WO2013080469A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2013080469A1
WO2013080469A1 PCT/JP2012/007356 JP2012007356W WO2013080469A1 WO 2013080469 A1 WO2013080469 A1 WO 2013080469A1 JP 2012007356 W JP2012007356 W JP 2012007356W WO 2013080469 A1 WO2013080469 A1 WO 2013080469A1
Authority
WO
WIPO (PCT)
Prior art keywords
output voltage
converters
converter
solar cell
control circuit
Prior art date
Application number
PCT/JP2012/007356
Other languages
French (fr)
Japanese (ja)
Inventor
和憲 木寺
真理子 西
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2013080469A1 publication Critical patent/WO2013080469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a power converter.
  • the output of the series-parallel solar cell panel thus configured is supplied to the DC / AC converter via a DC / DC converter (booster).
  • the DC output is converted to AC and AC200 V system interconnection is performed while performing maximum power point tracking control such that the output of the series solar cell panel is maximized by the DC / AC converter.
  • Three DC / DC converters are respectively connected to the battery panel (for example, Patent Document 1).
  • Three series solar panels are connected in parallel, and each DC / DC converter supplies an output voltage to the DC / AC converter.
  • the output voltages of the three series solar cell panels are supplied to one DC / AC converter via the corresponding three DC / DC converters.
  • the output of the DC / AC converter is grid-connected to the 200 V AC system.
  • This system configuration has higher efficiency than the former system configuration because each series solar cell panel is individually subjected to maximum power point tracking control by the DC / DC converter.
  • the DC / DC converter used may not have to have a sufficiently high output voltage of the series-parallel solar cell panel.
  • the DC / DC converter it is more difficult to ensure the safety of the photovoltaic system when the output of the series-parallel solar panel gets too high, than with the DC / DC converter.
  • the DC / DC converter it is necessary to increase the withstand voltage of the DC / AC converter components, leading to high cost. Therefore, as a real problem, a configuration using a DC / DC converter has been used.
  • An object of the present invention is to provide a power conversion device capable of individually controlling the power of a plurality of solar cells and increasing the utilization efficiency of the solar cells and improving the power conversion efficiency.
  • a power converter of the present invention is a plurality of DC / AC converters connected to a plurality of solar cells, and a plurality of DC / AC converters are connected in series. And a control circuit that controls the plurality of DC / AC converters.
  • power control of a plurality of solar cells can be performed individually, and utilization efficiency of the solar cells can be increased to improve power conversion efficiency.
  • the block diagram of the solar energy power generation system of 1st Embodiment The electric circuit diagram of a power converter device. It is a wave form diagram for explaining the operation of a power converter, and (a) is a wave form diagram of the 1st conversion output voltage, (b) is a wave form diagram of the 2nd conversion output voltage, (c) is the 3rd conversion output The waveform diagram of a voltage, (d) is a waveform diagram of a combined output voltage and an output voltage.
  • the block diagram of the solar energy power generation system of 2nd Embodiment The electric circuit diagram of a power converter device. It is a wave form diagram for explaining the operation of a power converter, and (a) is a wave form diagram of the 1st conversion output voltage, (b) is a wave form diagram of the 2nd conversion output voltage, (c) is the 3rd conversion output The waveform diagram of a voltage, (d) is a waveform diagram of a combined output voltage and an output voltage.
  • the photovoltaic power generation system shown in FIG. 1 has a first solar cell panel SP1, a second solar cell panel SP2, and a third solar cell panel SP3, and is configured of three power grids.
  • the power system connected to the solar power generation system is a commercial power system, and the power source G is AC 200V. Therefore, the total value of the rated output voltages of the first to third solar cell panels SP1 to SP3 is set to be larger than the maximum value (283 V) of the grid voltage.
  • the output voltage (first output voltage V1) of the first solar cell panel SP1 is set to 100 V
  • the output voltage (second output voltage V2) of the second solar cell panel SP2 is 200 V
  • the output voltage (third output voltage V3) of the third solar cell panel SP3 is set to 120V.
  • the first solar cell panel SP1 includes a plurality of series unit solar cell panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series.
  • the second solar panel SP2 includes a plurality of series unit solar panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series.
  • the third solar cell panel SP3 includes a plurality of series unit solar cell panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series.
  • the first to third solar cell panels SP1 to SP3 are connected to a power conditioner PC for grid connection to the AC 200 V system.
  • the power conditioner PC includes the power conversion device 1 connected to the first to third solar cell panels SP1 to SP3, the filter circuit 2, and the grid connection circuit unit 3.
  • the power converter 1 includes first to third DC / AC converters 11 to 13 and a control circuit 20.
  • the first DC / AC converter 11 includes a positive input terminal and a negative input terminal (not shown).
  • the positive electrode input terminal and the negative electrode input terminal are respectively connected to the first positive electrode output terminal T1a and the first negative electrode output terminal T1b of the first solar cell panel SP1.
  • a smoothing first capacitor C1 is connected between the positive and negative electrode input terminals of the first DC / AC converter 11.
  • a first voltage detector DV1 that detects the first output voltage V1 of the first solar cell panel SP1 is connected.
  • the second DC / AC converter 12 includes a positive input terminal and a negative input terminal which are not shown.
  • the positive electrode input terminal and the negative electrode input terminal are respectively connected to the second positive electrode output terminal T2a and the second negative electrode output terminal T2b of the second solar cell panel SP2.
  • a smoothing second capacitor C2 is connected between the positive electrode and the negative electrode input terminal of the second DC / AC converter 12.
  • a second voltage detector DV2 that detects the occasional second output voltage V2 of the second solar cell panel SP2 is connected.
  • the third DC / AC converter 13 includes a positive input terminal and a negative input terminal not shown.
  • the positive electrode input terminal and the negative electrode input terminal are respectively connected to the third positive electrode output terminal T3a and the third negative electrode output terminal T3b of the third solar cell panel SP3.
  • a smoothing third capacitor C3 is connected between the positive and negative electrode input terminals of the third DC / AC converter 13.
  • a third voltage detector DV3 for detecting the occasional third output voltage V3 of the third solar cell panel SP3 is connected.
  • the first to third DC / AC converters 11 to 13 are connected in series.
  • the first to third DC / AC converters 11 to 13 are serially connected in this order from the positive electrode side to the first DC / AC converter 11, the second DC / AC converter 12, and the third DC / AC converter 13.
  • the first DC / AC converter 11 has a positive output terminal P1a and a negative output terminal P1b.
  • the second DC / AC converter 12 has a positive electrode output terminal P2a and a negative electrode output terminal P2b.
  • the third DC / AC converter 13 has a positive electrode output terminal P3a and a negative electrode output terminal P3b.
  • the positive electrode output terminal P1a of the first DC / AC converter 11 is connected to the positive electrode input terminal P4a of the filter circuit 2, and the negative electrode output terminal P1b of the first DC / AC converter 11 is a positive electrode output terminal P2a of the second DC / AC converter 12. It is connected to the.
  • the negative output terminal P2b of the second DC / AC converter 12 is connected to the positive output terminal P3a of the third DC / AC converter 13, and the negative output terminal P3b of the third DC / AC converter 13 is the negative input terminal P4b of the filter circuit 2. It is connected to the.
  • a current detector DI is connected between the negative electrode output terminal P3b of the third DC / AC converter 13 and the negative electrode input terminal P4b of the filter circuit 2.
  • the current detector DI is configured to detect the current It flowing from the power conversion device 1 to the filter circuit 2 at each time.
  • the first DC / AC converter 11 includes a bridge circuit having four first to fourth switching elements Q11 to Q14 connected in a bridge shape.
  • the first to fourth switching elements Q11 to Q14 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q11 to Q14.
  • the first to fourth switching elements Q11 to Q14 are embodied as MOS transistors to which a body diode D is connected. This may be implemented by another switching element such as an IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in parallel.
  • IGBT Insulated Gate Bipolar Transistor
  • the first and second switching elements Q11 and Q12 are connected in series, the third and fourth switching elements Q13 and Q14 are connected in series, and the series circuit is connected in parallel.
  • the first and second switching elements Q11 and Q12 connected in series are connected in series in the order of the first switching element Q11 and the second switching element Q12 from the positive electrode output terminal T1a side. Further, the third and fourth switching elements Q13 and Q14 connected in series are connected in series in the order of the third switching element Q13 and the fourth switching element Q14 from the positive electrode output terminal T1a side.
  • the drain terminals of the first and third switching elements Q11 and Q13 are connected to the positive electrode output terminal T1a.
  • the source terminals of the second and third switching elements Q12 and Q13 are connected to the negative output terminal T1b.
  • the two first and third switching elements Q11 and Q13 on the positive electrode side are referred to as the switching elements of the upper arm.
  • the two second and fourth switching elements Q12 and Q14 on the negative electrode side are referred to as switching elements of the lower arm.
  • connection point (node N1) of the first switching element Q11 and the second switching element Q12 is connected to the positive electrode output terminal P1a of the first DC / AC converter 11, and the positive electrode output terminal P1a is the positive electrode input terminal P4a of the filter circuit 2. It is connected to the.
  • the connection point (node N2) of the third switching element Q13 and the fourth switching element Q14 is connected to the negative electrode output terminal P1b of the first DC / AC converter 11, and the negative electrode output terminal P1b is the second DC / AC converter 12 It is connected to the positive electrode output terminal P2a.
  • the first drive signal CT11 is supplied from the control circuit 20 to the gate terminal of the first switching element Q11.
  • the first switching element Q11 is turned on by the high level first drive signal CT11 and turned off by the low level first drive signal CT11.
  • the second drive signal CT12 is supplied from the control circuit 20 to the gate terminal of the second switching element Q12.
  • the second switching element Q12 is turned on by the high level second drive signal CT12 and turned off by the low level second drive signal CT12.
  • the third drive signal CT13 is supplied from the control circuit 20 to the gate terminal of the third switching element Q13.
  • the third switching element Q13 is turned on by the high level third drive signal CT13 and turned off by the low level third drive signal CT13.
  • the fourth drive signal CT14 is supplied from the control circuit 20 to the gate terminal of the fourth switching element Q14.
  • the fourth switching element Q14 is turned on by the high level fourth drive signal CT14 and turned off by the low level fourth drive signal CT14.
  • the first to fourth switching elements Q11 to Q14 are on / off controlled by the control circuit 20.
  • the first converted output voltage Va of 100 V is generated at the positive and negative output terminals P1a and P1b. Be done.
  • the first converted output voltage Va of -100 V is obtained at the positive and negative output terminals P1a and P1b. It is generated.
  • the first and third switching elements Q11 and Q13 are turned on and the second and fourth switching elements Q12 and Q14 are turned off, the first converted output voltage Va of 0 V is generated at the positive and negative output terminals P1a and P1b. Be done. Even when the second and fourth switching elements Q12 and Q14 are turned on and the first and third switching elements Q11 and Q13 are turned off, the first converted output voltage Va of 0 V is obtained at the positive and negative output terminals P1a and P1b. It is generated.
  • the second DC / AC converter 12 includes a bridge circuit having four fifth to eighth switching elements Q21 to Q24 connected in a bridge shape.
  • the fifth to eighth switching elements Q21 to Q24 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q21 to Q24.
  • the fifth to eighth switching elements Q21 to Q24 are embodied as MOS transistors to which the body diode D is connected.
  • other switching elements such as IGBTs having diodes connected in parallel are used. Good.
  • the fifth and sixth switching elements Q21 and Q22 are connected in series, the seventh and eighth switching elements Q23 and Q24 are connected in series, and the series circuit is connected in parallel.
  • the fifth and sixth switching elements Q21 and Q22 connected in series are connected in series in the order of the fifth switching element Q21 and the sixth switching element Q22 from the positive electrode output terminal T2a side.
  • the seventh and eighth switching elements Q23 and Q24 connected in series are connected in series in the order of the seventh switching element Q23 and the eighth switching element Q24 from the positive electrode output terminal T2a side.
  • the drain terminals of the fifth and seventh switching elements Q21 and Q23 are connected to the positive electrode output terminal T2a.
  • the source terminals of the sixth and eighth switching elements Q22 and Q24 are connected to the negative output terminal T2b.
  • the fifth to eighth switching elements Q21 to Q24 the two fifth and seventh switching elements Q21 and Q23 on the positive electrode side are referred to as switching elements of the upper arm. Also, the two sixth and eighth switching elements Q22 and Q24 on the negative electrode side are referred to as the switching elements of the lower arm.
  • connection point (node N3) of the fifth switching element Q21 and the sixth switching element Q22 is connected to the positive electrode output terminal P2a of the second DC / AC converter 12, and the positive electrode output terminal P2a is the negative electrode of the first DC / AC converter 11. It is connected to the output terminal P1b.
  • the connection point (node N4) of the seventh switching element Q23 and the eighth switching element Q24 is connected to the negative electrode output terminal P2b of the second DC / AC converter 12, and the negative electrode output terminal P2b is the third DC / AC converter 13 It is connected to the positive electrode output terminal P3a.
  • the gate terminal of the fifth switching element Q21 is supplied with a fifth drive signal CT21 from the control circuit 20.
  • the fifth switching element Q21 is turned on by the high level fifth drive signal CT21 and turned off by the low level fifth drive signal CT21.
  • the control circuit 20 supplies a sixth drive signal CT22 to the gate terminal of the sixth switching element Q22.
  • the sixth switching element Q22 is turned on by the high level sixth drive signal CT22 and turned off by the low level sixth drive signal CT22.
  • the seventh drive signal CT23 is supplied from the control circuit 20 to the gate terminal of the seventh switching element Q23.
  • the seventh switching element Q23 is turned on by the high level seventh drive signal CT23 and turned off by the low level seventh drive signal CT23.
  • the eighth drive signal CT24 is supplied from the control circuit 20 to the gate terminal of the eighth switching element Q24.
  • the eighth switching element Q24 is turned on by the high level eighth drive signal CT24 and turned off by the low level eighth drive signal CT24.
  • the fifth to eighth switching elements Q21 to Q24 are on / off controlled by the control circuit 20.
  • the positive and negative electrode output terminals P2a and P2b can be generated.
  • the second converted output voltage Vb of 200 V is generated at the positive and negative output terminals P2a and P2b. Be done.
  • the second converted output voltage Vb of -200 V is obtained at the positive and negative output terminals P2a and P2b. It is generated.
  • the third DC / AC converter 13 has a bridge circuit-like circuit configuration and includes four ninth to twelfth switching elements Q31 to Q34.
  • the ninth to twelfth switching elements Q31 to Q34 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q31 to Q34.
  • the ninth to twelfth switching elements Q31 to Q34 are embodied as the MOS transistors to which the body diode D is connected, but even if they are implemented by other switching elements such as IGBTs in which the diodes are connected in parallel Good.
  • the ninth and tenth switching elements Q31 and Q32 are connected in series, the eleventh and twelfth switching elements Q33 and Q34 are connected in series, and the series circuit is connected in parallel.
  • the ninth and tenth switching elements Q31 and Q32 connected in series are connected in series in the order of a ninth switching element Q31 and a tenth switching element Q32 from the positive electrode output terminal T3a side.
  • the eleventh and twelfth switching elements Q33 and Q34 connected in series are connected in series in the order of an eleventh switching element Q33 and a twelfth switching element Q34 from the positive electrode output terminal T3a side.
  • the drain terminals of the ninth and eleventh switching elements Q31 and Q33 are connected to the positive output terminal T3a.
  • the source terminals of the ninth and eleventh switching elements Q31 and Q33 are connected to the negative output terminal T3b.
  • the ninth to twelfth switching elements Q31 to Q34 the two ninth and eleventh switching elements Q31 and Q33 on the positive electrode side are referred to as the switching elements of the upper arm.
  • the two tenth and twelfth switching elements Q32 and Q34 on the negative electrode side are referred to as switching elements of the lower arm.
  • connection point (node N5) of the ninth switching element Q31 and the tenth switching element Q32 is connected to the positive electrode output terminal P3a of the third DC / AC converter 13, and the positive electrode output terminal P3a is the negative electrode of the second DC / AC converter 12. It is connected to the output terminal P2b. Further, the connection point (node N6) of the eleventh switching element Q33 and the twelfth switching element Q34 is connected to the negative output terminal P3b of the third DC / AC converter 13, and the negative output terminal P3b is connected via the current detector DI. The negative input terminal P4 b of the filter circuit 2 is connected.
  • the control circuit 20 supplies a ninth drive signal CT31 to the gate terminal of the ninth switching element Q31.
  • the ninth switching element Q31 is turned on by a high level ninth drive signal CT31 and turned off by a low level ninth drive signal CT31.
  • the tenth drive signal CT32 is supplied from the control circuit 20 to the gate terminal of the tenth switching element Q32.
  • the tenth switching element Q32 is turned on by the high level tenth drive signal CT32 and turned off by the low level tenth drive signal CT32.
  • An eleventh drive signal CT33 is supplied from the control circuit 20 to the gate terminal of the eleventh switching element Q33.
  • the eleventh switching element Q33 is turned on by a high level eleventh drive signal CT33 and turned off by a low level eleventh drive signal CT33.
  • the control circuit 20 supplies a twelfth drive signal CT34 to the gate terminal of the twelfth switching element Q34.
  • the twelfth switching element Q34 is turned on by a high level twelfth drive signal CT34 and turned off by a low level twelfth drive signal CT34.
  • the ninth to twelfth switching elements Q 31 to Q 34 are on / off controlled by the control circuit 20.
  • the positive and negative electrode output terminals P3a and P3b can be generated.
  • the third converted output voltage Vc of 120 V is generated at the positive and negative output terminals P3a, P3b. Be done.
  • the third converted output voltage Vc of -120 V is obtained at the positive and negative output terminals P3a and P3b. It is generated.
  • a third converted output voltage Vc of 0 V is generated at the positive and negative output terminals P3a and P3b. Be done. Even when the tenth and twelfth switching elements Q32 and Q34 are turned on and the ninth and eleventh switching elements Q31 and Q33 are turned off, the third converted output voltage Vc of 0 V is obtained at the positive and negative output terminals P3a and P3b. It is generated.
  • the first to third DC / AC converters 11 to 13 configured in this manner are connected in series. Therefore, the first to third converted output voltages Va, Vb and Vc of the first to third DC / AC converters 11 to 13 are superimposed.
  • the superimposed combined output voltage Vt indicated by the alternate long and short dash line in FIG. 3D is filtered from the positive electrode output terminal P1a of the first DC / AC converter 11 and the negative electrode output terminal P3b of the third DC / AC converter 13. Supplied to
  • the power converter 1 includes a control circuit 20.
  • the control circuit 20 controls the first to third DC / AC converters to generate an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3D at the positive and negative output terminals P5a and P5b of the filter circuit 2.
  • CT11 to CT14, CT21 to CT24, and CT31 to CT34 are generated.
  • the control circuit 20 generates, from the first output voltage V1, a first conversion output voltage Va having two levels shown in FIG. 3A.
  • First to fourth drive signals CT11 to CT14 are generated.
  • control circuit 20 For the second DC / AC converter 12, the control circuit 20 generates a fifth conversion output voltage Vb of three levels shown in FIG. 3B from the second output voltage V2. To generate eighth to eighth drive signals CT21 to CT24.
  • the control circuit 20 Furthermore, for the third DC / AC converter 13, the control circuit 20 generates a ninth converted output voltage Vc of two levels shown in FIG. 3C from the third output voltage V3. And 12th drive signals CT31 to CT34 are generated.
  • the output voltage Vo having the sine waveform W1 supplied from the filter circuit 2 shown by the solid line in FIG. 3D has the same frequency and output voltage as that of the AC 200 V system for grid connection. Therefore, the frequency of the output voltage Vo of the sine waveform W1 is determined by the AC 200 V system that is grid-connected. Then, time t0 to time t6 which is one cycle T of the output voltage Vo of the sine waveform W1 are determined in advance by the frequency of the AC 200 V system which is grid-connected.
  • the control circuit 20 controls the first to third DC / AC converters 11 to 13 individually in time series, and the first to third DC / AC converters 11 to 13 obtained in time series are controlled.
  • a combined output voltage Vt is generated by superimposing the first to third converted output voltages Va to Vc. Therefore, the control circuit 20 needs to generate a combined output voltage Vt for generating an output voltage Vo having a sine waveform W1 supplied from the filter circuit 2 shown by a solid line in FIG. 3D.
  • the control circuit 20 divides the first to third DC / AC converters 11 to 13 into low frequency groups and high frequency groups.
  • the second DC / AC converter 12 is divided into low frequency groups
  • the first and third DC / AC converters 11 and 13 are divided into high frequency groups.
  • the control circuit 20 operates the fifth to eighth switching elements Q21 to Q24 of the second DC / AC converter 12 of the low frequency group at a low frequency (100%).
  • the control circuit 20 includes first to fourth switching elements Q11 to Q14 of the first DC / AC converter 11 in the high frequency group and ninth to twelfth switching elements Q31 to Q34 of the third DC / AC converter To operate at high frequency.
  • the condition that belongs to the low frequency group and the high frequency group is that the low frequency group includes one DC / AC converter, the high frequency group includes two DC / AC converters, and the total output voltage of the low frequency group Is smaller than the total output voltage of the high frequency group.
  • control circuit 20 is supplied with first to third voltage detection signals SV1 to SV3 from the first to third voltage detectors DV1 to DV3.
