WO2013080520A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2013080520A1
WO2013080520A1 PCT/JP2012/007598 JP2012007598W WO2013080520A1 WO 2013080520 A1 WO2013080520 A1 WO 2013080520A1 JP 2012007598 W JP2012007598 W JP 2012007598W WO 2013080520 A1 WO2013080520 A1 WO 2013080520A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
lead
display
display device
pixels
Prior art date
Application number
PCT/JP2012/007598
Other languages
French (fr)
Japanese (ja)
Inventor
慎司 貞光
孝司 上野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013080520A1 publication Critical patent/WO2013080520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present invention relates to a display device that performs multi-color display, and in particular, in a display device having a so-called two-layer wiring structure, a reduction in display quality due to variation in effective voltage applied by pixel electrodes between sub-pixels of the same color. It is about measures.
  • red (R), green (G), and blue (B) sub-pixels constituting each pixel are arranged in a scanning direction, so-called.
  • R red
  • G green
  • B blue
  • the number of gate wirings formed in the display area is three times that of normal driving, and correspondingly, each gate wiring is located around the display area and is not displayed.
  • the number of gate lead-out wirings that are routed over the frame region, which is a region, and lead out to the signal input terminal region provided on one end thereof also increases.
  • Patent Document 1 discloses that a plurality of gate lead-out lines are formed using a metal film for forming a gate line and a metal film for forming a source line, and adjacent gate lead-out lines are gate lines and source lines.
  • a two-layer wiring structure formed so as to be positioned above and below an insulating film interposed therebetween is disclosed.
  • the gate lead-out wiring has a lower lead-out wiring formed from a metal film for forming a gate wiring and an upper-layer lead wiring formed from a metal film for forming a source wiring. Alternatingly arranged.
  • the effective voltage applied to the liquid crystal layer between the sub-pixels of the same color varies.
  • a striped pattern is easily visible along the gate wiring, and the display quality is degraded. Resulting in.
  • the present invention has been made in view of such a point, and an object of the present invention is to suppress variation in effective voltage applied by pixel electrodes between sub-pixels of the same color while realizing a narrow frame structure. This is to improve the display quality.
  • each lead-out wiring electrically connected to a thin film transistor (hereinafter referred to as a TFT) included in a sub-pixel of the same color is provided with a common By forming it from a conductive film, it is configured to be unified by the lower layer lead wiring or the upper layer lead wiring.
  • a TFT thin film transistor
  • the present invention is directed to a display device that performs multi-color display, and has the following solutions.
  • the first invention is the above display device, A base substrate; A display area provided on the base substrate; A frame area provided around the display area; A signal input terminal region provided on one end of the frame region; A plurality of first display lines provided in the display area so as to extend in parallel to each other; A plurality of second display wirings provided in the display area so as to extend in parallel to each other in a direction intersecting with the first display wirings; An insulating film interposed between each of the first display wirings and each of the second display wirings to insulate the two wirings; Thin film transistors connected to the first display wiring and the second display wiring that are provided at the intersections of the first display wirings and the second display wirings and that form the corresponding intersections.
  • the display area includes a plurality of pixels each having a plurality of color sub-pixels each having the thin film transistor and the pixel electrode.
  • Each of the first display wirings is connected to a thin film transistor included in a sub-pixel of the same color
  • the plurality of first lead wires include a lower lead wire covered with the insulating film and an upper lead wire provided on the insulating film,
  • One of the lower lead wiring and the upper lead wiring is formed from the same film as the first display wiring, and the other is formed from the same film as the second display wiring and is a contact hole formed in the insulating film.
  • the first display wiring connected to the thin film transistor included in the sub-pixels of the same color is characterized in that the first display wiring is unified and electrically connected to the lower layer leading wiring or the upper layer leading wiring.
  • a plurality of first lead-out wires for leading each first display wire provided in the display region to a terminal region on the frame region are a lower lead-out wire covered with an insulating film, and an insulating film It has a two-layer wiring structure including an upper layer lead wiring provided above. According to this two-layer wiring structure, it is possible to reduce the pitch between the first extraction wirings at the location where the lower layer extraction wiring and the upper layer extraction wiring are adjacent to each other, thereby reducing the width of the frame region. . Further, due to being formed of separate conductive films, the line width and film thickness of the lower layer lead wire and the upper layer lead wire become non-uniform, and the first display wire is interposed between these two lead wires.
  • the lower layer lead line and the upper layer lead line are separated for each color of the sub-pixel for controlling the drive through the electrically connected TFT.
  • a second invention is the display device of the first invention, wherein The lower layer lead wires and the upper layer lead wires constituting the first lead wires are alternately arranged without overlapping each other in a plan view.
  • the lower layer wiring and the upper layer wiring are alternately arranged in a plan view.
  • the lower layer lead wiring and the upper layer lead wiring are arranged so as to overlap each other. An increase in power consumption due to a decrease in display quality due to signal delay and an increase in impedance can be suppressed.
  • a third invention is the display device of the second invention, wherein The plurality of pixels are arranged in a matrix, and each pixel includes four sub-pixels arranged along the second display wiring.
  • each pixel arranged in a matrix is composed of sub-pixels of four colors arranged along the second display wiring. According to such a pixel configuration, it is possible to realize the display device according to the first invention with a simple configuration in which the above-described alternate wiring structure is simply applied.
  • a fourth invention is the display device according to any one of the first to third inventions,
  • the terminal region is provided at an end of the base substrate located on an extension of the second display wiring;
  • the plurality of first lead wires constitutes a first wire group drawn from one side of the display region and a second wire group drawn from the other side of the display region. To do.
  • a so-called double-side lead-out wiring structure in which the first lead-out wiring is drawn from both sides of the display area is provided.
  • the display area can be reduced even if the frame is narrower than the case where a so-called single-side lead-out wiring structure in which all the first lead-out wirings are drawn from only one side of the display area is adopted. It becomes easy to arrange at the center position. Thereby, it becomes possible to employ
  • the fifth invention is the display device of the fourth invention,
  • the first wiring group is composed of an odd number of first lead wiring groups,
  • the second wiring group includes an even number of the second lead wiring groups.
  • the first wiring group and the second wiring group are composed of the same number of first lead wiring groups. According to such a lead-out configuration of the first lead-out wiring, it is possible to narrow the width of both frame area portions where the first wiring group and the second wiring group are provided in a balanced manner.
  • a sixth invention is the display device according to any one of the first to fifth inventions, Each of the first display wirings is a gate wiring, Each of the second display wirings is a source wiring.
  • each first display wiring is a gate wiring
  • each gate wiring is connected to a TFT of a sub-pixel of the same color to perform a triple scan driving.
  • the total number of gate wirings and source wirings is reduced, and the number of gate driver circuits having a relatively simple circuit configuration is increased while the number of source driver circuits having a complicated circuit configuration compared to the gate driver circuit is increased.
  • COG Chip On Glass
  • a driver IC Integrated Circuit
  • a seventh invention is the display device according to any one of the first to sixth inventions, A thin film transistor substrate having a base substrate provided with each of the first display wiring, each second display wiring, an insulating film, each thin film transistor, each pixel electrode, each first extraction wiring, and each second extraction wiring; A counter substrate disposed to face the thin film transistor substrate; And a liquid crystal layer provided between the thin film transistor substrate and the counter substrate.
  • the display device according to the present invention is a liquid crystal display device.
  • the liquid crystal display device a variation in effective voltage applied to the liquid crystal layer between sub-pixels of the same color while realizing a narrow frame structure. It is possible to improve the display quality while suppressing the above.
  • a display region in which pixels each having a first color sub-pixel and a second color sub-pixel are arranged, and a frame region around the display region, and the frame region includes a terminal region. Intended for display devices including
  • the eighth invention is the above display device, A base substrate provided with the terminal region; A pixel electrode provided on the base substrate corresponding to a sub-pixel included in the display area; A thin film transistor electrically connected to the pixel electrode; One wiring for electrically connecting the thin film transistors corresponding to the sub-pixels of the same color among the thin film transistors, Another wiring provided to intersect the one wiring in a plan view and electrically connect the thin film transistor; An insulating film interposed between the one wiring and the other wiring; A lead wire drawn from the one wire to the terminal region; Including a thin film transistor substrate, The lead-out wiring electrically connects the first lead-out wiring led out from one wiring electrically connecting the thin film transistors corresponding to the first color sub-pixels and the thin film transistor corresponding to the second color sub-pixels.
  • the first lead wiring is formed of the same conductive film as the one wiring
  • the second lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
  • a ninth invention is the display device of the eighth invention,
  • the pixel further includes a third color sub-pixel,
  • the lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
  • the third lead wiring is formed of the same conductive film as the one wiring.
  • the tenth invention is the display device of the ninth invention,
  • the pixel further includes a fourth color sub-pixel,
  • the lead-out wiring includes a fourth lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the fourth color,
  • the fourth lead-out wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
  • the eleventh invention is the display device of the tenth invention.
  • the first to fourth color sub-pixels are red, green, blue and yellow sub-pixels.
  • the twelfth invention is the display device of the eighth invention,
  • the pixel further includes a third color sub-pixel,
  • the lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
  • the third lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
  • the respective extraction wirings electrically connected to the TFTs of the sub-pixels of the same color are formed from a common conductive film, thereby being unified by the lower layer extraction wiring or the upper layer extraction wiring.
  • FIG. 1 is a plan view schematically showing the configuration of the liquid crystal display device according to the first embodiment.
  • 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG.
  • FIG. 3 is an enlarged plan view showing the arrangement of pixels and sub-pixels in the display area according to the first embodiment.
  • FIG. 4 is a plan view showing a lead-out configuration of the display wiring of the TFT substrate according to the first embodiment.
  • FIG. 5 is an equivalent circuit diagram illustrating a configuration of one subpixel in the first embodiment.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure of the TFT.
  • FIG. 7 is an enlarged plan view showing a part of the main configuration of the TFT substrate according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing a cross-sectional structure taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view showing a connection structure between the gate wiring and the upper lead wiring.
  • FIG. 10 is a plan view schematically showing the connection relationship between the sub-pixels of each color according to the first embodiment and the gate lead-out wiring that drives them.
  • FIG. 11 is a plan view schematically showing a state in which monochromatic halftone display is performed in the first embodiment.
  • FIG. 12 is a plan view schematically showing a configuration for drawing display wiring on the TFT substrate according to the second embodiment.
  • FIG. 13 is a plan view schematically showing a connection relationship between sub-pixels of respective colors according to the second embodiment and gate lead-out wirings for driving them.
  • FIG. 14 is a plan view schematically showing a state in which monochromatic halftone display is performed in the second embodiment.
  • FIG. 15 is an enlarged plan view showing the arrangement of pixels and sub-pixels in the display area according to the third embodiment.
  • FIG. 16 is a plan view showing a configuration for drawing display wiring of the TFT substrate according to the third embodiment.
  • FIG. 17 is a plan view schematically showing the connection relationship between the sub-pixels of each color according to the third embodiment and the gate lead-out wiring that drives them.
  • FIG. 18 is a plan view schematically showing a state in which monochromatic halftone display is performed in the third embodiment.
  • Embodiment 1 of the Invention In the first embodiment, a liquid crystal display device S that performs full-color display will be described as an example of a display device according to the present invention.
  • FIG. 1 shows a schematic configuration of the liquid crystal display device S of the present embodiment.
  • 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG.
  • the liquid crystal display device S includes a liquid crystal display panel 10, a driver IC chip 50 for driving the liquid crystal display panel 10, and an image to be displayed on the driver IC chip 50.
  • a wiring board 60 such as an FPC (Flexible Printed Circuit) for inputting display signals including data corresponding to the external circuit (not shown), and a driver IC chip 50 and wiring on one end side of the liquid crystal display panel 10. It has a COG structure on which a substrate 60 is mounted.
  • FPC Flexible Printed Circuit
  • the liquid crystal display panel 10 is a display element that generates a display image by driving the driver IC chip 50 in accordance with a display signal input via the wiring board 60, and is configured to be capable of triple scan driving.
  • the liquid crystal display panel 10 includes a TFT substrate 11 and a counter substrate 12 that are arranged so as to face each other, a frame-shaped sealing material 13 that bonds the outer peripheral edges of the substrates 11 and 12, and the TFT substrate 11 A liquid crystal layer 14 surrounded and sealed by a sealing material 13 is provided between the counter substrate 12 and the counter substrate 12.
  • the liquid crystal display panel 10 has a rectangular display area D for displaying an image in an area where the TFT substrate 11 and the counter substrate 12 overlap and inside the sealing material 13, that is, in an area where the liquid crystal layer 14 is provided. ing. Further, the liquid crystal display panel 10 has a frame region F having a rectangular frame shape that is a non-display region around the display region D. On one side of the frame region F (lower side in FIG. 1 and left side in FIG. 2), a signal input terminal region 11a is provided in which the TFT substrate 11 protrudes from the counter substrate 12 and is exposed to the outside.
  • the driver IC chip 50 is mounted near the display area D in the terminal area 11a. Further, the wiring board 60 is mounted at a position outside the driver IC chip 50 in the terminal region 11a. The driver IC chip 50 and the wiring board 60 are connected to the terminal region 11a via a connecting material such as ACF (Anisotropic Conductive Film).
  • ACF Anagonal Conductive Film
  • the TFT substrate 11 and the counter substrate 12 are formed in a rectangular shape, for example, and as shown in FIG. 2, alignment films 15 and 16 are provided on the inner surfaces facing each other, and polarizing plates 17 and 18 are provided on the outer surfaces. Are provided.
  • the liquid crystal layer 14 is made of a nematic liquid crystal material having electro-optical characteristics.
  • FIG. 3 shows an enlarged plan view of the pixel configuration in the display area D.
  • a plurality of pixels P which is the minimum unit of an image, are arranged in a matrix.
  • Each of these pixels P is composed of sub-pixels p1 of four colors of red (R, second color), green (G, fourth color), blue (B, first color), and white (W, third color).
  • These four sub-pixels p1 (R), p1 (G), p1 (B), and p1 (W) are striped in a juxtaposed manner along the scanning direction (Y-axis direction) in the same order for all the pixels P. It is installed side by side.
  • sub-pixels p1 of the same color are aligned in the horizontal direction (X-axis direction) in FIG. 3 to form a sub-pixel row for each color, and the vertical direction (Y-axis direction) in FIG.
  • a plurality of four-color sub-pixel rows are periodically arranged.
  • FIG. 4 is a plan view showing a lead-out configuration of the display wirings 21 and 23 on the TFT substrate 11.
  • FIG. 5 is an equivalent circuit diagram showing a configuration of one subpixel p1.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure of the TFT 24.
  • FIG. 7 is an enlarged plan view showing the main configuration of the TFT substrate 11.
  • 8 is a cross-sectional view showing a cross-sectional structure taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view showing a connection structure between the gate wiring 21 and the upper layer extraction wiring 31B.
  • the TFT substrate 11 includes an insulating substrate 20 such as a glass substrate as a base substrate, as shown in FIG.
  • a plurality of gate wirings (one wiring) 21 as first display wirings are provided so as to extend in parallel to each other in the horizontal direction (X-axis direction) in FIG. It has been.
  • Each of these gate wirings 21 is covered with a gate insulating film 22 described later.
  • a plurality of source wirings as second display wirings extend in parallel with each other in the vertical direction (Y-axis direction) in FIG. (Other wiring) 23 is provided.
  • Each gate wiring 21 and each source wiring 23 are insulated by interposing a gate insulating film 22 between these wirings 21 and 23.
