WO2013077308A1 - Electrolyte jet processing device and electrolyte jet processing method - Google Patents

Electrolyte jet processing device and electrolyte jet processing method Download PDF

Info

Publication number
WO2013077308A1
WO2013077308A1 PCT/JP2012/080035 JP2012080035W WO2013077308A1 WO 2013077308 A1 WO2013077308 A1 WO 2013077308A1 JP 2012080035 W JP2012080035 W JP 2012080035W WO 2013077308 A1 WO2013077308 A1 WO 2013077308A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
nozzle
workpiece
gas
electrolytic solution
Prior art date
Application number
PCT/JP2012/080035
Other languages
French (fr)
Japanese (ja)
Inventor
国枝 正典
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2013077308A1 publication Critical patent/WO2013077308A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/026Electroplating of selected surface areas using locally applied jets of electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers

Definitions

  • the present invention relates to a technique for performing electrolytic solution jet machining on a workpiece.
  • Electrolyte jet machining is a machining method in which an electrolytic solution is ejected from a nozzle toward a workpiece (so-called workpiece), and the workpiece is electrolyzed by applying a voltage using the nozzle as a cathode and the workpiece as an anode. . Since this processing method is a chemical processing method, there is an advantage that thermal processing and mechanical processing do not have, that is, a work-affected layer, residual stress, cracks, and burrs are not generated. In addition, since the machining amount is determined by the amount of electricity, there is a feature that adjustment of the gap between the workpiece and the nozzle is unnecessary (see Non-Patent Document 1 below).
  • the water jump phenomenon occurs sufficiently away from the nozzle, resulting in a radially thin layer flow field, in which the current density is concentrated directly under the jet, and only under the jet is selectively processed. be able to.
  • the electrolyte jumping phenomenon may occur in the vicinity of the nozzle.
  • a flow field of a radial thin layer cannot be obtained, and the current density distribution is diffused in the electrolytic solution accumulated in the vicinity of the nozzle, so that the processed shape is destroyed.
  • Non-Patent Document 2 shows that, for this problem, the electrolytic solution jet processing can be performed by blowing air from an air nozzle installed beside the electrolytic solution nozzle and removing the liquid reservoir of the electrolytic solution. .
  • the machining phenomenon is not axially symmetric, and the machining accuracy may be reduced.
  • the present invention has been made in response to the above-described problems.
  • the main object of the present invention is to provide an electrolyte jet machining technique that can be used for fine machining, high aspect ratio machining, or deep hole machining.
  • the electrolyte nozzle is configured to discharge the electrolyte toward the workpiece
  • the gas nozzle is configured to blow gas toward the workpiece in a direction coaxial with the electrolytic solution
  • the power supply is configured to allow a current to flow between the electrolytic solution and the workpiece.
  • (Item 4) Item 4.
  • the electrolyte jet machining apparatus according to any one of Items 1 to 3, comprising a plurality of sets each including the electrolyte nozzle and the gas nozzle.
  • An electrolyte jet machining method comprising: passing an electric current between the electrolyte and the workpiece.
  • an electrolyte jet processing technique that can cope with fine processing, high aspect ratio processing, or deep hole processing.
  • processing apparatus an electrolytic solution jet processing apparatus (hereinafter may be abbreviated as “processing apparatus”) according to an embodiment of the present invention will be described.
  • the processing apparatus of this embodiment includes an electrolyte nozzle 1, a gas nozzle 2, and a power source 3.
  • the processing apparatus further includes a compressor 4, a pressure tank 5, a table 6, a machining tank 7, a processing chamber 8, pipes 9 a and 9 b, and regulators 10 and 11.
  • the electrolytic solution nozzle 1 is configured to discharge the electrolytic solution 12 sent from the pressure tank 5 through the pipe 9a toward the workpiece W (see FIGS. 2 and 3).
  • the gas nozzle 2 is configured to blow a gas 13 toward the workpiece W in a direction coaxial with the electrolyte 12 (see FIGS. 2 and 3). Specifically, the gas nozzle 2 is connected to the compressor 4 via the regulator 11 so that the gas from the compressor 4 can be sent out toward the workpiece W. Here, the gas nozzle 2 is configured to inject the gas 13 so as to be concentric around the jet flow of the electrolytic solution. Moreover, normal air is used as the gas 13 of this embodiment. As the gas, any gas may be used as long as it can exhibit the function of an assist gas as will be described later.
  • the power source 3 is configured to allow a current to flow between the electrolytic solution 12 and the workpiece W via the electrolytic solution nozzle 1.
  • a DC constant current source is used in the present embodiment.
  • the constant current source even if the gap length between the electrolyte nozzle 1 and the workpiece W varies, the machining depth to the workpiece W can be kept constant.
  • the compressor 4 is configured to supply compressed gas to the pressure tank 5 via the regulator 10 and the pipe 9b. Furthermore, the compressor 4 is configured to supply the compressed gas to the gas nozzle 2 via another pipe and the regulator 11.
  • the pressure tank 5 stores the electrolytic solution 12 and supplies the electrolytic solution 12 pressurized by the compressed gas to the electrolytic solution nozzle 1.
  • the table 6 is used to place the workpiece W on the upper surface.
  • the machining tank 7 is configured to accommodate therein the electrolytic solution 12 discharged toward the workpiece W.
  • the machining tank 7 includes a drain portion 701 for sending out the discharged electrolyte solution 12 to the outside.
  • the processing chamber 8 is configured to cover the entire machining tank 7.
  • the regulators 10 and 11 are configured to be able to control the ejection speed of the electrolyte solution 12 and the gas 13 by regulating the flow rate of the compressed gas, respectively.
  • the electrolyte 12 is sprayed from the electrolyte nozzle 1 toward the workpiece W using the pressure of the gas in the pressure tank.
  • the electrolytic solution thus ejected may be referred to as an “electrolytic solution jet”.
  • a voltage is applied between the electrolytic solution nozzle 1 and the workpiece W, that is, between the electrolytic solution 12 and the workpiece W, by the power source 3 to cause a current to flow.
  • the polarity of the current is such that when the workpiece W is removed, the electrolytic solution nozzle 1 side is negative and the workpiece W side is positive, and when the electrodeposit is adhered to the surface of the workpiece W, the electrolysis The liquid nozzle 1 side is positive, and the workpiece W side is negative. Since these points can be the same as those of the already known technology, further detailed description is omitted.
  • the processing in the present embodiment is used as a concept including both “removal of the workpiece by electrolysis” and “adhesion of the electrodeposit on the workpiece”.
  • the gas 13 when the electrolyte solution 12 is ejected, the gas 13 is ejected from the gas nozzle 2 toward the workpiece W (see FIG. 2).
  • the gas 13 can be injected toward the workpiece W coaxially with the injection direction of the electrolyte solution 12 and on the outer peripheral side of the electrolyte solution.
  • the gas thus injected may be referred to as “assist gas”.
  • the gas 13 can be injected in the direction coaxial with the injection direction of the electrolyte solution 12, and the jumping portion can be moved downstream.
  • the flow rate in the radial direction of the electrolyte solution 12 (the flow rate in the direction away from the axis of the electrolyte solution nozzle 1) is increased.
  • the film thickness of the electrolyte solution 12 on the upper surface of the workpiece W can be reduced, and as a result, the current density distribution can be localized directly under the jet (see FIG. 4).
  • Example 1 When the flow rate of the electrolyte jet was small, the possibility of processing with or without assist gas was investigated. Table 1 below shows the experimental conditions. The jet flow rate was adjusted by changing the pressure in the pressure tank 5 by the regulator 10.
  • Nozzle ID is the inner diameter of the nozzle part of the electrolyte nozzle
  • Gap width is the distance between the lower end of the electrolyte nozzle 1 and the surface of the workpiece W
  • Tiank Pressure is The pressure in the pressure tank 5, “Air pressure”, is the pressure of the gas sent out from the compressor 4.
  • SUS304 was used as a workpiece.
  • Fig. 5 (a) shows the state of the electrolyte when the tank pressure is 0.20 MPa and no assist gas
  • Fig. 5 (b) shows the electrolyte solution when the tank pressure is 0.20 MPa and the assist gas pressure is 0.08 MPa. Show the state. From this, it can be seen that the electrolyte solution and the nozzle are in contact with each other when there is no assist gas. On the other hand, when the assist gas is used even at the same flow rate, the water jumping part moves away from the nozzle, and a thin electrolyte film can be formed.
  • Table 2 shows the results of the stability evaluation by changing Tank Pressure and Air Pressure.
  • Example 2 Improvement of aspect ratio of processed shape
  • the current density distribution assumed in the processing apparatus of this example is as shown in FIG. According to this, the current density distribution also spreads in the periphery immediately below the electrolyte jet. Therefore, the diameter of the processing hole becomes larger than the inner diameter of the nozzle, and the processing accuracy tends to deteriorate.
  • Non-Patent Document 1 when the viscosity of the fluid is ignored, the thickness of the electrolyte immediately after the electrolyte jet collides with a flat workpiece is 1/4 of the jet diameter.
  • the electrolyte and air are viscous and mutually exert a shearing force. Therefore, if the flow velocity of the thin film part is accelerated by the shearing force of the assist gas, the thickness of the electrolyte film after the collision with the workpiece can be further reduced from the continuous equation, and the current density distribution is concentrated more directly under the jet. It is thought that it can be made. Thereby, expansion of the diameter of the processing hole is suppressed, and improvement in processing accuracy can be expected.
  • Example 3 deep hole machining
  • the electrolytic solution jet In the hole processing by the electrolytic solution jet, when the processing proceeds as shown in FIG. 7A to FIG. 7B, the electrolytic solution accumulates in the processed hole, and the current density distribution may be concentrated directly under the jet. In the end, only the processing of the side surface proceeds and it becomes impossible to process in the depth direction. In addition, in FIG. 7, the process direction is shown by the arrow described in the workpiece.
  • FIG. 8 shows that deeper holes can be machined when assist gas is used. This is thought to be because the assist gas was discharged from the electrolyte and the current density distribution could be concentrated in the depth direction of the hole instead of the side surface of the hole. However, the processing depth has reached the limit even when using assist gas. This is considered to be because when the processing depth exceeds a certain level, the electrolyte cannot be completely discharged even when the assist gas is used, and the current density cannot be concentrated directly under the jet. .
  • the machining characteristics can be improved by introducing an assist gas coaxial with the electrolyte jet.
  • an assist gas coaxial with the electrolyte jet.
  • a thin electrolyte film that flows radially even when the jet flow rate is small is formed, and local processing becomes possible.
  • the current density is concentrated only directly under the jet due to the shearing force generated by the assist gas, making it possible to perform machining with higher accuracy.
  • by promoting the discharge of the electrolyte in the processed hole it has become possible to process a deeper hole than before.
  • the workpiece is removed as the machining of the workpiece, but the electrodeposit can be attached to the workpiece by reversing the polarity of the power source.
  • a set composed of the electrolyte nozzle 1 and the gas nozzle 2 is densely arranged along one direction (the left-right direction in the figure).
  • the group comprised by the electrolyte nozzle 1 and the gas nozzle 2 is arrange
  • Other configurations and advantages are the same as those of the above-described embodiment.
  • the plurality of electrolyte nozzles 1 are densely arranged along one direction (left and right direction in the figure). And the gas nozzle 2 is arrange
  • Other configurations and advantages are the same as those of the above-described embodiment.
  • the plurality of electrolyte nozzles 1 are arranged in a densely assembled state. And the gas nozzle 2 is arrange
  • the electrolyte solution can be sprayed simultaneously not only at one point but also at multiple points within a specific plane.
  • Other configurations and advantages are the same as those of the above-described embodiment.
  • the cross-sectional shape of the electrolytic solution nozzle 1 is not circular but rectangular.
  • a gas nozzle 2 having a substantially similar cross-sectional shape is disposed so as to surround the electrolytic solution nozzle 1.
  • an electrolytic solution having a certain width can be injected.
  • Other configurations and advantages are the same as those of the above-described embodiment.