  • the control circuit 20 detects the first output voltage V1 of the first solar cell panel SP1 at that time based on the first voltage detection signal SV1 from the first voltage detector DV1.
  • the control circuit 20 detects the second output voltage V2 of the second solar cell panel SP2 at that time based on the second voltage detection signal SV2 from the second voltage detector DV2.
  • the control circuit 20 detects the third output voltage V3 of the third solar cell panel SP3 at that time based on the third voltage detection signal SV3 from the third voltage detector DV3.
  • the control circuit 20 receives the current detection signal SI from the current detector DI.
  • the control circuit 20 detects the current It flowing through the filter circuit 2 based on the current detection signal SI from the current detector DI.
  • the control circuit 20 controls the first to third solar cell panels SP1 to SP3 based on the first to third output powers PW1, PW2, and PW3 of the first to third solar cell panels SP1 to SP3 obtained each time.
  • An operation for maximum power point tracking (MPPT) control is performed each time.
  • MPPT Maixmum Power Point Track Inng
  • the maximum power point is determined for each of the first to third solar cell panels SP1 to SP3 by the hill climbing method.
  • the control circuit 20 controls on / off of the first to twelfth switching elements Q11 to Q14, Q21 to Q24, and Q31 to Q34 of the first to third DC / AC converters 11 to 13 so as to obtain the determined maximum power point. (Duty control) is configured.
  • control circuit 20 on the first to third DC / AC converters 11 to 13 will be described below.
  • the first DC / AC converter 11 belongs to a high frequency group and is duty controlled at high frequency as shown in FIG. 3 (a). More specifically, the control circuit 20 controls the first DC / AC converter 11 such that the first half cycle (time t0 to t3) of one cycle T is between 0 V and 100 V, and the first converted output voltage Va is a high frequency.
  • the first to fourth drive signals CT11 to CT14 whose duty is controlled are generated. Further, the control circuit 20 performs duty control of the first converted output voltage Va at a high frequency with respect to the first DC / AC converter 11 with the remaining second half cycle (time t3 to t6) between 0 volt and -100 V. First to fourth drive signals CT11 to CT14 are generated.
  • the occasional high frequency duty control for the first DC / AC converter 11 is performed by using the maximum of the first solar cell panel SP1 calculated by the control circuit 20 using the first output power PW1 of the first solar cell panel SP1.
  • the duty ratio is determined based on the power point.
  • the second DC / AC converter 12 belongs to the low frequency group and is duty controlled at low frequency as shown in FIG. 3 (b). More specifically, the control circuit 20 controls the second DC / AC converter 12 to switch the level of the second converted output voltage Vb in three steps at a predetermined timing in one cycle T.
  • the timing of switching the level of the second converted output voltage Vb is determined by the AC 200 V system commercial frequency that is grid-connected, and is the timing at which the output voltage Vo of the sine waveform W1 passes 200 V and -200 V .
  • the half cycle of the sine waveform W1 of the output voltage Vo is set to time t3 at times t0 to t6.
  • time of T / 8 cycle is time t1
  • time of 3T / 8 cycle is time t2
  • time of 5T / 8 cycle is time t4.
  • time of the 7T / 8 cycle is time t5.
  • Time t1 is timing when the output voltage Vo of the sine waveform W1 passes the level of 200 V toward the maximum value.
  • time t2 is timing when the output voltage Vo of the sine waveform W1 passes a level of 200 V toward 0 volt.
  • time t4 is the timing when the output voltage Vo of the sine waveform W1 passes the level of -200 V toward the minimum value.
  • time t5 is the timing when the output voltage Vo of the sine waveform W1 passes the level of -200 V toward 0 volt.
  • the third DC / AC converter 13 belongs to a high frequency group and is duty controlled at high frequency as shown in FIG. 3 (c). More specifically, the control circuit 20 controls the third DC / AC converter 13 so that the first conversion period V (time t0 to t3) is between 0 V and 100 V, and the third converted output voltage Vc is high frequency First to fourth drive signals CT11 to CT14 to be controlled are generated. Further, the control circuit 20 performs duty control of the third converted output voltage Vc at a high frequency with respect to the third DC / AC converter 13 with the remaining second half cycle (time t3 to t6) between 0 volt and -100 V. First to fourth drive signals CT11 to CT14 are generated.
  • the occasional high frequency duty control for the third DC / AC converter 13 is the maximum of the third solar cell panel SP3 calculated by the control circuit 20 using the third output power PW3 of the third solar cell panel SP3.
  • the duty ratio is determined based on the power point.
  • the control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 in time series between time t0 to t6 to make time series of the first to third converted output voltages Va to Vc. Generated on The first to third converted output voltages Va to Vc generated in time series are superimposed to form a combined output voltage Vt having a waveform shown by an alternate long and short dash line in FIG. Ru.
  • the filter circuit 2 has a first alternating current reactor L1, a second alternating current reactor L2, and a smoothing capacitor Cx.
  • One end of the first AC reactor L1 is connected to the positive electrode output terminal P1a of the first DC / AC converter 11 via the positive electrode input terminal P4a.
  • One end of the second AC reactor L2 is connected to the negative electrode output terminal P3b of the third DC / AC converter 13 via the negative electrode input terminal P4b and the current detector DI.
  • the smoothing capacitor Cx is connected between the positive electrode output terminal P5a and the negative electrode output terminal P5b of the filter circuit 2.
  • the filter circuit 2 is generated between the positive and negative electrode input terminals P4a and P4b and between the positive electrode output terminal P1a of the first DC / AC converter 11 and the negative electrode output terminal P3b of the third DC / AC converter 13 (FIG. 3D)
  • a combined output voltage Vt indicated by a one-dot chain line is input.
  • the filter circuit 2 averages the input combined output voltage Vt and outputs an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3D from the positive and negative output terminals P5a, P5b. It supplies to the grid connection circuit unit 3 via P5a and P5b.
  • the grid connection circuit unit 3 receives an output voltage Vo having a sine waveform W1 from the filter circuit 2 and supplies a current with a power factor of approximately 1 to the wiring of the AC 200 V system. Power is supplied to the load Z of the AC 200 V system.
  • control circuit 20 generates from the filter circuit 2 a combined output voltage Vt shown by an alternate long and short dash line in FIG. 3 (d) for generating an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3 (d). Control of the first to third DC / AC converters 11 to 13 is started.
  • the control circuit 20 performs duty control of the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency, and performs duty control of the first conversion output at a level between 0 V and 100 V. Generate voltage Va.
  • the third switching element Q13 is turned off and the fourth switching element Q14 is turned on.
  • the first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
  • the first converted output voltage Va is 100V.
  • the first switching element Q11 is turned off and the second switching element Q12 is turned on, the first converted output voltage Va becomes 0V.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between the time t0 and t1, the fifth and seventh switching elements Q21 and Q23 are turned off, and the sixth and eighth switching elements Q22 and Q24 are turned on.
  • control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency to perform duty control at a level between 0 V and 120 V.
  • a conversion output voltage Vc is generated.
  • the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on.
  • the ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
  • the ninth switching element Q31 when the ninth switching element Q31 is turned on and the tenth switching element Q32 is turned off, the third converted output voltage Vc becomes 120V.
  • the ninth switching element Q31 when the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on, the third converted output voltage Vc becomes 0V.
  • the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t0 to t1, as shown by the one-dot chain line in FIG. Output.
  • the control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency, similarly to time t0 to t1, to a level between 0 V and 100 V.
  • a duty-controlled first converted output voltage Va is generated.
  • the third switching element Q13 is turned off and the fourth switching element Q14 is turned on. Similar to time t0 to t1, the first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 200V. That is, between time t1 and t2, the fifth and eighth switching elements Q21 and Q24 are turned on, and the sixth and seventh switching elements Q22 and Q23 are turned off.
  • control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency as in the time t0 to t1 to set between 0V and 120V.
  • a third conversion output voltage Vc duty-controlled at the level is generated.
  • the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on. Similar to time t0 to t1, the ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
  • the power conversion device 1 generates the combined output voltage Vt of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t1 to t2, as shown by the one-dot chain line in FIG. Output.
  • the control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency, as at times t0 to t2, to a level between 0 V and 100 V.
  • a duty-controlled first converted output voltage Va is generated.
  • the third switching element Q13 is turned off and the fourth switching element Q14 is turned on. Then, as in the times t0 to t2, the first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between time t2 and t3, the fifth and seventh switching elements Q21 and Q23 are turned off and the sixth and eighth switching elements Q22 and Q24 are turned on as in the time t0 to t1.
  • control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at high frequency similarly to the time t0 to t2, and the voltage is between 0V and 120V.
  • a third conversion output voltage Vc duty-controlled at the level is generated.
  • the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on. Similar to times t0 to t2, the ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
  • the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t2 to t3, as shown by the alternate long and short dash line in FIG. Output.
  • the control circuit 20 performs duty control of the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency to perform duty control at a level between 0 V and -100 V.
  • An output voltage Va is generated.
  • the first switching element Q11 is turned off and the second switching element Q12 is turned on.
  • the third switching element Q13 and the fourth switching element Q14 are complementarily turned on and off.
  • the third switching element Q13 when the third switching element Q13 is turned on and the fourth switching element Q14 is turned off, the first converted output voltage Va becomes -100V. Conversely, when the third switching element Q13 is turned off and the fourth switching element Q14 is turned on, the first converted output voltage Va becomes 0V.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 like the time t2 to t3 to maintain the second converted output voltage maintained at 0 V. Generate Vb. That is, between times t3 and t4, the fifth and seventh switching elements Q21 and Q23 are turned off and the sixth and eighth switching elements Q22 and Q24 are turned on, as in the times t2 to t3.
  • control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency to perform duty control at a level between 0 V and -120 V. 3 Generate a converted output voltage Vc.
  • the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on.
  • the eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on and off.
  • the third converted output voltage Vc becomes -120V.
  • the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on, the third converted output voltage Vc becomes 0V.
  • the power conversion device 1 generates the combined output voltage Vt of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t3 to t4, as shown by the alternate long and short dash line in FIG. Output.
  • the control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency similarly to the time t3 to t4, and the level between 0 V and -100 V To generate the first conversion output voltage Va that is duty controlled.
  • the first switching element Q11 is turned off and the second switching element Q12 is turned on.
  • the third switching element Q13 and the fourth switching element Q14 are complementarily turned on / off as in the time t3 to the time t4.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at -120V. That is, between time t4 and t5, the sixth and seventh switching elements Q22 and Q23 are turned on, and the fifth and eighth switching elements Q21 and Q24 are turned on.
  • control circuit 20 performs duty control on the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency as in the time t3 to t4, and between 0V and -120V. To generate a third conversion output voltage Vc that is duty controlled at the level of
  • the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on. Then, the eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on / off as in the time t3 to t4.
  • the power conversion device 1 generates the combined output voltage V of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t4 to t5, as indicated by the one-dot chain line in FIG. Output.
  • the control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency similarly to the time t3 to t5, and sets the level between 0V and -100V. To generate the first conversion output voltage Va that is duty controlled.
  • the first switching element Q11 is turned off and the second switching element Q12 is turned on. Then, as in the times t3 to t5, the third switching element Q13 and the fourth switching element Q14 are complementarily turned on and off.
  • control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between time t5 and t6, the fifth and seventh switching elements Q21 and Q23 are turned off, and the sixth and eighth switching elements Q22 and Q24 are turned on.
  • control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at high frequency similarly to the time t3 to t5 to between 0V and -120V. To generate a third conversion output voltage Vc that is duty controlled at the level of
  • the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on. Then, as in the case of time t3 to time t5, the eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on and off.
  • the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t5 to t6, as indicated by the one-dot chain line in FIG. Output.
  • the control circuit 20 sets the time t0 to t6 as one cycle T, and the first to twelfth switching elements Q11 to Q14, Q21 to Q24, Q31 to Q34 of the first to third DC / AC converters 11 to 13. Drive control repeatedly in time series. Then, the power conversion device 1 repeatedly generates a combined output voltage Vt having a waveform indicated by a dashed dotted line in FIG. 3D and supplies the combined output voltage Vt to the filter circuit 2.
  • the filter circuit 2 inputs and averages the combined output voltage Vt, and supplies an output voltage Vo of a sine waveform W1 shown by a solid line in FIG.
  • the power conversion device 1 transmits the first to third DC / DC converters individually without using DC / DC converters for the first to third solar cell panels SP1 to SP3.
  • AC converters 11 to 13 were connected respectively.
  • the first to third DC / AC converters 11 to 13 are connected in series, and the first to third conversion output voltages Va to Vc supplied from the first to third DC / AC converters 11 to 13 are superimposed and synthesized.
  • An output voltage Vt was generated.
  • the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 are directly supplied to the first to third DC / AC converters 11 to 13.
  • the first to third DC / AC converters 11 to 13 provided in the first to third solar cell panels SP1 to SP3 respectively have maximum power points individually for the corresponding solar cell panels in the control circuit 20.
  • control is performed. Therefore, it is possible to realize a solar power generation system with higher utilization efficiency and high power conversion efficiency.
  • the first DC / AC converter 11 for the first solar cell panel SP1 and the third DC / AC converter 13 for the third solar cell panel SP3 are duty controlled at high frequency, First and third converted output voltages Va and Vc are generated.
  • the second DC / AC converter 12 for the second solar cell panel SP2 is duty-controlled (100%) at a low frequency to generate a second converted output voltage Vb.
  • the first conversion output voltage Va of two steps is generated by the first DC / AC converter 11, and the second conversion output voltage Vb of three steps is generated by the second DC / AC converter 12,
  • the second DC / AC converter 13 generates a two-stage third converted output voltage Vc.
  • the first to third converted output voltages Va to Vc are combined in time series to generate a combined output voltage Vt indicated by a one-dot chain line in FIG. 3D at seven levels.
  • the voltage change amount of the combined output voltage Vt can be reduced. As a result, it is possible to reduce the loss in the first and second AC reactors L1, L2 of the filter circuit 2 to which the combined output voltage Vt is supplied.
  • the first to third DC / AC converters 11 to 13 are divided into the low frequency group and the high frequency group.
  • the second DC / AC converter 12 of the second solar panel SP2 generates a second output voltage V2 higher than the first and third output voltages V1 and V3 of the first and third solar panels SP1 and SP3. , Divided into low frequency groups.
  • the second output voltage V2 having a high voltage is duty-controlled (100%) at a low frequency by the second DC / AC converter 12, the switching loss due to the high voltage can be reduced, and the power conversion device 1 is very It has high efficiency.
  • the power conversion device of the second embodiment has a feature in which a new configuration is partially added to the configuration of the power conversion device 1 of the first embodiment. Therefore, the added configuration will be described in detail, and the description of the common components will be omitted for the sake of convenience.
  • a step-up converter is provided between a connection point (node N7) between the positive electrode input terminal of the first DC / AC converter 11 and the first capacitor C1 and the first positive electrode output terminal T1a of the first solar cell panel SP1.
  • a first DC / DC converter 21 configured is provided.
  • the first changeover switch SW1 is connected in parallel to the first DC / DC converter 21.
  • the first changeover switch SW1 includes an N channel MOS transistor.
  • the gate circuit is supplied with the first changeover signal SG1 from the control circuit 20.
  • the first changeover switch SW1 is turned on when the high level first switching signal SG1 is supplied, and is turned off when the low level first switching signal SG1 is supplied.
  • the first changeover switch SW1 is turned on, the first output voltage V1 of the first solar cell panel SP1 is directly supplied to the first DC / AC converter 11 via the first changeover switch SW1.
  • the first changeover switch SW1 is turned off, the first output voltage V1 of the first solar cell panel SP1 is supplied to the first DC / AC converter 11 via the first DC / DC converter 21.
  • a boost converter is formed between a connection point (node N8) between the positive electrode input terminal of the second DC / AC converter 12 and the second capacitor C2 and the second positive electrode output terminal T2a of the second solar cell panel SP2.
  • a second DC / DC converter 22 is provided.
  • a second changeover switch SW2 is connected in parallel to the second DC / DC converter 22.
  • the second switch SW2 includes an N channel MOS transistor.
  • a second changeover signal SG2 is supplied from the control circuit 20 to the gate terminal.
  • the second changeover switch SW2 turns on when the high level second switching signal SG2 is supplied, and turns off when the low level second switching signal SG2 is supplied.
  • the second changeover switch SW2 is turned on, the second output voltage V2 of the second solar cell panel SP2 is directly supplied to the second DC / AC converter 12 via the second changeover switch SW2.
  • the second changeover switch SW2 is turned off, the second output voltage V2 of the second solar cell panel SP2 is supplied to the second DC / AC converter 12 via the second DC / DC converter 22.
  • a third boost converter is connected between a connection point (node N9) between the positive input terminal of the third DC / AC converter 13 and the third capacitor C3 (node N9) and the third positive output terminal T3a of the third solar cell panel SP3.
  • a 3DC / DC converter 23 is provided.
  • a third changeover switch SW3 is connected in parallel to the third DC / DC converter 23.
  • the third switch SW3 includes an N-channel MOS transistor.
  • the third changeover signal SG3 is supplied from the control circuit 20 to the gate terminal.
  • the third switch SW3 is turned on when the high level third switch signal SG3 is supplied, and is turned off when the low level third switch signal SG3 is shared.
  • the third switch SW3 is turned on, the third output voltage V3 of the third solar cell panel SP3 is directly supplied to the third DC / AC converter 13 through the third switch SW3.
  • the third switch SW3 is turned off, the third output voltage V3 of the third solar cell panel SP3 is supplied to the third DC / AC converter 13 via the third DC / DC converter 23.
  • the first to third changeover switches SW1 to SW3 are embodied by N channel MOS transistors.
  • the first to third changeover switches SW1 to SW3 may be implemented by switching devices such as IGBTs or relays having a slow switching speed.
  • the control circuit 20 calculates the total of the first to third output voltages V1 to V3 calculated from the detection signals SV1 to SV3 of the first to third voltage detectors DV1 to DV3 corresponding to the AC 200 V system. It is determined whether it is 283 V (maximum value). That is, the control circuit 20 determines whether or not the total voltage is less than or equal to the maximum value because the total voltage deviates from a predetermined voltage band exceeding the maximum value of the AC 200 V system predetermined.
  • the control circuit 20 sets the first to third switching signals SG1 to SG1 to the low level to the first to third changeover switches SW1 to SW3. By supplying SG3 respectively, the first to third changeover switches SW1 to SW3 are turned off.
  • the total voltage of the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 may be 283 V or less because the sun is behind.
  • the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 are supplied to the first to third DC / DC converters 21 to 23, respectively.
  • the control circuit 20 drives and controls the first to third DC / DC converters 21 to 23 to boost the first to third output voltages V1 to V3 so that the total voltage exceeds 283 V.
  • the third DC / AC converters 11 to 13 are respectively supplied. Similar to the first embodiment, the control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 to generate a combined output voltage Vt based on the first to third output voltages V1 to V3.
  • the control circuit 20 performs the first to third high levels with respect to the first to third changeover switches SW1 to SW3.
  • the switching signals SG1 to SG3 are supplied to turn on the first to third switching switches SW1 to SW3.
  • the control circuit 20 directly supplies the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 to the first to third DC / AC converters 11 to 13, respectively.
  • the control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 to generate a combined output voltage Vt, as in the first embodiment.
  • control circuit 20 controls the second output voltage V2 of the second solar cell panel SP2 of the low frequency group to the first and third output voltages V1 and V3 of the first and third solar panels SP1 and SP3 of the high frequency group. Determine if it has become greater than the total voltage of That is, the second output voltage V2 has the first and third output voltages V1 and V3 out of a predetermined voltage range in which the second output voltage V2 exceeds the total voltage of the first and third output voltages V1 and V3 determined in advance. Determine if it has become greater than the total voltage.
  • the control circuit 20 sets the second output voltage V2 to the first and third output voltages V1 and V3. Control to be smaller than the total voltage. That is, the control circuit 20 supplies the first output voltage V1 of the first solar cell panel SP1 to the first DC / DC converter 21 to boost it. Specifically, the control circuit 20 turns off the first changeover switch SW1 and boosts the first output voltage V1 of the first DC / DC converter 21.
  • the control circuit 20 turns off the third changeover switch SW3 to boost the third output voltage of the third DC / DC converter 23.
  • the third output voltage V3 may be boosted first. Further, the first output voltage V1 and the third output voltage V3 may be simultaneously boosted.
  • the control circuit 20 operates the first to third changeover switches SW1 to SW3. Turn on. That is, when the total voltage of the first to third output voltages V1 to V3 exceeds 283 V which is the maximum value of the AC 200 V system, the first to third output voltages V1 to V3 are switched to the first to third changeover switches SW1 to The respective first to third DC / AC converters 11 to 13 are supplied via SW3. Then, the same control as in the first embodiment is performed to generate a combined output voltage Vt.
  • the control circuit 20 turns off the first to third changeover switches SW1 to SW3. Let That is, when the total voltage of the first to third output voltages V1 to V3 becomes 283 V or less, which is the maximum value of 200 V AC, the first to third DC / DC converters can output the first to third output voltages V1 to V3. Feed to 21-23.
  • the control circuit 20 drives and controls the first to third DC / DC converters 21 to 23 such that the total voltage of the first to third output voltages V1 to V3 exceeds 283 V, and the first to third output voltages are controlled.
  • the first to third output voltages V1 to V3 boosted by the first to third DC / DC converters 21 to 23 are supplied to the corresponding first to third DC / AC converters 11 to 13.
