WO2013079692A1 - Kugelventil mit externer dichtungsanordnung, insbesondere für den einsatz in kraftfahrzeugkältemittelkreisläufen - Google Patents

Kugelventil mit externer dichtungsanordnung, insbesondere für den einsatz in kraftfahrzeugkältemittelkreisläufen Download PDF

Info

Publication number
WO2013079692A1
WO2013079692A1 PCT/EP2012/074151 EP2012074151W WO2013079692A1 WO 2013079692 A1 WO2013079692 A1 WO 2013079692A1 EP 2012074151 W EP2012074151 W EP 2012074151W WO 2013079692 A1 WO2013079692 A1 WO 2013079692A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
ball valve
fluid
sealing
ball
Prior art date
Application number
PCT/EP2012/074151
Other languages
English (en)
French (fr)
Inventor
Corinne LE PELLEC
Original Assignee
Visteon Global Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies, Inc. filed Critical Visteon Global Technologies, Inc.
Priority to US14/361,919 priority Critical patent/US9441741B2/en
Priority to CN201280068198.6A priority patent/CN104094026B/zh
Priority to KR1020147018042A priority patent/KR101567739B1/ko
Publication of WO2013079692A1 publication Critical patent/WO2013079692A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor
    • F16K5/0647Spindles or actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor
    • F16K5/0626Easy mounting or dismounting means
    • F16K5/0642Easy mounting or dismounting means the spherical plug being insertable from one and only one side of the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • F16K27/067Construction of housing; Use of materials therefor of taps or cocks with spherical plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/003Spindle sealings by fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/10Spindle sealings with diaphragm, e.g. shaped as bellows or tube
    • F16K41/106Spindle sealings with diaphragm, e.g. shaped as bellows or tube for use with rotating spindles or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor
    • F16K5/0663Packings
    • F16K5/0694Spindle sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details
    • F16K5/14Special arrangements for separating the sealing faces or for pressing them together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • Ball valve with external sealing arrangement in particular for use in motor vehicle refrigerant circuits
  • the invention relates to a ball valve, in particular for use in motor vehicle refrigerant circuits.
  • Ball valves have an actuator which drives a shaft mounted in a shaft bearing, which transmits the rotary motion to the valve element, which is formed from a ball with a ball passage channel.
  • the components are housed in a valve body and ball valves are considered robust and inexpensive and are used for a variety of applications.
  • Modern refrigerant systems for motor vehicle air conditioning systems are increasingly integrating modern functionalities that are associated with high demands on the individual components of the respective refrigerant system. For example, it is desirable to integrate heat pump functionality in the design of automotive refrigerant systems. For this purpose, it is necessary to equip the components used, in particular the valves and the expansion elements, with extended functionalities. This requires, among other things, that the valves are bi-directionally applicable to the refrigerant flow through the valve and that the systems also meet the particularly high sealing requirements for refrigerant systems in mobile applications.
  • a valve with a high degree of tightness with respect to the external sealing of the valve to the environment which is suitable for use in refrigerant systems for motor vehicle air conditioners.
  • the object is solved by the features of a ball valve according to claim 1. Further developments are specified in the dependent claims.
  • the object of the invention is achieved by a ball valve with external seal arrangement, which is particularly suitable for use in automotive coolant circuits.
  • the ball valve consists essentially of an actuator, a shaft with shaft bearing, a ball with a ball passage and a valve body.
  • the peculiarity of the ball valve according to the invention is that in the shaft bearing a fluid shaft seal between an upper mechanical shaft seal and a lower mechanical shaft seal is arranged, wherein the fluid shaft seal is formed from a cavity in which a sealing fluid is located.
  • the sealing fluid surrounds the shaft in a sealing area.
  • the cavity for the sealing fluid is at least partially formed by a membrane and limited to the shaft by the shaft seals, the upper shaft seal and the lower shaft seal.
  • the membrane is designed to be acted upon by pressure on the side facing away from the sealing fluid, so that the pressure is transmitted from outside the sealing fluid space to the sealing fluid via the flexible membrane and thus the same pressure prevails on both sides of the membrane.
  • An advantageous embodiment of the invention is that in the valve housing, a chamber is formed, whose wall is partially formed by the membrane, wherein the chamber is acted upon by the system pressure of the ball valve flowing through the fluid. In a particularly advantageous manner, this ensures that the pressure of the fluid flowing through which prevails in the chamber via the membrane to the sealing fluid is transferred and thus that the sealing fluid and the fluid which flows through the ball valve, the same pressure.
  • polyalkylene glycols are arranged in the cavity as a sealing fluid.
  • a further advantageous embodiment of the invention results from the fact that the internal shaft seal is designed as an O-ring and is formed without pressure difference for media separation of the fluid flowing through the ball valve and the sealing fluid. On both sides of the O-ring are thus fluids, the ball valve flowing through the fluid and the sealing fluid, which have the same pressure.
  • the external shaft seal is designed as an O-ring or as a molded seal and is formed with pressure difference for media separation of sealing fluid and environment.
  • the concept of the invention is primarily that the external seal of the ball valve is realized by a double seal system with enclosed sealing fluid reservoir, which means that oil is provided as a sealing fluid as an intermediate seal between the refrigerant and the environment.
  • the Dichtfluidvorlage which is also referred to as a cavity is at least partially formed as a membrane.
  • the sealing fluid is preferably oil, which is adapted to the refrigerant used and is suitable for refrigerants and which thus causes no damage in the refrigerant system even in leaks within this sealing system.
  • the actuator in the ball valve, is located sufficiently far away from the valve body by means of the spacing by the shaft, so that the thermal load on the electrical components of the actuator can be minimized and also functioning at a high temperature level, respectively even at low temperature level, thus well guaranteed.
  • the oil as a sealing fluid thus forms an intermediate seal in the form of an oil pocket with a cavity for the sealing fluid, which is partially formed by a membrane. Due to the modification of the actuator and the ball geometry, the valve type is suitable for implementing two / two-, three / two- and four / two-way valves.
