WO2013077633A1 - 무선 통신 시스템에서 ack/nack 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 ack/nack 전송 방법 및 장치 Download PDF

Info

Publication number
WO2013077633A1
WO2013077633A1 PCT/KR2012/009889 KR2012009889W WO2013077633A1 WO 2013077633 A1 WO2013077633 A1 WO 2013077633A1 KR 2012009889 W KR2012009889 W KR 2012009889W WO 2013077633 A1 WO2013077633 A1 WO 2013077633A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
ack
transport block
nack
size
Prior art date
Application number
PCT/KR2012/009889
Other languages
English (en)
French (fr)
Inventor
서동연
양석철
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/359,543 priority Critical patent/US9538529B2/en
Publication of WO2013077633A1 publication Critical patent/WO2013077633A1/ko
Priority to US15/363,058 priority patent/US9906334B2/en
Priority to US15/874,668 priority patent/US20180145799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a reception acknowledgment for a hybrid automatic repeat request (HARQ) of a terminal in a wireless communication system.
  • HARQ hybrid automatic repeat request
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • a base station transmits downlink data to a user equipment
  • scheduling information about a downlink data channel is transmitted through a control channel
  • the downlink data channel is allocated by the scheduling information
  • the allocated downlink data channel is transmitted.
  • the terminal transmits an acknowledgment / not-acknowledgement (ACK / NACK) for the downlink data to a base station, and the base station transmits new downlink data according to the ACK / NACK or for previously transmitted downlink data.
  • HARQ hybrid automatic repeat request
  • HARQ hybrid automatic repeat request
  • synchronous mode synchronization between the HARQ process and the subframe is set and new transmission / retransmission of the same HARQ process is performed according to a predetermined timing.
  • asynchronous mode HARQ usage is directly indicated without synchronization between the HARQ process and the subframe.
  • LTE-A long term evolution-advanced, LTE-A
  • LTE-A long term evolution-advanced, LTE-A
  • LTE-A can support low-cost and low-end devices that mainly perform data communication, such as meter reading, water level measurement, surveillance camera utilization, and inventory reporting on vending machines.
  • a low cost / low specification terminal mainly for low capacity data communication is referred to as a machine type communication (MTC) terminal.
  • MTC machine type communication
  • the MTC terminal may not be able to decode all of the downlink data at the time of transmitting the ACK / NACK.
  • LTE-A may support carrier aggregation and support cross-carrier scheduling.
  • scheduling information is simultaneously received through a specific cell when cross-carrier scheduling is performed, data scheduled by the scheduling information may be received in different cells.
  • different cells are not aligned in time, so data may be received late in some cells.
  • a time between the late received data and the ACK / NACK may be insufficient, so that the late received data may not be properly decoded.
  • a new control channel allocated to the data region may be introduced in addition to the existing control channel allocated to the control region. Since the new control channel may exist in the data area, the data scheduled by the new control channel may lack decoding processing time depending on the terminal.
  • An object of the present invention is to provide an ACK / NACK transmission method and apparatus in a wireless communication system.
  • an acknowledgment / not-acknowledgement (ACK / NACK) transmission method of a terminal includes receiving a transport block; And transmitting an ACK / NACK signal for the transport block in a first subframe or a second subframe according to the size of the transport block, when the size of the transport block is smaller than or equal to a reference value.
  • the ACK / NACK signal is transmitted in one subframe, and when the size of the transport block is larger than the reference value, the ACK / NACK signal is transmitted in the second subframe, and the second subframe is the first subframe. It is located later in the time domain than the frame.
  • an acknowledgment / not-acknowledgement (ACK / NACK) transmission method of a terminal includes receiving a transport block; And when the size of the transport block is greater than a reference value, transmits an ACK / NACK for the transport block in a predetermined subframe, and when the size of the transport block is less than or equal to the reference value, ACK / NACK for the transport block. It is characterized in that it does not transmit.
  • the terminal includes a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor connected to the RF unit, wherein the processor receives a transport block and transmits an ACK / NACK signal for the transport block in a first subframe or a second subframe according to the size of the transport block.
  • the processor receives a transport block and transmits an ACK / NACK signal for the transport block in a first subframe or a second subframe according to the size of the transport block.
  • the ACK / NACK signal is transmitted in the first subframe
  • the ACK / NACK signal is transmitted in the second subframe.
  • the NACK signal is transmitted, and the second subframe is located later in the time domain than the first subframe.
  • the HARQ process can be efficiently performed. Thus, system performance is improved.
  • 1 shows a structure of an FDD radio frame.
  • FIG. 2 shows a structure of a TDD radio frame.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • 6 is a comparative example of a single carrier system and a carrier aggregation system.
  • FIG. 7 shows a channel coding process (channel coding chain) of a transport block.
  • FIG. 8 illustrates an ACK / NACK transmission method of a terminal according to an embodiment of the present invention.
  • FIG. 9 illustrates data reception and ACK / NACK transmission time points of a terminal according to the method of FIG. 8.
  • FIG. 10 illustrates an ACK / NACK transmission method of a terminal according to another embodiment of the present invention.
  • FIG 11 shows an ACK / NACK transmission method according to the present invention.
  • FIG. 12 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • the communication from the base station to the terminal is called downlink (DL), and the communication from the terminal to the base station is called uplink (UL).
  • the wireless communication system including the base station and the terminal may be a time division duplex (TDD) system or a frequency division duplex (FDD) system.
  • TDD system is a wireless communication system that performs uplink and downlink transmission and reception using different times in the same frequency band.
  • the FDD system is a wireless communication system capable of transmitting and receiving uplink and downlink simultaneously using different frequency bands.
  • the wireless communication system can perform communication using a radio frame.
  • 1 shows a structure of an FDD radio frame.
  • An FDD radio frame includes 10 subframes, and one subframe includes two consecutive slots. Slots included in the radio frame are indexed from 0 to 19.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI), and the TTI may be a minimum scheduling unit.
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • FIG. 2 shows a structure of a TDD radio frame.
  • a subframe having an index # 1 and an index # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). ).
  • DwPTS is used for initial cell search, synchronization, or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of a UL-DL configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the terminal may know whether each subframe is a DL subframe or a UL subframe in a radio frame.
  • the UL-DL configuration N (N is any one of 0 to 6) may refer to Table 1 above.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • the downlink slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and may include N RB resource blocks (RBs) in the frequency domain.
  • the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
  • the number N RB of resource blocks included in the downlink slot depends on the downlink transmission bandwidth N DL configured in the cell. For example, in the LTE system, N RB may be any one of 6 to 110.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • one resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is exemplarily described. It is not limited to this.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like.
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • a downlink (DL) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols (up to four in some cases) of the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a physical downlink shared channel (PDSCH) is allocated to the data region.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH. Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe is allocated a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot. RB pairs have the same resource block index m.
  • PUCCH supports multiple formats.
  • a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
  • PUCCH format 1 is used for transmission of SR (Scheduling Request)
  • PUCCH format 1a / 1b is used for transmission of ACK / NACK signal for HARQ
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is used for CQI and Used for simultaneous transmission of ACK / NACK signals.
  • PUCCH format 3 may be used for multiple ACK / NACK transmissions.
  • a resource index n (1) PUCCH is defined so that the UE configures the PUCCH .
  • Resource index n (1) PUCCH n CCE + N (1) PUCCH , where n CCE is used for downlink resource allocation used for reception of downlink data corresponding to a corresponding PDCCH (ie, ACK / NACK signal). It is the number of the first CCE used for transmission of the PDCCH (including PDCCH), N (1) PUCCH is a parameter that the base station informs the UE in a higher layer message.
  • the resource for transmitting ACK / NACK may be indicated by the n (1) PUCCH , in which case, implicit mapping of CCE and ACK / NACK resources is used.
  • the carrier aggregation system is also called a multiple carrier system or a multi-cell system.
  • the 3GPP LTE system supports a case in which downlink bandwidth and uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
  • carrier aggregation is to support a plurality of CC. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • One DL CC or a pair of UL CCs and DL CCs may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of DL CCs receives a service from a plurality of serving cells.
  • 6 is a comparative example of a single carrier system and a carrier aggregation system.
  • the carrier aggregation system (FIG. 6 (b)) has three DL CCs and three UL CCs, but the number of DL CCs and UL CCs is not limited.
  • PDCCH and PDSCH may be independently transmitted in each DL CC, and PUCCH and PUSCH may be independently transmitted in each UL CC.
  • the PUCCH may be transmitted only through a specific UL CC.
  • the UE may be provided with services from three serving cells.
  • the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
  • the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
  • the pair of DL CC #A and UL CC #A becomes the first serving cell
  • the pair of DL CC #B and UL CC #B becomes the second serving cell
  • the DL CC #C and UL CC # C are the third serving cell.
  • Each serving cell may be identified through a cell index (CI).
  • the CI may be unique within the cell or may be terminal-specific.
  • the serving cell may be divided into a primary cell (PCell) and a secondary cell (SCell).
  • the primary cell is a cell in which the UE performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • Primary cells are also referred to as reference cells.
  • the secondary cell may be established after the RRC connection is established and may be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the CI of the primary cell can be fixed. For example, the lowest CI can be designated as the CI of the primary cell.
  • the primary cell is composed of DL downlink primary compoenent carrier (DL PCC) and uplink primary component carrier (UL PCC) in terms of component carriers.
  • the secondary cell may be configured of only a DL downlink secondary component carrier (DL SCC) or a pair of DL SCC and UL uplink secondary component carrier (UL SCC) in terms of component carriers.
  • a DL subframe and an UL subframe coexist in one radio frame.
  • the number of UL subframes is less than the number of DL subframes. Therefore, in case of a lack of a UL subframe for transmitting an ACK / NACK signal, a plurality of ACK / NACK signals for downlink data (ie, DL transport blocks) received in a plurality of DL subframes are determined as one. Supporting transmission in the UL subframe.
  • the table below shows DL subframe n-k associated with UL subframe n according to UL-DL configuration in 3GPP LTE TDD, where k ⁇ K and M indicate the number of elements of set K.
  • ACK / NACK for data received in DL subframe n (eg, a downlink data channel (transport block) or a control channel requiring ACK / NACK) is transmitted in UL subframe n + k (n)
  • k (n) may be represented as in the following table.
  • a PDCCH eg, DL SPS release PDCCH
  • the UE transmits ACK / NACK in subframe n + k (n).
  • Each value of 4 represents the k (n) value.
  • the UE needs a specific time to transmit ACK / NACK after receiving the PDSCH or DL SPS release PDCCH. The minimum value of this specific time is referred to as k min below, and the value may be 4 subframes.
  • the ACK / NACK is transmitted in the first uplink subframe after the most k min elapsed.
  • the underlined numbers in Table 4 do not indicate the first uplink subframe after k min has elapsed and indicate the uplink subframe located next. The reason for this is to prevent transmitting ACK / NACK for too many downlink subframes in one uplink subframe.
  • N PRB may have any value from 1 to 110, and only Table 10 shows up to 10.
  • the transport block is channel coded.
  • FIG. 7 shows a channel coding process (channel coding chain) of a transport block.
  • a transport block (TB) is added with a cyclic redundancy check (CRC) (S701) to form a code block (CB).
  • CRC cyclic redundancy check
  • Code block segmentation) is performed (S702).
  • a CRC is added for each divided code block (S703) and channel coded (S704).
  • Turbo encoding may be used for channel coding.
  • the divided code block to which the CRC is added is 6144 bits or less. Thereafter, rate matching (S705) and code block concatenation (S706) are performed.
  • LTE-A can support a low-cost low-cost terminal mainly for data communication. For example, meter reading, water level measurement, the use of surveillance cameras, inventory reporting of vending machines, etc. are mainly for data communication, and low cost / low specification terminals are sufficient for such data communication. LTE-A may support such a terminal.
  • the low cost / low specification terminal described above is referred to as a machine type communication (MTC) terminal.
  • MTC machine type communication
  • an MTC terminal it may be important to simplify / minimize an RF (radio frequency) chain or a channel coding chain in order to reduce the manufacturing cost of the terminal.
  • RF radio frequency
  • the received data is processed to transmit an ACK / NACK response indicating normal reception.
  • the HARQ process is a predetermined time for transmitting the ACK / NACK response.
  • ACK / NACK is transmitted in a subframe after 4 subframes in a subframe in which PDSCH is received.
  • subframes for transmitting ACK / NACK may vary according to UL / DL configuration for each subframe, but at least 4 subframes are transmitted in subframes receiving PDSCH (for this, already explained).
  • the UE should decode downlink data (ie, a transport block) within a predetermined time and generate / transmit ACK / NACK for the downlink data. If the size of the transport block is larger than a predetermined value, the terminal may allocate a plurality of channel coding chains in parallel to decode in a predetermined time, or adjust the processing capacity by increasing a clock speed. However, in the case of the MTC terminal, it is not desirable to set the processing capability to support the maximum transport block size within a predetermined time in consideration of an increase in manufacturing cost, low frequency of use of the transport block of the maximum size.
  • the terminal means a terminal with limited decoding processing capability, such as an MTC terminal, but the terminal is not necessarily limited to such a terminal in the present invention. That is, the present invention can be applied to a general LTE / LTE-A terminal.
  • FIG. 8 illustrates an ACK / NACK transmission method of a terminal according to an embodiment of the present invention.
  • the terminal determines whether the size of the transport block is larger than a predetermined value (S110).
  • X be the predetermined value.
  • X may be 1) the maximum size of a transport block in initial access and initial RRC setup. That is, during initial access or initial RRC configuration, it is not known whether the terminal is an existing terminal or an MTC terminal with limited data decoding capability. Therefore, for backward compatibility, the maximum transport block size for initial access and initial RRC configuration may be set to an X value. As a result, existing HARQ timing may be maintained during initial access and initial RRC configuration.
  • the first subframe may be a subframe at which the minimum ACK / NACK transmission is possible or an existing ACK / NACK transmission subframe. In this sense, the first subframe may be referred to as a default subframe.
  • ACK / NACK for the transport block is transmitted in subframe N + 4. In this case, the subframe N + 4 becomes the first subframe.
  • the data units (PDSCH, In the case of receiving the data targeted for ACK / NACK, such as a transport block), it may be expressed as transmitting ACK / NACK for the data channel in subframe n + k default .
  • the first subframe becomes subframe n + k default based on the subframe n.
  • TDD may be a value in Table 4.
  • ACK / NACK for the transport block is transmitted in the second subframe (S130).
  • the second subframe is a subframe in which ACK / NACK is transmitted when the size of the transport block exceeds a predetermined value.
  • the second subframe is located later in time than the first subframe. For example, if a data unit (data targeted for ACK / NACK, such as PDSCH, transport block, etc.) is received in subframe n, but the size of the data unit exceeds a predetermined value, subframe n + k default + In k add (k add > 0), it can be expressed as transmitting ACK / NACK for the data unit.
  • a method of suspending (suspending) ACK / NACK transmission may be used. This has the same effect as setting kadd to infinity and the base station performs scheduling by determining retransmission / new transmission arbitrarily without an ACK / NACK response. Suspending (suspending) the ACK / NACK transmission in this way can be applied when the data unit falls below a predetermined value. This is because a small amount of data may have little loss even if it is arbitrarily retransmitted or discards the data without an ACK / NACK response.
  • the k add may use a value set by a higher layer signal such as a radio resource control (RRC) message. Or k add may use a predetermined value (eg, any one of 1, 2, 3, 4, which is only an example). k add may be determined in consideration of the number of code blocks, the size of a transport block, and the like.
  • RRC radio resource control
  • HARQ ACK time delay that is, k (n) may be set larger than k default according to subframe number n as shown in Table 4. In this case, if k (n) is greater than or equal to k default + k add , then k (n) is followed. That is, min (k (n), k defaul t + k add ) may be used as the HARQ ACK time delay. Where min (x, y) represents the smaller of x, y (the same value if x, y is the same).
  • k (n) may be restricted to schedule a transport block larger than X only in downlink subframe n equal to or greater than k default + k add .
  • FIG. 8 an example of directly comparing whether a size of a transport block is larger than a predetermined value X has been described, but this is not a limitation.
  • X based on the specific I TBS and N PRB values of Table 5 instead of X, it may be determined which subframe of the first subframe and the second subframe is to be transmitted.
  • the value of I TBS has a value of 0 to 26 and the N PRB has a value of 1 to 110
  • the size of a transport block is determined according to the values of I TBS and N PRB . Accordingly, the size of the transport block may be indicated by the values of I TBS and N PRB .
  • FIG. 9 illustrates data reception and ACK / NACK transmission time points of a terminal according to the method of FIG. 8.
  • the UE may receive a PDSCH 901 having a transport block size of X or less and a PDSCH 902 having a transport block size of larger than X.
  • the UE transmits the ACK / NACK for the PDSCH 901 in the subframe n + k default , and the ACK / NACK for the PDSCH 902 in the subframe n + k default + k add .
  • FIG. 10 illustrates an ACK / NACK transmission method of a terminal according to another embodiment of the present invention.
  • the terminal determines whether a DCI format for scheduling a PDSCH is a predetermined specific DCI format (S210).
  • DCI format 1A is a DCI format that is always supported regardless of a downlink transmission mode and is called a fallback DCI format.
  • the UE determines whether the DCI format detected in the PDCCH region is a contrast DCI format, and if so, transmits ACK / NACK for the transport block scheduled by the DCI format in the first subframe (S220). In operation S230, an ACK / NACK for a transport block scheduled by the DCI format is transmitted in a second subframe.
  • the transport block size scheduled in the contrast DCI format may be limited by the scheduler according to the processing power of the terminal.
  • the present invention which can be applied differently according to the condition that the transmission time of the ACK / NACK is the size of the data unit that is the target of the ACK / NACK, can be variously extended as follows.
  • a subframe in which ACK / NACK is transmitted may be divided according to a search space in which DCI is transmitted. For example, different ACK / NACK transmission depending on whether DCI is received from a common search space (CSS), which is a common search space for all terminals in a cell, or a user equipment specific search space (USS), a search space for a specific terminal.
  • SCS common search space
  • USS user equipment specific search space
  • ACK / NACK transmission time points may be applied depending on whether they are scheduled by PDCCH or E-PDCCH (enhanced-PDCCH, described below).
  • different transmission time points may be applied according to subframes (or cells) to which the scheduling DCI is transmitted, or different transmission time points may be applied according to subframes (or cells) to which the scheduled data channel is transmitted.
  • different transmission time points may be applied, or a radio network temporary identifier added to the DCI.
  • Different transmission time points may be applied depending on the type, or different transmission time points may be applied according to cross scheduling or non-crossing scheduling.
  • FIG 11 shows an ACK / NACK transmission method according to the present invention.
  • the terminal receives an RRC message for setting X and k add values through an RRC message (S310).
  • the terminal receives a transport block through the PDSCH of subframe n (S320).
  • the UE compares the size of the transport block with X (S330), and if the size of the transport block is X or less, transmits ACK / NACK in subframe n + k default (S340-1), and the size of the transport block exceeds X. In the case of S ACK / NACK is transmitted in subframe n + k default + k add (S340—2).
  • FIG. 11 exemplifies a case in which both X and k add values (directly or indirectly) are set as RRC messages for convenience of description.
  • this is not a limitation and only one of X and k add may be set as an RRC message.
  • a value not set as an RRC message may use a value previously promised between the terminal and the base station.
  • the base station may signal a k default + k add value as an RRC message instead of the k add value.
  • all values of X and k add may be values previously promised between the base station and the terminal without RRC signaling.
  • the base station may include information on the ACK / NACK transmission timing in the DCI.
  • information on a k add value may be configured by configuring a specific field in the DCI or by combining states of other fields. That is, the base station may indicate the second subframe to the terminal through the DCI.
  • the DCI may also include an indicator not to perform ACK / NACK transmission. If it is determined that the terminal is instructed not to transmit ACK / NACK through the indicator, the terminal does not transmit ACK / NACK.
  • the indicator may be included separately from a specific field of the DCI. Alternatively, the indicator may itself serve as the indicator of the value of the specific field. For example, when the specific field is 2 bits, and the states that can be held are '00', '01', '10', and '11', '00', '01', and '10' are sequentially k. 'add ' indicates that the add value is 0, 1, and 2, and '11' indicates that the k add value is infinite, indicating that ACK / NACK is not transmitted.
  • the positive k add value is added when the size of the transport block exceeds a specific value (X), but this is not a limitation. That is, the k add value may have a negative value.
  • the k minus value may be signaled separately from the k add value. For example, if the k default value is set to a margin, it can be applied by subtracting the k minus value.
  • resource allocation may be performed as follows.
  • ACK / NACK can be transmitted using an implicit resource.
  • a resource for transmitting ACK / NACK may be determined based on the lowest CCE of the PDCCH for scheduling a transport block targeted for the ACK / NACK.
  • ACK / NACK may be transmitted using an enemy resource. If k default + k add is used, if an implicit resource is used, a CCE and ACK / NACK resource mapping different from the implicit resource determined in 1. may be set.
  • resource allocation may be performed as follows.
  • ACK / NACK may be transmitted using an implicit resource.
  • ACK / NACK may be transmitted using an explicit resource set to RRC. If k default + k add is used, if an implicit resource is used, a CCE and ACK / NACK resource mapping different from the implicit resource determined in k (n) may be set.
  • the present invention can also be applied to a carrier aggregation system. That is, it may be applied when multiple cells are configured in the terminal.
  • the multiple cells configured for the UE may have different reception timings of the PDSCH for each cell (or for each cell group), and thus, multiple TA (timing alignment) may be applied.
  • multiple TA timing alignment
  • the reception time of the PDCCH is the same but the reception time of the PDSCH may be different for each cell.
  • cells # 1, 2, and 3 may be configured in a terminal and cross-carrier scheduling may be configured to receive PDCCHs through subframe #n of cell # 1.
  • TA may be performed because the frame synchronization between cells # 1, 2, and 3 is not correct.
  • PDSCHs in cells # 1, 2, and 3 may be received at different times. In this case, the decoding processing time for the late received PDSCH may be insufficient. If ACK / NACKs for PDSCHs received in cells # 1, 2, and 3 need to be transmitted in an uplink subframe of one cell (eg, primary cell), decoding for the late received PDSCH Problems can arise from lack of processing time.
  • ACK / NACK for the PDSCH by receiving late application of the present invention modifications may transmit not the sub-frame #n + k default in subframe #n + k + k add default.
  • the present invention can be applied to a wireless communication system including an enhanced-PDCCH (E-PDCCH).
  • E-PDCCH is a control channel included in the data region in a subframe including a control region and a data region, and is a user-specific reference signal rather than a common reference signal (CRS) common to all terminals in a cell. signal) may be decoded through a control channel.
  • CRS common reference signal
  • the decoding start point of the PDSCH may be different from each other.
  • the decoding processing capability may be insufficient depending on the terminal. Even in this case, the present invention can be modified. For example, when scheduling a PDSCH of subframe n with a PDCCH of subframe n, ACK / NACK for the PDSCH may be transmitted in subframe n + k default .
  • the ACK / NACK for the PDSCH may be transmitted in the subframe n + k default + k add .
  • k add may be determined according to an amount of reduced PDSCH decoding time from the UE's point of view.
  • the terminal may not transmit ACK / NACK for the transport block according to the transport block size. That is, when a transport block size is larger than a predetermined X bit, ACK / NACK is transmitted only when the transport block size is less than or equal to X without transmitting ACK / NACK.
  • This method is not limited to based on a transport block size, and includes a method of not transmitting an ACK / NACK when a predetermined criterion is exceeded based on a DCI format, an I TBS, and an N PRB value.
  • FIG. 12 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods. For example, the processor 110 transmits a downlink grant to the terminal and transmits downlink data such as a transport block through a radio resource allocated through the downlink grant.
  • the subframe for receiving the ACK / NACK may be determined according to the size of the transport block.
  • the processor 110 may transmit the above-described reference value X, k add value (or k default + k add ) value through an upper layer signal such as an RRC message.
  • the processor 110 may determine a subframe for receiving the ACK / NACK according to the DCI format.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the processor 210 may receive a transport block and transmit ACK / NACK for the transport block by using a subframe determined according to the size of the transport block. Determination of such a subframe has been described with reference to FIGS. 8 to 9.
  • the processor 210 may determine a subframe to transmit ACK / NACK according to the DCI format. This process has been described with reference to FIG. 10.
  • the processor 210 may receive and use a reference value X, k add value (or k default + k add ) value from an eNB through an upper layer signal such as an RRC message.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법 및 장치를 제공한다. 상기 방법은 전송 블록을 수신하는 단계; 및 상기 전송 블록의 크기에 따라 제1 서브프레임 또는 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되, 상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 제1 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 전송 블록의 크기가 상기 기준치보다 큰 경우에는 상기 제2 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 제2 서브프레임은 상기 제1 서브프레임보다 시간 영역에서 뒤에 위치하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 ACK/NACK 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 단말의 HARQ(hybrid automatic repeat request)를 위한 수신 확인(reception acknowledgement)을 전송하는 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) LTE(long term evolution, 이하 LTE)는 유력한 차세대 무선통신 시스템 규격이다. LTE에서는 기지국이 단말에게 하향링크 데이터를 전송할 때 먼저 제어 채널을 통해 하향링크 데이터 채널에 대한 스케줄링 정보를 전송하고, 상기 스케줄링 정보에 의해 하향링크 데이터 채널을 할당하며, 할당된 하향링크 데이터 채널을 통해 하향링크 데이터를 전송한다. 단말은 상기 하향링크 데이터에 대한 수신 확인(acknowledgement/not-acknowledgement: ACK/NACK)을 기지국으로 전송하며, 기지국은 상기 ACK/NACK에 따라 새로운 하향링크 데이터를 전송하거나 기 전송된 하향링크 데이터에 대하여 재전송을 수행할 수 있다. 이러한 방식의 데이터 전송 방식을 HARQ(hybrid automatic repeat request)라 한다. HARQ에는 동기식과 비동기식이 있으며 동기식의 경우, HARQ 프로세스와 서브프레임간의 동기가 설정되어 미리 정해진 타이밍(timing)에 따라 동일 HARQ 프로세스의 새로운 전송/재전송이 수행된다. 반면 비동기식의 경우 HARQ 프로세스와 서브프레임간의 동기가 없이 HARQ 사용이 직접 지시된다.
한편, 3GPP LTE-A(long term evolution-advanced, 이하 LTE-A)는 LTE를 개선한 차세대 무선통신 시스템 규격이다. LTE-A에서는 계량기 검침, 수위 측정, 감시 카메라의 활용, 자판기의 재고 보고 등과 같이 데이터 통신을 주로 하는 저가/저사양의 단말을 지원할 수 있다. 이처럼, 저용량의 데이터 통신을 주로 하는 저가/저사양의 단말을 MTC(machine type communication) 단말이라 칭한다.
기지국이 지원하는 영역 내에 상술한 MTC 단말이 존재하는 경우, 기존의 HARQ의 ACK/NACK 타이밍을 그대로 적용하기 어려울 수 있다. 예를 들어, 하향링크 데이터가 MTC 단말이 특정 시간 내에 처리할 수 있는 용량보다 큰 경우 MTC 단말은 ACK/NACK을 전송할 시점에 상기 하향링크 데이터를 모두 디코딩하지 못한 상태일 수 있다.
또한, MTC 단말이 아니라 하더라도 ACK/NACK의 대상이 되는 데이터와 상기 ACK/NACK 전송 시점까지의 시간이 부족하여 HARQ의 ACK/NACK 응답을 정해진 시구간동안 제대로 수행하지 못하는 경우가 발생할 수 있다.
예를 들어, LTE-A에서는 반송파 집성(carrier aggregation)을 지원하며 교차 반송파 스케줄링을 지원할 수 있다. 교차 반송파 스케줄링 시 스케줄링 정보는 특정 셀을 통해 동시에 수신하나 상기 스케줄링 정보에 의해 스케줄링되는 데이터들은 서로 다른 셀들에서 수신하는 경우도 발생할 수 있다. 이 때, 서로 다른 셀들이 시간적으로 정렬되지 않아 일부 셀에서 데이터가 늦게 수신될 수도 있다. 이 경우, 늦게 수신되는 데이터와 그 ACK/NACK 간의 시간이 부족하여 상기 늦게 수신되는 데이터를 제대로 디코딩하지 못할 수 있다.
또는, LTE-A에서는 제어 영역에 할당되는 기존 제어 채널 이외에 데이터 영역에 할당되는 새로운 제어 채널이 도입될 수 있다. 새로운 제어 채널은 데이터 영역에 존재할 수 있으므로 새로운 제어 채널에 의해 스케줄링되는 데이터들은 단말에 따라 디코딩 처리 시간이 부족할 수 있다.
따라서, LTE-A와 같은 진보된 무선 통신 시스템에 적용될 수 있는 새로운 ACK/NACK전송 방법 및 장치가 필요하다.
본 발명이 이루고자 하는 기술적 과제는 무선 통신 시스템에서 ACK/NACK 전송 방법 및 장치를 제공하는 데 있다.
일 측면에서, 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법은 전송 블록을 수신하는 단계; 및 상기 전송 블록의 크기에 따라 제1 서브프레임 또는 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되, 상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 제1 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 전송 블록의 크기가 상기 기준치보다 큰 경우에는 상기 제2 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 제2 서브프레임은 상기 제1 서브프레임보다 시간 영역에서 뒤에 위치하는 것을 특징으로 한다.
다른 측면에서, 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법은 전송 블록을 수신하는 단계; 및 상기 전송 블록의 크기가 기준치보다 큰 경우에는 미리 정해진 서브프레임에서 상기 전송 블록에 대한 ACK/NACK을 전송하고, 상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 전송 블록에 대한 ACK/NACK을 전송하지 않는 것을 특징으로 한다.
또 다른 측면에서, 단말은 무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 전송 블록을 수신하고, 상기 전송 블록의 크기에 따라 제1 서브프레임 또는 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK 신호를 전송하되, 상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 제1 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 전송 블록의 크기가 상기 기준치보다 큰 경우에는 상기 제2 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 제2 서브프레임은 상기 제1 서브프레임보다 시간 영역에서 뒤에 위치하는 것을 특징으로 한다.
단말의 데이터 디코딩 처리 능력이 제한되는 상황에서도 효율적으로 HARQ 프로세스를 수행할 수 있다. 따라서, 시스템 성능이 향상된다.
도 1은 FDD 무선 프레임의 구조를 나타낸다.
도 2는 TDD 무선 프레임의 구조를 나타낸다.
도 3는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크 서브프레임 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7은 전송 블록의 채널 코딩 과정(채널 코딩 체인)을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 단말의 ACK/NACK 전송 방법을 나타낸다.
도 9는 도 8에 따른 방법에 의할 때, 단말의 데이터 수신 및 ACK/NACK 전송 시점을 나타낸다.
도 10은 본 발명의 다른 실시예에 따른 단말의 ACK/NACK 전송 방법을 나타낸다.
도 11은 본 발명에 따른 ACK/NACK 전송 방법을 나타낸다.
도 12는 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국에서 단말로의 통신을 하향링크(downlink: DL), 단말에서 기지국으로의 통신을 상향링크(uplink: UL)라 칭한다. 기지국 및 단말을 포함하는 무선 통신 시스템은 TDD(time division duplex) 시스템 또는 FDD(frequency division duplex) 시스템일 수 있다. TDD 시스템은 동일 주파수 대역에서 서로 다른 시간을 사용하여 상향링크 및 하향링크 송수신을 수행하는 무선 통신 시스템이다. FDD 시스템은 서로 다른 주파수 대역을 사용하여 동시에 상향링크 및 하향링크 송수신이 가능한 무선 통신 시스템이다. 무선 통신 시스템은 무선 프레임을 사용하여 통신을 수행할 수 있다.
도 1은 FDD 무선 프레임의 구조를 나타낸다.
FDD 무선 프레임(radio frame)은 10개의 서브프레임을 포함하며, 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯(slot)을 포함한다. 무선 프레임 내에 포함되는 슬롯들은 0~19의 인덱스가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하며 TTI는 최소 스케줄링 단위(minimum scheduling unit)일 수 있다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
도 2는 TDD 무선 프레임의 구조를 나타낸다.
도 2를 참조하면, 인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임(special subframe)이라고 하며, DwPTS(Downlink Pilot Time Slot: DwPTS), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 UL-DL 설정(UL-DL configuration)의 일 예를 나타낸다.
[표 1]
Figure PCTKR2012009889-appb-I000001
표 1에서 'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, 단말은 무선 프레임에서 각 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다. 이하에서 UL-DL 설정 N(N은 0 내지 6 중 어느 하나)은 상기 표 1을 참조할 수 있다.
도 3는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함할 수 있다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth) NDL에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
도 3에서는 하나의 자원블록이 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 하향링크 서브프레임 구조를 나타낸다.
도 4를 참조하면, DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개(경우에 따라 최대 4개)의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(physical downlink control channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH(physical downlink shared channel)가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다. 다음 표 2는 DCI 포맷과 용도를 예시한다.
[표 2]
Figure PCTKR2012009889-appb-I000002
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. RB 쌍은 동일한 자원 블록 인덱스 m을 가진다.
3GPP TS 36.211 V8.7.0에 의하면, PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다.
PUCCH 포맷 1은 SR(Scheduling Request)의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ를 위한 ACK/NACK 신호의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK 신호의 동시(simultaneous) 전송에 사용된다. PUCCH 포맷 3은 복수의 ACK/NACK 전송을 위해 사용될 수 있다.
3GPP LTE에서는 단말이 PUCCH를 구성하기 위해 자원 인덱스 n(1) PUCCH가 정의된다. 자원 인덱스 n(1) PUCCH = nCCE+N(1) PUCCH로 정의되는 데, nCCE는 대응하는 PDCCH(즉, ACK/NACK 신호에 대응하는 하향링크 데이터의 수신에 사용된 하향링크 자원 할당을 포함하는 PDCCH)의 전송에 사용되는 첫번째 CCE의 번호이고, N(1) PUCCH는 기지국이 단말에게 상위계층 메시지로 알려주는 파라미터이다.
ACK/NACK을 전송하는 자원은 상기 n(1) PUCCH 에 의해 지시될 수 있으며, 이 경우, CCE와 ACK/NACK 자원의 묵시적 맵핑이 이용되는 것이다.
이제 반송파 집성(carrier aggregation) 시스템에 대해 설명한다. 반송파 집성 시스템은 다중 반송파(multiple carrier) 시스템 또는 다중 셀 시스템이라고도 한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
반면, 반송파 집성(carrier aggregation)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)은 하나의 셀에 대응될 수 있다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 6은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
반송파 집성 시스템(도 6 (b))은 DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송될 수 있다. 또는 PUCCH는 특정 UL CC를 통해서만 전송될 수도 있다.
DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #A과 UL CC #A의 쌍이 제1 서빙 셀이 되고, DL CC #B과 UL CC #B의 쌍이 제2 서빙 셀이 되고, DL CC #C와 UL CC#C가 제3 서빙 셀이 될 수 있다. 각 서빙 셀은 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다.
서빙 셀은 프라이머리 셀(primary cell: PCell)과 세컨더리 셀(secondary cell: SCell)로 구분될 수 있다. 프라이머리 셀은 단말이 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 프라이머리 셀로 지정된 셀이다. 프라이머리 셀은 기준 셀(reference cell)이라고도 한다. 세컨더리 셀은 RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 프라이머리 셀이 설정되고, 세컨더리 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다. 프라이머리 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 프라이머리 셀의 CI로 지정될 수 있다.
프라이머리 셀은 요소 반송파 측면에서, DL PCC(downlink primary compoenent carrier), UL PCC(uplink primary component carrier)로 구성된다. 세컨더리 셀은 요소 반송파 측면에서, DL SCC(downlink secondary component carrier)만으로 구성되거나, DL SCC 및 UL SCC(uplink secondary component carrier)의 쌍으로 구성될 수 있다.
이제 3GPP LTE TDD(Time Division Duplex)에서의 HARQ를 위한 ACK/NACK 전송에 대해 기술한다.
TDD는 FDD(Frequency Division Duplex)와 달리 하나의 무선 프레임에 DL 서브프레임과 UL 서브프레임이 공존한다. 일반적으로 UL 서브프레임의 개수가 DL 서브프레임의 개수보다 적다. 따라서, ACK/NACK 신호를 전송하기 위한 UL 서브프레임이 부족한 경우를 대비하여, 복수의 DL 서브프레임에서 수신한 하향링크 데이터(즉, DL 전송 블록들)에 대한 복수의 ACK/NACK 신호를 하나의 UL 서브프레임에서 전송하는 것을 지원하고 있다.
아래 표는 3GPP LTE TDD에서 UL-DL 설정에 따른 UL 서브프레임 n과 연결된(associated) DL 서브프레임 n-k, 여기서, k∈K, M은 집합 K의 요소들의 개수를 나타낸다.
[표 3]
Figure PCTKR2012009889-appb-I000003
만약, DL 서브프레임 n에서 수신되는 데이터(예를 들어, 하향링크 데이터 채널(전송 블록) 또는 ACK/NACK을 요구하는 제어 채널)에 대한 ACK/NACK이 UL 서브프레임 n + k(n)에서 전송된다면, 상기 k(n)은 다음 표와 같이 나타낼 수 있다.
[표 4]
Figure PCTKR2012009889-appb-I000004
표 4에서 단말이 서브프레임 n에서 PDSCH 또는 ACK/NACK응답이 필요한 PDCCH(예를 들어, DL SPS 해제 PDCCH)를 수신한 경우 서브프레임 n + k(n)에서 ACK/NACK을 전송하는데, 상기 표 4의 각 값들은 상기 k(n) 값을 나타내고 있다. 예를 들어, UL-DL 설정이 0인 경우, 서브프레임 0에서 PDSCH를 수신하면, 4 서브프레임 이후인 서브프레임 4에서 ACK/NACK을 전송함을 나타내고 있다. 단말은 PDSCH 또는 DL SPS 해제 PDCCH를 수신한 후 ACK/NACK을 전송하기 위해 특정 시간이 필요하다. 이러한 특정 시간의 최소값을 이하에서 kmin이라 표시하며 그 값은 4 서브프레임일 수 있다. 상기 표 4에서 ACK/NACK을 전송하는 시점을 살펴보면, 대부분 kmin이 경과한 최초의 상향링크 서브프레임에서 ACK/NACK을 전송함을 알 수 있다. 다만, 표 4에서 밑줄 친 숫자는 kmin이 경과한 최초의 상향링크 서브프레임을 지시하지 않고 그 다음에 위치한 상향링크 서브프레임을 지시하고 있다. 이처럼 하는 이유는 하나의 상향링크 서브프레임에서 너무 많은 하향링크 서브프레임들에 대한 ACK/NACK을 전송하는 것을 방지하기 위해서이다.
이제, LTE에서의 전송 블록(transport block: TB)의 크기와 채널 코딩(channel coding) 과정에 대해 설명한다.
먼저, 전송 블록은 다음 표 5와 같이 ITBS, NPRB에 따라 그 크기가 결정된다. 단, NPRB는 1 내지 110 중 어느 값을 가질 수 있으며 표 5에서는 10까지만 나타내었다.
[표 5]
[규칙 제91조에 의한 정정 27.12.2012] 
Figure WO-DOC-FIGURE-80a
Figure WO-DOC-FIGURE-80b
전송 블록은 채널 코딩(channel coding)된다.
도 7은 전송 블록의 채널 코딩 과정(채널 코딩 체인)을 나타낸다.
도 7을 참조하면, 전송 블록(transport block: TB)은 CRC(cyclic redundancy check)가 부가되어(S701), 코드 블록(code block: CB)이 된다. 전송 블록의 크기를 A라 하고, CRC의 크기를 L이라 하면 상기 A와 L의 합인 B(=A+L)를 Z(=6144비트)와 비교하여 B가 Z보다 크거나 같으면 코드 블록 분할(code block segmentation)을 수행한다(S702). 분할된 코드 블록 별로 CRC를 부가하고(S703), 채널 코딩된다(S704). 채널 코딩에는 터보 인코딩(turbo encoding)이 사용될 수 있다. CRC가 부가된 분할된 코드 블록은 6144 비트 이하가 된다. 그 후 레이트 매칭(S705), 코드 블록 연접(code block concatenation)(S706)을 거친다.
이제, 본 발명에 대해 설명한다.
LTE-A에서는 데이터 통신을 위주로 하는 저가/저사양의 단말을 지원할 수 있다. 예를 들어, 계량기 검침, 수위 측정, 감시 카메라의 활용, 자판기의 재고 보고 등은 데이터 통신을 위주로 하며, 이러한 데이터 통신에는 저가/저사양의 단말로도 충분하다. LTE-A에서는 이러한 단말을 지원할 수 있다. 이하, 상술한 저가/저사양의 단말을 MTC(machine type communication) 단말이라 칭한다.
MTC 단말의 경우, 단말의 제작 비용을 줄이기 위해 RF(radio frequency) 체인(chain)이나 채널 코딩 체인(chain) 등을 단순화/최소화하는 것이 중요할 수 있다.
HARQ 프로세스로 동작하는 하향링크 데이터 채널의 경우, 수신된 데이터를 처리해서 정상 수신 여부를 나타내는 ACK/NACK 응답을 전송한다. 이 때, HARQ 프로세스는 ACK/NACK 응답을 전송하는 시간이 미리 정해져 있다. 예를 들어, LTE FDD의 경우 PDSCH를 수신한 서브프레임에서 4 서브프레임 이후의 서브프레임에서 ACK/NACK을 전송한다. LTE TDD의 경우 서브프레임 마다 UL/DL 설정에 따라 ACK/NACK을 전송하는 서브프레임이 달라질 수 있으나 PDSCH를 수신한 서브프레임에서 최소한 4 서브프레임 이후의 서브프레임에서 ACK/NACK을 전송한다(이에 대해서는 이미 설명한 바 있다).
FDD든 TDD든 단말은 정해진 시간 내에 하향링크 데이터(즉, 전송 블록)를 디코딩하고 그에 대한 ACK/NACK을 생성/전송해야 한다. 만약, 전송 블록의 크기가 일정 값보다 크다면, 단말은 정해진 시간 내에 디코딩을 하기 위해 채널 코딩 체인을 다수 할당하여 병렬 처리하거나, 클락(clock) 속도를 높여서 처리 능력을 맞추어야 할 것이다. 그런데, MTC 단말의 경우, 제작 비용의 증가, 최대 크기의 전송 블록의 낮은 사용 빈도 등을 고려할 때, 정해진 시간 내에 최대 전송 블록 크기를 지원하도록 처리 능력을 설정하는 것은 바람직하지 않다.
이하, MTC 단말처럼 디코딩 처리 능력이 제한된 단말에 대해, ACK/NACK의 전송 방법을 설명한다. 또한, MTC 단말처럼 디코딩 처리 능력이 제한된 단말과 기지국 간의 데이터 송수신 방법에 대해 설명한다. 이하 단말은 MTC 단말과 같이 디코딩 처리 능력이 제한된 단말을 의미하나, 본 발명에서 단말이 반드시 이러한 단말로 한정되는 것은 아니다. 즉, 본 발명은 일반적인 LTE/LTE-A 단말에도 적용될 수 있다.
도 8은 본 발명의 일 실시예에 따른 단말의 ACK/NACK 전송 방법을 나타낸다.
도 8을 참조하면, 단말은 전송 블록의 크기가 미리 정해진 값보다 큰지 여부를 판단한다(S110). 이하, 상기 미리 정해진 값을 X라고 하자. X는 1) 초기 접속(initial access) 및 초기 RRC 설정 시 전송 블록의 최대 크기일 수 있다. 즉, 초기 접속이나 초기 RRC 설정 시에는 단말이 기존 단말인지 아니면 데이터 디코딩 능력이 제한된 MTC 단말인지를 알 수 없다. 따라서, 역호환성을 위해 초기 접속, 초기 RRC 설정 시의 최대 전송 블록 크기를 X 값으로 설정할 수 있다. 그 결과 초기 접속, 초기 RRC 설정 시에는 기존 HARQ 타이밍이 유지될 수 있다.
또는, X는 2) 코드 블록 분할(code block segmentation) 및 MTC 단말의 코드 블록 처리 능력을 고려하여 결정될 수 있다. 예를 들어, MTC 단말의 코드 블록 처리 능력이 코드 블록 1개라면 상기 X = Z – L = 6144 – 24 = 6120(비트)가 된다. 만약 MTC 단말의 코드 블록 처리 능력이 2개라면 2 * 6120(비트)가 된다.
만약, 전송 블록의 크기가 미리 정해진 값보다 작거나 같다면 제1 서브프레임에서 상기 전송 블록에 대한 ACK/NACK을 전송한다(S120). 여기서, 제1 서브프레임은 최소 ACK/NACK 전송 가능 시점의 서브프레임 또는 기존의 ACK/NACK 전송 서브프레임일 수 있다. 이러한 의미에서 제1 서브프레임은 디폴트(default) 서브프레임이라 칭할 수 있다. 예를 들어, LTE FDD에서는 서브프레임 N에서 전송 블록을 수신한 경우, 서브프레임 N+4에서 상기 전송 블록에 대한 ACK/NACK을 전송한다. 이 경우, 상기 서브프레임 N+4가 제1 서브프레임이 된다.
보다 일반적으로는, 서브프레임들이 오름 차순으로 연속적으로 인덱싱된다면(프레임의 마지막 서브프레임이 i라면 다음 프레임의 첫번째 서브프레임은 i+1과 같이 표시), 일반적으로 서브프레임 n에서 데이터 유닛(PDSCH, 전송 블록 등과 같이 ACK/NACK의 대상이 되는 데이터)을 수신하는 경우, 서브프레임 n + kdefault에서 상기 데이터 채널에 대한 ACK/NACK을 전송하는 것으로 표현할 수 있다. 이 경우, 제1 서브프레임은 서브프레임 n을 기준으로 서브프레임 n + kdefault이 된다. FDD에서 kdefault는 4, TDD에서 kdefault는 상기 표 4의 값일 수 있다.
만약, 전송 블록의 크기가 미리 정해진 값보다 크다면 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK을 전송한다(S130).
제2 서브프레임은 전송 블록의 크기가 미리 정해진 값을 초과하는 경우 ACK/NACK이 전송되는 서브프레임으로 제1 서브프레임보다 시간적으로 뒤에 위치하는 서브프레임이다. 예를 들어, 서브프레임 n에서 데이터 유닛(PDSCH, 전송 블록 등과 같이 ACK/NACK의 대상이 되는 데이터)을 수신하였는데 상기 데이터 유닛의 크기가 미리 정해진 값을 초과하는 경우, 서브프레임 n + kdefault + kadd(kadd > 0)에서 상기 데이터 유닛에 대한 ACK/NACK을 전송하는 것으로 표현할 수 있다.
또는 ACK/NACK전송을 보류(중지)시키는 방법을 사용할 수도 있다. 이는 kadd를 무한대로 설정하는 것과 같은 효과로 기지국은 ACK/NACK응답 없이 임의로 재전송/새전송을 판단하여 스케줄링을 수행한다. 이와 같이 ACK/NACK전송을 보류(중지)시키는 것은 데이터 유닛이 미리 정해진 값에 못 미치는 경우에 적용할 수 있다. 이는 작은량의 데이터의 경우 ACK/NACK응답 없이 임의로 재전송을 시키거나 해당 데이터를 버려도 손실이 적을 수 있기 때문이다.
상기 kadd는 RRC(radio resource control) 메시지와 같은 상위 계층 신호에 의해 설정된 값을 사용할 수 있다. 또는 kadd는 미리 약속된 특정 값(예를 들면, 1, 2, 3, 4 중 어느 값, 이는 예시일 뿐이다)을 사용할 수도 있다. kadd는 코드 블록의 개수, 전송 블록의 크기 등을 고려하여 결정될 수 있다.
TDD의 경우, 표 4에 나타낸 바와 같이 서브프레임 번호 n에 따라 HARQ ACK 시간 지연, 즉, k(n)이 kdefault보다 크게 설정되는 경우가 있다. 이 경우, k(n)이 kdefault + kadd보다 크거나 같은 경우에는 k(n)을 따른다. 즉, min(k(n), kdefault + kadd) 값을 HARQ ACK 시간 지연으로 사용할 수 있다. 여기서 min(x,y)는 x, y 중에서 작은 값(x, y가 같으면 같은 그 값)을 나타낸다.
또는 k(n)이 kdefault + kadd 보다 크거나 같은 하향링크 서브프레임 n에서만 미리 정해진 X 보다 큰 전송 블록을 스케줄링하도록 제한할 수 있다.
도 8에서는 전송 블록의 크기를 미리 정해진 값(X)보다 큰지 여부를 직접 비교하는 예를 설명하였으나 이는 제한이 아니다. 예를 들어, X 대신 표 5의 특정 ITBS 및 NPRB 값을 기준으로 하여 ACK/NACK을 제1 서브프레임 및 제2 서브프레임 중 어느 서브프레임에서 전송할 것인지 결정할 수 있다. 예를 들어, ITBS의 값은 0 내지 26 중 어느 값을 가지며 NPRB는 1 내지 110 중 어느 값을 가지며, ITBS, NPRB 값에 따라 전송 블록의 크기가 결정된다. 따라서, 전송 블록의 크기는 ITBS, NPRB의 값에 의하여 지시될 수 있다. 따라서, ITBS, NPRB 의 값들에 대해 구간을 구분한 후, 특정 구간 또는 특정 값을 기준으로 제1 서브프레임에서 ACK/NACK을 전송할 것인지 아니면 제2 서브프레임에서 ACK/NACK을 전송할 것인지를 구분할 수 있다.
도 9는 도 8에 따른 방법에 의할 때, 단말의 데이터 수신 및 ACK/NACK 전송 시점을 나타낸다.
도 9를 참조하면, 단말은 서브프레임 n에서 전송 블록 크기가 X 이하인 PDSCH(901)와 전송 블록 크기가 X 보다 큰 PDSCH(902)를 수신할 수 있다.
단말은 PDSCH(901)에 대한 ACK/NACK은 서브프레임 n + kdefault 에서 전송하고, PDSCH(902)에 대한 ACK/NACK은 서브프레임 n + kdefault + kadd에서 전송한다.
도 10은 본 발명의 다른 실시예에 따른 단말의 ACK/NACK 전송 방법을 나타낸다.
도 10을 참조하면, 단말은 PDSCH를 스케줄링하는 DCI 포맷이 미리 정해진 특정 DCI 포맷인지 여부를 판단한다(S210).
예를 들어, DCI 포맷 1A는 하향링크 전송 모드에 관계없이 항상 지원되는 DCI 포맷으로 대비(fallback) DCI 포맷이라 칭한다. 단말은 PDCCH 영역에서 검출한 DCI 포맷이 대비 DCI 포맷인지 여부를 판단하여, 그러하면 제1 서브프레임에서 상기 DCI 포맷에 의해 스케줄링되는 전송 블록에 대한 ACK/NACK을 전송하고(S220), 그러하지 아니하면 제2 서브프레임에서 상기 DCI 포맷에 의해 스케줄링되는 전송 블록에 대한 ACK/NACK을 전송한다(S230).
대비 DCI 포맷으로 스케줄링되는 전송 블록 크기는 단말의 처리 능력에 맞추어 스케줄러가 제한할 수 있다.
ACK/NACK의 전송 시점이 ACK/NACK의 대상이 되는 데이터 유닛의 크기라는 조건에 따라 다르게 적용될 수 있는 본 발명은 다음 설명과 같이 다양하게 확장될 수 있다.
예를 들어, DCI가 전송되는 검색공간(search space)에 따라서 ACK/NACK이 전송되는 서브프레임이 구분될 수 있다. 예를 들어 DCI가 셀 내의 모든 단말에 대한 공통적인 검색 공간인 CSS(common search space), 특정 단말에 대한 검색 공간인 USS(user equipment specific search space) 중 어디에서 수신되는지에 따라 다른 ACK/NACK전송 시점을 적용할 수 있다.
또는 PDCCH로 스케줄링되는지 E-PDCCH(enhanced-PDCCH, 아래에서 기술함)로 스케줄링 되는 지에 따라서 다른 ACK/NACK 전송시점을 적용할 수 있다.
또는 스케줄링 DCI가 전송되는 서브프레임(또는 셀)에 따라서 서로 다른 전송 시점을 적용하거나, 스케줄링된 데이터 채널이 전송되는 서브프레임(또는 셀)에 따라서 서로 다른 전송 시점을 적용하거나, 스케줄링 방식이 SPS(semi-persistent scheduling)인지(예를 들어 대응하는 PDCCH가 없는 PDSCH) 동적(dynamic)인지(대응하는 DPCCH가 있는 PDSCH)에 따라서 서로 다른 전송 시점을 적용하거나, DCI에 부가된 RNTI(radio network temporary identifier) 종류에 따라서 서로 다른 전송 시점을 적용하거나, 교차 스케줄링인지 비교차 스케줄링인지에 따라서 서로 다른 전송 시점이 적용될 수 있다.
도 11은 본 발명에 따른 ACK/NACK 전송 방법을 나타낸다.
도 11을 참조하면, 단말은 RRC 메시지를 통해 X, kadd 값을 설정하는 RRC 메시지를 수신한다(S310).
단말은 서브프레임 n의 PDSCH를 통해 전송 블록을 수신한다(S320).
단말은 전송 블록의 크기를 X와 비교하고(S330), 전송 블록의 크기가 X 이하인 경우에는 서브프레임 n + kdefault에서 ACK/NACK을 전송하고(S340-1), 전송 블록의 크기가 X 초과인 경우에는 서브프레임 n + kdefault + kadd에서 ACK/NACK을 전송한다(S340—2).
도 11에서는 설명의 편의상 RRC 메시지로 X, kadd 값을 모두 (직접 또는 간접적으로) 설정하는 경우를 예시하였다. 그러나 이는 제한이 아니며, X, kadd 중 하나만 RRC 메시지로 설정할 수도 있다. 이 경우 RRC 메시지로 설정되지 않는 값은 단말과 기지국 간에 미리 약속된 값을 이용할 수 있다. 또한 기지국은 kadd 값 대신 kdefault + kadd 값을 RRC 메시지로 시그널링할 수도 있다. 또는, X, kadd 모든 값이 RRC 시그널링 되지 않고 기지국과 단말간에 미리 약속된 값일 수 있다.
한편, 기지국은 ACK/NACK전송 시점에 대한 정보를 DCI에 포함하여 전송할 수 있다. 예를 들어 kadd 값에 대한 정보를 DCI에 특정 필드를 구성하거나, 다른 필드의 상태(state)를 조합하여 시그널링 할 수 있다. 즉, 기지국은 DCI를 통해 단말에게 제2 서브프레임을 지시할 수 있다.
또는, DCI에는 ACK/NACK 전송을 하지 않도록 하는 지시자도 포함될 수 있다. 단말은 상기 지시자를 통해 ACK/NACK을 전송하지 않도록 지시되었다고 판단되면 ACK/NACK을 전송하지 않는다. 상기 지시자는 상기 DCI의 특정 필드와 별개로 포함될 수 있다. 또는 상기 지시자는 상기 특정 필드의 값 자체가 상기 지시자의 역할을 할 수 있다. 예를 들어, 상기 특정 필드가 2비트이고, 가질 수 있는 상태가 ‘00’,‘01’,’10’,‘11’이라 할 때, ‘00’,‘01’,’10’는 차례로 kadd 값이 0, 1, 2임을 나타내고, ‘11’는 kadd 값이 무한대임을 나타내어 ACK/NACK이 전송되지 않음을 나타낼 수 있다.
상기에서 전송 블록의 크기가 특정 값(X)을 초과하는 경우에 양(positive)의 kadd 값을 추가하는 것으로 예를 들었으나 이는 제한이 아니다. 즉, kadd 값이 음(negative)의 값을 가질 수 있다. 또는 kadd 값과 별개로 kminus 값을 시그널링할 수도 있다. 예를 들어, kdefault 값이 여유 있게 설정되었다면 kminus 값을 빼는 것으로도 적용할 수 있다.
이하, ACK/NACK이 전송되는 서브프레임 내에서의 자원할당에 대해 설명한다.
FDD에서 ACK/NACK을 전송할 때, 자원 할당은 다음과 같이 수행될 수 있다.
1. kdefault가 적용되는 경우(즉, 서브프레임 n에서 수신한 데이터 유닛에 대한 ACK/NACK을 서브프레임 n+kdefault에서 전송하는 경우, 이하 동일) 묵시적 자원을 사용하여 ACK/NACK을 전송할 수 있다. 즉, ACK/NACK을 전송하는 자원은 상기 ACK/NACK의 대상이 되는 전송 블록을 스케줄링하는 PDCCH의 가장 낮은 CCE에 기반하여 결정될 수 있다.
2. kdefault + kadd가 적용되는 경우(즉, 서브프레임 n에서 수신한 데이터 유닛에 대한 ACK/NACK을 서브프레임 n+kdefault+ kadd 에서 전송하는 경우, 이하 동일), RRC로 설정된 명시적 자원을 이용하여 ACK/NACK을 전송할 수 있다. 만약, kdefault + kadd가 적용되는 경우 묵시적 자원을 이용한다면 상기 1. 에서 정해지는 묵시적 자원과는 다른 CCE와 ACK/NACK 자원 맵핑이 설정될 수 있다.
TDD에서 ACK/NACK을 전송할 때, 자원 할당은 다음과 같이 수행될 수 있다.
1. k(n)이 적용되는 경우 묵시적 자원을 사용하여 ACK/NACK을 전송할 수 있다.
2. kdefault + kadd가 적용되는 경우(예컨대, 표 4의 k(n)이 kdefault + kadd 보다 작은 경우) RRC로 설정된 명시적 자원을 이용하여 ACK/NACK을 전송할 수 있다. 만약, kdefault + kadd가 적용되는 경우 묵시적 자원을 이용한다면 k(n) 에서 정해지는 묵시적 자원과는 다른 CCE와 ACK/NACK 자원 맵핑이 설정될 수 있다.

한편, 본 발명은 반송파 집성 시스템에서도 적용될 수 있다. 즉, 단말에게 다중 셀들이 설정되는 경우 적용될 수 있다. 단말에게 설정되는 다중 셀들은 셀 별(또는 셀 그룹 별)로 PDSCH의 수신 시점이 달라져 다중 TA(timing alignment)가 적용될 수 있다. 이 때, 특정 셀이 모니터링 셀이 되어 셀 들 간에 교차 반송파 스케줄링이 적용된다면 PDCCH의 수신 시점은 동일하나 PDSCH의 수신 시점은 셀 별로 서로 다르게 되는 결과가 발생할 수 있다.
예를 들어, 단말에게 셀 #1, 2, 3이 설정되고 교차 반송파 스케줄링이 설정되어 셀 #1의 서브프레임 #n을 통해 PDCCH들을 수신할 수 있다. 이 때, 셀 #1, 2, 3 간의 프레임 동기가 맞지 않아 TA가 수행될 수 있는데, 그러면 상기 셀 #1, 2, 3에서의 PDSCH들은 서로 다른 시간에 수신될 수 있다. 이 경우 늦게 수신된 PDSCH에 대한 디코딩 처리 시간이 부족해질 수 있다. 만약, 상기 셀 #1, 2, 3에서 수신한 PDSCH들에 대한 ACK/NACK들을 하나의 셀(예를 들어, 프라이머리 셀)의 상향링크 서브프레임에서 전송해야 한다면 상기 늦게 수신된 PDSCH에 대한 디코딩 처리 시간 부족으로 문제가 발생할 수 있다.
이러한 경우, 본 발명을 변형 적용하여 늦게 수신된 PDSCH에 대한 ACK/NACK은 서브프레임 #n + kdefault이 아니라 서브프레임 #n + kdefault + kadd에서 전송할 수 있다.
또한, 본 발명은 E-PDCCH(enhanced-PDCCH)를 포함하는 무선통신 시스템에도 적용할 수 있다. 여기서 E-PDCCH는 제어 영역과 데이터 영역을 포함하는 서브프레임에서 상기 데이터 영역 내에 포함되는 제어 채널이며 셀 내의 모든 단말에게 공통적인 CRS(common reference signal)이 아니라 단말 특정적인 참조 신호(user-specific reference signal)을 통해 디코딩되는 제어 채널일 수 있다.
PDCCH로 PDSCH를 스케줄링하는 경우와 E-PDCCH로 PDSCH를 스케줄링하는 경우에 있어서, PDSCH의 디코딩 시작점은 서로 달라질 수 있다. E-PDCCH를 설정하여 PDSCH를 스케줄링하는 경우 단말에 따라 디코딩 처리 능력이 부족할 수 있다. 이러한 경우에도 본 발명을 변형 적용할 수 있다. 예를 들어, 서브프레임 n의 PDCCH로 서브프레임 n의 PDSCH를 스케줄링하는 경우 상기 PDSCH에 대한 ACK/NACK은 서브프레임 n + kdefault에서 전송할 수 있다. 그리고 서브프레임 n의 E-PDCCH로 서브프레임 n의 PDSCH를 스케줄링하는 경우 상기 PDSCH에 대한 ACK/NACK은 서브프레임 n + kdefault + kadd에서 전송할 수 있다. 이 때, kadd는 단말 입장에서 PDSCH 디코딩 시간이 줄어든 양에 따라 결정될 수 있다.
상술한 방법들에서는 전송 블록 크기에 따라 HARQ ACK/NACK 타이밍을 조절하는 방법을 설명하였다.
한편, 본 발명의 또 다른 실시예에 따르면, 단말은 전송 블록 크기에 따라 상기 전송 블록에 대한 ACK/NACK을 전송하지 않을 수도 있다. 즉, 전송 블록 크기가 미리 정해진 X 비트보다 큰 경우에는 ACK/NACK을 전송하지 않고 전송 블록 크기가 상기 X이하인 경우에 한해 ACK/NACK을 전송하는 것이다. 이 방법은 전송 블록 크기를 기준으로 하는 것에 제한되지 않고, DCI 포맷, ITBS 및 NPRB 값 등을 기준으로 하여 미리 정해진 기준을 초과하는 경우 ACK/NACK을 전송하지 않는 방법을 포함한다.
도 12는 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(110)는 단말에게 하향링크 그랜트를 전송하고, 하향링크 그랜트를 통해 할당한 무선 자원을 통해 전송 블록과 같은 하향링크 데이터를 전송한다. 전송 블록의 크기에 따라 ACK/NACK을 수신하는 서브프레임이 결정될 수 있다. 또한, 프로세서(110)는 상술한 기준치 X, kadd 값(또는 kdefault + kadd)값을 RRC 메시지와 같은 상위 계층 신호를 통해 전송할 수 있다. 또한, 프로세서(110)는 DCI 포맷에 따라 ACK/NACK을 수신하는 서브프레임을 결정할 수도 있다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 전송 블록을 수신하고 전송 블록의 크기에 따라 결정되는 서브프레임을 이용하여 전송 블록에 대한 ACK/NACK을 전송할 수 있다. 이러한 서브프레임의 결정 과정은 도 8 내지 9를 참조하여 설명한 바 있다. 또한, 프로세서(210)는 DCI 포맷에 따라 ACK/NACK을 전송할 서브프레임을 결정할 수도 있다. 이 과정에 대해서는 도 10을 참조하여 설명한 바 있다. 또한 프로세서(210)는 기지국으로부터 기준치 X, kadd 값(또는 kdefault + kadd)값을 RRC 메시지와 같은 상위 계층 신호를 통해 수신하여 이용할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.


Claims (11)

  1. 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법에 있어서,
    전송 블록을 수신하는 단계; 및
    상기 전송 블록의 크기에 따라 제1 서브프레임 또는 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK 신호를 전송하는 단계를 포함하되,
    상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 제1 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 전송 블록의 크기가 상기 기준치보다 큰 경우에는 상기 제2 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 제2 서브프레임은 상기 제1 서브프레임보다 시간 영역에서 뒤에 위치하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 전송 블록을 수신하는 서브프레임이 서브프레임 n인 경우, 상기 제1 서브프레임은 서브프레임 n + 4이고, 상기 제2 서브프레임은 서브프레임 n + 4 + kadd(kadd 는 0 보다 큰 자연수)인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 기준치는 상기 단말이 네트워크로의 최초 접속(initial access) 또는 초기 RRC 설정 시에 수신하는 최대 전송 블록 크기인 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 기준치는 상기 단말이 처리할 수 있는 코드 블록의 개수를 기준으로 결정되며, 상기 코드 블록은 전송 블록에 CRC(cyclic redundancy check)를 부가한 후 분할하여 생성되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 제1 서브프레임이 서브프레임 n + kdefault(kdefault 는 4 이상의 자연수 중 어느 하나)라고 할 때, 상기 제2 서브프레임은 서브프레임 n + kdefault + kadd (kadd 는 0 보다 큰 자연수)인 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 kadd 의 값은 RRC(radio resource control) 메시지를 통해 수신되는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 상기 기준치 값에 대한 정보를 수신하는 단계를 더 포함하되, 상기 정보는 물리적 자원 블록(physical resource block: PRB)의 개수(NPRB) 및 상기 전송 블록의 크기에 대한 인덱스 값(ITBS)을 포함하고, 상기 PRB의 개수 및 상기 인덱스 값에 기반하여 상기 기준치 값이 결정되는 것을 특징으로 하는 방법.
  8. 제1 항에 있어서, 상기 제1 서브프레임이 서브프레임 n + kdefault(kdefault 는 4 이상의 자연수 중 어느 하나)이고, 상기 제2 서브프레임이 서브프레임 n + kdefault + kadd라고 할 때, 상기 kadd 는 미리 정해진 고정된 값인 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 전송 블록을 스케줄링하는 하향링크 제어 정보(downlink control information: DCI)를 수신하는 단계를 더 포함하되,
    상기 DCI는 상기 제2 서브프레임을 지시하는 지시자를 포함하는 것을 특징으로 하는 방법.
  10. 단말의 ACK/NACK(acknowledgement/not-acknowledgement) 전송 방법에 있어서,
    전송 블록을 수신하는 단계; 및
    상기 전송 블록의 크기가 기준치보다 큰 경우에는 미리 정해진 서브프레임에서 상기 전송 블록에 대한 ACK/NACK을 전송하고,
    상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 전송 블록에 대한 ACK/NACK을 전송하지 않는 것을 특징으로 하는 방법.
  11. 무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는 전송 블록을 수신하고, 상기 전송 블록의 크기에 따라 제1 서브프레임 또는 제2 서브프레임에서 상기 전송 블록에 대한 ACK/NACK 신호를 전송하되,
    상기 전송 블록의 크기가 기준치보다 작거나 동일한 경우에는 상기 제1 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 전송 블록의 크기가 상기 기준치보다 큰 경우에는 상기 제2 서브프레임에서 상기 ACK/NACK 신호를 전송하고, 상기 제2 서브프레임은 상기 제1 서브프레임보다 시간 영역에서 뒤에 위치하는 것을 특징으로 하는 단말.
PCT/KR2012/009889 2011-11-21 2012-11-21 무선 통신 시스템에서 ack/nack 전송 방법 및 장치 WO2013077633A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/359,543 US9538529B2 (en) 2011-11-21 2012-11-21 Method and apparatus for transmitting ACK/NACK signal in wireless communication system
US15/363,058 US9906334B2 (en) 2011-11-21 2016-11-29 Method and apparatus for transmitting ACK/NACK signal in wireless communication system
US15/874,668 US20180145799A1 (en) 2011-11-21 2018-01-18 Method and apparatus for transmitting ack/nack signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161562401P 2011-11-21 2011-11-21
US61/562,401 2011-11-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/359,543 A-371-Of-International US9538529B2 (en) 2011-11-21 2012-11-21 Method and apparatus for transmitting ACK/NACK signal in wireless communication system
US15/363,058 Continuation US9906334B2 (en) 2011-11-21 2016-11-29 Method and apparatus for transmitting ACK/NACK signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2013077633A1 true WO2013077633A1 (ko) 2013-05-30

Family

ID=48470021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009889 WO2013077633A1 (ko) 2011-11-21 2012-11-21 무선 통신 시스템에서 ack/nack 전송 방법 및 장치

Country Status (2)

Country Link
US (3) US9538529B2 (ko)
WO (1) WO2013077633A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838194B2 (en) * 2011-12-16 2017-12-05 Goldpeak Innovations Inc User equipment, PDSCH A/N transmitting method thereof, transmission/reception point, and PDSCH A/N receiving method thereof
WO2014021662A1 (ko) * 2012-08-01 2014-02-06 엘지전자 주식회사 제어 정보를시그널링 하는 방법 및 이를 위한 장치
US9565669B2 (en) * 2013-01-29 2017-02-07 Sun Patent Trust Base station, terminal, transmission method, and reception method
JP6788579B2 (ja) * 2015-04-28 2020-11-25 シャープ株式会社 端末装置、基地局装置、および通信方法
US20160323860A1 (en) * 2015-04-29 2016-11-03 Qualcomm Incorporated Systems and methods for uplink shared channel content management
WO2017008256A1 (zh) * 2015-07-14 2017-01-19 华为技术有限公司 数据传输的方法、用户设备和基站
US10455611B2 (en) * 2015-09-16 2019-10-22 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
CN107231217B (zh) * 2016-03-25 2020-08-07 电信科学技术研究院 一种反馈信息的传输方法及装置
CN107231218B (zh) * 2016-03-25 2021-07-30 大唐移动通信设备有限公司 一种ack/nack反馈方法及相关设备
EP3500018B1 (en) * 2016-08-09 2024-05-08 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
CN110582968B (zh) * 2017-03-24 2023-03-28 摩托罗拉移动有限责任公司 用于时间间隔的一部分的指示
RU2737481C1 (ru) * 2017-04-03 2020-12-01 Телефонактиеболагет Лм Эрикссон (Пабл) Harq-обработка для узлов с переменными временами обработки
US10554345B2 (en) 2017-08-10 2020-02-04 At&T Intellectual Property I, L.P. Indicating retransmitted codeblock groups in 5G wireless communication systems
SG11202006375QA (en) * 2018-03-06 2020-09-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Response message processing method, apparatus, and storage medium
US20220353018A1 (en) * 2019-06-24 2022-11-03 Sony Group Corporation Wireless communication device and method, and wireless communication terminal and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071099A (ko) * 2007-01-29 2008-08-01 삼성전자주식회사 통신 시스템에서 하향링크 프레임 구성 방법 및 장치
US20100322114A1 (en) * 2008-02-04 2010-12-23 Yingyang Li Method for allocating uplink ack/nack channels
KR20110103457A (ko) * 2009-02-05 2011-09-20 모토로라 모빌리티, 인크. 무선 통신 시스템 내에서의 업링크 긍정확인응답 / 부정확인응답 메시지들에 대한 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294231B2 (en) * 2007-03-17 2016-03-22 Qualcomm Incorporated Configurable acknowledgement processing in a wireless communication system
US9036564B2 (en) * 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system
KR101817812B1 (ko) * 2009-10-19 2018-01-11 삼성전자주식회사 통신 시스템에서 harq-ack 신호를 위한 전송 다이버시티 및 멀티플렉싱 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080071099A (ko) * 2007-01-29 2008-08-01 삼성전자주식회사 통신 시스템에서 하향링크 프레임 구성 방법 및 장치
US20100322114A1 (en) * 2008-02-04 2010-12-23 Yingyang Li Method for allocating uplink ack/nack channels
KR20110103457A (ko) * 2009-02-05 2011-09-20 모토로라 모빌리티, 인크. 무선 통신 시스템 내에서의 업링크 긍정확인응답 / 부정확인응답 메시지들에 대한 방법

Also Published As

Publication number Publication date
US20170085343A1 (en) 2017-03-23
US20140328333A1 (en) 2014-11-06
US9538529B2 (en) 2017-01-03
US20180145799A1 (en) 2018-05-24
US9906334B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
US20210266114A1 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US9906334B2 (en) Method and apparatus for transmitting ACK/NACK signal in wireless communication system
US20190260550A1 (en) Method and apparatus for receiving ack/nack in wireless communication system
US9504037B2 (en) Method and apparatus for transmitting and receiving data
US9155079B2 (en) Communication method and device in a wireless communication system
EP2448150B1 (en) Reception and Transmissin of Acknowledgement signals in wireless communication systems
US20180376497A1 (en) Control information reception method and user equipment, and control information transmission method and base station
EP3500018B1 (en) Terminal device, base station device, and communication method
WO2014098482A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2013125860A1 (ko) 반송파 집성 시스템에서 ack/nack 전송 방법 및 장치
US9319211B2 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US9401794B2 (en) Method and apparatus for acquiring control information in wireless communication system
US11368976B2 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US9722752B2 (en) Method and apparatus for transmitting sounding reference signal
KR101812431B1 (ko) 무선 통신 시스템에서 단말의 ack/nack 전송 방법 및 장치
WO2012124959A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852158

Country of ref document: EP

Kind code of ref document: A1