  • the first to third DC / AC converters 11 to 13 perform the same control as in the first embodiment based on the boosted first to third output voltages V1 to V3 to generate a combined output voltage Vt. Therefore, the output voltage Vo output via the filter circuit 2 is adjusted to a sine waveform W1 exceeding 283 V which is the maximum value of the AC 200 V system.
  • the second output voltage V2 of the second solar cell panel SP2 is greater than the total voltage of the first and third output voltages V1 and V3 of the first and third solar cell panels SP1 and SP3. It can be large.
  • the control circuit 20 controls the second DC / DC converter 22 such that the second output voltage V2 is smaller than the sum of the first and third output voltages V1 and V3.
  • control circuit 20 supplies the first output voltage V1 of the first solar cell panel SP1 to the first DC / DC converter 21 to boost it. Specifically, the control circuit 20 turns off the first changeover switch SW1 to boost the first output voltage V1 of the first DC / DC converter 21.
  • the control circuit 20 collectively boosts the third output voltage of the third DC / DC converter 23 by turning off the third changeover switch SW3, and the high frequency higher than the second output voltage V2 of the low frequency group A sum of the first and third output voltages V1, V3 of the group is generated.
  • the second embodiment configured as described above has the following effects in addition to the effects of the first embodiment.
  • the first to third DC / DC converters 21 to 21 23 can generate an output voltage Vt that can be boosted and interconnected with an AC 200 V system.
  • the total voltage of the first and third output voltages V1 and V3 of the first and third solar cell panels SP1 and SP3 is smaller than the second output voltage V2 of the second solar cell panel SP2 May be Even in such a case, the control circuit 20 can generate a total voltage of the first and third output voltages V1 and V3 larger than the second output voltage V2. Therefore, the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 can be controlled with high efficiency in a wide range.
  • the low frequency group is embodied as the second DC / AC converter 12
  • the high frequency group is embodied as the first and third DC / AC converters 11 and 13.
  • the low frequency group may be embodied as the first DC / AC converter 11 and the high frequency group may be embodied as the second and third DC / AC converters 12 and 13.
  • the low frequency group may be embodied as the third DC / AC converter 13 and the high frequency group may be embodied as the first and second DC / AC converters 11 and 12.
  • the first power point when performing duty control of the first and third DC / AC converters 11 and 13 of the high frequency group with the high frequency, the first power point is the hill climbing method for maximum power point tracking (MPPT).
  • MPPT maximum power point tracking
  • the maximum power point was determined for each of the third solar cell panels SP1 to SP3.
  • the first and third DC / AC converters 11 and 13 were duty controlled to obtain the determined maximum power point.
  • a method other than hill climbing may be used as a method of determining the maximum power point.
  • MPPT maximum power point tracking
  • the first to third DC / ACs 11 to 13 are divided into the low frequency group and the high frequency group, but they may not be divided into groups.
  • all of the first to third DCs / ACs 11 to 13 may be implemented with the first to third DCs / ACs 11 to 13 as high frequency groups.
  • the second DC / AC 12 is duty controlled at a high frequency when generating the second converted output voltage Vb including 200 V, 0 V, and -200 V.
  • the power conversion device 1 of the solar power generation system is configured by connecting the three first to third solar cell panels SP1, SP2, and SP3.
  • the power conversion device 1 may be applied to a power conversion device in which four, five or more solar cell panels are connected.
  • the first to third solar cell panels SP1 to SP3 are solar cells for connecting to the AC 200 V system.
  • a plurality of series circuits including a plurality of solar cell elements connected in series are connected in parallel to form a unit solar cell panel, and a plurality of unit solar cell panels are connected in series to form a series unit solar cell panel A plurality of series unit solar cell panels were connected in parallel to form a solar cell.
  • the power conversion device 1 of such a solar cell may be applied to a power conversion device of a solar cell other than a solar cell for connecting to an AC 200 V system.

Abstract

The purpose of the present invention is to provide a power conversion device capable of individually power-controlling a plurality of solar cells, improving the utilization rate of the solar cells, and increasing power conversion efficiency. First to third DC/AC converters (11-13) are connected to first to third solar cell panels (SP1-SP3), respectively. The first to third DC/AC converters (11-13) are connected in series. A control circuit (20) individually controls the first to third DC/AC converters (11-13). The first to third DC/AC converters (11-13) convert first to third output voltages (V1-V3) to first converted output voltages (Va-Vc). The first converted output voltages (Va-Vc) are superimposed and become a combined output voltage (Vt), which is output to a filter circuit (2).

Description

電力変換装置Power converter
 本発明は、電力変換装置に関するものである。 The present invention relates to a power converter.
 従来、24枚の太陽電池パネルが使用され、各太陽電池パネルが200W、25Vの定格出力を有する太陽光発電システムが製造される場合、4.8kW(=200W×24)を生成するために、8枚の太陽電池パネルが直列に接続される。直列太陽電池パネルは、200V(=25V×8)の出力電圧を生成する。このとき、3個の直列太陽電池パネルを用意し並列に接続することにより直並列太陽電池パネルが製造されて、電流を確保していた。 Conventionally, to produce 4.8 kW (= 200 W x 24), when 24 solar panels are used and a solar power system is manufactured with each solar panel having a rated output of 200 W, 25 V, Eight solar panels are connected in series. A series solar panel produces an output voltage of 200 V (= 25 V × 8). At this time, a series-parallel solar cell panel was manufactured by preparing three series solar cell panels and connecting them in parallel to secure a current.
 このように構成された直並列太陽電池パネルの出力は、DC/DC変換器(昇圧器)を介してDC/AC変換器に供給される。DC/AC変換器により直列太陽電池パネルの出力が最大になるような最大電力点追従制御が行われながらDC出力をACに変換してAC200V系統連系を行う。 The output of the series-parallel solar cell panel thus configured is supplied to the DC / AC converter via a DC / DC converter (booster). The DC output is converted to AC and AC200 V system interconnection is performed while performing maximum power point tracking control such that the output of the series solar cell panel is maximized by the DC / AC converter.
 しかし、この太陽光発電システムでは、複数の直並列太陽電池パネルの出力を一つにまとめて最大電力点追従制御が行われるため、各直列太陽電池パネルが最大出力を生成しない問題がある。 However, in this photovoltaic power generation system, the outputs of a plurality of series-parallel solar panels are grouped into one and maximum power point tracking control is performed, so that there is a problem that each series solar panel does not generate the maximum output.
 そこで、別のシステムでは、各直列太陽電池パネルが、8枚の太陽電池パネルを直列に接続することにより構成されて、200V(=25V×8)の出力電圧が生成され、3個の直列太陽電池パネルには3個のDC/DC変換器がそれぞれ接続される(例えば、特許文献1)。3個の直列太陽電池パネルは、並列に接続されて、各DC/DC変換器は、出力電圧をDC/AC変換器に供給する。これによって、3個の直列太陽電池パネルの出力電圧は、それぞれ対応する3個のDC/DC変換器を介して、1つのDC/AC変換器に供給される。DC/AC変換器の出力がAC200V系統に系統連系される。 Therefore, in another system, each series solar cell panel is configured by connecting eight solar cell panels in series to generate an output voltage of 200 V (= 25 V × 8), and three series solar cells are formed. Three DC / DC converters are respectively connected to the battery panel (for example, Patent Document 1). Three series solar panels are connected in parallel, and each DC / DC converter supplies an output voltage to the DC / AC converter. Thus, the output voltages of the three series solar cell panels are supplied to one DC / AC converter via the corresponding three DC / DC converters. The output of the DC / AC converter is grid-connected to the 200 V AC system.
 このシステム構成は、各直列太陽電池パネルは個別にDC/DC変換器にて最大電力点追従制御がなされることから、前者のシステム構成に比べて高い効率を有する。 This system configuration has higher efficiency than the former system configuration because each series solar cell panel is individually subjected to maximum power point tracking control by the DC / DC converter.
特開2003-124429号公報JP 2003-124429 A
 上記した前者の太陽光発電システムでは、使用されているDC/DC変換器は直並列太陽電池パネルの出力電圧が十分高ければ無くてもよい。しかしながら、DC/DC変換器がないと、直並列太陽電池パネルの出力が高くなり過ぎた場合に太陽光発電システムの安全性を確保することが、DC/DC変換器があるときよりも難しい問題がある。また、DC/DC変換器がないと、DC/AC変換器の部品の耐圧を上げる必要がありコスト高につながる。このため、現実問題としてDC/DC変換器を用いた構成になっていた。 In the former solar power generation system described above, the DC / DC converter used may not have to have a sufficiently high output voltage of the series-parallel solar cell panel. However, without the DC / DC converter, it is more difficult to ensure the safety of the photovoltaic system when the output of the series-parallel solar panel gets too high, than with the DC / DC converter. There is. In addition, without the DC / DC converter, it is necessary to increase the withstand voltage of the DC / AC converter components, leading to high cost. Therefore, as a real problem, a configuration using a DC / DC converter has been used.
 従って、直並列太陽電池パネルの出力電圧は、DC/DC変換器とDC/AC変換器の二つの変換器を通るために変換器での損失が大きくなり、太陽光発電システムの効率が低下するという問題があった。 Therefore, the output voltage of the series-parallel solar cell panel passes through two converters of DC / DC converter and DC / AC converter, so the loss in the converter increases and the efficiency of the photovoltaic system decreases. There was a problem that.
 また、上記した後者の太陽光発電システムでは、各直列太陽電池パネルにはDC/DC変換器が必須となる。従って、各直列太陽電池パネルの出力電圧は、DC/DC変換器とDC/AC変換器の二つの変換器を通ることになる。その結果、各直列太陽電池パネルの出力電圧は、2つの変換器を通ることから変換器での損失が大きくなり、同様に、太陽光発電システムの効率が低下するという問題があった。 Moreover, in the latter solar power generation system mentioned above, a DC / DC converter is essential to each series solar cell panel. Therefore, the output voltage of each series solar cell panel passes through two converters, a DC / DC converter and a DC / AC converter. As a result, since the output voltage of each series solar cell panel passes through two converters, the loss in the converter increases, and similarly, there is a problem that the efficiency of the solar power generation system decreases.
 本発明の目的は、複数の太陽電池を個別に電力制御でき太陽電池の利用効率を上げ電力変換効率を向上させることができる電力変換装置を提供することにある。 An object of the present invention is to provide a power conversion device capable of individually controlling the power of a plurality of solar cells and increasing the utilization efficiency of the solar cells and improving the power conversion efficiency.
 上記課題を解決するために、本発明の電力変換装置は、複数の太陽電池にそれぞれ接続された複数のDC/AC変換器であって、複数のDC/AC変換器は、直列に接続されている、前記複数のDC/AC変換器と、前記複数のDC/AC変換器を制御する制御回路とを備える。 In order to solve the above-mentioned subject, a power converter of the present invention is a plurality of DC / AC converters connected to a plurality of solar cells, and a plurality of DC / AC converters are connected in series. And a control circuit that controls the plurality of DC / AC converters.
 本発明によれば、複数の太陽電池を個別に電力制御でき太陽電池の利用効率を上げ電力変換効率を向上させることができる。 According to the present invention, power control of a plurality of solar cells can be performed individually, and utilization efficiency of the solar cells can be increased to improve power conversion efficiency.
第1実施形態の太陽光発電システムの構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the solar energy power generation system of 1st Embodiment. 電力変換装置の電気回路図。The electric circuit diagram of a power converter device. 電力変換装置の作用を説明するための波形図であって、(a)は第1変換出力電圧の波形図、(b)は第2変換出力電圧の波形図、(c)は第3変換出力電圧の波形図、(d)は合成出力電圧と出力電圧の波形図。It is a wave form diagram for explaining the operation of a power converter, and (a) is a wave form diagram of the 1st conversion output voltage, (b) is a wave form diagram of the 2nd conversion output voltage, (c) is the 3rd conversion output The waveform diagram of a voltage, (d) is a waveform diagram of a combined output voltage and an output voltage. 第2実施形態の太陽光発電システムの構成図。The block diagram of the solar energy power generation system of 2nd Embodiment.
 (第1実施形態)
 以下、本発明を具体化した第1実施形態の電力変換装置を図面に従って説明する。
First Embodiment
A power converter according to a first embodiment of the present invention will now be described with reference to the drawings.
 図1に示す太陽光発電システムは、第1太陽電池パネルSP1、第2太陽電池パネルSP2、第3太陽電池パネルSP3を有し、3系統の電力系統から構成されている。太陽光発電システムと接続する電力系統が、商用電力系統であって、電源GがAC200Vである。このため、第1~第3太陽電池パネルSP1~SP3の各定格出力電圧の合計値は、系統電圧の最大値(283V)よりも大きくなるように設定されている。 The photovoltaic power generation system shown in FIG. 1 has a first solar cell panel SP1, a second solar cell panel SP2, and a third solar cell panel SP3, and is configured of three power grids. The power system connected to the solar power generation system is a commercial power system, and the power source G is AC 200V. Therefore, the total value of the rated output voltages of the first to third solar cell panels SP1 to SP3 is set to be larger than the maximum value (283 V) of the grid voltage.
 第1実施形態の電力変換装置では、第1太陽電池パネルSP1の出力電圧(第1出力電圧V1)は100Vに設定され、第2太陽電池パネルSP2の出力電圧(第2出力電圧V2)は200Vに設定され、第3太陽電池パネルSP3の出力電圧(第3出力電圧V3)は120Vに設定されている。 In the power conversion device of the first embodiment, the output voltage (first output voltage V1) of the first solar cell panel SP1 is set to 100 V, and the output voltage (second output voltage V2) of the second solar cell panel SP2 is 200 V The output voltage (third output voltage V3) of the third solar cell panel SP3 is set to 120V.
 第1太陽電池パネルSP1は、並列に接続された複数の直列単位太陽電池パネルを含む。各直列単位太陽電池パネルは、直列に接続された複数の単位太陽電池パネルを含む。各単位太陽電池パネルは、並列に接続された複数の直列回路を含む。各直列回路は、直列に接続された複数の太陽電池素子を有する。第1太陽電池パネルSP1は、その第1正極出力端子T1aと第1負極出力端子T1bとにおいて直流の第1出力電圧V1(=100V)を生成する。 The first solar cell panel SP1 includes a plurality of series unit solar cell panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series. The first solar cell panel SP1 generates a direct current first output voltage V1 (= 100 V) at the first positive electrode output terminal T1a and the first negative electrode output terminal T1b.
 第2太陽電池パネルSP2は、並列に接続された複数の直列単位太陽電池パネルを含む。各直列単位太陽電池パネルは、直列に接続された複数の単位太陽電池パネルを含む。各単位太陽電池パネルは、並列に接続された複数の直列回路を含む。各直列回路は、直列に接続された複数の太陽電池素子を有する。第2太陽電池パネルSP2は、その第2正極出力端子T2aと第2負極出力端子T2bとにおいて直流の第2出力電圧V2(=200V)を生成する。 The second solar panel SP2 includes a plurality of series unit solar panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series. The second solar cell panel SP2 generates a direct current second output voltage V2 (= 200 V) at the second positive electrode output terminal T2a and the second negative electrode output terminal T2b.
 第3太陽電池パネルSP3は、並列に接続された複数の直列単位太陽電池パネルを含む。各直列単位太陽電池パネルは、直列に接続された複数の単位太陽電池パネルを含む。各単位太陽電池パネルは、並列に接続された複数の直列回路を含む。各直列回路は、直列に接続された複数の太陽電池素子を有する。第3太陽電池パネルSP3は、その第3正極出力端子T3aと第3負極出力端子T3bとにおいて直流の第3出力電圧V3(=120V)を生成する。 The third solar cell panel SP3 includes a plurality of series unit solar cell panels connected in parallel. Each series unit solar panel includes a plurality of unit solar panels connected in series. Each unit solar cell panel includes a plurality of series circuits connected in parallel. Each series circuit has a plurality of solar cell elements connected in series. The third solar cell panel SP3 generates a direct current third output voltage V3 (= 120 V) at the third positive electrode output terminal T3a and the third negative electrode output terminal T3b.
 第1~第3太陽電池パネルSP1~SP3は、AC200V系に系統連系を行うためのパワーコンディショナーPCと接続されている。パワーコンディショナーPCは、第1~第3太陽電池パネルSP1~SP3と接続された電力変換装置1、フィルター回路2、系統連系回路部3を含む。 The first to third solar cell panels SP1 to SP3 are connected to a power conditioner PC for grid connection to the AC 200 V system. The power conditioner PC includes the power conversion device 1 connected to the first to third solar cell panels SP1 to SP3, the filter circuit 2, and the grid connection circuit unit 3.
 (電力変換装置1)
 電力変換装置1は、第1~第3DC/AC変換器11~13及び制御回路20を含む。
(Power converter 1)
The power converter 1 includes first to third DC / AC converters 11 to 13 and a control circuit 20.
 第1DC/AC変換器11は、図示しない正極入力端子と負極入力端子を含む。正極入力端子と負極入力端子が、第1太陽電池パネルSP1の第1正極出力端子T1aと第1負極出力端子T1bにそれぞれ接続されている。第1DC/AC変換器11には、第1太陽電池パネルSP1から第1出力電圧V1(=100V)が供給される。また、第1DC/AC変換器11の正極及び負極入力端子間には、平滑用の第1コンデンサC1が接続されている。さらに、第1DC/AC変換器11の正極及び負極入力端子間には、第1太陽電池パネルSP1のその時々の第1出力電圧V1を検出する第1電圧検出器DV1が接続されている。 The first DC / AC converter 11 includes a positive input terminal and a negative input terminal (not shown). The positive electrode input terminal and the negative electrode input terminal are respectively connected to the first positive electrode output terminal T1a and the first negative electrode output terminal T1b of the first solar cell panel SP1. A first output voltage V1 (= 100 V) is supplied to the first DC / AC converter 11 from the first solar cell panel SP1. In addition, a smoothing first capacitor C1 is connected between the positive and negative electrode input terminals of the first DC / AC converter 11. Furthermore, between the positive electrode and the negative electrode input terminal of the first DC / AC converter 11, a first voltage detector DV1 that detects the first output voltage V1 of the first solar cell panel SP1 is connected.
 第2DC/AC変換器12は、図示しない正極入力端子と負極入力端子を含む。正極入力端子と負極入力端子が、第2太陽電池パネルSP2の第2正極出力端子T2aと第2負極出力端子T2bにそれぞれ接続されている。第2DC/AC変換器12には、第2太陽電池パネルSP2から第2出力電圧V2(=200V)が供給される。また、第2DC/AC変換器12の正極及び負極入力端子間には、平滑用の第2コンデンサC2が接続されている。第2DC/AC変換器12の正極及び負極入力端子間には、第2太陽電池パネルSP2のその時々の第2出力電圧V2を検出する第2電圧検出器DV2が接続されている。 The second DC / AC converter 12 includes a positive input terminal and a negative input terminal which are not shown. The positive electrode input terminal and the negative electrode input terminal are respectively connected to the second positive electrode output terminal T2a and the second negative electrode output terminal T2b of the second solar cell panel SP2. The second DC / AC converter 12 is supplied with a second output voltage V2 (= 200 V) from the second solar cell panel SP2. In addition, a smoothing second capacitor C2 is connected between the positive electrode and the negative electrode input terminal of the second DC / AC converter 12. Between the positive electrode and the negative electrode input terminal of the second DC / AC converter 12, a second voltage detector DV2 that detects the occasional second output voltage V2 of the second solar cell panel SP2 is connected.
 第3DC/AC変換器13は、図示しない正極入力端子と負極入力端子を含む。正極入力端子と負極入力端子が、第3太陽電池パネルSP3の第3正極出力端子T3aと第3負極出力端子T3bにそれぞれ接続されている。第3DC/AC変換器13には、第3太陽電池パネルSP3から第3出力電圧V3(=120V)が供給される。また、第3DC/AC変換器13の正極及び負極入力端子間には、平滑用の第3コンデンサC3が接続されている。第3DC/AC変換器13の正極及び負極入力端子間には、第3太陽電池パネルSP3のその時々の第3出力電圧V3を検出する第3電圧検出器DV3が接続されている。 The third DC / AC converter 13 includes a positive input terminal and a negative input terminal not shown. The positive electrode input terminal and the negative electrode input terminal are respectively connected to the third positive electrode output terminal T3a and the third negative electrode output terminal T3b of the third solar cell panel SP3. The third output voltage V3 (= 120 V) is supplied to the third DC / AC converter 13 from the third solar cell panel SP3. A smoothing third capacitor C3 is connected between the positive and negative electrode input terminals of the third DC / AC converter 13. Between the positive electrode and the negative electrode input terminal of the third DC / AC converter 13, a third voltage detector DV3 for detecting the occasional third output voltage V3 of the third solar cell panel SP3 is connected.
 第1~第3DC/AC変換器11~13は、直列に接続されている。第1~第3DC/AC変換器11~13は、正極側から第1DC/AC変換器11、第2DC/AC変換器12及び第3DC/AC変換器13の順に直列接続されている。 The first to third DC / AC converters 11 to 13 are connected in series. The first to third DC / AC converters 11 to 13 are serially connected in this order from the positive electrode side to the first DC / AC converter 11, the second DC / AC converter 12, and the third DC / AC converter 13.
