WO2013076141A1 - Mobile device in a high-intensity ambient magnetic field - Google Patents

Mobile device in a high-intensity ambient magnetic field Download PDF

Info

Publication number
WO2013076141A1
WO2013076141A1 PCT/EP2012/073234 EP2012073234W WO2013076141A1 WO 2013076141 A1 WO2013076141 A1 WO 2013076141A1 EP 2012073234 W EP2012073234 W EP 2012073234W WO 2013076141 A1 WO2013076141 A1 WO 2013076141A1
Authority
WO
WIPO (PCT)
Prior art keywords
segments
loops
loop
magnetic field
arm
Prior art date
Application number
PCT/EP2012/073234
Other languages
French (fr)
Inventor
Eric Villedieu
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Publication of WO2013076141A1 publication Critical patent/WO2013076141A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/25Maintenance, e.g. repair or remote inspection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the subject of the present invention is a mobile device in a high intensity ambient magnetic field.
  • Magnetic field of high intensity means a magnetic field at least equal to 0.5 T, and most often at least equal to 1 T.
  • Some mobile devices such as articulated arms or interventional vehicles are required in hostile environments where a high intensity magnetic field prevails, used for example to ensure the confinement of a plasma.
  • An improvement actually applied for some plasma containment cores is to bring the articulated arm by a circular rail which is temporarily installed in the torus.
  • This rail comprises segments of circles articulated with each other by hooks, which are introduced into the torus through a lateral opening and sliding in openings in supports established for this purpose around the interior of the torus.
  • the arm is moved by sliding on it, which then allows it to carry much heavier loads since most of the cantilever forces are transmitted to the rail and supports; but it is obvious that the device becomes complicated, cumbersome, and with significant assembly and disassembly times.
  • These different systems rely on the creation of repulsive forces between magnets carried by one of the parts and electromagnetic coils carried by the other parts, under conditions where the path of the moving part is strongly guided and restricted to a single degree freedom, rotation for magnetic bearings or translation along the track for trains.
  • the magnetic field created by the magnets is highly heterogeneous, so that the lifting is to ensure the creation and maintenance of an air gap between the two parts. If the problem of lifting a large weight with electromagnetic forces is solved in the magnetic return trains, the conditions are therefore different from a use in immersion in an artificial magnetic field of high intensity, of known but imposed direction, and for a complex device by its shape or its movement.
  • JP-A-6 300 875 which describes a flying vehicle raised by electromagnetic forces produced by inert electric loops included in the vehicle, when it is immersed in a magnetic field.
  • the electromagnetic coils of conventional use for adjusting the thickness of an air gap become inoperative to ensure the levitation of a moving object freely or almost in a uniform field or relatively low gradient, since a vertical electromagnetic force, necessary to the lift must be produced by a horizontal electrical conductor and perpendicular to a magnetic field also horizontal in which it is immersed: placing the coil with its vertical axis and its horizontal turns, we will produce many vertical forces on each of the turns, but ascending on one side and descending on the other, which means that the resulting force can not be a linear lift force but a tilting torque, which can not be corrected here by guidance systems as in devices classics.
  • the invention solves the problem of exploiting existing and ambient magnetic fields to move a mobile device with great freedom by balancing in all circumstances the weight of its load or its own weight in order to reduce or eliminate the effort required to maintain it. in height.
  • the invention in a general form, relates to a mobile device in a high intensity ambient magnetic field, characterized in that it comprises at least one electric loop supplied with direct electric current by a generator at an adjustable intensity, the loop being oriented so that its different portions are immersed in respective intensities of the field which produce with the loop current electromagnetic forces having a linear upward result of balancing the weight of the device and a possible load of the device.
  • the invention is based on an asymmetry in the creation of the electromagnetic force, so as to break the normal result of creating a resultant torque that is unsuitable for levitation by a coil or more generally an electric loop.
  • the device can be constructed according to several embodiments, two of which are mainly contemplated.
  • it is an arm composed of segments articulated between them and angle control actuators formed by segments, the assembly being a priori supported by a base or anchor points stationary mechanics located at the interface between the external environment and the volume of evolution of the arm;
  • he is a walking robot with articulated legs to a raised body, fully immersed in the intense and autonomous magnetic field.
  • the dissymmetry in the creation of the sustaining force can stem from two main origins.
  • the electrical loop In the first input where the magnetic field may be uniform throughout the range of motion of the device, the electrical loop is arranged so that one of its sides is not subjected to the downward Laplace force and that the resulting force produced by the loops is the desired ascending force which no antagonistic force comes to transform into a couple: this resultant is a pure force.
  • the loop is then typically an open loop in the magnetic field (actually open in the device, that is to say provided with ends remote from each other that is fed with direct current and which closes off device, or at least one side of which is not subject to the magnetic field).
  • the shape of the loop or even its orientation are not critical: it suffices that a component of non-zero length in the horizontal direction and perpendicular to the magnetic field exists to give the resultant vertical force; other forces may be produced by the loop and, for example, absorbed by a rigid mounting of the moving object in the direction of these forces.
  • the loop may comprise two parallel strands running along the segments and a strand joining the strands parallel to each other and located on an end segment of the arm; in the case of a walker robot with legs, it can extend along two legs and through the body and is open at the ends of the legs and in electrical contact with a wall with which the legs are in contact, and to close in the wall; these two important examples show that the loop can be deformable without inconvenience, that is to say without loss of its lift property; no change in the current setting will be essential even in many cases to maintain the intensity of the lift force.
  • the device may comprise several such loops, which are powered independently or arranged in secant planes to exert in turn the same efforts in case of change of orientation of the device.
  • FIG. 1 illustrates an articulated arm that can be equipped with the invention
  • Figure 3 shows schematically the operation of a first degree of freedom of the arm of FIG. 2, highlighting the electric loop characterizing the invention
  • Figure 4 shows schematically the operation of two associated degrees of freedom in the arm of FIG. 2
  • FIG. 5 schematizes the association of several segments articulated in cascade
  • FIG. 6 a vehicle according to a second embodiment of the invention
  • Figure 7 a detail of Figure 6, showing the electrical contacts between each foot and the metal wall
  • Figure 14 shows a flying vehicle incorporating this other design
  • Figure 15 illustrates an alternative embodiment of the first embodiment
  • FIG. 16 illustrates an alternative embodiment of the second embodiment.
  • An example of an intervention device in a plasma containment torus is shown in FIG. 1: an articulated arm which comprises five intermediate transmission segments (1), an end segment (2) at the free end, carrying a clamp or any tool according to its mission and a support segment (3) at the opposite end and which may belong to a fixed base or be attached to an anchor to the wall of the torus, for example. These segments are all linked together.
  • the joints (4) connecting the segments to each other are shown in more detail in Figure 2 and include a universal joint (11) whose movements are controlled by actuators. Various actuators have been proposed in the art and are all suitable here.
  • Their motor means may be a cylinder, an electric motor or other device, which is placed on one of the segments and meshes with a fixed device to the neighboring segment by a transmission.
  • Said device may be a gear wheel, a pulley or a lever for example, and the transmission may comprise a linkage, a gear, a belt, a cable, etc.
  • the assembly can extend over one of the two adjacent segments only or over the entire length of the arm if the motors are placed at the fixed base so that they are not worn by the segments because of their weight; the transmissions then extend along several segments. It is clear that the cantilever between the support segment (3) and the end segment (2) is large (8 meters in a real embodiment), which very strongly limits the load that can be carried by the end segment (2) (10 kilograms in this case).
  • FIGS. 2 and 3 show the implementation of the invention on such an articulated arm.
  • An electric cable (5) is installed in the device. It comprises two parallel strands (6) and (7), running along the segments (1, 2, 3) and a junction strand (8) joining the former perpendicular to them and located in the end segment (2). ).
  • the electric loop formed by the cable (5) consists of a single turn open in the device, and its ends are connected to a generator (9) direct current located near the support segment (3), that is to say out of the torus and the magnetic field (whose cable (5) then crosses the wall) or on the support segment (3), or next to him.
  • the current flows in one direction, towards the end of the arm, in the strand (6), in the other direction in the parallel strand (7), and perpendicular to the previous in the junction strand (8).
  • the end segment (2) is placed approximately parallel to the ambient magnetic field B, and the segments (1, 2 and 3) are approximately horizontal.
  • the electromagnetic interaction creates Laplace forces, and in particular a force F at the junction strand (8), which is ascending with great intensity by appropriately adjusting the direction of the current I and its intensity.
  • This force F is able to balance a very large load carried by the end segment (2), as well as the weight of the segments (1) and (2) cantilevered.
  • the joints (4) and their actuators are relieved and the arm can be used to carry much heavier loads than in the absence of the invention.
  • the loop (5) has a non-zero net length perpendicular to the field B, which is responsible for the opposition of the electromagnetic forces according to the principle on which the invention is based; and this net length is almost entirely concentrated at the junction strand (8).