Abstract

The purpose of the present invention is to provide electrolyte jet processing technology that can be applied to fine processing, high aspect ratio processing, or deep hole processing. An electrolyte nozzle (1) discharges an electrolyte (12) toward a workpiece (W). A gas nozzle (2) sprays a gas (13) toward the workpiece (W) in a direction that is coaxial with the electrolyte (12). A power supply (3) is constituted so as to be able to make a current flow between the electrolyte and the workpiece.

Description

電解液ジェット加工装置及び電解液ジェット加工方法Electrolyte jet machining apparatus and electrolyte jet machining method
 本発明は、工作物に対する電解液ジェット加工を行うための技術に関するものである。 The present invention relates to a technique for performing electrolytic solution jet machining on a workpiece.
 電解液ジェット加工とは、ノズルから電解液を工作物(いわゆるワーク)に向けて噴出し、ノズルを陰極、工作物を陽極として電圧を印加することによって、工作物を電解溶出させる加工法である。この加工法は化学的加工方法であるため、加工変質層や残留応力、クラック、バリが発生しないという、熱的加工や機械的加工にはない利点を持っている。また、加工量は電気量によって決定されるため、工作物とノズル間のギャップ調節が不要であるという特徴も有している(下記非特許文献1参照)。 Electrolyte jet machining is a machining method in which an electrolytic solution is ejected from a nozzle toward a workpiece (so-called workpiece), and the workpiece is electrolyzed by applying a voltage using the nozzle as a cathode and the workpiece as an anode. . Since this processing method is a chemical processing method, there is an advantage that thermal processing and mechanical processing do not have, that is, a work-affected layer, residual stress, cracks, and burrs are not generated. In addition, since the machining amount is determined by the amount of electricity, there is a feature that adjustment of the gap between the workpiece and the nozzle is unnecessary (see Non-Patent Document 1 below).
 電解液ジェット加工では、跳水現象がノズルから十分離れたところで生じることにより、放射状に薄い層の流れ場が生じ、その中で電流密度が噴流直下に集中し、噴流直下のみを選択的に加工することができる。 In electrolyte jet machining, the water jump phenomenon occurs sufficiently away from the nozzle, resulting in a radially thin layer flow field, in which the current density is concentrated directly under the jet, and only under the jet is selectively processed. be able to.
 ところで、微細加工の場合には、電解液の流量が小さいため、電解液の跳水現象がノズル近傍で起こってしまうことがある。この場合には、放射状の薄い層の流れ場が得られず、ノズル近傍に溜まった電解液の中で電流密度分布が拡散し、加工形状が崩れてしまう。 By the way, in the case of microfabrication, since the flow rate of the electrolytic solution is small, the electrolyte jumping phenomenon may occur in the vicinity of the nozzle. In this case, a flow field of a radial thin layer cannot be obtained, and the current density distribution is diffused in the electrolytic solution accumulated in the vicinity of the nozzle, so that the processed shape is destroyed.
 下記非特許文献2は、この問題に対して、電解液ノズルの横に設置したエアーノズルから空気を吹きかけて電解液の液溜りを除去することによって、電解液ジェット加工を行えることを示している。しかしながら、この文献では、斜め方向からエアーを工作物に吹きつけているため、加工現象が軸対称ではなくなり、加工精度が低下する可能性がある。 The following Non-Patent Document 2 shows that, for this problem, the electrolytic solution jet processing can be performed by blowing air from an air nozzle installed beside the electrolytic solution nozzle and removing the liquid reservoir of the electrolytic solution. . However, in this document, since air is blown onto the workpiece from an oblique direction, the machining phenomenon is not axially symmetric, and the machining accuracy may be reduced.
 また、従来の電解液ジェット加工では、工作物の加工が進むと、加工済みの部分に電解液が溜まるため、高アスペクト比の加工が難しく、また、深穴加工も難しいという問題もあった。 Further, in the conventional electrolytic solution jet machining, as the work of the workpiece progresses, the electrolytic solution accumulates in the processed portion, so that there is a problem that high aspect ratio machining is difficult and deep hole machining is also difficult.
 本発明は、前記した課題に対応してなされたものである。本発明の主な目的は、微細加工、高アスペクト比加工あるいは深穴加工に対応可能な電解液ジェット加工の技術を提供することである。 The present invention has been made in response to the above-described problems. The main object of the present invention is to provide an electrolyte jet machining technique that can be used for fine machining, high aspect ratio machining, or deep hole machining.
 前記した課題を解決する手段は、以下の項目のように記載できる。 The means for solving the above-described problems can be described as the following items.
 (項目1)
 電解液ノズルと、気体ノズルと、電源とを備えており、
 前記電解液ノズルは、工作物に向けて電解液を放出する構成とされており、
 前記気体ノズルは、前記電解液と同軸となる方向において、前記工作物に向けて気体を吹きつける構成となっており、
 前記電源は、前記電解液と前記工作物との間に電流を流すことができる構成となっている
 ことを特徴とする電解液ジェット加工装置。
(Item 1)
It has an electrolyte nozzle, a gas nozzle, and a power source.
The electrolyte nozzle is configured to discharge the electrolyte toward the workpiece,
The gas nozzle is configured to blow gas toward the workpiece in a direction coaxial with the electrolytic solution,
The power supply is configured to allow a current to flow between the electrolytic solution and the workpiece.
 (項目2)
 前記気体ノズルは、前記気体を、前記電解液を中心として同心円状となるように、前記工作物に向けて吹きつける構成とされている
 項目1に記載の電解液ジェット加工装置。
(Item 2)
The electrolyte jet machining apparatus according to claim 1, wherein the gas nozzle is configured to blow the gas toward the workpiece so as to be concentric with the electrolyte as a center.
 (項目3)
 前記電源は定電流源である、項目1又は2に記載の電解液ジェット加工装置。
(Item 3)
3. The electrolytic solution jet machining apparatus according to item 1 or 2, wherein the power source is a constant current source.
 (項目4)
 前記電解液ノズルと前記気体ノズルとで構成される組を複数個備えている
 項目1~3のいずれか1項に記載の電解液ジェット加工装置。
(Item 4)
Item 4. The electrolyte jet machining apparatus according to any one of Items 1 to 3, comprising a plurality of sets each including the electrolyte nozzle and the gas nozzle.
 (項目5)
 前記電解液ノズルを複数個備えており、前記気体ノズルは、これら複数個の電解液ノズルを囲うように配置されている
 項目1~4のいずれか1項に記載の電解液ジェット加工装置。
(Item 5)
Item 5. The electrolyte jet machining apparatus according to any one of Items 1 to 4, wherein a plurality of the electrolyte nozzles are provided, and the gas nozzle is disposed so as to surround the plurality of electrolyte nozzles.