 詳述すると、第1DC/AC変換器11は、正極出力端子P1aと負極出力端子P1bを有している。第2DC/AC変換器12は、正極出力端子P2aと負極出力端子P2bを有している。第3DC/AC変換器13は、正極出力端子P3aと負極出力端子P3bを有している。 Specifically, the first DC / AC converter 11 has a positive output terminal P1a and a negative output terminal P1b. The second DC / AC converter 12 has a positive electrode output terminal P2a and a negative electrode output terminal P2b. The third DC / AC converter 13 has a positive electrode output terminal P3a and a negative electrode output terminal P3b.
 第1DC/AC変換器11の正極出力端子P1aはフィルター回路2の正極入力端子P4aに接続され、第1DC/AC変換器11の負極出力端子P1bは第2DC/AC変換器12の正極出力端子P2aに接続されている。第2DC/AC変換器12の負極出力端子P2bは第3DC/AC変換器13の正極出力端子P3aに接続され、第3DC/AC変換器13の負極出力端子P3bはフィルター回路2の負極入力端子P4bに接続されている。 The positive electrode output terminal P1a of the first DC / AC converter 11 is connected to the positive electrode input terminal P4a of the filter circuit 2, and the negative electrode output terminal P1b of the first DC / AC converter 11 is a positive electrode output terminal P2a of the second DC / AC converter 12. It is connected to the. The negative output terminal P2b of the second DC / AC converter 12 is connected to the positive output terminal P3a of the third DC / AC converter 13, and the negative output terminal P3b of the third DC / AC converter 13 is the negative input terminal P4b of the filter circuit 2. It is connected to the.
 なお、第3DC/AC変換器13の負極出力端子P3bとフィルター回路2の負極入力端子P4bとの間には、電流検出器DIが接続されている。電流検出器DIは、その時々の電力変換装置1からフィルター回路2に流れる電流Itを検出するように構成されている。 A current detector DI is connected between the negative electrode output terminal P3b of the third DC / AC converter 13 and the negative electrode input terminal P4b of the filter circuit 2. The current detector DI is configured to detect the current It flowing from the power conversion device 1 to the filter circuit 2 at each time.
 (第1DC/AC変換器11)
 図2に示すように、第1DC/AC変換器11は、ブリッジ状に接続された4個の第1~第4スイッチング素子Q11~Q14を有するブリッジ回路を含む。第1~第4スイッチング素子Q11~Q14は、NチャネルのMOSトランジスタにて形成され、各スイッチング素子Q11~Q14のソースドレイン間には、ボディーダイオードDが接続されている。なお、本実施形態では、第1~第4スイッチング素子Q11~Q14は、ボディーダイオードDを接続したMOSトランジスタに具体化した。これを、ダイオードを並列に接続したIGBT(Insulated Gate Bipolar Transistor)等、他のスイッチング素子で実施してもよい。
(1st DC / AC converter 11)
As shown in FIG. 2, the first DC / AC converter 11 includes a bridge circuit having four first to fourth switching elements Q11 to Q14 connected in a bridge shape. The first to fourth switching elements Q11 to Q14 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q11 to Q14. In the present embodiment, the first to fourth switching elements Q11 to Q14 are embodied as MOS transistors to which a body diode D is connected. This may be implemented by another switching element such as an IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in parallel.
 第1及び第2スイッチング素子Q11,Q12が直列に接続され、第3及び第4スイッチング素子Q13,Q14が直列に接続され、その直列回路が並列に接続されている。 The first and second switching elements Q11 and Q12 are connected in series, the third and fourth switching elements Q13 and Q14 are connected in series, and the series circuit is connected in parallel.
 直列に接続された第1及び第2スイッチング素子Q11,Q12は、正極出力端子T1a側から、第1スイッチング素子Q11、第2スイッチング素子Q12の順で直列に接続されている。また、直列に接続された第3及び第4スイッチング素子Q13,Q14は、正極出力端子T1a側から、第3スイッチング素子Q13、第4スイッチング素子Q14の順で直列に接続されている。第1および第3スイッチング素子Q11,Q13のドレイン端子が、正極出力端子T1aに接続されている。第2および第3スイッチング素子Q12,Q13のソース端子が、負極出力端子T1bに接続されている。 The first and second switching elements Q11 and Q12 connected in series are connected in series in the order of the first switching element Q11 and the second switching element Q12 from the positive electrode output terminal T1a side. Further, the third and fourth switching elements Q13 and Q14 connected in series are connected in series in the order of the third switching element Q13 and the fourth switching element Q14 from the positive electrode output terminal T1a side. The drain terminals of the first and third switching elements Q11 and Q13 are connected to the positive electrode output terminal T1a. The source terminals of the second and third switching elements Q12 and Q13 are connected to the negative output terminal T1b.
 ちなみに、第1~第4スイッチング素子Q11~Q14のうち、正極側の2個の第1及び第3スイッチング素子Q11,Q13を上側アームのスイッチング素子という。また、負極側の2個の第2及び第4スイッチング素子Q12,Q14を下側アームのスイッチング素子という。 Incidentally, among the first to fourth switching elements Q11 to Q14, the two first and third switching elements Q11 and Q13 on the positive electrode side are referred to as the switching elements of the upper arm. Further, the two second and fourth switching elements Q12 and Q14 on the negative electrode side are referred to as switching elements of the lower arm.
 第1スイッチング素子Q11と第2スイッチング素子Q12の接続点(ノードN1)は、第1DC/AC変換器11の正極出力端子P1aに接続され、同正極出力端子P1aはフィルター回路2の正極入力端子P4aに接続されている。また、第3スイッチング素子Q13と第4スイッチング素子Q14の接続点(ノードN2)は第1DC/AC変換器11の負極出力端子P1bに接続され、同負極出力端子P1bは第2DC/AC変換器12の正極出力端子P2aに接続されている。 The connection point (node N1) of the first switching element Q11 and the second switching element Q12 is connected to the positive electrode output terminal P1a of the first DC / AC converter 11, and the positive electrode output terminal P1a is the positive electrode input terminal P4a of the filter circuit 2. It is connected to the. The connection point (node N2) of the third switching element Q13 and the fourth switching element Q14 is connected to the negative electrode output terminal P1b of the first DC / AC converter 11, and the negative electrode output terminal P1b is the second DC / AC converter 12 It is connected to the positive electrode output terminal P2a.
 第1スイッチング素子Q11のゲート端子には、制御回路20から第1駆動信号CT11が供給される。第1スイッチング素子Q11は、ハイ・レベルの第1駆動信号CT11でオンし、ロウ・レベルの第1駆動信号CT11でオフする。 The first drive signal CT11 is supplied from the control circuit 20 to the gate terminal of the first switching element Q11. The first switching element Q11 is turned on by the high level first drive signal CT11 and turned off by the low level first drive signal CT11.
 第2スイッチング素子Q12のゲート端子には、制御回路20から第2駆動信号CT12が供給される。第2スイッチング素子Q12は、ハイ・レベルの第2駆動信号CT12でオンし、ロウ・レベルの第2駆動信号CT12でオフする。 The second drive signal CT12 is supplied from the control circuit 20 to the gate terminal of the second switching element Q12. The second switching element Q12 is turned on by the high level second drive signal CT12 and turned off by the low level second drive signal CT12.
 第3スイッチング素子Q13のゲート端子には、制御回路20から第3駆動信号CT13が供給される。第3スイッチング素子Q13は、ハイ・レベルの第3駆動信号CT13でオンし、ロウ・レベルの第3駆動信号CT13でオフする。 The third drive signal CT13 is supplied from the control circuit 20 to the gate terminal of the third switching element Q13. The third switching element Q13 is turned on by the high level third drive signal CT13 and turned off by the low level third drive signal CT13.
 第4スイッチング素子Q14のゲート端子には、制御回路20から第4駆動信号CT14が供給される。第4スイッチング素子Q14は、ハイ・レベルの第4駆動信号CT14でオンし、ロウ・レベルの第4駆動信号CT14でオフする。 The fourth drive signal CT14 is supplied from the control circuit 20 to the gate terminal of the fourth switching element Q14. The fourth switching element Q14 is turned on by the high level fourth drive signal CT14 and turned off by the low level fourth drive signal CT14.
 第1DC/AC変換器11では、第1~第4スイッチング素子Q11~Q14が、制御回路20にてオン・オフ制御される。第1DC/AC変換器11は、第1太陽電池パネルSP1からの第1出力電圧V1(=100V)を、「100V、0V、-100V」の3段階の第1変換出力電圧Vaに変換して正極及び負極出力端子P1a,P1b間に供給することができる。 In the first DC / AC converter 11, the first to fourth switching elements Q11 to Q14 are on / off controlled by the control circuit 20. The first DC / AC converter 11 converts the first output voltage V1 (= 100 V) from the first solar cell panel SP1 into a three-stage first converted output voltage Va of “100 V, 0 V, −100 V” It can be supplied between the positive and negative electrode output terminals P1a and P1b.
 つまり、第1及び第4スイッチング素子Q11,Q14がオンし、第2及び第3スイッチング素子Q12,Q13がオフする時には、正極及び負極出力端子P1a,P1bにおいて100Vの第1変換出力電圧Vaが生成される。 That is, when the first and fourth switching elements Q11 and Q14 are turned on and the second and third switching elements Q12 and Q13 are turned off, the first converted output voltage Va of 100 V is generated at the positive and negative output terminals P1a and P1b. Be done.
 また、第1及び第4スイッチング素子Q11,Q14がオフし、第2及び第3スイッチング素子Q12,Q13がオンする時には、正極及び負極出力端子P1a,P1bにおいて-100Vの第1変換出力電圧Vaが生成される。 Further, when the first and fourth switching elements Q11 and Q14 are turned off and the second and third switching elements Q12 and Q13 are turned on, the first converted output voltage Va of -100 V is obtained at the positive and negative output terminals P1a and P1b. It is generated.
 さらに、第1及び第3スイッチング素子Q11,Q13がオンし、第2及び第4スイッチング素子Q12,Q14がオフする時には、正極及び負極出力端子P1a,P1bにおいて0Vの第1変換出力電圧Vaが生成される。なお、第2及び第4スイッチング素子Q12,Q14がオンし、第1及び第3スイッチング素子Q11,Q13がオフする時にも、正極及び負極出力端子P1a,P1bにおいて0Vの第1変換出力電圧Vaが生成される。 Furthermore, when the first and third switching elements Q11 and Q13 are turned on and the second and fourth switching elements Q12 and Q14 are turned off, the first converted output voltage Va of 0 V is generated at the positive and negative output terminals P1a and P1b. Be done. Even when the second and fourth switching elements Q12 and Q14 are turned on and the first and third switching elements Q11 and Q13 are turned off, the first converted output voltage Va of 0 V is obtained at the positive and negative output terminals P1a and P1b. It is generated.
 (第2DC/AC変換器12)
 図2に示すように、第2DC/AC変換器12は、ブリッジ状に接続された4個の第5~第8スイッチング素子Q21~Q24を有するブリッジ回路を含む。第5~第8スイッチング素子Q21~Q24は、NチャネルのMOSトランジスタにて形成され、各スイッチング素子Q21~Q24のソースドレイン間にはボディーダイオードDが接続されている。なお、本実施形態では、第5~第8スイッチング素子Q21~Q24はボディーダイオードDを接続したMOSトランジスタに具体化したが、ダイオードを並列に接続したIGBT等、他のスイッチング素子で実施してもよい。
(2nd DC / AC converter 12)
As shown in FIG. 2, the second DC / AC converter 12 includes a bridge circuit having four fifth to eighth switching elements Q21 to Q24 connected in a bridge shape. The fifth to eighth switching elements Q21 to Q24 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q21 to Q24. In the present embodiment, the fifth to eighth switching elements Q21 to Q24 are embodied as MOS transistors to which the body diode D is connected. However, even if other switching elements such as IGBTs having diodes connected in parallel are used. Good.
 第5及び第6スイッチング素子Q21,Q22が直列に接続され、第7及び第8スイッチング素子Q23,Q24が直列に接続され、その直列回路が並列に接続されている。 The fifth and sixth switching elements Q21 and Q22 are connected in series, the seventh and eighth switching elements Q23 and Q24 are connected in series, and the series circuit is connected in parallel.
 直列に接続された第5及び第6スイッチング素子Q21,Q22は、正極出力端子T2a側から、第5スイッチング素子Q21、第6スイッチング素子Q22の順で直列に接続されている。また、直列に接続された第7及び第8スイッチング素子Q23,Q24は、正極出力端子T2a側から、第7スイッチング素子Q23、第8スイッチング素子Q24の順で直列に接続されている。そして、第5および第7スイッチング素子Q21,Q23のドレイン端子が正極出力端子T2aに接続されている。第6および第8スイッチング素子Q22,Q24のソース端子が負極出力端子T2bに接続されている。 The fifth and sixth switching elements Q21 and Q22 connected in series are connected in series in the order of the fifth switching element Q21 and the sixth switching element Q22 from the positive electrode output terminal T2a side. The seventh and eighth switching elements Q23 and Q24 connected in series are connected in series in the order of the seventh switching element Q23 and the eighth switching element Q24 from the positive electrode output terminal T2a side. The drain terminals of the fifth and seventh switching elements Q21 and Q23 are connected to the positive electrode output terminal T2a. The source terminals of the sixth and eighth switching elements Q22 and Q24 are connected to the negative output terminal T2b.
 ちなみに、第5~第8スイッチング素子Q21~Q24のうち、正極側の2個の第5及び第7スイッチング素子Q21,Q23を上側アームのスイッチング素子という。また、負極側の2個の第6及び第8スイッチング素子Q22,Q24を下側アームのスイッチング素子という。 Incidentally, among the fifth to eighth switching elements Q21 to Q24, the two fifth and seventh switching elements Q21 and Q23 on the positive electrode side are referred to as switching elements of the upper arm. Also, the two sixth and eighth switching elements Q22 and Q24 on the negative electrode side are referred to as the switching elements of the lower arm.
 第5スイッチング素子Q21と第6スイッチング素子Q22の接続点(ノードN3)は第2DC/AC変換器12の正極出力端子P2aに接続され、同正極出力端子P2aは第1DC/AC変換器11の負極出力端子P1bに接続されている。また、第7スイッチング素子Q23と第8スイッチング素子Q24の接続点(ノードN4)は第2DC/AC変換器12の負極出力端子P2bに接続され、同負極出力端子P2bは第3DC/AC変換器13の正極出力端子P3aに接続されている。 The connection point (node N3) of the fifth switching element Q21 and the sixth switching element Q22 is connected to the positive electrode output terminal P2a of the second DC / AC converter 12, and the positive electrode output terminal P2a is the negative electrode of the first DC / AC converter 11. It is connected to the output terminal P1b. The connection point (node N4) of the seventh switching element Q23 and the eighth switching element Q24 is connected to the negative electrode output terminal P2b of the second DC / AC converter 12, and the negative electrode output terminal P2b is the third DC / AC converter 13 It is connected to the positive electrode output terminal P3a.
 第5スイッチング素子Q21のゲート端子には、制御回路20から第5駆動信号CT21が供給される。第5スイッチング素子Q21は、ハイ・レベルの第5駆動信号CT21でオンし、ロウ・レベルの第5駆動信号CT21でオフする。 The gate terminal of the fifth switching element Q21 is supplied with a fifth drive signal CT21 from the control circuit 20. The fifth switching element Q21 is turned on by the high level fifth drive signal CT21 and turned off by the low level fifth drive signal CT21.
 第6スイッチング素子Q22のゲート端子には、制御回路20から第6駆動信号CT22が供給される。第6スイッチング素子Q22は、ハイ・レベルの第6駆動信号CT22でオンし、ロウ・レベルの第6駆動信号CT22でオフする。 The control circuit 20 supplies a sixth drive signal CT22 to the gate terminal of the sixth switching element Q22. The sixth switching element Q22 is turned on by the high level sixth drive signal CT22 and turned off by the low level sixth drive signal CT22.
 第7スイッチング素子Q23のゲート端子には、制御回路20から第7駆動信号CT23が供給される。第7スイッチング素子Q23は、ハイ・レベルの第7駆動信号CT23でオンし、ロウ・レベルの第7駆動信号CT23でオフする。 The seventh drive signal CT23 is supplied from the control circuit 20 to the gate terminal of the seventh switching element Q23. The seventh switching element Q23 is turned on by the high level seventh drive signal CT23 and turned off by the low level seventh drive signal CT23.
 第8スイッチング素子Q24のゲート端子には、制御回路20から第8駆動信号CT24が供給される。第8スイッチング素子Q24は、ハイ・レベルの第8駆動信号CT24でオンし、ロウ・レベルの第8駆動信号CT24でオフする。 The eighth drive signal CT24 is supplied from the control circuit 20 to the gate terminal of the eighth switching element Q24. The eighth switching element Q24 is turned on by the high level eighth drive signal CT24 and turned off by the low level eighth drive signal CT24.
 第2DC/AC変換器12では、第5~第8スイッチング素子Q21~Q24が、制御回路20にてオン・オフ制御される。第2DC/AC変換器12は、第2太陽電池パネルSP2からの第2出力電圧V2(=200V)を、「200V、0V、-200V」の3段階の第2変換出力電圧Vbに変換して正極及び負極出力端子P2a,P2bにおいて生成することができる。 In the second DC / AC converter 12, the fifth to eighth switching elements Q21 to Q24 are on / off controlled by the control circuit 20. The second DC / AC converter 12 converts the second output voltage V2 (= 200 V) from the second solar cell panel SP2 into a three-stage second converted output voltage Vb of “200 V, 0 V, −200 V”. The positive and negative electrode output terminals P2a and P2b can be generated.
 つまり、第5及び第8スイッチング素子Q21,Q24がオンし、第6及び第7スイッチング素子Q22,Q23がオフする時には、正極及び負極出力端子P2a,P2bにおいて200Vの第2変換出力電圧Vbが生成される。 That is, when the fifth and eighth switching elements Q21 and Q24 turn on and the sixth and seventh switching elements Q22 and Q23 turn off, the second converted output voltage Vb of 200 V is generated at the positive and negative output terminals P2a and P2b. Be done.
 また、第5及び第8スイッチング素子Q21,Q24がオフし、第6及び第7スイッチング素子Q22,Q23がオンする時には、正極及び負極出力端子P2a,P2bにおいて-200Vの第2変換出力電圧Vbが生成される。 When the fifth and eighth switching elements Q21 and Q24 are turned off and the sixth and seventh switching elements Q22 and Q23 are turned on, the second converted output voltage Vb of -200 V is obtained at the positive and negative output terminals P2a and P2b. It is generated.
 さらに、第5及び第7スイッチング素子Q21,Q23がオンし、第6及び第8スイッチング素子Q22,Q24がオフする時には、正極及び負極出力端子P2a,P2bにおいて0Vの第2変換出力電圧Vbが生成される。なお、第6及び第8スイッチング素子Q22,Q24がオンし、第5及び第7スイッチング素子Q21,Q23がオフする時にも、正極及び負極出力端子P2a,P2bにおいて0Vの第2変換出力電圧Vbが生成される。 Furthermore, when the fifth and seventh switching elements Q21 and Q23 turn on and the sixth and eighth switching elements Q22 and Q24 turn off, a second converted output voltage Vb of 0 V is generated at the positive and negative output terminals P2a and P2b. Be done. Even when the sixth and eighth switching elements Q22 and Q24 are turned on and the fifth and seventh switching elements Q21 and Q23 are turned off, the second converted output voltage Vb of 0 V is obtained at the positive and negative output terminals P2a and P2b. It is generated.
 (第3DC/AC変換器13)
 図2に示すように、第3DC/AC変換器13は、ブリッジ回路状の回路構成を有し、4個の第9~第12スイッチング素子Q31~Q34を含む。第9~第12スイッチング素子Q31~Q34は、NチャネルのMOSトランジスタにて形成され、各スイッチング素子Q31~Q34のソースドレイン間にはボディーダイオードDが接続されている。なお、本実施形態では、第9~第12スイッチング素子Q31~Q34はボディーダイオードDを接続したMOSトランジスタに具体化したが、ダイオードを並列に接続したIGBT等、他のスイッチング素子で実施してもよい。
(3rd DC / AC converter 13)
As shown in FIG. 2, the third DC / AC converter 13 has a bridge circuit-like circuit configuration and includes four ninth to twelfth switching elements Q31 to Q34. The ninth to twelfth switching elements Q31 to Q34 are formed of N-channel MOS transistors, and a body diode D is connected between the sources and drains of the switching elements Q31 to Q34. In the present embodiment, the ninth to twelfth switching elements Q31 to Q34 are embodied as the MOS transistors to which the body diode D is connected, but even if they are implemented by other switching elements such as IGBTs in which the diodes are connected in parallel Good.
 第9及び第10スイッチング素子Q31,Q32が直列に接続され、第11及び第12スイッチング素子Q33,Q34が直列に接続され、その直列回路が並列に接続されている。 The ninth and tenth switching elements Q31 and Q32 are connected in series, the eleventh and twelfth switching elements Q33 and Q34 are connected in series, and the series circuit is connected in parallel.
