WO2013077396A1 - プラズマ発生装置 - Google Patents

プラズマ発生装置 Download PDF

Info

Publication number
WO2013077396A1
WO2013077396A1 PCT/JP2012/080282 JP2012080282W WO2013077396A1 WO 2013077396 A1 WO2013077396 A1 WO 2013077396A1 JP 2012080282 W JP2012080282 W JP 2012080282W WO 2013077396 A1 WO2013077396 A1 WO 2013077396A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
dielectric film
dielectric
plasma generator
electrode
Prior art date
Application number
PCT/JP2012/080282
Other languages
English (en)
French (fr)
Inventor
山田 幸香
宮本 誠
一利 竹之下
寺尾 芳孝
伸岳 平井
Original Assignee
株式会社サムスン横浜研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムスン横浜研究所 filed Critical 株式会社サムスン横浜研究所
Priority to CN201280057892.8A priority Critical patent/CN103988587A/zh
Priority to EP12852319.8A priority patent/EP2785151A4/en
Priority to US14/360,106 priority patent/US20140306597A1/en
Priority to KR1020137026364A priority patent/KR20130135338A/ko
Publication of WO2013077396A1 publication Critical patent/WO2013077396A1/ja
Priority to GBGB1407307.6A priority patent/GB201407307D0/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32559Protection means, e.g. coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2441Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes characterised by the physical-chemical properties of the dielectric, e.g. porous dielectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0415Treating air flowing to refrigeration compartments by purification by deodorizing

Definitions

  • the present invention relates to a plasma generator.
  • the conventional technology aiming at air quality control in the living environment is generally physical control represented by a filter.
  • Physical control can capture relatively large dust and dirt floating in the air, and bacteria and viruses depending on the size of the filter hole. Furthermore, when there are innumerable adsorption sites such as activated carbon, malodorous odor molecules can be captured. However, in order to capture these substances, it is necessary to pass the air in the controlled space evenly through the filter, which increases the size of the device and increases the maintenance costs such as filter replacement. Is not effective. Therefore, as a means for enabling sterilization and deodorization of the deposit, it is possible to release chemically active species into a space where sterilization or deodorization is desired.
  • Plasma generator see, for example, Patent Document 1
  • the active species generated by the plasma generator is discharged into a closed space (for example, a living room, a toilet, a passenger car, etc.) having a volume larger than that of (1), and the active species, airborne bacteria and odor So-called active-type plasma generator that reacts by causing collision (see, for example, Patent Document 2)
  • the advantage of the passive plasma generator (1) is that high concentration of active species is generated by generating plasma in a small volume, so that a high bactericidal effect and deodorizing effect are expected.
  • the disadvantage is that airborne bacteria and odors need to be introduced into the device, which increases the size of the device, and easily generates ozone harmful to the human body as a byproduct of plasma generation. In order to prevent leakage, it is necessary to install a filter for adsorption or decomposition.
  • the advantage of the active plasma generator of (2) is that the device can be made relatively small.
  • bacteria attached to the surface of clothing and household goods hereinafter referred to as , Sterilization of adhering bacteria
  • decomposition of odor adsorbed on the surface bacteria attached to the surface of clothing and household goods
  • the disadvantage is that active species are diffused in a very large closed space compared to the volume of the device, so the concentration is low, so that only active species with a long life expectation of sterilization and deodorizing effects can be expected. It is a point that cannot be obtained. As a result, a deodorizing effect can hardly be expected in a space with a high odor concentration (a concentration about 10,000 times higher than the active species concentration).
  • the passive plasma generator (1) the effect is limited only to airborne bacteria and odors contained in the air flow flowing into the apparatus, while in the active plasma generator (2), the concentration is limited. Can only be expected to have low airborne bacteria, adherent bacteria, and odor. That is, what can be realized by using the prior art is limited to either “sterilization and deodorization of planktonic bacteria” or “sterilization of low-concentration planktonic bacteria, adherent bacteria and deodorization of adherent odor”. .
  • a porous dielectric film is often used at the plasma generation site of the electrode, and therefore, under high humidity, the dielectric film itself absorbs moisture due to its hygroscopic action. The characteristics change and the generation of plasma is hindered.
  • the dielectric film itself of the electrode tends to condense, the generation of plasma stops, and the sterilization and deodorization performance deteriorates. Therefore, it is difficult to maintain sterilization performance when the inside of the refrigerator remains in a high humidity state.
  • the present invention is intended to provide a plasma generator having high safety and excellent sterilization performance and deodorization performance.
  • the inventors have adjusted the relative dielectric constant of the dielectric film formed on the electrode to be within a specific range, thereby suppressing ozone generation, while the ions and radicals are suppressed. As a result, it succeeded in improving the sterilization performance and deodorizing performance of the plasma generator safely.
  • the present invention has been completed based on such findings.
  • the plasma generator according to the present invention includes a pair of electrodes having a dielectric film formed on at least one of the opposing surfaces, and a plasma generator that discharges plasma by applying a predetermined voltage between the electrodes.
  • the dielectric film has a relative dielectric constant of 20 to 200.
  • dielectric film examples include those formed from a mixture containing a dielectric material and a glass material.
  • the content of the glass material in the mixture is preferably 0.2 to 10 times the content of the dielectric material in the mixture in terms of mass.
  • the dielectric material a material containing at least one element selected from the group consisting of Ba, Ti, Ca, Zr, Sr, Y, Mg, and Si as a constituent element is preferably used.
  • a dielectric material for example, at least one compound selected from the group consisting of oxides, carbides, nitrides, and borides is used.
  • the glass material a material containing at least one element selected from the group consisting of Si, Bi, B, Zr, Na, K, Ca, and Mg as the constituent element is suitably used.
  • the surface roughness of the dielectric film is preferably 0.1 to 100 ⁇ m.
  • the present invention it is possible to increase the generation amount of active species such as ions and radicals while suppressing ozone generation, and to safely improve the sterilization performance and deodorization performance of the plasma generator. . Furthermore, since the dielectric film is formed from a mixture of a dielectric material and a glass material, the denseness of the dielectric film is improved, so that the dielectric film has improved water resistance in addition to voltage resistance. As a result, deterioration in sterilization performance and deodorization performance under high humidity is also suppressed. For this reason, the plasma generator according to the present invention can be used even in a high humidity environment such as the inside of a refrigerator, a washing machine, a dishwasher or the like.
  • the plasma generator according to the present invention includes a pair of electrodes having a dielectric film formed on at least one of the opposing surfaces, and a plasma is discharged by applying a predetermined voltage between the electrodes.
  • An example of such a plasma generator is that shown in FIG.
  • the plasma generator 100 is used for home appliances such as a refrigerator, a washing machine, a dishwasher, a clothes dryer, a vacuum cleaner, an air conditioner, an air cleaner, and the like. It deodorizes the air inside or outside the product and sterilizes airborne or adherent bacteria inside or outside the product.
  • the plasma generator 100 includes a plasma electrode unit 2 that generates active species such as ions and radicals by microgap plasma (Micro Gap Plasma), and a plasma electrode unit 2 outside the plasma electrode unit 2.
  • a blower mechanism 3 that is provided and forcibly sends air (air flow) to the plasma electrode unit 2 and a voltage applying unit 4 that applies a predetermined voltage to the plasma electrode unit 2 to cause plasma discharge are provided.
  • the plasma electrode unit 2 includes a pair of electrodes 21 provided with dielectric films 21b and 22b on opposite surfaces of the substrates 21a and 22a, and provided with insulator films 21c and 22c on the opposite surfaces. 22 and a predetermined voltage is applied between the electrodes 21 and 22 by the voltage applying means 4 to cause plasma discharge.
  • Each of the electrodes 21 and 22 has a substantially rectangular shape in plan view (when viewed from the direction of the face plate of the electrodes 21 and 22), and voltage application means is provided at the edges of the electrodes 21 and 22 of the electrode portion 2.
  • An application terminal 2T to which a voltage from 4 is applied is formed.
  • the substrates 21a and 22a are made of, for example, austenitic, ferritic, martensitic, or other stainless steel, or conductors such as iron, copper, and aluminum, while the insulator films 21c and 22c are made of, for example, an oxide. And carbides, nitrides, borides, glass, epoxy resins, polyester resins, polyethersulfone (PES) resins, fluororesins, and the like.
  • PES polyethersulfone
  • Each of the electrodes 21 and 22 is provided with fluid flow holes 21d and 22d at the corresponding positions of the electrodes 21 and 22, respectively, so that these communicate with each other and penetrate as a whole.
  • the blower mechanism 3 is disposed so as to face the electrode 22 of the plasma electrode unit 2, and forcibly sends wind toward the fluid circulation holes 21 d and 22 d (completely open portions) formed in the plasma electrode unit 2. It has a blower fan.
  • the voltage application means 4 includes a power source 41 and a drive circuit unit 42 that converts the voltage from the power source 41 into a pulse voltage and applies each voltage.
  • the plasma generating apparatus 100 generates plasma in a gap between two opposed electrodes 21 and 22, sends air to the fluid circulation holes 21 d and 22 d by the blower mechanism 3, and deodorizes in the vicinity of the electrodes 21 and 22.
  • the active species generated in the plasma are released into the closed space to sterilize the attached bacteria.
  • the dielectric film has a relative dielectric constant of 20 to 200.
  • the relative dielectric constant is preferably 30 to 110, more preferably 50 to 90.
  • the dielectric film having such a relative dielectric constant can be formed from, for example, a mixture containing a dielectric material and a glass material.
  • the relative permittivity can be adjusted within the above range, so that the generation of active species such as ions and radicals can be increased while suppressing the generation of ozone. it can.
  • the density of the dielectric film is improved, so that the dielectric film has improved water resistance in addition to voltage resistance.
  • the resilience is also improved, and the plasma generator can be used in a high humidity environment such as the inside of a refrigerator, a washing machine, a dishwasher or the like.
  • the glass material functions as a binder, and the binding property of the dielectric film to the substrate Will also improve.
  • a dielectric material for example, a material containing Ba, Ti, Ca, Zr, Sr, Y, Mg, Si or the like as a constituent element is used.
  • the dielectric material containing these elements include oxides, carbides, nitrides, borides, and the like. More specifically, BaO, TiO 2 , CaO, ZrO, Sr 2 O 3 , Y 2 are included.
  • glass material for example, a material containing Si, Bi, B, Zr, Na, K, Ca, Mg or the like as a constituent element is used.
  • glass materials containing these elements include B 2 O 3 —ZnO—La 2 O 3 , P 2 O 5 —B 2 O 3 —R ′ 2 O—R ′′ O—TiO 2 —Nb 2 O 5— WO 3 —Bi 2 O 3 system (wherein R ′ represents an alkali metal, R ′′ represents an alkaline earth metal, the same shall apply hereinafter), TeO 2 —ZnO system, B 2 O 3 —Bi 2 O 3 system, B 2 O 3 —ZnO—Bi 2 O 3 system, SiO 2 —Bi 2 O 3 system, SiO 2 —ZnO system, B 2 O 3 —ZnO system, P 2 O 5 —ZnO system, SiO 2 System, R ′ 2 O—R ′′ O—SiO 2 system,
  • the content of the glass material is preferably 0.2 to 10 times the content of the dielectric material in terms of mass.
  • the relative dielectric constant of the dielectric film can be set to 20 to 200.
  • a more preferable content ratio (glass material / dielectric material) is 0.5 to 3.0 times, and more preferably 0.8 to 2.0 times.
  • the surface roughness (calculated average roughness Ra) of the dielectric film is preferably 0.1 to 100 ⁇ m. If the planar roughness of the dielectric film is within this range, a gap can be formed between the opposing surfaces just by overlapping the electrodes, and plasma can be generated in the gap. A spacer for forming the formation gap becomes unnecessary.
  • the surface roughness of the dielectric film can be controlled by, for example, a printing method.
  • an electrode in the present invention for example, (1) First, the substrate is pressed, etched, etc., and an opening is formed in the substrate. (2) Next, an insulator film is formed on the back surface (anti-opposing surface) of the substrate by vacuum deposition, sputtering, electroplating, printing, or the like. Note that this step is performed last when the insulator film is formed of a resin. (3) Further, a mixture of a dielectric material and a glass material is prepared. At this time, mixing is performed so that the mass of the glass material is 0.2 to 10 times the mass of the dielectric material so that the dielectric constant of the dielectric film is 20 to 200.
  • the mass of the glass powder is adjusted to 0.5 to 3.0 times the mass of the BaTiO 3 powder. It is preferable to do this.
  • a dielectric film is formed on the surface (opposing surface) of the substrate by vacuum deposition, sputtering, thermal spraying, printing, or the like.
  • an electrode is obtained by firing.
  • the present invention configured as described above, it is possible to improve sterilization and deodorizing power while ensuring safety by generating active species such as ions and radicals while suppressing generation of ozone as compared with the prior art. Is possible.
  • active species such as ions and radicals
  • the conventional plasma generator cannot be used under high humidity or dew condensation conditions, but the plasma generator according to the present invention is not limited to a refrigerator, and there is moisture in a washing machine, a dishwasher, etc. It can be used even in an environment where
  • the electrode used for each evaluation test was produced as follows.
  • insulator film (1) Formation of insulator film First, a SUS substrate (manufactured by SUS304, thickness 1.0 mm) was pressed to form an opening in the substrate. Next, a glass paste (manufactured by Asahi Glass Co., Ltd.) having a composition of SiO 2 —ZnO—RO (where R represents an alkaline earth metal (Mg, Ca, Sr, Ba)) is formed on the back surface of the substrate on which the opening is formed. AP5700C) was printed using a screen printing machine (LS-150, manufactured by Neurong Seimitsu Kogyo) to insulate the back side of the substrate. Thereafter, the film was dried at 120 ° C. for 20 minutes with a dryer (Espec Corp., PVC-212) to form an insulating film having a thickness of about 30 to 40 ⁇ m after drying.
  • a dryer Espec Corp., PVC-212
  • the obtained binder-containing mixture was stirred using a three-roll mill (manufactured by Nagase Screen Printing Laboratory, EXAKT M-80S), and then diluted to a viscosity that facilitates printing with a solvent (manufactured by Kanto Chemical Co., Ltd., ⁇ -terpineol).
  • a dielectric paste was prepared.
  • the obtained dielectric paste was printed on the surface of the SUS substrate using a screen printer (manufactured by Neurong Seimitsu Kogyo Co., Ltd., LS-150), and then dried at 120 ° C. for 20 minutes using a dryer (manufactured by ESPEC, PVC-212). After drying, a dielectric film having a thickness of about 100 to 200 ⁇ m was formed after drying.
  • a SUS substrate having a dielectric film formed on the front surface and an insulator film formed on the back surface was subjected to a muffle furnace (manufactured by Denken, S90) at 850 ° C. for 10 minutes, 5 ° C./minute.
  • the electrode was fabricated by raising and lowering the temperature and firing.
  • MMP Methyl mercaptan
  • Steps (1) to (6) are repeated for a conventional plasma generator on which a dielectric film is formed by thermal spraying. The obtained results are shown in the graph of FIG.
  • the product of the present invention has improved moisture resistance (recovery performance from the dew condensation state) by about 5 times compared to the conventional product. Since the same tendency was observed for all of the plasma generators used in Test 1, it is considered that the dielectric film was densely formed due to the glass in the film and the moisture resistance was improved.
  • the BaTiO 3 and B 2 O 3 —ZnO—Bi 2 O 3 -based glass have a mixing ratio (glass / BaTiO 3 (mass conversion)) of 0.2 or more. It was revealed that the voltage resistance of the dielectric film was significantly improved by adding the glass to No. 3 .
  • the generation amount of active species such as ion and a radical
  • the plasma generator which improved the disinfection performance and the deodorizing performance safely can be provided.
  • the dielectric film is formed from a mixture of a dielectric material and a glass material, the denseness of the dielectric film is improved, so that the dielectric film has improved water resistance in addition to voltage resistance. As a result, a decrease in sterilization performance and deodorization performance under high humidity is also suppressed. For this reason, the plasma generator according to the present invention can be used even in a high humidity environment such as the inside of a refrigerator, a washing machine, a dishwasher or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

 高い安全性とともに、優れた殺菌性能及び脱臭性能を有するプラズマ発生装置を提供することを目的とするものであり、対向面の少なくとも一方に誘電体膜が形成された一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するプラズマ発生装置において、前記誘電体膜の比誘電率が、20~200であるようにする。

Description

プラズマ発生装置
 本発明は、プラズマ発生装置に関するものである。
 近年のアトピー、ぜんそく、アレルギー症状保有者の増大や新型インフルエンザの爆発的流行等にみられる感染症のリスク増大等によって、生活環境における殺菌や脱臭等の空気質制御ニーズが高まっている。また生活が豊かになるにつれて、保管食品の量の増大や食べ残し食品の保管機会が増加しており、冷蔵庫に代表される保管機器内の環境制御も重要性を増している。
 生活環境の空気質制御を目的とする従来技術は、フィルターに代表されるような物理的制御が一般的である。物理的制御は、空気中に浮遊する比較的大きな埃や塵、また、フィルター孔の大きさによっては、細菌やウィルス等も捕獲できる。更に、活性炭のように無数の吸着サイトがある場合は、悪臭の臭気分子も捕獲可能である。しかし、これらの物質を捕獲するためには制御対象の空間内の空気を満遍なくフィルターに通す必要があり、装置が大型化し、フィルター交換等の維持コストもかさむという難点がある一方、付着物に対しては効果がない。そこで、付着物に対し殺菌や脱臭を可能とする手段として、殺菌や脱臭を行いたい空間に化学的活性種を放出することが挙げられる。薬品の散布や芳香剤、消臭剤等の放出では、あらかじめ活性種を用意する必要があり、定期的な補充が不可欠である。それに対し、大気中にプラズマを発生させ、そこで生成される化学的活性種を利用し、殺菌や脱臭を試みる手段が近年増えてきている。
 大気中にプラズマを放電により発生させ、そこで生成されたイオンやラジカル等の活性種によって殺菌や脱臭を行う技術は、次の2つの形式に分類できる。
(1)大気中に浮遊する菌やウィルス(以下、浮遊菌という。)、又は、悪臭物質(以下、臭気という。)を装置内の限られた容積内で活性種と反応させる、いわゆる受動型のプラズマ発生装置(例えば、特許文献1参照)
(2)プラズマ発生部で生成された活性種を(1)よりも容積の大きな閉空間(例えば、居室、トイレ、乗用車の車内等)へ放出し、大気中で活性種と浮遊菌や臭気とを衝突させ反応させる、いわゆる能動型のプラズマ発生装置(例えば、特許文献2参照)
 (1)の受動型のプラズマ発生装置の利点は、小容積内でプラズマを発生させて高濃度の活性種が生成されるため、高い殺菌効果及び脱臭効果が期待される。一方、欠点としては、浮遊菌や臭気を装置内に導入する必要があるため、装置が大型化し、また、プラズマ発生の副生成物として人体に有害なオゾンが発生しやすく、オゾンを装置外に漏洩させないために、吸着又は分解するフィルターを別途設置する必要がある。
 次に、(2)の能動型のプラズマ発生装置の利点は、装置を比較的小さくでき、浮遊菌の殺菌や空気中の臭気の分解に加え、衣類や生活用品の表面に付着した菌(以下、付着菌という。)の殺菌や表面に吸着した臭気の分解も期待できる点である。一方、欠点としては、活性種が装置の体積に比べて非常に大きな閉空間内に拡散されることから濃度が低くなるため、寿命の長い活性種のみに殺菌や脱臭の効果を期待せざるを得ない点である。その結果、臭気濃度の高い空間(活性種濃度に対して1万倍程度高い濃度)においては、ほとんど脱臭効果が期待できないことになる。
 以上のことから、受動型のプラズマ発生装置(1)では、当該装置に流入する空気流に含まれる浮遊菌や臭気に対してのみ効果が限定され、能動型のプラズマ発生装置(2)では濃度の低い浮遊菌、付着菌、臭気に対しての効果しか期待できない。すなわち、従来技術を利用して実現できることは、「浮遊菌の殺菌と脱臭」、又は、「濃度の低い浮遊菌、付着菌の殺菌及び付着臭気の脱臭」のどちらかに限定されることになる。
 また、プラズマ発生部を構成する電極では、電極のプラズマ発生部位に例えば多孔質の誘電体膜を使用する場合が多く、そのため、高湿度下においては、誘電体膜自身の吸湿作用のため電気的特性が変化してしまい、プラズマの発生が阻害されてしまう。特に冷蔵庫のような低温かつ湿度が大きく変化する環境においては、電極の誘電体膜自身が結露し易く、プラズマの発生が止まり、殺菌、脱臭性能が低下してしまう。したがって、冷蔵庫の内部が高湿度の状態が続くと殺菌性能を維持することが難しい。
特開2002-224211号公報 特開2003-79714号公報
 そこで本発明は、上記現状に鑑み、高い安全性とともに、優れた殺菌性能及び脱臭性能を有するプラズマ発生装置を提供すべく図ったものである。
 本発明者らは、鋭意検討を重ねた結果、電極に形成された誘電体膜の比誘電率を特定の範囲内になるように調整することにより、オゾン発生が抑えられる一方で、イオンやラジカル等の活性種の発生量は増加しうることを見出し、この結果、プラズマ発生装置の殺菌性能や脱臭性能を安全に向上させることに成功した。本発明はこのような知見に基づき完成されたものである。
 すなわち本発明に係るプラズマ発生装置は、対向面の少なくとも一方に誘電体膜が形成された一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するプラズマ発生装置であって、前記誘電体膜の比誘電率が、20~200であることを特徴とする。
 前記誘電体膜としては、例えば、誘電体材料とガラス材料とを含有する混合物から形成されてなるものが挙げられる。
 前記混合物における前記ガラス材料の含有量は、質量換算で、前記混合物における前記誘電体材料の含有量の0.2~10倍であることが好ましい。
 前記誘電体材料としては、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、Mg、及び、Siからなる群より選択される少なくとも1つの元素を含むものが好適に用いられる。
 このような誘電体材料としては、例えば、酸化物、炭化物、窒化物、及び、ホウ化物からなる群より選択される少なくとも1種の化合物が用いられる。
 一方、前記ガラス材料としては、その構成元素として、Si、Bi、B、Zr、Na、K、Ca、及び、Mgからなる群より選択される少なくとも1つの元素を含むものが好適に用いられる。
 また、電極の対向面間にプラズマを発生させるための空隙を形成するためには、前記誘電体膜の表面粗さは、0.1~100μmであることが好ましい。
 このような本発明によれば、オゾン発生を抑制しつつ、イオンやラジカル等の活性種の発生量を増加させて、プラズマ発生装置の殺菌性能や脱臭性能を安全に向上させることを可能とする。更に、誘電体膜を誘電体材料とガラス材料との混合物から形成することにより、誘電体膜の緻密性が向上するので、当該誘電体膜は耐電圧性に加えて耐水性も向上し、その結果、高湿度下における殺菌性能や脱臭性能の低下も抑制される。このため、本発明に係るプラズマ発生装置は、冷蔵庫や、洗濯機、食器洗浄機等の内部のような湿度が高い環境下でも使用することが可能となる。
本発明に係るプラズマ発生装置の一実施形態を示す模式図である。 同実施形態における電極部を示す平面図である。 同実施形態における電極部のAA線断面図である。 同実施形態における電極部の要部拡大図である。 実施例で作製した供試電極を用いて、脱臭率の比誘電率への依存性を調べた結果を示すグラフである。 実施例で作製した供試電極の耐湿性を示すグラフである。 実施例で作製した供試電極の耐電圧性を示すグラフである。
100・・・プラズマ発生装置
21・・・一方の電極
22・・・他方の電極
21b、22b・・・誘電体膜
 以下に本発明を詳述する。
 本発明に係るプラズマ発生装置は、対向面の少なくとも一方に誘電体膜が形成された一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するものである。このようなプラズマ発生装置としては、例えば、図1に示すような実施形態のものが挙げられる。
 当該実施形態に係るプラズマ発生装置100は、例えば、冷蔵庫、洗濯機、食器洗浄機、衣類乾燥機、掃除機、空調機、空気清浄機等の家庭電化製品に用いられるものであり、当該家庭電化製品の内部又は外部の空気の脱臭やそれら製品内部又は外部の浮遊菌又は付着菌を殺菌するものである。
 より詳細には、プラズマ発生装置100は、図1に示すように、マイクロギャッププラズマ(Micro Gap Plasma)によりイオンやラジカル等の活性種を生成させるプラズマ電極部2と、プラズマ電極部2の外部に設けられてプラズマ電極部2に強制的に風(空気流)を送る送風機構3と、プラズマ電極部2に所定電圧を印加してプラズマ放電させる電圧印加手段4とを備えている。
 プラズマ電極部2は、図2~4に示すように、基板21a、22aの対向面に誘電体膜21b、22bを設け、反対向面に絶縁体膜21c、22cを設けた一対の電極21、22を有し、それら電極21、22間に電圧印加手段4により所定電圧が印加されてプラズマ放電するものである。各電極21、22は、平面視において(電極21、22の面板方向から見たときに)概略矩形状をなすものであり、電極部2の電極21、22の縁部には、電圧印加手段4からの電圧が印加される印加端子2Tが形成されている。
 基板21a、22aは、例えば、オーステナイト系、フェライト系、マルテンサイト系等のステンレス鋼や、鉄、銅、アルミニウム等の導体からなるものであり、一方、絶縁体膜21c、22cは、例えば、酸化物、炭化物、窒化物、ホウ化物、ガラスや、エポキシ樹脂、ポリエステル樹脂、ポリエーテルサルホン(PES)樹脂、フッ素樹脂等の樹脂等からなるものである。
 各電極21、22には、各電極21、22の対応する箇所にそれぞれ流体流通孔21d、22dを設けて、これらが連通して全体として貫通するように構成されている。
 送風機構3は、プラズマ電極部2の電極22に対向するように配置されており、プラズマ電極部2に形成された流体流通孔21d、22d(完全開口部)に向かって強制的に風を送る送風ファンを有するものである。
 電圧印加手段4は、電源41と当該電源41からの電圧をパルス電圧に変換して各電圧を印加する駆動回路部42とを備えている。
 本実施形態に係るプラズマ発生装置100は、2枚の対向した電極21、22の隙間にプラズマを発生させ、流体流通孔21d、22dに送風機構3によって風を送り込み、電極21、22近傍で脱臭を行い、プラズマ中で生成された活性種を閉空間に放出し付着菌の殺菌を行う。
 本発明に係るプラズマ発生装置は、誘電体膜の比誘電率が20~200であるものである。誘電体膜の比誘電率がこの範囲内であると、オゾン発生が抑制される一方で、イオンやラジカル等の活性種の発生量は増加し、脱臭性能や殺菌性能が向上する。好ましい比誘電率は30~110であり、より好ましくは50~90である。
 このような比誘電率を有する誘電体膜は、例えば、誘電体材料とガラス材料とを含有する混合物から形成することができる。誘電体材料にガラス材料を混入させることにより、比誘電率を上記の範囲内に調整することができるので、オゾン発生を抑制しつつ、イオンやラジカル等の活性種の発生量を増加させることができる。また、誘電体材料にガラス材料を混入させることにより、誘電体膜の緻密性が向上するので、当該誘電体膜は耐電圧性に加えて耐水性も向上し、その結果、湿度からの電極の回復力も向上し、冷蔵庫や、洗濯機、食器洗浄機等の内部のような湿度が高い環境下でプラズマ発生装置を使用することも可能となる。また、融点が高く基板への結着性に劣る誘電体材料に、より融点の低いガラス材料を混入させることにより、ガラス材料が結着剤として機能し、誘電体膜の基板への結着性も向上する。
 このような誘電体材料としては、例えば、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、Mg、Si等を含むものが用いられる。これらの元素を含む誘電体材料としては、例えば、酸化物、炭化物、窒化物、ホウ化物等が挙げられ、より具体的には、BaO、TiO、CaO、ZrO、Sr、Y、MgO、BaTiO、SrTiO、BCTZ(チタン酸ジルコン酸バリウムカルシウム(BaO、TiO、CaO、及び、ZrOの混合物))、BTZ(チタン酸ジルコン酸バリウム(BaO、TiO、及び、ZrOの混合物))、Zr、SrB、CaB、MgB、BN、TiN、ZrN、Ca、Si、SiC、TiC、CaC2、ZrC等が挙げられる。
 一方、前記ガラス材料としては、例えば、その構成元素として、Si、Bi、B、Zr、Na、K、Ca、Mg等を含むものが用いられる。これらの元素を含むガラス材料としては、例えば、B-ZnO-La系、P-B-R’O-R”O-TiO-Nb-WO-Bi系(式中、R’はアルカリ金属を表し、R” はアルカリ土類金属を表す。以下同じ。)、TeO-ZnO系、B-Bi系、B-ZnO-Bi系、SiO-Bi系、SiO-ZnO系、B-ZnO系、P-ZnO系、SiO系、R’O-R”O-SiO系、SiO-B-R’O系、SiO-Al-R’O系、ZrO-SiO系等のガラスが挙げられる。
 前記誘電体膜を形成する混合物において、ガラス材料の含有量は、質量換算で、誘電体材料の含有量の0.2~10倍であることが好ましい。誘電体材料とガラス材料との含有量の比率がこの範囲内であれば、誘電体膜の比誘電率を20~200にすることが可能となる。より好ましい含有量の比率(ガラス材料/誘電体材料)は0.5~3.0倍であり、0.8~2.0倍であるのが更に好ましい。
 また、前記誘電体膜の表面粗さ(算出平均粗さRa)は、0.1~100μmであることが好ましい。誘電体膜の平面粗さがこの範囲内であれば、各電極を重ね合わせるだけで、対向面間に空隙が形成されて、当該空隙内にプラズマを発生させることができ、各電極間にプラズマ形成用の空隙を形成するためのスペーサが不要となる。なお、当該誘電体膜の表面粗さは、例えば、印刷法によって制御することが可能である。
 本発明において電極を作製するには、例えば、(1)まず、基板をプレス、エッチング等して、基板に開口部を形成する。(2)次いで、基板の裏面(反対向面)に、真空蒸着、スパッタリング、電界めっき、印刷等により絶縁体膜を形成する。なお、絶縁体膜を樹脂から形成する場合はこの工程は最後に行う。(3)更に、誘電体材料とガラス材料との混合物を調製する。この際、誘電体膜の比誘電率が20~200になるように、ガラス材料の質量が誘電体材料の質量の0.2~10倍であるような比率で混合する。例えば、BaTiOとB-ZnO-Bi系ガラスとを用いる場合は、当該ガラス粉末の質量がBaTiO粉末の質量に対し0.5~3.0倍になるように調整するのが好ましい。また、誘電体材料とガラス材料との混合物の塗布性を向上させるために、必要に応じて、当該混合物にバインダーを添加してペースト状にしてもよい。(4)次いで、基板の表面(対向面)に、真空蒸着、スパッタリング、溶射、印刷等により誘電体膜を形成する。(5)その後、焼成を行うことにより電極が得られる。
 このように構成された本発明によれば、従来技術に比べてオゾン発生を抑えながら、イオンやラジカル等の活性種を発生させることにより、安全性を確保しつつ殺菌及び脱臭力を向上させることが可能となる。特に本発明によれば、従来技術では不可能だった表面付着菌の殺菌が可能となり、例えば、冷蔵庫内の内壁表面の清潔度を向上させることができる。また、従来のプラズマ発生装置は高湿度下や結露条件下では使用できなかったが、本発明に係るプラズマ発生装置であれば、冷蔵庫に限定されず、洗濯機、食器洗浄機等の水分が存在する環境でも使用することが可能となる。
 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
<供試電極の作製>
 以下のようにして各評価試験に供する電極を作製した。
(1)絶縁体膜の形成
 まず、SUS基板(SUS304製、厚み1.0mm)をプレスして、当該基板に開口部を形成した。次いで、開口部を形成した基板の裏面に、SiO-ZnO-RO(式中、Rはアルカリ土類金属(Mg、Ca、Sr、Ba)を表す。)の組成を有するガラスペースト(旭硝子製、AP5700C)を、スクリーン印刷機(ニューロング精密工業製、LS-150)を用いて印刷し、基板の裏面を絶縁した。その後、乾燥機(エスペック製、PVC-212)により120℃で20分間乾燥し、乾燥後の膜厚が30~40μm程度の絶縁体膜を形成した。
(2)誘電体膜の形成
 BaTiO粉末とB-ZnO-Bi系ガラス粉末とを、下記表1に示す比率(質量換算)で混合し、更に、得られた混合物とバインダー(日進化成製、EC100-FTP)とを、当該混合物の質量がバインダーの質量に対し20質量%となるように混合し、撹拌機(シンキー製、ARE-310)により10分間撹拌した。
 得られた含バインダー混合物を、三本ロールミル(永瀬スクリーン印刷研究所製、EXAKT M-80S)を用いて攪拌した後、溶剤(関東化学製、α-テルピネオール)で印刷しやすい粘度に希釈して、誘電体ペーストを調製した。
 得られた誘電体ペーストをSUS基板の表面にスクリーン印刷機(ニューロング精密工業製、LS-150)を用いて印刷し、次いで、乾燥機(エスペック製、PVC-212)により120℃で20分間乾燥し、乾燥後膜厚が100~200μm程度の誘電体膜を形成した。
Figure JPOXMLDOC01-appb-T000001
(3)電極の作製
 表面に誘電体膜が形成され、裏面に絶縁体膜が形成されたSUS基板を、マッフル炉(デンケン製、S90)を用いて、850℃で10分間、5℃/分で昇降温させて焼成し、電極を作製した。
<試験1>脱臭率の比誘電率への依存性評価
 得られた電極を用いて図1に示すようなプラズマ発生装置を組み立て、当該プラズマ発生装置を用いて、以下のような手順で試験を行った。
(1)プラズマ発生装置の電極を通過する風速が1~2m/sとなるように、送風機構を調整する。
(2)電極から10mmの距離でのオゾン濃度が0.02ppmとなるように印加電圧を調節する。
(3)100Lの樹脂製密閉容器内にプラズマ発生装置を設置する。
(4)メチルメルカプタン(MMP)のガス(30ppm、130mL)を前記容器内に注入する。
(5)検知管にて臭気濃度を測定し、得られた値を初期値とする。
(6)プラズマ発生装置を動作させる。
(7)2時間経過後、前記容器内の臭気濃度を測定し、初期濃度と比較し、脱臭率を求める。
(8)比誘電率の異なる誘電体膜が形成された電極を備えたプラズマ発生装置に対し、手順(1)~(7)を繰り返す。
得られた結果は図5のグラフに示した。
 図5のグラフに示すように、比誘電率が20~200の範囲以内であれば、良好な脱臭性能が発現されることが明らかとなった。
<試験2>電極の耐湿性評価
 以下のような手順で試験を行った。
(1)試験1で用いたプラズマ発生装置のうち、誘電体膜の比誘電率が67であるプラズマ発生装置を本発明品として用いて、プラズマ発生装置の電極を通過する風速が1~2m/sとなるように、送風機構を調整する。
(2)電極から10mmの距離でのオゾン濃度が0.02ppmとなるように印加電圧を調節する。
(3)電極から100mmの距離での空気イオン数(負イオン数)を測定し、得られた値を初期値とする。
(4)温度2~3℃、湿度60~80%の冷蔵庫内で15分間動作させる(電極の冷却)。
(5)冷蔵庫からプラズマ発生装置を動作させたまま取り出し(結露発生)、手順(3)と同様に空気イオン数の測定を開始する。
(6)イオン数が初期値の90%に回復する時間を測定する。
(7)溶射法により誘電体膜が形成された従来品のプラズマ発生装置に対し、手順(1)~(6)を繰り返す。
得られた結果は図6のグラフに示した。
 図6のグラフに示すように、本発明品は従来品に比べ、耐湿性(結露状態からの回復性能)が約5倍向上していることが明らかとなった。なお、試験1で用いたプラズマ発生装置の全てについて同様の傾向が観察されたので、膜中のガラスに起因して誘電体膜が緻密に形成され、耐湿性が向上したと考えられる。
<試験3>電極の耐電圧性評価
 BaTiOとB-ZnO-Bi系ガラスとの混合比率(ガラス/BaTiO(質量換算))を変えた誘電体膜が形成された各種電極を用いて、IS C 2110-1記載の絶縁破壊の強さの測定を、商用周波数交流の電圧を印加し行った。絶縁破壊は瞬間的に1A以上の電流が流れた時に生じたとして、その電圧が破壊電圧であるとした。得られた結果は図7のグラフに示した。
 図7のグラフに示すように、BaTiOとB-ZnO-Bi系ガラスとの混合比率(ガラス/BaTiO(質量換算))が0.2以上となるように、BaTiOに前記ガラスを添加することにより、誘電体膜の耐電圧性も顕著に向上することが明らかとなった。
 本発明によれば、オゾン発生を抑制しつつ、イオンやラジカル等の活性種の発生量を増加させて、殺菌性能や脱臭性能を安全に向上させたプラズマ発生装置を提供することができる。更に、誘電体膜を誘電体材料とガラス材料との混合物から形成することにより、誘電体膜の緻密性が向上するので、当該誘電体膜は耐電圧性に加えて耐水性も向上し、その結果、高湿度下における殺菌性能や脱臭性能の低下も抑制される。このため、本発明に係るプラズマ発生装置は、冷蔵庫や、洗濯機、食器洗浄機等の内部のような湿度が高い環境下でも使用することが可能となる。
 

Claims (7)

  1.  対向面の少なくとも一方に誘電体膜が形成された一対の電極を備え、それら電極間に所定電圧が印加されてプラズマ放電するプラズマ発生装置であって、
     前記誘電体膜の比誘電率が、20~200であることを特徴とするプラズマ発生装置。
  2.  前記誘電体膜が、誘電体材料とガラス材料とを含有する混合物から形成されてなるものである請求項1記載のプラズマ発生装置。
  3.  前記混合物における前記ガラス材料の含有量が、質量換算で、前記混合物における前記誘電体材料の含有量の0.2~10倍である請求項2記載のプラズマ発生装置。
  4.  前記誘電体材料が、その構成元素として、Ba、Ti、Ca、Zr、Sr、Y、Mg、及び、Siからなる群より選択される少なくとも1つの元素を含むものである請求項2記載のプラズマ発生装置。
  5.  前記誘電体材料が、酸化物、炭化物、窒化物、及び、ホウ化物からなる群より選択される少なくとも1種の化合物である請求項2記載のプラズマ発生装置。
  6.  前記ガラス材料が、その構成元素として、Si、Bi、B、Zr、Na、K、Ca、及び、Mgからなる群より選択される少なくとも1つの元素を含むものである請求項2記載のプラズマ発生装置。
  7.  前記誘電体膜の表面粗さが、0.1~100μmである請求項1記載のプラズマ発生装置。
PCT/JP2012/080282 2011-11-24 2012-11-22 プラズマ発生装置 WO2013077396A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280057892.8A CN103988587A (zh) 2011-11-24 2012-11-22 等离子体产生装置
EP12852319.8A EP2785151A4 (en) 2011-11-24 2012-11-22 PLASMA PRODUCING DEVICE
US14/360,106 US20140306597A1 (en) 2011-11-24 2012-11-22 Plasma generating apparatus
KR1020137026364A KR20130135338A (ko) 2011-11-24 2012-11-22 플라즈마 발생 장치
GBGB1407307.6A GB201407307D0 (en) 2011-11-24 2014-04-25 Plasma generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011255741 2011-11-24
JP2011-255741 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013077396A1 true WO2013077396A1 (ja) 2013-05-30

Family

ID=48469838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080282 WO2013077396A1 (ja) 2011-11-24 2012-11-22 プラズマ発生装置

Country Status (7)

Country Link
US (1) US20140306597A1 (ja)
EP (1) EP2785151A4 (ja)
JP (1) JPWO2013077396A1 (ja)
KR (1) KR20130135338A (ja)
CN (1) CN103988587A (ja)
GB (1) GB201407307D0 (ja)
WO (1) WO2013077396A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120748A (zh) * 2017-03-27 2017-09-01 深圳市赛亿科技开发有限公司 一种卫生间空气净化系统和方法
CN109222817A (zh) * 2018-11-26 2019-01-18 珠海格力电器股份有限公司 一种洗碗机及其控制方法
US20240066161A1 (en) * 2021-08-09 2024-02-29 TellaPure, LLC Methods and apparatus for generating atmospheric pressure, low temperature plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224211A (ja) 2000-05-18 2002-08-13 Sharp Corp 殺菌方法、イオン発生装置及び空気調節装置
JP2003079714A (ja) 2001-09-14 2003-03-18 Matsushita Electric Works Ltd 空気清浄機
JP2009081134A (ja) * 2007-09-09 2009-04-16 Kazuo Shimizu プラズマ電極
JP2009245646A (ja) * 2008-03-28 2009-10-22 Ngk Insulators Ltd マイクロプラズマジェット反応器、及びマイクロプラズマジェット発生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123034A (ja) * 2003-10-16 2005-05-12 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
JP2006205085A (ja) * 2005-01-28 2006-08-10 Ngk Insulators Ltd プラズマ処理装置
JP4863743B2 (ja) * 2006-03-24 2012-01-25 日本碍子株式会社 プラズマ発生電極、プラズマ反応器及び排ガス浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224211A (ja) 2000-05-18 2002-08-13 Sharp Corp 殺菌方法、イオン発生装置及び空気調節装置
JP2003079714A (ja) 2001-09-14 2003-03-18 Matsushita Electric Works Ltd 空気清浄機
JP2009081134A (ja) * 2007-09-09 2009-04-16 Kazuo Shimizu プラズマ電極
JP2009245646A (ja) * 2008-03-28 2009-10-22 Ngk Insulators Ltd マイクロプラズマジェット反応器、及びマイクロプラズマジェット発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2785151A4

Also Published As

Publication number Publication date
EP2785151A4 (en) 2015-06-03
GB201407307D0 (en) 2014-06-11
US20140306597A1 (en) 2014-10-16
JPWO2013077396A1 (ja) 2015-04-27
EP2785151A1 (en) 2014-10-01
KR20130135338A (ko) 2013-12-10
CN103988587A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
US8668813B2 (en) Plasma generation method and apparatus
JP4945008B2 (ja) イオン発生素子、電気機器
KR102186432B1 (ko) 플라즈마 전극장치
US9717816B2 (en) Deodorization and sterilization apparatus and method
WO2004102755A2 (ja) イオン発生素子、イオン発生装置、電気機器
WO2013051730A1 (ja) プラズマ発生装置
JP2007305606A5 (ja)
US20120229029A1 (en) Plasma generating apparatus and plasma generating method
KR101954850B1 (ko) 플라즈마 발생 장치 및 플라즈마 발생 방법
JPWO2012063856A1 (ja) プラズマ発生装置、プラズマ発生方法及びオゾン発生抑制方法
WO2013077396A1 (ja) プラズマ発生装置
JPWO2013085045A1 (ja) プラズマ発生装置
US20140010708A1 (en) Plasma generator, and plasma generating method
KR20170115646A (ko) 플렉서블 활성종 발생기 및 이의 용도
JP2014120312A (ja) プラズマ発生装置
JP2005038616A (ja) イオン発生装置及びこれを備えた電気機器
JP2012226949A (ja) プラズマ発生装置及びプラズマ発生方法
JP2012187225A (ja) プラズマ発生装置及びプラズマ発生方法
JP2005327696A (ja) イオン発生装置及びこれを備えた電気機器
JP3847105B2 (ja) イオン発生装置を備えた電気機器
JP2005268126A (ja) イオン発生装置及びこれを備えた電気機器
JP2013004385A (ja) イオン発生装置及び電気機器
JP2011075269A (ja) 負電荷酸素原子発生機能付加湿装置
ITMI20111744A1 (it) Dispositivo elettrocinetico per la movimentazione, la depurazione ed il condizionamento termico dell'aria.
JP2006294439A (ja) イオン発生装置及びこれを備えた電気機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013521688

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137026364

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1407307.6

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14360106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012852319

Country of ref document: EP