 (項目6)
 電解液を工作物に向けて放出するステップと、
 前記電解液と同軸となる方向において、前記工作物に向けて気体を吹きつけるステップと、
 前記電解液と前記工作物との間で電流を流すステップと
 を備える電解液ジェット加工方法。
(Item 6)
Discharging the electrolyte toward the workpiece;
Blowing gas toward the workpiece in a direction coaxial with the electrolyte; and
An electrolyte jet machining method comprising: passing an electric current between the electrolyte and the workpiece.
 本発明によれば、微細加工、高アスペクト比加工あるいは深穴加工に対応可能な電解液ジェット加工の技術を提供することが可能となる。 According to the present invention, it is possible to provide an electrolyte jet processing technique that can cope with fine processing, high aspect ratio processing, or deep hole processing.
本発明の一実施形態における電解液ジェット加工装置の全体的な構成を示す説明図である。It is explanatory drawing which shows the whole structure of the electrolyte solution jet processing apparatus in one Embodiment of this invention. 電解液ノズルの先端部分を示す拡大図である。It is an enlarged view which shows the front-end | tip part of an electrolyte solution nozzle. 電解液ノズル及び気体ノズルの詳しい構成を示す拡大断面図である。It is an expanded sectional view which shows the detailed structure of an electrolyte solution nozzle and a gas nozzle. 電解液ノズルの下方における電流密度分布を示すグラフである。It is a graph which shows the current density distribution in the downward direction of an electrolyte solution nozzle. 実施例1の効果を説明するための写真であって、図(a)は、アシストガス無しの例、図(b)はアシストガスありの例を示す。It is a photograph for demonstrating the effect of Example 1, Comprising: The figure (a) shows the example without assist gas, and the figure (b) shows the example with assist gas. アシストガスを用いた場合におけるアスペクト比の向上を説明するためのグラフである。It is a graph for demonstrating the improvement of the aspect-ratio in the case of using assist gas. アシストガスがない場合に深穴加工が難しい理由を説明するための説明図である。It is explanatory drawing for demonstrating why a deep hole process is difficult when there is no assist gas. アシストガスを用いた場合における深穴加工の結果を説明するためのグラフである。It is a graph for demonstrating the result of the deep hole process at the time of using assist gas. 本発明の変形例1における電解液ノズルと気体ノズルの配置状態を説明するための説明図である。It is explanatory drawing for demonstrating the arrangement state of the electrolyte solution nozzle and gas nozzle in the modification 1 of this invention. 本発明の変形例2における電解液ノズルと気体ノズルの配置状態を説明するための説明図である。It is explanatory drawing for demonstrating the arrangement state of the electrolyte solution nozzle and gas nozzle in the modification 2 of this invention. 本発明の変形例3における電解液ノズルと気体ノズルの配置状態を説明するための説明図である。It is explanatory drawing for demonstrating the arrangement state of the electrolyte solution nozzle and gas nozzle in the modification 3 of this invention. 本発明の変形例4における電解液ノズルと気体ノズルの配置状態を説明するための説明図である。It is explanatory drawing for demonstrating the arrangement state of the electrolyte solution nozzle and gas nozzle in the modification 4 of this invention.
 以下、添付図面を参照しながら、本発明の一実施形態に係る電解液ジェット加工装置(以下、「加工装置」と略称することがある)について説明する。 Hereinafter, with reference to the accompanying drawings, an electrolytic solution jet processing apparatus (hereinafter may be abbreviated as “processing apparatus”) according to an embodiment of the present invention will be described.
 (電解液ジェット加工装置の構成)
 本実施形態の加工装置は、図1に示すように、電解液ノズル1と、気体ノズル2と、電源3とを備えている。さらに、この加工装置は、コンプレッサ4と、圧力タンク5と、テーブル6と、マシニングタンク7と、加工室8と、配管9a,9bと、レギュレータ10,11とを備えている。
(Configuration of electrolyte jet processing equipment)
As shown in FIG. 1, the processing apparatus of this embodiment includes an electrolyte nozzle 1, a gas nozzle 2, and a power source 3. The processing apparatus further includes a compressor 4, a pressure tank 5, a table 6, a machining tank 7, a processing chamber 8, pipes 9 a and 9 b, and regulators 10 and 11.
 電解液ノズル1は、圧力タンク5から、配管9aを介して送られた電解液12を工作物Wに向けて放出する構成とされている(図2及び図3参照)。 The electrolytic solution nozzle 1 is configured to discharge the electrolytic solution 12 sent from the pressure tank 5 through the pipe 9a toward the workpiece W (see FIGS. 2 and 3).
 気体ノズル2は、電解液12と同軸となる方向において、工作物Wに向けて気体13を吹きつける構成となっている(図2及び図3参照)。具体的には、気体ノズル2は、レギュレータ11を介してコンプレッサ4に接続されており、コンプレッサ4からの気体を工作物Wに向けて送り出すことができるようになっている。ここで、気体ノズル2は、気体13を、電解液のジェット流を中心として同心円状となるように噴射する構成となっている。また、本実施形態の気体13としては、通常の空気が用いられている。気体としては、後述するようなアシストガスの機能を発揮できるものであれば、どのようなものを用いても良い。 The gas nozzle 2 is configured to blow a gas 13 toward the workpiece W in a direction coaxial with the electrolyte 12 (see FIGS. 2 and 3). Specifically, the gas nozzle 2 is connected to the compressor 4 via the regulator 11 so that the gas from the compressor 4 can be sent out toward the workpiece W. Here, the gas nozzle 2 is configured to inject the gas 13 so as to be concentric around the jet flow of the electrolytic solution. Moreover, normal air is used as the gas 13 of this embodiment. As the gas, any gas may be used as long as it can exhibit the function of an assist gas as will be described later.
 電源3は、電解液ノズル1を介して、電解液12と工作物Wとの間に電流を流すことができる構成となっている。電源3としては、本実施形態では、直流の定電流源が用いられている。定電流源を用いることにより、電解液ノズル1と工作物Wとの間のギャップ長が変動しても、工作物Wへの加工深さを一定に保つことができる。ただし、表面の凹凸を平滑にしたいなどのように、ギャップ長が狭いときほど加工量を多くしたいという場合には、電源3として定電圧源を使用することも好適である。また、電源3として定電流源を用いた場合でも、電流のオンオフや、電流値の変動は、電解液ノズル1の走査と同期して制御することができるようになっている。 The power source 3 is configured to allow a current to flow between the electrolytic solution 12 and the workpiece W via the electrolytic solution nozzle 1. As the power source 3, a DC constant current source is used in the present embodiment. By using the constant current source, even if the gap length between the electrolyte nozzle 1 and the workpiece W varies, the machining depth to the workpiece W can be kept constant. However, it is also preferable to use a constant voltage source as the power source 3 when it is desired to increase the amount of processing as the gap length is narrow, such as when it is desired to smooth the surface irregularities. Even when a constant current source is used as the power source 3, current on / off and current value fluctuations can be controlled in synchronization with scanning of the electrolyte nozzle 1.
 コンプレッサ4は、レギュレータ10と配管9bを介して圧力タンク5へ、圧縮された気体を供給する構成となっている。さらに、コンプレッサ4は、別の配管とレギュレータ11を介して、圧縮された気体を気体ノズル2に供給する構成となっている。 The compressor 4 is configured to supply compressed gas to the pressure tank 5 via the regulator 10 and the pipe 9b. Furthermore, the compressor 4 is configured to supply the compressed gas to the gas nozzle 2 via another pipe and the regulator 11.
 圧力タンク5は、電解液12を収容するとともに、圧縮気体によって加圧された電解液12を電解液ノズル1に供給する構成となっている。 The pressure tank 5 stores the electrolytic solution 12 and supplies the electrolytic solution 12 pressurized by the compressed gas to the electrolytic solution nozzle 1.
 テーブル6は、工作物Wを上面に載置するものである。 The table 6 is used to place the workpiece W on the upper surface.
 マシニングタンク7は、工作物Wに向けて放出された電解液12を内部に収容する構成となっている。マシニングタンク7は、放出された電解液12を外部に送り出すためのドレイン部701を備えている。 The machining tank 7 is configured to accommodate therein the electrolytic solution 12 discharged toward the workpiece W. The machining tank 7 includes a drain portion 701 for sending out the discharged electrolyte solution 12 to the outside.
 加工室8は、マシニングタンク7全体を覆うように構成されている。レギュレータ10,11は、圧縮気体の流量を規制することにより、電解液12及び気体13の噴出速度をそれぞれ制御できる構成となっている。 The processing chamber 8 is configured to cover the entire machining tank 7. The regulators 10 and 11 are configured to be able to control the ejection speed of the electrolyte solution 12 and the gas 13 by regulating the flow rate of the compressed gas, respectively.
 (本実施形態の動作)
 以下、本実施形態の動作について説明する。
(Operation of this embodiment)
Hereinafter, the operation of this embodiment will be described.
 本実施形態では、圧力タンク内の気体の圧力を利用して、電解液ノズル1から工作物Wに向けて、電解液12を噴射する。以下においては、このように噴射された電解液を「電解液ジェット」と呼ぶことがある。その際、電源3によって、電解液ノズル1と工作物Wとの間、すなわち、電解液12と工作物Wとの間に電圧を印加して電流を流す。この電流の極性は、工作物Wの除去を行う場合には、電解液ノズル1側をマイナス、工作物W側をプラスとし、工作物Wの表面に電着物の付着を行う場合には、電解液ノズル1側をプラス、工作物W側をマイナスとする。これらの点は既に知られている技術と同様とすることができるので、これ以上詳しい説明を省略する。なお、本実施形態における加工とは、「電解による工作物の除去」と「工作物への電着物の付着」との両方を含む概念として用いられている。 In the present embodiment, the electrolyte 12 is sprayed from the electrolyte nozzle 1 toward the workpiece W using the pressure of the gas in the pressure tank. In the following, the electrolytic solution thus ejected may be referred to as an “electrolytic solution jet”. At that time, a voltage is applied between the electrolytic solution nozzle 1 and the workpiece W, that is, between the electrolytic solution 12 and the workpiece W, by the power source 3 to cause a current to flow. The polarity of the current is such that when the workpiece W is removed, the electrolytic solution nozzle 1 side is negative and the workpiece W side is positive, and when the electrodeposit is adhered to the surface of the workpiece W, the electrolysis The liquid nozzle 1 side is positive, and the workpiece W side is negative. Since these points can be the same as those of the already known technology, further detailed description is omitted. The processing in the present embodiment is used as a concept including both “removal of the workpiece by electrolysis” and “adhesion of the electrodeposit on the workpiece”.
 さらに、本実施形態では、電解液12を噴出する際に、気体ノズル2から気体13を工作物Wに向けて噴射する(図2参照)。これにより、本実施形態では、電解液12の噴射方向と同軸に、かつ、前記電解液の外周側において、気体13を工作物Wに向けて噴射することができる。なお、以下においては、このように噴射された気体を「アシストガス」と呼ぶことがある。 Furthermore, in this embodiment, when the electrolyte solution 12 is ejected, the gas 13 is ejected from the gas nozzle 2 toward the workpiece W (see FIG. 2). Thereby, in this embodiment, the gas 13 can be injected toward the workpiece W coaxially with the injection direction of the electrolyte solution 12 and on the outer peripheral side of the electrolyte solution. In the following, the gas thus injected may be referred to as “assist gas”.
 前記した従来の技術では、電解液ジェットの流量が小さい場合、跳水部がノズルから半径方向に十分離れず、薄い層状の流れ場が崩壊するため、噴流直下に電流密度を集中させることができず、局所的な加工ができなくなってしまうという問題があった。これに対して、本実施形態の加工装置によれば、前記したように電解液12の噴射方向と同軸の方向に気体13を噴射し、跳水部を下流へと遠ざけることができる。また、噴射された気体13の流れが電解液12に与えるせん断力により、電解液12の半径方向における流速(電解液ノズル1の軸心から離れる方向の流速)を増大する。これにより、工作物Wの上面における電解液12の膜厚を薄くすることができ、この結果、電流密度分布を噴流直下に局在化できる(図4参照)。 In the conventional technique described above, when the flow rate of the electrolyte jet is small, the water jumping portion is not sufficiently separated from the nozzle in the radial direction, and the thin layered flow field collapses, so that the current density cannot be concentrated directly under the jet. There was a problem that local processing could not be performed. On the other hand, according to the processing apparatus of the present embodiment, as described above, the gas 13 can be injected in the direction coaxial with the injection direction of the electrolyte solution 12, and the jumping portion can be moved downstream. Further, due to the shearing force applied to the electrolyte solution 12 by the flow of the injected gas 13, the flow rate in the radial direction of the electrolyte solution 12 (the flow rate in the direction away from the axis of the electrolyte solution nozzle 1) is increased. Thereby, the film thickness of the electrolyte solution 12 on the upper surface of the workpiece W can be reduced, and as a result, the current density distribution can be localized directly under the jet (see FIG. 4).
 (実施例1)
 電解液ジェットの流量が小さい場合において、アシストガスの有無による加工の可否を調査した。下記表1に実験条件を記す。ジェット流量は、レギュレータ10により、圧力タンク5内の圧力を変えることにより調節した。
Example 1