  • the actuator with the motor gearbox and the electronics is thermally isolated from the valve, for example, by the distance from the actuator to the valve housing, an insulating shaft of poor thermal conductivity material, such as ceramic, or special fasteners made of temperature-resistant plastics and thus has practically ambient temperature ,
  • the membrane is designed as a ring molding.
  • the annular molding is bounded above by a collar and below by an abutment ring, also referred to as a contact surface, in the axial direction, wherein in the radial direction, the collar have a further and the contact ring a narrower diameter.
  • the upper collar bead and the lower contact surface of the membrane are connected to one another by an axial jacket surface and a radial lower annular disc.
  • the cavity for receiving the sealing fluid is formed between the shaft, the upper collar bead, the axial lateral surface, the radial annular disc and the lower abutment ring.
  • the transition from the axial lateral surface to the radial lower annular disc is rounded off to the outside.
  • Fig. 1 cross-section of a ball valve
  • Fig. 2 enlarged view of the shaft seal of a ball valve
  • Fig. 3a axial sectional view through the membrane
  • Fig. 4 exploded view of a ball valve with its essential
  • a ball valve 1 is shown in cross section with its essential components.
  • the ball valve 1 has an actuator 2, which rotates a shaft 3 depending on the desired flow rate of the valve.
  • the shaft 3 is connected via a nose 20, which engages in an engagement notch 14 of the ball 4.
  • the Ball passage 16 formed through which the fluid flows with the valve open position of the ball valve 1 from the inlet of the valve to the outlet of the valve.
  • the shaft 3 is rotatably mounted about its axis in a shaft bearing 5.
  • the shaft bearing 5 has an external shaft seal 6 and an internal shaft seal 7, between which a fluid shaft seal 8 is formed.
  • the seal arrangement of external shaft seal 6, internal shaft seal 7 and intermediate fluid shaft seal 8 has the task of preventing the escape of fluid flowing through the ball valve 1 via play of the shaft 3 in the shaft bearing 5.
  • This sealing system is also referred to as an external double-sealing system and is decisive for the leakage rate of the ball valve 1.
  • the ball 4 is mounted with respect to the internal seal in or between two ball sealing seats 9, wherein the ball sealing seats 9 are floatingly mounted with the valve housing 13 via a sealing ring 10.
  • refrigerant connections 15 are provided for the refrigerant lines.
  • From Figure 2 is in an enlarged sectional view of the area of the shaft bearing 5 of the shaft 3 of the ball valve shown enlarged. It is shown that the seal assembly of external shaft seal 6, internal shaft seal 7 and intermediate fluid shaft seal 8 is formed.
  • the fluid shaft seal 8 is formed by a sealing fluid-filled cavity 18, which is at least partially bounded by a membrane 1 1.
  • the membrane 1 1 is supported between the valve housing 13 and the shaft bearing 5 at its upper end and is formed like a sleeve.
  • the sealing area 19 of the shaft 3 is wetted with the sealing fluid.
  • a chamber 12 is formed, which is filled with the fluid flowing through the valve.
  • the fluid flowing through the ball valve 1 in particular the refrigerant of the Refrigerant circuit, depending on the place of use and operating state of the Kaltem ittelsystems a certain pressure, which also prevails in the chamber 12 of the ball valve 1.
  • the membrane 1 Between the chamber 12 and the sealing fluid-filled cavity 18 is the membrane 1 1, whereby the pressure of the fluids in the adjacent each fluid-filled cavities, the chambers 12 and the cavity 18, equalizes.
  • the internal shaft seal 7, which is formed as an O-ring, surrounded from both sides with different fluids of the same pressure.
  • the sealing fluid which is designed as a refrigerant-compatible oil and as described on the membrane 1 first has the same pressure as the refrigerant.
  • the external sealing arrangement thus consists of a first pressure-free seal between two fluids and in a second seal of a fluid to the environment with the pressure difference of the refrigerant system to the environment.
  • the external shaft seal 6 is designed as shown as an O-ring or as a molded seal and applied to the pressure difference of the system pressure, which rests on the sealing fluid to the ambient pressure surrounding the ball valve atmosphere.
  • FIGS. 3a and 3b Illustrations of the membrane 11 are shown in FIGS. 3a and 3b.
  • the figure 3a shows an axial section AA through the membrane 1 1, which is designed as a ring collar rotationally symmetrical.
  • the annular collar is closed by the collar 21 in the axial direction above.
  • the collar bead is formed in the manner of an O-ring and engages positively in a corresponding groove of the shaft bearing 5 a.
  • the axial circumferential surface 23 adjoins in the axial direction, which merges as a circular cylindrical surface at the lower end into a radial annular disc 24.
  • the transition from cylindrical lateral surface 23 in the radial annular disc 24 is executed rounded.
  • the radial annular disc 24 merges into the contact ring 22, which is designed as a cylindrical contact surface for the shaft bearing 5.
  • the radial annular disc 24 forms the lower end of the annular collar in the axial direction and the abutment ring 22 extends upwards.
  • the seal of the sealing fluid-filled cavity 18 relative to the shaft bearing 5 is realized by the collar 21 and the cylindrical contact ring 22.
  • the sealing fluid-filled cavity 18 is bounded radially in the interior by a lateral surface of the shaft 3, which is also referred to as the sealing region 19 of the fluid shaft seal 8 of the shaft 3 above.
  • the seal towards the shaft 3 is realized by the external shaft seal 6 with respect to the environment and by the internal shaft seal 7 with respect to the fluid flowing through the ball valve 1.
  • the membrane 1 1 is shown in plan view and there are the upper collar bead 21 and the end face of the lower abutment ring 22 is shown and designated.
  • the upper collar bead 21 is formed with a larger diameter in relation to the diameter of the abutment ring 22, so that the collar bead 21 as further and the lower abutment ring 22 are referred to as narrow.
  • a ball valve 1 is shown in exploded view.
  • the main components, the actuator 2, the valve housing 13, the shaft 3 and the ball 4 are supplemented by the components of the bearing for the shaft 3 with the shaft bearing 5, the associated external and internal shaft seals 6 and 7 and the fluid shaft seal 8 with the membrane 1 1.
  • the ball 4 is mounted in the illustrated embodiment with oppositely placed ball sealing seats 9, which in turn are sealingly mounted by a sealing seat seal 10 relative to the valve housing 13 or on the other side relative to the closure 17.
  • Shaft bearing 5, the corresponding receptacles for the collar bead and the abutment ring 22 are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Taps Or Cocks (AREA)
  • Details Of Valves (AREA)