  • the creation of a non-zero resultant is guaranteed by the opening of the electric loop in the device.
  • the loop may either be truly open or close out of the intense magnetic field (the corresponding length then creates no force), or close on the base of the device or more generally a fixed point of the environment (the downward force thus created is absorbed by the environment without being used to move the device).
  • the active part of the loop (the connecting strand (8) is advantageously at the end of the articulated device or the segment where it is located, or near the load carried by the device.
  • the parallel strands (6) and (7) can be brought closer to one another at the passage of the joints (4) so as to be housed through the cores of the cardan joints (11), without this irregularity of shape. has a real influence on the operation of the device.
  • a circulation of cooling fluid can be established through the articulated arm, a pipe (10) traversed by this fluid being installed in the center of the segments (1, 2 and 3), and the fluid can return via a pipe arranged at the inside of the previous one.
  • a radiator (12) is placed around the pipe (10) extending to the cable (5).
  • the pipe (10) also passes through the cores of the universal joints (11), and a bellows (13) protects it as well as the cable (5) at these locations.
  • the device may comprise several electrical loops similar to that of Figure 3 but placed in secant planes, and in particular perpendicular to each other, in order to produce the upward force by one or the other of them , or by a combination of forces produced by the loops, according to the orientation of the magnetic field B and that of the end segment (2): each of the loops is controlled individually by an adjustable generator of electricity.
  • Additional electrical loops may also be added to control orientations of each of the segments to relieve the actuators or even replace them.
  • the procedure is shown in Figure 4: two loops (13) and (14) extend into one of the transmission segments (1a), two further loops (15) and (16) extending into the transmission segment (Ib), and the loops (13), (14), (15), and (16) of each of these pairs are perpendicular to one another so that each of the transmission segments (1a and 1b) comprises a vertical junction strand (17) and a horizontal junction strand (18); these strands of junctions parallel strands of the loop to which they belong, as the junction strand (8), have the same effect of creating a dominating electromagnetic force, in a direction perpendicular to their extension and the magnetic field B.
  • a control loop can be used to adjust the current at any time to maintain the segment concerned to the desired orientation, which possibly allows not to use actuators.
  • FIG. 5 schematizes the cascading combination of several of these elements to access the entire inside of an O-chamber of a plasma confinement device (19): the articulated arm is introduced by an access door ( 20) inside the chamber, advanced by any device located outside, and the segments (1) and (2) are rotated to follow the curvature of the torus.
  • confinement devices have a magnetic field B having a so-called toroidal component oriented in the ring of the torus, and this component this field B is therefore used to exert the electromagnetic forces described.
  • the arrangement is particularly advantageous because, by allowing each segment to compensate for the effect of gravity, there is no transfer of increasing moments as one approaches the orifice (20) which represents the interface with the external environment to the volume of evolution of the arm, where is the fixed mechanical anchor point.
  • the segments therefore have only a few loads to bear, essentially forces and not couples that would be reflected on the upstream segments. Therefore, these segments can be modular and relatively light, while allowing to maneuver large masses with a very large cantilever (of the order of 8 m).
  • the open loop (5) does not extend to the end segment (2), but on the contrary in the base segment (3) or more generally the first segment immersed in the field B, while the other segments (1) and (2) are each provided with a closed loop (36) of approximately rectangular shape, and which is powered by a generator (9) independent by a flexible cable (37).
  • the open loop (5) balances the load at the end of the arm as before and closed loops (36) each generate a balancing torque of the segment (1) or (2) to which they belong, the joints representing local narrowing.
  • FIG. 6 represents a mobile robot of the type composed of a body (21) raised with respect to tabs (22) connected to this body (21) and whose free ends or feet are cups (23) resting on a wall (24) which may in particular be that of the plasma confinement device (19) met above.
  • the tabs (22) are connected to the body (21) by pantographs (25), which are parallelogram linkages having the property of maintaining their orientation and are controlled by respective motors (28) to lift them.
  • the pantographs (25) are connected to the body (21) by pivoting links controlled by other motors, so that the tabs (22) can be moved in turn relative to the body (21) when they are lifted. which allows a progressive advance on the wall (24) while maintaining a sufficient number of tabs (22) attached to this wall (24) to maintain the balance of the vehicle.
  • each of the loops (26) may comprise a first strand (27) extending into one of the legs (22a), a connecting strand (28) extending the preceding one and extending through the body (21), and a third strand (29) extending through another leg (22b).
  • the loops (26) are supplied with DC currents by unrepresented generators located on the body (21), in the same way as in the previous embodiment.
  • the loops (26) are completed by a flexible cable (39) connected to a generator (9) fixed and which comprises two strands respectively connected to two portions (28a) and (28b) of the connecting strand (28).
  • the difference is that the generators (9) are not loaded on the vehicle; the flexible cables (39) have no role of generating electromagnetic forces.
  • the supply is via a central portion of the loops (26) open, and the electrical circuit is closed by establishing an electrical contact between the ends of the strands (27) and (29) by the wall (24), that the ends of the Strands (27, 29) brush under the cups (23) ( Figure 7).
  • the plasma containment cores also have poloidal coils for creating a poloidal component of the magnetic B field, which is perpendicular to the toroidal component.
  • the poloidal component therefore has the consequence of rendering the field heterogeneous in the torus sections and creating important gradients, especially in the vertical direction, which can influence an electromagnetic device mounted on a vehicle or other moving object along the wall of the body. torus or one in the torus, especially near mid-height. For these reasons, it is important to deepen and generalize the interactions between the loops, whatever their position, and the surrounding magnetic field. We will consider here closed electric loops, extensions to open loops being easy.
  • FIG. 9 schematizes the particular case of three closed, circular or polygonal current loops 30, 31 and 32, each in a plane orthogonal to the two others.
  • the assembly is placed in a magnetic field B of horizontal direction but varying in height from a lower value Bb to a smaller higher value Bh according to the above-mentioned properties of the poloidal field.
  • Three main axes (x, y, z) of space have been figured.
  • a generalization of this case consists in using 6 current loops not parallel to each other, the assembly being immersed in a non-uniform field B having at least one gradient in the vertical direction.
  • the control of the current in each of the six loops makes it possible to control the 6 degree of freedom of the assembly comprising these six loops.
  • Figure 10 schematizes one of the loops (30), which extends in a vertical plane (yz) perpendicular to the direction of the field B. If a current I runs through it, the resulting forces cancel out on the vertical sides, but the Fb force produced by the lower strand is greater than that Fh (opposite direction) produced by the lower strand, so that a vertical resultant (z) descending or ascending in the direction of the current is produced by the loop (30).
  • FIG. 11 schematizes the second loop (31) extending in a vertical plane (xz) but in the direction (x) of the field B.
  • FIG. 12 schematizes the third loop (32) which extends in the horizontal plane (xy), comprises two sides oriented in the direction of the field B which do not produce electromagnetic force, and two other sides perpendicular to the fields B which produce vertical and opposite forces, i.e. a pair about an axis y, horizontal and perpendicular to the field B, on the loop (32).
  • the three loops controlled as in previous embodiments by independent current generators, to move a device to which they belong, according to the three movements mentioned above (translation z perpendicular to the field B in the direction of the gradient, and rotations around axes y and z not parallel to the field B).
  • the set is stable with respect to the rotations around the x direction of the field B if the gradient exists as a function of altitude since a tilting of the loops (30, 31, and 32) around the x-axis then produces antagonistic forces thereto, and a righting moment in the loop (30).
  • the device carrying the loops (30, 31, 32) should be simply guided in the two horizontal directions of translation x and y.
  • These closed loops are also able to lift an object or a mobile vehicle in the torus, such as those described.
  • Figure 14 illustrates an example of use of this system, wherein the carrier device is a flying vehicle (35) carrying the four non-parallel current loops (31, 32, 33 and 34) which allow it to move in the circular (x) and vertical (z) directions of the plasma confining torus (19) and rotating around the vertical (z) and lateral (y) directions. Translations in the lateral direction (y) can be applied by different means, such as gas jets. Rotations about the x-axis, corresponding to the longitudinal axis of the vehicle, are normally never desired and are made difficult by the stability provided by the loops, as explained with reference to FIG. 35) may comprise an elongate fuselage (36) whose upper face carries the four electric loops, closed or possibly open. The fuselage is directed in the x-axis direction to assist its stability against tilt rotations around this axis. Its loading is located near the underside to complete its tipping stability.
  • the carrier device is a flying vehicle (35) carrying the four non-parallel current loops (31
  • the flying vehicle (35) is not the only carrier device that can be used with this system of several loops, possibly closed, which could instead be installed at the end of an articulated arm like the one previously encountered.
  • the current generators can also be placed here on the flying vehicle (35) or on the opposite fixed and connected to him by flexible cables.
  • a gradient of 0.05 T / m in the vertical direction is sufficient to allow the levitation of such vehicles.

Abstract

The invention relates to an object consisting of segments articulated to one another and moving within an intense magnetic field (B), such as the magnetic field produced in a plasma confinement torus. Said object uses the electromagnetic forces produced by a loop (5) of a suitable shape, comprising in particular two parallel branches (6, 7), wherein the forces cancel each other out, and wherein a junction branch (8) is perpendicular to field B and horizontal, producing an ascending force sufficient to balance the object even if said object is heavily laden. The overhang tolerance is high, making it possible to push the object in deeply with no support system. In place of an articulated arm, the object can be a mobile vehicle on a wall.

Description

DISPOSITIF MOBILE DANS UN CHAMP MAGNETIQUE AMBIANT DE GRANDE INTENSITE  MOBILE DEVICE IN A HIGH-INTENSITY AMBIENT MAGNETIC FIELD
DESCRIPTION DESCRIPTION
Le sujet de l'invention présente est un dispositif mobile dans un champ magnétique ambiant de grande intensité.  The subject of the present invention is a mobile device in a high intensity ambient magnetic field.
Par champ magnétique de grande intensité, on entend un champ magnétique au moins égal à 0,5 T, et le plus souvent au moins égal à 1 T.  Magnetic field of high intensity means a magnetic field at least equal to 0.5 T, and most often at least equal to 1 T.
Certains dispositifs mobiles tels que des bras articulés ou des véhicules d'intervention sont nécessaires dans des milieux hostiles où règne un champ magnétique de grande intensité, employé par exemple pour assurer le confinement d'un plasma.  Some mobile devices such as articulated arms or interventional vehicles are required in hostile environments where a high intensity magnetic field prevails, used for example to ensure the confinement of a plasma.
Des bras articulés sont déjà utilisés à cette fin, dont certains sont décrits par Perrot et autres (« Long Reach Articulated Robots for inspection in hazardous environments, récent development in robotics and embedded diagnostics », 2010, Ist I nternational Conférence on Applied Robotics for the power industry, IEEE), et Izard et autres (« Hardening Inspection Devices to Ultra-High Vacuum, Température and High Magnetic Field », I EEE Transactions on Applied Superconductivity, vol. 20, n° 3, p. 1 767 - 1 772. Ils consistent en des segments reliés entre eux par des liaisons mécaniques et des actionneurs réglant les angles que font les segments. Leur longueur doit souvent être importante et leur poids élevé en conséquence, et ils doivent encore soulever des charges. I l en résulte que les moments subis par les segments et les articulations, notamment dans les endroits éloignés de l'extrémité libre, sont extrêmement importants, puisque ces moments sont proportionnels à la fois au porte-à-faux et au poids total du bras et de sa charge du côté de l'extrémité libre. Ces bras articulés, d'emploi pourtant commode, deviennent donc inutilisables en l'état dans de nombreuses situations. Articulated arms are already used for this purpose, some of which are described by Perrot and others ("Long Reach Articulated Robots for Inspection in Hazardous Environments, Recent Development in Robotics and Embedded Diagnostics", 2010, I st International Conference on Applied Robotics for the power industry, IEEE), and Izard et al (IEE Transactions on Applied Superconductivity, vol 20, no 3, pp. 1 767-1 772. They consist of segments connected to each other by mechanical links and actuators regulating the angles made by the segments, their length must often be large and their weight high, and they must still lift loads. that the moments undergone by the segments and the articulations, in particular in the places distant from the free end, are extremely important, since these moments are proportional; both at the cantilever and at the total weight of the arm and its load on the free end side. These articulated arms, employment yet convenient, therefore become unusable in the state in many situations.
Un perfectionnement effectivement appliqué pour certains tores de confinement de plasma consiste à faire porter le bras articulé par un rail circulaire qui est provisoirement installé dans le tore. Ce rail comprend des segments de cercles articulés entre eux par des crochets, qu'on introduit dans le tore par une ouverture latérale et qu'on glisse dans des ouvertures ménagées dans des appuis établis à cette fin autour de l'intérieur du tore. Quand le rail est installé, le bras est déplacé en glissant sur lui, ce qui lui permet alors de porter des charges beaucoup plus lourdes puisque la plus grande partie des efforts de porte-à-faux est transmise au rail et aux supports ; mais il est évident que le dispositif devient compliqué, encombrant, et avec des temps de montage et de démontage importants. An improvement actually applied for some plasma containment cores is to bring the articulated arm by a circular rail which is temporarily installed in the torus. This rail comprises segments of circles articulated with each other by hooks, which are introduced into the torus through a lateral opening and sliding in openings in supports established for this purpose around the interior of the torus. When the rail is installed, the arm is moved by sliding on it, which then allows it to carry much heavier loads since most of the cantilever forces are transmitted to the rail and supports; but it is obvious that the device becomes complicated, cumbersome, and with significant assembly and disassembly times.
On connaît par ailleurs des dispositifs exploitant des forces électromagnétiques pour piloter des objets mobiles, comme les paliers magnétiques au moyen desquels des forces concentriques sont exercées sur un rotor pour le maintenir à une position centrale dans le palier, et des trains à sustentation magnétique statique (où les forces de levage sont crées par des électro-aimants régulés) ou dynamique (où elles sont crées par un courant induit quand le train se déplace). Ces différents systèmes reposent sur la création de forces de répulsion entre des aimants portés par une des pièces et des bobines électromagnétiques portées par l'autre des pièces, dans des conditions où le trajet de la pièce mobile est fortement guidé et restreint à un seul degré de liberté, de rotation pour les paliers magnétiques ou de translation le long de la voie pour les trains. Le champ magnétique créé par les aimants est fortement hétérogène, de sorte que le levage revient à assurer la création et le maintien d'un entrefer entre les deux pièces. Si le problème de soulever un poids important avec des forces électromagnétiques est résolu dans les trains à restitution magnétique, les conditions sont donc différentes d'un emploi en immersion dans un champ magnétique artificiel de forte intensité, de direction connue mais imposée, et pour un dispositif complexe par sa forme ou son mouvement.  Also known are devices that use electromagnetic forces to drive moving objects, such as magnetic bearings by means of which concentric forces are exerted on a rotor to maintain it at a central position in the bearing, and static magnetic levitation trains ( where the lifting forces are created by regulated electromagnets) or dynamic (where they are created by an induced current when the train moves). These different systems rely on the creation of repulsive forces between magnets carried by one of the parts and electromagnetic coils carried by the other parts, under conditions where the path of the moving part is strongly guided and restricted to a single degree freedom, rotation for magnetic bearings or translation along the track for trains. The magnetic field created by the magnets is highly heterogeneous, so that the lifting is to ensure the creation and maintenance of an air gap between the two parts. If the problem of lifting a large weight with electromagnetic forces is solved in the magnetic return trains, the conditions are therefore different from a use in immersion in an artificial magnetic field of high intensity, of known but imposed direction, and for a complex device by its shape or its movement.
On citera encore le document JP-A-6 300 875 qui décrit un véhicule volant soulevé par des forces électromagnétiques produites par des boucles électriques inertes incluses dans le véhicule, quand il est plongé dans un champ magnétique.  Also mentioned is JP-A-6 300 875 which describes a flying vehicle raised by electromagnetic forces produced by inert electric loops included in the vehicle, when it is immersed in a magnetic field.
On s'intéresse en effet à des dispositifs capables de se déformer ou de se déplacer dans l'espace avec peu de limitations en étant posés sur un sol ou une paroi d'orientation quelconque sans autre moyen de les retenir qu'une force d'appui sur cette prise ou même en étant soulevés du sol complètement (volant) ou partiellement (en porte-à-faux). Or les bobines électromagnétiques d'emploi classique pour régler l'épaisseur d'un entrefer deviennent inopérantes pour assurer la sustentation d'un objet mobile librement ou presque dans un champ uniforme ou à gradient relativement faible, puisqu'une force verticale électromagnétique, nécessaire à la sustentation devra être produite par un conducteur électrique horizontal et perpendiculaire à un champ magnétique lui aussi horizontal dans lequel il est plongé : en plaçant la bobine avec son axe vertical et ses spires horizontales, on produira bien des forces verticales sur chacune des spires, mais ascendantes d'un côté et descendante de l'autre, ce qui signifie que la force résultante ne pourra pas être une force linéaire de sustentation mais un couple de basculement, qui ne pourra pas être corrigé ici par des systèmes de guidage comme dans des dispositifs classiques. We are interested in devices capable of deforming or moving in space with few limitations by being placed on a floor or wall of any orientation with no other means of retaining a force of on this hold or even when raised from the ground completely (flying) or partially (in cantilevered). However, the electromagnetic coils of conventional use for adjusting the thickness of an air gap become inoperative to ensure the levitation of a moving object freely or almost in a uniform field or relatively low gradient, since a vertical electromagnetic force, necessary to the lift must be produced by a horizontal electrical conductor and perpendicular to a magnetic field also horizontal in which it is immersed: placing the coil with its vertical axis and its horizontal turns, we will produce many vertical forces on each of the turns, but ascending on one side and descending on the other, which means that the resulting force can not be a linear lift force but a tilting torque, which can not be corrected here by guidance systems as in devices classics.
L'invention résout le problème d'exploiter des champs magnétiques existants et ambiants pour déplacer un dispositif mobile avec une grande liberté en équilibrant en toutes circonstances le poids de sa charge ou son poids propre afin de diminuer ou supprimer l'effort nécessaire à son maintien en hauteur.  The invention solves the problem of exploiting existing and ambient magnetic fields to move a mobile device with great freedom by balancing in all circumstances the weight of its load or its own weight in order to reduce or eliminate the effort required to maintain it. in height.
Sous une forme générale, l'invention concerne un dispositif mobile dans un champ magnétique ambiant de grande intensité, caractérisé en ce qu'il comprend au moins une boucle électrique alimentée en courant électrique continu par un générateur à une intensité réglable, la boucle étant orientée de façon que ses différentes portions soient plongées dans des intensités respectives du champ qui produisent avec le courant de boucle des forces électromagnétiques ayant une résultante linéaire ascendante d'équilibrage du poids du dispositif et d'une charge éventuelle du dispositif.  In a general form, the invention relates to a mobile device in a high intensity ambient magnetic field, characterized in that it comprises at least one electric loop supplied with direct electric current by a generator at an adjustable intensity, the loop being oriented so that its different portions are immersed in respective intensities of the field which produce with the loop current electromagnetic forces having a linear upward result of balancing the weight of the device and a possible load of the device.