When the flow rate of the electrolyte jet was small, the possibility of processing with or without assist gas was investigated. Table 1 below shows the experimental conditions. The jet flow rate was adjusted by changing the pressure in the pressure tank 5 by the regulator 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表において、「Nozzle ID」は、電解液ノズルの噴出口部分の内径、「Gap width」とは、電解液ノズル1の下端と工作物Wの表面との距離、「Tank Pressure」とは、圧力タンク5内の圧力、「Air pressure」とは、コンプレッサ4から送り出される気体の圧力である。また、この例では、工作物としてSUS304を用いた。 In this table, “Nozzle ID” is the inner diameter of the nozzle part of the electrolyte nozzle, “Gap width” is the distance between the lower end of the electrolyte nozzle 1 and the surface of the workpiece W, and “Tank Pressure” is The pressure in the pressure tank 5, “Air pressure”, is the pressure of the gas sent out from the compressor 4. In this example, SUS304 was used as a workpiece.
 図5(a)に、タンク圧0.20MPaでかつアシストガス無しの場合の電解液の様子を示し、図5(b)に、タンク圧力0.20MPaでかつアシストガス圧0.08MPaの場合の電解液の様子を示す。これから、アシストガス無しの場合には電解液とノズルが接触してしまっていることが分かる。一方、同じ流量でもアシストガスを用いた場合には跳水部がノズルから遠ざかり、薄い電解液膜が形成出来ている。Tank PressureとAir Pressureとを変えて安定性を評価した結果を表2に記す。 Fig. 5 (a) shows the state of the electrolyte when the tank pressure is 0.20 MPa and no assist gas, and Fig. 5 (b) shows the electrolyte solution when the tank pressure is 0.20 MPa and the assist gas pressure is 0.08 MPa. Show the state. From this, it can be seen that the electrolyte solution and the nozzle are in contact with each other when there is no assist gas. On the other hand, when the assist gas is used even at the same flow rate, the water jumping part moves away from the nozzle, and a thin electrolyte film can be formed. Table 2 shows the results of the stability evaluation by changing Tank Pressure and Air Pressure.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この表2において記号「○」は、安定的に電解液膜が形成できたことを示し、記号「×」は、これが形成できなかったことを示す。 In Table 2, the symbol “◯” indicates that the electrolyte solution film was stably formed, and the symbol “x” indicates that this could not be formed.
 この結果から分かるように、アシストガスを用いなかった場合には、タンク圧0.20MPa以下では加工を行うことができなかったが、アシストガスを用いればいずれのタンク圧力においても加工を行うことができた。 As can be seen from this result, when the assist gas was not used, the processing could not be performed at a tank pressure of 0.20 MPa or less, but when the assist gas was used, the processing could be performed at any tank pressure. It was.
 (実施例2:加工形状のアスペクト比の改善)
 本例の加工装置において想定される電流密度分布は、図4に示された通りである。これによると、電解液噴流の直下周辺部にも、電流密度分布が拡がっている。そのため、ノズル内径よりも加工穴の直径が大きくなってしまい、加工精度が悪くなるという傾向がある。
(Example 2: Improvement of aspect ratio of processed shape)
The current density distribution assumed in the processing apparatus of this example is as shown in FIG. According to this, the current density distribution also spreads in the periphery immediately below the electrolyte jet. Therefore, the diameter of the processing hole becomes larger than the inner diameter of the nozzle, and the processing accuracy tends to deteriorate.
 一方、前記非特許文献1によると、流体の粘性を無視した場合、電解液ジェットが平らな工作物と衝突した直後の電解液の厚さは、ジェット直径の1/4となる。ただし、現実には電解液、空気は粘性を持ち、相互にせん断力を及ぼしあう。したがって、薄膜部の流速をアシストガスによるせん断力で加速すれば、連続の式より、工作物と衝突後の電解液膜の厚さをさらに薄くすることができ、電流密度分布を噴流直下により集中させることができると考えられる。これにより加工穴の直径の拡大が抑制され加工精度の向上が期待できる。また、電流が同じ場合、電流密度が噴流直下に集中すれば加工穴が深くなることも予想できる。そこで、加工穴の深さ対直径の比(アスペクト比)を調査することによりアシストガスによる加工精度向上の効果について調べた。 On the other hand, according to Non-Patent Document 1, when the viscosity of the fluid is ignored, the thickness of the electrolyte immediately after the electrolyte jet collides with a flat workpiece is 1/4 of the jet diameter. However, in reality, the electrolyte and air are viscous and mutually exert a shearing force. Therefore, if the flow velocity of the thin film part is accelerated by the shearing force of the assist gas, the thickness of the electrolyte film after the collision with the workpiece can be further reduced from the continuous equation, and the current density distribution is concentrated more directly under the jet. It is thought that it can be made. Thereby, expansion of the diameter of the processing hole is suppressed, and improvement in processing accuracy can be expected. In addition, when the current is the same, it can also be expected that the processed hole will become deeper if the current density is concentrated directly under the jet. Therefore, the effect of improving the processing accuracy by assist gas was investigated by investigating the ratio (aspect ratio) of the depth to the diameter of the processed hole.
 下記表3に記す条件で、アシストガスの噴出圧力のみを変化させて穴加工を行い、そのアスペクト比を調査した。なお表3において「Machining current」とは電解液ノズル1と工作物Wとの間の電流値である。なお、この例では、電源として定電流源を用いている。得られた結果を図6に示す。アシストガス無しの場合に対して、ガス圧を0.08MPaとした場合には、アスペクト比が明らかに向上していた。これより、電解液ジェット加工のアシストガスによる精度向上は可能であることがわかった。 In the conditions shown in Table 3 below, drilling was performed by changing only the assist gas ejection pressure, and the aspect ratio was investigated. In Table 3, “Machining current” is a current value between the electrolyte nozzle 1 and the workpiece W. In this example, a constant current source is used as a power source. The obtained result is shown in FIG. The aspect ratio was clearly improved when the gas pressure was 0.08 MPa compared to the case without assist gas. From this, it was found that the accuracy improvement by the assist gas of the electrolytic solution jet processing is possible.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例3:深穴の加工)
 電解液ジェットによる穴加工では、加工が、図7(a)から図7(b)に示すように進行すると、電解液が加工穴に溜まってしまい、電流密度分布を噴流直下に集中させることができず、やがて側面の加工のみが進行して深さ方向に加工することができなくなってしまう。なお、図7では、工作物中に記載した矢印によって加工方向を示している。
(Example 3: deep hole machining)
In the hole processing by the electrolytic solution jet, when the processing proceeds as shown in FIG. 7A to FIG. 7B, the electrolytic solution accumulates in the processed hole, and the current density distribution may be concentrated directly under the jet. In the end, only the processing of the side surface proceeds and it becomes impossible to process in the depth direction. In addition, in FIG. 7, the process direction is shown by the arrow described in the workpiece.
 これに対して、アシストガスを用いれば、加工痕内の電解液を排出することができ従来よりも深い穴の加工が可能になると考えられる。そこで、アシストガス無しの場合とありの場合についてそれぞれ加工時間を変えて加工を行い、加工深さの限界を調査した。実験条件を表4に、得られた結果を図8に記す。 In contrast, if the assist gas is used, it is considered that the electrolytic solution in the processing mark can be discharged and a deeper hole can be processed than before. Therefore, machining was performed at different machining times for cases where there was no assist gas and cases where there was no assist gas, and the limit of the machining depth was investigated. The experimental conditions are shown in Table 4, and the obtained results are shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図8より、アシストガスを用いた場合には、より深い穴の加工が可能であることがわかる。これはアシストガスが穴に溜まった電解液を排出し、電流密度分布を穴側面ではなく穴の深さ方向に集中させることができたためであると考えられる。しかし、アシストガスを用いても加工深さが限界に達してしまった。これは、加工深さがある程度以上になると、アシストガスを用いた場合においても電解液の完全な排出を行えず、電流密度を噴流直下に集中させることができなくなってしまったためであると考えられる。 FIG. 8 shows that deeper holes can be machined when assist gas is used. This is thought to be because the assist gas was discharged from the electrolyte and the current density distribution could be concentrated in the depth direction of the hole instead of the side surface of the hole. However, the processing depth has reached the limit even when using assist gas. This is considered to be because when the processing depth exceeds a certain level, the electrolyte cannot be completely discharged even when the assist gas is used, and the current density cannot be concentrated directly under the jet. .
 以上説明したとおり、本実施形態の電解液ジェット加工において、電解液ジェットと同軸のアシストガスを導入することにより、加工特性の向上が可能となった。特に、アシストガスの効果によって、ジェット流量が小さい場合においても放射状に流れる薄い電解液膜が形成され、局所的な加工が可能になった。また、アシストガスによるせん断力により電流密度を噴流直下のみに集中させ、より高い精度の加工を行うことが可能となった。さらに、加工穴内の電解液の排出を促進することで、従来よりも深い穴の加工が可能になった。 As described above, in the electrolyte jet machining of this embodiment, the machining characteristics can be improved by introducing an assist gas coaxial with the electrolyte jet. In particular, due to the effect of the assist gas, a thin electrolyte film that flows radially even when the jet flow rate is small is formed, and local processing becomes possible. In addition, the current density is concentrated only directly under the jet due to the shearing force generated by the assist gas, making it possible to perform machining with higher accuracy. Furthermore, by promoting the discharge of the electrolyte in the processed hole, it has become possible to process a deeper hole than before.
 なお、本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得るものである。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、前記実施形態では、工作物の加工として、工作物の除去を行ったが、電源の極性を逆にすることにより、工作物への電着物の付着を行うこともできる。 For example, in the above-described embodiment, the workpiece is removed as the machining of the workpiece, but the electrodeposit can be attached to the workpiece by reversing the polarity of the power source.
 (本発明の変形例)
 以下、前記した実施形態における電解液ノズルと気体ノズルの配置状態を変化させた例を、図9~図12を参照しながら説明する。以下の例も、本発明の範囲に含まれる。
(Modification of the present invention)
Hereinafter, an example in which the arrangement state of the electrolyte nozzle and the gas nozzle in the above-described embodiment is changed will be described with reference to FIGS. The following examples are also included in the scope of the present invention.
 (変形例1:図9)
 この例では、電解液ノズル1と気体ノズル2とで構成される組が、一方向(図中左右方向)に沿って、密に配列されている。より詳しくは、電解液ノズル1と気体ノズル2とで構成される組が、それらの軸方向に交差する方向に沿って、一列に配置されている。これにより、特定の列に沿って電解液の噴射を行うことができる。前記以外の構成及び利点は、前記した実施形態と同様である。
(Modification 1: FIG. 9)
In this example, a set composed of the electrolyte nozzle 1 and the gas nozzle 2 is densely arranged along one direction (the left-right direction in the figure). In more detail, the group comprised by the electrolyte nozzle 1 and the gas nozzle 2 is arrange | positioned in a line along the direction which cross | intersects those axial directions. Thereby, injection of electrolyte solution can be performed along a specific row. Other configurations and advantages are the same as those of the above-described embodiment.
 (変形例2:図10)
 この例では、複数の電解液ノズル1が、一方向(図中左右方向)に沿って、密に配列されている。そして、これらの電解液ノズル1を囲むように、気体ノズル2が配置されている。この例でも、特定の列に沿って電解液の噴射を行うことができる。前記以外の構成及び利点は、前記した実施形態と同様である。
(Modification 2: FIG. 10)
In this example, the plurality of electrolyte nozzles 1 are densely arranged along one direction (left and right direction in the figure). And the gas nozzle 2 is arrange | positioned so that these electrolyte solution nozzles 1 may be enclosed. Also in this example, the electrolyte solution can be injected along a specific row. Other configurations and advantages are the same as those of the above-described embodiment.
 (変形例3:図11)
 この例では、複数の電解液ノズル1が、密に集合した状態で配列されている。そして、これらの電解液ノズル1を囲むように、気体ノズル2が配置されている。この例では、1点だけでなく、特定の面内の多点に向けて同時に電解液の噴射を行うことができる。前記以外の構成及び利点は、前記した実施形態と同様である。
(Modification 3: FIG. 11)
In this example, the plurality of electrolyte nozzles 1 are arranged in a densely assembled state. And the gas nozzle 2 is arrange | positioned so that these electrolyte solution nozzles 1 may be enclosed. In this example, the electrolyte solution can be sprayed simultaneously not only at one point but also at multiple points within a specific plane. Other configurations and advantages are the same as those of the above-described embodiment.
 (変形例4:図12)
 この例では、電解液ノズル1の断面形状が、円形ではなく、長方形状とされている。そして、この電解液ノズル1を囲むように、ほぼ相似形の断面形状を持つ気体ノズル2が配置されている。この例では、ある程度の幅を持つ電解液を噴射することができる。前記以外の構成及び利点は、前記した実施形態と同様である。
(Modification 4: FIG. 12)
In this example, the cross-sectional shape of the electrolytic solution nozzle 1 is not circular but rectangular. A gas nozzle 2 having a substantially similar cross-sectional shape is disposed so as to surround the electrolytic solution nozzle 1. In this example, an electrolytic solution having a certain width can be injected. Other configurations and advantages are the same as those of the above-described embodiment.

Claims (6)

  1.  電解液ノズルと、気体ノズルと、電源とを備えており、
     前記電解液ノズルは、工作物に向けて電解液を放出する構成とされており、
     前記気体ノズルは、前記電解液と同軸となる方向において、前記工作物に向けて気体を吹きつける構成となっており、
     前記電源は、前記電解液と前記工作物との間に電流を流すことができる構成となっている
     ことを特徴とする電解液ジェット加工装置。
    It has an electrolyte nozzle, a gas nozzle, and a power source.
    The electrolyte nozzle is configured to discharge the electrolyte toward the workpiece,
    The gas nozzle is configured to blow gas toward the workpiece in a direction coaxial with the electrolytic solution,
    The power supply is configured to allow a current to flow between the electrolytic solution and the workpiece.
  2.  前記気体ノズルは、前記気体を、前記電解液を中心として同心円状となるように、前記工作物に向けて吹きつける構成とされている
     請求項1に記載の電解液ジェット加工装置。
    The electrolyte jet machining apparatus according to claim 1, wherein the gas nozzle is configured to blow the gas toward the workpiece so as to be concentric with the electrolyte as a center.
  3.  前記電源は定電流源である、請求項1又は2に記載の電解液ジェット加工装置。 The electrolyte jet machining apparatus according to claim 1 or 2, wherein the power source is a constant current source.
  4.  前記電解液ノズルと前記気体ノズルとで構成される組を複数個備えている
     請求項1~3のいずれか1項に記載の電解液ジェット加工装置。
    The electrolytic solution jet machining apparatus according to any one of claims 1 to 3, comprising a plurality of sets each including the electrolytic solution nozzle and the gas nozzle.
  5.  前記電解液ノズルを複数個備えており、前記気体ノズルは、これら複数個の電解液ノズルを囲うように配置されている
     請求項1~4のいずれか1項に記載の電解液ジェット加工装置。
    The electrolyte jet machining apparatus according to any one of claims 1 to 4, further comprising a plurality of the electrolyte nozzles, wherein the gas nozzle is disposed so as to surround the plurality of electrolyte nozzles.
  6.  電解液を工作物に向けて放出するステップと、
     前記電解液と同軸となる方向において、前記工作物に向けて気体を吹きつけるステップと、
     前記電解液と前記工作物との間で電流を流すステップと
     を備える電解液ジェット加工方法。
    Discharging the electrolyte toward the workpiece;
    Blowing gas toward the workpiece in a direction coaxial with the electrolyte; and
    An electrolyte jet machining method comprising: passing an electric current between the electrolyte and the workpiece.
PCT/JP2012/080035 2011-11-22 2012-11-20 Electrolyte jet processing device and electrolyte jet processing method WO2013077308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011254581A JP5871262B2 (en) 2011-11-22 2011-11-22 Electrolyte jet machining apparatus and electrolyte jet machining method
JP2011-254581 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013077308A1 true WO2013077308A1 (en) 2013-05-30

Family

ID=48469752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080035 WO2013077308A1 (en) 2011-11-22 2012-11-20 Electrolyte jet processing device and electrolyte jet processing method

Country Status (2)

Country Link
JP (1) JP5871262B2 (en)
WO (1) WO2013077308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651142B (en) * 2015-12-30 2019-02-21 逢甲大學 Mixed gas electrochemical micro-jet processing method and device thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774383B1 (en) * 2016-12-22 2017-09-05 (주)애니캐스팅 3D printing apparatus using selective electrochemical deposition
KR101774387B1 (en) * 2016-12-22 2017-09-05 (주)애니캐스팅 3D printing apparatus using selective electrochemical deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120692A (en) * 1981-01-20 1982-07-27 Inoue Japax Res Inc Electrolytic working device
JPS6237390A (en) * 1985-08-09 1987-02-18 Nippon Denso Co Ltd Partial plating apparatus
JPH10317186A (en) * 1997-05-15 1998-12-02 Toyoda Gosei Co Ltd Method for plating to base material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120692A (en) * 1981-01-20 1982-07-27 Inoue Japax Res Inc Electrolytic working device
JPS6237390A (en) * 1985-08-09 1987-02-18 Nippon Denso Co Ltd Partial plating apparatus
JPH10317186A (en) * 1997-05-15 1998-12-02 Toyoda Gosei Co Ltd Method for plating to base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651142B (en) * 2015-12-30 2019-02-21 逢甲大學 Mixed gas electrochemical micro-jet processing method and device thereof

Also Published As

Publication number Publication date
JP2013108139A (en) 2013-06-06
JP5871262B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
Elhami et al. Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining
CN106112150B (en) Electro-discharge machining
JP5172019B2 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
US8168913B2 (en) Electric discharge machining die sinking device
JP5255167B1 (en) Small hole electric discharge machine
WO2013077308A1 (en) Electrolyte jet processing device and electrolyte jet processing method
Wu et al. Vibration-assisted micro-ECM combined with polishing to machine 3D microcavities by using an electrolyte with suspended B4C particles
Kai et al. Study on electrolyte jet cutting
Weijing et al. Helical wire electrochemical discharge machining on large-thickness Inconel 718 alloy in low-conductivity salt-glycol solution
CN104227159B (en) A kind of electrochemical machining method of minute concave-convex structure
CN102658406A (en) Deep hole machining device
Ming et al. Study on kerosene submerged jet electrolytic micromachining
JP6072718B2 (en) Wire electrical discharge machining apparatus, thin plate manufacturing method, and semiconductor wafer manufacturing method
Lin et al. Machining characteristics of EDM using gas media
US6489582B1 (en) Non-submersion electrodischarge machining using conditioned water as a medium
Maher et al. Ultrasonic vibration assisted electrical discharge machining and micro-electrical discharge machining: a review
Devi et al. Influence of low-frequency vibration in die sinking EDM: a review
TW201722595A (en) Gas-mixing type electrochemical micro-jet machining method and apparatus thereof capable of increasing the compressibility, flow uniformity and the flowing capability of the electrolyte and reducing the conductive area of the contacted electrolyte and workpiece to increase the current density and material removal rate
JP6099081B2 (en) Electrolyte jet machining apparatus and electrolyte jet machining method
CN108637411B (en) Micro-channel electrolytic machining device
CN109175550B (en) Discharge device for electric spark machining electric erosion product
JP2006102828A (en) Method and apparatus for gaseous electric discharge machining
JP4933104B2 (en) Submerged water jet injection device and cavitation erasing device used therefor
Furutani et al. Performance of electrochemical discharge machining by forced discharge dispersion
JP6647469B1 (en) Wire electric discharge machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851823

Country of ref document: EP

Kind code of ref document: A1