 直列に接続された第9及び第10スイッチング素子Q31,Q32は、正極出力端子T3a側から、第9スイッチング素子Q31、第10スイッチング素子Q32の順で直列に接続されている。また、直列に接続された第11及び第12スイッチング素子Q33,Q34は、正極出力端子T3a側から、第11スイッチング素子Q33、第12スイッチング素子Q34の順で直列に接続されている。第9および第11スイッチング素子Q31,Q33のドレイン端子が正極出力端子T3aに接続されている。また、第9および第11スイッチング素子Q31,Q33のソース端子が負極出力端子T3bに接続されている。 The ninth and tenth switching elements Q31 and Q32 connected in series are connected in series in the order of a ninth switching element Q31 and a tenth switching element Q32 from the positive electrode output terminal T3a side. The eleventh and twelfth switching elements Q33 and Q34 connected in series are connected in series in the order of an eleventh switching element Q33 and a twelfth switching element Q34 from the positive electrode output terminal T3a side. The drain terminals of the ninth and eleventh switching elements Q31 and Q33 are connected to the positive output terminal T3a. The source terminals of the ninth and eleventh switching elements Q31 and Q33 are connected to the negative output terminal T3b.
 ちなみに、第9~第12スイッチング素子Q31~Q34のうち、正極側の2個の第9及び第11スイッチング素子Q31,Q33を上側アームのスイッチング素子という。また、負極側の2個の第10及び第12スイッチング素子Q32,Q34を下側アームのスイッチング素子という。 Incidentally, among the ninth to twelfth switching elements Q31 to Q34, the two ninth and eleventh switching elements Q31 and Q33 on the positive electrode side are referred to as the switching elements of the upper arm. The two tenth and twelfth switching elements Q32 and Q34 on the negative electrode side are referred to as switching elements of the lower arm.
 第9スイッチング素子Q31と第10スイッチング素子Q32の接続点(ノードN5)は第3DC/AC変換器13の正極出力端子P3aに接続され、同正極出力端子P3aは第2DC/AC変換器12の負極出力端子P2bに接続されている。また、第11スイッチング素子Q33と第12スイッチング素子Q34の接続点(ノードN6)は第3DC/AC変換器13の負極出力端子P3bに接続され、同負極出力端子P3bは電流検出器DIを介してフィルター回路2の負極入力端子P4bに接続されている。 The connection point (node N5) of the ninth switching element Q31 and the tenth switching element Q32 is connected to the positive electrode output terminal P3a of the third DC / AC converter 13, and the positive electrode output terminal P3a is the negative electrode of the second DC / AC converter 12. It is connected to the output terminal P2b. Further, the connection point (node N6) of the eleventh switching element Q33 and the twelfth switching element Q34 is connected to the negative output terminal P3b of the third DC / AC converter 13, and the negative output terminal P3b is connected via the current detector DI. The negative input terminal P4 b of the filter circuit 2 is connected.
 第9スイッチング素子Q31のゲート端子には、制御回路20から第9駆動信号CT31が供給される。第9スイッチング素子Q31は、ハイ・レベルの第9駆動信号CT31でオンし、ロウ・レベルの第9駆動信号CT31でオフする。 The control circuit 20 supplies a ninth drive signal CT31 to the gate terminal of the ninth switching element Q31. The ninth switching element Q31 is turned on by a high level ninth drive signal CT31 and turned off by a low level ninth drive signal CT31.
 第10スイッチング素子Q32のゲート端子には、制御回路20から第10駆動信号CT32が供給される。第10スイッチング素子Q32は、ハイ・レベルの第10駆動信号CT32でオンし、ロウ・レベルの第10駆動信号CT32でオフする。 The tenth drive signal CT32 is supplied from the control circuit 20 to the gate terminal of the tenth switching element Q32. The tenth switching element Q32 is turned on by the high level tenth drive signal CT32 and turned off by the low level tenth drive signal CT32.
 第11スイッチング素子Q33のゲート端子には、制御回路20から第11駆動信号CT33が供給される。第11スイッチング素子Q33は、ハイ・レベルの第11駆動信号CT33でオンし、ロウ・レベルの第11駆動信号CT33でオフする。 An eleventh drive signal CT33 is supplied from the control circuit 20 to the gate terminal of the eleventh switching element Q33. The eleventh switching element Q33 is turned on by a high level eleventh drive signal CT33 and turned off by a low level eleventh drive signal CT33.
 第12スイッチング素子Q34のゲート端子には、制御回路20から第12駆動信号CT34が供給される。第12スイッチング素子Q34は、ハイ・レベルの第12駆動信号CT34でオンし、ロウ・レベルの第12駆動信号CT34でオフする。 The control circuit 20 supplies a twelfth drive signal CT34 to the gate terminal of the twelfth switching element Q34. The twelfth switching element Q34 is turned on by a high level twelfth drive signal CT34 and turned off by a low level twelfth drive signal CT34.
 第3DC/AC変換器13では、第9~第12スイッチング素子Q31~Q34が、制御回路20にてオン・オフ制御される。第3DC/AC変換器13は、第3太陽電池パネルSP3からの第3出力電圧V3(=120V)を、「120V、0V、-120V」の3段階の第3変換出力電圧Vcに変換して正極及び負極出力端子P3a,P3bにおいて生成することができる。 In the third DC / AC converter 13, the ninth to twelfth switching elements Q 31 to Q 34 are on / off controlled by the control circuit 20. The third DC / AC converter 13 converts the third output voltage V3 (= 120 V) from the third solar cell panel SP3 into a third conversion output voltage Vc of three stages of “120 V, 0 V, −120 V” The positive and negative electrode output terminals P3a and P3b can be generated.
 つまり、第9及び第12スイッチング素子Q31,Q34がオンし、第10及び第11スイッチング素子Q32,Q33がオフする時には、正極及び負極出力端子P3a,P3bにおいて120Vの第3変換出力電圧Vcが生成される。 That is, when the ninth and twelfth switching elements Q31, Q34 are turned on and the tenth and eleventh switching elements Q32, Q33 are turned off, the third converted output voltage Vc of 120 V is generated at the positive and negative output terminals P3a, P3b. Be done.
 また、第9及び第12スイッチング素子Q31,Q34がオフし、第10及び第11スイッチング素子Q32,Q33がオンする時には、正極及び負極出力端子P3a,P3bにおいて-120Vの第3変換出力電圧Vcが生成される。 When the ninth and twelfth switching elements Q31 and Q34 are turned off and the tenth and eleventh switching elements Q32 and Q33 are turned on, the third converted output voltage Vc of -120 V is obtained at the positive and negative output terminals P3a and P3b. It is generated.
 さらに、第9及び第11スイッチング素子Q31,Q33がオンし、第10及び第12スイッチング素子Q32,Q34がオフする時には、正極及び負極出力端子P3a,P3bにおいて0Vの第3変換出力電圧Vcが生成される。なお、第10及び第12スイッチング素子Q32,Q34がオンし、第9及び第11スイッチング素子Q31,Q33がオフする時にも、正極及び負極出力端子P3a,P3bにおいて0Vの第3変換出力電圧Vcが生成される。 Furthermore, when the ninth and eleventh switching elements Q31 and Q33 turn on and the tenth and twelfth switching elements Q32 and Q34 turn off, a third converted output voltage Vc of 0 V is generated at the positive and negative output terminals P3a and P3b. Be done. Even when the tenth and twelfth switching elements Q32 and Q34 are turned on and the ninth and eleventh switching elements Q31 and Q33 are turned off, the third converted output voltage Vc of 0 V is obtained at the positive and negative output terminals P3a and P3b. It is generated.
 図2に示すように、このように構成された第1~第3DC/AC変換器11~13は、直列接続に接続されている。このため、第1~第3DC/AC変換器11~13の第1~第3変換出力電圧Va,Vb,Vcは重畳される。図3(d)において1点鎖線で示す重畳された合成出力電圧Vtは、第1DC/AC変換器11の正極出力端子P1aと第3DC/AC変換器13の負極出力端子P3bとからフィルター回路2に供給される。 As shown in FIG. 2, the first to third DC / AC converters 11 to 13 configured in this manner are connected in series. Therefore, the first to third converted output voltages Va, Vb and Vc of the first to third DC / AC converters 11 to 13 are superimposed. The superimposed combined output voltage Vt indicated by the alternate long and short dash line in FIG. 3D is filtered from the positive electrode output terminal P1a of the first DC / AC converter 11 and the negative electrode output terminal P3b of the third DC / AC converter 13. Supplied to
 電力変換装置1は、制御回路20を備えている。 The power converter 1 includes a control circuit 20.
 制御回路20は、フィルター回路2の正極及び負極出力端子P5a,P5bにおいて、図3(d)に実線で示す正弦波形W1を有する出力電圧Voを生成するために第1~第3DC/AC変換器11~13を制御する。つまり、制御回路20は、第1~第3DC/AC変換器11~13の第1~第12スイッチング素子Q11~Q14,Q21~Q24,Q31~Q34を駆動させるための第1~第12駆動信号CT11~CT14,CT21~CT24,CT31~CT34を生成する。 The control circuit 20 controls the first to third DC / AC converters to generate an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3D at the positive and negative output terminals P5a and P5b of the filter circuit 2. Control 11 to 13. That is, the control circuit 20 drives the first to twelfth switching elements Q11 to Q14, Q21 to Q24, and Q31 to Q34 of the first to third DC / AC converters 11 to 13. CT11 to CT14, CT21 to CT24, and CT31 to CT34 are generated.
 詳述すると、第1DC/AC変換器11に対して、制御回路20は、第1出力電圧V1から、図3(a)に示す2段階のレベルの第1変換出力電圧Vaを生成させるための第1~第4駆動信号CT11~CT14を生成する。 More specifically, for the first DC / AC converter 11, the control circuit 20 generates, from the first output voltage V1, a first conversion output voltage Va having two levels shown in FIG. 3A. First to fourth drive signals CT11 to CT14 are generated.
 また、第2DC/AC変換器12に対して、制御回路20は、第2出力電圧V2から、図3(b)に示す3段階のレベルの第2変換出力電圧Vbを生成させるための第5~第8駆動信号CT21~CT24を生成する。 Further, for the second DC / AC converter 12, the control circuit 20 generates a fifth conversion output voltage Vb of three levels shown in FIG. 3B from the second output voltage V2. To generate eighth to eighth drive signals CT21 to CT24.
 さらに、第3DC/AC変換器13に対して、制御回路20は、第3出力電圧V3から、図3(c)に示す2段階のレベルの第3変換出力電圧Vcを生成させるための第9~第12駆動信号CT31~CT34を生成する。 Furthermore, for the third DC / AC converter 13, the control circuit 20 generates a ninth converted output voltage Vc of two levels shown in FIG. 3C from the third output voltage V3. And 12th drive signals CT31 to CT34 are generated.
 本実施形態では、図3(d)に実線で示すフィルター回路2から供給される正弦波形W1を有する出力電圧Voは、系統連系するAC200V系と同じ周波数及び出力電圧を有する。そのため、正弦波形W1の出力電圧Voの周波数は、系統連系するAC200V系によって決定されている。そして、正弦波形W1の出力電圧Voの1周期Tである時刻t0から時刻t6は、系統連系するAC200V系の周波数によって予め決められている。 In the present embodiment, the output voltage Vo having the sine waveform W1 supplied from the filter circuit 2 shown by the solid line in FIG. 3D has the same frequency and output voltage as that of the AC 200 V system for grid connection. Therefore, the frequency of the output voltage Vo of the sine waveform W1 is determined by the AC 200 V system that is grid-connected. Then, time t0 to time t6 which is one cycle T of the output voltage Vo of the sine waveform W1 are determined in advance by the frequency of the AC 200 V system which is grid-connected.
 そして、制御回路20は、第1~第3DC/AC変換器11~13をそれぞれ個別に時系列的に制御し、時系列に得られた第1~第3DC/AC変換器11~13の第1~第3変換出力電圧Va~Vcを重畳して合成された合成出力電圧Vtを生成する。従って、制御回路20は、図3(d)に実線で示すフィルター回路2から供給される正弦波形W1を有する出力電圧Voを生成させるための合成出力電圧Vtを生成する必要がある。 Then, the control circuit 20 controls the first to third DC / AC converters 11 to 13 individually in time series, and the first to third DC / AC converters 11 to 13 obtained in time series are controlled. A combined output voltage Vt is generated by superimposing the first to third converted output voltages Va to Vc. Therefore, the control circuit 20 needs to generate a combined output voltage Vt for generating an output voltage Vo having a sine waveform W1 supplied from the filter circuit 2 shown by a solid line in FIG. 3D.
 また、この合成出力電圧Vtを生成するにあたって、制御回路20は、第1~第3DC/AC変換器11~13を、低周波グループと高周波グループとに分ける。本実施形態では、第2DC/AC変換器12を低周波グループに、第1及び第3DC/AC変換器11,13を高周波グループに分けている。 Further, when generating the combined output voltage Vt, the control circuit 20 divides the first to third DC / AC converters 11 to 13 into low frequency groups and high frequency groups. In this embodiment, the second DC / AC converter 12 is divided into low frequency groups, and the first and third DC / AC converters 11 and 13 are divided into high frequency groups.
 制御回路20は、低周波グループの第2DC/AC変換器12の第5~第8スイッチング素子Q21~Q24を低周波(100%)で動作させるようにしている。これに対して、制御回路20は、高周波グループの第1DC/AC変換器11の第1~第4スイッチング素子Q11~Q14と第3DC/AC変換器13の第9~第12スイッチング素子Q31~Q34を高周波で動作させるようにしている。 The control circuit 20 operates the fifth to eighth switching elements Q21 to Q24 of the second DC / AC converter 12 of the low frequency group at a low frequency (100%). On the other hand, the control circuit 20 includes first to fourth switching elements Q11 to Q14 of the first DC / AC converter 11 in the high frequency group and ninth to twelfth switching elements Q31 to Q34 of the third DC / AC converter To operate at high frequency.
 ここで、低周波グループと高周波グループに属する条件は、低周波グループは1つのDC/AC変換器を含み、高周波グループは2つのDC/AC変換器を含むことと、低周波グループの合計出力電圧が、高周波グループの合計出力電圧より小さいことが条件である。 Here, the condition that belongs to the low frequency group and the high frequency group is that the low frequency group includes one DC / AC converter, the high frequency group includes two DC / AC converters, and the total output voltage of the low frequency group Is smaller than the total output voltage of the high frequency group.
 また、制御回路20には、第1~第3電圧検出器DV1~DV3から第1~第3電圧検出信号SV1~SV3が供給される。制御回路20は、第1電圧検出器DV1からの第1電圧検出信号SV1に基づいてその時の第1太陽電池パネルSP1の第1出力電圧V1を検出する。制御回路20は、第2電圧検出器DV2からの第2電圧検出信号SV2に基づいてその時の第2太陽電池パネルSP2の第2出力電圧V2を検出する。制御回路20は、第3電圧検出器DV3からの第3電圧検出信号SV3に基づいてその時の第3太陽電池パネルSP3の第3出力電圧V3を検出する。 Further, the control circuit 20 is supplied with first to third voltage detection signals SV1 to SV3 from the first to third voltage detectors DV1 to DV3. The control circuit 20 detects the first output voltage V1 of the first solar cell panel SP1 at that time based on the first voltage detection signal SV1 from the first voltage detector DV1. The control circuit 20 detects the second output voltage V2 of the second solar cell panel SP2 at that time based on the second voltage detection signal SV2 from the second voltage detector DV2. The control circuit 20 detects the third output voltage V3 of the third solar cell panel SP3 at that time based on the third voltage detection signal SV3 from the third voltage detector DV3.
 制御回路20は、電流検出器DIからの電流検出信号SIを入力する。制御回路20は、電流検出器DIからの電流検出信号SIに基づいてその時のフィルター回路2に流れる電流Itを検出する。 The control circuit 20 receives the current detection signal SI from the current detector DI. The control circuit 20 detects the current It flowing through the filter circuit 2 based on the current detection signal SI from the current detector DI.
 制御回路20は、その時々で演算した第1~第3出力電圧V1~V3と電流Itから、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電力PW1(=V1×It),PW2(=V2×It),PW3(=V3×It)をそれぞれ演算する。 The control circuit 20 generates first to third output powers PW1 (= V1 × It) of the first to third solar cell panels SP1 to SP3 from the first to third output voltages V1 to V3 and the current It calculated at each time. , PW2 (= V2 × It), and PW3 (= V3 × It) are respectively calculated.
 制御回路20は、その時々で求めた各第1~第3太陽電池パネルSP1~SP3の第1~第3出力電力PW1,PW2,PW3に基づいて、第1~第3太陽電池パネルSP1~SP3毎に最大電力点追従(MPPT)制御のための演算を行う。この最大電力点追従(MPPT:Maixmum Power Point Trackinng)制御のための演算は、本実施形態では、山登り法にて、第1~第3太陽電池パネルSP1~SP3毎に最大電力点を割出す。制御回路20は、その割り出した最大電力点を得るように第1~第3DC/AC変換器11~13の第1~第12スイッチング素子Q11~Q14,Q21~Q24,Q31~Q34をそれぞれオンオフ制御(デューティー制御)するように構成されている。 The control circuit 20 controls the first to third solar cell panels SP1 to SP3 based on the first to third output powers PW1, PW2, and PW3 of the first to third solar cell panels SP1 to SP3 obtained each time. An operation for maximum power point tracking (MPPT) control is performed each time. In the calculation for the maximum power point tracking (MPPT: Maixmum Power Point Track Inng) control, in the present embodiment, the maximum power point is determined for each of the first to third solar cell panels SP1 to SP3 by the hill climbing method. The control circuit 20 controls on / off of the first to twelfth switching elements Q11 to Q14, Q21 to Q24, and Q31 to Q34 of the first to third DC / AC converters 11 to 13 so as to obtain the determined maximum power point. (Duty control) is configured.
 以下、制御回路20が、第1~第3DC/AC変換器11~13に対して行う制御について説明する。 The control performed by the control circuit 20 on the first to third DC / AC converters 11 to 13 will be described below.
 (第1DC/AC変換器11)
 第1DC/AC変換器11は、高周波グループに属し、図3(a)で示すように、高周波にてデューティー制御される。詳述すると、制御回路20は、第1DC/AC変換器11に対して、1周期Tの前半周期(時刻t0~t3))を0Vと100Vの間で、第1変換出力電圧Vaが高周波でデューティー制御される第1~第4駆動信号CT11~CT14を生成する。また、制御回路20は、第1DC/AC変換器11に対して、残り後半周期(時刻t3~t6)を0ボルトと-100Vとの間で、第1変換出力電圧Vaが高周波でデューティー制御される第1~第4駆動信号CT11~CT14を生成する。
(1st DC / AC converter 11)
The first DC / AC converter 11 belongs to a high frequency group and is duty controlled at high frequency as shown in FIG. 3 (a). More specifically, the control circuit 20 controls the first DC / AC converter 11 such that the first half cycle (time t0 to t3) of one cycle T is between 0 V and 100 V, and the first converted output voltage Va is a high frequency. The first to fourth drive signals CT11 to CT14 whose duty is controlled are generated. Further, the control circuit 20 performs duty control of the first converted output voltage Va at a high frequency with respect to the first DC / AC converter 11 with the remaining second half cycle (time t3 to t6) between 0 volt and -100 V. First to fourth drive signals CT11 to CT14 are generated.
 本実施形態では、第1DC/AC変換器11に対するその時々の高周波デューティー制御は、制御回路20が第1太陽電池パネルSP1の第1出力電力PW1を使って演算した第1太陽電池パネルSP1の最大電力点に基づいてデューティー比が決定されている。 In the present embodiment, the occasional high frequency duty control for the first DC / AC converter 11 is performed by using the maximum of the first solar cell panel SP1 calculated by the control circuit 20 using the first output power PW1 of the first solar cell panel SP1. The duty ratio is determined based on the power point.
 (第2DC/AC変換器12)
 第2DC/AC変換器12は、低周波グループに属し、図3(b)で示すように、低周波にてデューティー制御される。詳述すると、制御回路20は、第2DC/AC変換器12に対して、1周期T中の所定のタイミングで、第2変換出力電圧Vbのレベルを3段階に切り替えるように制御する。ここで、第2変換出力電圧Vbのレベルを切り替えるタイミングは、系統連系するAC200V系の商用周波数によって決定されていて、正弦波形W1の出力電圧Voが、200Vと-200Vを通過するタイミングである。
(2nd DC / AC converter 12)
The second DC / AC converter 12 belongs to the low frequency group and is duty controlled at low frequency as shown in FIG. 3 (b). More specifically, the control circuit 20 controls the second DC / AC converter 12 to switch the level of the second converted output voltage Vb in three steps at a predetermined timing in one cycle T. Here, the timing of switching the level of the second converted output voltage Vb is determined by the AC 200 V system commercial frequency that is grid-connected, and is the timing at which the output voltage Vo of the sine waveform W1 passes 200 V and -200 V .
 図3(b)、(d)に示すように、出力電圧Voの正弦波形W1の半周期は、時刻t0~t6において時刻t3に設定される。1周期Tを8等分し、時刻t0を基準にする場合、T/8周期の時刻が時刻t1であり、3T/8周期の時刻が時刻t2であり、5T/8周期の時刻が時刻t4であり、7T/8周期の時刻が時刻t5である。 As shown in FIGS. 3B and 3D, the half cycle of the sine waveform W1 of the output voltage Vo is set to time t3 at times t0 to t6. When one cycle T is equally divided into eight and time t0 is used as a reference, time of T / 8 cycle is time t1, time of 3T / 8 cycle is time t2, and time of 5T / 8 cycle is time t4. And the time of the 7T / 8 cycle is time t5.