L'invention repose sur une dissymétrie dans la création de la force électromagnétique, de manière à rompre le résultat normal de création d'un couple résultant inapte en soi à la lévitation par une bobine ou plus généralement une boucle électrique.  The invention is based on an asymmetry in the creation of the electromagnetic force, so as to break the normal result of creating a resultant torque that is unsuitable for levitation by a coil or more generally an electric loop.
Le dispositif peut être construit d'après plusieurs modes de réalisation, dont deux sont principalement envisagés. Dans le premier, il est un bras composé de segments articulés entre eux et d'actionneurs de commande d'angles formés par des segments, l'ensemble étant a priori soutenu par une embase ou des points d'ancrage mécanique fixes situés à l'interface entre le milieu extérieur et le volume d'évolution du bras ; dans le second, il est un robot marcheur à pattes articulées à un corps surélevé, entièrement plongé dans le champ magnétique intense et autonome. The device can be constructed according to several embodiments, two of which are mainly contemplated. In the first, it is an arm composed of segments articulated between them and angle control actuators formed by segments, the assembly being a priori supported by a base or anchor points stationary mechanics located at the interface between the external environment and the volume of evolution of the arm; in the second, he is a walking robot with articulated legs to a raised body, fully immersed in the intense and autonomous magnetic field.
La dissymétrie dans la création de la force de sustentation peut découler de deux origines principales. Dans la première d'entrés elles, où le champ magnétique peut être uniforme dans toute l'étendue de déplacement du dispositif, la boucle électrique est agencée de façon qu'un de ses côtés ne soit pas soumis à la force de Laplace descendante et que la force résultante produite par les boucles soit la force ascendante recherchée qu'aucune force antagoniste ne vient transformer en couple : cette résultante est une force pure. La boucle est alors typiquement une boucle ouverte dans le champ magnétique (réellement ouverte dans le dispositif, c'est-à-dire dotée d'extrémités éloignées l'une de l'autre qu'on alimente en courant continu et qui se referme hors du dispositif, ou du moins dont un côté n'est pas soumis au champ magnétique). La forme de la boucle ni même son orientation ne sont pas critiques : il suffit qu'une composante de longueur non nulle dans la direction horizontale et perpendiculaire au champ magnétique existe pour donner la résultante de force verticale ; d'autres forces peuvent être produites par la boucle et, par exemple, absorbées par un montage rigide de l'objet mobile dans la direction de ces forces.  The dissymmetry in the creation of the sustaining force can stem from two main origins. In the first input where the magnetic field may be uniform throughout the range of motion of the device, the electrical loop is arranged so that one of its sides is not subjected to the downward Laplace force and that the resulting force produced by the loops is the desired ascending force which no antagonistic force comes to transform into a couple: this resultant is a pure force. The loop is then typically an open loop in the magnetic field (actually open in the device, that is to say provided with ends remote from each other that is fed with direct current and which closes off device, or at least one side of which is not subject to the magnetic field). The shape of the loop or even its orientation are not critical: it suffices that a component of non-zero length in the horizontal direction and perpendicular to the magnetic field exists to give the resultant vertical force; other forces may be produced by the loop and, for example, absorbed by a rigid mounting of the moving object in the direction of these forces.
Notamment avec un bras à géométrie variable, par exemple articulé tel que défini ci-dessus, la boucle peut comprendre deux brins parallèles courant le long des segments et un brin joignant les brins parallèles entre eux et situé sur un segment d'extrémité du bras ; dans le cas d'un robot marcheur à pattes, elle peut s'étendre le long de deux pattes et à travers le corps et est ouverte à des extrémités des pattes et en contact électrique avec une paroi avec laquelle les pattes sont en contact, et se refermer dans la paroi ; ces deux exemples importants montrent que la boucle peut être déformable sans inconvénient, c'est-à-dire sans perte de sa propriété de sustentation ; aucune modification du réglage du courant ne sera même essentielle dans bien des cas pour maintenir l'intensité de la force de sustentation. Quoi qu'il en soit, le dispositif peut comprendre plusieurs telles boucles, qui sont alimentées indépendamment ou disposées dans des plans sécants pour exercer tour à tour les mêmes efforts en cas de changement d'orientation du dispositif. In particular with an arm of variable geometry, for example articulated as defined above, the loop may comprise two parallel strands running along the segments and a strand joining the strands parallel to each other and located on an end segment of the arm; in the case of a walker robot with legs, it can extend along two legs and through the body and is open at the ends of the legs and in electrical contact with a wall with which the legs are in contact, and to close in the wall; these two important examples show that the loop can be deformable without inconvenience, that is to say without loss of its lift property; no change in the current setting will be essential even in many cases to maintain the intensity of the lift force. In any case, the device may comprise several such loops, which are powered independently or arranged in secant planes to exert in turn the same efforts in case of change of orientation of the device.
L'invention sera maintenant décrite en liaison aux Figures suivantes, qui illustrent certains de ses modes de réalisation non exclusif :  The invention will now be described with reference to the following figures, which illustrate some of its non-exclusive embodiments:
la Figure 1 illustre un bras articulé pouvant être équipé de l'invention,  FIG. 1 illustrates an articulated arm that can be equipped with the invention,
la Figure 2, un bras articulé selon le premier mode de réalisation de l'invention,  2, an articulated arm according to the first embodiment of the invention,
la Figure 3 schématise le fonctionnement d'un premier degré de liberté du bras de la Fig. 2, mettant en évidence la boucle électrique caractérisant l'invention,  Figure 3 shows schematically the operation of a first degree of freedom of the arm of FIG. 2, highlighting the electric loop characterizing the invention,
la Figure 4 schématise le fonctionnement de deux degrés de liberté associés dans le bras de la Fig. 2,  Figure 4 shows schematically the operation of two associated degrees of freedom in the arm of FIG. 2
la Figure 5 schématise l'association de plusieurs segments articulés en cascade,  FIG. 5 schematizes the association of several segments articulated in cascade,
la Figure 6, un véhicule selon un second mode de réalisation de l'invention,  FIG. 6, a vehicle according to a second embodiment of the invention,
la Figure 7, un détail de la Figure 6, montrant les contacts électriques entre chaque pied et la paroi métallique,  Figure 7, a detail of Figure 6, showing the electrical contacts between each foot and the metal wall,
la Figure 8, le principe de déplacement d'un tel véhicule,  Figure 8, the principle of displacement of such a vehicle,
les Figures 9 à 13 explicitent une autre conception du dispositif à boucle électriques,  Figures 9 to 13 explain another design of the electric loop device,
la Figure 14 représente un véhicule volant reprenant cette autre conception,  Figure 14 shows a flying vehicle incorporating this other design,
la Figure 15 illustre une variante de réalisation du premier mode de réalisation,  Figure 15 illustrates an alternative embodiment of the first embodiment,
et la Figure 16 illustre une variante de réalisation du second mode de réalisation. Un exemple de dispositif d'intervention dans un tore de confinement de plasma est représenté à la Figure 1 : un bras articulé qui comprend cinq segments de transmission (1) intermédiaires, un segment d'extrémité (2) à l'extrémité libre, porteur d'une pince ou d'un outil quelconque selon sa mission et un segment de support (3) à l'extrémité opposée et qui peut appartenir à une embase fixe ou être fixée à un ancrage à la paroi du tore, par exemple. Ces segments étant tous articulés en chaîne entre eux. Les articulations (4) reliant les segments entre eux sont présentées plus en détail à la Figure 2 et comprennent un joint de cardan (11) dont les mouvements sont commandés par des actionneurs. Des actionneurs variés ont été proposés dans l'art et conviennent tous ici. Leur moyen moteur peut être un vérin, un moteur électrique ou un autre dispositif, qui est placé sur un des segments et engrène avec un dispositif fixe au segment voisin par une transmission. Ledit dispositif peut être une roue dentée, une poulie ou un levier par exemple, et la transmission peut comprendre un embiellage, un engrenage, une courroie, un câble, etc. L'ensemble peut s'étendre sur un des deux segments voisins seulement ou sur toute la longueur du bras si les moteurs sont placés à l'embase fixe afin qu'ils ne soient pas portés par les segments en raison de leur poids ; les transmissions s'étendent alors le long de plusieurs segments. Il est manifeste que le porte-à-faux entre le segment de support (3) et le segment d'extrémité (2) est important (8 mètres dans une réalisation réelle), ce qui limite très fortement la charge pouvant être portée par le segment d'extrémité (2) (10 kilogrammes dans ce cas). and Figure 16 illustrates an alternative embodiment of the second embodiment. An example of an intervention device in a plasma containment torus is shown in FIG. 1: an articulated arm which comprises five intermediate transmission segments (1), an end segment (2) at the free end, carrying a clamp or any tool according to its mission and a support segment (3) at the opposite end and which may belong to a fixed base or be attached to an anchor to the wall of the torus, for example. These segments are all linked together. The joints (4) connecting the segments to each other are shown in more detail in Figure 2 and include a universal joint (11) whose movements are controlled by actuators. Various actuators have been proposed in the art and are all suitable here. Their motor means may be a cylinder, an electric motor or other device, which is placed on one of the segments and meshes with a fixed device to the neighboring segment by a transmission. Said device may be a gear wheel, a pulley or a lever for example, and the transmission may comprise a linkage, a gear, a belt, a cable, etc. The assembly can extend over one of the two adjacent segments only or over the entire length of the arm if the motors are placed at the fixed base so that they are not worn by the segments because of their weight; the transmissions then extend along several segments. It is clear that the cantilever between the support segment (3) and the end segment (2) is large (8 meters in a real embodiment), which very strongly limits the load that can be carried by the end segment (2) (10 kilograms in this case).
La mise en œuvre de l'invention sur un tel bras articulé peut se faire selon les figures 2 et 3 si on est en présence d'un champ magnétique B ambiant de grande intensité et de direction essentiellement horizontale, ce qui est le cas dans un tore de confinement de plasma. La Figure 3 schématise le comportement électrique correspondant. Un câble électrique (5) est installé dans le dispositif. Il comprend deux brins parallèles (6) et (7), courant le long des segments (1, 2, 3) et un brin de jonction (8) joignant les précédents en leur étant perpendiculaire et situé dans le segment d'extrémité (2).  The implementation of the invention on such an articulated arm can be done according to FIGS. 2 and 3 if one is in the presence of an ambient magnetic field B of high intensity and essentially horizontal direction, which is the case in a plasma containment torus. Figure 3 shows the corresponding electrical behavior. An electric cable (5) is installed in the device. It comprises two parallel strands (6) and (7), running along the segments (1, 2, 3) and a junction strand (8) joining the former perpendicular to them and located in the end segment (2). ).
La boucle électrique formée par le câble (5) est composée d'une spire unique ouverte dans le dispositif, et ses extrémités sont raccordées à un générateur (9) de courant continu situé près du segment de support (3), c'est-à-dire hors du tore et du champ magnétique (dont le câble (5) traverse alors la paroi) ou sur le segment de support (3), ou à côté de lui. Le courant circule dans un premier sens, vers l'extrémité du bras, dans le brin (6), dans l'autre sens dans le brin parallèle (7), et perpendiculairement aux précédents dans le brin de jonction (8). The electric loop formed by the cable (5) consists of a single turn open in the device, and its ends are connected to a generator (9) direct current located near the support segment (3), that is to say out of the torus and the magnetic field (whose cable (5) then crosses the wall) or on the support segment (3), or next to him. The current flows in one direction, towards the end of the arm, in the strand (6), in the other direction in the parallel strand (7), and perpendicular to the previous in the junction strand (8).
Le segment d'extrémité (2) est placé à peu près parallèlement au champ magnétique B ambiant, et les segments (1, 2 et 3) sont à peu près horizontaux. L'interaction électromagnétique crée des forces de Laplace, et notamment une force F au brin de jonction (8), qui est ascendante de grande intensité en réglant convenablement le sens du courant I et son intensité. Cette force F est apte à équilibrer une charge même importante portée par le segment d'extrémité (2), ainsi que le poids des segments (1) et (2) en porte-à-faux. Il résulte de cela que les articulations (4) et leurs actionneurs sont soulagés et que le bras peut être employé à porter des charges beaucoup plus lourdes qu'en l'absence de l'invention. Des forces sont aussi produites aux brins parallèles (6) et (7), mais leurs intensités sont plus faibles puisque ces brins sont plutôt parallèles au champ magnétique B, et surtout, les courants étant opposés dans les brins parallèles (7) et (8), leurs sens sont aussi opposés, leur résultante est faible, et elle apparaît d'ailleurs en grande partie sous forme de couples de torsion à l'égard desquels les segments (1, 2, 3) et les joints de cardans (11) sont rigides et dont l'intensité est d'ailleurs faible elle aussi : l'importance de ces forces produites par les brins parallèles (6) et (7) est donc faible ou insignifiante. En d'autres termes, la boucle (5) possède une longueur nette non nulle perpendiculairement au champ B, qui est responsable de l'opposition des forces électromagnétiques selon le principe sur lequel l'invention est fondée ; et cette longueur nette est presque entièrement concentrée au brin de jonction(8). La création d'une résultante non nulle est garantie par l'ouverture de la boucle électrique dans le dispositif. The end segment (2) is placed approximately parallel to the ambient magnetic field B, and the segments (1, 2 and 3) are approximately horizontal. The electromagnetic interaction creates Laplace forces, and in particular a force F at the junction strand (8), which is ascending with great intensity by appropriately adjusting the direction of the current I and its intensity. This force F is able to balance a very large load carried by the end segment (2), as well as the weight of the segments (1) and (2) cantilevered. As a result, the joints (4) and their actuators are relieved and the arm can be used to carry much heavier loads than in the absence of the invention. Forces are also produced at the parallel strands (6) and (7), but their intensities are lower since these strands are rather parallel to the magnetic field B, and especially, the currents being opposite in the parallel strands (7) and (8). ), their senses are also opposite, their resultant is weak, and it also appears to a great extent in the form of torsion torques with respect to which the segments (1, 2, 3) and the cardan joints (11) are rigid and whose intensity is also weak too: the importance of these forces produced by the parallel strands (6) and (7) is therefore weak or insignificant. In other words, the loop (5) has a non-zero net length perpendicular to the field B, which is responsible for the opposition of the electromagnetic forces according to the principle on which the invention is based; and this net length is almost entirely concentrated at the junction strand (8). The creation of a non-zero resultant is guaranteed by the opening of the electric loop in the device.
La boucle peut soit être véritablement ouverte, soit se refermer hors du champ magnétique intense (la longueur correspondant ne crée alors aucune force), soit se refermer sur l'embase du dispositif ou plus généralement un point fixe de l'environnement (la force descendante ainsi créée est absorbée par l'environnement sans servir à déplacer le dispositif). La partie active de la boucle (le brin de jonction (8) est avantageusement à l'extrémité du dispositif articulé ou du segment où il se trouve, ou près de la charge portée par le dispositif. The loop may either be truly open or close out of the intense magnetic field (the corresponding length then creates no force), or close on the base of the device or more generally a fixed point of the environment (the downward force thus created is absorbed by the environment without being used to move the device). The active part of the loop (the connecting strand (8) is advantageously at the end of the articulated device or the segment where it is located, or near the load carried by the device.
Les brins parallèles (6) et (7) peuvent être rapprochés l'un de l'autre au passage des articulations (4) de manière à être logés à travers les noyaux des joints de cardan (11), sans que cette irrégularité de forme ait une véritable influence sur le fonctionnement du dispositif. Une circulation de fluide de refroidissement peut être établie à travers le bras articulé, un tuyau (10) parcouru par ce fluide étant installé au centre des segments (1, 2 et 3), et le fluide pouvant revenir par un tuyau disposé à l'intérieur du précédent. Un radiateur (12) est placé autour du tuyau (10) en s'étendant jusqu'au câble (5). Le tuyau (10) traverse aussi les noyaux des joints de cardan (11), et un soufflet (13) le protège de même que le câble (5) à ces endroits.  The parallel strands (6) and (7) can be brought closer to one another at the passage of the joints (4) so as to be housed through the cores of the cardan joints (11), without this irregularity of shape. has a real influence on the operation of the device. A circulation of cooling fluid can be established through the articulated arm, a pipe (10) traversed by this fluid being installed in the center of the segments (1, 2 and 3), and the fluid can return via a pipe arranged at the inside of the previous one. A radiator (12) is placed around the pipe (10) extending to the cable (5). The pipe (10) also passes through the cores of the universal joints (11), and a bellows (13) protects it as well as the cable (5) at these locations.
Le dispositif peut comporter plusieurs boucles électriques semblables à celle de la Figure 3 mais placées dans des plans sécants, et notamment perpendiculairement l'une à l'autre, afin de produire la force ascendante par l'une ou l'autre d'entre elles, ou par une combinaison de forces produites par les boucles, selon l'orientation du champ magnétique B et celle du segment d'extrémité (2) : chacune des boucles est commandée individuellement par un générateur réglable d'électricité.  The device may comprise several electrical loops similar to that of Figure 3 but placed in secant planes, and in particular perpendicular to each other, in order to produce the upward force by one or the other of them , or by a combination of forces produced by the loops, according to the orientation of the magnetic field B and that of the end segment (2): each of the loops is controlled individually by an adjustable generator of electricity.
Des boucles électriques supplémentaires peuvent aussi être ajoutées pour commander des orientations de chacun des segments, afin de soulager les actionneurs ou même de les remplacer. La façon de procéder est exposée à la Figure 4 : deux boucles (13) et (14) s'étendent jusque dans un des segments de transmission (la), deux autres boucles (15) et (16) s'étendant jusque dans le segment de transmission (lb) précédent, et les boucles (13), (14), (15), et (16) de chacune de ces paires sont perpendiculaires entre elles de sorte que chacun des segments de transmission (la et lb) comprend un brin vertical de jonction (17) et un brin horizontal de jonction (18) ; ces brins de jonctions de brins parallèles de la boucle à laquelle ils appartiennent, comme le brin de jonction (8), ont le même effet de création d'une force électromagnétique prépondérante, dans une direction perpendiculaire à leur extension et au champ magnétique B. Le passage de courants par les boucles (13) et (14) par exemple produit ainsi une force horizontale (latérale) F17 et une force verticale F18 dans les brins de jonction (17) et (18), qui maintiennent le segment concerné (la ici) à une orientation voulue ou contribuent à l'y maintenir en bloquant les deux degrés de liberté du joint de cardan (11) soutenant ce segment. Une boucle d'asservissement peut permettre de régler à tout instant le courant pour maintenir le segment concerné à l'orientation voulue, ce qui permet éventuellement de ne pas employer d'actionneurs. Une telle disposition peut être établie pour chacun des segments de transmission (1) et dans le segment d'extrémité (2), avec le même effet. Additional electrical loops may also be added to control orientations of each of the segments to relieve the actuators or even replace them. The procedure is shown in Figure 4: two loops (13) and (14) extend into one of the transmission segments (1a), two further loops (15) and (16) extending into the transmission segment (Ib), and the loops (13), (14), (15), and (16) of each of these pairs are perpendicular to one another so that each of the transmission segments (1a and 1b) comprises a vertical junction strand (17) and a horizontal junction strand (18); these strands of junctions parallel strands of the loop to which they belong, as the junction strand (8), have the same effect of creating a dominating electromagnetic force, in a direction perpendicular to their extension and the magnetic field B. The passage of currents through the loops (13) and (14) for example and produces a horizontal (lateral) force F17 and a vertical force F18 in the junction strands (17) and (18), which maintain the segment concerned (the here) at a desired orientation or contribute to maintaining it by blocking the two degrees of freedom of the universal joint (11) supporting this segment. A control loop can be used to adjust the current at any time to maintain the segment concerned to the desired orientation, which possibly allows not to use actuators. Such an arrangement can be established for each of the transmission segments (1) and in the end segment (2), with the same effect.
La Figure 5 schématise l'association en cascade de plusieurs de ces éléments pour accéder à tout l'intérieur d'une chambre torique d'un dispositif de confinement de plasma (19) : le bras articulé est introduit par une porte d'accès (20) à l'intérieur de la chambre, avancé par un dispositif quelconque situé à l'extérieur, et les segments (1) et (2) sont tournés pour suivre la courbure du tore. Il est connu que de tels dispositifs de confinement possèdent un champ magnétique B ayant une composante dite toroïdale orientée dans le cercle du tore, et cette composante ce champ B est donc utilisée pour exercer les forces électromagnétiques décrites. L'agencement est particulièrement avantageux car, en permettant à chaque segment de compenser l'effet de la pesanteur, il n'y a pas de report de moments grandissants à mesure que l'on se rapproche de l'orifice (20) qui représente l'interface avec le milieu extérieur au volume d'évolution du bras, où se situe le point d'ancrage mécanique fixe. Les segments n'ont donc que peu de charges à supporter, essentiellement des forces et non des couples qui seraient répercutées sur les segments amont. De ce fait, ces segments peuvent être modulaires et relativement légers, tout en permettant de manœuvrer des masses importantes avec un porte-à-faux très important (de l'ordre de 8 m). La Figure 15 illustre une variante de réalisation du bras, où la boucle (5) ouverte ne s'étend pas jusqu'au segment d'extrémité (2), mais au contraire dans le segment d'embase (3) ou plus généralement le premier segment plongé dans le champ B, alors que les autres segments (1) et (2) sont chacun munis d'une boucle (36) fermée de forme à peu près rectangulaire, et qui est alimentée par un générateur (9) indépendant par un câble souple (37). Dans cette conception, la boucle ouverte (5) équilibre la charge à l'extrémité du bras comme précédemment et les boucles (36) fermées engendrent chacune un couple d'équilibrage du segment (1) ou (2) auquel elles appartiennent, les articulations représentant des rétrécissements locaux. FIG. 5 schematizes the cascading combination of several of these elements to access the entire inside of an O-chamber of a plasma confinement device (19): the articulated arm is introduced by an access door ( 20) inside the chamber, advanced by any device located outside, and the segments (1) and (2) are rotated to follow the curvature of the torus. It is known that such confinement devices have a magnetic field B having a so-called toroidal component oriented in the ring of the torus, and this component this field B is therefore used to exert the electromagnetic forces described. The arrangement is particularly advantageous because, by allowing each segment to compensate for the effect of gravity, there is no transfer of increasing moments as one approaches the orifice (20) which represents the interface with the external environment to the volume of evolution of the arm, where is the fixed mechanical anchor point. The segments therefore have only a few loads to bear, essentially forces and not couples that would be reflected on the upstream segments. Therefore, these segments can be modular and relatively light, while allowing to maneuver large masses with a very large cantilever (of the order of 8 m). FIG. 15 illustrates an embodiment variant of the arm, where the open loop (5) does not extend to the end segment (2), but on the contrary in the base segment (3) or more generally the first segment immersed in the field B, while the other segments (1) and (2) are each provided with a closed loop (36) of approximately rectangular shape, and which is powered by a generator (9) independent by a flexible cable (37). In this design, the open loop (5) balances the load at the end of the arm as before and closed loops (36) each generate a balancing torque of the segment (1) or (2) to which they belong, the joints representing local narrowing.
Le second mode de réalisation sera décrit en liaison aux Figures suivantes. La Figure 6 représente un robot mobile du genre composé d'un corps (21) surélevé par rapport à des pattes (22) liées à ce corps (21) et dont les extrémités libres ou pieds sont des coupelles (23) en appui sur une paroi (24) qui peut notamment être celle du dispositif de confinement de plasma (19) rencontré ci-dessus. Les pattes (22) sont reliées au corps (21) par des pantographes (25), qui sont des biellettes articulées en parallélogrammes ayant la propriété de conserver leur orientation et elles sont commandés par des moteurs (28) respectifs pour les soulever. Les pantographes (25) sont reliés au corps (21) par des liaisons pivotantes commandées par d'autres moteurs, de manière à pouvoir avancer les pattes (22) à tour de rôle par rapport au corps (21) quand elles sont soulevées, ce qui permet une avance progressive sur la paroi (24) tout en maintenant un nombre suffisant des pattes (22) accroché à cette paroi (24) pour maintenir l'équilibre du véhicule.  The second embodiment will be described in connection with the following figures. FIG. 6 represents a mobile robot of the type composed of a body (21) raised with respect to tabs (22) connected to this body (21) and whose free ends or feet are cups (23) resting on a wall (24) which may in particular be that of the plasma confinement device (19) met above. The tabs (22) are connected to the body (21) by pantographs (25), which are parallelogram linkages having the property of maintaining their orientation and are controlled by respective motors (28) to lift them. The pantographs (25) are connected to the body (21) by pivoting links controlled by other motors, so that the tabs (22) can be moved in turn relative to the body (21) when they are lifted. which allows a progressive advance on the wall (24) while maintaining a sufficient number of tabs (22) attached to this wall (24) to maintain the balance of the vehicle.
Il est conforme à l'invention que des câbles électriques formant les boucles (26) ouvertes soient disposés dans les pattes (22) pour soutenir le véhicule. Chacune des boucles (26) peut comprendre un premier brin (27) s'étendant dans une des pattes (22a), un brin de jonction (28) prolongeant le précédant et s'étendant à travers le corps (21), et un troisième brin (29) s'étendant à travers une autre patte (22b). Les boucles (26) sont alimentées en courants continus par des générateurs non représentés situés sur le corps (21), de la même façon que dans le mode de réalisation précédent. Dans une variante de réalisation possible, les boucles (26) sont complétées par un câble souple (39) relié à un générateur (9) fixe et qui comprend deux brins respectivement reliés à deux portions (28a) et (28b) du brin de jonction (28). La différence est que les générateurs (9) ne sont pas embarqués sur le véhicule ; les câbles souples (39) n'ont aucun rôle de génération de forces électromagnétiques. L'alimentation se fait par une portion centrale des boucles (26) ouvertes, et le circuit électrique se referme en établissant un contact électrique entre les extrémités des brins (27) et (29) par la paroi (24), que les bouts des brins (27, 29) effleurent sous les coupelles (23) (Figure 7). It is in accordance with the invention that electrical cables forming the open loops (26) are arranged in the tabs (22) to support the vehicle. Each of the loops (26) may comprise a first strand (27) extending into one of the legs (22a), a connecting strand (28) extending the preceding one and extending through the body (21), and a third strand (29) extending through another leg (22b). The loops (26) are supplied with DC currents by unrepresented generators located on the body (21), in the same way as in the previous embodiment. In a possible variant embodiment, the loops (26) are completed by a flexible cable (39) connected to a generator (9) fixed and which comprises two strands respectively connected to two portions (28a) and (28b) of the connecting strand (28). The difference is that the generators (9) are not loaded on the vehicle; the flexible cables (39) have no role of generating electromagnetic forces. The supply is via a central portion of the loops (26) open, and the electrical circuit is closed by establishing an electrical contact between the ends of the strands (27) and (29) by the wall (24), that the ends of the Strands (27, 29) brush under the cups (23) (Figure 7).
Comme précédemment, l'interaction du champ magnétique B toroïdal essentiellement perpendiculaire aux boucles (26) et d'un courant électrique I qu'on fait circuler à travers ces boucles (26) produit des forces électromagnétiques de Laplace qui, en choisissant judicieusement le sens de circulation du courant I, sont orientées vers la paroi (24) pour chacun des brins 27, 28, et 29 (F27, F28, et F29) (Figure 8). Le véhicule adhère donc à la paroi (24) même si elle le surplombe, sans qu'il faille recourir à une succion des ventouses (23). Les forces sont exercées par les paires de pattes (22) en contact avec la paroi (24), et le courant est interrompu quand les pattes (22) sont soulevées. L'autonomie du véhicule est complète, les forces de l'adhérence étant exercées à toute position et orientation du véhicule tant que les boucles (26) restent essentiellement perpendiculaires au champ magnétique B.  As previously, the interaction of the toroidal magnetic field B substantially perpendicular to the loops (26) and an electric current I that is circulated through these loops (26) produces Laplace electromagnetic forces which, by judiciously choosing the direction flow of current I, are oriented towards the wall (24) for each of the strands 27, 28, and 29 (F27, F28, and F29) (Figure 8). The vehicle therefore adheres to the wall (24) even if it overhangs it, without having to resort to sucking suckers (23). The forces are exerted by the pairs of tabs (22) in contact with the wall (24), and the current is interrupted when the tabs (22) are raised. Vehicle autonomy is complete, the forces of adhesion being exerted at any position and orientation of the vehicle as the loops (26) remain substantially perpendicular to the magnetic field B.
On s'est jusqu'à présent intéressé à l'exploitation de la composante dite toroïdale (perpendiculaire aux sections du tore) du champ B ; or les tores de confinement de plasma possèdent aussi des bobines poloïdales permettant de créer une composante poloïdale du champ B magnétique, qui est perpendiculaire à la composante toroïdale. La composante poloïdale a donc la conséquence de rendre le champ hétérogène dans les sections du tore et de créer des gradients importants, notamment en direction verticale, qui peuvent influencer un dispositif électromagnétique monté sur un véhicule ou un autre objet mobile le long de la paroi du tore ou un dans le tore, notamment près de la mi-hauteur. Pour ces raisons, il importe d'approfondir et de généraliser les interactions entre les boucles, quelle que soit leur position, et le champ magnétique environnant. On considérera ici des boucles électriques fermées, des extensions à des boucles ouvertes étant faciles.  So far we have been interested in the exploitation of the so-called toroidal component (perpendicular to the torus sections) of the B field; however, the plasma containment cores also have poloidal coils for creating a poloidal component of the magnetic B field, which is perpendicular to the toroidal component. The poloidal component therefore has the consequence of rendering the field heterogeneous in the torus sections and creating important gradients, especially in the vertical direction, which can influence an electromagnetic device mounted on a vehicle or other moving object along the wall of the body. torus or one in the torus, especially near mid-height. For these reasons, it is important to deepen and generalize the interactions between the loops, whatever their position, and the surrounding magnetic field. We will consider here closed electric loops, extensions to open loops being easy.
Les boucles électriques fermées signifient que les courants ne se referment pas à travers un contact avec une paroi. Conjuguée à un gradient du champ magnétique B selon la verticale, cette configuration autorise des dispositifs volants. La Figure 9 schématise le cas particulier de trois boucles de courant 30, 31 et 32 fermées et circulaires ou polygonales, chacune dans un plan orthogonal aux deux autres. L'ensemble est placé dans un champ magnétique B de direction horizontale mais variant en hauteur d'une valeur inférieure plus importante Bb à une valeur supérieure plus petite Bh selon les propriétés exposées ci-dessus du champ poloïdal. Trois axes principaux (x, y, z) de l'espace ont été figurés. Une généralisation de ce cas consiste à utiliser 6 boucles de courant non parallèles entre elles, l'ensemble étant plongé dans un champ B non uniforme présentant au moins un gradient selon la direction verticale. Dans ce cas, le contrôle du courant dans chacune des six boucles permet de contrôler les 6 degré de liberté de l'ensemble comportant ces six boucles. Closed electrical loops mean that the currents do not close through a contact with a wall. Combined with a gradient of magnetic field B in the vertical, this configuration allows flying devices. FIG. 9 schematizes the particular case of three closed, circular or polygonal current loops 30, 31 and 32, each in a plane orthogonal to the two others. The assembly is placed in a magnetic field B of horizontal direction but varying in height from a lower value Bb to a smaller higher value Bh according to the above-mentioned properties of the poloidal field. Three main axes (x, y, z) of space have been figured. A generalization of this case consists in using 6 current loops not parallel to each other, the assembly being immersed in a non-uniform field B having at least one gradient in the vertical direction. In this case, the control of the current in each of the six loops makes it possible to control the 6 degree of freedom of the assembly comprising these six loops.
La figure 10 schématise une des boucles (30), qui s'étend dans un plan vertical (y z) perpendiculaire à la direction du champ B. Si un courant I la parcourt, les forces résultantes s'annulent sur les côtés verticaux, mais la force Fb produite par le brin inférieur est supérieure à celle Fh (de sens opposé) produite par le brin inférieur, de sorte qu'une résultante verticale (z) descendante ou ascendante selon le sens du courant est produite par la boucle (30).  Figure 10 schematizes one of the loops (30), which extends in a vertical plane (yz) perpendicular to the direction of the field B. If a current I runs through it, the resulting forces cancel out on the vertical sides, but the Fb force produced by the lower strand is greater than that Fh (opposite direction) produced by the lower strand, so that a vertical resultant (z) descending or ascending in the direction of the current is produced by the loop (30).
La figure 11 schématise la seconde boucle (31) s'étendant dans un plan vertical (x z) mais dans la direction (x) du champ B. Les brins supérieur et inférieur, où les courants sont orientés dans la direction du champ, produisent des forces de Laplace nulles, et les brins verticaux (d'axe z) produisent des forces horizontales Fi opposées et perpendiculaires au plan de la boucle (31), et donc un couple de rotation sur celle-ci autour d'un axe z vertical.  FIG. 11 schematizes the second loop (31) extending in a vertical plane (xz) but in the direction (x) of the field B. The upper and lower strands, where the currents are oriented in the direction of the field, produce zero Laplace forces, and the vertical strands (z axis) produce horizontal forces Fi opposite and perpendicular to the plane of the loop (31), and therefore a torque on it about a vertical axis z.
Enfin, la figure 12 schématise la troisième boucle (32) qui s'étend dans le plan horizontal (x y), comprend deux côtés orientés dans la direction du champ B qui ne produisent pas de force électromagnétique, et deux autres côtés perpendiculaires aux champs B qui produisent des forces verticales et opposées, c'est-à-dire un couple autour d'un axe y, horizontal et perpendiculaire au champ B, sur la boucle (32).  Finally, FIG. 12 schematizes the third loop (32) which extends in the horizontal plane (xy), comprises two sides oriented in the direction of the field B which do not produce electromagnetic force, and two other sides perpendicular to the fields B which produce vertical and opposite forces, i.e. a pair about an axis y, horizontal and perpendicular to the field B, on the loop (32).
Les trois boucles, commandées comme dans les réalisations précédentes par des générateurs de courant indépendants, permettent de déplacer un dispositif auquel elles appartiennent, selon les trois mouvements mentionnés ci-dessus (translation z perpendiculaire au champ B dans le sens du gradient, et rotations autour d'axes y et z non parallèles au champ B). On peut encore remarquer que l'ensemble est stable à l'égard des rotations autour de la direction x du champ B si le gradient existe en fonction de l'altitude puisqu'un basculement des boucles (30, 31, et 32) autour de l'axe x produit alors des forces antagonistes à celui-ci, et un moment de redressement dans la boucle (30). Le dispositif porteur des boucles (30, 31, 32) devrait être simplement guidé dans les deux directions horizontales de translation x et y. Ces boucles fermées sont donc aussi aptes à la sustentation d'un objet ou d'un véhicule mobile dans le tore, tels que ceux qu'on a décrits. The three loops, controlled as in previous embodiments by independent current generators, to move a device to which they belong, according to the three movements mentioned above (translation z perpendicular to the field B in the direction of the gradient, and rotations around axes y and z not parallel to the field B). It can also be noted that the set is stable with respect to the rotations around the x direction of the field B if the gradient exists as a function of altitude since a tilting of the loops (30, 31, and 32) around the x-axis then produces antagonistic forces thereto, and a righting moment in the loop (30). The device carrying the loops (30, 31, 32) should be simply guided in the two horizontal directions of translation x and y. These closed loops are also able to lift an object or a mobile vehicle in the torus, such as those described.
Pour obtenir, outre la sustentation, la propulsion du dispositif porteur des boucles dans la direction x du déplacement recherché, il faut générer une autre force. C'est ce que schématise la Figure 13. Pour cela, on remplace la boucle (30) orthogonale à x par deux boucles (33, 34) analogues mais distinctes et ayant des inclinaisons opposées autour de l'axe latéral y, de manière à faire un angle qui peut être de 10° ou plus. Le dispositif comprenant quatre boucles électriques (31, 32, 33, 34) placées dans des plans différents dont deux boucles placées symétriquement par exemple, possède la propriété supplémentaire d'instaurer des forces dans la direction x du champ B et donc la faculté de déplacer l'objet en translation dans cette direction, sans modifier les autres réglages et notamment le courant de commande de la force verticale permettant de soutenir l'objet. Cette faculté de commander des mouvements selon l'axe x est importante puisqu'elle permet de déplacer l'objet horizontalement (en direction radiale avec la composante poloïdale du champ) dans le tore de confinement de plasma (19).  In order to obtain, besides the lift, the propulsion of the device carrying the loops in the x direction of the desired displacement, another force must be generated. This is shown schematically in Figure 13. For this, the loop (30) orthogonal to x is replaced by two loops (33, 34) similar but distinct and having opposite inclinations around the lateral axis y, so as to make an angle that can be 10 ° or more. The device comprising four electric loops (31, 32, 33, 34) placed in different planes including two symmetrically placed loops, for example, has the additional property of establishing forces in the x direction of the B field and thus the ability to move the object in translation in this direction, without modifying the other settings and in particular the control current of the vertical force to support the object. This ability to control movements along the x-axis is important since it makes it possible to move the object horizontally (in the radial direction with the poloidal component of the field) in the plasma confining torus (19).
On exploite en effet la caractéristique, due à la composante poloïdale du champ, que ce dernier est oblique et comporte une composante verticale (en z) variable dans chaque portion du volume du tore (19). Les six brins latéraux (en y) des bobines (32, The characteristic, due to the poloidal component of the field, is exploited because the latter is oblique and has a vertical component (in z) variable in each portion of the volume of the torus (19). The six lateral strands (in y) of the coils (32,
33, 34) produisent chacune une force différente en intensité et en orientation, puisqu'elle est perpendiculaire au champ local, et qui comprend donc une composante verticale (en z) et une composante horizontale en x. Ces douze composantes interviennent pour déterminer la force horizontale de propulsion (en x), la force verticale de sustentation et le mouvement autour de l'axe y, en proportion des trois courants qu'on fait circuler dans les trois boucles (32, 33, 34). On est donc devant un système à trois équations à trois paramètres, parfaitement déterminé. La boucle (31) sert encore à régler le mouvement autour de l'axe vertical z. Ainsi, un ensemble de quatre boucles électriques non parallèles permet de régler les déplacements d'un objet mobile selon ces quatre degrés de liberté. Il serait possible de placer les boucles à d'autres orientation, et de produire les mêmes forces en faisant exploiter des relations de changement d'orientation par l'asservissement ou par des calculs classiques de type matriciel. De façon encore plus générale, un dispositif à six boucles non parallèles dans un champ non symétrique permet de contrôler tous ses degrés de liberté à partir des six courants indépendants parcourant ses boucles. 33, 34) each produce a different force in intensity and orientation, since it is perpendicular to the local field, and therefore comprises a vertical component (z) and a horizontal component x. These twelve components intervene to determine the horizontal propulsive force (in x), the vertical lift force, and the movement around the y-axis, in proportion to the three currents circulated in the three loops (32, 33, 34). We are thus in front of a system with three equations with three parameters, perfectly determined. The loop (31) is still used to adjust the movement around the vertical axis z. Thus, a set of four non-parallel electrical loops makes it possible to adjust the movements of a moving object according to these four degrees of freedom. It would be possible to place the loops at other orientations, and to produce the same forces by exploiting relations of change of orientation by slaving or by conventional calculations of matrix type. Even more generally, a device with six non-parallel loops in a non-symmetrical field makes it possible to control all of its degrees of freedom from the six independent currents flowing through its loops.
La Figure 14 illustre un exemple d'utilisation de ce système, où le dispositif porteur est un véhicule volant (35) qui porte les quatre boucles de courant (31, 32, 33 et 34) non parallèles qui lui permettent de se déplacer dans les directions circulaires (x) et verticale (z) du tore de confinement de plasma (19) et de tourner autour des directions verticales (z) et latérale (y). Les translations dans la direction latérale (y) peuvent être appliqués par des moyens différents, comme des jets de gaz. Les rotations autour de l'axe x, correspondant à l'axe longitudinal du véhicule, ne sont normalement jamais souhaitées et sont rendues difficiles par la stabilité procurée par les boucles, conformément aux explications données à propos de la figure 10. Le véhicule volant (35) peut comprendre un fuselage (36) allongé dont la face supérieure porte les quatre boucles électriques, fermées ou éventuellement ouvertes. Le fuselage est dirigé dans la direction de l'axe x pour aider à sa stabilité contre les rotations de basculement autour de cet axe. Son chargement est situé près de la face inférieure afin de compléter sa stabilité au basculement.  Figure 14 illustrates an example of use of this system, wherein the carrier device is a flying vehicle (35) carrying the four non-parallel current loops (31, 32, 33 and 34) which allow it to move in the circular (x) and vertical (z) directions of the plasma confining torus (19) and rotating around the vertical (z) and lateral (y) directions. Translations in the lateral direction (y) can be applied by different means, such as gas jets. Rotations about the x-axis, corresponding to the longitudinal axis of the vehicle, are normally never desired and are made difficult by the stability provided by the loops, as explained with reference to FIG. 35) may comprise an elongate fuselage (36) whose upper face carries the four electric loops, closed or possibly open. The fuselage is directed in the x-axis direction to assist its stability against tilt rotations around this axis. Its loading is located near the underside to complete its tipping stability.
On a encore représenté les bobines créant la composante poloïdale du champ à la figure 14.  The coils creating the poloidal component of the field in FIG.
Le véhicule volant (35) n'est pas le seul dispositif porteur utilisable avec ce système de plusieurs boucles éventuellement fermées, qui pourrait au contraire être installé à l'extrémité d'un bras articulé comme celui qu'on a rencontré auparavant. Les générateurs de courant peuvent être aussi ici placés sur le véhicule volant (35) ou au contraire fixes et reliés à lui par des câbles souples. Un gradient de 0,05 T/m en direction verticale est suffisant pour permettre la sustentation de tels véhicules. The flying vehicle (35) is not the only carrier device that can be used with this system of several loops, possibly closed, which could instead be installed at the end of an articulated arm like the one previously encountered. The current generators can also be placed here on the flying vehicle (35) or on the opposite fixed and connected to him by flexible cables. A gradient of 0.05 T / m in the vertical direction is sufficient to allow the levitation of such vehicles.

Claims

REVENDICATIONS
1) Dispositif mobile dans un champ magnétique ambiant (B) de grande intensité (au moins supérieure à 0,5T), le dispositif étant composé de segments articulés entre eux, caractérisé en ce qu'il comprend au moins une boucle (5, 26, 30, 31, 32) électrique alimentée en courant électrique continu par un générateur (9) à une intensité réglable, la boucle s'étendant sur au moins un des segments et se refermant hors dudit segment, et étant orientée de façon que ses différentes portions soient plongées dans des intensités respectives du champ qui peuvent produire, selon l'intensité du courant, des forces électromagnétiques ayant une résultante linéaire ascendante d'équilibrage du poids du dispositif et d'une charge éventuelle du dispositif.  1) Device movable in an ambient magnetic field (B) of great intensity (at least greater than 0.5T), the device being composed of segments articulated together, characterized in that it comprises at least one loop (5, 26 , 30, 31, 32) supplied with direct current by a generator (9) at an adjustable intensity, the loop extending over at least one of the segments and closing off said segment, and being oriented so that its different The portions are immersed in respective intensities of the field which can produce, depending on the intensity of the current, electromagnetic forces having an upward linear result of balancing the weight of the device and a possible load of the device.
2) Dispositif suivant la revendication 1, caractérisé en ce que la boucle est dans le dispositif et comprend une composante de longueur nette non nulle dans une direction horizontale et perpendiculaire au champ magnétique. 2) Device according to claim 1, characterized in that the loop is in the device and comprises a non-zero net length component in a horizontal direction and perpendicular to the magnetic field.
3) Dispositif suivant la revendication 1 ou 2, caractérisé en ce qu'il est un bras dont les segments (1, 2) articulés entre eux sont munis d'actionneurs de commande d'angles formés par les segments aux articulations. 4) Dispositif suivant la revendication 3, caractérisé en ce que la boucle comprend deux brins (6, 7) essentiellement parallèles courant le long d'au moins un des segments et un brin (8) joignant les brins essentiellement parallèles entre eux et situé sur un segment d'extrémité du bras. 5) Dispositif suivant la revendication 3, caractérisé en ce que les brins essentiellement parallèles courent le long de chacun des segments et la boucle se referme hors du champ magnétique, cette partie hors du champ pouvant être sur une embase fixe. 6) Dispositif suivant la revendication 3, caractérisé en ce que les brins essentiellement parallèles courent le long d'un seul des segments du bras, puis dans un câble souple parallèle au bras, et la boucle se referme hors du champ magnétique, cette partie hors du champ pouvant être sur une embase fixe. 3) Device according to claim 1 or 2, characterized in that it is an arm whose segments (1, 2) hinged together are provided with angle control actuators formed by the segments to the joints. 4) Device according to claim 3, characterized in that the loop comprises two substantially parallel strands (6, 7) running along at least one of the segments and a strand (8) joining the strands substantially parallel to each other and located on an end segment of the arm. 5) Device according to claim 3, characterized in that the substantially parallel strands run along each of the segments and the loop closes out of the magnetic field, this part out of the field can be on a fixed base. 6) Device according to claim 3, characterized in that the substantially parallel strands run along only one of the segments of the arm, then in a flexible cable parallel to the arm, and the loop closes out of the magnetic field, this part out the field can be on a fixed base.
7) Dispositif suivant la revendication 6, caractérisé en ce qu'il comprend une pluralité des boucles, alimentées indépendamment et courant chacun le long de segments différents parmi les segments du bras, ces courants pouvant être tels que les forces qu'ils engendrent équilibrent le poids et la charge éventuelle du segment respectif. 7) Device according to claim 6, characterized in that it comprises a plurality of independently powered loops each running along different segments of the segments of the arm, these currents being such that the forces they generate balance the weight and the eventual load of the respective segment.
8) Dispositif suivant l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend une pluralité des boucles, qui sont alimentées indépendamment et s'étendent chacune dans au moins un segment commun, et dans des plans mutuellement sécants, les brins essentiellement parallèles des boucles étant tous essentiellement parallèles entre eux. 8) Device according to any one of claims 1 to 7, characterized in that it comprises a plurality of loops, which are independently powered and each extend in at least one common segment, and in mutually secant planes, the essentially parallel strands of the loops being all essentially parallel to each other.
9) Dispositif suivant la revendication 1, caractérisé en ce qu'il est un robot marcheur dont les segments sont un corps surélevé des pattes, les pattes (22) étant articulées au corps, et en ce que ledit robot comprend une pluralité des boucles, chacune des boucles (26) s'étendant le long de deux des pattes et à travers le corps, et étant ouverte à des extrémités des pattes et en contact électrique avec une paroi sur laquelle les pattes sont en contact. 9) Apparatus according to claim 1, characterized in that it is a walking robot whose segments are a raised body of the legs, the tabs (22) being hinged to the body, and in that said robot comprises a plurality of loops, each of the loops (26) extending along two of the tabs and through the body, and being open at the ends of the tabs and in electrical contact with a wall on which the tabs are in contact.
PCT/EP2012/073234 2011-11-21 2012-11-21 Mobile device in a high-intensity ambient magnetic field WO2013076141A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160593 2011-11-21
FR1160593A FR2982788B1 (en) 2011-11-21 2011-11-21 MOBILE DEVICE IN A HIGH INTENSITY AMBIENT MAGNETIC FIELD AND METHOD FOR CONTROLLING THE SAME

Publications (1)

Publication Number Publication Date
WO2013076141A1 true WO2013076141A1 (en) 2013-05-30

Family

ID=47216279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073234 WO2013076141A1 (en) 2011-11-21 2012-11-21 Mobile device in a high-intensity ambient magnetic field

Country Status (2)

Country Link
FR (1) FR2982788B1 (en)
WO (1) WO2013076141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627266A (en) * 2015-03-06 2015-05-20 中国科学院合肥物质科学研究院 Control method of multi-section peristaltic snake-like robot running in nuclear fusion cabin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690734B (en) * 2015-03-06 2016-03-30 中国科学院合肥物质科学研究院 Operate in the imitative worm robot running gear in nuclear fusion cabin and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300875A (en) 1993-04-15 1994-10-28 Mitsubishi Heavy Ind Ltd Cart for visual inspection device inside reactor container of tokamak nuclear fusion reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300875A (en) 1993-04-15 1994-10-28 Mitsubishi Heavy Ind Ltd Cart for visual inspection device inside reactor container of tokamak nuclear fusion reactor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Long Reach Articulated Robots for inspection in hazardous environments, recent development in robotics and embedded diagnostics", 15T INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY, IEEE, 2010
INCONNU: "Composition de physique et chimie - Première S4", 16 May 2008 (2008-05-16), XP002684158, Retrieved from the Internet <URL:http://physique.chimie.sjh.free.fr/documents/0708-1S-16mai-compo3.doc> [retrieved on 20120925] *
INCONNU: "Principe de Laplace TPE 2010 Fénelon Sainte-Marie", 11 February 2010 (2010-02-11), XP002684159, Retrieved from the Internet <URL:http://www.youtube.com/watch?v=vDZ9Bwzna4w> [retrieved on 20120926] *
IZARD: "Hardening Inspection Devices to Ultra-High Vacuum, Temperature and High Magnetic Field", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 20, no. 3, pages 1 767 - 1 772
JEAN-BAPTISTE IZARD ET AL: "Hardening Inspection Devices to Ultra-High Vacuum, Temperature and High Magnetic Field", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 20, no. 3, 1 June 2010 (2010-06-01), pages 1767 - 1772, XP011305336, ISSN: 1051-8223 *
PERROT Y ET AL: "Long reach articulated robots for inspection in hazardous environments, recent developments on robotics and embedded diagnostics", APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI), 2010 1ST INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 5 October 2010 (2010-10-05), pages 1 - 5, XP031792225, ISBN: 978-1-4244-6633-7 *
SMICK N ET AL: "Plasma profiles and flows in the high-field side scrape-off layer in Alcator C-Mod", JOURNAL OF NUCLEAR MATERIALS, ELSEVIER BV, NL, vol. 337-339, 1 March 2005 (2005-03-01), pages 281 - 285, XP027708137, ISSN: 0022-3115, [retrieved on 20050301] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627266A (en) * 2015-03-06 2015-05-20 中国科学院合肥物质科学研究院 Control method of multi-section peristaltic snake-like robot running in nuclear fusion cabin
CN104627266B (en) * 2015-03-06 2016-11-16 中国科学院合肥物质科学研究院 Operate in the control method of multistage creeping motion type snake-shaped robot in nuclear fusion cabin

Also Published As

Publication number Publication date
FR2982788A1 (en) 2013-05-24
FR2982788B1 (en) 2015-08-07

Similar Documents

Publication Publication Date Title
EP0040159B1 (en) Manipulator
EP0362342B1 (en) Articulated device, for use in particular in the field of robotics
FR3027588A1 (en) HANDLING A SATELLITE IN SPACE
FR2480631A1 (en) METHOD OF SORTING OR TRANSPORTING AND INSTALLATION AND TROLLEY FOR ITS IMPLEMENTATION
EP3962816B1 (en) Device for damping docking to a satellite
FR2797478A1 (en) MAGNETIC CENTERING BEARING WITH LARGE AMPLITUDE TILT CONTROL
FR2797477A1 (en) BALL JOINT TYPE MAGNETIC BEARING FOR TILTING BODY
FR2954835A1 (en) DEVICE FOR CONTROLLING A VEHICLE WITH ELECTROMAGNETIC ACTUATOR
WO2013076141A1 (en) Mobile device in a high-intensity ambient magnetic field
EP3012194A1 (en) Manipulation of a satellite in space
EP0388296A1 (en) Intervention apparatus, particularly for the control, inspection and maintenance of heat exchangers
CA2067439C (en) Helicopter-borne basket and method for changing conductor joints
EP3045396B1 (en) Pointing assembly of an instrument
FR2880575A1 (en) Delta type parallel manipulator robot for moving light load, has load balancing unit balancing load exerted on movable unit and permitting mobility of connection with respect to base unit according to three degrees of liberty and pantograph
EP3233391B1 (en) Load-balancing device for articulated arm, associated load-handling apparatus and method
EP3974371B1 (en) Crane element forming a pivot for crane assembled by elements
FR2529522A1 (en) AUTOMOTIVE CARRIER SUSPENDED AT A MONORAIL
FR2894341A1 (en) ELECTROMECHANICAL DEVICE COMPRISING A MEMBER WHICH CAN ROTATE AROUND AT LEAST ONE FIRST AND A SECOND AXIS OF ROTATION
EP0889844A1 (en) Device for handling an electric spindle of a high-speed machine tool
FR3049977B1 (en) MOUNTING / DISASSEMBLY INSTALLATION OF A FLEXIBLE WATER PUMPING PIPE
EP0701956B1 (en) Transfer device for containers
CH682914A5 (en) Device for lifting and moving of load e.g. object - has hoist with electric motor, and lifting beam to which load is fixed, before lifting with chain connecting hoist to rail carrier
EP1057775B1 (en) Suspending device for a vehicle element at a conveyer means in an assembly line
EP0463913A1 (en) Automatic handling device for several positioning or connecting elements
EP4049936A1 (en) Mobile carriage system and method for implementing a mobile carriage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12788539

Country of ref document: EP

Kind code of ref document: A1