  • the gate wiring 21 and the source wiring 23 are formed in a lattice shape so as to partition each sub-pixel p1 as a whole.
  • each subpixel p1 is provided with a TFT 24 and a pixel electrode 30 connected thereto.
  • the TFT 24 is provided at each intersection of each gate line 21 and each source line 23 and is connected to the corresponding gate line 21 and source line 23 that form the intersection.
  • the TFT 24 is a bottom gate type TFT, and includes a gate electrode 25 provided on the insulating substrate 20, and a gate insulating film 22 provided so as to cover the gate electrode 25.
  • a semiconductor layer 26 provided so as to straddle the gate electrode 25 via the gate insulating film 22, and a source electrode 27 and a drain electrode 28 which are partly overlapped with the semiconductor layer 26 and are connected to be separated from each other. And is covered with an interlayer insulating film 29.
  • the gate electrode 25 is connected to the gate wiring 21.
  • the source electrode 27 is connected to the source wiring 23.
  • the pixel electrode 30 is provided on the interlayer insulating film 29 and is connected to the drain electrode 28 through a contact hole formed in the interlayer insulating film 29 (not shown).
  • a stray capacitance C ′ shown in FIG. 5 is formed between the pixel electrode 30 and the gate wiring 21.
  • the TFTs 24 are connected to the same gate wiring 21 separately for each sub-pixel row composed of sub-pixels p1 of the same color aligned in the horizontal direction (X-axis direction) in FIG.
  • Each TFT 24 is connected to the same source wiring 23 separately for each pixel column composed of a plurality of pixels P aligned in the vertical direction (Y-axis direction) in FIG.
  • a plurality of gate lead wires 31 as first lead wires connected to the gate wires 21 and drawn from the display region D side to the terminal region 11a side are provided.
  • a plurality of source lead lines 35 are provided as second lead lines connected to the source lines 23 and led from the display area D side to the terminal area 11 a side.
  • Terminals (not shown) for connection to the driver IC chip 50 are formed along the edge of the TFT substrate 1 at the leading ends of the gate lead-out lines 31 and the source lead-out lines 35.
  • the plurality of gate lead-out lines 31 are alternately drawn out on one side and the other side of the display area D to constitute a double-side lead-out wiring structure.
  • Each gate lead-out line 31 connected to the odd-numbered gate lines 21 from the upper side of the display area D is drawn from one side (left side in FIG. 4) of the display area D to form a first wiring group 32.
  • each gate lead-out line 31 connected to the even-numbered gate lines 21 from the upper side of the display area D is drawn out from the other side (right side in FIG. 4) of the display area D to form the second wiring group 33.
  • the display area D is arranged at the center position of the outer shape of the TFT substrate 1 as compared with the case where a single-side lead-out wiring structure in which all the gate lead-out wirings 31 are drawn from only one side of the display area D is adopted. can do.
  • the first wiring group 32 and the second wiring group 33 are composed of the same number of groups of gate lead-out wirings 31, the widths of both frame regions B provided with these can be narrowed in a balanced manner. .
  • the first wiring group 32 and the second wiring group 33 include a lower lead wiring (first lead wiring, third lead wiring) 31A covered with the gate insulating film 22, a gate,
  • the upper layer lead wiring (second lead wiring, fourth lead wiring) 31B provided on the insulating film 22.
  • the lower layer lead wiring 31A and the upper layer lead wiring 31B are three-dimensionally arranged via the gate insulating film 22 to form a two-layer wiring structure.
  • the lower layer lead wiring 31A and the upper layer lead wiring 31B are alternately arranged without overlapping each other in a plan view to constitute an alternate wiring structure.
  • this alternate wiring structure has an adverse effect on the capacitance formed between the two lead wires 31A and 31B. It is possible to suppress an increase in power consumption due to a decrease in display quality and an increase in impedance due to the delay of the delay.
  • the lower lead line 31 ⁇ / b> A is formed of the same metal film as the gate line 21 and is formed integrally with the gate line 21.
  • the upper lead line 31B is formed of the same metal film as the source line 23 and is connected to one end of the gate line 21 through a contact hole 22a formed in the gate insulating film 22 as shown in FIG. ing.
  • the upper lead line 31B is covered with an interlayer insulating film 29.
  • FIG. 10 shows a schematic plan view of the connection relationship between the sub-pixels p1 of each color and the gate lead-out wiring 31 that drives them in the present embodiment.
  • “GL” is drawn on the lead side of the subpixel row having the TFT 24 to which the lower layer lead-out wiring 31A is electrically connected, and the subpixel row having the TFT 24 to which the upper layer lead-out wiring 31B is electrically connected.
  • “SL” is attached to the drawer side. This also applies to FIGS. 11, 13, 14, 16, and 17 referred to later.
  • the lower lead wiring 31A and the upper lead wiring 31B are formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21.
  • an upper layer extraction wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and green (G) subpixels p1.
  • the lower lead wiring 31A (GL) is electrically connected to the TFT 24 of the blue (G) and white (W) subpixels p1. Accordingly, it is possible to suppress variations in effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color while realizing a narrow frame structure.
  • the plurality of gate lead-out wirings 31 have a two-layer wiring structure including a lower-layer lead-out wiring 31A covered with the gate insulating film 22 and an upper-layer lead-out wiring 31B provided on the gate insulating film 22. Therefore, the pitch between the lower layer lead-out line 31A and the upper layer lead-out line 31B can be narrowed, whereby the width of the frame region F can be narrowed.
  • the lower lead wiring 31A and the upper lead wiring 31B are formed of separate metal films, so that the line widths and film thicknesses of both the lead wirings 31A and 31B become non-uniform.
  • the lower layer wiring 31A and the upper layer wiring 31B are electrically connected.
  • the subpixels p1 whose driving is controlled via the TFTs 24 are formed separately for each color, so that the potential fluctuation width when the gate wiring 21 is turned off between the pixel electrodes 30 in the subpixels p1 of the same color is formed. It can suppress that a difference arises.
  • a black matrix provided in a lattice shape so as to correspond to the gate wiring 21 and the source wiring 23 on an insulating substrate such as a glass substrate as a base substrate, and the black matrix
  • a red layer, a green layer, a blue layer and a transparent layer provided so as to be periodically arranged corresponding to the subpixels p1 (R), p1 (G), p1 (B), and p1 (W) of each color between the lattices.
  • a plurality of color filters composed of layers, a common electrode 51 provided so as to cover the black matrix and each color filter, and facing the group of the pixel electrodes 30, and a photo spacer provided in a column shape on the common electrode 51 And.
  • the light transmittance in the liquid crystal layer 14 is changed by changing the alignment state of the liquid crystal molecules according to the magnitude of the voltage applied to the liquid crystal layer 14 in the four-color sub-pixels p1 of each pixel P.
  • An image is displayed by adjusting and synthesizing the light transmitted through the four color filters of the red layer, the green layer, the blue layer, and the transparent layer.
  • each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower lead-out wiring 31A or the upper layer Since the lead wiring 31B is unified, the narrow frame structure is realized, and the display quality is improved by suppressing the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color. Can be improved.
  • FIG. 11 is a schematic plan view showing a state in which monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
  • FIG. 12 is a plan view showing a lead-out configuration of the gate wiring 21 of the TFT substrate 11 in the second embodiment.
  • the liquid crystal display device S is configured in the same manner as in the first embodiment except that the drawing configuration of the gate wiring 21 of the TFT substrate 11 is different from that in the first embodiment. Only the substrate 11 will be described, and the same components will be left to the description of the first embodiment based on FIGS. 1 to 11, and the detailed description thereof will be omitted.
  • the gate lead-out wiring 31 forms a double-side lead-out wiring structure.
  • each gate lead-out wiring 31 is connected to one side of the display area D (see FIG. 12). It is drawn only from the right side in FIG.
  • the group of gate lead-out wirings 31 is formed on the lower lead-out wiring 31A covered with the gate insulating film 22 and the gate insulating film 22 in the same manner as the first wiring group 32 and the second wiring group 33 in the first embodiment.
  • the upper lead-out wiring 31B is provided, and the two lead-out wirings 31A and 31B constitute a two-layer wiring structure.
  • the lower layer extraction wiring 31A and the upper layer extraction wiring 31B are respectively formed from the same metal film as the gate wiring 21 and the source wiring 23, and are alternately arranged without overlapping each other in plan view. ing.
  • FIG. 13 shows a schematic plan view of the connection relationship between the sub-pixels p1 for each color and the gate lead-out wiring 31 that drives them in the present embodiment.
  • the lower layer lead-out wiring 31A and the upper layer lead-out wiring 31B of this embodiment are also formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21.
  • the upper layer lead-out wiring 31B (SL, second lead-out wiring) is provided in the TFT 24 of the red (R, second color) and blue (B, fourth color) sub-pixel p1.
  • the fourth lead wiring is electrically connected.
  • the lower layer lead-out wiring 31A (GL, first lead-out wiring, second lead-out wiring) is electrically connected to the TFT 24 of the green (G, first color) and white (W, third color) sub-pixel p1. It is connected.
  • each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower-layer lead-out wiring 31A
  • the upper layer lead wiring 31B is unified, the narrow frame structure is realized, and the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 is suppressed between the sub-pixels p1 of the same color. The quality can be improved.
  • FIG. 14 is a schematic plan view showing a state in which a monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
  • FIG. 15 is an enlarged plan view showing a pixel configuration of the display area D in the third embodiment.
  • FIG. 16 is a plan view showing a lead-out configuration of the gate wiring 21 of the TFT substrate 11 in the third embodiment.
  • each pixel P is composed of four sub-pixels p1, but in this embodiment, each pixel P is red (R, second color), green (G, G) as shown in FIG. It consists of sub-pixels p1 of three colors of first color) and blue (B, third color). These three color sub-pixels p1 (R), p1 (G), and p1 (B) are arranged in parallel in a striped manner in a juxtaposed manner along the scanning direction (Y-axis direction) in the same order in all the pixels P. .
  • the gate lead-out wiring 31 is alternately drawn out on one side and the other side of the display area D.
  • the gate wiring groups in units of pixels (hereinafter, simply referred to as gate wiring groups) composed of three gate wirings 21 for driving the three-color sub-pixels p1 (R), p1 (G), and p1 (B)
  • the gate wiring groups composed of three gate wirings 21 for driving the three-color sub-pixels p1 (R), p1 (G), and p1 (B)
  • the first wiring group 32 is configured.
  • the lower one gate wiring 21 of the odd-numbered gate wiring group from the upper side of the display area D and the lower two gate wirings 21 of the even-numbered gate wiring group are on the other side of the display area D (FIG. 16).
  • the second wiring group 33 is formed by being pulled out from the right side.
  • the first wiring group 32 and the second wiring group 33 are provided on the lower lead wiring (first lead wiring) 31A covered with the gate insulating film 22 and the gate insulating film 22, as in the first embodiment.
  • the upper layer lead wiring (second lead wiring, third lead wiring) 31B is constituted by the two lead wirings 31A and 31B to form a two-layer wiring structure.
  • one of the adjacent gate lead lines 31 drawn from the gate line 21 that drives the same pixel row is the lower layer lead line 31A, and the other is the upper layer lead. Wiring 31B.
  • These lower layer lead wiring 31A and upper layer lead wiring 31B are respectively formed from the same metal film as the gate wiring 21 and the source wiring 23, as in the first embodiment.
  • FIG. 17 shows a schematic plan view of the connection relationship between the sub-pixels p1 for each color and the gate lead-out wiring 31 that drives them in the present embodiment.
  • the lower layer lead-out wiring 31A and the upper layer lead-out wiring 31B of this embodiment are also formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21.
  • the upper layer lead wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and blue (B) subpixels p1.
  • the lower layer lead-out wiring 31A (GL) is electrically connected to the TFT 24 of the green (G) sub-pixel p1.
  • each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower-layer lead wiring 31A
  • the upper layer lead wiring 31B is unified, the narrow frame structure is realized, and the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 is suppressed between the sub-pixels p1 of the same color. The quality can be improved.
  • FIG. 18 is a schematic plan view showing a state in which a monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
  • the upper layer lead wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and blue (B) subpixels p1, and the TFT 24 included in the green (G) subpixel p1.
  • the lower lead line 31A (GL) is electrically connected to the TFT 24, but the present invention is not limited to this.
  • the TFT 24 included in the red (R, second color) sub-pixel p1 includes the upper lead line 31A (GL).
  • the wiring 31B (SL) is electrically connected, and the lower lead wiring 31A (GL) is electrically connected to the TFT 24 of the blue (B, first color) and green (G, third color) subpixels p1. It may be connected.
  • the liquid crystal display panel 10 is configured to be capable of triple scan driving.
  • the present invention is not limited to this, and the liquid crystal display panel 10 is driven by a so-called single scan driving. (Normal drive) may be possible.
  • the sub-pixels p1 of a plurality of colors that constitute each pixel P are arranged side by side in a stripe manner along a direction orthogonal to the scanning direction.
  • the source wiring 23 constitutes the first display wiring (one wiring) of the present invention
  • the gate wiring 21 forms the second display wiring (others) of the present invention. Wiring).
  • the group of source lead lines 35 that are first lead lines includes a lower lead line (second lead line, or a second lead line and a fourth lead line) covered with the gate insulating film 22, and the gate insulating film 22.
  • the upper layer lead wiring (the first lead wiring, or the first lead wiring and the third lead wiring) is provided on the upper layer, and the two lead wirings constitute a two-layer wiring structure.
  • the lower layer lead wiring and the upper layer lead wiring are respectively formed from the same metal film as the gate wiring 21 or the source wiring 23 as in the first embodiment.
  • the lower layer lead wiring and the upper layer lead wiring are formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the source wiring 23.
  • the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color while realizing a narrow frame structure even in the liquid crystal display device S that performs single scan driving.
  • Display quality can be improved by suppressing variations in the display quality.
  • the sub-pixels p1 of four colors of red (R), green (G), blue (B), and white (W) are arranged in stripes in a juxtaposed manner. Even if the color sub-pixels p1 are in other arrangements, the purpose of this patent is not affected as long as the gate wirings 21 are wired so as to be connected in common to the sub-pixels p1 of the same color.
  • the four color sub-pixels p1 may not be red (R), green (G), blue (B), and white (W), and a combination of sub-pixels p1 of various colors can be employed. For example, red (R), green (G), blue (B), and yellow (Y) may be used.
  • each pixel P is composed of four-color sub-pixels p1 (R), p1 (G), p1 (B), and p1 (W).
  • each pixel P is Although the three-color sub-pixels p1 (R), p1 (G), and p1 (B) are described, the present invention is not limited to this, and each pixel P may be formed of two-color sub-pixels p1.
  • each TFT 24 included in each sub-pixel p1 is a bottom-gate TFT.
  • the present invention is not limited to this, and each TFT 24 may be a top-gate TFT. .
  • the liquid crystal display device S has been described as an example.
  • the present invention is not limited to this, and is naturally applicable to other display devices such as an organic EL (ElectroLuminescence) display device and a plasma display device. Any color display device having a two-layer wiring structure can be widely applied.
  • the present invention is useful for a display device that performs multi-color display, and in particular, while realizing a narrow frame structure, variation in effective voltage applied by pixel electrodes between sub-pixels of the same color. It is suitable for a display device that is required to suppress and improve display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

The present invention is a display device that can alleviate reductions in display quality due to a striped pattern arising along gate wiring in a two layer wiring structure. The present invention is constituted such that, in the two layer wiring structure, gate lead wirings (31) electrically connected to TFTs for the same color of subpixels are made uniform as lower layer lead wiring (31A) or upper layer lead wiring (31B). While achieving a narrow frame structure, variations in effective voltage applied to a liquid crystal layer by pixel electrodes between subpixels of the same color are suppressed and display quality is improved because of this constitution.

