WO2013075637A1 - 单纤器件 - Google Patents

单纤器件 Download PDF

Info

Publication number
WO2013075637A1
WO2013075637A1 PCT/CN2012/085021 CN2012085021W WO2013075637A1 WO 2013075637 A1 WO2013075637 A1 WO 2013075637A1 CN 2012085021 W CN2012085021 W CN 2012085021W WO 2013075637 A1 WO2013075637 A1 WO 2013075637A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
positive direction
wavelength
birefringent plate
same
Prior art date
Application number
PCT/CN2012/085021
Other languages
English (en)
French (fr)
Inventor
曾同新
张学明
李生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12852059.0A priority Critical patent/EP2685300B1/en
Publication of WO2013075637A1 publication Critical patent/WO2013075637A1/zh
Priority to US14/077,936 priority patent/US9110262B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12116Polariser; Birefringent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • G02F1/0955Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a single fiber device. Background technique
  • Embodiments of the present invention provide a single fiber device that achieves higher emitted optical power and reception sensitivity.
  • the embodiment of the present invention adopts the following technical solutions:
  • a single fiber device comprising a first photodiode for receiving incident light and a laser diode for emitting emitted light, further comprising:
  • a same-wavelength spectroscope having a positive direction comprising a first birefringent plate, a half-wave plate, a 45° Faraday rotator, and the first birefringent plate disposed in the positive direction and perpendicular to the positive direction
  • the same second birefringent sheet comprising a first birefringent plate, a half-wave plate, a 45° Faraday rotator, and the first birefringent plate disposed in the positive direction and perpendicular to the positive direction
  • the same second birefringent sheet comprising a first birefringent plate, a half-wave plate, a 45° Faraday rotator, and the first birefringent plate disposed in the positive direction and perpendicular to the positive direction
  • the same second birefringent sheet comprising a first birefringent plate, a half-wave plate, a 45° Faraday rotator, and the first birefringent plate disposed in the
  • the incident light passes through the same wavelength splitter in the positive direction;
  • the emitted light passes through the same-wavelength spectroscope in a direction opposite to the positive direction; the emitted light is linearly polarized light whose polarization direction is perpendicular to a main section of the first birefringent plate.
  • the above-mentioned same-wavelength splitter can realize separation of the receiving and transmitting optical paths. Compared with the prior art, it is not necessary to use a partially transmissive partial reflection filter, thereby achieving bidirectional theoretical non-destructive transmission of the same-wavelength single fiber, achieving higher emission. Optical power and receiving sensitivity.
  • FIG. 1 is a schematic diagram of optical path separation by partially transmitting a partial reflection filter in the prior art
  • FIG. 2 is a schematic diagram of a single fiber device according to Embodiment 1 of the present invention
  • Figure 3 is a schematic view of the optical path of the light emitted in Figure 2;
  • FIG. 4 is a schematic diagram of a single fiber device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a single fiber device according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a single fiber device according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of another single fiber device according to Embodiment 4 of the present invention. detailed description
  • Embodiments of the present invention provide a single fiber device, as shown in FIG. 2, including a first photodiode 2 (Photo Diode, PD) for receiving incident light 21 and a laser diode 3 (Laser Diode for emitting light).
  • a first photodiode 2 Photo Diode, PD
  • a laser diode 3 Laser Diode for emitting light
  • a same-wavelength spectroscope 1 having a positive direction (ie, z-axis forward), including first in the
  • the 45 ° Faraday rotating piece 13 is correspondingly set to: linearly polarized light that passes through the 45 ° Faraday rotating piece 13 as viewed from the front of the ⁇ axis
  • the polarization direction is rotated 45 ° clockwise.
  • the incident light 21 passes through the same wavelength splitter 1 in the positive direction (ie, the positive axis); the incident light 21 is the light of any polarization, and is decomposed into two orthogonal linear polarizations when passing through the first birefringent sheet 11.
  • the polarization directions are rotated clockwise by 45 ° ⁇ ', that is, the polarization direction of the 0-light is rotated altogether.
  • the light becomes parallel to the yz plane, and the polarization direction of the e-light is rotated by 90° to become light perpendicular to the yz plane.
  • the second birefringent sheet 14 When passing through the second birefringent sheet 14, the second birefringent sheet 14 is Like the first birefringent sheet 11, the angle between the optical axis and the positive direction (ie, the positive z-axis) is the same It is [alpha], e light directly through the second birefringent plate 14, the light after 0 offset a distance e is the incident light 21 and photosynthesis, thereby changing the positive direction through the same wavelength spectrophotometry The optical path of the incident light 21 of the device 1.
  • the outgoing light 31 emitted from the laser diode 3 passes through the same-wavelength splitter 1 in a direction opposite to the positive direction (i.e., the negative direction of the z-axis); the outgoing light 31 has a polarization direction perpendicular to the first Linearly polarized light of the main section (ie, yz plane) of the birefringent sheet.
  • the exiting light 31 passes directly through the second birefringent sheet 14, and after passing through the 45° Faraday rotator 13, the polarization direction of the outgoing light 31 is rotated clockwise by 45° from the positive direction of the z-axis, and the light exits through the half-wave plate 12