Abstract

Die Erfindung betrifft ein Kugelventil (1), insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen, aufweisend einen Stellantrieb (2), eine Welle (3) mit Wellenlager (5), eine Kugel (4) mit einem Kugeldurchgang (16) sowie ein Ventilgehäuse (13), welches dadurch gekennzeichnet ist, dass im Wellenlager (5) eine Fluidwellendichtung (8) zwischen einer oberen Wellendichtung (6) und einer unteren Wellendichtung (7) angeordnet ist, wobei die Fluidwellendichtung (8) aus einem Hohlraum (18) gebildet ist in welchem ein Dichtfluid vorgesehen ist und dass das Dichtfluid in einem Dichtbereich (19) mit der Welle (3) in Kontakt steht, so dass in axialer Richtung eine Dichtwirkung durch das Dichtfluid besteht, wobei der Hohlraum (18) mindestens teilweise von einer Membran (11) gebildet und an der Welle (3) von den Wellendichtungen (6, 7) begrenzt wird und dass die Membran (11) auf der dem Dichtfluid abgewandten Seite mit Druck beaufschlagbar ausgebildet ist.

Description

Kugelventil mit externer Dichtungsanordnung, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen
Die Erfindung betrifft ein Kugelventil, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen.
Kugelventile weisen einen Stellantrieb auf, der eine in einem Wellenlager gelagerte Welle antreibt, welche die Drehbewegung an das Ventilelement überträgt, welches aus einer Kugel mit einem Kugeldurchgangskanal gebildet wird. Die Komponenten sind in einem Ventilgehäuse gelagert und Kugelventile gelten als robust und kostengünstig und werden für vielfältige Anwendungen eingesetzt. In modernen Kältemittelsystemen für Kraftfahrzeugklimaanlagen werden zunehmend moderne Funktionalitäten integriert, die mit hohen Anforderungen an die einzelnen Komponenten des jeweiligen Kältemittelsystems verbunden sind. Beispielsweise ist es wünschenswert, bei der Ausgestaltung von Kraftfahrzeugkältemittelsystemen eine Wärmepumpenfunktionalität zu integrieren. Dazu ist es erforderlich, die verwendeten Komponenten, insbesondere die Ventile und die Expansionsorgane, mit erweiterten Funktionalitäten auszustatten. Dies erfordert unter anderem, dass die Ventile bidirektional in Bezug auf den Kältemittelfluss durch das Ventil einsetzbar sind und dass die Systeme auch den besonders hohen Dichtigkeitsanforderungen an Kältemittelsysteme in mobilen Anwendungen genügen.
Im Stand der Technik sind bislang kaum für die Praxis geeignete Komponenten verfügbar und somit besteht ein Bedarf, bewährte Komponenten zu modifizieren und an die neuen Aufgaben anzupassen. Im Stand der Technik sind beispielsweise Kugelventile nach der DE 24 30 409 A1 bekannt, welche als Bauelemente für Fluid-Leitungsanordungen speziell angepasst sind, um den Anforderungen mit Bezug auf die Dichtheit und Montagefreundlichkeit sowie Optimierung der Anzahl der Einzelkomponenten zu genügen.
Es sind ganz allgemein bei Kugelventilen Dichtheitsprobleme bekannt im Hinblick auf die sogenannte interne Dichtigkeit, welche sich auf die Durchströmung des mit dem Ventil zu regulierenden Fluids bezieht. Die externe Dichtigkeit betrifft die Dichtheit des Ventils in Bezug auf die Umgebung des Ventils, da die sich bewegende Welle für die Stellbewegung des Ventilkörpers gegenüber der Umgebung abgedichtet werden muss, um ein Austreten des zu regulierenden Fluids über die drehbeweglich gelagerte Welle zu vermeiden.
Bei Kältemittelsystemen kommen weitere Anforderungen an die Ventile hinzu, da die Komponenten auch mit sehr hohen Temperatur- und Druckdifferenzen belastet werden. Insbesondere die Dichtungen müssen diesbezüglich an sehr hohe Anforderungen durch die auftretenden Thermospannungen und Materialschrumpfungen beziehungsweise Dehnungen angepasst sein. Die Probleme werden weiterhin dadurch verschärft, dass besonders hohe Anforderungen an kältemittelführende Systeme beim Einsatz in mobilen Anwendungen, wie beispielsweise Kraftfahrzeugen, gestellt werden. Dies äußert sich darin, dass eine sehr lange Lebensdauer und Funktionsfähigkeit der Komponenten bei mobilen Anwendungen erwartet wird, um das Austreten von Kältemittel in die Umgebung zu minimieren.
Somit ist es Aufgabe der Erfindung, ein Ventil mit einer hohen Dichtigkeit in Bezug auf die externe Abdichtung des Ventils gegenüber der Umwelt zu schaffen, welches für den Einsatz in Kältemittelsystemen für Kraftfahrzeugklimaanlagen geeignet ist. Die Aufgabe wird durch die Merkmale eines Kugelventils gemäß Patentanspruch 1 gelöst. Weiterbildungen sind in den abhängigen Patentansprüchen angegeben. Insbesondere wird die Aufgabe der Erfindung durch ein Kugelventil mit externer Dichtungsanordnung gelöst, welches insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen geeignet ist.
Das Kugelventil besteht im Wesentlichen aus einem Stellantrieb, einer Welle mit Wellenlager, einer Kugel mit einem Kugeldurchgangskanal sowie aus einem Ventilgehäuse. Die Besonderheit des erfindungsgemäßen Kugelventils besteht darin, dass im Wellenlager eine Fluidwellendichtung zwischen einer oberen mechanischen Wellendichtung und einer unteren mechanischen Wellendichtung angeordnet ist, wobei die Fluidwellendichtung aus einem Hohlraum gebildet ist, in welchem sich ein Dichtfluid befindet. Das Dichtfluid umgibt in einem Dichtbereich die Welle. Somit steht das Dichtfluid mit der Welle in Kontakt, sodass in axialer Richtung der Welle eine Dichtungswirkung durch das Dichtfluid besteht. Der Hohlraum für das Dichtfluid wird mindestens teilweise von einer Membran gebildet und an der Welle von den Wellendichtungen, der oberen Wellendichtung und der unteren Wellendichtung, begrenzt. Die Membran ist auf der dem Dichtfluid abgewandten Seite mit Druck beaufschlagbar ausgebildet, sodass über die flexible Membran der Druck von außerhalb des Dichtfluidraumes auf das Dichtfluid übertragen wird und somit auf beiden Seiten der Membran der gleiche Druck herrscht. Eine vorteilhafte Ausgestaltung der Erfindung besteht darin, dass in dem Ventilgehäuse eine Kammer ausgebildet ist, deren Wandung teilweise durch die Membran gebildet ist, wobei die Kammer mit dem Systemdruck des das Kugelventil durchströmenden Fluids beaufschlagt ist. In besonders vorteilhafter Weise wird dadurch gewährleistet, dass der Druck des durchströmenden Fluids welcher in der Kammer herrscht über die Membran auf das Dichtfluid übertragen wird und dass somit das Dichtfluid und das Fluid, welches das Kugelventil durchströmt, den gleichen Druck aufweist.
Für Kältemittelkreisläufe hat es sich als besonders vorteilhaft erwiesen, wenn als Dichtfluid Polyalkylenglykolen in dem Hohlraum angeordnet ist.
Eine weitere vorteilhafte Ausgestaltung der Erfindung ergibt sich dadurch, dass die interne Wellendichtung als O-Ring ausgeführt ist und ohne Druckdifferenz zur Medientrennung von dem das Kugelventil durchströmenden Fluid und dem Dichtfluid ausgebildet ist. Zu beiden Seiten des O-Ringes befinden sich somit Fluide, des das Kugelventil durchströmenden Fluids und des Dichtfluids, welche den gleichen Druck aufweisen.
Eine Weiterbildung der Erfindung ist darin zu sehen, dass die externe Wellendichtung als O-Ring oder als Formdichtung ausgeführt wird und mit Druckdifferenz zur Medientrennung von Dichtfluid und Umgebung ausgebildet ist.
Dies ermöglicht die rationelle Herstellung einer internen Dichtungskonstruktion für die Kugel, welche in besonders vorteilhafter Weise einfach montierbar und auch bei Reparaturen leicht austauschbar ist.
Die Konzeption der Erfindung besteht in erster Linie darin, dass die externe Dichtung des Kugelventils durch ein Doppeldichtsystem mit eingeschlossener Dichtfluidvorlage realisiert wird, das bedeutet, dass Öl als Dichtfluid als Zwischendichtung zwischen dem Kältemittel und der Umgebung vorgesehen ist. Die Dichtfluidvorlage, die auch als Hohlraum bezeichnet ist, wird mindestens Teilweise als Membran ausgebildet. Somit wird auch noch ein zusätzlicher besonderer Effekt der Druckanpassung der Dichtfluidkammer an den Druck des das Ventil durchströmenden Fluids über diese Membran realisiert. Das Dichtfluid ist bevorzugt Öl, welches auf das eingesetzte Kältemittel abgestimmt und kältemitteltauglich ist und welches somit auch bei Undichtigkeiten innerhalb dieses Dichtsystems keinen Schaden im Kältemittelsystem verursacht.
Ein weiterer Vorteil der Erfindung besteht darin, dass bei dem Kugelventil der Stellantrieb ausreichend weit von dem Ventilkörper entfernt mittels der Beabstandung durch die Welle lokalisiert ist, sodass die thermische Belastung der elektrischen Komponenten des Stellantriebes minimiert werden kann und auch ein Funktionieren auf hohem Temperaturniveau, respektive auch bei niedrigem Temperaturniveau, dadurch gut gewährleistet ist.
Das Öl als Dichtfluid bildet somit eine Zwischendichtung in Form einer Öltasche mit einem Hohlraum für das Dichtfluid, der teilweise von einer Membran gebildet wird. Der Ventiltyp ist durch die Modifikation des Aktuators und der Kugel-Geometrie geeignet, Zwei/Zwei-, Drei/Zwei- und Vier/Zwei Wegeventile zu realisieren.
Der Stellantrieb mit dem Motorgetriebe und der Elektronik ist von dem Ventil, zum Beispiel durch den Abstand vom Stellantrieb zum Ventilgehäuse, eine isolierende Welle aus schlecht wärmeleitendem Material, wie zum Beispiel Keramik, oder spezielle Verbindungselemente aus temperaturfesten Kunststoffen, thermisch getrennt und hat somit praktisch Umgebungstemperatur.
Nach einer besonders vorteilhaften Ausgestaltung der Erfindung ist die Membran als Ringformteil ausgestaltet. Das Ringformteil wird oben durch eine Kragenwulst und unten durch einen Anlagering, auch als Anlagefläche bezeichnet, in axialer Richtung begrenzt, wobei in radialer Richtung die Kragenwulst einen weiteren und der Anlagering einen engeren Durchmesser aufweisen. Die obere Kragenwulst und die untere Anlagefläche der Membran werden durch eine axiale Mantelfläche und eine radiale untere Ringscheibe miteinander verbunden.
Der Hohlraum zur Aufnahme des Dichtfluids ist zwischen der Welle, der oberen Kragenwulst, der axialen Mantelfläche, der radialen Ringscheibe und dem unteren Anlagering ausgebildet.
Bevorzugt ist der Übergang von der axialen Mantelfläche auf die radiale untere Ringscheibe nach außen abgerundet ausgeführt.
Das Ringformteil begrenzt in radialer Richtung den Hohlraum für das Dichtfluid durch die axiale Mantelfläche und in axialer Richtung nach unten durch die Verbindung der unteren Anlagefläche mit der Mantelfläche. Weitere Einzelheiten, Merkmale und Vorteile von Ausgestaltungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen. Es zeigen: Fig. 1 : Querschnitt eines Kugelventils;
Fig. 2: vergrößerte Darstellung der Wellendichtung eines Kugelventils;
Fig. 3a: axiale Schnittdarstellung durch die Membran;
Fig. 3b: Draufsicht auf die Membran
Fig. 4: Explosionsdarstellung eines Kugelventils mit seinen wesentlichen
Komponenten.
In Figur 1 ist ein Kugelventil 1 im Querschnitt mit seinen wesentlichen Komponenten dargestellt. Das Kugelventil 1 besitzt einen Stellantrieb 2, welcher eine Welle 3 je nach gewünschtem Durchflussgrad des Ventils verdreht. Die Welle 3 ist über eine Nase 20 verbunden, welche in eine Eingriffskerbe 14 der Kugel 4 eingreift. In der Kugel 4 ist der Kugeldurchgangskanal 16 ausgebildet, durch welchen das Fluid bei geöffneter Ventilstellung des Kugelventils 1 vom Einlass des Ventils zum Auslass des Ventils strömt. Die Welle 3 ist drehbeweglich um ihre Achse in einem Wellenlager 5 gelagert. Das Wellenlager 5 besitzt eine externe Wellendichtung 6 und eine interne Wellendichtung 7, zwischen denen eine Fluidwellendichtung 8 ausgebildet ist. Die Dichtungsanordung von externer Wellendichtung 6, interner Wellendichtung 7 und zwischenliegender Fluidwellendichtung 8 hat die Aufgabe, den Austritt von das Kugelventil 1 durchströmendem Fluid über ein Spiel der Welle 3 in dem Wellenlager 5 zu verhindern. Dieses Dichtungssystem wird auch als externes Doppeldichtsystem bezeichnet und ist maßgeblich für die Leckagerate des Kugelventils 1 .
Die Kugel 4 ist bezüglich der internen Dichtung in beziehungsweise zwischen zwei Kugeldichtsitzen 9 gelagert, wobei die Kugeldichtsitze 9 mit dem Ventilgehäuse 13 über einen Dichtsitzring 10 schwimmend gelagert sind. Am Ventilgehäuse sind Kältemittelanschlüsse 15 für die Kältemittel führenden Leitungen vorgesehen. Aus Figur 2 geht in einer vergrößerten Schnittdarstellung der Bereich des Wellenlagers 5 der Welle 3 des Kugelventils vergrößert hervor. Es ist dargestellt, dass die Dichtungsanordung aus externer Wellendichtung 6, interner Wellendichtung 7 und dazwischenliegender Fluidwellendichtung 8 ausgebildet ist. Die Fluidwellendichtung 8 wird durch einen dichtfluidgefüllten Hohlraum 18 gebildet, der zumindest teilweise von einer Membran 1 1 begrenzt wird. Die Membran 1 1 ist zwischen dem Ventilgehäuse 13 und dem Wellenlager 5 an ihrem oberen Ende gehaltert und ist manschettenartig ausgebildet. Der Dichtbereich 19 der Welle 3 wird mit dem Dichtfluid benetzt. Im Bereich der Lagerung der Kugel 4 ist eine Kammer 12 ausgebildet, die mit dem das Ventil durchströmenden Fluid gefüllt ist. Das das Kugelventil 1 durchströmende Fluid, insbesondere also das Kältemittel des Kältemittelkreislaufes, besitzt je nach Einsatzort und Betriebszustand des Kaltem ittelsystems einen bestimmten Druck, welcher auch in der Kammer 12 des Kugelventils 1 herrscht. Zwischen der Kammer 12 und dem dichtfluidgefüllten Hohlraum 18 befindet sich die Membran 1 1 , wodurch sich der Druck der Fluide in den benachbarten jeweils fluidgefüllten Kavitäten, der Kammern 12 und des Hohlraumes 18, angleicht. Somit ist die interne Wellendichtung 7, welche als O-Ring ausgebildet ist, von beiden Seiten mit verschiedenen Fluiden gleichen Druckes umgeben. Von der Seite der Kammer 12 her mit Kältemittel des entsprechenden Druckes der Zone, in welcher das Kugelventil 1 angeordnet ist und korrespondierend dazu von der anderen Seite der internen Wellendichtung 7 das Dichtfluid, welches als kältemittelverträgliches Öl ausgeführt ist und wie beschrieben über die Membran 1 1 den gleichen Druck wie das Kältemittel aufweist. Die externe Dichtungsanordnung besteht somit aus einer ersten drucklosen Dichtung zwischen zwei Fluiden und in einer zweiten Dichtung eines Fluids zur Umgebung hin mit dem Druckunterschied des Kältemittelsystems zur Umgebung. Die externe Wellendichtung 6 ist wie dargestellt als O-Ring oder als Formdichtung ausgeführt und mit dem Druckunterschied des Systemdrucks, der auf dem Dichtfluid lastet, zu dem Umgebungsdruck der das Kugelventil umgebenden Atmosphäre beaufschlagt.
In den Figuren 3a und 3b sind Darstellungen der Membran 1 1 gezeigt. Die Figur 3a zeigt dabei einen axialen Schnitt A-A durch die Membran 1 1 , welche als Ringmanschette rotationssymmetrisch ausgeführt ist. Die Ringmanschette wird durch die Kragenwulst 21 in axialer Richtung oben abgeschlossen. Die Kragenwulst ist in der Art eines O-Ringes ausgeformt und greift formschlüssig in eine korrespondierende Nut des Wellenlagers 5 ein. Am äußeren Umfang der Kragenwulst 21 schließt sich in axialer Richtung die axiale Mantelfläche 23 an, welche als kreiszylindrische Fläche am unteren Ende in eine radiale Ringscheibe 24 übergeht. Der Übergang von zylindrischer Mantelfläche 23 in die radiale Ringscheibe 24 ist abgerundet ausgeführt. Die radiale Ringscheibe 24 geht über in den Anlagering 22, welcher als zylindrische Anlagefläche für das Wellenlager 5 ausgebildet ist. Die radiale Ringscheibe 24 bildet den unteren Abschluss der Ringmanschette in axialer Richtung und der Anlagering 22 erstreckt sich nach oben. Damit wird eine im Querschnitt sackartige Kontur erzeugt, welche das Dichtfluid aufnimmt. Die Dichtung des dichtfluidgefüllten Hohlraumes 18 gegenüber dem Wellenlager 5 wird durch die Kragenwulst 21 und den zylindrischen Anlagering 22 realisiert. Der dichtfluidgefüllte Hohlraum 18 wird radial im Inneren begrenzt durch eine Mantelfläche der Welle 3, welche auch als Dichtbereich 19 der Fluidwellendichtung 8 der Welle 3 vorangehend bezeichnet ist. Die Dichtung zur Welle 3 hin wird durch die externe Wellendichtung 6 gegenüber der Umgebung und durch die interne Wellendichtung 7 gegenüber dem das Kugelventil 1 durchströmenden Fluids realisiert.
In Figur 3b ist die Membran 1 1 in der Draufsicht gezeigt und es sind die obere Kragenwulst 21 und die Stirnfläche des unteren Anlageringes 22 dargestellt und bezeichnet. Die obere Kragenwulst 21 ist mit größerem Durchmesser im Verhältnis zum Durchmesser des Anlageringes 22 ausgebildet, so dass die Kragenwulst 21 als weiter und der untere Anlagering 22 als enger bezeichnet sind.
In Figur 4 ist ein Kugelventil 1 in Explosionsdarstellung gezeigt. Die Hauptkomponenten, der Stellantrieb 2, das Ventilgehäuse 13, die Welle 3 sowie die Kugel 4 werden ergänzt durch die Komponenten der Lagerung für die Welle 3 mit dem Wellenlager 5, dem zugehörigen externen und internen Wellendichtungen 6 und 7 sowie der Fluidwellendichtung 8 mit der Membran 1 1 . Die Kugel 4 wird in der dargestellten Ausgestaltung gelagert mit gegenüberliegend platzierten Kugeldichtsitzen 9, welche ihrerseits durch eine Dichtsitzdichtung 10 gegenüber dem Ventilgehäuse 13 oder auf der anderen Seite gegenüber dem Verschluss 17 dichtend gelagert sind. Wellenlager 5 sind die korrespondierenden Aufnahmen für die Kragenwulst und den Anlagering 22 ausgebildet.
LISTE DER BEZUGSZEICHEN
1 Kugelventil
2 Stellantrieb
3 Welle
4 Kugel
5 Wellenlager
6 externe Wellendichtung
7 interne Wellendichtung
8 Fluidwellendichtung
9 Kugeldichtsitz
10 Dichtsitzdichtung
1 1 Membran
12 Kammer
13 Ventilgehäuse
14 Eingriffskerbe
15 Kältemittelanschluss
16 Kugeldurchgangskanal
17 Verschluss
18 dichtfluidgefüllter Hohlraum
19 Dichtbereich
20 Nase
21 Kragenwulst
22 Anlagering
23 axiale Mantelfläche
24 radiale Ringscheibe

Claims

PATENTANSPRÜCHE
1 . Kugelventil (1 ) mit externer Dichtungsanordnung, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen, aufweisend einen Stellantrieb (2), eine Welle (3) mit Wellenlager (5), eine Kugel (4) mit einem Kugeldurchgangskanal (16) sowie ein Ventilgehäuse (13), dadurch gekennzeichnet, dass im Wellenlager (5) eine Fluidwellendichtung (8) zwischen einer oberen Wellendichtung (6) und einer unteren Wellendichtung (7) angeordnet ist, wobei die Fluidwellendichtung (8) aus einem Hohlraum (18) gebildet ist in welchem ein Dichtfluid vorgesehen ist und dass das Dichtfluid in einem Dichtbereich (19) mit der Welle (3) in Kontakt steht, so dass in axialer Richtung eine Dichtwirkung durch das Dichtfluid besteht, wobei der Hohlraum (18) mindestens teilweise von einer Membran (1 1 ) gebildet und an der Welle (3) von den Wellendichtungen (6, 7) begrenzt wird und dass die Membran (1 1 ) auf der dem Dichtfluid abgewandten Seite mit Druck beaufschlagbar ausgebildet ist.
2. Kugelventil (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass im
Ventilgehäuse (13) eine Kammer (12) ausgebildet ist, deren Wandung teilweise durch die Membran (1 1 ) gebildet ist, wobei die Kammer (12) mit dem Systemdruck des das Kugelventil (1 ) durchströmenden Fluids beaufschlagt ist.
3. Kugelventil (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Polyalkylenglykolen als Dichtfluid im Hohlraum (18) angeordnet ist.
4. Kugelventil (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die interne Wellendichtung (7) als O-Ring ausgeführt ist und ohne Druckdifferenz zur Medientrennung von dem das Kugelventil (1 ) durchströmenden Fluid und dem Dichtfluid ausgebildet ist.
5. Kugelventil (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die externe Wellendichtung (6) als O-Ring oder als Formdichtung ausgeführt und mit Druckdifferenz zur Medientrennung von Dichtfluid und Umgebung ausgebildet ist.
6. Kugelventil (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Welle (3) aus schlecht wärmeleitendem Material ausgebildet ist.
7. Kugelventil (1 ) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Membran (1 1 ) als Ringformteil mit einer weiteren oberen Kragenwulst (21 ) und einem engeren unteren Anlagering (22) ausgebildet ist.
8. Kugelventil (1 ) nach Anspruch 7, dadurch gekennzeichnet, dass die obere Kragenwulst und der untere Anlagering der Membran (1 1 ) durch eine axiale Mantelfläche und eine radiale untere Ringscheibe miteinander verbunden sind.
9. Kugelventil (1 ) nach Anspruch 8, dadurch gekennzeichnet, dass der
Hohlraum (18) zur Aufnahme des Dichtfluids zwischen der Welle (3), der oberen Kragenwulst, der axialen Mantelfläche, der radialen Ringscheibe und dem unteren Anlagering ausgebildet ist.
10. Kugelventil (1 ) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Übergang von der axialen Mantelfläche auf die radiale untere Ringscheibe nach außen abgerundet ausgeführt ist.
PCT/EP2012/074151 2011-11-30 2012-11-30 Kugelventil mit externer dichtungsanordnung, insbesondere für den einsatz in kraftfahrzeugkältemittelkreisläufen WO2013079692A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/361,919 US9441741B2 (en) 2011-11-30 2012-11-30 Ball valve having an external seal arrangement, particularly for use in motor vehicle refrigerant circuits
CN201280068198.6A CN104094026B (zh) 2011-11-30 2012-11-30 使用在机动车制冷剂循环回路中的具有外部密封装置的球阀
KR1020147018042A KR101567739B1 (ko) 2011-11-30 2012-11-30 외부 밀봉 장치를 구비한 볼 밸브

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102011055892 2011-11-30
DE102011055892.6 2011-11-30
DE102012111467.6 2012-11-27
DE102012111467.6A DE102012111467B4 (de) 2011-11-30 2012-11-27 Kugelventil mit externer Dichtungsanordnung, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen

Publications (1)

Publication Number Publication Date
WO2013079692A1 true WO2013079692A1 (de) 2013-06-06

Family

ID=47428589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/074151 WO2013079692A1 (de) 2011-11-30 2012-11-30 Kugelventil mit externer dichtungsanordnung, insbesondere für den einsatz in kraftfahrzeugkältemittelkreisläufen

Country Status (5)

Country Link
US (1) US9441741B2 (de)
KR (1) KR101567739B1 (de)
CN (1) CN104094026B (de)
DE (1) DE102012111467B4 (de)
WO (1) WO2013079692A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105097A1 (de) 2014-04-10 2015-10-15 Halla Visteon Climate Control Corporation Ventilblockanordnung für mehrere Ventile
FR3062701B1 (fr) 2017-02-06 2019-06-07 Mmt ag Vanne motorisee a boisseau
DE102017102842A1 (de) 2017-02-13 2018-08-16 Otto Egelhof Gmbh & Co. Kg Wellendurchführung sowie Ventil mit einer solchen Wellendurchführung und Verfahren zur Herstellung einer Wellendurchführung
FR3067785B1 (fr) 2017-06-14 2019-08-02 Schrader Valve multivoie a boisseau conique
KR102292754B1 (ko) * 2020-06-25 2021-08-25 티에스모스트 주식회사 볼 밸브
KR102208930B1 (ko) * 2020-08-05 2021-01-27 김판곤 응축수 자동 드레인 밸브
DE102020134622B4 (de) * 2020-12-22 2022-11-03 Hanon Systems Vorrichtung zum Regeln eines Durchflusses und Expandieren eines Fluids in einem Fluidkreislauf
DE102022114002A1 (de) * 2021-06-22 2022-12-22 Illinois Tool Works Inc. Aktuatorgehäuse für einen Kühlmittelkreislauf eines Kraftfahrzeugs
CN117515203A (zh) 2022-07-27 2024-02-06 奥托埃格尔霍夫两合公司 球阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2430409A1 (de) 1973-10-15 1975-04-17 Whitey Research Tool Co Bauelement fuer fluid - leitungsanordnungen, insbesondere kugelventil
US4475713A (en) * 1982-03-19 1984-10-09 Xomox Corporation One piece top seal for a valve
US20010032951A1 (en) * 1999-10-13 2001-10-25 Robert C. Stewart Ball valve stem seal arrangement
EP1467132A1 (de) * 2003-04-08 2004-10-13 Hydac Accessories GmbH Kugelhahn
US20090079138A1 (en) * 2007-09-24 2009-03-26 Griswold Controls Inc Replaceable Valve Shaft Sealing System

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096966A (en) * 1959-07-23 1963-07-09 Hills Mccanna Co Sealed ball valve
FR1248634A (fr) * 1959-10-20 1960-12-23 Joint tournant à soufflet étanche ou organe analogue d'étanchéité
US3406707A (en) * 1967-01-06 1968-10-22 Duriron Co Top cap and stem seal for valves
US3567176A (en) * 1968-12-20 1971-03-02 Herbert G Johnson Ball valve assembly with stem actuator seal
US4084785A (en) 1976-08-09 1978-04-18 Murdock Machine & Engineering Company Of Texas Ball valve with linear elastomeric seal mounting
US4475313A (en) 1983-04-05 1984-10-09 Peachtree Doors, Inc. Locking arrangement for sliding doors
US4886241A (en) 1987-09-16 1989-12-12 Fisher Controls International, Inc. Valve stem packing containment for high pressure, high temperature
US5402983A (en) * 1993-08-30 1995-04-04 Xomox Corporation Combined metal and plastic diaphragm assembly for a valve
US6129336A (en) 1998-01-16 2000-10-10 Xomox Ball stem seal
DE29903320U1 (de) * 1999-02-25 1999-07-15 Xomox International GmbH & Co, 88131 Lindau Armatur
KR101251974B1 (ko) * 2005-04-27 2013-04-08 이글 고오교 가부시키가이샤 실링구조 및 그 실링구조를 이용한 제어밸브
ITMI20070093U1 (it) * 2007-03-20 2008-09-21 Bonetti Cesare Spa Valvola a sfera con mezzi rimovibili di trattenuta della guarnizione di tenuta assiale
CN201401527Y (zh) * 2009-04-28 2010-02-10 胡金木 球阀
US8281797B2 (en) 2009-12-18 2012-10-09 Fisher Controls International Llc Control valve having live loaded packing follower with leak-off and independent secondary seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2430409A1 (de) 1973-10-15 1975-04-17 Whitey Research Tool Co Bauelement fuer fluid - leitungsanordnungen, insbesondere kugelventil
US4475713A (en) * 1982-03-19 1984-10-09 Xomox Corporation One piece top seal for a valve
US20010032951A1 (en) * 1999-10-13 2001-10-25 Robert C. Stewart Ball valve stem seal arrangement
EP1467132A1 (de) * 2003-04-08 2004-10-13 Hydac Accessories GmbH Kugelhahn
US20090079138A1 (en) * 2007-09-24 2009-03-26 Griswold Controls Inc Replaceable Valve Shaft Sealing System

Also Published As

Publication number Publication date
DE102012111467A1 (de) 2013-06-06
DE102012111467B4 (de) 2019-07-18
CN104094026B (zh) 2016-12-21
US20140306137A1 (en) 2014-10-16
KR20140098228A (ko) 2014-08-07
KR101567739B1 (ko) 2015-11-20
CN104094026A (zh) 2014-10-08
US9441741B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
DE102012111467B4 (de) Kugelventil mit externer Dichtungsanordnung, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen
DE102012111468A1 (de) Kugelventil mit interner Dichtungsanordnung, insbesondere für den Einsatz in Kraftfahrzeugkältemittelkreisläufen
EP2909514B1 (de) Ventilsystem und -verfahren
DE102011053690B4 (de) Elektrisches Schwimmkugelventil
EP2213850B1 (de) Dichtungsanordnung für einen Drehschieber
EP2992255B1 (de) Elektrisch antreibbares ventil zur regelung von volumenströmen in einem heiz- und/oder kühlsystem eines kraftfahrzeuges
DE102012003397A1 (de) Kükenhahn mit einem drehzapfengelagerten Küken
WO2016046064A1 (de) Vorrichtung zur dichtung eines ventils
EP2005002B1 (de) Schraubenverdichter mit entlastungsventil
DE10012714A1 (de) Ventilanordnung einer Kälteanlage
EP3169902B1 (de) Schraubenverdichter
DE102009015184B4 (de) Klappenventil
WO2009130125A1 (de) Wärmetauscher, insbesondere ölkühler
DE10337370B4 (de) Sicherheitsabsperreinrichtung
DE202018105534U1 (de) Ventil
DE102020212719A1 (de) Ventilanordnung und auf die ventilanordnung angewendetes dichtungselement
EP3775638B1 (de) Dichtungsanordnung und fluidventil
WO2020187673A1 (de) Ventilvorrichtung
DE102015212362B3 (de) Kompressor mit Ventil sowie Verfahren zum Betrieb desselben
EP3994378A1 (de) Ventilplatte mit ventillamellen
EP0756115A1 (de) Absperrklappe
WO2020008010A1 (en) Fluid flow control device having a draining body bearing
DE202007016859U1 (de) Entlüftungsventil, insbesondere für Verschlussschraube
EP2966324A1 (de) Ventil und verfahren zum freigeben/verschliessen einer fluidpassage
EP1244868B1 (de) Fluidisches schaltelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361919

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147018042

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12805633

Country of ref document: EP

Kind code of ref document: A1