 時刻t1は、正弦波形W1の出力電圧Voが、最大値に向かって200Vのレベルを通過するタイミングである。 Time t1 is timing when the output voltage Vo of the sine waveform W1 passes the level of 200 V toward the maximum value.
 また、時刻t2は、正弦波形W1の出力電圧Voが、0ボルトに向かって200Vのレベルを通過するタイミングである。 Further, time t2 is timing when the output voltage Vo of the sine waveform W1 passes a level of 200 V toward 0 volt.
 さらに、時刻t4は、正弦波形W1の出力電圧Voが、最小値に向かって-200Vのレベルを通過するタイミングである。 Further, time t4 is the timing when the output voltage Vo of the sine waveform W1 passes the level of -200 V toward the minimum value.
 さらにまた、時刻t5は、正弦波形W1の出力電圧Voが、0ボルトに向かって-200Vのレベルを通過するタイミングである。 Furthermore, time t5 is the timing when the output voltage Vo of the sine waveform W1 passes the level of -200 V toward 0 volt.
 制御回路20は、時刻t0~t1までの間、第2変換出力電圧Vbを0Vに維持する第5~第8駆動信号CT21~CT24を生成する。続いて、制御回路20は、時刻t1~t2までの間、第2変換出力電圧Vbを200Vに維持する第5~第8駆動信号CT21~CT24を生成する。次に、制御回路20は、時刻t2~t4までの間、第2変換出力電圧Vbを0Vに維持する第5~第8駆動信号CT21~CT24を生成する。続いて、制御回路20は、時刻t4~t5までの間、第2変換出力電圧Vbを-200Vに維持する第5~第8駆動信号CT21~CT24を生成する。最後に、制御回路20は、時刻t5~t6(=t0)までの間、第2変換出力電圧Vbを0Vに維持する第5~第8駆動信号CT21~CT24を生成する。 The control circuit 20 generates fifth to eighth drive signals CT21 to CT24 maintaining the second converted output voltage Vb at 0 V from time t0 to t1. Subsequently, the control circuit 20 generates fifth to eighth drive signals CT21 to CT24 maintaining the second converted output voltage Vb at 200 V from time t1 to t2. Next, the control circuit 20 generates fifth to eighth drive signals CT21 to CT24 which maintain the second converted output voltage Vb at 0 V from time t2 to t4. Subsequently, the control circuit 20 generates fifth to eighth drive signals CT21 to CT24 maintaining the second converted output voltage Vb at -200 V from time t4 to t5. Finally, the control circuit 20 generates fifth to eighth drive signals CT21 to CT24 maintaining the second converted output voltage Vb at 0 V from time t5 to t6 (= t0).
 (第3DC/AC変換器13)
 第3DC/AC変換器13は、高周波グループに属し、図3(c)で示すように、高周波にてデューティー制御される。詳述すると、制御回路20は、第3DC/AC変換器13に対して、1周期Tの前半周期(時刻t0~t3)を0Vと100Vの間で、第3変換出力電圧Vcが高周波でデューティー制御される第1~第4駆動信号CT11~CT14を生成する。また、制御回路20は、第3DC/AC変換器13に対して、残り後半周期(時刻t3~t6)を0ボルトと-100Vとの間で、第3変換出力電圧Vcが高周波でデューティー制御される第1~第4駆動信号CT11~CT14を生成する。
(3rd DC / AC converter 13)
The third DC / AC converter 13 belongs to a high frequency group and is duty controlled at high frequency as shown in FIG. 3 (c). More specifically, the control circuit 20 controls the third DC / AC converter 13 so that the first conversion period V (time t0 to t3) is between 0 V and 100 V, and the third converted output voltage Vc is high frequency First to fourth drive signals CT11 to CT14 to be controlled are generated. Further, the control circuit 20 performs duty control of the third converted output voltage Vc at a high frequency with respect to the third DC / AC converter 13 with the remaining second half cycle (time t3 to t6) between 0 volt and -100 V. First to fourth drive signals CT11 to CT14 are generated.
 本実施形態では、第3DC/AC変換器13に対するその時々の高周波デューティー制御は、制御回路20が第3太陽電池パネルSP3の第3出力電力PW3を使って演算した第3太陽電池パネルSP3の最大電力点に基づいてデューティー比が決定されている。 In the present embodiment, the occasional high frequency duty control for the third DC / AC converter 13 is the maximum of the third solar cell panel SP3 calculated by the control circuit 20 using the third output power PW3 of the third solar cell panel SP3. The duty ratio is determined based on the power point.
 制御回路20は、時刻t0~t6の間に、第1~第3DC/AC変換器11~13を時系列的に駆動制御することによって、第1~第3変換出力電圧Va~Vcが時系列に生成される。時系列に生成された第1~第3変換出力電圧Va~Vcは、重畳されて、図3(d)に1点鎖線で示す波形の合成出力電圧Vtとなって、フィルター回路2に供給される。 The control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 in time series between time t0 to t6 to make time series of the first to third converted output voltages Va to Vc. Generated on The first to third converted output voltages Va to Vc generated in time series are superimposed to form a combined output voltage Vt having a waveform shown by an alternate long and short dash line in FIG. Ru.
 (フィルター回路2)
 フィルター回路2は、図1に示すように、第1交流リアクトルL1、第2交流リアクトルL2及び平滑用コンデンサCxを有している。第1交流リアクトルL1の一端が、正極入力端子P4aを介して第1DC/AC変換器11の正極出力端子P1aに接続されている。第2交流リアクトルL2の一端が、負極入力端子P4b、電流検出器DIを介して第3DC/AC変換器13の負極出力端子P3bに接続されている。平滑用コンデンサCxは、フィルター回路2の正極出力端子P5aと負極出力端子P5b間に接続されている。
(Filter circuit 2)
As shown in FIG. 1, the filter circuit 2 has a first alternating current reactor L1, a second alternating current reactor L2, and a smoothing capacitor Cx. One end of the first AC reactor L1 is connected to the positive electrode output terminal P1a of the first DC / AC converter 11 via the positive electrode input terminal P4a. One end of the second AC reactor L2 is connected to the negative electrode output terminal P3b of the third DC / AC converter 13 via the negative electrode input terminal P4b and the current detector DI. The smoothing capacitor Cx is connected between the positive electrode output terminal P5a and the negative electrode output terminal P5b of the filter circuit 2.
 フィルター回路2は、正極及び負極入力端子P4a,P4b間に、第1DC/AC変換器11の正極出力端子P1aと第3DC/AC変換器13の負極出力端子P3b間に発生する図3(d)1点鎖線で示す合成出力電圧Vtを入力する。フィルター回路2は、入力した合成出力電圧Vtを、平均化し、正極及び負極出力端子P5a,P5bから、図3(d)において実線で示す正弦波形W1を有する出力電圧Voを、正極及び負極出力端子P5a,P5bを介して系統連系回路部3に供給する。 The filter circuit 2 is generated between the positive and negative electrode input terminals P4a and P4b and between the positive electrode output terminal P1a of the first DC / AC converter 11 and the negative electrode output terminal P3b of the third DC / AC converter 13 (FIG. 3D) A combined output voltage Vt indicated by a one-dot chain line is input. The filter circuit 2 averages the input combined output voltage Vt and outputs an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3D from the positive and negative output terminals P5a, P5b. It supplies to the grid connection circuit unit 3 via P5a and P5b.
 (系統連系回路部3)
 系統連系回路部3は、フィルター回路2からの正弦波形W1を有する出力電圧Voを入力し、AC200V系統の配線に力率がほぼ1の電流を供給する。AC200V系統の負荷Zに電力を供給する。
(Network connection circuit unit 3)
The grid connection circuit unit 3 receives an output voltage Vo having a sine waveform W1 from the filter circuit 2 and supplies a current with a power factor of approximately 1 to the wiring of the AC 200 V system. Power is supplied to the load Z of the AC 200 V system.
 次に、上記のように構成した電力変換装置1の作用について説明する。 Next, the operation of the power conversion device 1 configured as described above will be described.
 今、制御回路20は、フィルター回路2から図3(d)に実線で示す正弦波形W1を有する出力電圧Voを生成するための図3(d)に1点鎖線で示す合成出力電圧Vtを生成すべく、第1~第3DC/AC変換器11~13の制御を開始する。 Now, the control circuit 20 generates from the filter circuit 2 a combined output voltage Vt shown by an alternate long and short dash line in FIG. 3 (d) for generating an output voltage Vo having a sine waveform W1 shown by a solid line in FIG. 3 (d). Control of the first to third DC / AC converters 11 to 13 is started.
 (時刻t0~t1)
 制御回路20は、第1DC/AC変換器11に対して、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t0 to t1)
The control circuit 20 performs duty control of the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency, and performs duty control of the first conversion output at a level between 0 V and 100 V. Generate voltage Va.
 つまり、時刻t0~t1間においては、第3スイッチング素子Q13がオフされ、第4スイッチング素子Q14がオンされる。第1スイッチング素子Q11と第2スイッチング素子Q12が、相補的にオン・オフされる。 That is, between time t0 and t1, the third switching element Q13 is turned off and the fourth switching element Q14 is turned on. The first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
 ちなみに、第1スイッチング素子Q11がオンされ、第2スイッチング素子Q12がオフされた時、第1変換出力電圧Vaは100Vとなる。反対に、第1スイッチング素子Q11がオフされ、第2スイッチング素子Q12がオンされた時、第1変換出力電圧Vaは0Vとなる。 Incidentally, when the first switching element Q11 is turned on and the second switching element Q12 is turned off, the first converted output voltage Va is 100V. Conversely, when the first switching element Q11 is turned off and the second switching element Q12 is turned on, the first converted output voltage Va becomes 0V.
 また、制御回路20は、第2DC/AC変換器12に対して、第5~第8スイッチング素子Q21~Q28を制御して、0Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t0~t1間においては、第5及び第7スイッチング素子Q21,Q23がオフされ、第6及び第8スイッチング素子Q22,Q24がオンされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between the time t0 and t1, the fifth and seventh switching elements Q21 and Q23 are turned off, and the sixth and eighth switching elements Q22 and Q24 are turned on.
 さらに、制御回路20は、第3DC/AC変換器13に対して、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency to perform duty control at a level between 0 V and 120 V. A conversion output voltage Vc is generated.
 つまり、時刻t0~t1間においては、第11スイッチング素子Q33がオフされ、第12スイッチング素子Q34がオンされる。第9スイッチング素子Q31と第10スイッチング素子Q32が、相補的にオン・オフされる。 That is, between time t0 and t1, the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on. The ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
 ちなみに、第9スイッチング素子Q31がオンされ、第10スイッチング素子Q32がオフされた時、第3変換出力電圧Vcは120Vとなる。反対に、第9スイッチング素子Q31がオフされ、第10スイッチング素子Q32がオンされた時、第3変換出力電圧Vcは0Vとなる。 Incidentally, when the ninth switching element Q31 is turned on and the tenth switching element Q32 is turned off, the third converted output voltage Vc becomes 120V. On the other hand, when the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on, the third converted output voltage Vc becomes 0V.
 従って、電力変換装置1は、時刻t0~t1において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vtを生成し出力する。 Therefore, the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t0 to t1, as shown by the one-dot chain line in FIG. Output.
 (時刻t1~t2)
 制御回路20は、第1DC/AC変換器11に対して、時刻t0~t1と同様に、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t1 to t2)
The control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency, similarly to time t0 to t1, to a level between 0 V and 100 V. A duty-controlled first converted output voltage Va is generated.
 つまり、時刻t1~t2間においては、第3スイッチング素子Q13がオフされ、第4スイッチング素子Q14がオンされる。時刻t0~t1と同様に、第1スイッチング素子Q11と第2スイッチング素子Q12が、相補的にオン・オフされる。 That is, during the period from time t1 to t2, the third switching element Q13 is turned off and the fourth switching element Q14 is turned on. Similar to time t0 to t1, the first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
 また、制御回路20は、第2DC/AC変換器12に対して、第5~第8スイッチング素子Q21~Q28を制御して、200Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t1~t2間においては、第5及び第8スイッチング素子Q21,Q24がオンされ、第6及び第7スイッチング素子Q22,Q23がオフされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 200V. That is, between time t1 and t2, the fifth and eighth switching elements Q21 and Q24 are turned on, and the sixth and seventh switching elements Q22 and Q23 are turned off.
 さらに、制御回路20は、第3DC/AC変換器13に対して、時刻t0~t1と同様に、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency as in the time t0 to t1 to set between 0V and 120V. A third conversion output voltage Vc duty-controlled at the level is generated.
 つまり、時刻t1~t2間においては、第11スイッチング素子Q33がオフされ、第12スイッチング素子Q34がオンされる。時刻t0~t1と同様に、第9スイッチング素子Q31と第10スイッチング素子Q32が、相補的にオン・オフされる。 That is, between time t1 and t2, the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on. Similar to time t0 to t1, the ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
 従って、電力変換装置1は、時刻t1~t2において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vtを生成し出力する。 Therefore, the power conversion device 1 generates the combined output voltage Vt of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t1 to t2, as shown by the one-dot chain line in FIG. Output.
 (時刻t2~t3)
 制御回路20は、第1DC/AC変換器11に対して、時刻t0~t2と同様に、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t2 to t3)
The control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency, as at times t0 to t2, to a level between 0 V and 100 V. A duty-controlled first converted output voltage Va is generated.
 つまり、時刻t2~t3間においては、第3スイッチング素子Q13がオフされ、第4スイッチング素子Q14がオンされる。そして、時刻t0~t2と同様に、第1スイッチング素子Q11と第2スイッチング素子Q12が、相補的にオン・オフされる。 That is, between time t2 and t3, the third switching element Q13 is turned off and the fourth switching element Q14 is turned on. Then, as in the times t0 to t2, the first switching element Q11 and the second switching element Q12 are complementarily turned on and off.
 また、制御回路20は、第2DC/AC変換器12に対して、第5~第8スイッチング素子Q21~Q28を制御して、0Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t2~t3間においては、時刻t0~t1と同様に、第5及び第7スイッチング素子Q21,Q23がオフされ、第6及び第8スイッチング素子Q22,Q24がオンされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between time t2 and t3, the fifth and seventh switching elements Q21 and Q23 are turned off and the sixth and eighth switching elements Q22 and Q24 are turned on as in the time t0 to t1.
 さらに、制御回路20は、第3DC/AC変換器13に対して、時刻t0~t2と同様に、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at high frequency similarly to the time t0 to t2, and the voltage is between 0V and 120V. A third conversion output voltage Vc duty-controlled at the level is generated.
 つまり、時刻t2~t3間においては、第11スイッチング素子Q33がオフされ、第12スイッチング素子Q34がオンされる。時刻t0~t2と同様に、第9スイッチング素子Q31と第10スイッチング素子Q32が、相補的にオン・オフされる。 That is, between time t2 and t3, the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on. Similar to times t0 to t2, the ninth switching element Q31 and the tenth switching element Q32 are complementarily turned on and off.
 従って、電力変換装置1は、時刻t2~t3において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vtを生成し出力する。 Therefore, the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t2 to t3, as shown by the alternate long and short dash line in FIG. Output.
 (時刻t3~t4)
 制御回路20は、第1DC/AC変換器11に対して、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと-100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t3 to t4)
The control circuit 20 performs duty control of the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at a high frequency to perform duty control at a level between 0 V and -100 V. An output voltage Va is generated.
 つまり、時刻t3~t4間においては、第1スイッチング素子Q11がオフされ、第2スイッチング素子Q12がオンされる。第3スイッチング素子Q13と第4スイッチング素子Q14が、相補的にオン・オフされる。 That is, between time t3 and t4, the first switching element Q11 is turned off and the second switching element Q12 is turned on. The third switching element Q13 and the fourth switching element Q14 are complementarily turned on and off.
 ちなみに、第3スイッチング素子Q13がオンされ、第4スイッチング素子Q14がオフされた時、第1変換出力電圧Vaは-100Vとなる。反対に、第3スイッチング素子Q13がオフされ、第4スイッチング素子Q14がオンされた時、第1変換出力電圧Vaは0Vとなる。 Incidentally, when the third switching element Q13 is turned on and the fourth switching element Q14 is turned off, the first converted output voltage Va becomes -100V. Conversely, when the third switching element Q13 is turned off and the fourth switching element Q14 is turned on, the first converted output voltage Va becomes 0V.
 また、制御回路20は、第2DC/AC変換器12に対して、時刻t2~t3同様に、第5~第8スイッチング素子Q21~Q28を制御して、0Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t3~t4間においては、時刻t2~t3と同様に、第5及び第7スイッチング素子Q21,Q23がオフされ、第6及び第8スイッチング素子Q22,Q24がオンされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 like the time t2 to t3 to maintain the second converted output voltage maintained at 0 V. Generate Vb. That is, between times t3 and t4, the fifth and seventh switching elements Q21 and Q23 are turned off and the sixth and eighth switching elements Q22 and Q24 are turned on, as in the times t2 to t3.
 さらに、制御回路20は、第3DC/AC変換器13に対して、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと-120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency to perform duty control at a level between 0 V and -120 V. 3 Generate a converted output voltage Vc.
 つまり、時刻t3~t4間においては、第9スイッチング素子Q31がオフされ、第10スイッチング素子Q32がオンされる。第11スイッチング素子Q33と第12スイッチング素子Q34が、相補的にオン・オフされる。 That is, during the time t3 to t4, the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on. The eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on and off.
 ちなみに、第11スイッチング素子Q33がオンされ、第12スイッチング素子Q34がオフされた時、第3変換出力電圧Vcは-120Vとなる。反対に、第11スイッチング素子Q33がオフされ、第12スイッチング素子Q34がオンされた時、第3変換出力電圧Vcは0Vとなる。 Incidentally, when the eleventh switching element Q33 is turned on and the twelfth switching element Q34 is turned off, the third converted output voltage Vc becomes -120V. On the other hand, when the eleventh switching element Q33 is turned off and the twelfth switching element Q34 is turned on, the third converted output voltage Vc becomes 0V.
 従って、電力変換装置1は、時刻t3~t4において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vtを生成し出力する。 Therefore, the power conversion device 1 generates the combined output voltage Vt of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t3 to t4, as shown by the alternate long and short dash line in FIG. Output.
 (時刻t4~t5)
 制御回路20は、第1DC/AC変換器11に対して、時刻t3~t4と同様に、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと-100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t4 to t5)
The control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency similarly to the time t3 to t4, and the level between 0 V and -100 V To generate the first conversion output voltage Va that is duty controlled.
 つまり、時刻t4~t5間においては、第1スイッチング素子Q11がオフされ、第2スイッチング素子Q12がオンされる。そして、時刻t3~時刻t4と同様に、第3スイッチング素子Q13と第4スイッチング素子Q14が、相補的にオン・オフされる。 That is, between time t4 and t5, the first switching element Q11 is turned off and the second switching element Q12 is turned on. Then, the third switching element Q13 and the fourth switching element Q14 are complementarily turned on / off as in the time t3 to the time t4.
 また、制御回路20は、第2DC/AC変換器12に対して、第5~第8スイッチング素子Q21~Q28を制御して、-120Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t4~t5間においては、第6及び第7スイッチング素子Q22,Q23がオンされ、第5及び第8スイッチング素子Q21,Q24がオンされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at -120V. That is, between time t4 and t5, the sixth and seventh switching elements Q22 and Q23 are turned on, and the fifth and eighth switching elements Q21 and Q24 are turned on.
 さらに、制御回路20は、第3DC/AC変換器13に対して、時刻t3~t4と同様に、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと-120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control on the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at a high frequency as in the time t3 to t4, and between 0V and -120V. To generate a third conversion output voltage Vc that is duty controlled at the level of
 つまり、時刻t4~t5間においては、第9スイッチング素子Q31がオフされ、第10スイッチング素子Q32がオンされる。そして、時刻t3~t4と同様に、第11スイッチング素子Q33と第12スイッチング素子Q34が、相補的にオン・オフされる。 That is, during the period from time t4 to t5, the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on. Then, the eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on / off as in the time t3 to t4.
 従って、電力変換装置1は、時刻t4~t5において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vを生成し出力する。 Therefore, the power conversion device 1 generates the combined output voltage V of the waveform obtained by adding the first to third converted output voltages Va to Vc at times t4 to t5, as indicated by the one-dot chain line in FIG. Output.
 (時刻t5~t6)
 制御回路20は、第1DC/AC変換器11に対して、時刻t3~t5と同様に、第1~第4スイッチング素子Q11~Q14を高周波でデューティー制御して、0Vと-100Vの間のレベルでデューティー制御された第1変換出力電圧Vaを生成する。
(Time t5 to t6)
The control circuit 20 performs duty control on the first to fourth switching elements Q11 to Q14 with respect to the first DC / AC converter 11 at high frequency similarly to the time t3 to t5, and sets the level between 0V and -100V. To generate the first conversion output voltage Va that is duty controlled.
 つまり、時刻t5~t6間においては、第1スイッチング素子Q11がオフされ、第2スイッチング素子Q12がオンされる。そして、時刻t3~t5と同様に、第3スイッチング素子Q13と第4スイッチング素子Q14が、相補的にオン・オフされる。 That is, between time t5 and t6, the first switching element Q11 is turned off and the second switching element Q12 is turned on. Then, as in the times t3 to t5, the third switching element Q13 and the fourth switching element Q14 are complementarily turned on and off.