Description

表示装置Display device
 本発明は、マルチカラー表示を行う表示装置に関し、特に、いわゆる2層配線構造を有する表示装置において、同色のサブ画素間での画素電極により印加される実効電圧のばらつきに起因する表示品位の低下対策に関するものである。 The present invention relates to a display device that performs multi-color display, and in particular, in a display device having a so-called two-layer wiring structure, a reduction in display quality due to variation in effective voltage applied by pixel electrodes between sub-pixels of the same color. It is about measures.
 従来から、アクティブマトリクス駆動方式の液晶表示装置において、コスト削減を図るべく、各画素を構成する赤色(R)、緑色(G)及び青色(B)のサブ画素を走査方向に配列して、いわゆるトリプルスキャン方式で駆動させる技術が知られている。 2. Description of the Related Art Conventionally, in an active matrix liquid crystal display device, in order to reduce costs, red (R), green (G), and blue (B) sub-pixels constituting each pixel are arranged in a scanning direction, so-called. A technique for driving by a triple scan method is known.
 トリプルスキャン方式の駆動を行う液晶表示装置では、表示領域に形成されるゲート配線の本数が通常駆動の3倍になり、これに対応して、各ゲート配線を表示領域の周囲に位置する非表示領域である額縁領域上を引き回してその一端側に設けられた信号入力用の端子領域にまで引き出すためのゲート引出配線の本数も増加する。 In a liquid crystal display device that performs triple scan driving, the number of gate wirings formed in the display area is three times that of normal driving, and correspondingly, each gate wiring is located around the display area and is not displayed. The number of gate lead-out wirings that are routed over the frame region, which is a region, and lead out to the signal input terminal region provided on one end thereof also increases.
 このような液晶表示装置を歩留り良く製造するには、ゲート引出配線間のピッチを十分に確保して隣り合うゲート引出配線同士での短絡をなくすためにゲート引出配線の本数に応じた一定サイズの額縁領域の幅が必要となる。このため、上記額縁領域の幅が従来のままでは、通常駆動の3倍もの本数のゲート引出配線を信号入力用の端子領域にまで同一層で並べて引き出すことが困難であり、額縁領域の幅を狭くする狭額縁構造を実現できない。 In order to manufacture such a liquid crystal display device with a high yield, in order to secure a sufficient pitch between the gate lead-out lines and eliminate a short circuit between adjacent gate lead-out lines, a certain size according to the number of gate lead-out lines is required. The width of the frame area is required. For this reason, if the width of the frame region is the same as before, it is difficult to draw out the gate lead wires as many as three times as many as the normal drive in the same layer up to the terminal region for signal input. A narrow frame structure that narrows cannot be realized.
 そこで、上述のような多数本のゲート引出配線を収めながらも狭額縁構造を実現する構成が提案されている。例えば、特許文献1には、ゲート配線形成用の金属膜とソース配線形成用の金属膜とを利用して、上記多数本のゲート引出配線を、隣り合うゲート引出配線がゲート配線とソース配線との間に介在する絶縁膜の上下に位置するように形成した2層配線構造が開示されている。この2層配線構造では、ゲート引出配線として、ゲート配線形成用の金属膜から形成した下層引出配線と、ソース配線形成用の金属膜から形成した上層引出配線とを有し、これら両引出配線が交互に配置されている。 Therefore, a configuration has been proposed that realizes a narrow frame structure while accommodating a large number of gate lead wires as described above. For example, Patent Document 1 discloses that a plurality of gate lead-out lines are formed using a metal film for forming a gate line and a metal film for forming a source line, and adjacent gate lead-out lines are gate lines and source lines. A two-layer wiring structure formed so as to be positioned above and below an insulating film interposed therebetween is disclosed. In this two-layer wiring structure, the gate lead-out wiring has a lower lead-out wiring formed from a metal film for forming a gate wiring and an upper-layer lead wiring formed from a metal film for forming a source wiring. Alternatingly arranged.
特開2011-154161号公報JP 2011-154161 A
 しかし、特許文献1に開示の2層配線構造では、下層引出配線と上層引出配線とが別個の金属膜から形成されるため、これら両引出配線間で線幅や膜厚などが不均一になりやすく、その結果として、下層引出配線と上層引出配線とでゲート配線を介して画素電極との間に形成される浮遊容量に差が生じる場合がある。この場合には、下層引出配線がゲート配線を介して電気的に接続される画素電極と、上層引出配線がゲート配線を介して電気的に接続される画素電極とにおいて、対応するゲート配線をオフ状態とした際の電位の変動幅にも差が生じ、これに起因して同色のサブ画素間での液晶層に印加される実効電圧がばらつくことになる。そうなると、画素電極により印加される実効電圧に対して輝度の変動が敏感な画像表示、特に単色の中間調表示を行う場合には、ゲート配線に沿って縞模様が視認されやすく、表示品位が低下してしまう。 However, in the two-layer wiring structure disclosed in Patent Document 1, since the lower-layer lead wiring and the upper-layer lead wiring are formed from separate metal films, the line width, film thickness, and the like are not uniform between these two lead-out wirings. As a result, there may be a difference in the stray capacitance formed between the lower layer lead wiring and the upper layer lead wiring between the pixel electrode and the gate electrode. In this case, the corresponding gate line is turned off in the pixel electrode to which the lower layer lead line is electrically connected via the gate line and the pixel electrode to which the upper layer lead line is electrically connected via the gate line. A difference also occurs in the fluctuation range of the potential at the time of the state, and due to this, the effective voltage applied to the liquid crystal layer between the sub-pixels of the same color varies. In such a case, when performing an image display whose luminance fluctuation is sensitive to the effective voltage applied by the pixel electrode, particularly a monochrome halftone display, a striped pattern is easily visible along the gate wiring, and the display quality is degraded. Resulting in.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、狭額縁構造を実現しながらも、同色のサブ画素間で画素電極により印加される実効電圧のばらつきを抑えて表示品位を向上させることにある。 The present invention has been made in view of such a point, and an object of the present invention is to suppress variation in effective voltage applied by pixel electrodes between sub-pixels of the same color while realizing a narrow frame structure. This is to improve the display quality.
 上記の目的を達成するために、この発明では、2層配線構造において、同色のサブ画素が有する薄膜トランジスタ(ThinFilm Transistor;以下、TFTと称する)に電気的に接続された各引出配線を、共通の導電膜から形成することで、下層引出配線又は上層引出配線により統一して構成するようにした。 In order to achieve the above object, according to the present invention, in a two-layer wiring structure, each lead-out wiring electrically connected to a thin film transistor (hereinafter referred to as a TFT) included in a sub-pixel of the same color is provided with a common By forming it from a conductive film, it is configured to be unified by the lower layer lead wiring or the upper layer lead wiring.
 具体的には、本発明は、マルチカラー表示を行う表示装置を対象としており、以下の解決手段を講じたものである。 Specifically, the present invention is directed to a display device that performs multi-color display, and has the following solutions.
 すなわち、第1の発明は、上記表示装置であって、
 ベース基板と、
 上記ベース基板上に設けられた表示領域と、
 上記表示領域の周囲に設けられた額縁領域と、
 上記額縁領域の一端側に設けられた信号入力用の端子領域と、
 上記表示領域に互いに平行に延びるように設けられた複数本の第1表示用配線と、
 上記表示領域に上記各第1表示用配線と交差する方向に互いに平行に延びるように設けられた複数本の第2表示用配線と、
 上記各第1表示用配線と上記各第2表示用配線との間に介在してこれら両配線を絶縁する絶縁膜と、
 上記各第1表示用配線と上記各第2表示用配線との交差部に設けられ、対応する交差部をなす上記第1表示用配線及び第2表示用配線に接続された薄膜トランジスタ及び該薄膜トランジスタに接続された画素電極と、
 上記各第1表示用配線に接続されて上記額縁領域上を上記表示領域側から上記端子領域側に引き出された複数本の第1引出配線と、
 上記各第2表示用配線に接続されて上記額縁領域上を上記表示領域側から上記端子領域側に引き出された複数本の第2引出配線とを備え、
 上記表示領域は、上記薄膜トランジスタ及び画素電極を有する複数色のサブ画素からなる画素が所定配列に複数設けられて構成され、
 上記各第1表示用配線は、同色のサブ画素が有する薄膜トランジスタに接続され、
 上記複数本の第1引出配線は、上記絶縁膜に覆われた下層引出配線と、上記絶縁膜上に設けられた上層引出配線とを含み、
 上記下層引出配線及び上層引出配線のうち、一方は上記第1表示用配線と同一膜から形成され、他方は上記第2表示用配線と同一膜から形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記第1表示用配線に接続されており、
 同色の上記サブ画素が有する薄膜トランジスタに接続された第1表示用配線は、上記下層引出配線又は上層引出配線に統一して電気的に接続されている
ことを特徴とする。
That is, the first invention is the above display device,
A base substrate;
A display area provided on the base substrate;
A frame area provided around the display area;
A signal input terminal region provided on one end of the frame region;
A plurality of first display lines provided in the display area so as to extend in parallel to each other;
A plurality of second display wirings provided in the display area so as to extend in parallel to each other in a direction intersecting with the first display wirings;
An insulating film interposed between each of the first display wirings and each of the second display wirings to insulate the two wirings;
Thin film transistors connected to the first display wiring and the second display wiring that are provided at the intersections of the first display wirings and the second display wirings and that form the corresponding intersections. Connected pixel electrodes;
A plurality of first lead wires connected to the first display wires and drawn on the frame region from the display region side to the terminal region side;
A plurality of second lead wires connected to the second display wires and drawn from the display region side to the terminal region side on the frame region;
The display area includes a plurality of pixels each having a plurality of color sub-pixels each having the thin film transistor and the pixel electrode.
Each of the first display wirings is connected to a thin film transistor included in a sub-pixel of the same color,
The plurality of first lead wires include a lower lead wire covered with the insulating film and an upper lead wire provided on the insulating film,
One of the lower lead wiring and the upper lead wiring is formed from the same film as the first display wiring, and the other is formed from the same film as the second display wiring and is a contact hole formed in the insulating film. Is connected to the first display wiring via
The first display wiring connected to the thin film transistor included in the sub-pixels of the same color is characterized in that the first display wiring is unified and electrically connected to the lower layer leading wiring or the upper layer leading wiring.
 この第1の発明では、表示領域に設けられた各第1表示用配線を額縁領域上の端子領域に引き出す複数本の第1引出配線が、絶縁膜に覆われた下層引出配線と、絶縁膜上に設けられた上層引出配線とを含む2層配線構造を有している。この2層配線構造によると、下層引出配線と上層引出配線とが隣り合う箇所で第1引出配線間のピッチを狭くすることが可能であり、これによって、額縁領域の幅を狭くすることができる。そして、別個の導電膜から形成されていることに起因して、下層引出配線と上層引出配線との線幅や膜厚などが不均一となり、これら両引出配線間で第1表示用配線を介して画素電極との間に形成される浮遊容量に差が生じたとしても、下層引出配線及び上層引出配線は電気的に接続されたTFTを介して駆動を制御するサブ画素の色毎に分けて形成されているので、同色のサブ画素における画素電極間でゲート配線をオフ状態とした際の電位の変動幅に差が生じることが抑制される。したがって、狭額縁構造を実現しながらも、同色のサブ画素間で画素電極により印加される実効電圧のばらつきを抑えて表示品位を向上させることが可能になる。 According to the first aspect of the present invention, a plurality of first lead-out wires for leading each first display wire provided in the display region to a terminal region on the frame region are a lower lead-out wire covered with an insulating film, and an insulating film It has a two-layer wiring structure including an upper layer lead wiring provided above. According to this two-layer wiring structure, it is possible to reduce the pitch between the first extraction wirings at the location where the lower layer extraction wiring and the upper layer extraction wiring are adjacent to each other, thereby reducing the width of the frame region. . Further, due to being formed of separate conductive films, the line width and film thickness of the lower layer lead wire and the upper layer lead wire become non-uniform, and the first display wire is interposed between these two lead wires. Even if there is a difference in the stray capacitance formed between the pixel electrode and the pixel electrode, the lower layer lead line and the upper layer lead line are separated for each color of the sub-pixel for controlling the drive through the electrically connected TFT. As a result, it is possible to suppress a difference in potential fluctuation width when the gate wiring is turned off between the pixel electrodes in the sub-pixels of the same color. Therefore, while realizing a narrow frame structure, it is possible to improve display quality by suppressing variations in effective voltage applied by pixel electrodes between sub-pixels of the same color.
 第2の発明は、第1の発明の表示装置において、
 上記各第1引出配線を構成する下層引出配線及び上層引出配線は、平面視において、互いに重なることなく交互に配置されている
ことを特徴とする。
A second invention is the display device of the first invention, wherein
The lower layer lead wires and the upper layer lead wires constituting the first lead wires are alternately arranged without overlapping each other in a plan view.
 この第2の発明では、下層引出配線と上層引出配線とが平面視において交互に配置された交互配線構造となっている。このような交互配線構造を採用することにより、下層引出配線と上層引出配線とを互いに重ね合わせるように配置する場合に比べて、これら両引出配線間に形成される容量の悪影響、具体的には信号の遅延に起因する表示品位の低下やインピーダンスの増加に起因する消費電力の増大が抑えられる。 In the second aspect of the invention, the lower layer wiring and the upper layer wiring are alternately arranged in a plan view. By adopting such an alternate wiring structure, the lower layer lead wiring and the upper layer lead wiring are arranged so as to overlap each other. An increase in power consumption due to a decrease in display quality due to signal delay and an increase in impedance can be suppressed.
 第3の発明は、第2の発明の表示装置において、
 上記複数の画素は、マトリクス状に配列されており、各々上記第2表示用配線に沿って並ぶ4色のサブ画素からなる
ことを特徴とする。
A third invention is the display device of the second invention, wherein
The plurality of pixels are arranged in a matrix, and each pixel includes four sub-pixels arranged along the second display wiring.
 この第3の発明では、マトリクス状に配置された各画素が第2表示用配線に沿って並ぶ4色のサブ画素で構成されている。このような画素構成によると、上記交互配線構造を単純に適用しただけの簡単な構成で第1の発明に係る表示装置を実現することが可能である。 In the third aspect of the invention, each pixel arranged in a matrix is composed of sub-pixels of four colors arranged along the second display wiring. According to such a pixel configuration, it is possible to realize the display device according to the first invention with a simple configuration in which the above-described alternate wiring structure is simply applied.
 第4の発明は、第1~第3の発明のいずれか1つの表示装置において、
 上記端子領域は、上記第2表示用配線の延長線上に位置する上記ベース基板端部に設けられ、
 上記複数本の第1引出配線は、上記表示領域の一方側から引き出された第1配線群と、上記表示領域の他方側から引き出された第2配線群とを構成している
ことを特徴とする。
A fourth invention is the display device according to any one of the first to third inventions,
The terminal region is provided at an end of the base substrate located on an extension of the second display wiring;
The plurality of first lead wires constitutes a first wire group drawn from one side of the display region and a second wire group drawn from the other side of the display region. To do.
 この第4の発明では、表示領域の両側方から第1引出配線が引き出されたいわゆる両側引出配線構造となっている。このような両側引出配線構造によると、表示領域の一方側のみから全ての第1引出配線を引き出すいわゆる片側引出配線構造を採用する場合に比べて、狭額縁構造においても表示領域をベース基板外形のセンター位置に配置しやすくなる。これにより、携帯電話などのモバイル機器用の表示装置としても、意匠性を損なうことなく好適に採用することが可能になる。 In the fourth aspect of the invention, a so-called double-side lead-out wiring structure in which the first lead-out wiring is drawn from both sides of the display area is provided. According to such a double-sided lead-out wiring structure, the display area can be reduced even if the frame is narrower than the case where a so-called single-side lead-out wiring structure in which all the first lead-out wirings are drawn from only one side of the display area is adopted. It becomes easy to arrange at the center position. Thereby, it becomes possible to employ | adopt suitably as a display apparatus for mobile devices, such as a mobile telephone, without impairing design property.
 第5の発明は、第4の発明の表示装置において、
 上記第1配線群は奇数本目の上記第1引出配線の群からなり、
 上記第2配線群は偶数本目の上記第2引出配線の群からなる
ことを特徴とする。
The fifth invention is the display device of the fourth invention,
The first wiring group is composed of an odd number of first lead wiring groups,
The second wiring group includes an even number of the second lead wiring groups.
 この第5の発明では、第1配線群と第2配線群とが同じ本数の第1引出配線の群で構成されている。このような第1引出配線の引き出し構成によると、第1配線群と第2配線群とが設けられた両額縁領域部分の幅をバランス良く狭めることが可能になる。 In the fifth aspect of the invention, the first wiring group and the second wiring group are composed of the same number of first lead wiring groups. According to such a lead-out configuration of the first lead-out wiring, it is possible to narrow the width of both frame area portions where the first wiring group and the second wiring group are provided in a balanced manner.
 第6の発明は、第1~第5の発明のいずれか1つの表示装置において、
 上記各第1表示用配線はゲート配線であり、
 上記各第2表示用配線はソース配線である
ことを特徴とする。
A sixth invention is the display device according to any one of the first to fifth inventions,
Each of the first display wirings is a gate wiring,
Each of the second display wirings is a source wiring.
 この第6の発明では、各第1表示用配線がゲート配線であり、各ゲート配線が同色のサブ画素のTFTに接続されたトリプルスキャン方式の駆動を行う構成を採用している。当該構成によると、ゲート配線及びソース配線の総本数を減らすと共に、回路構成が比較的簡素なゲートドライバ回路の数を増やす一方でゲートドライバ回路に比べて回路構成が複雑なソースドライバ回路の数を減らすことができ、例えばいわゆるCOG(Chip On Glass)構造を有する場合にはドライバIC(IntegratedCircuit)チップを1チップ化するなどして、製造コストを削減することが可能になる。 In the sixth aspect of the invention, a configuration is employed in which each first display wiring is a gate wiring, and each gate wiring is connected to a TFT of a sub-pixel of the same color to perform a triple scan driving. According to this configuration, the total number of gate wirings and source wirings is reduced, and the number of gate driver circuits having a relatively simple circuit configuration is increased while the number of source driver circuits having a complicated circuit configuration compared to the gate driver circuit is increased. For example, when a so-called COG (Chip On Glass) structure is used, a driver IC (Integrated Circuit) chip can be integrated into one chip, thereby reducing the manufacturing cost.
 第7の発明は、第1~第6の発明のいずれか1つの表示装置において、
 上記各第1表示用配線、各第2表示用配線、絶縁膜、各薄膜トランジスタ、各画素電極、各第1引出配線及び各第2引出配線が設けられたベース基板を有する薄膜トランジスタ基板と、
 上記薄膜トランジスタ基板と対向して配置された対向基板と、
 上記薄膜トランジスタ基板と上記対向基板との間に設けられた液晶層とを備える
ことを特徴とする。
A seventh invention is the display device according to any one of the first to sixth inventions,
A thin film transistor substrate having a base substrate provided with each of the first display wiring, each second display wiring, an insulating film, each thin film transistor, each pixel electrode, each first extraction wiring, and each second extraction wiring;
A counter substrate disposed to face the thin film transistor substrate;
And a liquid crystal layer provided between the thin film transistor substrate and the counter substrate.
 この第7の発明では、本発明に係る表示装置が液晶表示装置であり、液晶表示装置において、狭額縁構造を実現しながらも、同色のサブ画素間で液晶層に印加される実効電圧のばらつきを抑えて表示品位を向上させることが可能になる。 In the seventh aspect of the invention, the display device according to the present invention is a liquid crystal display device. In the liquid crystal display device, a variation in effective voltage applied to the liquid crystal layer between sub-pixels of the same color while realizing a narrow frame structure. It is possible to improve the display quality while suppressing the above.
 第8の発明は、第1色のサブ画素及び第2色のサブ画素を有する画素が配列した表示領域と、該表示領域の周囲の額縁領域と、が構成され、該額縁領域が端子領域を含む表示装置を対象としている。 According to an eighth aspect of the present invention, there is provided a display region in which pixels each having a first color sub-pixel and a second color sub-pixel are arranged, and a frame region around the display region, and the frame region includes a terminal region. Intended for display devices including
 そして、第8の発明は、上記表示装置であって、
 上記端子領域が設けられたベース基板と、
 上記表示領域に含まれるサブ画素に対応して上記ベース基板上に設けられた画素電極と、
 上記画素電極に電気的に接続された薄膜トランジスタと、
 上記薄膜トランジスタのうち同色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線と、
 上記一の配線に平面視で交差して設けられ且つ上記薄膜トランジスタを電気的に接続する他の配線と、
 上記一の配線と上記他の配線との間に介設された絶縁膜と、
 上記一の配線から上記端子領域に引き出された引出配線と、
を包含する薄膜トランジスタ基板を備え、
 上記引出配線は、上記第1色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第1引出配線と、上記第2色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第2引出配線と、を含み、
 上記第1引出配線は、上記一の配線と同一の導電膜で形成され、
 上記第2引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されているものである。
The eighth invention is the above display device,
A base substrate provided with the terminal region;
A pixel electrode provided on the base substrate corresponding to a sub-pixel included in the display area;
A thin film transistor electrically connected to the pixel electrode;
One wiring for electrically connecting the thin film transistors corresponding to the sub-pixels of the same color among the thin film transistors,
Another wiring provided to intersect the one wiring in a plan view and electrically connect the thin film transistor;
An insulating film interposed between the one wiring and the other wiring;
A lead wire drawn from the one wire to the terminal region;
Including a thin film transistor substrate,
The lead-out wiring electrically connects the first lead-out wiring led out from one wiring electrically connecting the thin film transistors corresponding to the first color sub-pixels and the thin film transistor corresponding to the second color sub-pixels. A second lead wire drawn from one wire to be connected,
The first lead wiring is formed of the same conductive film as the one wiring,
The second lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
 第9の発明は、第8の発明の表示装置において、
 上記画素は第3色のサブ画素をさらに有し、
 上記引出配線は、上記第3色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第3引出配線を含み、
 上記第3引出配線は、上記一の配線と同一の導電膜で形成されているものである。
A ninth invention is the display device of the eighth invention,
The pixel further includes a third color sub-pixel,
The lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
The third lead wiring is formed of the same conductive film as the one wiring.
 第10の発明は、第9の発明の表示装置において、
 上記画素は第4色のサブ画素をさらに有し、
 上記引出配線は、上記第4色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第4引出配線を含み、
 上記第4引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されているものである。
The tenth invention is the display device of the ninth invention,
The pixel further includes a fourth color sub-pixel,
The lead-out wiring includes a fourth lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the fourth color,
The fourth lead-out wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
 第11の発明は、第10の発明の表示装置において、
 上記第1~第4色のサブ画素は、赤色、緑色、青色、及び黄色のサブ画素であるものである。
The eleventh invention is the display device of the tenth invention,
The first to fourth color sub-pixels are red, green, blue and yellow sub-pixels.
 第12の発明は、第8の発明の表示装置において、
 上記画素は第3色のサブ画素をさらに有し、
 上記引出配線は、上記第3色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第3引出配線を含み、
 上記第3引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されているものである。
The twelfth invention is the display device of the eighth invention,
The pixel further includes a third color sub-pixel,
The lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
The third lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
 本発明によれば、2層配線構造において、同色のサブ画素が有するTFTに電気的に接続された各引出配線を、共通の導電膜から形成することで、下層引出配線又は上層引出配線により統一して構成しているので、狭額縁構造を実現しながらも、同色のサブ画素間で画素電極により印加される実効電圧のばらつきを抑えて表示品位を向上させることができる。 According to the present invention, in the two-layer wiring structure, the respective extraction wirings electrically connected to the TFTs of the sub-pixels of the same color are formed from a common conductive film, thereby being unified by the lower layer extraction wiring or the upper layer extraction wiring. Thus, while realizing a narrow frame structure, it is possible to improve display quality by suppressing variations in effective voltage applied by pixel electrodes between sub-pixels of the same color.
図1は、実施形態1に係る液晶表示装置の構成を概略的に示す平面図である。FIG. 1 is a plan view schematically showing the configuration of the liquid crystal display device according to the first embodiment. 図2は、図1のII-II線における断面構造を示す断面図である。2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG. 図3は、実施形態1に係る表示領域の画素及びサブ画素の配列を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing the arrangement of pixels and sub-pixels in the display area according to the first embodiment. 図4は、実施形態1に係るTFT基板の表示用配線の引き出し構成を示す平面図である。FIG. 4 is a plan view showing a lead-out configuration of the display wiring of the TFT substrate according to the first embodiment. 図5は、実施形態1における1つのサブ画素の構成を示す等価回路図である。FIG. 5 is an equivalent circuit diagram illustrating a configuration of one subpixel in the first embodiment. 図6は、TFTの断面構造を示す断面図である。FIG. 6 is a cross-sectional view showing a cross-sectional structure of the TFT. 図7は、実施形態1に係るTFT基板の要部構成の一部を拡大して示す平面図である。FIG. 7 is an enlarged plan view showing a part of the main configuration of the TFT substrate according to the first embodiment. 図8は、図7のVIII-VIII線における断面構造を示す断面図である。8 is a cross-sectional view showing a cross-sectional structure taken along line VIII-VIII in FIG. 図9は、ゲート配線と上層引出配線との接続構造を示す断面図である。FIG. 9 is a cross-sectional view showing a connection structure between the gate wiring and the upper lead wiring. 図10は、実施形態1に係る各色のサブ画素とこれらを駆動するゲート引出配線との接続関係を模式的に示す平面図である。FIG. 10 is a plan view schematically showing the connection relationship between the sub-pixels of each color according to the first embodiment and the gate lead-out wiring that drives them. 図11は、実施形態1において単色の中間調表示を行った状態を模式的に示す平面図である。FIG. 11 is a plan view schematically showing a state in which monochromatic halftone display is performed in the first embodiment. 図12は、実施形態2に係るTFT基板の表示用配線の引き出し構成を概略的に示す平面図である。FIG. 12 is a plan view schematically showing a configuration for drawing display wiring on the TFT substrate according to the second embodiment. 図13は、実施形態2に係る各色のサブ画素とこれらを駆動するゲート引出配線との接続関係を模式的に示す平面図である。FIG. 13 is a plan view schematically showing a connection relationship between sub-pixels of respective colors according to the second embodiment and gate lead-out wirings for driving them. 図14は、実施形態2において単色の中間調表示を行った状態を模式的に示す平面図である。FIG. 14 is a plan view schematically showing a state in which monochromatic halftone display is performed in the second embodiment. 図15は、実施形態3に係る表示領域の画素及びサブ画素の配列を拡大して示す平面図である。FIG. 15 is an enlarged plan view showing the arrangement of pixels and sub-pixels in the display area according to the third embodiment. 図16は、実施形態3に係るTFT基板の表示用配線の引き出し構成を示す平面図である。FIG. 16 is a plan view showing a configuration for drawing display wiring of the TFT substrate according to the third embodiment. 図17は、実施形態3に係る各色のサブ画素とこれらを駆動するゲート引出配線との接続関係を模式的に示す平面図である。FIG. 17 is a plan view schematically showing the connection relationship between the sub-pixels of each color according to the third embodiment and the gate lead-out wiring that drives them. 図18は、実施形態3において単色の中間調表示を行った状態を模式的に示す平面図である。FIG. 18 is a plan view schematically showing a state in which monochromatic halftone display is performed in the third embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《発明の実施形態1》
 この実施形態1では、本発明に係る表示装置の一例として、フルカラー表示を行う液晶表示装置Sについて説明する。
Embodiment 1 of the Invention
In the first embodiment, a liquid crystal display device S that performs full-color display will be described as an example of a display device according to the present invention.
 本実施形態の液晶表示装置Sの概略構成を図1に示す。図2は、図1のII-II線における断面構造を示す断面図である。 FIG. 1 shows a schematic configuration of the liquid crystal display device S of the present embodiment. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG.
 液晶表示装置Sは、図1及び図2に示すように、液晶表示パネル10と、該液晶表示パネル10を駆動するためのドライバICチップ50と、該ドライバICチップ50に対して表示すべき画像に応じたデータを含む表示用信号を外部回路(不図示)から入力するためのFPC(Flexible Printed Circuit)などの配線基板60とを備え、液晶表示パネル10の一端側にドライバICチップ50及び配線基板60が実装されたCOG構造を有している。 As shown in FIGS. 1 and 2, the liquid crystal display device S includes a liquid crystal display panel 10, a driver IC chip 50 for driving the liquid crystal display panel 10, and an image to be displayed on the driver IC chip 50. And a wiring board 60 such as an FPC (Flexible Printed Circuit) for inputting display signals including data corresponding to the external circuit (not shown), and a driver IC chip 50 and wiring on one end side of the liquid crystal display panel 10. It has a COG structure on which a substrate 60 is mounted.
 <液晶表示パネル10の構成>
 液晶表示パネル10は、配線基板60を介して入力された表示用信号に応じてドライバICチップ50の駆動により表示画像を生成する表示素子であり、トリプルスキャン方式の駆動が可能に構成されている。この液晶表示パネル10は、互いに対向するように配置されたTFT基板11及び対向基板12と、これら両基板11,12の外周縁部同士を接着する枠状のシール材13と、TFT基板11と対向基板12との間にシール材13により囲まれて封入された液晶層14とを備えている。
<Configuration of liquid crystal display panel 10>
The liquid crystal display panel 10 is a display element that generates a display image by driving the driver IC chip 50 in accordance with a display signal input via the wiring board 60, and is configured to be capable of triple scan driving. . The liquid crystal display panel 10 includes a TFT substrate 11 and a counter substrate 12 that are arranged so as to face each other, a frame-shaped sealing material 13 that bonds the outer peripheral edges of the substrates 11 and 12, and the TFT substrate 11 A liquid crystal layer 14 surrounded and sealed by a sealing material 13 is provided between the counter substrate 12 and the counter substrate 12.
 上記液晶表示パネル10は、TFT基板11と対向基板12とが重なる領域であってシール材13の内側、つまり液晶層14が設けられた領域に画像表示を行う矩形状の表示領域Dを有している。また、液晶表示パネル10は、表示領域Dの周囲に非表示領域である矩形枠状の額縁領域Fを有している。そして、額縁領域Fの一辺側(図1で下側、図2で左側)には、TFT基板11が対向基板12から突出して外部に露出した信号入力用の端子領域11aが設けられている。 The liquid crystal display panel 10 has a rectangular display area D for displaying an image in an area where the TFT substrate 11 and the counter substrate 12 overlap and inside the sealing material 13, that is, in an area where the liquid crystal layer 14 is provided. ing. Further, the liquid crystal display panel 10 has a frame region F having a rectangular frame shape that is a non-display region around the display region D. On one side of the frame region F (lower side in FIG. 1 and left side in FIG. 2), a signal input terminal region 11a is provided in which the TFT substrate 11 protrudes from the counter substrate 12 and is exposed to the outside.
 この端子領域11aには、表示領域D寄りに上記ドライバICチップ50が実装されている。また、端子領域11aにおけるドライバICチップ50の外側位置には、上記配線基板60が実装されている。これらドライバICチップ50及び配線基板60は、ACF(Anisotropic Conductive Film)などの接続材を介して端子領域11aにそれぞれ接続されている。 The driver IC chip 50 is mounted near the display area D in the terminal area 11a. Further, the wiring board 60 is mounted at a position outside the driver IC chip 50 in the terminal region 11a. The driver IC chip 50 and the wiring board 60 are connected to the terminal region 11a via a connecting material such as ACF (Anisotropic Conductive Film).
 TFT基板11及び対向基板12は、例えば矩形状に形成され、図2に示すように、互いに対向する内側表面に配向膜15,16がそれぞれ設けられていると共に、外側表面に偏光板17,18がそれぞれ設けられている。液晶層14は、電気光学特性を有するネマチックの液晶材料などにより構成されている。 The TFT substrate 11 and the counter substrate 12 are formed in a rectangular shape, for example, and as shown in FIG. 2, alignment films 15 and 16 are provided on the inner surfaces facing each other, and polarizing plates 17 and 18 are provided on the outer surfaces. Are provided. The liquid crystal layer 14 is made of a nematic liquid crystal material having electro-optical characteristics.
 上記表示領域Dにおける画素構成の拡大平面図を図3に示す。 FIG. 3 shows an enlarged plan view of the pixel configuration in the display area D.
 表示領域Dは、図3に示すように、画像の最小単位である画素Pがマトリクス状に複数配列されてなる。これら各画素Pは、赤色(R、第2色)、緑色(G、第4色)、青色(B、第1色)及び白色(W、第3色)の4色のサブ画素p1からなる。これら4色のサブ画素p1(R),p1(G),p1(B),p1(W)は、全ての画素Pで同順に走査方向(Y軸方向)に沿って並置方式でストライプ状に並設されている。すなわち、表示領域Dには、図3で横方向(X軸方向)に同色のサブ画素p1が整列して各色毎にサブ画素行を構成しており、図3で縦方向(Y軸方向)に4色のサブ画素行が周期的に複数行並んでいる。 In the display area D, as shown in FIG. 3, a plurality of pixels P, which is the minimum unit of an image, are arranged in a matrix. Each of these pixels P is composed of sub-pixels p1 of four colors of red (R, second color), green (G, fourth color), blue (B, first color), and white (W, third color). . These four sub-pixels p1 (R), p1 (G), p1 (B), and p1 (W) are striped in a juxtaposed manner along the scanning direction (Y-axis direction) in the same order for all the pixels P. It is installed side by side. That is, in the display area D, sub-pixels p1 of the same color are aligned in the horizontal direction (X-axis direction) in FIG. 3 to form a sub-pixel row for each color, and the vertical direction (Y-axis direction) in FIG. In addition, a plurality of four-color sub-pixel rows are periodically arranged.
 <TFT基板11の構成>
 TFT基板11の概略構成を図4~図9に示す。図4は、TFT基板11における表示用配線21,23の引き出し構成を示す平面図である。図5は、1つのサブ画素p1の構成を示す等価回路図である。図6は、TFT24の断面構造を示す断面図である。図7は、TFT基板11の要部構成を示す拡大平面図である。図8は、図7のVIII-VIII線における断面構造を示す断面図である。図9は、ゲート配線21と上層引出配線31Bとの接続構造を示す断面図である。
<Configuration of TFT substrate 11>
A schematic configuration of the TFT substrate 11 is shown in FIGS. FIG. 4 is a plan view showing a lead-out configuration of the display wirings 21 and 23 on the TFT substrate 11. FIG. 5 is an equivalent circuit diagram showing a configuration of one subpixel p1. FIG. 6 is a cross-sectional view showing a cross-sectional structure of the TFT 24. FIG. 7 is an enlarged plan view showing the main configuration of the TFT substrate 11. 8 is a cross-sectional view showing a cross-sectional structure taken along line VIII-VIII in FIG. FIG. 9 is a cross-sectional view showing a connection structure between the gate wiring 21 and the upper layer extraction wiring 31B.
 TFT基板11は、図4に示すように、ベース基板であるガラス基板などの絶縁性基板20を備えている。この絶縁性基板20上の表示領域Dには、図4で横方向(X軸方向)に互いに平行に延びるように第1表示用配線としての複数本のゲート配線(一の配線)21が設けられている。これら各ゲート配線21は、後述するゲート絶縁膜22によって覆われている。さらに、表示領域Dのゲート絶縁膜22上には、各ゲート配線21と交差する図4で縦方向(Y軸方向)に互いに平行に延びるように第2表示用配線としての複数本のソース配線(他の配線)23が設けられている。 The TFT substrate 11 includes an insulating substrate 20 such as a glass substrate as a base substrate, as shown in FIG. In the display region D on the insulating substrate 20, a plurality of gate wirings (one wiring) 21 as first display wirings are provided so as to extend in parallel to each other in the horizontal direction (X-axis direction) in FIG. It has been. Each of these gate wirings 21 is covered with a gate insulating film 22 described later. Further, on the gate insulating film 22 in the display region D, a plurality of source wirings as second display wirings extend in parallel with each other in the vertical direction (Y-axis direction) in FIG. (Other wiring) 23 is provided.
 各ゲート配線21と各ソース配線23とは、これら両配線21,23間にゲート絶縁膜22が介在することによって絶縁された状態となっている。また、これらゲート配線21及びソース配線23は、全体として各サブ画素p1を区画するように格子状に形成されている。 Each gate wiring 21 and each source wiring 23 are insulated by interposing a gate insulating film 22 between these wirings 21 and 23. The gate wiring 21 and the source wiring 23 are formed in a lattice shape so as to partition each sub-pixel p1 as a whole.
 各サブ画素p1には、図5に示すように、TFT24及びこれに接続された画素電極30が設けられている。TFT24は、各ゲート配線21と各ソース配線23との交差部毎に設けられ、対応する交差部をなすゲート配線21及びソース配線23に接続されている。 As shown in FIG. 5, each subpixel p1 is provided with a TFT 24 and a pixel electrode 30 connected thereto. The TFT 24 is provided at each intersection of each gate line 21 and each source line 23 and is connected to the corresponding gate line 21 and source line 23 that form the intersection.
 このTFT24は、図6に示すように、ボトムゲート型のTFTであって、絶縁性基板20上に設けられたゲート電極25と、該ゲート電極25を覆うように設けられたゲート絶縁膜22と、該ゲート絶縁膜22を介してゲート電極25に跨るように設けられた半導体層26と、該半導体層26に一部を重ねて互いに離間して接続されたソース電極27及びドレイン電極28とを備え、層間絶縁膜29によって覆われている。 As shown in FIG. 6, the TFT 24 is a bottom gate type TFT, and includes a gate electrode 25 provided on the insulating substrate 20, and a gate insulating film 22 provided so as to cover the gate electrode 25. A semiconductor layer 26 provided so as to straddle the gate electrode 25 via the gate insulating film 22, and a source electrode 27 and a drain electrode 28 which are partly overlapped with the semiconductor layer 26 and are connected to be separated from each other. And is covered with an interlayer insulating film 29.
 ゲート電極25はゲート配線21に接続されている。ソース電極27はソース配線23に接続されている。画素電極30は、層間絶縁膜29上に設けられ、図示しないが、該層間絶縁膜29に形成されたコンタクトホールを介して上記ドレイン電極28に接続されている。この画素電極30とゲート配線21との間には、図5に示す浮遊容量C’が形成されている。 The gate electrode 25 is connected to the gate wiring 21. The source electrode 27 is connected to the source wiring 23. The pixel electrode 30 is provided on the interlayer insulating film 29 and is connected to the drain electrode 28 through a contact hole formed in the interlayer insulating film 29 (not shown). A stray capacitance C ′ shown in FIG. 5 is formed between the pixel electrode 30 and the gate wiring 21.
 上記各TFT24は、図3で横方向(X軸方向)に整列された同色のサブ画素p1からなる各サブ画素行毎に分けて同一のゲート配線21に接続されている。また、各TFT24は、図3で縦方向(Y軸方向)に整列された複数の画素Pからなる各画素列毎に分けて同一のソース配線23に接続されている。 The TFTs 24 are connected to the same gate wiring 21 separately for each sub-pixel row composed of sub-pixels p1 of the same color aligned in the horizontal direction (X-axis direction) in FIG. Each TFT 24 is connected to the same source wiring 23 separately for each pixel column composed of a plurality of pixels P aligned in the vertical direction (Y-axis direction) in FIG.
 また、絶縁性基板20上の額縁領域Fには、上記各ゲート配線21に接続されて表示領域D側から端子領域11a側に引き出された第1引出配線としての複数本のゲート引出配線31が設けられていると共に、各ソース配線23に接続されて表示領域D側から端子領域11a側に引き出された第2引出配線としての複数本のソース引出配線35が設けられている。これら各ゲート引出配線31及び各ソース引出配線35の引き出し先端部には、上記ドライバICチップ50に接続するための端子(不図示)がTFT基板1の端縁に沿って形成されている。 In the frame region F on the insulating substrate 20, a plurality of gate lead wires 31 as first lead wires connected to the gate wires 21 and drawn from the display region D side to the terminal region 11a side are provided. A plurality of source lead lines 35 are provided as second lead lines connected to the source lines 23 and led from the display area D side to the terminal area 11 a side. Terminals (not shown) for connection to the driver IC chip 50 are formed along the edge of the TFT substrate 1 at the leading ends of the gate lead-out lines 31 and the source lead-out lines 35.
 上記複数本のゲート引出配線31は、図4に示すように、表示領域Dの一方側と他方側とに交互に引き出されて両側引出配線構造を構成している。表示領域D上側から奇数本目のゲート配線21に接続された各ゲート引出配線31は、表示領域Dの一方側(図4で左側)から引き出されて第1配線群32を構成している。また、表示領域D上側から偶数本目のゲート配線21に接続された各ゲート引出配線31は、表示領域Dの他方側(図4で右側)から引き出されて第2配線群33を構成している。 As shown in FIG. 4, the plurality of gate lead-out lines 31 are alternately drawn out on one side and the other side of the display area D to constitute a double-side lead-out wiring structure. Each gate lead-out line 31 connected to the odd-numbered gate lines 21 from the upper side of the display area D is drawn from one side (left side in FIG. 4) of the display area D to form a first wiring group 32. Further, each gate lead-out line 31 connected to the even-numbered gate lines 21 from the upper side of the display area D is drawn out from the other side (right side in FIG. 4) of the display area D to form the second wiring group 33. .
 このような両側引出配線構造では、表示領域Dの一方側のみから全てのゲート引出配線31を引き出す片側引出配線構造を採用する場合に比べて、表示領域DをTFT基板1外形のセンター位置に配置することができる。しかも、第1配線群32と第2配線群33とが同じ本数のゲート引出配線31の群で構成されているので、これらが設けられた両額縁領域B部分の幅をバランス良く狭めることができる。 In such a double-side lead-out wiring structure, the display area D is arranged at the center position of the outer shape of the TFT substrate 1 as compared with the case where a single-side lead-out wiring structure in which all the gate lead-out wirings 31 are drawn from only one side of the display area D is adopted. can do. In addition, since the first wiring group 32 and the second wiring group 33 are composed of the same number of groups of gate lead-out wirings 31, the widths of both frame regions B provided with these can be narrowed in a balanced manner. .
 これら第1配線群32及び第2配線群33は、図7及び図8に示すように、ゲート絶縁膜22によって覆われた下層引出配線(第1引出配線、第3引出配線)31Aと、ゲート絶縁膜22上に設けられた上層引出配線(第2引出配線、第4引出配線)31Bとからなる。これら下層引出配線31A及び上層引出配線31Bは、ゲート絶縁膜22を介して立体的に配置されて2層配線構造を構成している。 As shown in FIGS. 7 and 8, the first wiring group 32 and the second wiring group 33 include a lower lead wiring (first lead wiring, third lead wiring) 31A covered with the gate insulating film 22, a gate, The upper layer lead wiring (second lead wiring, fourth lead wiring) 31B provided on the insulating film 22. The lower layer lead wiring 31A and the upper layer lead wiring 31B are three-dimensionally arranged via the gate insulating film 22 to form a two-layer wiring structure.
 さらに、下層引出配線31A及び上層引出配線31Bは、平面視において、互いに重なることなく交互に配置されて交互配線構造を構成している。この交互配線構造により、下層引出配線31Aと上層引出配線31Bとが互いに重ね合わせて配置される場合に比べて、これら両引出配線31A,31B間に形成される容量の悪影響、具体的には信号の遅延に起因する表示品位の低下やインピーダンスの増加に起因する消費電力の増大を抑えることができる。 Furthermore, the lower layer lead wiring 31A and the upper layer lead wiring 31B are alternately arranged without overlapping each other in a plan view to constitute an alternate wiring structure. Compared with the case where the lower layer lead wire 31A and the upper layer lead wire 31B are arranged so as to overlap each other, this alternate wiring structure has an adverse effect on the capacitance formed between the two lead wires 31A and 31B. It is possible to suppress an increase in power consumption due to a decrease in display quality and an increase in impedance due to the delay of the delay.
 下層引出配線31Aは、ゲート配線21と同一の金属膜から形成され、ゲート配線21と一体に形成されている。一方、上層引出配線31Bは、ソース配線23と同一の金属膜から形成され、図9に示すように、ゲート絶縁膜22に形成されたコンタクトホール22aを介してゲート配線21の一端部に接続されている。また、上層引出配線31Bは、層間絶縁膜29によって覆われている。 The lower lead line 31 </ b> A is formed of the same metal film as the gate line 21 and is formed integrally with the gate line 21. On the other hand, the upper lead line 31B is formed of the same metal film as the source line 23 and is connected to one end of the gate line 21 through a contact hole 22a formed in the gate insulating film 22 as shown in FIG. ing. The upper lead line 31B is covered with an interlayer insulating film 29.
 本実施形態における各色のサブ画素p1とこれらを駆動するゲート引出配線31との接続関係の模式平面図を図10に示す。なお、図10では、下層引出配線31Aが電気的に接続されたTFT24を有するサブ画素行の引き出し側に「GL」を、上層引出配線31Bが電気的に接続されたTFT24を有するサブ画素行の引き出し側に「SL」をそれぞれ付している。このことは後に参照する図11,図13,図14、図16及び図17においても同様である。 FIG. 10 shows a schematic plan view of the connection relationship between the sub-pixels p1 of each color and the gate lead-out wiring 31 that drives them in the present embodiment. In FIG. 10, “GL” is drawn on the lead side of the subpixel row having the TFT 24 to which the lower layer lead-out wiring 31A is electrically connected, and the subpixel row having the TFT 24 to which the upper layer lead-out wiring 31B is electrically connected. “SL” is attached to the drawer side. This also applies to FIGS. 11, 13, 14, 16, and 17 referred to later.
 下層引出配線31A及び上層引出配線31Bは、ゲート配線21を介して電気的に接続されたTFT24を有するサブ画素p1の色毎に分けて形成されている。具体的には、図10に示すように、赤色(R)及び緑色(G)のサブ画素p1が有するTFT24には、上層引出配線31B(SL)が電気的に接続されている。一方、青色(G)及び白色(W)のサブ画素p1が有するTFT24には、下層引出配線31A(GL)が電気的に接続されている。これによって、狭額縁構造を実現しながらも、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えることができる。 The lower lead wiring 31A and the upper lead wiring 31B are formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21. Specifically, as shown in FIG. 10, an upper layer extraction wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and green (G) subpixels p1. On the other hand, the lower lead wiring 31A (GL) is electrically connected to the TFT 24 of the blue (G) and white (W) subpixels p1. Accordingly, it is possible to suppress variations in effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color while realizing a narrow frame structure.
 すなわち、複数本のゲート引出配線31が、ゲート絶縁膜22に覆われた下層引出配線31Aと、ゲート絶縁膜22上に設けられた上層引出配線31Bとからなる2層配線構造を有しているので、下層引出配線31Aと上層引出配線31Bとの間のピッチを狭くすることができ、これによって、額縁領域Fの幅を狭くすることができる。そして、下層引出配線31Aと上層引出配線31Bとが別個の金属膜から形成されていることに起因して、これら両引出配線31A,31Bの線幅や膜厚などが不均一となり、当該両引出配線31A,31B間でゲート配線21を介して画素電極30との間に形成される浮遊容量C’に差が生じたとしても、下層引出配線31A及び上層引出配線31Bは、電気的に接続されたTFT24を介して駆動を制御するサブ画素p1の色毎に分けて形成されているので、同色のサブ画素p1において画素電極30間でゲート配線21をオフ状態とした際の電位の変動幅に差が生じることを抑えることができる。 That is, the plurality of gate lead-out wirings 31 have a two-layer wiring structure including a lower-layer lead-out wiring 31A covered with the gate insulating film 22 and an upper-layer lead-out wiring 31B provided on the gate insulating film 22. Therefore, the pitch between the lower layer lead-out line 31A and the upper layer lead-out line 31B can be narrowed, whereby the width of the frame region F can be narrowed. The lower lead wiring 31A and the upper lead wiring 31B are formed of separate metal films, so that the line widths and film thicknesses of both the lead wirings 31A and 31B become non-uniform. Even if there is a difference in the stray capacitance C ′ formed between the wiring 31A and 31B and the pixel electrode 30 via the gate wiring 21, the lower layer wiring 31A and the upper layer wiring 31B are electrically connected. The subpixels p1 whose driving is controlled via the TFTs 24 are formed separately for each color, so that the potential fluctuation width when the gate wiring 21 is turned off between the pixel electrodes 30 in the subpixels p1 of the same color is formed. It can suppress that a difference arises.
 <対向基板12の構成>
 対向基板12は、図示しないが、ベース基板であるガラス基板などの絶縁性基板上に、上記ゲート配線21及びソース配線23に対応するように格子状に設けられたブラックマトリクスと、該ブラックマトリクスの格子間に各色のサブ画素p1(R),p1(G),p1(B),p1(W)に対応して周期的に配列するように設けられた赤色層、緑色層、青色層及び透明層からなる複数のカラーフィルタと、これらブラックマトリクス及び各カラーフィルタを覆うように設けられ、上記画素電極30の群と対向する共通電極51と、該共通電極51上に柱状に設けられたフォトスペーサとを備えている。
<Configuration of counter substrate 12>
Although the counter substrate 12 is not illustrated, a black matrix provided in a lattice shape so as to correspond to the gate wiring 21 and the source wiring 23 on an insulating substrate such as a glass substrate as a base substrate, and the black matrix A red layer, a green layer, a blue layer and a transparent layer provided so as to be periodically arranged corresponding to the subpixels p1 (R), p1 (G), p1 (B), and p1 (W) of each color between the lattices. A plurality of color filters composed of layers, a common electrode 51 provided so as to cover the black matrix and each color filter, and facing the group of the pixel electrodes 30, and a photo spacer provided in a column shape on the common electrode 51 And.
 <液晶表示装置Sの作動>
 上記構成の液晶表示装置Sでは、各サブ画素p1において、ドライバICチップ50からゲート信号がゲート引出配線31及びゲート配線21を介してゲート電極25に送られて、TFT24がオン状態となったときに、ドライバICチップ50からソース信号がソース引出配線35及びソース配線23を介してソース電極27に送られて、半導体層26及びドレイン電極28を介して画素電極30に所定の電荷が書き込まれる。このとき、TFT基板11の各画素電極30と対向基板12の共通電極51との間において電位差が生じ、液晶層14に所定の電圧が印加される。そして、液晶表示装置Sでは、各画素Pが有する4色のサブ画素p1において、液晶層14に印加する電圧の大きさによって液晶分子の配向状態を変えることで液晶層14での光透過率を調整し、赤色層、緑色層、青色層及び透明層の4色のカラーフィルタを透過した光を合成することにより、画像が表示される。
<Operation of the liquid crystal display device S>
In the liquid crystal display device S configured as described above, when the gate signal is sent from the driver IC chip 50 to the gate electrode 25 via the gate lead-out wiring 31 and the gate wiring 21 in each subpixel p1, the TFT 24 is turned on. In addition, a source signal is sent from the driver IC chip 50 to the source electrode 27 via the source lead wiring 35 and the source wiring 23, and a predetermined charge is written to the pixel electrode 30 via the semiconductor layer 26 and the drain electrode 28. At this time, a potential difference is generated between each pixel electrode 30 of the TFT substrate 11 and the common electrode 51 of the counter substrate 12, and a predetermined voltage is applied to the liquid crystal layer 14. In the liquid crystal display device S, the light transmittance in the liquid crystal layer 14 is changed by changing the alignment state of the liquid crystal molecules according to the magnitude of the voltage applied to the liquid crystal layer 14 in the four-color sub-pixels p1 of each pixel P. An image is displayed by adjusting and synthesizing the light transmitted through the four color filters of the red layer, the green layer, the blue layer, and the transparent layer.
  -実施形態1の効果-
 この実施形態1によると、2層配線構造において、同色のサブ画素p1が有するTFT24に電気的に接続された各ゲート引出配線31が、同一の金属膜から形成されて、下層引出配線31A又は上層引出配線31Bにより統一して構成されているので、狭額縁構造を実現しながらも、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えて表示品位を向上させることができる。
-Effect of Embodiment 1-
According to the first embodiment, in the two-layer wiring structure, each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower lead-out wiring 31A or the upper layer Since the lead wiring 31B is unified, the narrow frame structure is realized, and the display quality is improved by suppressing the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color. Can be improved.
 本実施形態における液晶表示装置Sで単色の中間調表示を行った状態を示す模式平面図を図11に示す。 FIG. 11 is a schematic plan view showing a state in which monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
 例えば、図11に示すように、各画素Pにおいて1色(図11に示す例では緑色(G))のサブ画素p1だけを駆動して単色の中間調表示を行う場合、その色のサブ画素p1が有するTFT24には統一して下層引出配線31A又は上層引出配線31B(図11に示す例では上層引出配線31B(SL))が接続されているので、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えることができ、これにより、表示領域Dにゲート配線21に沿った縞模様が視認されることを防止できて、表示品位を向上させることができる。 For example, as shown in FIG. 11, when only one color (green (G) in the example shown in FIG. 11) sub-pixel p1 is driven in each pixel P to perform monochrome halftone display, the sub-pixel of that color is displayed. Since the lower layer lead-out wiring 31A or the upper layer lead-out wiring 31B (in the example shown in FIG. 11, the upper layer lead-out wiring 31B (SL)) is connected to the TFT 24 included in p1, the pixel electrode 30 is connected between the sub-pixels p1 of the same color. Thus, variation in effective voltage applied to the liquid crystal layer 14 can be suppressed. As a result, it is possible to prevent the stripe pattern along the gate wiring 21 from being visually recognized in the display region D, and to improve display quality. it can.
 《発明の実施形態2》
 図12は、この実施形態2におけるTFT基板11のゲート配線21の引き出し構成を示す平面図である。なお、以降の各実施形態では、TFT基板11のゲート配線21の引き出し構成が上記実施形態1と異なる他は液晶表示装置Sについて上記実施形態1と同様に構成されているので、構成の異なるTFT基板11についてのみ説明し、同一の構成箇所は図1~図11に基づく上記実施形態1の説明に譲ることにして、その詳細な説明を省略する。
<< Embodiment 2 of the Invention >>
FIG. 12 is a plan view showing a lead-out configuration of the gate wiring 21 of the TFT substrate 11 in the second embodiment. In each of the following embodiments, the liquid crystal display device S is configured in the same manner as in the first embodiment except that the drawing configuration of the gate wiring 21 of the TFT substrate 11 is different from that in the first embodiment. Only the substrate 11 will be described, and the same components will be left to the description of the first embodiment based on FIGS. 1 to 11, and the detailed description thereof will be omitted.
 上記実施形態1では、ゲート引出配線31が両側引出配線構造を構成しているとしたが、本実施形態では、各ゲート引出配線31は、図12に示すように、表示領域Dの一方側(図12で右側)のみから引き出されて片側引出配線構造を構成している。 In the first embodiment, the gate lead-out wiring 31 forms a double-side lead-out wiring structure. However, in this embodiment, each gate lead-out wiring 31 is connected to one side of the display area D (see FIG. 12). It is drawn only from the right side in FIG.
 そして、ゲート引出配線31の群は、上記実施形態1における第1配線群32及び第2配線群33と同様に、ゲート絶縁膜22によって覆われた下層引出配線31Aと、ゲート絶縁膜22上に設けられた上層引出配線31Bとからなり、これら両引出配線31A,31Bによって2層配線構造にそれぞれ構成されている。また、下層引出配線31A及び上層引出配線31Bは、上記実施形態1と同様に、ゲート配線21及びソース配線23と同一の金属膜からそれぞれ形成され、平面視において、互いに重なることなく交互に配置されている。 The group of gate lead-out wirings 31 is formed on the lower lead-out wiring 31A covered with the gate insulating film 22 and the gate insulating film 22 in the same manner as the first wiring group 32 and the second wiring group 33 in the first embodiment. The upper lead-out wiring 31B is provided, and the two lead-out wirings 31A and 31B constitute a two-layer wiring structure. Further, similarly to the first embodiment, the lower layer extraction wiring 31A and the upper layer extraction wiring 31B are respectively formed from the same metal film as the gate wiring 21 and the source wiring 23, and are alternately arranged without overlapping each other in plan view. ing.
 本実施形態における各色のサブ画素p1とこれらを駆動するゲート引出配線31との接続関係の模式平面図を図13に示す。 FIG. 13 shows a schematic plan view of the connection relationship between the sub-pixels p1 for each color and the gate lead-out wiring 31 that drives them in the present embodiment.
 本実施形態の下層引出配線31A及び上層引出配線31Bも、ゲート配線21を介して電気的に接続されたTFT24を有するサブ画素p1の色毎に分けて形成されている。具体的には、図13に示すように、赤色(R、第2色)及び青色(B、第4色)のサブ画素p1が有するTFT24には、上層引出配線31B(SL、第2引出配線、第4引出配線)が電気的に接続されている。一方、緑色(G、第1色)及び白色(W、第3色)のサブ画素p1が有するTFT24には、下層引出配線31A(GL、第1引出配線、第2引出配線)が電気的に接続されている。 The lower layer lead-out wiring 31A and the upper layer lead-out wiring 31B of this embodiment are also formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21. Specifically, as shown in FIG. 13, the upper layer lead-out wiring 31B (SL, second lead-out wiring) is provided in the TFT 24 of the red (R, second color) and blue (B, fourth color) sub-pixel p1. , The fourth lead wiring) is electrically connected. On the other hand, the lower layer lead-out wiring 31A (GL, first lead-out wiring, second lead-out wiring) is electrically connected to the TFT 24 of the green (G, first color) and white (W, third color) sub-pixel p1. It is connected.
  -実施形態2の効果-
 したがって、この実施形態2によっても、2層配線構造において、同色のサブ画素p1が有するTFT24に電気的に接続された各ゲート引出配線31が、同一の金属膜から形成されて、下層引出配線31A又は上層引出配線31Bにより統一して構成されているので、狭額縁構造を実現しながらも、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えて表示品位を向上させることができる。
-Effect of Embodiment 2-
Therefore, also in the second embodiment, in the two-layer wiring structure, each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower-layer lead-out wiring 31A Alternatively, since the upper layer lead wiring 31B is unified, the narrow frame structure is realized, and the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 is suppressed between the sub-pixels p1 of the same color. The quality can be improved.
 本実施形態における液晶表示装置Sで単色の中間調表示を行った状態を示す模式平面図を図14に示す。 FIG. 14 is a schematic plan view showing a state in which a monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
 例えば、図14に示すように、各画素Pにおいて1色(図14に示す例では緑色(G))のサブ画素p1だけを駆動して単色の中間調表示を行う場合、その色のサブ画素p1が有するTFT24には統一して下層引出配線31A又は上層引出配線31B(図13に示す例では下層引出配線31A(GL))が接続されているので、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えることができ、これにより、表示領域Dにゲート配線21に沿った縞模様が視認されることを防止できて、表示品位を向上させることができる。 For example, as shown in FIG. 14, when only one color (green (G) in the example shown in FIG. 14) sub-pixel p1 is driven in each pixel P to perform monochrome halftone display, the sub-pixel of that color is displayed. Since the lower layer lead-out wiring 31A or the upper layer lead-out wiring 31B (lower layer lead-out wiring 31A (GL) in the example shown in FIG. 13) is connected to the TFT 24 of the p1 in a unified manner, the pixel electrode 30 is connected between the sub-pixels p1 of the same color. Thus, variation in effective voltage applied to the liquid crystal layer 14 can be suppressed. As a result, it is possible to prevent the stripe pattern along the gate wiring 21 from being visually recognized in the display region D, and to improve display quality. it can.
 《発明の実施形態3》
 図15は、この実施形態3における表示領域Dの画素構成を示す拡大平面図である。図16は、この実施形態3におけるTFT基板11のゲート配線21の引き出し構成を示す平面図である。
<< Embodiment 3 of the Invention >>
FIG. 15 is an enlarged plan view showing a pixel configuration of the display area D in the third embodiment. FIG. 16 is a plan view showing a lead-out configuration of the gate wiring 21 of the TFT substrate 11 in the third embodiment.
 上記実施形態1では、各画素Pが4色のサブ画素p1からなるとしたが、本実施形態では、図15に示すように、各画素Pが赤色(R、第2色)、緑色(G、第1色)及び青色(B、第3色)の3色のサブ画素p1からなる。これら3色のサブ画素p1(R),p1(G),p1(B)は、全ての画素Pで同順に走査方向(Y軸方向)に沿って並置方式でストライプ状に並設されている。 In the first embodiment, each pixel P is composed of four sub-pixels p1, but in this embodiment, each pixel P is red (R, second color), green (G, G) as shown in FIG. It consists of sub-pixels p1 of three colors of first color) and blue (B, third color). These three color sub-pixels p1 (R), p1 (G), and p1 (B) are arranged in parallel in a striped manner in a juxtaposed manner along the scanning direction (Y-axis direction) in the same order in all the pixels P. .
