WO2013078986A1 - 一种高速列车车载智能设备 - Google Patents

一种高速列车车载智能设备 Download PDF

Info

Publication number
WO2013078986A1
WO2013078986A1 PCT/CN2012/085399 CN2012085399W WO2013078986A1 WO 2013078986 A1 WO2013078986 A1 WO 2013078986A1 CN 2012085399 W CN2012085399 W CN 2012085399W WO 2013078986 A1 WO2013078986 A1 WO 2013078986A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
vehicle
board
smart device
train
Prior art date
Application number
PCT/CN2012/085399
Other languages
English (en)
French (fr)
Inventor
王勇
刘建元
金静阳
金巍
荣平
Original Assignee
浙江网新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江网新技术有限公司 filed Critical 浙江网新技术有限公司
Publication of WO2013078986A1 publication Critical patent/WO2013078986A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40091Bus bridging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0063Multiple on-board control systems, e.g. "2 out of 3"-systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Definitions

  • the invention relates to a high-speed train system, in particular to a high-speed train vehicle-mounted intelligent device
  • Intelligent trains refer to the ability of trains to "self-test, self-diagnosis, and self-determination.”
  • Self-test refers to the full-scale, multi-dimensional detection of high-speed trains by means of sensor technology;
  • self-diagnosis refers to the intelligent positioning and diagnosis of faults based on the detected state;
  • self-decision refers to success On the basis of the first two, the high-speed train realizes the judgment of the hazard of the fault and takes relevant measures to reduce its harm.
  • the present invention provides a high speed train vehicle smart device to solve some or all of the problems mentioned in the background art.
  • the problem that the in-vehicle smart device provided by the present invention can actually solve is not limited to the description of the background art.
  • the invention provides a high-speed train vehicle intelligent device, comprising: a backboard, one or more core processing module CPM boards, one or more column control data boards, one or more multi-function input and output MI0 boards;
  • the CPM board can be in the primary state or the standby state, and the active/standby function is switched.
  • the column control data board is used to implement mutual adaptation of the column control data and the backboard data
  • the MI0 board is used to transmit and receive various types of sensor data on the train, and realizes adaptation of various types of sensor data and backplane data, including A/D conversion, D/A conversion, filtering, sampling, signal power scaling, and speed adaptation.
  • the backplane is connected to each board to provide an exchange channel for data exchange between the boards.
  • the in-vehicle intelligent device can be configured as a master, a backup, and a slave working mode by communicating with the other in-vehicle intelligent devices on the Ethernet ring network through the Ethernet ring network.
  • the CPM board mainly includes a data service hardware forwarding gateway and a data hardware switching module, and is configured to implement the in-vehicle intelligent device accessing and processing multiple types of data services, and the Ethernet data exchange with the other in-vehicle smart devices;
  • the sensor data after being adapted by the MI0 board is provided to the in-vehicle data center, the in-vehicle train control system and/or the ground data center by the in-vehicle smart device and/or the other in-vehicle smart device;
  • the ground data center and the in-vehicle smart device communicate with each other via GSM-R.
  • the high speed train vehicle smart device further includes a board for processing the switch amount data.
  • the high speed train vehicle smart device further includes a veneer for processing electronic tag information on the train component.
  • the high speed train vehicle smart device further includes a single board for processing audio and video data.
  • the ground data center and/or the onboard data center transmits control commands to the train control system via the high speed train in-vehicle smart device for train control.
  • the ground data center and/or the onboard data center transmit instructions to the sensors via the high speed train vehicle smart device to simultaneously collect sensor data.
  • FIG. 1 Schematic diagram of the networking scheme of the vehicle intelligent device system
  • Figure 2 Schematic diagram of the main equipment protection method for the vehicle intelligent equipment ring network system
  • FIG. 3 Schematic diagram of the vehicle intelligent device module and single board architecture
  • Figure 4 Schematic diagram of multi-service transmission and processing of on-board intelligent trains and transmission on a pair of cables
  • Figure 5 Schematic diagram of real-time synchronous acquisition of in-vehicle smart devices
  • GSM-R GSM for Rai lways railway communication dedicated digital mobile communication system
  • a high-speed train vehicle intelligent device comprising: a backplane, one or more core processing modules, a CPM board, one or more column control data boards, and one or more multi-function input and output MI0 boards;
  • the CPM board can be in the primary state or the standby state, and the active/standby function is switched.
  • the column control data board is used to implement mutual adaptation of the column control data and the backboard data
  • the MI0 board is used to transmit and receive various types of sensor data on the train, and realizes adaptation of various types of sensor data and backplane data, including A/D conversion, D/A conversion, filtering, sampling, signal power scaling, and speed adaptation.
  • the backplane is connected to each board to provide an exchange channel for data exchange between the boards.
  • the in-vehicle smart device can be configured as a main, standby, and slave working mode by communicating with the other in-vehicle intelligent devices on the Ethernet ring through the Ethernet ring network.
  • the CPM board includes a data service hardware forwarding gateway and a data hardware switching module, configured to implement the in-vehicle intelligent device to access and process multiple types of data services, and exchange Ethernet data with the other in-vehicle smart devices;
  • the sensor data adapted by the MI0 board is supplied to the in-vehicle data center, the in-vehicle train control system and/or the ground data center by the in-vehicle smart device and/or the other in-vehicle smart device;
  • the ground data center and the in-vehicle smart device communicate with each other via GSM-R.
  • the high speed train vehicle smart device further includes a board for processing the switch amount data.
  • the high speed train vehicle smart device further includes a veneer for processing electronic tag information on the train component.
  • the high speed train vehicle smart device further includes a single board for processing audio and video data.
  • the ground data center and/or the onboard data center transmits control commands to the train control system via the high speed train vehicle smart device for train control.
  • the ground data center and/or the onboard data center transmit instructions to the sensor through the high speed train vehicle smart device to synchronously collect sensor data.
  • FIG. 1 is a schematic diagram of a vehicle intelligent device system networking according to an embodiment of the present invention.
  • the system may include: a vehicle intelligent ring network S101, a ring network S101 by a vehicle intelligent slave device S102, S103, and an in-vehicle smart host device S104.
  • the vehicle intelligent standby device S105 and the like are composed. It should be pointed out that each car in a train has an in-vehicle intelligent device, specifically one car as a main device and one standby device, and the others are slave devices. For example, in a train with 8 cars, there is 1 main device, 1 standby device and 6 slave devices.
  • the role of the S101 ring network is to solve network transmission and communication, overcome special train conditions, solve long-distance cable transmission, and realize self-healing of network faults, so that various digital services on high-speed trains can use this ring network for communication.
  • the vehicle intelligent slave device S103 the first is used to set up the smart ring network S101; the second is used to access various devices included in the S108.
  • S103 is a device for supporting multi-service access processing of multiple interfaces, through which various types of sensor data on high-speed trains, various column control network data, on-board device switch data, passenger sounds, video data, etc. It can be integrated into the car Ethernet ring network to realize communication; S102 has the same function as S103, and can access different devices and different services according to the car in which it is located.
  • the in-vehicle intelligent sub-device set S108 refers to various types of devices that the in-vehicle intelligent device S103 supports.
  • the vehicle-mounted intelligent terminal refers to a train bottom sensing acquisition device.
  • the sensor data is taken as an example, and the CPM board is used to calculate and encapsulate the packet to the Ethernet packet. Then, the vehicle intelligent ring network is sent to the vehicle intelligent main device to perform unified calculation of the vehicle sensor data.
  • the vehicle-mounted smart master device sends the vehicle data to the on-board data center and/or the ground data center.
  • the vehicle data can also be sent to the train control system.
  • the vehicle sensing data is uniformly analyzed and processed and integrated by the in-vehicle data center, the ground data center, and/or the train control system.
  • the in-vehicle intelligent master device S104 the first function is the same as the smart slave device S103, and can access various smart sub-devices for forming a ring network; the second function is used as a central processing device for collecting data of the entire ring network, The data sent to each node of the ring network is integrated and processed; the third function is to communicate with the in-vehicle data center S106 and the ground data center S107.
  • the in-vehicle intelligent standby device S105 functions the same as the in-vehicle intelligent slave device S103 when the system network is in a normal state; when the network fault occurs, in particular, the in-vehicle smart master device S104 fails, the master device of the ring network S101 switches from S104 to S105, At the same time, its function is the same as that of the in-vehicle smart master device S104 described above.
  • the in-vehicle data center S106 which does not belong to the content of the present invention, provides a human-machine interface, and its function is to process data collected by the in-vehicle intelligent ring network and implement application layer security and operation and maintenance.
  • the ground data center S 107 which is not part of the present invention, is connected to the vehicle intelligent master device through the vehicle GSM-R wireless communication device, and its function is to perform comprehensive mining analysis through the data collected by the intelligent ring network, and carry out maintenance reference and leadership observation. , safety assessment, component history management and other functions.
  • FIG. 2 is a schematic diagram of a method for protecting a master device of a ring system of a vehicle-mounted smart device according to an embodiment of the present invention, where the method preferably includes:
  • S202 The master device establishes data communication with each of the slave and standby device nodes, and the master device establishes data communication with the vehicle and the ground data center.
  • S203 The primary and backup devices of the ring network perform information exchange and state hot backup.
  • S204 The master device determines whether the transmission and processing data are abnormal, and the standby device determines whether the master device is working abnormally.
  • the S203 ring network primary and backup devices perform information exchange and data hot backup.
  • the data backup of the two devices is established on the ring network link where the two devices are connected.
  • the S204 master device determines whether the transmission and processing data are abnormal.
  • the standby device determines whether the master device is working abnormally.
  • the master device determines the working state abnormality detection information through the ring network link and the data center through its own patrol inspection.
  • the slave device passes its own inspection. Based on the status information received by the ring link and the data center, it is determined whether the master device is working abnormally.
  • the abnormality may be caused by a link failure of the train ring network, and the ring network has the characteristics of self-healing, so it is necessary to do a time waiting for the self-healing process of the ring network.
  • the normal anomaly analysis process is performed only after this predetermined time has elapsed.
  • the structure of the in-vehicle smart device of the present invention is as shown in Fig. 3.
  • the in-vehicle smart device may include one or more of the following and its variations:
  • S310 and S320 are in backup relationship and implement 1+1 redundancy protection. In normal operation, one is the primary and the other is the standby.
  • the backplane data synchronization bus S331 is configured to connect to a non-Ethernet data service board and provide clock synchronization and time synchronization functions. Use the TDM two-way synchronous transmission mode to provide a data link between the service boards (MI0, MVB) and the CPM board in the device.
  • the service board provides a synchronous clock source and a synchronous time source to the CPM board. Synchronous clock and synchronous time timing are provided to each service board.
  • the backplane data synchronization bus is between the service board and the CPM board.
  • Each type of service board converts data patterns of various states to NRZ codes, and maps them to a number of time slots of the backplane data synchronization bus TDM according to the rate thereof.
  • the CPM board can obtain the standard frame format TDM data sent by each service board, and perform operations, classification, and secondary rate matching mapping into Ethernet packets. The entire process is implemented in hardware. Low jitter and high real-time data.
  • the backplane PCI-E bus S332 is used for the expansion of the SVR board to provide high data data channels.
  • the backplane requires that all slots have a backplane data synchronization bus S331, a backplane PCI-E bus S332, and a backplane ETH bus S333.
  • MVB board S341 the function is to collect and connect the train control network MVB bus. Its main functional blocks are electrical isolation, pattern conversion, rate matching, and data mapping to the backplane data synchronization bus S331.
  • TCM single board S342 the function is to collect and connect the train control network RS485 bus. Its main functional blocks are electrical isolation, pattern conversion, rate matching, and data mapping to the backplane data synchronization bus S331.
  • ARC board S343 the function is to collect and connect the current loop in the train control network ARCnet equipment. Its main functional blocks are electrical isolation, pattern conversion, rate matching, and data mapping to the backplane data synchronization bus S331.
  • the above three types of train control network boards have two functions in the equipment system at the service level.
  • One is that the column control data can be transparently transmitted, and the train control network data in the train can be transmitted and transmitted in the entire train.
  • the other is to extract and reconstruct the data of the column control network through the functions of the hardware gateway and the CPU module in the CPM board S310, and break the closed loop and non-opening of the existing column control data to improve data utilization.
  • FRF board S344 the function is to use the external antenna or cable to read the RF electronic tag from the car. Its main functional blocks are coupler, amplifier, RF transmit and receive module, RF access protocol module, baseband signal processing, rate matching, and data mapping to the backplane data synchronous bus S331. With the RFR board, the locomotive personnel are no longer required to hold the handheld RF reader, and the electronic tag can be continuously managed in real time and continuously.
  • MI0 board S345 the role of sensor data acquisition, including voltage, current, temperature, vibration, pressure and other types. Its main function blocks are A/D conversion, power frequency filtering, anti-aliasing filtering, small signal amplification, oversampling digital filtering, rate matching, and data mapping to the backplane data synchronization bus S331.
  • the MI0 board can extract the synchronous clock and time from the CPM board to achieve synchronous acquisition of all the sensors in the system network.
  • the NIF board S346 has two main functions, one is to provide a switch output input drive; the other is to provide a device synchronization clock synchronization time interface.
  • the main function blocks are: digital input, digital output, clock input and output interface, time input and output interface, rate matching, data mapping to backplane data synchronization bus S331.
  • the NIF board can extract the synchronous clock and time from the CPM board to achieve synchronous input acquisition and synchronous output control of all switches in the system network.
  • ETH board S3408 which is used to connect various types of Ethernet devices. Its main functions include long-distance, anti-jamming transmission, and confirmation of various service access licenses.
  • the SVR card is an extended data calculation board of the CPU module of the CPM. It functions as a server in devices and systems. Its main function is data operation and storage.
  • the RNA board S360 functions to enable the in-vehicle intelligent device to form a ring network and complete the self-healing function.
  • the main functions include long distance, anti-interference transmission, node access permission confirmation, and link status detection.
  • the CPM board S310 may include:
  • the clock time synchronization processing module S311 is configured to restore the synchronization clock and the synchronization time by the data packet provided by the upstream, where the upstream includes the GPS signal from the NIF board S346; the synchronization from the ETH single S348 or the RNA board S360 Clock signal and PTP message.
  • the synchronous clock and synchronization time are provided to the service boards through the backplane synchronization bus S331.
  • the data service hardware forwarding gateway S312 is used for classifying, computing, encapsulating, and forwarding data of various pattern types and rate matching into CPU or Ethernet data messages in a hardware circuit manner.
  • the CPU module S313 functions as a board management, business data operation, and a communication protocol stack for Ethernet data communication. In the case of complex massive data processing, data is offloaded and scheduled to the SVR board S350.
  • the data hardware switching module S314 is used for high-QoS Ethernet data layer 2 switching.
  • the QoS queue scheduling rule is enabled, and a network transmission queue mechanism is provided to distinguish between packet delay, blocking, and overload.
  • the Ethernet ring protection module S315 implements the ring network protection protocol in hardware, detects and processes link status, ring network status, sends and receives protocol accounts, and implements link switching.
  • FIG. 4 is a schematic diagram of a method for transmitting an intelligent train multi-service on a pair of cables according to an embodiment of the present invention, where the method may include:
  • the core idea of the present invention is to use a synchronous low-latency, low-jitter TDM backplane bus technology to map various types of services accessed by various boards through pattern conversion and rate matching to a unified
  • the message format, on a unified physical bus, facilitates the processing of subsequent CPMs, facilitating the design of plug-in boards that support a variety of services.
  • the main CPM performs TDM data reception and classification.
  • the CPM performs TDM data reception and classification.
  • CPM completes the data acceptance and classification in this step.
  • the active and standby CPM boards are 1+1 real-time backup redundancy.
  • the hot backup is usually performed in the mode of "concurrent selection", that is, the local circuit that can be processed in parallel performs 1+1 backup processing, and when the output is selected, the content processed by the main CPM is selected. Further, if each step is performed on the CPM board, then it is understood to perform processing on the main CPM.
  • the original MVB and other column control data are originally self-closed processing and are not open to the outside.
  • the MVB data can be transparently uploaded, and the basic message can also be used. Decompose and extract, repackage, upload and use.
  • S450 Whether data analysis is required. In the specific implementation, it is configured by the human machine and executed by the hardware gateway module.
  • S460 The data hardware switching module is transmitted according to the priority of the service.
  • the QoS queue scheduling rule is enabled, the differentiated service is implemented, the network transmission queue mechanism is provided, and the packet delay, blocking, and overload are treated.
  • S463 The SVR board performs data analysis processing.
  • whether the primary transmission channel works normally can be determined by the RNA in-position state, the remote device state, the access link state, and the loop protection state state.
  • S481 The main channel eastbound RNA board and communication cable.
  • S482 Main channel eastbound RNA board and communication cable.
  • a ring network construction scheme suitable for the train a long-distance interference of the RNA single board, an anti-interference transmission scheme, and an RNA device node access confirmation method are provided.
  • FIG. 5 is a schematic diagram of a method for real-time synchronous acquisition of a vehicle-mounted intelligent device according to an embodiment of the present invention.
  • the method for collecting a sensor signal by using an MI0 board as an example may include:
  • S510 The smart device system starts.
  • S520 Whether the UTC clock time is available.
  • the UTC clock time there are two ways to obtain the UTC clock time. One is to recover from the upstream PTP packet.
  • the device supports the IEEE 1588 PTP protocol or the NTP protocol.
  • the other is to extract the time directly from the GPS device.
  • S531 The master device extracts the UTC time and clock and transmits it to each device through the PTP.
  • the in-vehicle smart device clock time synchronization function block needs to support PTP packet parsing, clock, time recovery, and delivery to downstream device nodes. After all devices are tracked for UTC time, all sensors in the device can be fully synchronized.
  • S532 The master device generates its own clock and time and transmits it to each device through PTP.
  • each slave device tracks the time generated by the master device, and all the sensors in the network reach the synchronous acquisition, thereby achieving quasi-synchronous acquisition.
  • S540 The device CPM broadcasts the synchronization time and clock to each service board through the backplane synchronization bus.
  • a TDM bus is defined on the backplane, and the physical characteristics of the TDM are low latency, zero jitter transfer time and clock, and TDM time slots are used for data rate matching and data transmission.
  • Each service board recovers the synchronization time through the backplane synchronization bus.
  • a corresponding time pulse and time message are defined on the bus.
  • the meticulous time between time pulses is calculated from the pulse and the following synchronized clock.
  • S560 Determine whether the trigger is synchronous.
  • the MI0 triggers the sampling action to acquire data, and then adds the synchronization timestamp to the message.
  • the MI0 performs oversampling, collects data in continuous time, and the uplink service synchronously extracts time and data to form a time-stamped message.
  • the server or the data center when the server or the data center receives the time-stamped data message, it can perform horizontal comparison, overall utilization, and deep exploration of various types of sensing and control data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Small-Scale Networks (AREA)

Abstract

公开了一种高速列车车载智能设备,包括:背板,一个或多个核心处理模块CPM单板(S310,S320),一个或多个列控数据单板,一个或多个多功能输入输出MIO单板(S345)。所述车载智能设备作为以太环网上的节点与以太环网上的其他车载智能设备通过以太网进行通信,并能配置成主、备、从三种工作模式,用于处理、控制各类传感数据的采集和收发,将传感数据发送给数据中心和/或列控系统,将音视频数据、传感数据融合到以太环网进行传输。

Description

说 明 书 一种高速列车车载智能设备 技术领域
本发明涉及高速列车系统, 尤其是高速列车车载智能设备
背景技术
列车智能化指的是让列车具备 "自检测、 自诊断、 自决策 "的能力。 自检测指的是借助 传感器技术实现高速列车对自身状态的全方面, 多维度的检测; 自诊断指的是列车能根据检 测到的状态进行故障的智能定位和诊断; 自决策指的是在成功实现了前两者的基础上, 高速 列车实现对故障危害的判决, 采取相关措施降低其危害。
现有的高速列车智能系统存在以下待解决或待改善的问题或缺陷:
1 )为了高速列车的安全运营, 列车上安装的传感器越来越多, 随着而来的传感数据并有 恰当的途径来实时地提供给地面数据中心, 以备列车在出现安全事故时, 彻查事故发生原因。
2 )列车上的传感器重类众多, 个数众多, 分散布置在列车上各个位置, 其提供的信号形 式、 功率大小各异, 目前的列车上未有好的途径对其进行恰当处理和传输。
3 ) 现有列车上的总线形式众多, 通信方式众多, 但网络带宽均较低、 功能单一, 以 MVB 为例, 只有大约 2M左右的带宽, WTB则只有 1. 5M左右的带宽。 不足以承载越来越多的传感 器数据, 更难以融合车载设备开关量数据、 乘客音、 视频数据,其它多种列控数据等。
发明内容
本发明提供一种高速列车车载智能设备, 以解决背景技术提到的部分或全部问题。 但本 发明提供的车载智能设备实际所能解决的问题不限于背景技术部分的描述。
本发明提供一种高速列车车载智能设备, 包括: 背板, 一个或多个核心处理模块 CPM单 板, 一个或多个列控数据单板, 一个或多个多功能输入输出 MI0单板;
所述 CPM单板能处于主状态或备用状态, 进行主备功能倒换;
所述列控数据单板用于实现列控数据和背板数据的相互适配;
所述 MI0单板用于收发列车上的各类传感器数据, 实现各类传感器数据和背板数据的适 配, 包括 A/D转换, D/A转换, 滤波, 采样, 信号功率缩放和速率适配;
所述背板连接各单板, 为单板间的数据交换提供交换通道;
所述车载智能设备作为以太环上的节点与以太环网上的其它车载智能设备通过以太环网 进行通信, 能配置成主、 备、 从三种工作模式; 所述 CPM单板主要包括数据业务硬件转发网关和数据硬件交换等模块, 用于实现所述车 载智能设备接入和处理多类数据业务,以及与所述其它车载智能设备间的以太数据交换; 经所述 MI0单板适配后的传感数据通过所述车载智能设备和 /或所述其它车载智能设备提 供给车载数据中心, 车载列车控制系统和 /或地面数据中心;
地面数据中心与所述车载智能设备通过 GSM-R进行车地通信。
优选地, 高速列车车载智能设备还包括用于处理开关量数据的单板。
优选地, 高速列车车载智能设备还包括用于处理列车零部件上的电子标签信息的单板。 优选地, 高速列车车载智能设备还包括用于处理音、 视频数据的单板。
优选地, 地面数据中心和 /或车载数据中心, 将控制指令通过所述高速列车车载智能设备 传送到列车控制系统, 以进行列车控制。
优选地, 地面数据中心和 /或车载数据中心, 通过所述高速列车车载智能设备, 传送指 令给传感器, 以同步收集传感器数据。
附图说明
图 1 : 车载智能设备系统组网方案示意图
图 2: 车载智能设备环网系统主设备保护方法示意图
图 3: 车载智能设备模块、 单板架构方案示意图
图 4: 车载智能列车多业务传输与处理及在一对电缆上传输的方法示意图
图 5: 车载智能设备实时同步采集的方法示意图
具体实施方式
外文缩写解释:
ARCnet Attached Resource Computer Network链接资源计算机网络
(一种工控领域的局域网络技术, 在列车上, 与 MVB的作用相同)
CPLD Complex Programmable Logic Device 复杂可编程逻辑器件
CPM Center Processor Module 核心处理 (单板)
DMA Direct Memory Access , 直接内存存取
ETH Ethernet 以太网 (单板)
GSM-R GSM for Rai lways铁路通信专用数字移动通信系统
MIO Multi Input and Output 多功能输入输出 (单板)
MSTP Multi-Service Transfer Platform 多业务传送平台
MVB Multifunction Vehicle Bus多功能车辆总线
(是一种列车控制网络总线, 可用于传感器数据传递, 列车控制信息传递等) NRZ Not Return to Zero不归零码
NTP Network Time Protocol 网络同步时间协议
PCI-E Pedpherd Component Interconnect -Express 快速夕卜围器件互联,
一种高速串行 PCI接口
PIS Passenger Information System乘客信息系统
PTP Precision Timing Protocol 精密网络同步协议
QoS Qual ity of Service 月艮务质量
RES Reserved 扩展功能 (单板)
SVR Server 服务器 (单板)
TDM Time Division Multiplex 时分复用
UTC Universal Time Coordinated 协调世界时
实施例:
一种高速列车车载智能设备, 包括: 背板, 一个或多个核心处理模块 CPM单板, 一个或 多个列控数据单板, 一个或多个多功能输入输出 MI0单板;
所述 CPM单板能处于主状态或备用状态, 进行主备功能倒换;
所述列控数据单板用于实现列控数据和背板数据的相互适配;
所述 MI0单板用于收发列车上的各类传感器数据, 实现各类传感器数据和背板数据的适 配, 包括 A/D转换, D/A转换, 滤波, 采样, 信号功率缩放和速率适配;
所述背板连接各单板, 为单板间的数据交换提供交换通道;
所述车载智能设备作为以太环上的节点与以太环网上的其它车载智能设备通过以太环网 进行通信, 能配置成主、 备、 从三种工作模式;
所述 CPM单板包括数据业务硬件转发网关和数据硬件交换模块, 用于实现所述车载智能 设备接入和处理多类数据业务,以及与所述其它车载智能设备间的以太数据交换;
经所述 MI0单板适配后的传感数据通过所述车载智能设备和 /或所述其它车载智能设备提 供给车载数据中心, 车载列车控制系统和 /或地面数据中心;
地面数据中心与所述车载智能设备通过 GSM-R进行车地通信。
优选地, 高速列车车载智能设备还包括用于处理开关量数据的单板。
优选地, 高速列车车载智能设备还包括用于处理列车零部件上的电子标签信息的单板。 优选地, 高速列车车载智能设备还包括用于处理音、 视频数据的单板。
优选地, 地面数据中心和 /或车载数据中心, 将控制指令通过所述高速列车车载智能设备 传送到列车控制系统, 以进行列车控制。 优选地, 地面数据中心和 /或车载数据中心, 通过所述高速列车车载智能设备传送指令 给传感器, 以同步收集传感器数据。
图 1为本发明的实施例提供的一种车载智能设备系统组网示意图, 所述系统可以包括: 车载智能环网 S101 , 环网 S101由车载智能从设备 S102、 S103, 车载智能主设备 S104, 车载 智能备设备 S105等组成, 需要指出的是, 一列列车中每个车厢都有一个车载智能设备, 具体 为有一车厢为主设备、 一个备设备, 其它都为从设备。 比如在 8车厢的列车中有 1个主设备、 1个备设备和 6个从设备。 S101环网的作用是解决网络传输通信、 克服列车特殊工况、 解决 长距离电缆传输、 网络故障实现自愈, 让高速列车上各种数字业务都能利用这一环网进行通 信。
车载智能从设备 S103, 第一用于组建智能环网 S101 ; 第二用于接入 S108所包括的各种 设备。 S103是一个支持多种接口的多业务接入处理的设备, 通过所述车载设备, 高速列车上 各类传感器数据, 各种列控网数据, 车载设备开关量数据, 乘客音、 视频数据等都可以融合 在车载以太环网上实现通信; S102与 S103功能相同, 可以根据其所在车厢接入不同设备和 不同业务。 车载智能子设备集合 S108, 是指车载智能设备 S103支持接入的各类设备。 包括 MVB、 ARCnet、 RS485等列控网络, 各类传感器, 车载配电柜开关量, 车载 RF电子标签, 乘 客信息系统, 车载智能终端, IP电话, IP摄像头。 当然所支持的设备没有列详尽, 现有列车 所有电子设备不需要对接口进行创新工作的其它设备也适用。 所述的车载智能终端是指列车 车底传感采集设备。 在具体实现上, 以传感器数据为例, 首先经过所述从车载智能设备 MI0 单板采集, CPM 单板运算和封装到以太网报文。 再经过所述车载智能环网送到所述车载智能 主设备进行整车传感器数据统一运算。 而后经过所述车载智能主设备把整车数据送给所述车 载数据中心和 /或地面数据中心, 显然整车数据也可以由此发送给列控系统。 最后, 整车传感 数据由所述车载数据中心、 地面数据中心和 /或列控系统进行统一分析处理和综合运用。
车载智能主设备 S104, 第一个作用与智能从设备 S103完全相同, 可以接入各种智能子 设备, 用于组建环网; 第二个作用作为整个环网的采集数据的中央处理设备, 对环网各节点 发送到此的数据进行统合处理; 第三个作用是与车载数据中心 S106、 地面数据中心 S107相 连接通信。
车载智能备设备 S105, 在系统网络处于正常状态时作用与车载智能从设备 S103相同; 在网络故障, 特别是车载智能主设备 S104出现故障时, 环网 S101 的主设备从 S104切换到 S105, 此时, 其作用与上面描述的车载智能主设备 S104相同。
车载数据中心 S106, 不属于本发明内容, 提供人机界面, 其作用是处理车载智能环网收 集的数据并实施应用层安全和运维运用。 地面数据中心 S 107, 不属于本发明内容, 通过车地 GSM-R无线通信设备与车载智能主设 备相连接, 其作用是通过智能环网收集的数据进行综合挖掘分析, 进行维修参考、领导观摩、 安全评估、 部件履历管理等功能。
图 2为本发明实施例提供的一种车载智能设备环网系统的主设备保护方法示意图, 该方 法优选地包括:
S201 : 智能环网启动。
S202 : 主设备与各从、 备设备节点建立数据通信, 主设备与车载、 地面数据中心建立数 据通信。
S203 : 环网主、 备设备进行信息交互、 状态热备份。
S204: 主设备判断传输、 处理数据是否异常, 备设备判断主设备是否工作异常。
S205 : 主设备退为备设备, 备设备升为主设备。
本实施案例中, S203环网主、 备设备进行信息交互, 数据热备份, 两个设备的数据备份建立 于两个设备相连的环网链路。 S204主设备判断传输、 处理数据是否异常, 备设备判断主设备 是否工作异常, 主设备通过自身巡检判断, 通过环网链路、 数据中心提供工作状态异常检测 信息; 从设备通过自身巡检的基础上, 接受环网链路、 数据中心送至的状态信息来判断主设 备是否工作异常。
进一步地讲, 不管是主设备还是备设备, 在判断传输数据、 链路故障时, 都需要一个归 避环网自愈的时间。 具体实现为, 当主、 备设备判断出异常时, 这个异常可能是列车环网链 路故障引起的, 并且环网有其自愈的特点, 所以这里需要做一个等待环网自愈过程的时间, 只有在超出了这个预定的时间后, 才进行正常的异常分析处理过程。
本发明的车载智能设备的结构例如图 3所示。 所述车载智能设备可以包括以下一项或几 项及其改变形式:
CPM单板 S310、 S320, 两者会互为备份关系, 实现 1+1冗余保护, 在正常工作时, 一个 为主, 另一个为备。
背板数据同步总线 S331 , 用于连接非以太类数据业务单板, 并为其提供时钟同步和时间 同步功能。 运用 TDM双向同步传输方式, 为设备中各业务单板 (MI0、 MVB ) 与 CPM单板之间 提供数据链路; 业务单板到 CPM单板, 提供同步时钟源、 同步时间源; CPM单板到各业务单 板提供同步时钟和同步时间授时。 在具体实现中, 所述背板数据同步总线处于业务单板与 CPM单板之间。 各类业务单板把各种状态的数据码型转换到 NRZ码, 根据其速率映射到所述 背板数据同步总线 TDM的若干时隙, 数据带宽越大则所占用 TDM的时隙就越多, 规定其固定 的开始、 结束、 校验等帧格式, 未足位用填塞位表示, 此即为速率匹配和数据映射。 另一端 CPM单板上, CPM单板可以获得各业务单板送来的标准帧格式 TDM数据, 进行运算、 分类, 二 次速率匹配映射到以太网报文中, 整个过程都以硬件方式实现, 以达到数据的低抖动和高实 时性。 背板 PCI-E总线 S332, 用于 SVR单板的扩展, 为其提供高数据数据通道。
背板 ETH总线 S333、 S334, 用于接入 RNA和 ETH单板。
在具体实现中, 为了达到单板与机框槽位无关, 背板要求所有槽位都具有背板数据同步 总线 S331、 背板 PCI-E总线 S332和背板 ETH总线 S333。
MVB单板 S341 , 作用是采集和连接列车控制网络 MVB总线。 其主要功能块为电气隔离、 码型转换、 速率匹配、 数据映射至背板数据同步总线 S331。
TCM单板 S342, 作用是采集和连接列车控制网络 RS485总线。其主要功能块为电气隔离、 码型转换、 速率匹配、 数据映射至背板数据同步总线 S331。
ARC单板 S343, 作用是采集和连接列车控制网络 ARCnet设备中的电流环。其主要功能块 为电气隔离、 码型转换、 速率匹配、 数据映射至背板数据同步总线 S331。
在具体实现中, 上面三类列控网络单板在业务层次在设备系统中有两个作用, 一个是可 把列控数据透明传输, 达到车厢内的列控网数据可以在整列车进行传输通信; 另一个是可通 过 CPM单板 S310中的硬件网关与 CPU模块的功能, 把列控网络的数据进行提取再构造, 打破 现有列控数据的闭环与不开放, 提高数据利用率。
FRF单板 S344, 作用是利用外联天线或露缆, 从车厢中读取 RF电子标签。 其主要功能块 为耦合器, 放大器, 射频发射接收模块, 射频访问协议模块, 基带信号处理, 速率匹配、 数 据映射至背板数据同步总线 S331。 通过 RFR单板, 不再需要机车人员扶持有手持式 RF阅读 器, 并且可以更加实时, 持续地对电子标签进行访问管理。
MI0单板 S345, 作用是传感器数据采集, 包括电压、 电流、 温度、 振动、 压力等各种类 型。 其主要功能块为 A/D转换, 工频滤波, 抗混叠滤波, 小信号放大, 过采样数字滤波, 速 率匹配、 数据映射至背板数据同步总线 S331。
在具体实现中, MI0单板可以从 CPM单板提取同步时钟和时间, 达到系统网络内所有传 感器同步采集。
NIF单板 S346, 有两个主要功能, 一是提供开关量输出输入驱动; 二是提供设备同步时 钟同步时间接口。 共主要功能块为, 开关量输入, 开关量输出, 时钟输入输出接口, 时间输 入输出接口, 速率匹配、 数据映射至背板数据同步总线 S331。
在具体实现中, NIF单板可以从 CPM单板提取同步时钟和时间, 达到设备中, 系统网络 内所有开关量的同步输入采集和同步输出控制。
RES单板 S347, 业务功能类型没定义, 面向背板的速率匹配、 数据映射和其它单板一样 有完整的定义。
ETH单板 S348, 作用是连接各类以太网类型的设备, 其主要功能有长距离、抗干扰传输, 各类业务接入许可确认。
SVR单板 S350, 是 CPM单板 CPU模块的扩展数据计算单板, 在设备和系统中可以起服务 器的作用。 其主要功能是数据运算与存储。
RNA单板 S360, 作用是让车载智能设备组建环网并完成自愈功能, 共主要功能有长距离、 抗干扰传输, 节点接入许可确认, 链路状态检测。
在一种具体实现中, 所述 CPM单板 S310可以包括:
时钟时间同步处理模块 S311 ,其作用是由上游提供的数据报文恢复同步时钟和同步时间, 这里的上游包括从 NIF单板 S346来的 GPS信号;从 ETH单 S348或 RNA单板 S360来的同步时 钟信号和 PTP报文。另一方面, 通过背板同步总线 S331向各业务单板提供同步时钟和同步时 间。
数据业务硬件转发网关 S312 , 其作用是把各种码型、 速率匹配好的数据以硬件电路的方 式进行分类、 运算、 封装、 转发到 CPU或以太网数据报文中。
CPU模块 S313 , 其作用是设备内各单板管理, 业务数据运算, 为以太网数据通信提供通 信协议栈。 在复杂海量数据处理时, 进行数据分流、 调度至 SVR单板 S350。
数据硬件交换模块 S314, 其作用是进行高 QoS的以太网数据二层交换。
在具体实现中, 启用 QoS队列调度规则, 提供网络传输队列机制, 区分对待报文延迟, 阻塞和过载。
以太环网保护模块 S315 , 用硬件方式实现环网保护协议, 检测和处理链路状态、 环网状 态, 发送、 接收协议帐, 实现链路倒换等功能。
图 4为本发明的实施例提供的一种智能列车多业务在一对电缆上传输的方法示意图, 该 方法可包括:
S410: 各类业务接入, 匹配各式物理层功能。
S420: 归一化, 码型转换为 NRZ码、 速率匹配映射到 TDM背板总线。
在具体实现中, 本发明的核心思想就是利用一种同步低延时, 低抖动的 TDM背板总线技 术, 把各类单板接入的各类业务通过码型转换、 速率匹配映射到统一的报文格式, 统一的物 理总线上, 为而后 CPM的处理提供了便利, 为支持各种业务的插拔式板卡设计提供了便利。
S430: 判断主 CPM工作是否正常。
在具体实现中, 在设备中有两个 CPM, 可以实现 1+1冗余保护。 判断 CPM工作是否正常 的判据有, CPM单板上 CPU软件狗, CPU硬件狗, 硬件白板寄存器, 主备状态机等。 S441 : 主 CPM进行 TDM数据接收、 分类。
S442 : 备 CPM进行 TDM数据接收、 分类。
在具体实现中, CPM在这一步完成数据的接受、 分类。 主备两个 CPM单板是 1+1实时备 份冗余关系, 当主异常时, 由主退备, 而备则由备升主。进一步讲, 在具体实现时通常以 "并 发选收" 的模式进行热备份, 即可以并行处理的地方电路进行 1+1备份处理, 需要择一输出 时则选择主 CPM处理的内容。 再进一步, 而后各个步骤如果在 CPM单板上执行, 那么理解为 在主 CPM上执行处理。
在具体实现中, 必须指出, 原有 MVB等列控数据本来是自闭环处理而不对外开放, 此处 通过硬件网关模块, 结合 CPU运算查询功能, 可以 MVB数据透明上传, 也可以对基本报文进 行分解提取, 再进行重新封装, 上传利用。
S450: 是否需要进行数据分析。 具体实现中, 由人机配置, 硬件网关模块执行。
S460: 数据硬件交换模块, 依业务需求按优先级传输。
在具体实现中, 启用 QoS队列调度规则, 实现差分化服务, 提供网络传输队列机制, 区 分对待报文延迟, 阻塞和过载。
S461 : CPU进行数据分析。
在具体实现上, 这里主要对各类采集数据的去重, 滤噪。
S462 : 是否需要请求 SVR单板。
在具体实现中。 是否需要请求 SVR, 需要查看所需运算数据是否需要专有数字滤波器, CPU计算能力, 上层应用对数据提取要求配置等。
S463 : SVR单板进行数据分析处理。
在具体实现上, 进行各类采集数据信噪筛选, 数字滤波器组建, 计算有效测量对像等。
S470: 判断主传输通道工作是否正常。
在具体实现中, 可以通过 RNA在位状态, 远端设备状态、 接入链路状态、 环路保护状态 机状态等来判断主传输通道是否正常工作。
S481 : 主通道东向 RNA单板及通信电缆。
S482 : 主通道东向 RNA单板及通信电缆。
在具体实现中, 提供了适合列车的环网组建方案, RNA 单板长距离、 抗干扰传输方案, RNA设备节点接入确认方法。
图 5为本发明的实施例提供的一种车载智能设备实时同步采集的方法示意图, 该方法以 MI0单板采集传感器信号为例, 可包括:
S510: 智能设备系统启动。 S520: 是否可获得 UTC时钟时间。
在具体实现中, 是否可获得 UTC时钟时间有两个方式, 一个是从上游 PTP报文恢复, 本 设备支持 IEEE 1588 PTP协议或者 NTP协议; 一个是从 GPS设备中直接提取时间。
S531 : 主设备提取 UTC时间、 时钟, 通过 PTP传递给各设备。
在具体实现中, 车载智能设备时钟时间同步功能块需要支持 PTP报文解析和时钟、 时间 恢复并向下游设备节点传递。 全部设备跟踪上 UTC时间后, 那么所有设备内的传感器都可以 实现完全同步采集。
S532: 主设备自己生成时钟、 时间, 通过 PTP传递给各设备。
在具体实现中, 各从设备跟踪主设备生成的时间, 达到这一网络内的所有传感器达到同 步采集, 实现准同步采集。
S540: 设备 CPM通过背板同步总线把同步时间、 时钟广播给各业务单板。
在具体实现中, 在背板上定义一种 TDM总线, 利用 TDM的物理特性低延时, 零抖动传递 时间和时钟, 利用 TDM的时隙做数据速率匹配与传递数据。
S550: 各业务单板通过背板同步总线恢复出同步时间。
在具体实现中, 总线上定义了一一对应的时间脉冲和时间报文。 时间脉冲间的细致时间 由于脉冲和跟随的同步时钟计算而得。
S560: 判断是否同步触发。
S571 : MI0根据同步时间, 触发采样动作获取数据后, 把同步时间戳加入报文。
S572: MI0执行过采样, 采集连续时间上的数据, 上行业务同步提取时间和数据, 形成 带时间戳的报文。
在整个同步采集方案具体实现中,当服务器或者数据中心收到带有时间戳的数据报文后, 可以进行横向各类传感、 控制数据的对比较、 统筹运用、 深度发掘。

Claims

权 利 要 求 书
1. 一种高速列车车载智能设备, 包括: 背板、 一个或多个核心处理模块 CPM单板、 一个 或多个列控数据单板和一个或多个多功能输入输出 MI0单板;
所述 CPM单板能处于主状态或备用状态, 进行主备功能倒换;
所述列控数据单板用于实现列控数据和背板数据的相互适配;
所述 MI0单板用于收发列车上的各类传感器数据, 实现各类传感器数据和背板数据的适 配, 包括 A/D转换、 D/A转换、 滤波、 采样、 信号功率缩放和速率适配;
所述背板连接各单板, 为单板间的数据交换提供交换通道;
所述车载智能设备作为以太环上的节点与以太环网上的其它车载智能设备通过以太环网 进行通信, 能配置成主、 备、 从三种工作模式;
所述 CPM单板包括数据业务硬件转发网关和数据硬件交换模块, 用于实现所述车载智能 设备接入和处理多类数据业务,以及与所述其它车载智能设备间的以太数据交换;
经所述 MI0 单板适配后的传感数据通过所述车载智能设备和 /或所述其它车载智能设备 提供给车载数据中心, 列控系统和 /或地面数据中心;
所述地面数据中心与所述车载智能设备通过 GSM-R或其它无线方式进行车地通信。
2. 根据权利要求 1所述的高速列车车载智能设备, 其特征在于: 高速列车车载智能设 备还包括用于处理开关量数据的单板。
3. 根据权利要求 1所述的高速列车车载智能设备, 其特征在于: 高速列车车载智能设 备还包括用于处理列车零部件上的电子标签信息的单板。
4. 根据权利要求 1所述的高速列车车载智能设备, 其特征在于: 高速列车车载智能设 备还包括用于处理音、 视频数据的单板。
5. 根据权利要求 1所述的高速列车车载智能设备, 其特征在于: 地面数据中心和 /或车 载数据中心, 将控制指令通过所述高速列车车载智能设备传送到列控系统, 以进行列车控制。
6. 根据权利要求 1所述的高速列车车载智能设备, 其特征在于: 地面数据中心和 /或车 载数据中心, 通过所述高速列车车载智能设备传送指令给传感器, 以同步收集传感器数据。
PCT/CN2012/085399 2011-11-28 2012-11-28 一种高速列车车载智能设备 WO2013078986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110381589.0A CN102514576B (zh) 2011-11-28 2011-11-28 一种高速列车车载智能设备
CN201110381589.0 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013078986A1 true WO2013078986A1 (zh) 2013-06-06

Family

ID=46285747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085399 WO2013078986A1 (zh) 2011-11-28 2012-11-28 一种高速列车车载智能设备

Country Status (2)

Country Link
CN (1) CN102514576B (zh)
WO (1) WO2013078986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085717A (zh) * 2016-11-23 2018-05-29 广西南宁凡成电子科技有限公司 一种电解铝厂天车联网系统
CN108725263A (zh) * 2018-07-30 2018-11-02 广州铁路科技开发有限公司 一种新型自动过分相系统车载控制设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514576B (zh) * 2011-11-28 2015-06-03 浙江网新技术有限公司 一种高速列车车载智能设备
PL219427B1 (pl) * 2012-09-03 2015-04-30 Ls Electric Spółka Cywilna Urządzenie do odbierania, przetwarzania i generowania sygnałów dla samoczynnego oddziaływania na pojazd szynowy
DE102014214228B4 (de) 2014-07-22 2023-02-02 Siemens Mobility GmbH Schienenfahrzeug
CN106095721A (zh) * 2016-06-27 2016-11-09 深圳市金溢科技股份有限公司 一种时间同步方法、系统及车载单元
CN106899372B (zh) * 2017-01-11 2018-08-28 同济大学 一种燃料电池汽车动力性能测试系统的实时同步方法
CN108900596B (zh) * 2018-06-25 2020-11-24 中车青岛四方车辆研究所有限公司 Wtb物理层数据帧采集装置及数据帧采集方法
JP6969528B2 (ja) * 2018-09-25 2021-11-24 株式会社オートネットワーク技術研究所 中継装置システム
CN113162719A (zh) * 2021-02-25 2021-07-23 上海赫千电子科技有限公司 一种基于光纤车载以太网的环状网络数据通信架构
CN114475713B (zh) * 2022-01-24 2023-07-25 电子科技大学 高速磁悬浮车地通信系统多源数据融合分接系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013812A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd データ伝送システム、およびデータ伝送方法
CN101254791A (zh) * 2008-03-31 2008-09-03 北京和利时系统工程有限公司 基于通信的轨道交通列车自动监控系统
CN101602371A (zh) * 2008-06-12 2009-12-16 阿尔斯通运输公司 用于控制列车的计算机化车载系统
CN201550133U (zh) * 2009-07-24 2010-08-11 上海神剑铁路通信信号有限公司 列车综合管理智能化系统
CN102139700A (zh) * 2010-02-01 2011-08-03 同济大学 一种轨道交通的车辆工况在线监测系统
CN102514576A (zh) * 2011-11-28 2012-06-27 浙江网新技术有限公司 一种高速列车车载智能设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836809A2 (en) * 2005-01-13 2007-09-26 Matsushita Electric Industrial Co., Ltd. Data transmission system and data transmission method
CN101083590B (zh) * 2007-05-24 2010-08-11 中国北车股份有限公司大连电力牵引研发中心 Tcn机车网络控制试验平台
CN201611439U (zh) * 2009-12-22 2010-10-20 山东超越数控电子有限公司 一种基于vpx总线及加固技术的车载控制终端
CN102149225A (zh) * 2011-04-28 2011-08-10 北京交通大学 动车组状态监测系统及其多功能混合网关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013812A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd データ伝送システム、およびデータ伝送方法
CN101254791A (zh) * 2008-03-31 2008-09-03 北京和利时系统工程有限公司 基于通信的轨道交通列车自动监控系统
CN101602371A (zh) * 2008-06-12 2009-12-16 阿尔斯通运输公司 用于控制列车的计算机化车载系统
CN201550133U (zh) * 2009-07-24 2010-08-11 上海神剑铁路通信信号有限公司 列车综合管理智能化系统
CN102139700A (zh) * 2010-02-01 2011-08-03 同济大学 一种轨道交通的车辆工况在线监测系统
CN102514576A (zh) * 2011-11-28 2012-06-27 浙江网新技术有限公司 一种高速列车车载智能设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085717A (zh) * 2016-11-23 2018-05-29 广西南宁凡成电子科技有限公司 一种电解铝厂天车联网系统
CN108085717B (zh) * 2016-11-23 2024-04-19 广西南宁凡成电子科技有限公司 一种电解铝厂天车联网系统
CN108725263A (zh) * 2018-07-30 2018-11-02 广州铁路科技开发有限公司 一种新型自动过分相系统车载控制设备
CN108725263B (zh) * 2018-07-30 2024-04-09 广州铁路科技开发有限公司 一种自动过分相系统车载控制设备

Also Published As

Publication number Publication date
CN102514576A (zh) 2012-06-27
CN102514576B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2013078986A1 (zh) 一种高速列车车载智能设备
CN205068381U (zh) 一种用于轨道交通的安全计算机平台
CN102065130B (zh) 一种地铁列车故障智能处理装置及其方法
CN203246468U (zh) 一种数字化无线列调机车电台
CN104767558B (zh) 基于北斗卫星授时信号的车载设备系统
CN107995079A (zh) 一种基于mvb总线的热备车载atp设备
CN105539522A (zh) 一种基于二乘二取二安全计算机架构的列车运行监控装置及用于该列车运行监控装置的方法
CN105006892B (zh) 一种基于嵌入式arm和多通信协议的配电网智能馈线终端
CN101734265A (zh) 一种嵌入式车载信号设备状态监视方法及装置
CN107547611A (zh) 机车综合无线通信设备动态监测方法及其系统
CN205792728U (zh) 机车综合无线通信设备动态监测系统
CN103019141B (zh) 一种控制模块及方法、电力动态记录装置及其实现方法
CN108540992B (zh) 一种用于车载设备在线实时监测的系统
CN107800566B (zh) 一种lte-r铁路专用宽带移动通信网络接口监测系统
CN106527118A (zh) 基于冗余架构的铁路车辆电气控制回路监测装置及方法
CN209535113U (zh) 城轨列车车载信号系统实时监测平台
CN102340433B (zh) 一种中心节点设备与实现方法
CN107612758A (zh) 一种铁路gprs网络空中接口监测系统及方法
CN106102032A (zh) 高速铁路地震预警监测信息无线传送系统
CN103595128B (zh) 基于双层双网结构的变电站自动化系统
CN108347710A (zh) 基于LoRa的灌浆数据远距离传输系统及其传输方法
CN209402532U (zh) 一种车载数据采集装置和系统
CN107089250A (zh) 一种无线调车机车信号和监控系统的站场切换方法
CN108216300A (zh) 一种车载综合信息采集装置及其方法
CN103754238A (zh) 轨道车辆门控器运行信息远程集中采集装置及采集方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854210

Country of ref document: EP

Kind code of ref document: A1