 また、制御回路20は、第2DC/AC変換器12に対して、第5~第8スイッチング素子Q21~Q28を制御して、0Vに維持された第2変換出力電圧Vbを生成する。つまり、時刻t5~t6間においては、第5及び第7スイッチング素子Q21,Q23がオフされ、第6及び第8スイッチング素子Q22,Q24がオンされる。 Further, the control circuit 20 controls the fifth to eighth switching elements Q21 to Q28 with respect to the second DC / AC converter 12 to generate a second converted output voltage Vb maintained at 0V. That is, between time t5 and t6, the fifth and seventh switching elements Q21 and Q23 are turned off, and the sixth and eighth switching elements Q22 and Q24 are turned on.
 さらに、制御回路20は、第3DC/AC変換器13に対して、時刻t3~t5と同様に、第9~第12スイッチング素子Q31~Q34を高周波でデューティー制御して、0Vと-120Vの間のレベルでデューティー制御された第3変換出力電圧Vcを生成する。 Furthermore, the control circuit 20 performs duty control of the ninth to twelfth switching elements Q31 to Q34 with respect to the third DC / AC converter 13 at high frequency similarly to the time t3 to t5 to between 0V and -120V. To generate a third conversion output voltage Vc that is duty controlled at the level of
 つまり、時刻t5~t6間においては、第9スイッチング素子Q31がオフされ、第10スイッチング素子Q32がオンされる。そして、時刻t3~時刻t5と同様に、第11スイッチング素子Q33と第12スイッチング素子Q34が、相補的にオン・オフされる。 That is, during the period from time t5 to time t6, the ninth switching element Q31 is turned off and the tenth switching element Q32 is turned on. Then, as in the case of time t3 to time t5, the eleventh switching element Q33 and the twelfth switching element Q34 are complementarily turned on and off.
 従って、電力変換装置1は、時刻t5~t6において、図3(d)に1点鎖線で示すように、第1~第3変換出力電圧Va~Vcを加算した波形の合成出力電圧Vtを生成し出力する。 Therefore, the power conversion device 1 generates a combined output voltage Vt of a waveform obtained by adding the first to third converted output voltages Va to Vc at times t5 to t6, as indicated by the one-dot chain line in FIG. Output.
 このように、制御回路20は、時刻t0~t6を1周期Tとして、第1~第3DC/AC変換器11~13の第1~第12スイッチング素子Q11~Q14,Q21~Q24,Q31~Q34を時系列的に繰り返し駆動制御する。そして、電力変換装置1は、図3(d)に1点鎖線で示す波形の合成出力電圧Vtを繰り返し生成して、フィルター回路2に供給する。 As described above, the control circuit 20 sets the time t0 to t6 as one cycle T, and the first to twelfth switching elements Q11 to Q14, Q21 to Q24, Q31 to Q34 of the first to third DC / AC converters 11 to 13. Drive control repeatedly in time series. Then, the power conversion device 1 repeatedly generates a combined output voltage Vt having a waveform indicated by a dashed dotted line in FIG. 3D and supplies the combined output voltage Vt to the filter circuit 2.
 フィルター回路2は、合成出力電圧Vtを入力し平均化して、図3(d)に実線で示す正弦波形W1の出力電圧Voを系統連系回路部3に供給する。 The filter circuit 2 inputs and averages the combined output voltage Vt, and supplies an output voltage Vo of a sine waveform W1 shown by a solid line in FIG.
 次に、上記のように構成した実施形態の効果について以下に記載する。 Next, the effects of the embodiment configured as described above will be described below.
 (1)第1実施形態によれば、電力変換装置1は、第1~第3太陽電池パネルSP1~SP3に対して、個別にDC/DC変換器を介することなく、第1~第3DC/AC変換器11~13をそれぞれ接続した。第1~第3DC/AC変換器11~13を直列に接続し、第1~第3DC/AC変換器11~13から供給される第1~第3変換出力電圧Va~Vcを重畳させて合成出力電圧Vtを生成した。 (1) According to the first embodiment, the power conversion device 1 transmits the first to third DC / DC converters individually without using DC / DC converters for the first to third solar cell panels SP1 to SP3. AC converters 11 to 13 were connected respectively. The first to third DC / AC converters 11 to 13 are connected in series, and the first to third conversion output voltages Va to Vc supplied from the first to third DC / AC converters 11 to 13 are superimposed and synthesized. An output voltage Vt was generated.
 従って、電力変換装置1は、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3が第1~第3DC/AC変換器11~13に直接供給される。その結果、DC/DC変換器での損失を考える必要がなく、太陽光発電システムの高効率化を図ることができる。 Therefore, in the power conversion device 1, the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 are directly supplied to the first to third DC / AC converters 11 to 13. As a result, it is not necessary to consider the loss in the DC / DC converter, and the efficiency of the solar power generation system can be improved.
 しかも、第1~第3太陽電池パネルSP1~SP3にそれぞれ設けた第1~第3DC/AC変換器11~13は、制御回路20にて、対応する太陽電池パネルに対して個別に最大電力点追従制御される。そのため、より利用効率を上げ、電力の変換効率の高い太陽光発電システムを実現できる。 In addition, the first to third DC / AC converters 11 to 13 provided in the first to third solar cell panels SP1 to SP3 respectively have maximum power points individually for the corresponding solar cell panels in the control circuit 20. Followed control is performed. Therefore, it is possible to realize a solar power generation system with higher utilization efficiency and high power conversion efficiency.
 (2)第1実施形態によれば、第1太陽電池パネルSP1に対する第1DC/AC変換器11と、第3太陽電池パネルSP3に対する第3DC/AC変換器13を、高周波でデューティー制御して、第1及び第3変換出力電圧Va,Vcを生成した。これに対して、第2太陽電池パネルSP2に対する第2DC/AC変換器12を、低周波でデューティー制御(100%)して、第2変換出力電圧Vbを生成した。 (2) According to the first embodiment, the first DC / AC converter 11 for the first solar cell panel SP1 and the third DC / AC converter 13 for the third solar cell panel SP3 are duty controlled at high frequency, First and third converted output voltages Va and Vc are generated. On the other hand, the second DC / AC converter 12 for the second solar cell panel SP2 is duty-controlled (100%) at a low frequency to generate a second converted output voltage Vb.
 従って、第2DC/AC変換器12の動作回数を減らすことで、電力の変換効率を上げることができる。 Therefore, by reducing the number of operations of the second DC / AC converter 12, the conversion efficiency of power can be increased.
 (3)第1実施形態によれば、第1DC/AC変換器11で2段階の第1変換出力電圧Va、第2DC/AC変換器12で3段階の第2変換出力電圧Vbを生成し、第2DC/AC変換器13で2段階の第3変換出力電圧Vcを生成した。そして、第1~第3変換出力電圧Va~Vcを時系列的に組み合わせて、図3(d)1点鎖線で示す合成出力電圧Vtを7段階のレベルで生成した。 (3) According to the first embodiment, the first conversion output voltage Va of two steps is generated by the first DC / AC converter 11, and the second conversion output voltage Vb of three steps is generated by the second DC / AC converter 12, The second DC / AC converter 13 generates a two-stage third converted output voltage Vc. Then, the first to third converted output voltages Va to Vc are combined in time series to generate a combined output voltage Vt indicated by a one-dot chain line in FIG. 3D at seven levels.
 従って、合成出力電圧Vtの電圧変化量を小さくすることができる。その結果、合成出力電圧Vtが供給されるフィルター回路2の第1及び第2交流リアクトルL1,L2での損失を小さくできる。 Therefore, the voltage change amount of the combined output voltage Vt can be reduced. As a result, it is possible to reduce the loss in the first and second AC reactors L1, L2 of the filter circuit 2 to which the combined output voltage Vt is supplied.
 (4)第1実施形態によれば、第1~第3DC/AC変換器11~13を低周波グループと高周波グループとに分けた。そして、第1及び第3太陽電池パネルSP1,SP3の第1及び第3出力電圧V1,V3よりも高い第2出力電圧V2を生成する第2太陽電池パネルSP2の第2DC/AC変換器12は、低周波グループに分けられた。 (4) According to the first embodiment, the first to third DC / AC converters 11 to 13 are divided into the low frequency group and the high frequency group. The second DC / AC converter 12 of the second solar panel SP2 generates a second output voltage V2 higher than the first and third output voltages V1 and V3 of the first and third solar panels SP1 and SP3. , Divided into low frequency groups.
 従って、電圧が高い第2出力電圧V2が第2DC/AC変換器12にて低周波にてデューティー制御(100%)されたため、高電圧によるスイッチング損失が小さくでき、電力変換装置1は、非常に高い効率を有する。 Therefore, since the second output voltage V2 having a high voltage is duty-controlled (100%) at a low frequency by the second DC / AC converter 12, the switching loss due to the high voltage can be reduced, and the power conversion device 1 is very It has high efficiency.
 (第2実施形態)
 以下、本発明を具体化した第2実施形態の電力変換装置を図4に従って説明する。
Second Embodiment
Hereinafter, a power conversion device according to a second embodiment of the present invention will be described with reference to FIG.
 第2実施形態の電力変換装置は、第1実施形態の電力変換装置1の構成に新たな構成を一部付加した特徴を有する。そのため、その付加構成した部分について詳細に説明し、共通の部分については説明を便宜上省略する。 The power conversion device of the second embodiment has a feature in which a new configuration is partially added to the configuration of the power conversion device 1 of the first embodiment. Therefore, the added configuration will be described in detail, and the description of the common components will be omitted for the sake of convenience.
 図4において、第1DC/AC変換器11の正極入力端子と第1コンデンサC1との接続点(ノードN7)と第1太陽電池パネルSP1の第1正極出力端子T1aの間には、昇圧コンバータにより構成された第1DC/DC変換器21が設けられている。第1DC/DC変換器21には、第1切替スイッチSW1が並列に接続されている。 In FIG. 4, a step-up converter is provided between a connection point (node N7) between the positive electrode input terminal of the first DC / AC converter 11 and the first capacitor C1 and the first positive electrode output terminal T1a of the first solar cell panel SP1. A first DC / DC converter 21 configured is provided. The first changeover switch SW1 is connected in parallel to the first DC / DC converter 21.
 第1切替スイッチSW1は、NチャネルMOSトランジスタを含む。第1切替スイッチSW1では、ゲート端子に、制御回路20から第1切替信号SG1が供給される。第1切替スイッチSW1は、ハイ・レベルの第1切替信号SG1が供給される場合にオンし、ロウ・レベルの第1切替信号SG1が供給される場合にオフする。第1切替スイッチSW1がオンする時、第1太陽電池パネルSP1の第1出力電圧V1が、第1切替スイッチSW1を介して第1DC/AC変換器11に直接的に供給される。反対に、第1切替スイッチSW1がオフする時、第1太陽電池パネルSP1の第1出力電圧V1が、第1DC/DC変換器21を介して第1DC/AC変換器11に供給される。 The first changeover switch SW1 includes an N channel MOS transistor. In the first changeover switch SW1, the gate circuit is supplied with the first changeover signal SG1 from the control circuit 20. The first changeover switch SW1 is turned on when the high level first switching signal SG1 is supplied, and is turned off when the low level first switching signal SG1 is supplied. When the first changeover switch SW1 is turned on, the first output voltage V1 of the first solar cell panel SP1 is directly supplied to the first DC / AC converter 11 via the first changeover switch SW1. Conversely, when the first changeover switch SW1 is turned off, the first output voltage V1 of the first solar cell panel SP1 is supplied to the first DC / AC converter 11 via the first DC / DC converter 21.
 また、第2DC/AC変換器12の正極入力端子と第2コンデンサC2との接続点(ノードN8)と第2太陽電池パネルSP2の第2正極出力端子T2aの間には、昇圧コンバータにより構成された第2DC/DC変換器22が設けられている。第2DC/DC変換器22には、第2切替スイッチSW2が並列に接続されている。 Further, a boost converter is formed between a connection point (node N8) between the positive electrode input terminal of the second DC / AC converter 12 and the second capacitor C2 and the second positive electrode output terminal T2a of the second solar cell panel SP2. A second DC / DC converter 22 is provided. A second changeover switch SW2 is connected in parallel to the second DC / DC converter 22.
 第2切替スイッチSW2は、NチャネルMOSトランジスタを含む。第2切替スイッチSW2では、ゲート端子に、制御回路20から第2切替信号SG2が供給される。第2切替スイッチSW2は、ハイ・レベルの第2切替信号SG2が供給される場合にオンし、ロウ・レベルの第2切替信号SG2が供給される場合にオフする。第2切替スイッチSW2がオンする時、第2太陽電池パネルSP2の第2出力電圧V2が、第2切替スイッチSW2を介して第2DC/AC変換器12に直接的に供給される。反対に、第2切替スイッチSW2がオフする時、第2太陽電池パネルSP2の第2出力電圧V2が、第2DC/DC変換器22を介して第2DC/AC変換器12に供給される。 The second switch SW2 includes an N channel MOS transistor. In the second changeover switch SW2, a second changeover signal SG2 is supplied from the control circuit 20 to the gate terminal. The second changeover switch SW2 turns on when the high level second switching signal SG2 is supplied, and turns off when the low level second switching signal SG2 is supplied. When the second changeover switch SW2 is turned on, the second output voltage V2 of the second solar cell panel SP2 is directly supplied to the second DC / AC converter 12 via the second changeover switch SW2. Conversely, when the second changeover switch SW2 is turned off, the second output voltage V2 of the second solar cell panel SP2 is supplied to the second DC / AC converter 12 via the second DC / DC converter 22.
 第3DC/AC変換器13の正極入力端子と第3コンデンサC3との接続点(ノードN9)と第3太陽電池パネルSP3の第3正極出力端子T3aの間には、昇圧コンバータにより構成される第3DC/DC変換器23が設けられている。第3DC/DC変換器23には、第3切替スイッチSW3が並列に接続されている。 A third boost converter is connected between a connection point (node N9) between the positive input terminal of the third DC / AC converter 13 and the third capacitor C3 (node N9) and the third positive output terminal T3a of the third solar cell panel SP3. A 3DC / DC converter 23 is provided. A third changeover switch SW3 is connected in parallel to the third DC / DC converter 23.
 第3切替スイッチSW3は、NチャネルMOSトランジスタを含む。第3切替スイッチSW3では、ゲート端子に、制御回路20から第3切替信号SG3が供給される。第3切替スイッチSW3は、ハイ・レベルの第3切替信号SG3が供給される場合にオンし、ロウ・レベルの第3切替信号SG3が共有される場合にオフする。第3切替スイッチSW3がオンする時、第3太陽電池パネルSP3の第3出力電圧V3が、第3切替スイッチSW3を介して第3DC/AC変換器13に直接的に供給される。反対に、第3切替スイッチSW3がオフする時、第3太陽電池パネルSP3の第3出力電圧V3が、第3DC/DC変換器23を介して第3DC/AC変換器13に供給される。 The third switch SW3 includes an N-channel MOS transistor. In the third changeover switch SW3, the third changeover signal SG3 is supplied from the control circuit 20 to the gate terminal. The third switch SW3 is turned on when the high level third switch signal SG3 is supplied, and is turned off when the low level third switch signal SG3 is shared. When the third switch SW3 is turned on, the third output voltage V3 of the third solar cell panel SP3 is directly supplied to the third DC / AC converter 13 through the third switch SW3. Conversely, when the third switch SW3 is turned off, the third output voltage V3 of the third solar cell panel SP3 is supplied to the third DC / AC converter 13 via the third DC / DC converter 23.
 なお、本実施形態では、第1~第3切替スイッチSW1~SW3が、NチャネルMOSトランジスタによって具体化された。しかしながら、第1~第3切替スイッチSW1~SW3は、IGBTや、スイッチング速度の遅いリレーなどのスイッチングデバイスによって実施されてもよい。 In the present embodiment, the first to third changeover switches SW1 to SW3 are embodied by N channel MOS transistors. However, the first to third changeover switches SW1 to SW3 may be implemented by switching devices such as IGBTs or relays having a slow switching speed.
 制御回路20は、第1~第3電圧検出器DV1~DV3の検出信号SV1~SV3を使って演算したその時々の第1~第3出力電圧V1~V3の合計電圧がAC200V系統に対応する電圧(最大値)である283Vかどうかを判定する。つまり、制御回路20は、合計電圧が予め定めたAC200V系統の最大値を超える所定電圧帯から外れて、合計電圧が最大値以下になったかどうかを判定する。 The control circuit 20 calculates the total of the first to third output voltages V1 to V3 calculated from the detection signals SV1 to SV3 of the first to third voltage detectors DV1 to DV3 corresponding to the AC 200 V system. It is determined whether it is 283 V (maximum value). That is, the control circuit 20 determines whether or not the total voltage is less than or equal to the maximum value because the total voltage deviates from a predetermined voltage band exceeding the maximum value of the AC 200 V system predetermined.
 制御回路20は、第1~第3出力電圧V1~V3の合計電圧が283V以下になった時、第1~第3切替スイッチSW1~SW3にロウ・レベルの第1~第3切替信号SG1~SG3をそれぞれ供給して、第1~第3切替スイッチSW1~SW3をオフさせる。 When the total voltage of the first to third output voltages V1 to V3 becomes 283 V or less, the control circuit 20 sets the first to third switching signals SG1 to SG1 to the low level to the first to third changeover switches SW1 to SW3. By supplying SG3 respectively, the first to third changeover switches SW1 to SW3 are turned off.
 つまり、例えば、太陽が陰って第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3の合計電圧が283V以下になる可能性がある。この場合、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3を第1~第3DC/DC変換器21~23にそれぞれ供給する。制御回路20は、第1~第3DC/DC変換器21~23をそれぞれ駆動制御することにより第1~第3出力電圧V1~V3を合計電圧が283Vを超えるように昇圧して、第1~第3DC/AC変換器11~13にそれぞれ供給する。制御回路20は、第1実施形態と同様に、第1~第3DC/AC変換器11~13を駆動制御して昇圧された第1~第3出力電圧V1~V3に基づいて合成出力電圧Vtを生成する。 That is, for example, there is a possibility that the total voltage of the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 may be 283 V or less because the sun is behind. In this case, the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 are supplied to the first to third DC / DC converters 21 to 23, respectively. The control circuit 20 drives and controls the first to third DC / DC converters 21 to 23 to boost the first to third output voltages V1 to V3 so that the total voltage exceeds 283 V. The third DC / AC converters 11 to 13 are respectively supplied. Similar to the first embodiment, the control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 to generate a combined output voltage Vt based on the first to third output voltages V1 to V3. Generate
 反対に、制御回路20は、第1~第3出力電圧V1~V3の合計電圧が283Vを超えた時、第1~第3切替スイッチSW1~SW3に対してハイ・レベルの第1~第3切替信号SG1~SG3をそれぞれ供給して、第1~第3切替スイッチSW1~SW3をオンさせる。制御回路20は、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3を第1~第3DC/AC変換器11~13にそれぞれ直接的に供給させる。制御回路20は、第1実施形態と同様に、第1~第3DC/AC変換器11~13を駆動制御して合成出力電圧Vtを生成する。 On the other hand, when the total voltage of the first to third output voltages V1 to V3 exceeds 283 V, the control circuit 20 performs the first to third high levels with respect to the first to third changeover switches SW1 to SW3. The switching signals SG1 to SG3 are supplied to turn on the first to third switching switches SW1 to SW3. The control circuit 20 directly supplies the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 to the first to third DC / AC converters 11 to 13, respectively. The control circuit 20 drives and controls the first to third DC / AC converters 11 to 13 to generate a combined output voltage Vt, as in the first embodiment.
 また、制御回路20は、低周波グループの第2太陽電池パネルSP2の第2出力電圧V2が、高周波グループの第1及び第3太陽電池パネルSP1,SP3の第1及び第3出力電圧V1,V3の合計電圧よりも大きくなったどうかを判定する。つまり、第2出力電圧V2が予め定めた第1及び第3出力電圧V1,V3の合計電圧を超える所定電圧帯から外れて、第2出力電圧V2が第1及び第3出力電圧V1,V3の合計電圧よりも大きくなったかどうかを判定する。 In addition, the control circuit 20 controls the second output voltage V2 of the second solar cell panel SP2 of the low frequency group to the first and third output voltages V1 and V3 of the first and third solar panels SP1 and SP3 of the high frequency group. Determine if it has become greater than the total voltage of That is, the second output voltage V2 has the first and third output voltages V1 and V3 out of a predetermined voltage range in which the second output voltage V2 exceeds the total voltage of the first and third output voltages V1 and V3 determined in advance. Determine if it has become greater than the total voltage.
 制御回路20は、第2出力電圧V2が、第1及び第3出力電圧V1,V3の合計電圧よりも大きくなった時、第2出力電圧V2が、第1及び第3出力電圧V1,V3の合計電圧よりも小さくなるように制御する。つまり、制御回路20は、第1太陽電池パネルSP1の第1出力電圧V1を、第1DC/DC変換器21に供給して昇圧する。具体的には、制御回路20は、第1切替スイッチSW1をオフさせ、第1DC/DC変換器21の第1出力電圧V1を昇圧させる。 When the second output voltage V2 becomes larger than the total voltage of the first and third output voltages V1 and V3, the control circuit 20 sets the second output voltage V2 to the first and third output voltages V1 and V3. Control to be smaller than the total voltage. That is, the control circuit 20 supplies the first output voltage V1 of the first solar cell panel SP1 to the first DC / DC converter 21 to boost it. Specifically, the control circuit 20 turns off the first changeover switch SW1 and boosts the first output voltage V1 of the first DC / DC converter 21.