 また、上記実施形態1では、表示領域Dの一方側と他方側とに交互にゲート引出配線31が引き出されているとしたが、本実施形態では、図16に示すように、各画素行における3色のサブ画素p1(R),p1(G),p1(B)を駆動する3本のゲート配線21からなる画素単位のゲート配線群(以下、単にゲート配線群と称する)のうち、表示領域D上側から奇数番目のゲート配線群の上側2本のゲート配線21と偶数番目のゲート配線群の上側1本のゲート配線21とが、表示領域Dの一方側(図16で左側)から引き出されて第1配線群32を構成している。また、表示領域D上側から奇数番目のゲート配線群の下側1本のゲート配線21と偶数番目のゲート配線群の下側2本のゲート配線21とは、表示領域Dの他方側(図16で右側)から引き出されて第2配線群33を構成している。 In the first embodiment, the gate lead-out wiring 31 is alternately drawn out on one side and the other side of the display area D. However, in this embodiment, as shown in FIG. Among the gate wiring groups in units of pixels (hereinafter, simply referred to as gate wiring groups) composed of three gate wirings 21 for driving the three-color sub-pixels p1 (R), p1 (G), and p1 (B), display From the upper side of the area D, the upper two gate lines 21 of the odd-numbered gate line group and the upper one gate line 21 of the even-numbered gate line group are drawn from one side (left side in FIG. 16) of the display area D. Thus, the first wiring group 32 is configured. Further, the lower one gate wiring 21 of the odd-numbered gate wiring group from the upper side of the display area D and the lower two gate wirings 21 of the even-numbered gate wiring group are on the other side of the display area D (FIG. 16). The second wiring group 33 is formed by being pulled out from the right side.
 これら第1配線群32及び第2配線群33は、上記実施形態1と同様に、ゲート絶縁膜22によって覆われた下層引出配線(第1引出配線)31Aと、ゲート絶縁膜22上に設けられた上層引出配線(第2引出配線、第3引出配線)31Bとからなり、これら両引出配線31A,31Bによって2層配線構造にそれぞれ構成されている。そして、第1配線群32及び第2配線群33において、同一の画素行を駆動するゲート配線21から引き出されて隣り合うゲート引出配線31は、一方が下層引出配線31Aであり、他方が上層引出配線31Bである。これら下層引出配線31A及び上層引出配線31Bは、上記実施形態1と同様に、ゲート配線21及びソース配線23と同一の金属膜からそれぞれ形成されている。 The first wiring group 32 and the second wiring group 33 are provided on the lower lead wiring (first lead wiring) 31A covered with the gate insulating film 22 and the gate insulating film 22, as in the first embodiment. Further, the upper layer lead wiring (second lead wiring, third lead wiring) 31B is constituted by the two lead wirings 31A and 31B to form a two-layer wiring structure. In the first wiring group 32 and the second wiring group 33, one of the adjacent gate lead lines 31 drawn from the gate line 21 that drives the same pixel row is the lower layer lead line 31A, and the other is the upper layer lead. Wiring 31B. These lower layer lead wiring 31A and upper layer lead wiring 31B are respectively formed from the same metal film as the gate wiring 21 and the source wiring 23, as in the first embodiment.
 本実施形態における各色のサブ画素p1とこれらを駆動するゲート引出配線31との接続関係の模式平面図を図17に示す。 FIG. 17 shows a schematic plan view of the connection relationship between the sub-pixels p1 for each color and the gate lead-out wiring 31 that drives them in the present embodiment.
 本実施形態の下層引出配線31A及び上層引出配線31Bも、ゲート配線21を介して電気的に接続されたTFT24を有するサブ画素p1の色毎に分けて形成されている。具体的には、図17に示すように、赤色(R)及び青色(B)のサブ画素p1が有するTFT24には、上層引出配線31B(SL)が電気的に接続されている。一方、緑色(G)のサブ画素p1が有するTFT24には、下層引出配線31A(GL)が電気的に接続されている。 The lower layer lead-out wiring 31A and the upper layer lead-out wiring 31B of this embodiment are also formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the gate wiring 21. Specifically, as shown in FIG. 17, the upper layer lead wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and blue (B) subpixels p1. On the other hand, the lower layer lead-out wiring 31A (GL) is electrically connected to the TFT 24 of the green (G) sub-pixel p1.
  -実施形態3の効果-
 したがって、この実施形態3によっても、2層配線構造において、同色のサブ画素p1が有するTFT24に電気的に接続された各ゲート引出配線31が、同一の金属膜から形成されて、下層引出配線31A又は上層引出配線31Bにより統一して構成されているので、狭額縁構造を実現しながらも、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えて表示品位を向上させることができる。
-Effect of Embodiment 3-
Therefore, also in the third embodiment, in the two-layer wiring structure, each gate lead-out wiring 31 electrically connected to the TFT 24 included in the subpixel p1 of the same color is formed from the same metal film, and the lower-layer lead wiring 31A Alternatively, since the upper layer lead wiring 31B is unified, the narrow frame structure is realized, and the variation in the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 is suppressed between the sub-pixels p1 of the same color. The quality can be improved.
 本実施形態における液晶表示装置Sで単色の中間調表示を行った状態を示す模式平面図を図18に示す。 FIG. 18 is a schematic plan view showing a state in which a monochromatic halftone display is performed on the liquid crystal display device S in the present embodiment.
 例えば、図18に示すように、各画素Pにおいて1色(図18に示す例では赤色(R))のサブ画素p1だけを駆動して単色の中間調表示を行う場合、その色のサブ画素p1が有するTFT24には統一して下層引出配線31A又は上層引出配線31B(図18に示す例では上層引出配線31B(SL))が接続されているので、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えることができ、これにより、表示領域Dにゲート配線21に沿った縞模様が視認されることを防止できて、表示品位を向上させることができる。 For example, as shown in FIG. 18, when only one color (red (R) in the example shown in FIG. 18) subpixel p1 is driven in each pixel P to perform monochrome halftone display, the subpixel of that color is displayed. Since the lower layer lead wiring 31A or the upper layer lead wiring 31B (upper layer lead wiring 31B (SL) in the example shown in FIG. 18) is connected to the TFT 24 of p1 in a unified manner, the pixel electrode 30 is connected between the sub-pixels p1 of the same color. Thus, variation in effective voltage applied to the liquid crystal layer 14 can be suppressed. As a result, it is possible to prevent the stripe pattern along the gate wiring 21 from being visually recognized in the display region D, and to improve display quality. it can.
 《その他の実施形態》
 上記実施形態3では、赤色(R)及び青色(B)のサブ画素p1が有するTFT24には、上層引出配線31B(SL)が電気的に接続され、緑色(G)のサブ画素p1が有するTFT24には、下層引出配線31A(GL)が電気的に接続されているとしたが、本発明はこれに限らず、赤色(R、第2色)のサブ画素p1が有するTFT24には、上層引出配線31B(SL)が電気的に接続され、青色(B、第1色)及び緑色(G、第3色)のサブ画素p1が有するTFT24には、下層引出配線31A(GL)が電気的に接続されていてもよい。
<< Other Embodiments >>
In the third embodiment, the upper layer lead wiring 31B (SL) is electrically connected to the TFT 24 included in the red (R) and blue (B) subpixels p1, and the TFT 24 included in the green (G) subpixel p1. The lower lead line 31A (GL) is electrically connected to the TFT 24, but the present invention is not limited to this. The TFT 24 included in the red (R, second color) sub-pixel p1 includes the upper lead line 31A (GL). The wiring 31B (SL) is electrically connected, and the lower lead wiring 31A (GL) is electrically connected to the TFT 24 of the blue (B, first color) and green (G, third color) subpixels p1. It may be connected.
 上記実施形態1~3では、液晶表示パネル10がトリプルスキャン方式の駆動が可能な構成となっているとしたが、本発明はこれに限らず、液晶表示パネル10は、いわゆるシングルスキャン方式の駆動(通常駆動)が可能な構成となっていてもよい。シングルスキャン方式の駆動が可能な液晶表示パネル10は、例えば、各画素Pを構成する複数色のサブ画素p1が走査方向と直交する方向に沿って並置方式でストライプ状に並設されている。 In the first to third embodiments, the liquid crystal display panel 10 is configured to be capable of triple scan driving. However, the present invention is not limited to this, and the liquid crystal display panel 10 is driven by a so-called single scan driving. (Normal drive) may be possible. In the liquid crystal display panel 10 that can be driven in a single scan system, for example, the sub-pixels p1 of a plurality of colors that constitute each pixel P are arranged side by side in a stripe manner along a direction orthogonal to the scanning direction.
 上記シングルスキャン方式の駆動が可能な液晶表示パネル10では、ソース配線23が本発明の第1表示用配線(一の配線)を構成し、ゲート配線21が本発明の第2表示用配線(他の配線)を構成している。また、第1引出配線であるソース引出配線35の群は、ゲート絶縁膜22によって覆われた下層引出配線(第2引出配線、又は第2引出配線及び第4引出配線)と、ゲート絶縁膜22上に設けられた上層引出配線(第1引出配線、又は第1引出配線及び第3引出配線)とからなり、これら両引出配線によって2層配線構造に構成されている。下層引出配線及び上層引出配線は、上記実施形態1と同様に、ゲート配線21又はソース配線23と同一の金属膜からそれぞれ形成されている。そして、これら下層引出配線及び上層引出配線は、ソース配線23を介して電気的に接続されたTFT24を有するサブ画素p1の色毎に分けて形成されている。 In the liquid crystal display panel 10 that can be driven by the single scan method, the source wiring 23 constitutes the first display wiring (one wiring) of the present invention, and the gate wiring 21 forms the second display wiring (others) of the present invention. Wiring). In addition, the group of source lead lines 35 that are first lead lines includes a lower lead line (second lead line, or a second lead line and a fourth lead line) covered with the gate insulating film 22, and the gate insulating film 22. The upper layer lead wiring (the first lead wiring, or the first lead wiring and the third lead wiring) is provided on the upper layer, and the two lead wirings constitute a two-layer wiring structure. The lower layer lead wiring and the upper layer lead wiring are respectively formed from the same metal film as the gate wiring 21 or the source wiring 23 as in the first embodiment. The lower layer lead wiring and the upper layer lead wiring are formed separately for each color of the sub-pixel p1 having the TFT 24 electrically connected through the source wiring 23.
 このような構成によれば、シングルスキャン方式の駆動を行う液晶表示装置Sにおいても、狭額縁構造を実現しながら、同色のサブ画素p1間で画素電極30により液晶層14に印加される実効電圧のばらつきを抑えて表示品位を向上させることができる。 According to such a configuration, the effective voltage applied to the liquid crystal layer 14 by the pixel electrode 30 between the sub-pixels p1 of the same color while realizing a narrow frame structure even in the liquid crystal display device S that performs single scan driving. Display quality can be improved by suppressing variations in the display quality.
 また、上記実施形態1では、赤色(R)、緑色(G)、青色(B)及び白色(W)の4色のサブ画素p1が並置方式でストライプ状に並んでいるとしたが、これら4色のサブ画素p1がその他の配列であっても、各ゲート配線21が同色のサブ画素p1に共通して接続するように配線されていれば、本特許の趣旨に影響は及ばない。 In the first embodiment, the sub-pixels p1 of four colors of red (R), green (G), blue (B), and white (W) are arranged in stripes in a juxtaposed manner. Even if the color sub-pixels p1 are in other arrangements, the purpose of this patent is not affected as long as the gate wirings 21 are wired so as to be connected in common to the sub-pixels p1 of the same color.
 さらに、4色のサブ画素p1は、赤色(R)、緑色(G)、青色(B)及び白色(W)でなくてもよく、種々の色のサブ画素p1の組合せを採用することが可能であり、例えば赤色(R)、緑色(G)、青色(B)及び黄色(Y)でもよい。 Further, the four color sub-pixels p1 may not be red (R), green (G), blue (B), and white (W), and a combination of sub-pixels p1 of various colors can be employed. For example, red (R), green (G), blue (B), and yellow (Y) may be used.
 また、上記実施形態1では、各画素Pが4色のサブ画素p1(R),p1(G),p1(B),p1(W)からなるとし、上記実施形態3では、各画素Pが3色のサブ画素p1(R),p1(G),p1(B)からなるとしたが、本発明はこれに限らず、各画素Pは、2色のサブ画素p1からなっていてもよい。 In the first embodiment, each pixel P is composed of four-color sub-pixels p1 (R), p1 (G), p1 (B), and p1 (W). In the third embodiment, each pixel P is Although the three-color sub-pixels p1 (R), p1 (G), and p1 (B) are described, the present invention is not limited to this, and each pixel P may be formed of two-color sub-pixels p1.
 その他、上記実施形態1では、各サブ画素p1が有するTFT24がボトムゲート型のTFTであるとしたが、本発明はこれに限らず、各TFT24は、トップゲート型のTFTであっても構わない。 In addition, in Embodiment 1 described above, the TFT 24 included in each sub-pixel p1 is a bottom-gate TFT. However, the present invention is not limited to this, and each TFT 24 may be a top-gate TFT. .
 以上、本発明の好ましい実施形態について説明したが、本発明の技術的範囲は上記各実施形態に記載の範囲に限定されない。上記各実施形態が例示であり、それらの各構成要素や各処理プロセスの組合せに、さらにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 As mentioned above, although preferable embodiment of this invention was described, the technical scope of this invention is not limited to the range as described in said each embodiment. It is understood by those skilled in the art that the above embodiments are examples, and that various modifications can be made to the combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. It is a place.
 例えば、上記各実施形態では、液晶表示装置Sを例に挙げて説明したが、本発明はこれに限らず、有機EL(ElectroLuminescence)表示装置やプラズマ表示装置などの他の表示装置にも勿論適用することができ、2層配線構造を有するカラー表示装置であれば広く適用することが可能である。 For example, in each of the above embodiments, the liquid crystal display device S has been described as an example. However, the present invention is not limited to this, and is naturally applicable to other display devices such as an organic EL (ElectroLuminescence) display device and a plasma display device. Any color display device having a two-layer wiring structure can be widely applied.
 以上説明したように、本発明は、マルチカラー表示を行う表示装置について有用であり、特に、狭額縁構造を実現しながらも、同色のサブ画素間で画素電極により印加される実効電圧のばらつきを抑えて表示品位を向上させることが要望される表示装置に適している。 As described above, the present invention is useful for a display device that performs multi-color display, and in particular, while realizing a narrow frame structure, variation in effective voltage applied by pixel electrodes between sub-pixels of the same color. It is suitable for a display device that is required to suppress and improve display quality.
 C’   浮遊容量
 D    表示領域
 F    額縁領域
 P    画素
 p1   サブ画素
 S    液晶表示装置
 10   液晶表示パネル
 11   TFT基板
 11a  端子領域
 12   対向基板
 13   シール材
 14   液晶層
 15,16  配向膜
 17,18  偏光板
 20   絶縁性基板(ベース基板)
 21   ゲート配線(第1表示用配線)
 22   ゲート絶縁膜
 22a  コンタクトホール
 23   ソース配線(第2表示用配線)
 24   TFT
 25   ゲート電極
 26   半導体層
 27   ソース電極
 28   ドレイン電極
 29   層間絶縁膜
 30   画素電極
 31   ゲート引出配線(第1引出配線)
 31A  下層引出配線
 31B  上層引出配線
 32   第1配線群
 33   第2配線群
 35   ソース引出配線(第2引出配線)
 50   ドライバICチップ
 51   共通電極
 60   配線基板
C 'stray capacitance D display area F frame area P pixel p1 subpixel S liquid crystal display device 10 liquid crystal display panel 11 TFT substrate 11a terminal area 12 counter substrate 13 sealing material 14 liquid crystal layer 15, 16 alignment film 17, 18 polarizing plate 20 insulation Substrate (base substrate)
21 Gate wiring (first display wiring)
22 Gate insulating film 22a Contact hole 23 Source wiring (second display wiring)
24 TFT
25 Gate electrode 26 Semiconductor layer 27 Source electrode 28 Drain electrode 29 Interlayer insulating film 30 Pixel electrode 31 Gate lead wiring (first lead wiring)
31A Lower layer lead wire 31B Upper layer lead wire 32 First wire group 33 Second wire group 35 Source lead wire (second lead wire)
50 Driver IC chip 51 Common electrode 60 Wiring board

Claims (12)

  1.  ベース基板と、
     上記ベース基板上に設けられた表示領域と、
     上記表示領域の周囲に設けられた額縁領域と、
     上記額縁領域の一端側に設けられた信号入力用の端子領域と、
     上記表示領域に互いに平行に延びるように設けられた複数本の第1表示用配線と、
     上記表示領域に上記各第1表示用配線と交差する方向に互いに平行に延びるように設けられた複数本の第2表示用配線と、
     上記各第1表示用配線と上記各第2表示用配線との間に介在してこれら両配線を絶縁する絶縁膜と、
     上記各第1表示用配線と上記各第2表示用配線との交差部に設けられ、対応する交差部をなす上記第1表示用配線及び第2表示用配線に接続された薄膜トランジスタ及び該薄膜トランジスタに接続された画素電極と、
     上記各第1表示用配線に接続されて上記額縁領域上を上記表示領域側から上記端子領域側に引き出された複数本の第1引出配線と、
     上記各第2表示用配線に接続されて上記額縁領域上を上記表示領域側から上記端子領域側に引き出された複数本の第2引出配線とを備え、
     上記表示領域は、上記薄膜トランジスタ及び画素電極を有する複数色のサブ画素からなる画素が所定配列に複数設けられて構成され、
     上記各第1表示用配線は、同色のサブ画素が有する薄膜トランジスタに接続され、
     上記複数本の第1引出配線は、上記絶縁膜に覆われた下層引出配線と、上記絶縁膜上に設けられた上層引出配線とを含み、
     上記下層引出配線及び上層引出配線のうち、一方は上記第1表示用配線と同一膜から形成され、他方は上記第2表示用配線と同一膜から形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記第1表示用配線に接続されており、
     同色の上記サブ画素が有する薄膜トランジスタに接続された第1表示用配線は、上記下層引出配線又は上層引出配線に統一して電気的に接続されている
    ことを特徴とする表示装置。
    A base substrate;
    A display area provided on the base substrate;
    A frame area provided around the display area;
    A signal input terminal region provided on one end of the frame region;
    A plurality of first display lines provided in the display area so as to extend in parallel to each other;
    A plurality of second display wirings provided in the display area so as to extend in parallel to each other in a direction intersecting with the first display wirings;
    An insulating film interposed between each of the first display wirings and each of the second display wirings to insulate the two wirings;
    Thin film transistors connected to the first display wiring and the second display wiring that are provided at the intersections of the first display wirings and the second display wirings and that form the corresponding intersections. Connected pixel electrodes;
    A plurality of first lead wires connected to the first display wires and drawn on the frame region from the display region side to the terminal region side;
    A plurality of second lead wires connected to the second display wires and drawn from the display region side to the terminal region side on the frame region;
    The display area includes a plurality of pixels each having a plurality of color sub-pixels each having the thin film transistor and the pixel electrode.
    Each of the first display wirings is connected to a thin film transistor included in a sub-pixel of the same color,
    The plurality of first lead wires include a lower lead wire covered with the insulating film and an upper lead wire provided on the insulating film,
    One of the lower lead wiring and the upper lead wiring is formed from the same film as the first display wiring, and the other is formed from the same film as the second display wiring and is a contact hole formed in the insulating film. Is connected to the first display wiring via
    The display device, wherein the first display wiring connected to the thin film transistor included in the sub-pixel of the same color is electrically connected to the lower layer extraction wiring or the upper layer extraction wiring in a unified manner.
  2.  請求項1に記載の表示装置において、
     上記各第1引出配線を構成する下層引出配線及び上層引出配線は、平面視において、互いに重なることなく交互に配置されている
    ことを特徴とする表示装置。
    The display device according to claim 1,
    The display device according to claim 1, wherein the lower layer lead wires and the upper layer lead wires constituting the first lead wires are alternately arranged without overlapping each other in a plan view.
  3.  請求項2に記載の表示装置において、
     上記複数の画素は、マトリクス状に配列されており、各々上記第2表示用配線に沿って並ぶ4色のサブ画素からなる
    ことを特徴とする表示装置。
    The display device according to claim 2,
    The display device, wherein the plurality of pixels are arranged in a matrix, and each of the plurality of pixels includes four color sub-pixels arranged along the second display wiring.
  4.  請求項1~3のいずれか1項に記載の表示装置において、
     上記端子領域は、上記第2表示用配線の延長線上に位置する上記ベース基板端部に設けられ、
     上記複数本の第1引出配線は、上記表示領域の一方側から引き出された第1配線群と、上記表示領域の他方側から引き出された第2配線群とを構成している
    ことを特徴とする表示装置。
    The display device according to any one of claims 1 to 3,
    The terminal region is provided at an end of the base substrate located on an extension of the second display wiring;
    The plurality of first lead wires constitutes a first wire group drawn from one side of the display region and a second wire group drawn from the other side of the display region. Display device.
  5.  請求項4に記載の表示装置において、
     上記第1配線群は奇数本目の上記第1引出配線の群からなり、
     上記第2配線群は偶数本目の上記第2引出配線の群からなる
    ことを特徴とする表示装置。
    The display device according to claim 4,
    The first wiring group is composed of an odd number of first lead wiring groups,
    The display device according to claim 1, wherein the second wiring group includes a group of the second lead wirings of even number.
  6.  請求項1~5のいずれか1項に記載の表示装置において、
     上記各第1表示用配線はゲート配線であり、
     上記各第2表示用配線はソース配線である
    ことを特徴とする表示装置。
    The display device according to any one of claims 1 to 5,
    Each of the first display wirings is a gate wiring,
    Each of the second display wirings is a source wiring.
  7.  請求項1~6のいずれか1項に記載の表示装置において、
     上記各第1表示用配線、各第2表示用配線、絶縁膜、各薄膜トランジスタ、各画素電極、各第1引出配線及び各第2引出配線が設けられたベース基板を有する薄膜トランジスタ基板と、
     上記薄膜トランジスタ基板と対向して配置された対向基板と、
     上記薄膜トランジスタ基板と上記対向基板との間に設けられた液晶層とを備える
    ことを特徴とする表示装置。
    The display device according to any one of claims 1 to 6,
    A thin film transistor substrate having a base substrate provided with each of the first display wiring, each second display wiring, an insulating film, each thin film transistor, each pixel electrode, each first extraction wiring, and each second extraction wiring;
    A counter substrate disposed to face the thin film transistor substrate;
    A display device comprising: a liquid crystal layer provided between the thin film transistor substrate and the counter substrate.
  8.  第1色のサブ画素及び第2色のサブ画素を有する画素が配列した表示領域と、該表示領域の周囲の額縁領域と、が構成され、該額縁領域が端子領域を含む表示装置であって、
     上記端子領域が設けられたベース基板と、
     上記表示領域に含まれるサブ画素に対応して上記ベース基板上に設けられた画素電極と、
     上記画素電極に電気的に接続された薄膜トランジスタと、
     上記薄膜トランジスタのうち同色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線と、
     上記一の配線に平面視で交差して設けられ且つ上記薄膜トランジスタを電気的に接続する他の配線と、
     上記一の配線と上記他の配線との間に介設された絶縁膜と、
     上記一の配線から上記端子領域に引き出された引出配線と、
    を包含する薄膜トランジスタ基板を備え、
     上記引出配線は、上記第1色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第1引出配線と、上記第2色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第2引出配線と、を含み、
     上記第1引出配線は、上記一の配線と同一の導電膜で形成され、
     上記第2引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されている表示装置。
    A display device comprising: a display area in which pixels having first-color sub-pixels and second-color sub-pixels are arranged; and a frame area around the display area, wherein the frame area includes a terminal area. ,
    A base substrate provided with the terminal region;
    A pixel electrode provided on the base substrate corresponding to a sub-pixel included in the display area;
    A thin film transistor electrically connected to the pixel electrode;
    One wiring for electrically connecting the thin film transistors corresponding to the sub-pixels of the same color among the thin film transistors,
    Another wiring provided to intersect the one wiring in a plan view and electrically connect the thin film transistor;
    An insulating film interposed between the one wiring and the other wiring;
    A lead wire drawn from the one wire to the terminal region;
    Including a thin film transistor substrate,
    The lead-out wiring electrically connects the first lead-out wiring led out from one wiring electrically connecting the thin film transistors corresponding to the first color sub-pixels and the thin film transistor corresponding to the second color sub-pixels. A second lead wire drawn from one wire to be connected,
    The first lead wiring is formed of the same conductive film as the one wiring,
    The display device, wherein the second lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
  9.  請求項8に記載の表示装置において、
     上記画素は第3色のサブ画素をさらに有し、
     上記引出配線は、上記第3色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第3引出配線を含み、
     上記第3引出配線は、上記一の配線と同一の導電膜で形成されている表示装置。
    The display device according to claim 8, wherein
    The pixel further includes a third color sub-pixel,
    The lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
    The display device in which the third lead wiring is formed of the same conductive film as the one wiring.
  10.  請求項9に記載の表示装置において、
     上記画素は第4色のサブ画素をさらに有し、
     上記引出配線は、上記第4色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第4引出配線を含み、
     上記第4引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されている表示装置。
    The display device according to claim 9, wherein
    The pixel further includes a fourth color sub-pixel,
    The lead-out wiring includes a fourth lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the fourth color,
    The display device, wherein the fourth lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
  11.  請求項10に記載の表示装置において、
     上記第1~第4色のサブ画素は、赤色、緑色、青色、及び黄色のサブ画素である表示装置。
    The display device according to claim 10.
    The display device, wherein the first to fourth color sub-pixels are red, green, blue, and yellow sub-pixels.
  12.  請求項8に記載の表示装置において、
     上記画素は第3色のサブ画素をさらに有し、
     上記引出配線は、上記第3色のサブ画素に対応する薄膜トランジスタを電気的に接続する一の配線から引き出された第3引出配線を含み、
     上記第3引出配線は、上記他の配線と同一の導電膜で形成され且つ上記絶縁膜に形成されたコンタクトホールを介して上記一の配線に電気的に接続されている表示装置。
    The display device according to claim 8, wherein
    The pixel further includes a third color sub-pixel,
    The lead-out wiring includes a third lead-out wiring led out from one wiring that electrically connects the thin film transistors corresponding to the sub-pixels of the third color,
    The display device, wherein the third lead wiring is formed of the same conductive film as the other wiring and is electrically connected to the one wiring through a contact hole formed in the insulating film.
PCT/JP2012/007598 2011-11-30 2012-11-27 Display device WO2013080520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-262700 2011-11-30
JP2011262700 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080520A1 true WO2013080520A1 (en) 2013-06-06

Family

ID=48535014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007598 WO2013080520A1 (en) 2011-11-30 2012-11-27 Display device

Country Status (1)

Country Link
WO (1) WO2013080520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033840A1 (en) * 2013-09-09 2015-03-12 シャープ株式会社 Active matrix substrate and display device
CN104700813A (en) * 2015-04-01 2015-06-10 上海中航光电子有限公司 Array substrate and forming method thereof
CN111971731A (en) * 2018-03-28 2020-11-20 夏普株式会社 Display device and method of manufacturing display device
CN112136169A (en) * 2018-05-22 2020-12-25 夏普株式会社 Display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333863A (en) * 2001-05-07 2002-11-22 Nec Corp Liquid crystal display device and driving method thereof
JP2005091962A (en) * 2003-09-19 2005-04-07 Sharp Corp Electrode wiring board and display device
JP2007219046A (en) * 2006-02-15 2007-08-30 Epson Imaging Devices Corp Liquid crystal display panel
JP2007248999A (en) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2008064961A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Wiring structure, and display device
JP2010033038A (en) * 2008-06-30 2010-02-12 Nec Electronics Corp Display panel driving method, and display
WO2011061961A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Wiring board and display apparatus
JP2011154161A (en) * 2010-01-27 2011-08-11 Hitachi Displays Ltd Display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333863A (en) * 2001-05-07 2002-11-22 Nec Corp Liquid crystal display device and driving method thereof
JP2005091962A (en) * 2003-09-19 2005-04-07 Sharp Corp Electrode wiring board and display device
JP2007219046A (en) * 2006-02-15 2007-08-30 Epson Imaging Devices Corp Liquid crystal display panel
JP2007248999A (en) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
JP2008064961A (en) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp Wiring structure, and display device
JP2010033038A (en) * 2008-06-30 2010-02-12 Nec Electronics Corp Display panel driving method, and display
WO2011061961A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Wiring board and display apparatus
JP2011154161A (en) * 2010-01-27 2011-08-11 Hitachi Displays Ltd Display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033840A1 (en) * 2013-09-09 2015-03-12 シャープ株式会社 Active matrix substrate and display device
CN104700813A (en) * 2015-04-01 2015-06-10 上海中航光电子有限公司 Array substrate and forming method thereof
CN104700813B (en) * 2015-04-01 2017-10-03 上海中航光电子有限公司 Array base palte and forming method thereof
US10079069B2 (en) 2015-04-01 2018-09-18 Shanghai Avic Opto Electronics Co., Ltd. Array substrate and method for forming the same
CN111971731A (en) * 2018-03-28 2020-11-20 夏普株式会社 Display device and method of manufacturing display device
CN112136169A (en) * 2018-05-22 2020-12-25 夏普株式会社 Display device
CN112136169B (en) * 2018-05-22 2022-04-29 夏普株式会社 Display device

Similar Documents

Publication Publication Date Title
US10969641B2 (en) Liquid crystal display device
US10013938B2 (en) Display panel and display device, and fabrication method thereof
US11402956B2 (en) Display device including position input function
US20170102600A1 (en) Display device
US10152931B2 (en) Display device
WO2015033840A1 (en) Active matrix substrate and display device
US8704990B2 (en) Electro-optical display apparatus
US10622384B2 (en) Liquid crystal display panel and liquid crystal display
US9824644B2 (en) Display element having switching elements formed into different shapes corresponding to sub pixels of different sizes
US10401698B2 (en) Display device comprising a plurality of common wirings each having an associated connecting portion disposed in a common plane with one another
US9971212B2 (en) Array substrate, liquid crystal display panel, and liquid crystal display
JP6427403B2 (en) Display device
US11302719B2 (en) Thin film transistor substrate and display panel
WO2013080520A1 (en) Display device
WO2010103676A1 (en) Active matrix substrate, display panel, display device, and electronic device
US9558697B2 (en) Display device driving sub-pixels of a plurality of colors
JP2010079314A (en) Display device
WO2019017301A1 (en) Display device with touch panel
JP2019148775A (en) Liquid crystal display device
WO2018051878A1 (en) Mounting substrate and display panel
WO2018225647A1 (en) Substrate for display device, and substrate
JP2015025875A (en) Liquid crystal display element
US20150109267A1 (en) Display device
JP7092914B2 (en) Display device
JP6918090B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP