段を備え、
     前記制御手段が、前記第1のトリガ信号の送信とともに、第2のトリガ信号を前記サンプリング手段へ送信するものであり、
     前記サンプリング手段が、前記第2のトリガ信号の受信に連動して前記光音響信号をサンプリングするものであることを特徴とする請求項1から7いずれかに記載の光音響画像生成装置。
  9.  前記サンプリング手段が、下記式1を満たしかつサンプリングの開始タイミングが前記出力タイミングよりも前になるように前記開始タイミングを制御するサンプリング制御手段を有するものであることを特徴とする請求項8に記載の光音響画像生成装置。
    Δτ-Δτ=一定     式1
    (式1において、Δτは前記第1のトリガ信号が送信されてから前記測定光が出力されるまでの時間を表し、Δτは前記第1のトリガ信号が送信されてから前記光音響信号のサンプリングが開始されるまでの時間を表す。)
  10.  前記プローブが、前記被検体に対して送信された超音波に対する反射超音波を検出するものであり、
     前記プローブによって検出された前記反射超音波の超音波信号に基づいて超音波画像を生成する超音波画像生成手段を更に備えることを特徴とする請求項1から9いずれかに記載の光音響画像生成装置。
  11.  プローブの実空間における座標を順次取得し、
     所定の条件を満たす前記座標が取得されたときに、第1のトリガ信号を光源部へ送信せしめて、前記第1のトリガ信号の受信に連動して測定光を前記光源部から出力せしめ、
     被検体に向けて前記測定光を出射させ、
     前記測定光の出射に起因して前記被検体内で発生した光音響波を検出し、
     前記プローブによって検出された前記光音響波の光音響信号および該光音響信号に係る前記座標に基づいて、前記光音響信号についての光音響画像を生成することを特徴とする光音響画像生成方法。
  12.  既に前記光音響画像が生成された前記座標である生成済み座標を記憶し、新たに取得された前記座標が前記生成済み座標と一致するか否かの判定を行うことを特徴とする請求項11に記載の光音響画像生成方法。
  13.  前記第1のトリガ信号の送信前に前記判定を行い、
     新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、前記第1のトリガ信号を送信しないことを特徴とする請求項12に記載の光音響画像生成方法。
  14.  新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された前記座標および該生成済み座標のそれぞれに係る前記光音響信号同士の演算値を前記光音響画像の画素値とすることを特徴とする請求項12に記載の光音響画像生成方法。
  15.  新たに取得された前記座標が前記生成済み座標と一致する旨の判定結果が得られた場合には、新たに取得された前記座標に係る前記光音響信号を前記光音響画像の画素値とすることを特徴とする請求項12に記載の光音響画像生成方法。
  16.  前記生成済み座標を画像表示手段に表示させることを特徴とする請求項12から15いずれかに記載の光音響画像生成方法。
  17.  前記座標を取得する取得タイミングであって前記第1のトリガ信号が送信された後の取得タイミングと前記測定光の出力タイミングとが一致するように、前記出力タイミングを制御することを特徴とする請求項11から16いずれかに記載の光音響画像生成方法。
  18.  前記第1のトリガ信号の送信とともに、前記プローブによって検出された前記光音響信号をサンプリングするサンプリング手段へ第2のトリガ信号を送信せしめ、
     前記サンプリング手段による前記第2のトリガ信号の受信に連動して、前記サンプリング手段によって前記光音響信号をサンプリングすることを特徴とする請求項11から17いずれかに記載の光音響画像生成方法。
  19.  下記式1を満たしかつサンプリングの開始タイミングが前記出力タイミングよりも前になるように前記開始タイミングを制御することを特徴とする請求項18に記載の光音響画像生成方法。
    Δτ-Δτ=一定     式2
    (式2において、Δτは前記第1のトリガ信号が送信されてから前記測定光が出力されるまでの時間を表し、Δτは前記第1のトリガ信号が送信されてから前記光音響信号のサンプリングが開始されるまでの時間を表す。)
  20.  前記被検体に対して送信された超音波に対する反射超音波を検出し、
     検出された前記反射超音波の超音波信号に基づいて超音波画像を生成することを特徴とする請求項11から19いずれかに記載の光音響画像生成方法。
PCT/JP2012/007634 2011-12-01 2012-11-28 光音響画像生成装置および光音響画像生成方法 WO2013080539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263199 2011-12-01
JP2011263199A JP2013111432A (ja) 2011-12-01 2011-12-01 光音響画像生成装置および光音響画像生成方法

Publications (1)

Publication Number Publication Date
WO2013080539A1 true WO2013080539A1 (ja) 2013-06-06

Family

ID=48535028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007634 WO2013080539A1 (ja) 2011-12-01 2012-11-28 光音響画像生成装置および光音響画像生成方法

Country Status (2)

Country Link
JP (1) JP2013111432A (ja)
WO (1) WO2013080539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560274A (zh) * 2020-12-22 2021-03-26 上海科技大学 一种基于声波叠加的光声效应模拟与仿真方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219258B2 (ja) * 2013-10-31 2017-10-25 富士フイルム株式会社 レーザ装置、及び光音響計測装置
JP2018011927A (ja) * 2016-07-08 2018-01-25 キヤノン株式会社 制御装置、制御方法、制御システム及びプログラム
WO2018008664A1 (ja) * 2016-07-08 2018-01-11 キヤノン株式会社 制御装置、制御方法、制御システム及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246974A (ja) * 2005-03-08 2006-09-21 Hitachi Medical Corp リファレンス像表示機能を有する超音波診断装置
JP2007504883A (ja) * 2003-09-12 2007-03-08 オル−ニム メディカル リミテッド 対象領域の非侵襲的光学モニタリング
JP2010259662A (ja) * 2009-05-08 2010-11-18 Shimadzu Corp 超音波診断装置
JP2010259604A (ja) * 2009-05-01 2010-11-18 Canon Inc 画像診断装置、画像診断方法
WO2010150751A1 (ja) * 2009-06-24 2010-12-29 株式会社日立製作所 生体計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504883A (ja) * 2003-09-12 2007-03-08 オル−ニム メディカル リミテッド 対象領域の非侵襲的光学モニタリング
JP2006246974A (ja) * 2005-03-08 2006-09-21 Hitachi Medical Corp リファレンス像表示機能を有する超音波診断装置
JP2010259604A (ja) * 2009-05-01 2010-11-18 Canon Inc 画像診断装置、画像診断方法
JP2010259662A (ja) * 2009-05-08 2010-11-18 Shimadzu Corp 超音波診断装置
WO2010150751A1 (ja) * 2009-06-24 2010-12-29 株式会社日立製作所 生体計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560274A (zh) * 2020-12-22 2021-03-26 上海科技大学 一种基于声波叠加的光声效应模拟与仿真方法
CN112560274B (zh) * 2020-12-22 2022-12-09 上海科技大学 一种基于声波叠加的光声效应模拟与仿真方法

Also Published As

Publication number Publication date
JP2013111432A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5779169B2 (ja) 音響画像生成装置およびそれを用いて画像を生成する際の進捗状況の表示方法
JP5655021B2 (ja) 光音響画像化方法および装置
JP5626903B2 (ja) カテーテル型の光音響プローブおよびそれを備えた光音響撮像装置
JP5694991B2 (ja) 光音響画像化方法および装置
JP5681141B2 (ja) 断層画像生成装置、方法、及びプログラム
US9380944B2 (en) Photoacoustic image generation apparatus and acoustic wave unit
JP5777394B2 (ja) 光音響画像化方法および装置
JP5683383B2 (ja) 光音響撮像装置およびその作動方法
US9486144B2 (en) Photoacoustic image generation apparatus and acoustic wave unit
EP2744052A1 (en) Laser light source unit, control method for same, and device and method for generating photoacoustic image
US20160324423A1 (en) Photoacoustic measurement apparatus and signal processing device and signal processing method for use therein
JP2014136102A (ja) ドプラ計測装置およびドプラ計測方法
JP5936559B2 (ja) 光音響画像生成装置および光音響画像生成方法
WO2013080539A1 (ja) 光音響画像生成装置および光音響画像生成方法
WO2014050020A1 (ja) 光音響画像生成装置および光音響画像生成方法
JP2012249739A (ja) 光音響撮像装置およびその作動方法
WO2012114695A1 (ja) 光音響画像生成装置
WO2013128921A1 (ja) 画像生成装置及び方法
JP2014161428A (ja) 光音響計測装置および光音響計測方法
JP5839688B2 (ja) 光音響画像処理装置、及び方法
JP5946230B2 (ja) 光音響画像化方法および装置
JP6129694B2 (ja) 光音響計測用プローブおよびそれを備えた光音響計測装置
JP2020018468A (ja) 情報処理装置、情報処理方法、プログラム
JP2020018467A (ja) 情報処理装置、情報処理方法、プログラム
JP2020018466A (ja) 情報処理装置、情報処理方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854215

Country of ref document: EP

Kind code of ref document: A1