 また、第1DC/DC変換器21の第1出力電圧V1を昇圧させても、第2出力電圧V2が、第1及び第3出力電圧V1,V3の合計電圧より大きい場合がある。この場合には、制御回路20は、第3切替スイッチSW3をオフさせて、第3DC/DC変換器23の第3出力電圧を昇圧させる。 In addition, even if the first output voltage V1 of the first DC / DC converter 21 is boosted, the second output voltage V2 may be larger than the total voltage of the first and third output voltages V1 and V3. In this case, the control circuit 20 turns off the third changeover switch SW3 to boost the third output voltage of the third DC / DC converter 23.
 なお、本実施形態では、最初に第1出力電圧V1を昇圧させたが、最初に第3出力電圧V3を昇圧させてもよい。また、第1出力電圧V1及び第3出力電圧V3を同時に昇圧させてもよい。 In the present embodiment, although the first output voltage V1 is boosted first, the third output voltage V3 may be boosted first. Further, the first output voltage V1 and the third output voltage V3 may be simultaneously boosted.
 次に、上記のように構成した第2実施形態の作用について説明する。 Next, the operation of the second embodiment configured as described above will be described.
 今、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3の合計電圧が283Vを超えている場合、制御回路20は、第1~第3切替スイッチSW1~SW3をオンさせる。つまり、第1~第3出力電圧V1~V3の合計電圧がAC200V系統の最大値である283Vを超えている時、第1~第3出力電圧V1~V3を第1~第3切替スイッチSW1~SW3を介してそれぞれの第1~第3DC/AC変換器11~13に供給する。そして、第1実施形態と同様の制御が行われて、合成出力電圧Vtを生成する。 If the total voltage of the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 exceeds 283 V, the control circuit 20 operates the first to third changeover switches SW1 to SW3. Turn on. That is, when the total voltage of the first to third output voltages V1 to V3 exceeds 283 V which is the maximum value of the AC 200 V system, the first to third output voltages V1 to V3 are switched to the first to third changeover switches SW1 to The respective first to third DC / AC converters 11 to 13 are supplied via SW3. Then, the same control as in the first embodiment is performed to generate a combined output voltage Vt.
 第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3の合計電圧が283V以下になった場合、制御回路20は、第1~第3切替スイッチSW1~SW3をオフさせる。つまり、第1~第3出力電圧V1~V3の合計電圧がAC200V系統の最大値である283V以下になった時、第1~第3出力電圧V1~V3を第1~第3DC/DC変換器21~23に供給させる。 When the total voltage of the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 is 283 V or less, the control circuit 20 turns off the first to third changeover switches SW1 to SW3. Let That is, when the total voltage of the first to third output voltages V1 to V3 becomes 283 V or less, which is the maximum value of 200 V AC, the first to third DC / DC converters can output the first to third output voltages V1 to V3. Feed to 21-23.
 制御回路20は、第1~第3出力電圧V1~V3の合計電圧が283Vを超えるように、第1~第3DC/DC変換器21~23を駆動制御して、第1~第3出力電圧V1~V3を昇圧させる。第1~第3DC/DC変換器21~23にて昇圧された第1~第3出力電圧V1~V3は、対応する第1~第3DC/AC変換器11~13に供給される。 The control circuit 20 drives and controls the first to third DC / DC converters 21 to 23 such that the total voltage of the first to third output voltages V1 to V3 exceeds 283 V, and the first to third output voltages are controlled. Boost V1 to V3. The first to third output voltages V1 to V3 boosted by the first to third DC / DC converters 21 to 23 are supplied to the corresponding first to third DC / AC converters 11 to 13.
 第1~第3DC/AC変換器11~13は、この昇圧された第1~第3出力電圧V1~V3に基づいて第1実施形態と同様の制御を行って合成出力電圧Vtを生成する。従って、フィルター回路2を介して出力される出力電圧Voは、AC200V系統の最大値である283Vを超える正弦波形W1に調整される。 The first to third DC / AC converters 11 to 13 perform the same control as in the first embodiment based on the boosted first to third output voltages V1 to V3 to generate a combined output voltage Vt. Therefore, the output voltage Vo output via the filter circuit 2 is adjusted to a sine waveform W1 exceeding 283 V which is the maximum value of the AC 200 V system.
 また、例えば、太陽の向きによって、第2太陽電池パネルSP2の第2出力電圧V2が、第1及び第3太陽電池パネルSP1,SP3の第1及び第3出力電圧V1,V3の合計電圧よりも大きくなる場合がある。この場合、制御回路20は、第2出力電圧V2が、第1及び第3出力電圧V1,V3の合計電圧よりも小さくなるように第2DC/DC変換器22を制御する。 Also, for example, depending on the direction of the sun, the second output voltage V2 of the second solar cell panel SP2 is greater than the total voltage of the first and third output voltages V1 and V3 of the first and third solar cell panels SP1 and SP3. It can be large. In this case, the control circuit 20 controls the second DC / DC converter 22 such that the second output voltage V2 is smaller than the sum of the first and third output voltages V1 and V3.
 つまり、制御回路20は、第1太陽電池パネルSP1の第1出力電圧V1を、第1DC/DC変換器21に供給して昇圧する。具体的には、制御回路20は、第1切替スイッチSW1をオフさせて、第1DC/DC変換器21の第1出力電圧V1を昇圧させる。 That is, the control circuit 20 supplies the first output voltage V1 of the first solar cell panel SP1 to the first DC / DC converter 21 to boost it. Specifically, the control circuit 20 turns off the first changeover switch SW1 to boost the first output voltage V1 of the first DC / DC converter 21.
 そして、第1DC/DC変換器21の第1出力電圧V1を昇圧させても、低周波グループの第2出力電圧V2が、高周波グループの第1及び第3出力電圧V1,V3の合計電圧よりも大きい場合がある。この場合、制御回路20は、第3切替スイッチSW3をオフさせることにより第3DC/DC変換器23の第3出力電圧を合わせて昇圧させて、低周波グループの第2出力電圧V2よりも大きい高周波グループの第1及び第3出力電圧V1,V3の合計電圧を生成する。 Then, even if the first output voltage V1 of the first DC / DC converter 21 is boosted, the second output voltage V2 of the low frequency group is higher than the total voltage of the first and third output voltages V1 and V3 of the high frequency group. It may be big. In this case, the control circuit 20 collectively boosts the third output voltage of the third DC / DC converter 23 by turning off the third changeover switch SW3, and the high frequency higher than the second output voltage V2 of the low frequency group A sum of the first and third output voltages V1, V3 of the group is generated.
 上記のように構成した第2実施形態は、第1実施形態の効果に加えて以下の効果を有する。 The second embodiment configured as described above has the following effects in addition to the effects of the first embodiment.
 (1)本実施形態によれば、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3が大きく変化しても、第1~第3DC/DC変換器21~23によって昇圧し、AC200V系統に連系させることのできる出力電圧Vtを生成することができる。 (1) According to the present embodiment, even if the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 largely change, the first to third DC / DC converters 21 to 21 23 can generate an output voltage Vt that can be boosted and interconnected with an AC 200 V system.
 (2)本実施形態によれば、第1及び第3太陽電池パネルSP1,SP3の第1及び第3出力電圧V1,V3の合計電圧が第2太陽電池パネルSP2の第2出力電圧V2より小さくなる場合がある。このような場合でも、制御回路20は、第2出力電圧V2よりも大きい第1及び第3出力電圧V1,V3の合計電圧を生成することができる。従って、第1~第3太陽電池パネルSP1~SP3の第1~第3出力電圧V1~V3を広い範囲で高効率に制御することができる。 (2) According to the present embodiment, the total voltage of the first and third output voltages V1 and V3 of the first and third solar cell panels SP1 and SP3 is smaller than the second output voltage V2 of the second solar cell panel SP2 May be Even in such a case, the control circuit 20 can generate a total voltage of the first and third output voltages V1 and V3 larger than the second output voltage V2. Therefore, the first to third output voltages V1 to V3 of the first to third solar cell panels SP1 to SP3 can be controlled with high efficiency in a wide range.
 なお、上記実施形態は以下のように変更してもよい。 The above embodiment may be modified as follows.
 ○上記各実施形態は、低周波グループを第2DC/AC変換器12として具体化し、高周波グループを第1及び第3DC/AC変換器11,13として具体化した。 In each of the above embodiments, the low frequency group is embodied as the second DC / AC converter 12, and the high frequency group is embodied as the first and third DC / AC converters 11 and 13.
 しかしながら、低周波グループを第1DC/AC変換器11として具体化し、高周波グループを第2及び第3DC/AC変換器12,13として具体化してもよい。また、低周波グループを第3DC/AC変換器13として具体化し、高周波グループを第1及び第2DC/AC変換器11,12として具体化してもよい。 However, the low frequency group may be embodied as the first DC / AC converter 11 and the high frequency group may be embodied as the second and third DC / AC converters 12 and 13. The low frequency group may be embodied as the third DC / AC converter 13 and the high frequency group may be embodied as the first and second DC / AC converters 11 and 12.
 ○第1及び第2実施形態では、高周波グループの第1及び第3DC/AC変換器11,13を高周波でデューティー制御する場合、最大電力点追従(MPPT)のために山登り法にて、第1~第3太陽電池パネルSP1~SP3毎に最大電力点を割り出した。第1及び第3DC/AC変換器11,13は、割り出した最大電力点を得るようにデューティー制御された。最大電力点を割り出す方法として山登り法以外の方法が用いられてもよい。 In the first and second embodiments, when performing duty control of the first and third DC / AC converters 11 and 13 of the high frequency group with the high frequency, the first power point is the hill climbing method for maximum power point tracking (MPPT). The maximum power point was determined for each of the third solar cell panels SP1 to SP3. The first and third DC / AC converters 11 and 13 were duty controlled to obtain the determined maximum power point. A method other than hill climbing may be used as a method of determining the maximum power point.
 また、第1~第3DC/AC変換器11~13を制御する方法して、最大電力点追従(MPPT)以外の方法が用いられてもよい。 Further, as a method of controlling the first to third DC / AC converters 11 to 13, a method other than maximum power point tracking (MPPT) may be used.
 ○第1及び第2実施形態では、第1~第3DC/AC11~13は低周波グループと高周波グループに分けられたが、グループ分けされなくてもよい。 In the first and second embodiments, the first to third DC / ACs 11 to 13 are divided into the low frequency group and the high frequency group, but they may not be divided into groups.
 例えば、第1~第3DC/AC11~13の全ては、第1~第3DC/AC11~13を高周波グループとして実施されてもよい。この場合、第2DC/AC12は、200V、0V、-200Vを含む第2変換出力電圧Vbを生成する際、高周波でデューティー制御される。 For example, all of the first to third DCs / ACs 11 to 13 may be implemented with the first to third DCs / ACs 11 to 13 as high frequency groups. In this case, the second DC / AC 12 is duty controlled at a high frequency when generating the second converted output voltage Vb including 200 V, 0 V, and -200 V.
 ○第1及び第2実施形態では、太陽光発電システムの電力変換装置1は、3個の第1~第3太陽電池パネルSP1,SP2,SP3を接続して構成された。しかしながら、電力変換装置1は、4個、5個、又はそれ以上の太陽電池パネルを接続した電力変換装置に応用されてもよい。 In the first and second embodiments, the power conversion device 1 of the solar power generation system is configured by connecting the three first to third solar cell panels SP1, SP2, and SP3. However, the power conversion device 1 may be applied to a power conversion device in which four, five or more solar cell panels are connected.
 ○第1及び第2実施形態では、第1~第3太陽電池パネルSP1~SP3は、AC200V系統に連系するための太陽電池であった。 In the first and second embodiments, the first to third solar cell panels SP1 to SP3 are solar cells for connecting to the AC 200 V system.
 即ち、直列に接続された複数の太陽電池素子を含む複数の直列回路が並列に接続されて単位太陽電池パネルを形成し、複数の単位太陽電池パネルが直列に接続されて直列単位太陽電池パネルを形成し、さらに複数の直列単位太陽電池パネルが並列に接続されて太陽電池を形成した。第1~第3太陽電池パネルSP1~SP3は、第1出力電圧V1(=100V)、第2出力電圧V2(=200V)、第3出力電圧V3(=120V)を生成する。 That is, a plurality of series circuits including a plurality of solar cell elements connected in series are connected in parallel to form a unit solar cell panel, and a plurality of unit solar cell panels are connected in series to form a series unit solar cell panel A plurality of series unit solar cell panels were connected in parallel to form a solar cell. The first to third solar cell panels SP1 to SP3 generate a first output voltage V1 (= 100 V), a second output voltage V2 (= 200 V), and a third output voltage V3 (= 120 V).
 しかしながら、このような太陽電池の電力変換装置1は、AC200V系統に連系するための太陽電池以外の太陽電池の電力変換装置に応用されてもよい。 However, the power conversion device 1 of such a solar cell may be applied to a power conversion device of a solar cell other than a solar cell for connecting to an AC 200 V system.

Claims (6)

  1.  複数の太陽電池に用いられる電力変換装置であって、
     複数の太陽電池にそれぞれ接続された複数のDC/AC変換器であって、該複数のDC/AC変換器は、互いに直列に接続されている、前記複数のDC/AC変換器と、
     前記複数のDC/AC変換器を制御する制御回路とを備える、電力変換装置。
    A power converter used for a plurality of solar cells, comprising:
    A plurality of DC / AC converters each connected to a plurality of solar cells, wherein the plurality of DC / AC converters are connected in series with each other;
    And a control circuit for controlling the plurality of DC / AC converters.
  2.  請求項1に記載の電力変換装置において、
     前記複数のDC/AC変換器は、第1のグループのDC/AC変換器と第2のグループのDC/AC変換器に分けられ、
     前記制御回路は、前記第1のグループのDC/AC変換器を低周波でデューティー制御し、前記第2のグループのDC/AC変換器を高周波でデューティー制御する、電力変換装置。
    In the power converter according to claim 1,
    The plurality of DC / AC converters are divided into a first group of DC / AC converters and a second group of DC / AC converters,
    The power conversion apparatus, wherein the control circuit duty-controls the DC / AC converter of the first group at low frequency and duty-controls the DC / AC converter of the second group at high frequency.
  3.  請求項2に記載の電力変換装置において、
     前記第1のグループのDC/AC変換器は、比較的高い出力電圧を生成する太陽電池に接続され、
     前記第2のグループのDC/AC変換器は、比較的低い出力電圧を生成する太陽電池に接続されている、電力変換装置。
    In the power converter according to claim 2,
    The first group of DC / AC converters is connected to a solar cell producing a relatively high output voltage,
    The power converter according to claim 2, wherein the second group of DC / AC converters is connected to a solar cell that generates a relatively low output voltage.
  4.  請求項1~3のいずれか1つに記載の電力変換装置において、
     前記制御回路は、前記複数のDC/AC変換器の各々に対して、対応する太陽電池の出力電圧と、当該DC/AC変換器に流れる出力電流とに基づいて、最大電力点追従制御を行う、電力変換装置。
    The power converter according to any one of claims 1 to 3.
    The control circuit performs maximum power point tracking control on each of the plurality of DC / AC converters based on the output voltage of the corresponding solar cell and the output current flowing to the DC / AC converter. , Power converter.
  5.  請求項1~4のいずれか1つに記載の電力変換装置おいて、
     前記複数のDC/AC変換器と複数の太陽電池との間にそれぞれ設けられた複数のDC/DC変換器と、
     前記複数のDC/DC変換器にそれぞれ並列接続された複数の短絡スイッチとを備え、
     前記制御回路は、前記複数の太陽電池の出力電圧が予め定めた電圧範囲から外れた時、前記複数の短絡スイッチをオフし、前記太陽電池の出力電圧が前記予め定めた電圧範囲に入るように前記複数のDC/DC変換器を制御する、電力変換装置。
    In the power converter according to any one of claims 1 to 4,
    A plurality of DC / DC converters respectively provided between the plurality of DC / AC converters and a plurality of solar cells;
    And a plurality of shorting switches connected in parallel to the plurality of DC / DC converters,
    The control circuit turns off the plurality of short circuit switches when the output voltage of the plurality of solar cells deviates from a predetermined voltage range, so that the output voltage of the solar cells falls within the predetermined voltage range. A power converter controlling the plurality of DC / DC converters.
  6.  請求項1~5のいずれか1つに記載の電力変換装置おいて、
     前記複数のDC/AC変換器の各々は、
     並列に接続された第1及び第2の直列回路を有するブリッジ回路であって、前記第1及び第2の直列回路の各々は、直列に接続された2個のスイッチング素子を含み、前記第1及び第2の直列回路には、前記太陽電池の出力電圧が印加される、前記ブリッジ回路と、
     前記第1の直列回路における2個のスイッチング素子間の接続点に接続された正極出力端子と、
     前記第2の直列回路における2個のスイッチング素子間の接続点に接続された負極出力端子とを含む、電力変換装置。
    In the power converter according to any one of claims 1 to 5,
    Each of the plurality of DC / AC converters is
    A bridge circuit having first and second series circuits connected in parallel, each of the first and second series circuits including two switching elements connected in series; And the second series circuit is the bridge circuit to which the output voltage of the solar cell is applied;
    A positive output terminal connected to a connection point between two switching elements in the first series circuit;
    And a negative electrode output terminal connected to a connection point between two switching elements in the second series circuit.
PCT/JP2012/007356 2011-11-29 2012-11-16 Power conversion device WO2013080469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-260562 2011-11-29
JP2011260562 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080469A1 true WO2013080469A1 (en) 2013-06-06

Family

ID=48534968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007356 WO2013080469A1 (en) 2011-11-29 2012-11-16 Power conversion device

Country Status (1)

Country Link
WO (1) WO2013080469A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199422A1 (en) * 2013-06-10 2014-12-18 株式会社 日立製作所 Power conversion device
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
JP2017205003A (en) * 2016-05-09 2017-11-16 陽光電源股▲ふん▼有限公司 Ac-dc photovoltaic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110571A (en) * 1992-09-30 1994-04-22 Sharp Corp Feeding system utilizing solar battery
JPH1075580A (en) * 1996-08-29 1998-03-17 Yaskawa Electric Corp Photovolatic power converter
JP2010011702A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Power conversion apparatus
JP2011107904A (en) * 2009-11-16 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110571A (en) * 1992-09-30 1994-04-22 Sharp Corp Feeding system utilizing solar battery
JPH1075580A (en) * 1996-08-29 1998-03-17 Yaskawa Electric Corp Photovolatic power converter
JP2010011702A (en) * 2008-06-30 2010-01-14 Mitsubishi Electric Corp Power conversion apparatus
JP2011107904A (en) * 2009-11-16 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199422A1 (en) * 2013-06-10 2014-12-18 株式会社 日立製作所 Power conversion device
JPWO2014199422A1 (en) * 2013-06-10 2017-02-23 株式会社日立製作所 Power converter
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
JP2017205003A (en) * 2016-05-09 2017-11-16 陽光電源股▲ふん▼有限公司 Ac-dc photovoltaic device
US10389132B2 (en) 2016-05-09 2019-08-20 Sungrow Power Supply Co., Ltd. AC-DC photovoltaic device

Similar Documents

Publication Publication Date Title
US8184460B2 (en) Solar inverter and control method
JP6319824B2 (en) Multi-level inverter device and method of operation
US20120153727A1 (en) Inverter and power converter having inverter mounted therein
CN101128974A (en) Power conversion apparatus
AU2020475318B2 (en) Method and apparatus for controlling busbar voltage of photovoltaic system
CN102918472A (en) Method and apparatus for power converter input voltage regulation
US20220302713A1 (en) Control system and method for medium-voltage photovoltaic distribution system
KR20180052996A (en) Synthetic test circuit for submodule performance test in a power compensator and testing method thereof
JP2017511103A (en) Power conversion electronics
Prasad et al. Hybrid multilevel DC link inverter with reduced power electronic switches
WO2013080469A1 (en) Power conversion device
JP5362657B2 (en) Power converter
Chavali et al. A novel multilevel inverter with reduced number of switches using simplified PWM technique
WO2020117169A2 (en) A dead-time control method for power electronics converters and a circuit for the application of this method
Hosseinzadeh et al. New Reduced Switched Multilevel Inverter for Three-Phase Grid-Connected PV System, Performance Evaluation
US9793819B2 (en) Methods and apparatus of controllers for power converter with parallel power channels having independent DC buses
Bhimireddy et al. Novel single phase full bridge inverter formed by floating capacitors
WO2018206085A1 (en) Methods and apparatus of controllers for power converter with parallel power channels having independent dc buses
EP3086458B1 (en) Inverter circuit and method for producing inverter circuit
Najafi et al. Z-source reversing voltage multilevel inverter for photovoltaic applications with inherent voltage balancing
Yamaguchi et al. Digital active gate control for a three-phase inverter circuit for a surge voltage suppression and switching loss reduction
Garbarino et al. PID control strategies comparison with Gain Schedule and States Feedback in a Buck-Boost Converter
JP2011229347A (en) Power conversion equipment
JPH0965657A (en) Power converter for solar power generation
Christopher et al. Microcontroller based single-phase simplified seven-level inverter for PV system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP