WO2013077399A1 - Pump - Google Patents

Pump Download PDF

Info

Publication number
WO2013077399A1
WO2013077399A1 PCT/JP2012/080292 JP2012080292W WO2013077399A1 WO 2013077399 A1 WO2013077399 A1 WO 2013077399A1 JP 2012080292 W JP2012080292 W JP 2012080292W WO 2013077399 A1 WO2013077399 A1 WO 2013077399A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump device
pump
passage
discharge valve
housing
Prior art date
Application number
PCT/JP2012/080292
Other languages
French (fr)
Japanese (ja)
Inventor
雅記 御簾納
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013077399A1 publication Critical patent/WO2013077399A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4031Pump units characterised by their construction or mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1002Ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • F04C15/066Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps of the non-return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a pump device.
  • Patent Document 1 discloses a pump provided with a check valve, a buffer chamber, and a throttle on the discharge side of the pump.
  • an object of the present invention is to provide a pump device capable of reducing the number of parts when an orifice is provided on the discharge side of the pump.
  • the discharge valve assembly includes a valve body, a seat member on which the valve body is seated, a seat member through which fluid flows, and a valve body attached to the seat member.
  • An orifice passage having an elastic body to be energized and a socket member having an accommodation hole for accommodating the valve body and the elastic body therein is provided in the socket member and communicated to the outside from the accommodation hole.
  • the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
  • FIG. 2 is a hydraulic circuit diagram of the brake hydraulic pressure control device according to the first embodiment.
  • 3 is a perspective view of a housing according to Embodiment 1.
  • FIG. 3 is a perspective view of a housing according to Embodiment 1.
  • FIG. 3 is a front view of the housing according to the first embodiment. It is a perspective view of the pump unit and discharge valve structure of Example 1. It is sectional drawing of the state which accommodated the pump unit and discharge valve structure of Example 1 in the housing.
  • FIG. 3 is an enlarged cross-sectional view in the vicinity of an orifice passage according to the first embodiment. It is sectional drawing of the state which accommodated the pump unit and discharge valve structure of Example 2 in the housing.
  • It is a front view of the housing of another Example. It is a front view of the housing of another Example.
  • FIG. 1 is a hydraulic circuit diagram of the brake hydraulic pressure control device 1.
  • the hydraulic circuit is formed in a hydraulic control unit 2 provided between the master cylinder M / C and the wheel cylinder W / C.
  • the brake fluid pressure control device 1 performs fluid pressure control according to the required fluid pressure of the vehicle dynamics control (hereinafter referred to as VDC) and the anti-lock brake system (hereinafter referred to as ABS) from the controller.
  • VDC vehicle dynamics control
  • ABS anti-lock brake system
  • the brake fluid pressure control device 1 has a piping structure called X piping, which includes two systems, a P system brake fluid pressure circuit 3P and an S system brake fluid pressure circuit 3S.
  • the left front wheel cylinder W / C (FL) and the right rear wheel wheel cylinder W / C (RR) are connected to the P system, and the right front wheel wheel cylinder W / C (FR) is connected to the S system.
  • Wheel cylinder W / C (RL) for the left rear wheel is connected.
  • Each wheel cylinder W / C is connected to a wheel cylinder port 4FL, 4FR, 4RL, 4RR.
  • the pump unit 25 is a tandem gear pump in which a rotary gear pump PP and a gear pump PS are provided in each of the P system and the S system.
  • the master cylinder M / C is connected to the liquid passages 17P and 17S via the master cylinder ports 5P and 5S.
  • the liquid path 17 and the suction side of the pump unit 25 are connected by liquid paths 23P and 23S.
  • a master cylinder pressure sensor 15 is provided on the liquid path 17P and between the master cylinder port 5P and the connection portion of the liquid path 23P.
  • the discharge side of the pump unit 25 and each wheel cylinder W / C are connected by liquid passages 20P and 20S.
  • pressure increase valves 7FL, 7FR, 7RL, 7RR which are normally open solenoid valves corresponding to the respective wheel cylinders W / C are provided.
  • check valves 11P and 11S and orifice passages 64P and 64S are provided on each liquid passage 20 and between each pressure increasing valve 7 and the pump unit 25.
  • Each check valve 11 allows the flow of brake fluid pressure in the direction from the pump unit 25 toward the pressure increasing valve 7 and prohibits the flow in the opposite direction.
  • Discharge pressure sensors 16P and 16S are provided on each liquid path 20 and between each pressure increasing valve 7 and the pump unit 25.
  • each fluid passage 20 is provided with fluid passages 22FL, 22FR, 22RL, 22RR that bypass each pressure increasing valve 7, and the fluid passage 22 is provided with check valves 10FL, 10FR, 10RL, 10RR. Yes.
  • Each check valve 10 allows the flow of brake fluid pressure in the direction from the wheel cylinder W / C toward the pump unit 25, and prohibits the flow in the opposite direction.
  • the master cylinder M / C and the liquid path 20 are connected by liquid paths 19P and 19S, and the liquid path 20 and the liquid path 19 merge between the pump unit 25 and the pressure increasing valve 7.
  • gate-out valves 6P and 6S which are normally open solenoid valves, are provided on each liquid path 19.
  • each liquid path 19 is provided with liquid paths 18P and 18S that bypass each gate-out valve 6, and in this liquid path 18, check valves 9P and 9S are provided.
  • Each check valve 9 allows the flow of brake fluid pressure in the direction from the master cylinder M / C side toward the wheel cylinder W / C, and prohibits the flow in the opposite direction.
  • Reservoirs 13P and 13S are provided on the suction side of the pump unit 25, and the reservoir 13 and the pump unit 25 are connected by liquid passages 21P and 21S.
  • Check valves 14P and 14S are provided at the entrance and exit of the reservoir 13.
  • the wheel cylinder W / C and the reservoir 13 are connected by liquid paths 24P and 24S, and pressure reducing valves 8FL, 8FR, 8RL, and 8RR, which are normally closed solenoid valves, are provided in the liquid paths 24, respectively. .
  • FIGS. 2 and 3 are perspective views of the housing 26.
  • FIG. FIG. 2 is a view showing a state where the motor M is attached to the housing 26, and
  • FIG. 3 is a view where the motor M is removed from the housing 26.
  • FIG. 4 is a front view of the housing 26.
  • FIG. 4 is a view in which the motor M is removed from the housing 26.
  • the housing 26 is a substantially rectangular parallelepiped, and a motor M is mounted on the front surface 26a side.
  • the unit is installed.
  • the electric unit includes a board that performs a predetermined calculation in accordance with an input signal from a wheel speed sensor or the like attached to the vehicle.
  • a predetermined electric signal is supplied to a solenoid attached to a solenoid valve or a motor M.
  • This electric unit is accommodated in the unit case 27.
  • the housing 26 is formed with a power supply hole 28 penetrating the front surface 26a and the rear surface 26b, and the electric unit and the motor M are connected by inserting the electrode of the motor M into the power supply hole 28.
  • the housing 26 has a valve mounting hole in which each solenoid valve group is mounted by press-fitting or caulking, a plurality of fluid paths connecting each port and each solenoid valve group, a wheel cylinder W / C, and a master cylinder.
  • a wheel cylinder port 4 connected to the M / C, a hole for disposing the master cylinder port 5 and the reservoir 13 are formed. These holes, liquid passage holes and the like are drilled from the outside of the housing 26 to each surface by a drill or the like.
  • a master cylinder port 5 is formed on the upper surface 26c side of the front surface 26a.
  • the pump unit 25 is accommodated in a substantially cylindrical accommodation hole 30 that penetrates from the front surface 26a to the rear surface 26b of the housing 26.
  • a pump cover 29 (see FIG.
  • a discharge valve mounting hole 32 is formed from the left side surface 26e to the right side surface 26f of the housing 26 so as to be substantially orthogonal to the accommodation hole 30, and the discharge valve structure that connects to the discharge side of the pump unit 25 in the discharge valve mounting hole 32 33 are housed.
  • FIG. 5 is a perspective view of the pump unit 25 and the discharge valve constituting body 33.
  • FIG. 6 is a cross-sectional view showing a state in which the pump unit 25 and the discharge valve constituting body 33 are accommodated in the housing 26.
  • the pump unit 25 includes a pump housing 34, a center plate 35, and a pump cover 36.
  • the pump housing 34, the center plate 35, and the pump cover 36 are all formed in a substantially cylindrical shape.
  • the pump housing 34, the center plate 35, and the pump cover 36 are combined in the axial direction in this order.
  • the pump housing 34 is formed with a bottomed hollow portion, and the gear pump PP is accommodated in a space between the hollow portion and the center plate 35.
  • the pump cover 36 is also formed with a bottomed hollow portion, and the gear pump PS is accommodated in a space between the hollow portion and the center plate 35.
  • the gear pump P is an external gear pump in which a pair of gears mesh with each other, and pumps brake fluid by rotating the pair of gears.
  • An O-ring groove 37 a and an O-ring groove 37 b are formed on the outer periphery of the pump housing 34, and an O-ring groove 37 c is formed on the outer periphery of the pump cover 36.
  • Each O-ring groove 37 is formed separately from the axial direction of the pump unit 25, and O-rings 38a, 38b, and 38c are attached thereto.
  • a low pressure chamber groove 39P is formed on the circumference between the O ring 38a and the O ring 38b of the pump housing 34. Further, when the pump unit 25 is accommodated in the accommodation hole 30 of the housing 26, the low pressure chamber groove 40P is formed at a position facing the low pressure chamber groove 39P on the inner periphery of the accommodation hole 30.
  • a space isolated by the low pressure chamber groove 39P of the pump housing 34, the low pressure chamber groove 40P of the accommodation hole 30, the O-ring 38a, and the O-ring 38b is formed as a suction chamber 41P.
  • a low pressure chamber groove 39S is formed on the circumference.
  • the low pressure chamber groove 40S is formed at a position on the inner periphery of the housing hole 30 and facing the low pressure chamber groove 39S.
  • a space isolated by the low pressure chamber groove 39S of the center plate 35, the low pressure chamber groove 40S of the accommodation hole 30, the O-ring 38b, and the O-ring 38c is formed as the suction chamber 41S.
  • discharge passages 56P and 56S are formed in the center plate 35.
  • the discharge passage 56P opens to a discharge space 49P described later, and the discharge passage 56S opens to a discharge space 49S described later.
  • the gear pumps PP and PS have side plates 42P and 42S, seal blocks 43P and 43S, and a pair of driving and driven external gears 44P and 44S. Suction portions 45P and 45S are formed between the side plates 42P and 42S and the seal blocks 43P and 43S. An O-ring 46P is provided between the seal block 43P and the pump housing 34. An O-ring 46S is provided between the seal block 43S and the center plate 35. The drive side of the external gears 44P and 44S is connected to the drive shaft 47. The drive shaft 47 passes through the side plates 42P and 42S, the seal blocks 43P and 43S, the center plate 35, and the pump housing 34, and is connected to the rotation shaft of the motor M.
  • a discharge chamber 49P is formed by a space formed by the pump housing 34, the center plate 35, the side plate 42P, and the seal block 43P. Further, a discharge chamber 49S is formed by a space formed by the pump cover 36, the center plate 35, the side plate 42S, and the seal block 43S.
  • the pump housing 34 is formed with a suction passage 48P that connects the suction portion 45P of the gear pump PP and the suction chamber 41P.
  • the center plate 35 is formed with a suction passage 48S that connects the suction portion 45S of the gear pump PS and the suction chamber 41S.
  • the discharge valve constituting bodies 33P and 33S incorporate check valves 11P and 11S and orifice passages 64P and 64S.
  • the discharge valve constituting bodies 33P and 33S are accommodated in discharge valve mounting holes 32P and 32S formed so as to be substantially orthogonal to the accommodation hole 30 from the left side surface 26e to the right side surface 26f of the housing 26.
  • the discharge valve constituting body 33 is formed of communication members 50P and 50S, socket members 51P and 51S, valve bodies 52P and 52S, seat members 53P and 53S, and coil springs 54P and 54S.
  • the communication member 50 is formed with through passages 55P and 55S penetrating the inside in the axial direction.
  • One end side of the communication member 50 is inserted into the center plate 35, and the through passage 55 communicates with the discharge passage 56.
  • O-rings 57P and 57S are attached to the outer periphery on one end side of the communication member 50.
  • the other end side of the communication member 50 is inserted into the discharge valve mounting hole 32 of the housing 26.
  • O-rings 58P and 58S are attached to the outer periphery on the other end side of the communication member 50.
  • the socket member 51 is formed with receiving holes 59P and 59S that are open at one end, and the outer periphery of the receiving hole 59 forms cylindrical walls 63P and 63S.
  • a coil spring 54 and a valve body 52 are sequentially accommodated in the accommodation hole 59, and a seat member 53 is press-fitted.
  • the sheet member 53 is formed with sheet holes 60P and 60S penetrating the sheet member 53 in the axial direction, and the other end side opening of the sheet hole 60 constitutes sheet surfaces 65P and 65S.
  • the coil spring 54 is contracted between the bottom 66 of the accommodation hole 59 and the valve body 52, and urges the valve body 52 in the direction of seating on the seat surface 65.
  • the socket member 51 is inserted into the discharge valve mounting hole 32 of the housing 26 and fixed by crimping portions 61P and 61S in which the hole edge of the opening on the outer peripheral side of the housing 26 of the discharge valve mounting hole 32 is crimped.
  • Orifice passages 64P and 64S are formed in the cylindrical wall 63 of the socket member 51.
  • the orifice passage 64 is formed in the cylindrical wall 63 in the radial direction of the seat surface 65.
  • FIG. 7 is an enlarged sectional view of the vicinity of the orifice passage 64.
  • the orifice passage 64 is formed continuously with the large diameter portion 64a formed on the outer peripheral side of the cylindrical wall 63 and the large diameter portion 64a on the inner peripheral side of the cylindrical wall 63, and has a small diameter portion 64b having a smaller diameter than the large diameter portion 64a. Formed from.
  • the small diameter portion 64b has a diameter of 0.5 [mm] and an axial length of 0.3 [mm].
  • One end side of the cylindrical wall 63 of the socket member 51 is formed to have a larger diameter than the portion where the orifice passage 64 is formed, and O-rings 62P and 62S are mounted on the outer periphery thereof.
  • the communication member 50 and the socket member 51 are formed separately.
  • the communication member 50 and the socket member 51 By forming the communication member 50 and the socket member 51 separately, it is possible to absorb backlash due to an error in the axial length of the accommodation hole 59. However, even if the communication member 50 and the socket member 51 are integrated, if the play can be sufficiently absorbed, the communication member 50 and the socket member 51 may be formed integrally. That is, the communication member 50 may be regarded as a part of the socket member 51.
  • [Action] (Brake fluid flow when driving the gear pump)
  • brake fluid is supplied from the suction passage 48 to the suction portion 45.
  • the brake fluid supplied to the suction part 45 is pumped by the pair of gears of the gear pump P and discharged into the discharge chamber 49.
  • the discharge chamber 49 functions as a damper chamber that suppresses the pulsation of the discharge pressure.
  • the brake fluid discharged into the discharge chamber 49 is sent to the valve body 52 through the discharge passage 56, the through hole 55 (communication member 50), and the seat hole 60 (sheet member 53).
  • the brake fluid opens the valve body 52 against the coil spring 54 and passes through the orifice passage 64.
  • the orifice passage 64 suppresses the pulsation of the discharge pressure.
  • the discharge valve structure and the orifice passage are formed separately. Therefore, there is a problem that the number of parts increases. Therefore, in the first embodiment, the orifice passage 64 is provided in the socket member 51 of the discharge valve constituting body 33. Therefore, since the orifice passage 64 can be integrated with the discharge valve constituting body 33, the number of parts can be reduced.
  • the orifice passage 64 is formed in the cylindrical wall 63 of the socket member 51.
  • the discharge valve constituting body 33 is mounted in a discharge valve mounting hole 32 formed so as to be substantially orthogonal to the housing hole 30 that houses the pump unit 25.
  • the thickness of the housing 26 in the left-right direction is determined by the diameter of the pump unit 25 and the axial length of the discharge valve component 33. That is, the thickness of the housing 26 has no margin in the left-right direction with respect to the discharge valve constituting body 33.
  • the orifice passage 64 can be formed in the bottom 66 of the socket member 51, it is necessary to form a liquid path on the outer side in the axial direction of the socket member 51, and it is necessary to increase the thickness of the housing 26 in the left-right direction.
  • the orifice passage 64 is formed in the cylindrical wall 63 of the socket member 51, a liquid path may be formed on the radially outer side of the socket member 51, and the thickness of the housing 26 does not need to be increased. Therefore, an increase in the size of the housing 26 can be avoided. (Discharge passage shortening)
  • the orifice passage 64 is formed at a radial position of the seat surface 65.
  • the brake fluid that has passed through the seat surface 65 can immediately flow into the orifice passage 64.
  • the quietness of the pump In Example 1, a circumscribed gear pump P was used.
  • the gear pump P can be quieter than the plunger pump.
  • Pulsation suppression In the first embodiment, the brake fluid discharged from the gear pump P flows through the discharge chamber 49 to the discharge valve constituting body 33. Therefore, since the discharge chamber 49 acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
  • the discharge valve constituting body 33 includes a valve member 52, a seat member including the seat surface 65 on which the valve body 52 is seated, and a seat hole 60 through which fluid flows, and the valve body.
  • a coil spring 54 (elastic body) for urging the seat member 53, and a socket member 51 having a valve body 52 and a housing hole 59 for housing the coil spring 54 therein.
  • An orifice passage 64 communicating from the housing hole 59 to the outside is provided.
  • the orifice passage 64 can be integrated with the discharge valve constituting body 33, the number of parts can be reduced.
  • the socket member 51 includes a cylindrical wall 63, and an orifice passage 64 is formed in the cylindrical wall 63. Therefore, an increase in the size of the housing 26 can be avoided.
  • the orifice passage 64 is formed at the radial position of the seat surface 65. Therefore, the brake fluid that has passed through the seat surface 65 can immediately flow into the orifice passage 64.
  • the gear pump P is an external gear pump. Therefore, silence can be improved.
  • the gear pump P includes the discharge chamber 49 into which the fluid pumped from the pair of gears flows, and the fluid flows from the discharge chamber 49 to the discharge valve constituting body 33. Therefore, since the discharge chamber 49 acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
  • FIG. 8 is a cross-sectional view showing a state in which the pump unit 25 and the discharge valve constituting body 33 are accommodated in the housing 26. As shown in FIG. 8, an orifice passage 64 is formed at one end of the communication member 50. Thereby, an orifice passage 64 can be formed between the discharge space 49 of the gear pump P and the valve body 52.
  • Example 2 The effect of Example 2 will be described below.
  • an orifice passage 64 is provided between the gear pump P (rotary pump) and the valve body 52. Therefore, since the orifice passage 64 can be integrated with the communication passage 50, the number of parts can be reduced.
  • FIG. 9 and 10 are front views of the housing 26.
  • FIG. 9 and 10 in order to fix the pump unit 25 to the housing 26, the caulking part 31 in which the entire circumference of the opening part of the accommodation hole 30 is deformed is formed.
  • two crimping portions 31 may be formed as shown in FIG. 9, or three crimping portions 31 may be formed as shown in FIG.
  • the cylindrical wall is provided with a seal groove mounting portion having a diameter larger than a diameter of a portion where the orifice passage is formed, and a seal ring for making the socket member liquid-tight to the discharge valve mounting hole is mounted.
  • a pump device characterized by. Therefore, a fluid passage through which the brake fluid flows can be formed between the orifice passage and the housing.
  • the orifice passage is composed of a large-diameter passage having a large diameter and a small-diameter passage that is continuous with the large-diameter passage and has a smaller diameter than the large-diameter passage. Therefore, by making a part of the orifice passage a small-diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
  • the discharge valve constituting body includes a valve body, a seat member on which the valve body is seated and a seat member through which a fluid flows, a coil spring that biases the valve body to the seat member, A socket member having an accommodating hole for accommodating the valve body and the coil spring therein, A path that communicates from the inside of the accommodation hole to the outside is provided in the socket member, A pump device characterized in that an orifice is formed in the passage. Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
  • the socket member comprises a cylindrical wall;
  • the pump device according to claim 1 wherein the passage is formed along a radial direction of the cylindrical wall. Therefore, the brake fluid that has passed through the seat surface can immediately flow into the passage.
  • (Li) In the pump device according to claim 12, The pump device characterized in that the passage is formed at a radial position of the seat surface. Therefore, the brake fluid that has passed through the seat surface can immediately flow into the passage.
  • Nu In the pump device according to claim 12, The accommodation hole is bottomed, and the coil spring is contracted between the bottom of the accommodation hole and the discharge valve, The pump device according to claim 1, wherein the seat member is press-fitted into an inner periphery of a cylindrical wall of the socket member. Therefore, the sheet member can be fixed to the socket member without using a fastening member.
  • the rotary pump is an external gear pump, and includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure. Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
  • W In the pump device according to claim 16, A pump device characterized in that a damper chamber is constituted by the discharge chamber. Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
  • W In the pump device according to claim 12, 2.
  • the passage includes a large-diameter passage having a large diameter and a small-diameter passage that is continuous with the large-diameter passage and has a smaller diameter than the large-diameter passage serving as the orifice. Therefore, by making a part of the orifice passage a small-diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
  • the discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which fluid flows, a coil spring that biases the valve body toward the seat member, A socket member having a valve body and an accommodation hole for accommodating the coil spring, and a cylindrical wall;
  • a pump device comprising a cylindrical wall of the socket member provided with a passage communicating from the inside of the accommodation hole to the outside, and an orifice portion formed in the passage. Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
  • the external gear pump includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure. Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
  • (T) a housing with a built-in rotary pump; A discharge valve mounting hole formed in the housing; A discharge valve assembly that is mounted in the discharge valve mounting hole and discharges fluid discharged from the pump to the outside;
  • the discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which a fluid flows, an elastic body that biases the valve body toward the seat member, A socket member having an accommodation hole for accommodating the valve body and the elastic body,
  • the pump device according to claim 1, wherein an orifice passage is provided between the rotary pump and the valve body. Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.

Abstract

This discharge valve structure comprises: a valve body; a sheet member provided with a sheet surface on which said valve body is seated, and a sheet hole through which a fluid flows; an elastic body that impels the valve body to the sheet member; and a socket member provided with an accommodation hole for accommodating the valve body and elastic body therein. An orifice passage that communicates from the accommodation hole to the outside is provided to the socket member.

Description

ポンプ装置Pump device
 本発明は、ポンプ装置に関する。 The present invention relates to a pump device.
 この種の技術としては、下記の特許文献1に記載の技術が開示されている。この公報には、ポンプの吐出側に逆止弁、緩衝室、絞りが設けられたものが開示されている。 As this type of technology, the technology described in Patent Document 1 below is disclosed. This publication discloses a pump provided with a check valve, a buffer chamber, and a throttle on the discharge side of the pump.
特開2008-56205号公報JP 2008-56205 A
 上記特許文献1に記載の技術では、逆止弁とは別部材により絞り(オリフィス通路)を形成しているため、部品点数が多くなる問題があった。
 本発明は上記問題に着目してなされたもので、その目的とするところは、ポンプの吐出側にオリフィスを設ける際に部品点数を低減できるポンプ装置を提供することである。
In the technique described in Patent Document 1, since the throttle (orifice passage) is formed by a member different from the check valve, there is a problem that the number of parts increases.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a pump device capable of reducing the number of parts when an orifice is provided on the discharge side of the pump.
 上記目的を達成するため本願発明では、吐出弁構成体は、弁体と、該弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、弁体を前記シート部材に付勢する弾性体と、内部に前記弁体と弾性体を収容するための収容孔を備えたソケット部材と、を有し、ソケット部材に収容孔から外部へ連通するオリフィス通路を設けた。 In order to achieve the above object, according to the present invention, the discharge valve assembly includes a valve body, a seat member on which the valve body is seated, a seat member through which fluid flows, and a valve body attached to the seat member. An orifice passage having an elastic body to be energized and a socket member having an accommodation hole for accommodating the valve body and the elastic body therein is provided in the socket member and communicated to the outside from the accommodation hole.
 本発明により、オリフィス通路を吐出弁構成体と一体化できるため、部品点数を低減することができる。 According to the present invention, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
実施例1のブレーキ液圧制御装置の液圧回路図である。FIG. 2 is a hydraulic circuit diagram of the brake hydraulic pressure control device according to the first embodiment. 実施例1のハウジングの斜視図である。3 is a perspective view of a housing according to Embodiment 1. FIG. 実施例1のハウジングの斜視図である。3 is a perspective view of a housing according to Embodiment 1. FIG. 実施例1のハウジングの正面図である。FIG. 3 is a front view of the housing according to the first embodiment. 実施例1のポンプユニットおよび吐出弁構成体の斜視図である。It is a perspective view of the pump unit and discharge valve structure of Example 1. 実施例1のポンプユニットおよび吐出弁構成体をハウジングに収容した状態の断面図である。It is sectional drawing of the state which accommodated the pump unit and discharge valve structure of Example 1 in the housing. 実施例1のオリフィス通路付近の拡大断面図である。FIG. 3 is an enlarged cross-sectional view in the vicinity of an orifice passage according to the first embodiment. 実施例2のポンプユニットおよび吐出弁構成体をハウジングに収容した状態の断面図である。It is sectional drawing of the state which accommodated the pump unit and discharge valve structure of Example 2 in the housing. 他の実施例のハウジングの正面図である。It is a front view of the housing of another Example. 他の実施例のハウジングの正面図である。It is a front view of the housing of another Example.
 〔実施例1〕
 [ブレーキ液圧回路の構成]
 図1は、ブレーキ液圧制御装置1の液圧回路図である。液圧回路は、マスタシリンダM/CとホイルシリンダW/Cとの間に設けられた液圧制御ユニット2内に形成されている。
 このブレーキ液圧制御装置1は、コントローラからのVehicle Dynamics Control(以下VDC)、Anti-lock Brake System(以下ABS)の要求液圧に応じて液圧制御を行う。ブレーキ液圧制御装置1においては、P系統のブレーキ液圧回路3PとS系統のブレーキ液圧回路3Sの2系統からなる、X配管と呼ばれる配管構造となっている。P系統には、左前輪のホイルシリンダW/C(FL)、右後輪のホイルシリンダW/C(RR)が接続されており、S系統には、右前輪のホイルシリンダW/C(FR)、左後輪のホイルシリンダW/C(RL)が接続されている。各ホイルシリンダW/Cは、ホイルシリンダポート4FL,4FR,4RL,4RRに接続されている。ポンプユニット25はP系統、S系統それぞれに、回転式のギヤポンプPPとギヤポンプPSとが設けられたタンデムギヤポンプである。
 マスタシリンダM/Cは、マスタシリンダポート5P,5Sを介して液路17P,17Sにおいて接続されている。この液路17とポンプユニット25の吸入側とは、液路23P,23Sによって接続されている。液路17P上であって、マスタシリンダポート5Pと、液路23Pとの接続部との間にはマスタシリンダ圧センサ15が設けられている。
[Example 1]
[Configuration of brake hydraulic circuit]
FIG. 1 is a hydraulic circuit diagram of the brake hydraulic pressure control device 1. The hydraulic circuit is formed in a hydraulic control unit 2 provided between the master cylinder M / C and the wheel cylinder W / C.
The brake fluid pressure control device 1 performs fluid pressure control according to the required fluid pressure of the vehicle dynamics control (hereinafter referred to as VDC) and the anti-lock brake system (hereinafter referred to as ABS) from the controller. The brake fluid pressure control device 1 has a piping structure called X piping, which includes two systems, a P system brake fluid pressure circuit 3P and an S system brake fluid pressure circuit 3S. The left front wheel cylinder W / C (FL) and the right rear wheel wheel cylinder W / C (RR) are connected to the P system, and the right front wheel wheel cylinder W / C (FR) is connected to the S system. ), Wheel cylinder W / C (RL) for the left rear wheel is connected. Each wheel cylinder W / C is connected to a wheel cylinder port 4FL, 4FR, 4RL, 4RR. The pump unit 25 is a tandem gear pump in which a rotary gear pump PP and a gear pump PS are provided in each of the P system and the S system.
The master cylinder M / C is connected to the liquid passages 17P and 17S via the master cylinder ports 5P and 5S. The liquid path 17 and the suction side of the pump unit 25 are connected by liquid paths 23P and 23S. A master cylinder pressure sensor 15 is provided on the liquid path 17P and between the master cylinder port 5P and the connection portion of the liquid path 23P.
 ポンプユニット25の吐出側と各ホイルシリンダW/Cとは、液路20P,20Sによって接続されている。この各液路20上には、各ホイルシリンダW/Cに対応する常開型のソレノイドバルブである増圧バルブ7FL,7FR,7RL,7RRが設けられている。また各液路20上であって、各増圧バルブ7とポンプユニット25との間にはチェックバルブ11P,11Sおよびオリフィス通路64P,64Sが設けられている。各チェックバルブ11は、ポンプユニット25から増圧バルブ7へ向かう方向へのブレーキ液圧の流れを許容し、反対方向の流れを禁止する。また各液路20上であって、各増圧バルブ7とポンプユニット25との間には吐出圧センサ16P,16Sが設けられている。
 更に各液路20には、各増圧バルブ7を迂回する液路22FL,22FR,22RL,22RRが設けられており、液路22には、チェックバルブ10FL,10FR,10RL,10RRが設けられている。この各チェックバルブ10は、ホイルシリンダW/Cからポンプユニット25へ向かう方向へのブレーキ液圧の流れを許容し、反対方向の流れを禁止する。
The discharge side of the pump unit 25 and each wheel cylinder W / C are connected by liquid passages 20P and 20S. On each liquid path 20, pressure increase valves 7FL, 7FR, 7RL, 7RR which are normally open solenoid valves corresponding to the respective wheel cylinders W / C are provided. Also, check valves 11P and 11S and orifice passages 64P and 64S are provided on each liquid passage 20 and between each pressure increasing valve 7 and the pump unit 25. Each check valve 11 allows the flow of brake fluid pressure in the direction from the pump unit 25 toward the pressure increasing valve 7 and prohibits the flow in the opposite direction. Discharge pressure sensors 16P and 16S are provided on each liquid path 20 and between each pressure increasing valve 7 and the pump unit 25.
Furthermore, each fluid passage 20 is provided with fluid passages 22FL, 22FR, 22RL, 22RR that bypass each pressure increasing valve 7, and the fluid passage 22 is provided with check valves 10FL, 10FR, 10RL, 10RR. Yes. Each check valve 10 allows the flow of brake fluid pressure in the direction from the wheel cylinder W / C toward the pump unit 25, and prohibits the flow in the opposite direction.
 マスタシリンダM/Cと液路20とは液路19P,19Sによって接続されており、液路20と液路19とはポンプユニット25と増圧バルブ7との間において合流している。この各液路19上には、常開型のソレノイドバルブであるゲートアウトバルブ6P,6Sが設けられている。また各液路19には、各ゲートアウトバルブ6を迂回する液路18P,18Sが設けられており、この液路18には、チェックバルブ9P,9Sが設けられている。この各チェックバルブ9は、マスタシリンダM/C側からホイルシリンダW/Cへ向かう方向へのブレーキ液圧の流れを許容し、反対方向の流れを禁止する。
 ポンプユニット25の吸入側にはリザーバ13P,13Sが設けられており、このリザーバ13とポンプユニット25とは液路21P,21Sによって接続されている。リザーバ13の出入口にはチェックバルブ14P,14Sが設けられている。
 ホイルシリンダW/Cとリザーバ13とは液路24P,24Sによって接続されており、各液路24にそれぞれ、常閉型のソレノイドバルブである減圧バルブ8FL,8FR,8RL,8RRが設けられている。
The master cylinder M / C and the liquid path 20 are connected by liquid paths 19P and 19S, and the liquid path 20 and the liquid path 19 merge between the pump unit 25 and the pressure increasing valve 7. On each liquid path 19, gate-out valves 6P and 6S, which are normally open solenoid valves, are provided. In addition, each liquid path 19 is provided with liquid paths 18P and 18S that bypass each gate-out valve 6, and in this liquid path 18, check valves 9P and 9S are provided. Each check valve 9 allows the flow of brake fluid pressure in the direction from the master cylinder M / C side toward the wheel cylinder W / C, and prohibits the flow in the opposite direction.
Reservoirs 13P and 13S are provided on the suction side of the pump unit 25, and the reservoir 13 and the pump unit 25 are connected by liquid passages 21P and 21S. Check valves 14P and 14S are provided at the entrance and exit of the reservoir 13.
The wheel cylinder W / C and the reservoir 13 are connected by liquid paths 24P and 24S, and pressure reducing valves 8FL, 8FR, 8RL, and 8RR, which are normally closed solenoid valves, are provided in the liquid paths 24, respectively. .
 [ハウジングの構成]
 液圧制御ユニット2の液路はハウジング26内に穿設され、またバルブ、ポンプユニット等はハウジング26に収容されている。図2、図3はハウジング26の斜視図である。図2はハウジング26にモータMを取り付けた状態の図、図3はハウジング26からモータMを取り外した図である。図4はハウジング26の正面図である。図4はハウジング26からモータMを取り外した図である。
 以下の説明では、図2、図3、図4においてマスタシリンダポート5が開口している面を前面26a、前面26aの背面を後面26b、ホイルシリンダポート4が開口している面を上面26c、上面26cの背面を下面26d、前面26aに対して左側の側面を左側面26e、前面26aに対して右側の側面を右側面26fと記載する。
 ハウジング26は略直方体であり、前面26a側にモータMが取り付けられ、後面26b側にゲートアウトバルブ6、増圧バルブ7、減圧バルブ8の各ソレノイドバルブ群、及びこれらソレノイドバルブ群を駆動する電気ユニットが取り付けられる。電気ユニットとは、車両に取り付けられた車輪速センサ等の入力信号に応じて所定の演算を行う基板を備えたものであり、ソレノイドバルブに取り付けられたソレノイドや、モータMに所定の電気信号を出力する。この電気ユニットはユニットケース27内に収容されている。ハウジング26には、前面26aと後面26bとを貫通する電源孔28が形成されており、この電源孔28にモータMの電極を差し込むことで、電気ユニットとモータMとを接続している。
[Structure of housing]
The fluid path of the fluid pressure control unit 2 is formed in the housing 26, and valves, pump units, and the like are accommodated in the housing 26. 2 and 3 are perspective views of the housing 26. FIG. FIG. 2 is a view showing a state where the motor M is attached to the housing 26, and FIG. 3 is a view where the motor M is removed from the housing 26. FIG. 4 is a front view of the housing 26. FIG. 4 is a view in which the motor M is removed from the housing 26.
In the following description, the surface where the master cylinder port 5 is opened in FIGS. 2, 3 and 4 is the front surface 26a, the rear surface of the front surface 26a is the rear surface 26b, and the surface where the wheel cylinder port 4 is opened is the upper surface 26c. The rear surface of the upper surface 26c is referred to as a lower surface 26d, the left side surface with respect to the front surface 26a is referred to as a left side surface 26e, and the right side surface with respect to the front surface 26a is referred to as a right side surface 26f.
The housing 26 is a substantially rectangular parallelepiped, and a motor M is mounted on the front surface 26a side. The solenoid valve groups of the gate-out valve 6, the pressure increasing valve 7, and the pressure reducing valve 8 on the rear surface 26b side, and the electric for driving these solenoid valve groups. The unit is installed. The electric unit includes a board that performs a predetermined calculation in accordance with an input signal from a wheel speed sensor or the like attached to the vehicle. A predetermined electric signal is supplied to a solenoid attached to a solenoid valve or a motor M. Output. This electric unit is accommodated in the unit case 27. The housing 26 is formed with a power supply hole 28 penetrating the front surface 26a and the rear surface 26b, and the electric unit and the motor M are connected by inserting the electrode of the motor M into the power supply hole 28.
 ハウジング26には、各ソレノイドバルブ群が圧入もしくはカシメにより取り付けられるバルブ取り付け用の孔と、各ポートや各ソレノイドバルブ群との間を接続する複数の液路と、ホイルシリンダW/CおよびマスタシリンダM/Cと接続するホイルシリンダポート4、マスタシリンダポート5とリザーバ13を配置する空孔等が形成されている。これら各孔、液路孔等はハウジング26の外側から各面に対してドリル等により穿設される。
 前面26aの上面26c側には、マスタシリンダポート5が形成されている。
 ポンプユニット25は、ハウジング26の前面26aから後面26bにかけて貫通する、略円柱状の収容孔30に収容されている。収容されたポンプユニット25の後面26b側はポンプカバー29(図5参照)がハウジング26に対してネジ止めされ、前面26a側は収容孔30の開口部の全周を変形させたカシメ部31によって固定されている。
 またハウジング26の左側面26eから右側面26fにかけて収容孔30と略直交するように吐出弁装着孔32が形成され、この吐出弁装着孔32にポンプユニット25の吐出側に接続する吐出弁構成体33が収容されている。
The housing 26 has a valve mounting hole in which each solenoid valve group is mounted by press-fitting or caulking, a plurality of fluid paths connecting each port and each solenoid valve group, a wheel cylinder W / C, and a master cylinder. A wheel cylinder port 4 connected to the M / C, a hole for disposing the master cylinder port 5 and the reservoir 13 are formed. These holes, liquid passage holes and the like are drilled from the outside of the housing 26 to each surface by a drill or the like.
A master cylinder port 5 is formed on the upper surface 26c side of the front surface 26a.
The pump unit 25 is accommodated in a substantially cylindrical accommodation hole 30 that penetrates from the front surface 26a to the rear surface 26b of the housing 26. A pump cover 29 (see FIG. 5) is screwed to the housing 26 on the rear surface 26b side of the accommodated pump unit 25, and the front surface 26a side is formed by a caulking portion 31 in which the entire circumference of the opening portion of the accommodation hole 30 is deformed. It is fixed.
Also, a discharge valve mounting hole 32 is formed from the left side surface 26e to the right side surface 26f of the housing 26 so as to be substantially orthogonal to the accommodation hole 30, and the discharge valve structure that connects to the discharge side of the pump unit 25 in the discharge valve mounting hole 32 33 are housed.
 [ポンプユニットの構成]
 図5はポンプユニット25および吐出弁構成体33の斜視図である。また図6はポンプユニット25および吐出弁構成体33をハウジング26に収容した状態の断面図である。
 ポンプユニット25は、ポンプハウジング34、センタプレート35およびポンプカバー36を有している。ポンプハウジング34、センタプレート35およびポンプカバー36はいずれも外形は略円柱状に形成されている。ポンプハウジング34、センタプレート35およびポンプカバー36は順に軸方向に組み合わされている。
 ポンプハウジング34には有底状の中空部が形成されており、この中空部とセンタプレート35との間の空間内にギヤポンプPPを収容している。ポンプカバー36も有底状の中空部が形成されており、この中空部とセンタプレート35との間の空間内にギヤポンプPSを収容している。ギヤポンプPは一対のギヤが噛み合った外接ギヤポンプであり、一対のギヤが回転することによりブレーキ液を圧送する。
[Configuration of pump unit]
FIG. 5 is a perspective view of the pump unit 25 and the discharge valve constituting body 33. FIG. 6 is a cross-sectional view showing a state in which the pump unit 25 and the discharge valve constituting body 33 are accommodated in the housing 26.
The pump unit 25 includes a pump housing 34, a center plate 35, and a pump cover 36. The pump housing 34, the center plate 35, and the pump cover 36 are all formed in a substantially cylindrical shape. The pump housing 34, the center plate 35, and the pump cover 36 are combined in the axial direction in this order.
The pump housing 34 is formed with a bottomed hollow portion, and the gear pump PP is accommodated in a space between the hollow portion and the center plate 35. The pump cover 36 is also formed with a bottomed hollow portion, and the gear pump PS is accommodated in a space between the hollow portion and the center plate 35. The gear pump P is an external gear pump in which a pair of gears mesh with each other, and pumps brake fluid by rotating the pair of gears.
 ポンプハウジング34の外周にはOリング溝37a、Oリング溝37bが形成され、ポンプカバー36の外周にはOリング溝37cが形成されている。各Oリング溝37は、ポンプユニット25の軸方向に対して隔離して形成されており、Oリング38a,38b,38cが取付けられている。
 ポンプハウジング34のOリング38aとOリング38bとの間には、円周上に低圧室溝39Pが形成されている。またポンプユニット25をハウジング26の収容孔30に収装した際に、収容孔30内周であって低圧室溝39Pに対面する位置に低圧室溝40Pが形成されている。ポンプハウジング34の低圧室溝39P、収容孔30の低圧室溝40P、Oリング38a、Oリング38bによって隔離される空間が吸入室41Pとして形成されている。
 センタプレート35の外周には円周上に低圧室溝39Sが形成されている。またポンプユニット25をハウジング26の収容孔30に収装した際に、収容孔30内周であって低圧室溝39Sに対面する位置に低圧室溝40Sが形成されている。センタプレート35の低圧室溝39S、収容孔30の低圧室溝40S、Oリング38b、Oリング38cによって隔離される空間が吸入室41Sとして形成されている。またセンタプレート35内部には、吐出通路56P,56Sが穿設されている。吐出通路56Pは後述する吐出空間49Pに開口し、吐出通路56Sは後述する吐出空間49Sに開口している。
An O-ring groove 37 a and an O-ring groove 37 b are formed on the outer periphery of the pump housing 34, and an O-ring groove 37 c is formed on the outer periphery of the pump cover 36. Each O-ring groove 37 is formed separately from the axial direction of the pump unit 25, and O-rings 38a, 38b, and 38c are attached thereto.
A low pressure chamber groove 39P is formed on the circumference between the O ring 38a and the O ring 38b of the pump housing 34. Further, when the pump unit 25 is accommodated in the accommodation hole 30 of the housing 26, the low pressure chamber groove 40P is formed at a position facing the low pressure chamber groove 39P on the inner periphery of the accommodation hole 30. A space isolated by the low pressure chamber groove 39P of the pump housing 34, the low pressure chamber groove 40P of the accommodation hole 30, the O-ring 38a, and the O-ring 38b is formed as a suction chamber 41P.
On the outer periphery of the center plate 35, a low pressure chamber groove 39S is formed on the circumference. Further, when the pump unit 25 is accommodated in the housing hole 30 of the housing 26, the low pressure chamber groove 40S is formed at a position on the inner periphery of the housing hole 30 and facing the low pressure chamber groove 39S. A space isolated by the low pressure chamber groove 39S of the center plate 35, the low pressure chamber groove 40S of the accommodation hole 30, the O-ring 38b, and the O-ring 38c is formed as the suction chamber 41S. In addition, discharge passages 56P and 56S are formed in the center plate 35. The discharge passage 56P opens to a discharge space 49P described later, and the discharge passage 56S opens to a discharge space 49S described later.
 ギヤポンプPP,PSはサイドプレート42P,42Sと、シールブロック43P,43Sと、駆動・従動一対の外接ギヤ44P,44Sを有している。サイドプレート42P,42Sと、シールブロック43P,43Sとの間に吸入部45P,45Sが形成されている。シールブロック43Pとポンプハウジング34との間には、Oリング46Pが設けられている。シールブロック43Sとセンタプレート35との間には、Oリング46Sが設けられている。
 外接ギヤ44P,44Sの駆動側は駆動軸47に連結されている。この駆動軸47は、サイドプレート42P,42S、シールブロック43P,43S、センタプレート35、ポンプハウジング34を貫通し、モータMの回転軸に接続されている。
 ポンプハウジング34、センタプレート35、サイドプレート42P、シールブロック43Pとで形成される空間よって吐出室49Pが形成されている。また、ポンプカバー36、センタプレート35、サイドプレート42S、シールブロック43Sとで形成される空間よって吐出室49Sが形成されている。
 ポンプハウジング34には、ギヤポンプPPの吸入部45Pと吸入室41Pとを連通する吸入通路48Pが形成されている。またセンタプレート35には、ギヤポンプPSの吸入部45Sと吸入室41Sとを連通する吸入通路48Sが形成されている。
The gear pumps PP and PS have side plates 42P and 42S, seal blocks 43P and 43S, and a pair of driving and driven external gears 44P and 44S. Suction portions 45P and 45S are formed between the side plates 42P and 42S and the seal blocks 43P and 43S. An O-ring 46P is provided between the seal block 43P and the pump housing 34. An O-ring 46S is provided between the seal block 43S and the center plate 35.
The drive side of the external gears 44P and 44S is connected to the drive shaft 47. The drive shaft 47 passes through the side plates 42P and 42S, the seal blocks 43P and 43S, the center plate 35, and the pump housing 34, and is connected to the rotation shaft of the motor M.
A discharge chamber 49P is formed by a space formed by the pump housing 34, the center plate 35, the side plate 42P, and the seal block 43P. Further, a discharge chamber 49S is formed by a space formed by the pump cover 36, the center plate 35, the side plate 42S, and the seal block 43S.
The pump housing 34 is formed with a suction passage 48P that connects the suction portion 45P of the gear pump PP and the suction chamber 41P. The center plate 35 is formed with a suction passage 48S that connects the suction portion 45S of the gear pump PS and the suction chamber 41S.
 [吐出弁構成体]
 吐出弁構成体33P,33Sは、チェックバルブ11P,11Sとオリフィス通路64P,64Sが組み込まれている。この吐出弁構成体33P,33Sは、ハウジング26の左側面26eから右側面26fにかけて収容孔30と略直交するように形成された吐出弁装着孔32P,32Sに収容されている。
 吐出弁構成体33は、連通部材50P,50Sと、ソケット部材51P,51Sと、弁体52P,52Sと、シート部材53P,53Sと、コイルスプリング54P,54Sとから形成されている。
 連通部材50には内部を軸方向に貫通する貫通路55P,55Sが形成されている。連通部材50の一端側はセンタプレート35に挿入されて、貫通路55が吐出通路56に連通している。連通部材50の一端側の外周にはOリング57P,57Sが装着されている。また連通部材50の他端側はハウジング26の吐出弁装着孔32に挿入されている。連通部材50の他端側の外周にはOリング58P,58Sが装着されている。
[Discharge valve structure]
The discharge valve constituting bodies 33P and 33S incorporate check valves 11P and 11S and orifice passages 64P and 64S. The discharge valve constituting bodies 33P and 33S are accommodated in discharge valve mounting holes 32P and 32S formed so as to be substantially orthogonal to the accommodation hole 30 from the left side surface 26e to the right side surface 26f of the housing 26.
The discharge valve constituting body 33 is formed of communication members 50P and 50S, socket members 51P and 51S, valve bodies 52P and 52S, seat members 53P and 53S, and coil springs 54P and 54S.
The communication member 50 is formed with through passages 55P and 55S penetrating the inside in the axial direction. One end side of the communication member 50 is inserted into the center plate 35, and the through passage 55 communicates with the discharge passage 56. O- rings 57P and 57S are attached to the outer periphery on one end side of the communication member 50. The other end side of the communication member 50 is inserted into the discharge valve mounting hole 32 of the housing 26. O- rings 58P and 58S are attached to the outer periphery on the other end side of the communication member 50.
 ソケット部材51には一端側が開口した収容孔59P,59Sが形成され、収容孔59の外周は円筒壁63P,63Sを形成している。収容孔59には順にコイルスプリング54、弁体52が収容され、シート部材53が圧入されている。シート部材53には、シート部材53を軸方向に貫通するシート孔60P,60Sが形成されており、シート孔60の他端側開口部はシート面65P,65Sを構成している。コイルスプリング54は、収容孔59の底部66と弁体52との間に縮設されており、弁体52をシート面65に着座する方向に付勢している。
 ソケット部材51はハウジング26の吐出弁装着孔32に挿入されて、吐出弁装着孔32のハウジング26外周側開口部の孔縁をカシメたカシメ部61P,61Sにより固定されている。シート部材53を取り付けたソケット部材51および連通部材50を吐出弁装着孔32に挿入した状態で、シート部材53のシート孔60と連通部材50の貫通孔55とが連通している。
 ソケット部材51の円筒壁63にはオリフィス通路64P,64Sが形成されている。オリフィス通路64は、円筒壁63にシート面65の半径方向に向かって形成されている。図7はオリフィス通路64付近の拡大断面図である。オリフィス通路64は、円筒壁63の外周側に形成された大径部64aと、円筒壁63の内周側に大径部64aと連続して形成され、大径部64aより小径の小径部64bから形成されている。小径部64bの直径は0.5[mm]、軸方向長さは0.3[mm]に形成されている。
 ソケット部材51の円筒壁63の一端側は、オリフィス通路64が形成されている部分よりも大径に形成されており、その外周にはOリング62P,62Sが装着されている。
 ここでは、連通部材50とソケット部材51は別体に形成している。連通部材50とソケット部材51は別体に形成することにより、収容孔59の軸方向長さの誤差によるガタを吸収することができる。しかし、連通部材50とソケット部材51を一体にしてもガタを十分に吸収できるときには、連通部材50とソケット部材51を一体に形成するようにしても良い。つまり、連通部材50はソケット部材51の一部とみなして良い。
The socket member 51 is formed with receiving holes 59P and 59S that are open at one end, and the outer periphery of the receiving hole 59 forms cylindrical walls 63P and 63S. A coil spring 54 and a valve body 52 are sequentially accommodated in the accommodation hole 59, and a seat member 53 is press-fitted. The sheet member 53 is formed with sheet holes 60P and 60S penetrating the sheet member 53 in the axial direction, and the other end side opening of the sheet hole 60 constitutes sheet surfaces 65P and 65S. The coil spring 54 is contracted between the bottom 66 of the accommodation hole 59 and the valve body 52, and urges the valve body 52 in the direction of seating on the seat surface 65.
The socket member 51 is inserted into the discharge valve mounting hole 32 of the housing 26 and fixed by crimping portions 61P and 61S in which the hole edge of the opening on the outer peripheral side of the housing 26 of the discharge valve mounting hole 32 is crimped. In a state where the socket member 51 to which the sheet member 53 is attached and the communication member 50 are inserted into the discharge valve mounting hole 32, the sheet hole 60 of the sheet member 53 and the through hole 55 of the communication member 50 communicate with each other.
Orifice passages 64P and 64S are formed in the cylindrical wall 63 of the socket member 51. The orifice passage 64 is formed in the cylindrical wall 63 in the radial direction of the seat surface 65. FIG. 7 is an enlarged sectional view of the vicinity of the orifice passage 64. The orifice passage 64 is formed continuously with the large diameter portion 64a formed on the outer peripheral side of the cylindrical wall 63 and the large diameter portion 64a on the inner peripheral side of the cylindrical wall 63, and has a small diameter portion 64b having a smaller diameter than the large diameter portion 64a. Formed from. The small diameter portion 64b has a diameter of 0.5 [mm] and an axial length of 0.3 [mm].
One end side of the cylindrical wall 63 of the socket member 51 is formed to have a larger diameter than the portion where the orifice passage 64 is formed, and O- rings 62P and 62S are mounted on the outer periphery thereof.
Here, the communication member 50 and the socket member 51 are formed separately. By forming the communication member 50 and the socket member 51 separately, it is possible to absorb backlash due to an error in the axial length of the accommodation hole 59. However, even if the communication member 50 and the socket member 51 are integrated, if the play can be sufficiently absorbed, the communication member 50 and the socket member 51 may be formed integrally. That is, the communication member 50 may be regarded as a part of the socket member 51.
 [作用]
 (ギヤポンプ駆動時のブレーキ液の流れ)
 ギヤポンプPが駆動すると、吸入通路48から吸入部45にブレーキ液が供給される。吸入部45に供給されたブレーキ液は、ギヤポンプPの一対のギヤにより圧送されて吐出室49に吐出される。吐出室49は吐出圧の脈動を抑えるダンパ室として作用する。吐出室49に吐出されたブレーキ液は吐出通路56、貫通孔55(連通部材50)、シート孔60(シート部材53)を経て弁体52まで送られる。ブレーキ液は、コイルスプリング54に抗して弁体52を開弁しオリフィス通路64を通過する。オリフィス通路64によって吐出圧の脈動を抑制している。
 (吐出弁構成体とオリフィス通路の一体化)
 従来、吐出弁構成体とオリフィス通路とは別体に形成されていた。そのため部品点数が多くなる問題があった。
 そこで実施例1では、吐出弁構成体33のソケット部材51にオリフィス通路64を設けることとした。よって、オリフィス通路64を吐出弁構成体33と一体化できるため、部品点数を低減することができる。
[Action]
(Brake fluid flow when driving the gear pump)
When the gear pump P is driven, brake fluid is supplied from the suction passage 48 to the suction portion 45. The brake fluid supplied to the suction part 45 is pumped by the pair of gears of the gear pump P and discharged into the discharge chamber 49. The discharge chamber 49 functions as a damper chamber that suppresses the pulsation of the discharge pressure. The brake fluid discharged into the discharge chamber 49 is sent to the valve body 52 through the discharge passage 56, the through hole 55 (communication member 50), and the seat hole 60 (sheet member 53). The brake fluid opens the valve body 52 against the coil spring 54 and passes through the orifice passage 64. The orifice passage 64 suppresses the pulsation of the discharge pressure.
(Integration of discharge valve structure and orifice passage)
Conventionally, the discharge valve structure and the orifice passage are formed separately. Therefore, there is a problem that the number of parts increases.
Therefore, in the first embodiment, the orifice passage 64 is provided in the socket member 51 of the discharge valve constituting body 33. Therefore, since the orifice passage 64 can be integrated with the discharge valve constituting body 33, the number of parts can be reduced.
 (ハウジングの小型化)
 実施例1では、ソケット部材51の円筒壁63にオリフィス通路64を形成することとした。
 吐出弁構成体33は、ポンプユニット25を収容する収容孔30に対して略直交するように形成された吐出弁装着孔32に装着されている。ハウジング26の左右方向厚さはポンプユニット25の径と吐出弁構成体33の軸方向長さで決まる。すなわち、ハウジング26の厚みは吐出弁構成体33に対して左右方向には余裕がない。
 オリフィス通路64をソケット部材51の底部66に形成することもできるが、ソケット部材51の軸方向外側に液路を形成する必要があり、ハウジング26の左右方向厚さを増す必要がある。実施例1では、ソケット部材51の円筒壁63にオリフィス通路64を形成しているため、ソケット部材51の径方向外側に液路を形成すれば良く、ハウジング26の厚さを増やす必要がない。よって、ハウジング26の大型化を避けることができる。
 (吐出通路短縮化)
 実施例1では、オリフィス通路64をシート面65の半径方向位置に形成するようにした。よって、シート面65を通過したブレーキ液はすぐにオリフィス通路64に流入することがで
きる。
 (ポンプの静粛性)
 実施例1では、外接式のギヤポンプPを用いた。ギヤポンプPはプランジャポンプに比べて静粛性を高めることができる。
 (脈動抑制)
 実施例1では、ギヤポンプPから吐出されたブレーキ液は吐出室49を経て吐出弁構成体33へ流れるようにした。よって、吐出室49がダンパ室として作用するため液圧の脈動を抑制することができる。
(Miniaturization of housing)
In the first embodiment, the orifice passage 64 is formed in the cylindrical wall 63 of the socket member 51.
The discharge valve constituting body 33 is mounted in a discharge valve mounting hole 32 formed so as to be substantially orthogonal to the housing hole 30 that houses the pump unit 25. The thickness of the housing 26 in the left-right direction is determined by the diameter of the pump unit 25 and the axial length of the discharge valve component 33. That is, the thickness of the housing 26 has no margin in the left-right direction with respect to the discharge valve constituting body 33.
Although the orifice passage 64 can be formed in the bottom 66 of the socket member 51, it is necessary to form a liquid path on the outer side in the axial direction of the socket member 51, and it is necessary to increase the thickness of the housing 26 in the left-right direction. In the first embodiment, since the orifice passage 64 is formed in the cylindrical wall 63 of the socket member 51, a liquid path may be formed on the radially outer side of the socket member 51, and the thickness of the housing 26 does not need to be increased. Therefore, an increase in the size of the housing 26 can be avoided.
(Discharge passage shortening)
In the first embodiment, the orifice passage 64 is formed at a radial position of the seat surface 65. Therefore, the brake fluid that has passed through the seat surface 65 can immediately flow into the orifice passage 64.
(The quietness of the pump)
In Example 1, a circumscribed gear pump P was used. The gear pump P can be quieter than the plunger pump.
(Pulsation suppression)
In the first embodiment, the brake fluid discharged from the gear pump P flows through the discharge chamber 49 to the discharge valve constituting body 33. Therefore, since the discharge chamber 49 acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
 〔効果〕
 実施例1の効果を以下に列記する。
 (1)回転式のギヤポンプPを内蔵したハウジング26と、ハウジング26に形成された吐出弁装着孔32と、吐出弁装着孔32内に装着され、ギヤポンプPから吐出した流体を外部へ吐出するための吐出弁構成体33と、を備え、吐出弁構成体33は、弁体52と、弁体52が着座するシート面65および流体が流通するシート孔60を備えたシート部材と、前記弁体を前記シート部材53付勢するコイルスプリング54(弾性体)と、内部に弁体52とコイルスプリング54を収容するための収容孔59を備えたソケット部材51と、を有し、ソケット部材51に収容孔59から外部へ連通するオリフィス通路64を設けた。
 よって、オリフィス通路64を吐出弁構成体33と一体化できるため、部品点数を低減することができる。
 (2)ソケット部材51は円筒壁63を備え、オリフィス通路64を円筒壁63に形成した。
 よって、ハウジング26の大型化を避けることができる。
 (3)オリフィス通路64を、シート面65の半径方向位置に形成した。
 よって、シート面65を通過したブレーキ液はすぐにオリフィス通路64に流入することができる。
 (4)ギヤポンプPを、外接ギヤポンプとした。
 よって、静粛性を高めることができる。
 (5)ギヤポンプPは、一対のギヤから圧送された流体が流入する吐出室49を備え、流体を吐出室49から吐出弁構成体33へ流れるようにした。
 よって、吐出室49がダンパ室として作用するため液圧の脈動を抑制することができる。
〔effect〕
The effects of Example 1 are listed below.
(1) A housing 26 having a built-in rotary gear pump P, a discharge valve mounting hole 32 formed in the housing 26, and a discharge valve mounting hole 32 for mounting the fluid discharged from the gear pump P to the outside. The discharge valve constituting body 33 includes a valve member 52, a seat member including the seat surface 65 on which the valve body 52 is seated, and a seat hole 60 through which fluid flows, and the valve body. A coil spring 54 (elastic body) for urging the seat member 53, and a socket member 51 having a valve body 52 and a housing hole 59 for housing the coil spring 54 therein. An orifice passage 64 communicating from the housing hole 59 to the outside is provided.
Therefore, since the orifice passage 64 can be integrated with the discharge valve constituting body 33, the number of parts can be reduced.
(2) The socket member 51 includes a cylindrical wall 63, and an orifice passage 64 is formed in the cylindrical wall 63.
Therefore, an increase in the size of the housing 26 can be avoided.
(3) The orifice passage 64 is formed at the radial position of the seat surface 65.
Therefore, the brake fluid that has passed through the seat surface 65 can immediately flow into the orifice passage 64.
(4) The gear pump P is an external gear pump.
Therefore, silence can be improved.
(5) The gear pump P includes the discharge chamber 49 into which the fluid pumped from the pair of gears flows, and the fluid flows from the discharge chamber 49 to the discharge valve constituting body 33.
Therefore, since the discharge chamber 49 acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
 [実施例2]
 実施例1ではオリフィス通路64をソケット部材51の円筒壁63に形成していたが、実施例2では連通部材50にオリフィス通路64を形成するようにした。
 以下の説明では、実施例1と同じ構成については同一の符号を付して説明を省略し、実施例1と異なる部分についてのみ説明する。
 図8はポンプユニット25および吐出弁構成体33をハウジング26に収容した状態の断面図である。図8に示すように、連通部材50の一方側端部にオリフィス通路64を形成するようにした。これにより、ギヤポンプPの吐出空間49と弁体52との間にオリフィス通路64を形成することができる。
 〔効果〕
 実施例2の効果について、以下に説明する。
 (6)連通路50(ソケット部材)であって、ギヤポンプP(回転式ポンプ)と弁体52との間にオリフィス通路64を設けた。
 よって、オリフィス通路64を連通路50と一体化できるため、部品点数を低減することができる。
[Example 2]
In the first embodiment, the orifice passage 64 is formed in the cylindrical wall 63 of the socket member 51, but in the second embodiment, the orifice passage 64 is formed in the communication member 50.
In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and only portions different from those in the first embodiment are described.
FIG. 8 is a cross-sectional view showing a state in which the pump unit 25 and the discharge valve constituting body 33 are accommodated in the housing 26. As shown in FIG. 8, an orifice passage 64 is formed at one end of the communication member 50. Thereby, an orifice passage 64 can be formed between the discharge space 49 of the gear pump P and the valve body 52.
〔effect〕
The effect of Example 2 will be described below.
(6) In the communication passage 50 (socket member), an orifice passage 64 is provided between the gear pump P (rotary pump) and the valve body 52.
Therefore, since the orifice passage 64 can be integrated with the communication passage 50, the number of parts can be reduced.
 〔他の実施例〕
 以上、本発明を実施例1ないし実施例3に基づいて説明してきたが、各発明の具体的な構成は各実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
 図9、図10はハウジング26の正面図である。実施例1および実施例2では、ポンプユニット25をハウジング26に固定するために、収容孔30の開口部の全周を変形させたカシメ部31を形成していた。例えば、図9に示すようにカシメ部31を2ヶ所形成するようにしても良いし、図10に示すようにカシメ部31を3ヶ所形成するようにしても良い。
[Other Examples]
The present invention has been described based on the first to third embodiments. However, the specific configuration of each invention is not limited to each embodiment, and the design can be changed within the scope not departing from the gist of the invention. Is included in the present invention.
9 and 10 are front views of the housing 26. FIG. In Example 1 and Example 2, in order to fix the pump unit 25 to the housing 26, the caulking part 31 in which the entire circumference of the opening part of the accommodation hole 30 is deformed is formed. For example, two crimping portions 31 may be formed as shown in FIG. 9, or three crimping portions 31 may be formed as shown in FIG.
 〔請求項以外の技術的思想〕
 更に、上記実施例から把握しうる請求項以外の技術的思想について、以下にその効果と共に記載する。
 (イ)請求項2に記載のポンプ装置において、
 前記シート部材は前記ソケット部材の円筒壁の内周に圧入されていることを特徴とするポンプ装置。
 よって、シート部材をソケット部材に締結部材を用いることなく固定することができる。
 (ロ)請求項6に記載のポンプ装置において、
 前記ソケット部材を、前記ハウジングの前記吐出弁装着孔の孔縁を組成変形させて固定したことを特徴とするポンプ装置。
 よって、吐出弁構成体をハウジングに締結部材を用いることなく固定することができる。
 (ハ)請求項7に記載のポンプ装置において、
 前記円筒壁は、前記ソケット部材を前記吐出弁装着孔に液密にするためのシールリングが装着され、前記オリフィス通路が形成されている部分の径より大径のシール溝装着部を備えたことを特徴とするポンプ装置。
 よって、オリフィス通路とハウジングとの間に、ブレーキ液が流れる液路を形成することができる。
 (ニ)請求項2に記載のポンプ装置において、
 前記オリフィス通路は直径が大きな大径通路とそれに連続し大径通路より直径が小さな小径通路とで構成されていることを特徴とするポンプ装置。
 よって、オリフィス通路の一部を小径通路とすることにより、オリフィス通路を通過するブレーキ液の液圧の低下を抑制しつつ、液圧の脈動を抑制することができる。
[Technical thought other than claims]
Further, technical ideas other than the claims that can be grasped from the above embodiments will be described below together with the effects thereof.
(A) In the pump device according to claim 2,
The pump device according to claim 1, wherein the seat member is press-fitted into an inner periphery of a cylindrical wall of the socket member.
Therefore, the sheet member can be fixed to the socket member without using a fastening member.
(B) In the pump device according to claim 6,
The pump device according to claim 1, wherein the socket member is fixed by compositionally deforming a hole edge of the discharge valve mounting hole of the housing.
Therefore, the discharge valve component can be fixed to the housing without using a fastening member.
(C) In the pump device according to claim 7,
The cylindrical wall is provided with a seal groove mounting portion having a diameter larger than a diameter of a portion where the orifice passage is formed, and a seal ring for making the socket member liquid-tight to the discharge valve mounting hole is mounted. A pump device characterized by.
Therefore, a fluid passage through which the brake fluid flows can be formed between the orifice passage and the housing.
(D) In the pump device according to claim 2,
The orifice passage is composed of a large-diameter passage having a large diameter and a small-diameter passage that is continuous with the large-diameter passage and has a smaller diameter than the large-diameter passage.
Therefore, by making a part of the orifice passage a small-diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
 (ホ)請求項9に記載のポンプ装置において、
 前記小径通路の直径は、軸方向長さよりも大きいことを特徴とするポンプ装置。
 よって、小径通路の軸方向長さを短くすることにより、オリフィス通路を通過するブレーキ液の液圧の低下を抑制しつつ、液圧の脈動を抑制することができる。
 (ヘ)請求項10に記載のポンプ装置において、
 小径通路の直径が0.5[mm]、軸方向長さが0.3[mm]であることを特徴とするポンプ装置。
 よって、小径通路の軸方向長さを短くすることにより、オリフィス通路を通過するブレーキ液の液圧の低下を抑制しつつ、液圧の脈動を抑制することができる。
 (ト)回転式ポンプを内蔵したハウジングと、
 前記ハウジングに形成され、前記回転ポンプから圧送されたブレーキ液を吐出する吐出弁構成体が装着される吐出弁構成体装着孔と、
を備え、
 前記吐出弁構成体は、弁体と、前記弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体を前記シート部材に付勢するコイルスプリングと、
内部に前記弁体と前記コイルスプリングを収容するための収容孔を備えたソケット部材と、を有し、
 前記ソケット部材に前記収容孔内から外部へ連通する通路を設け、
 前記通路にオリフィスを形成したことを特徴とするポンプ装置。
 よって、オリフィス通路を吐出弁構成体と一体化できるため、部品点数を低減することができる。
(E) In the pump device according to claim 9,
The diameter of the said small diameter channel | path is larger than the axial direction length, The pump apparatus characterized by the above-mentioned.
Therefore, by shortening the axial length of the small diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
(F) In the pump device according to claim 10,
A pump device characterized in that the diameter of the small-diameter passage is 0.5 [mm] and the axial length is 0.3 [mm].
Therefore, by shortening the axial length of the small diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
(G) a housing with a built-in rotary pump;
A discharge valve component mounting hole formed in the housing and mounted with a discharge valve component discharging the brake fluid pumped from the rotary pump;
With
The discharge valve constituting body includes a valve body, a seat member on which the valve body is seated and a seat member through which a fluid flows, a coil spring that biases the valve body to the seat member,
A socket member having an accommodating hole for accommodating the valve body and the coil spring therein,
A path that communicates from the inside of the accommodation hole to the outside is provided in the socket member,
A pump device characterized in that an orifice is formed in the passage.
Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
 (チ)請求項12に記載のポンプ装置において、
 前記ソケット部材は円筒壁を備え、
 前記通路は前記円筒壁の半径方向に沿って形成されていることを特徴とするポンプ装置。
 よって、シート面を通過したブレーキ液はすぐに通路に流入することができる。
 (リ)請求項12に記載のポンプ装置において、
 前記通路は前記シート面の半径方向位置に形成されていることを特徴とするポンプ装置。
 よって、シート面を通過したブレーキ液はすぐに通路に流入することができる。
 (ヌ)請求項12に記載のポンプ装置において、
 前記収容孔は有底であって、前記収容孔の底部と前記吐出弁との間に前記コイルスプリングを縮設し、
 前記シート部材は前記ソケット部材の円筒壁の内周に圧入されていることを特徴とするポンプ装置。
 よって、シート部材をソケット部材に締結部材を用いることなく固定することができる。
(H) In the pump device according to claim 12,
The socket member comprises a cylindrical wall;
The pump device according to claim 1, wherein the passage is formed along a radial direction of the cylindrical wall.
Therefore, the brake fluid that has passed through the seat surface can immediately flow into the passage.
(Li) In the pump device according to claim 12,
The pump device characterized in that the passage is formed at a radial position of the seat surface.
Therefore, the brake fluid that has passed through the seat surface can immediately flow into the passage.
(Nu) In the pump device according to claim 12,
The accommodation hole is bottomed, and the coil spring is contracted between the bottom of the accommodation hole and the discharge valve,
The pump device according to claim 1, wherein the seat member is press-fitted into an inner periphery of a cylindrical wall of the socket member.
Therefore, the sheet member can be fixed to the socket member without using a fastening member.
 (ル)請求項12に記載のポンプ装置において、
 前記回転ポンプは外接ギヤポンプであり、一対のギヤから圧送された流体が流入する吐出室を備え、前記流体は前記吐出室から前記吐出弁構成体へ流れることを特徴とするポンプ装置。
 よって、吐出室がダンパ室として作用するため液圧の脈動を抑制することができる。
 (ヲ)請求項16に記載のポンプ装置において、
 前記吐出室によってダンパ室を構成していることを特徴とするポンプ装置。
 よって、吐出室がダンパ室として作用するため液圧の脈動を抑制することができる。
 (ワ)請求項12に記載のポンプ装置において、
 前記通路は、直径が大きな大径通路と、該大径通路に連続し前記オリフィスとしての前記大径通路より直径が小さな小径通路とで構成されていることを特徴とするポンプ装置。
 よって、オリフィス通路の一部を小径通路とすることにより、オリフィス通路を通過するブレーキ液の液圧の低下を抑制しつつ、液圧の脈動を抑制することができる。
(L) In the pump device according to claim 12,
The rotary pump is an external gear pump, and includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure.
Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
(W) In the pump device according to claim 16,
A pump device characterized in that a damper chamber is constituted by the discharge chamber.
Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
(W) In the pump device according to claim 12,
2. The pump apparatus according to claim 1, wherein the passage includes a large-diameter passage having a large diameter and a small-diameter passage that is continuous with the large-diameter passage and has a smaller diameter than the large-diameter passage serving as the orifice.
Therefore, by making a part of the orifice passage a small-diameter passage, it is possible to suppress the pulsation of the hydraulic pressure while suppressing a decrease in the hydraulic pressure of the brake fluid passing through the orifice passage.
 (カ)外接ギヤポンプを内蔵したハウジングと、
 前記ハウジングに形成され、前記回転ポンプから圧送されたブレーキ液を吐出する吐出弁構成体が装着される吐出弁構成体装着孔と、
を備え、
 前記吐出弁構成体は、弁体と、前記弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体をシート部材に付勢するコイルスプリングと、内部に前記弁体と前記コイルスプリングを収容するための収容孔と、円筒壁と、を有するソケット部材と、を有し、
 前記ソケット部材の円筒壁に前記収容孔内から外部へ連通する通路を設け、前記通路にオリフィス部を形成したことを特徴とするポンプ装置。
 よって、オリフィス通路を吐出弁構成体と一体化できるため、部品点数を低減することができる。
 (ヨ)請求項19に記載のポンプ装置において、
 前記外接ギヤポンプは、一対のギヤから圧送された流体が流入する吐出室を備え、前記流体は前記吐出室から前記吐出弁構成体へ流れることを特徴とするポンプ装置。
 よって、吐出室がダンパ室として作用するため液圧の脈動を抑制することができる。
 (タ)回転式ポンプを内蔵したハウジングと、
 前記ハウジングに形成された吐出弁装着孔と、
 前記吐出弁装着孔内に装着され、前記ポンプから吐出した流体を外部へ吐出するための吐出弁構成体と、
を備え、
 前記吐出弁構成体は、弁体と、前記弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体を前記シート部材に付勢する弾性体と、内部に前記弁体と前記弾性体を収容するための収容孔を備えたソケット部材と、を有し、
 前記ソケット部材であって、前記回転式ポンプと前記弁体との間にオリフィス通路を設けたことを特徴とするポンプ装置。
 よって、オリフィス通路を吐出弁構成体と一体化できるため、部品点数を低減することができる。
(F) a housing with a built-in external gear pump;
A discharge valve component mounting hole formed in the housing and mounted with a discharge valve component discharging the brake fluid pumped from the rotary pump;
With
The discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which fluid flows, a coil spring that biases the valve body toward the seat member, A socket member having a valve body and an accommodation hole for accommodating the coil spring, and a cylindrical wall;
A pump device comprising a cylindrical wall of the socket member provided with a passage communicating from the inside of the accommodation hole to the outside, and an orifice portion formed in the passage.
Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
(Yo) In the pump device according to claim 19,
The external gear pump includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure.
Therefore, since the discharge chamber acts as a damper chamber, the pulsation of the hydraulic pressure can be suppressed.
(T) a housing with a built-in rotary pump;
A discharge valve mounting hole formed in the housing;
A discharge valve assembly that is mounted in the discharge valve mounting hole and discharges fluid discharged from the pump to the outside;
With
The discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which a fluid flows, an elastic body that biases the valve body toward the seat member, A socket member having an accommodation hole for accommodating the valve body and the elastic body,
The pump device according to claim 1, wherein an orifice passage is provided between the rotary pump and the valve body.
Therefore, since the orifice passage can be integrated with the discharge valve constituting body, the number of parts can be reduced.
26…ハウジング
32…吐出弁装着孔
33…吐出弁構成体
49…吐出室
50…連通路(ソケット部材)
51…ソケット部材
52…弁体
54…コイルスプリング(弾性体)
59…収容孔
60…シート孔
64…オリフィス通路
65…シート面
PP,PS…ギヤポンプ
26 ... Housing
32 ... Discharge valve mounting hole
33 ... Discharge valve assembly
49 ... Discharge chamber
50 ... Communication passage (socket member)
51 ... Socket material
52 ... Valve
54 ... Coil spring (elastic body)
59… Housing hole
60 ... Sheet hole
64: Orifice passage
65 ... Sheet surface
PP, PS ... Gear pump

Claims (20)

  1.  回転式ポンプを内蔵したハウジングと、
     前記ハウジングに形成された吐出弁装着孔と、
     前記吐出弁装着孔内に装着され、前記ポンプから吐出した流体を外部へ吐出するための吐出弁構成体と、を備え、
     前記吐出弁構成体は、弁体と、該弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体を前記シート部材に付勢する弾性体と、内部に前記弁体と前記弾性体を収容するための収容孔を備えたソケット部材と、を有し、
     前記ソケット部材に前記収容孔から外部へ連通するオリフィス通路を設けたことを特徴とするポンプ装置。
    A housing with a built-in rotary pump;
    A discharge valve mounting hole formed in the housing;
    A discharge valve component that is mounted in the discharge valve mounting hole and discharges the fluid discharged from the pump to the outside, and
    The discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which fluid flows, an elastic body that biases the valve body toward the seat member, A socket member having an accommodation hole for accommodating the valve body and the elastic body,
    2. A pump device according to claim 1, wherein the socket member is provided with an orifice passage communicating from the accommodation hole to the outside.
  2.  請求項1に記載のポンプ装置において、
     前記ソケット部材は円筒壁を備え、
     前記オリフィス通路は前記円筒壁に形成されていることを特徴とするポンプ装置。
    The pump device according to claim 1,
    The socket member comprises a cylindrical wall;
    The pump device according to claim 1, wherein the orifice passage is formed in the cylindrical wall.
  3.  請求項2に記載のポンプ装置において、
     前記オリフィス通路は、前記シート面の半径方向位置に形成されていることを特徴とするポンプ装置。
    The pump device according to claim 2,
    2. The pump device according to claim 1, wherein the orifice passage is formed at a radial position on the seat surface.
  4.  請求項3に記載のポンプ装置において、
     前記回転式ポンプは外接ギヤポンプであることを特徴とするポンプ装置。
    The pump device according to claim 3,
    The rotary pump is a circumscribed gear pump.
  5.  請求項4に記載のポンプ装置において、
     前記外接ギヤポンプは、一対のギヤから圧送された流体が流入する吐出室を備え、前記流体は前記吐出室から前記吐出弁構成体へ流れることを特徴とするポンプ装置。
    The pump device according to claim 4,
    The external gear pump includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure.
  6.  請求項2に記載のポンプ装置において、
     前記シート部材は、前記ソケット部材の円筒壁の内周に圧入されていることを特徴とするポンプ装置。
    The pump device according to claim 2,
    The pump device according to claim 1, wherein the seat member is press-fitted into an inner periphery of a cylindrical wall of the socket member.
  7.  請求項6に記載のポンプ装置において、
     前記ソケット部材を、前記ハウジングの前記吐出弁装着孔の孔縁を組成変形させて固定したことを特徴とするポンプ装置。
    The pump device according to claim 6,
    The pump device according to claim 1, wherein the socket member is fixed by compositionally deforming a hole edge of the discharge valve mounting hole of the housing.
  8.  請求項7に記載のポンプ装置において、
     前記円筒壁は、前記ソケット部材を前記吐出弁装着孔に液密にするためのシールリングが装着され、前記オリフィス通路が形成されている部分の径より大径のシール溝装着部を備えたことを特徴とするポンプ装置。
    The pump device according to claim 7,
    The cylindrical wall is provided with a seal groove mounting portion having a diameter larger than a diameter of a portion where the orifice passage is formed, and a seal ring for making the socket member liquid-tight to the discharge valve mounting hole is mounted. A pump device characterized by.
  9.  請求項2に記載のポンプ装置において、
     前記オリフィス通路は、直径が大きな大径通路と、これに連続し当該大径通路より直径が小さな小径通路と、で構成されていることを特徴とするポンプ装置。
    The pump device according to claim 2,
    The orifice passage is composed of a large-diameter passage having a large diameter and a small-diameter passage that is continuous with the large-diameter passage and has a smaller diameter than the large-diameter passage.
  10.  請求項9に記載のポンプ装置において、
     前記小径通路の直径は、軸方向長さよりも大きいことを特徴とするポンプ装置。
    The pump device according to claim 9,
    The diameter of the said small diameter channel | path is larger than the axial direction length, The pump apparatus characterized by the above-mentioned.
  11.  請求項10に記載のポンプ装置において、
     小径通路の直径が0.5[mm]、軸方向長さが0.3[mm]であることを特徴とするポンプ装置。
    The pump device according to claim 10,
    A pump device characterized in that the diameter of the small-diameter passage is 0.5 [mm] and the axial length is 0.3 [mm].
  12.  回転式ポンプを内蔵したハウジングと、
     前記ハウジングに形成され、前記回転ポンプから圧送されたブレーキ液を吐出する吐出弁構成体が装着される吐出弁構成体装着孔と、を備え、
     前記吐出弁構成体は、弁体と、前記弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体を前記シート部材に付勢するコイルスプリングと、内部に前記弁体と前記コイルスプリングを収容するための収容孔を備えたソケット部材と、を有し、
     前記ソケット部材に前記収容孔内から外部へ連通する通路を設け、該通路にオリフィスを形成したことを特徴とするポンプ装置。
    A housing with a built-in rotary pump;
    A discharge valve structure mounting hole formed in the housing and mounted with a discharge valve structure for discharging brake fluid pumped from the rotary pump;
    The discharge valve component includes a valve body, a seat surface on which the valve body is seated and a seat member through which fluid flows, a coil spring that biases the valve body toward the seat member, A socket member having an accommodating hole for accommodating the valve body and the coil spring;
    A pump device characterized in that a passage communicating from the inside of the accommodation hole to the outside is provided in the socket member, and an orifice is formed in the passage.
  13.  請求項12に記載のポンプ装置において、
     前記ソケット部材は円筒壁を備え、
     前記通路は前記円筒壁の半径方向に沿って形成されていることを特徴とするポンプ装置。
    The pump device according to claim 12,
    The socket member comprises a cylindrical wall;
    The pump device according to claim 1, wherein the passage is formed along a radial direction of the cylindrical wall.
  14.  請求項12に記載のポンプ装置において、
     前記通路は、前記シート面の半径方向位置に形成されていることを特徴とするポンプ装置。
    The pump device according to claim 12,
    The pump device, wherein the passage is formed at a radial position of the seat surface.
  15.  請求項12に記載のポンプ装置において、
     前記収容孔は有底であって、前記収容孔の底部と前記吐出弁との間に前記コイルスプリングを縮設し、
     前記シート部材は、前記ソケット部材の円筒壁の内周に圧入されていることを特徴とするポンプ装置。
    The pump device according to claim 12,
    The accommodation hole is bottomed, and the coil spring is contracted between the bottom of the accommodation hole and the discharge valve,
    The pump device according to claim 1, wherein the seat member is press-fitted into an inner periphery of a cylindrical wall of the socket member.
  16.  請求項12に記載のポンプ装置において、
     前記回転式ポンプは外接ギヤポンプであり、一対のギヤから圧送された流体が流入する吐出室を備え、前記流体は前記吐出室から前記吐出弁構成体へ流れることを特徴とするポンプ装置。
    The pump device according to claim 12,
    The rotary pump is an external gear pump, and includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure.
  17.  請求項16に記載のポンプ装置において、
     前記吐出室によってダンパ室を構成していることを特徴とするポンプ装置。
    The pump device according to claim 16,
    A pump device characterized in that a damper chamber is constituted by the discharge chamber.
  18.  請求項12に記載のポンプ装置において、
     前記通路は、直径が大きな大径通路と、これに連続し前記オリフィスとしての当該大径通路より直径が小さな小径通路と、で構成されていることを特徴とするポンプ装置。
    The pump device according to claim 12,
    The said passage is comprised by the large diameter passage with a large diameter, and the small diameter passage which follows this and has a small diameter smaller than the said large diameter passage as said orifice.
  19.  外接ギヤポンプを内蔵したハウジングと、
     前記ハウジングに形成され、前記回転ポンプから圧送されたブレーキ液を吐出する吐出弁構成体が装着される吐出弁構成体装着孔と、を備え、
     前記吐出弁構成体は、弁体と、前記弁体が着座するシート面および流体が流通するシート孔を備えたシート部材と、前記弁体をシート部材に付勢するコイルスプリングと、内部に前記弁体と前記コイルスプリングを収容するための収容孔と、円筒壁と、を有するソケット部材と、を有し、
     前記ソケット部材の円筒壁に前記収容孔内から外部へ連通する通路を設け、該通路にオリフィス部を形成したことを特徴とするポンプ装置。
    A housing with a built-in external gear pump;
    A discharge valve structure mounting hole formed in the housing and mounted with a discharge valve structure for discharging brake fluid pumped from the rotary pump;
    The discharge valve component includes a valve body, a seat member on which the valve body is seated and a seat member through which fluid flows, a coil spring that biases the valve body toward the seat member, A socket member having a valve body and an accommodation hole for accommodating the coil spring, and a cylindrical wall;
    A pump device comprising a cylindrical wall of the socket member provided with a passage communicating from the inside of the accommodation hole to the outside, and an orifice portion formed in the passage.
  20.  請求項19に記載のポンプ装置において、
     前記外接ギヤポンプは、一対のギヤから圧送された流体が流入する吐出室を備え、前記流体は前記吐出室から前記吐出弁構成体へ流れることを特徴とするポンプ装置。
    The pump device according to claim 19,
    The external gear pump includes a discharge chamber into which fluid pumped from a pair of gears flows, and the fluid flows from the discharge chamber to the discharge valve structure.
PCT/JP2012/080292 2011-11-25 2012-11-22 Pump WO2013077399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-257178 2011-11-25
JP2011257178A JP5755113B2 (en) 2011-11-25 2011-11-25 Pump device

Publications (1)

Publication Number Publication Date
WO2013077399A1 true WO2013077399A1 (en) 2013-05-30

Family

ID=48469841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080292 WO2013077399A1 (en) 2011-11-25 2012-11-22 Pump

Country Status (2)

Country Link
JP (1) JP5755113B2 (en)
WO (1) WO2013077399A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180056955A1 (en) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Method for clamping and for machining a hydraulic block of a slip-controlled hydraulic vehicle brake system, and hydraulic block
CN110894832A (en) * 2018-09-12 2020-03-20 Fte汽车有限责任公司 Pump unit for providing hydraulic pressure for actuating an actuator in a motor vehicle drive train

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493758B2 (en) * 2015-08-26 2019-04-03 日立オートモティブシステムズ株式会社 Pump device and brake system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104228A (en) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc Inlet valve structure with switching valve
JP2000220581A (en) * 1999-01-28 2000-08-08 Koyo Seiko Co Ltd Hydraulic pump
WO2008135159A1 (en) * 2007-04-27 2008-11-13 Trw Automotive Gmbh Gear pump comprising a non-return valve and a pressure limiting valve
JP2011051370A (en) * 2009-08-31 2011-03-17 Advics Co Ltd Brake hydraulic pressure control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59408551D1 (en) * 1993-11-18 1999-09-02 Continental Teves Ag & Co Ohg ELECTROMAGNETIC VALVE, ESPECIALLY FOR HYDRAULIC BRAKE SYSTEMS WITH SLIP CONTROL
JP2009008269A (en) * 1997-08-08 2009-01-15 Denso Corp Differential pressure control valve, inspection method for differential pressure control valve, regulating method for differential pressure control valve, and vehicular brake device
JP2008019919A (en) * 2006-07-11 2008-01-31 Hitachi Ltd Solenoid valve
JP5104655B2 (en) * 2008-08-26 2012-12-19 株式会社豊田自動織機 Variable displacement rotary pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104228A (en) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc Inlet valve structure with switching valve
JP2000220581A (en) * 1999-01-28 2000-08-08 Koyo Seiko Co Ltd Hydraulic pump
WO2008135159A1 (en) * 2007-04-27 2008-11-13 Trw Automotive Gmbh Gear pump comprising a non-return valve and a pressure limiting valve
JP2011051370A (en) * 2009-08-31 2011-03-17 Advics Co Ltd Brake hydraulic pressure control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180056955A1 (en) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Method for clamping and for machining a hydraulic block of a slip-controlled hydraulic vehicle brake system, and hydraulic block
US10625722B2 (en) * 2016-08-30 2020-04-21 Robert Bosch Gmbh Method for clamping and for machining a hydraulic block of a slip-controlled hydraulic vehicle brake system, and hydraulic block
CN110894832A (en) * 2018-09-12 2020-03-20 Fte汽车有限责任公司 Pump unit for providing hydraulic pressure for actuating an actuator in a motor vehicle drive train
CN110894832B (en) * 2018-09-12 2023-06-16 Fte汽车有限责任公司 Pump unit providing hydraulic pressure for actuating an actuator in a motor vehicle driveline

Also Published As

Publication number Publication date
JP5755113B2 (en) 2015-07-29
JP2013112012A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP4964930B2 (en) Pump device
JP5755113B2 (en) Pump device
CN102072147B (en) Rotary pump device and vehicle brake control system
JP5591936B2 (en) Double internal gear pump
KR102190039B1 (en) Hydraulic brake system
JP5421231B2 (en) Brake device
JP2014058891A (en) Pump device
US20150375723A1 (en) Hydraulic Unit for a Slip Control System of a Hydraulic Vehicle Brake System
CN102410209A (en) Fluid machine and seal member used for the same
JPWO2019138281A1 (en) Brake fluid pressure controller with axial piston pump and series damper
JP2018095027A (en) Fluid pressure control unit of vehicular brake system
CN102410372A (en) Sealing apparatus
JP2020011525A (en) Brake fluid pressure control device
JP7013488B2 (en) Brake fluid pressure control device
JP2014015906A (en) Pump device
JP5292480B2 (en) Pump device
JP5334829B2 (en) Pump device
JP6308587B2 (en) Brake device
JP2007112441A (en) Actuator for brake control
JP6027763B2 (en) Pump device
JP2013130134A (en) Pump device
JP5718214B2 (en) Pump device
JP6485744B2 (en) Brake device
WO2018056027A1 (en) Plunger pump and brake device
US20180112662A1 (en) Gear pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851305

Country of ref document: EP

Kind code of ref document: A1