  • the polarization direction of 31 becomes a direction symmetrical with the e-axis of the half-wave plate 12, that is, the polarization direction of the outgoing light 31 is rotated counterclockwise by 45 ° as seen from the z-axis forward direction. That is, the polarization direction of the outgoing light 31 becomes again perpendicular to the yz plane, and then passes directly through the first birefringent sheet 11.
  • the optical path of the outgoing light 31 passing through the same wavelength splitter 1 in the opposite direction to the positive direction is not changed.
  • the 45 ° Faraday rotator 13 is correspondingly set to : The direction of polarization of the linearly polarized light passing through the 45 ° Faraday rotator 13 is rotated counterclockwise by 45 ° from the forward direction of the ⁇ axis.
  • the polarization direction of the 0-light is rotated by 90° to become parallel to the yz plane
  • the polarization direction of the e-light is rotated by 90° to become light perpendicular to the yz plane, thereby changing the same-wavelength splitting in the positive direction.
  • the outgoing light 31 passes directly through the second birefringent sheet 14, and after passing through the 45° Faraday rotator 13, the polarization direction of the outgoing light 31 is rotated counterclockwise by 45° from the z-axis forward direction, and passes through the half-wave plate 12
  • the polarization direction of the outgoing light 31 becomes a direction symmetrical with the e-axis of the half-wave plate 12, that is, when viewed from the z-axis forward direction, the polarization direction of the outgoing light 31 is rotated clockwise by 45°, and the polarization of the outgoing light 31 is also made.
  • the direction again becomes perpendicular to the yz plane and then passes directly through the first birefringent sheet 11.
  • the optical path of the outgoing light 31 passing through the same wavelength splitter 1 in the direction opposite to the positive direction is not changed.
  • the above-mentioned same-wavelength optical splitter is disposed between the optical fiber and the LD and the PD, and the connection can be realized.
  • the separation of the receiving and transmitting optical paths does not require the use of a partially transmissive partial reflection filter as compared with the prior art, thereby achieving bidirectional theoretical lossless transmission of the same wavelength single fiber, achieving higher emission optical power and receiving sensitivity.
  • an embodiment of the present invention provides a single fiber device.
  • the method further includes: a Transceiver Outline (TO) for encapsulating the first photodiode 2 and the laser diode 3 together.
  • TO Transceiver Outline
  • the structure and principle of the same wavelength splitter 1 are the same as those in the first embodiment, and will not be described again.
  • a single-fiber bidirectional device in which the LD and the PD are packaged in the same TO, and the separation of the receiving and transmitting optical paths can be realized by the above-mentioned same-wavelength spectroscope, and the partial transmission partial reflection filter is not required, compared with the prior art.
  • the two-way theoretical non-destructive transmission of the same wavelength single fiber is realized, and the higher emitted optical power and receiving sensitivity are achieved.
  • the filter is not required, the optical crosstalk caused by the stray light generated by the reflection is reduced.
  • the embodiment of the present invention provides a single fiber device, as shown in FIG. 5, further comprising: a mirror 5 disposed on the optical path of the incident light between the first photodiode 2 and the same wavelength splitter 1 For reflecting incident light passing through the same wavelength splitter 1, the first photodiode 2 receives incident light; a first receiving die 22 for encapsulating the first photodiode 2; and a transmitting die 32 for encapsulating the laser diode 3 .
  • the structure and principle of the same wavelength splitter 1 are the same as those in the first embodiment, and will not be described herein.
  • Bi-Direction Optical Sub-Assembly (BOSA) is realized, and the separation of the receiving and transmitting optical paths can be realized by the above-mentioned same-wavelength splitter, and the partial transmission portion is not required compared with the prior art. Reflecting the filter, thereby achieving bidirectional theoretical lossless transmission of the same wavelength single fiber, achieving higher emission optical power and receiving sensitivity.
  • BOSA Bi-Direction Optical Sub-Assembly
  • Embodiment 4 Based on Embodiment 2 or Embodiment 3, an embodiment of the present invention provides a single fiber device, as shown in FIG. 6, further comprising: a second photodiode 6 for receiving light of a specific wavelength; a specific wavelength filter 61, The light of a specific wavelength is reflected, and the light of other wavelengths is transmitted; the second receiving die 62 is for encapsulating the second photodiode 6; the specific wavelength filter 61 and the same wavelength splitter 1 are sequentially disposed in the positive direction.
  • the other structure is the same as that of the second embodiment, or is the same as that of the third embodiment as shown in FIG.
  • the specific wavelength of light transmitted by the optical fiber 7 is reflected at the specific wavelength filter 61, and is received at the second photodiode 6, and the other light of the same wavelength passes directly through the specific wavelength filter 61.
  • the specific structure and principle and the above implementation The examples are the same and will not be described here.
  • a two-wavelength single-fiber bidirectional device is realized, and the separation of the receiving and transmitting optical paths can be realized by the above-mentioned same-wavelength optical splitter.
  • the partial transmission partial reflection filter is not needed, thereby realizing the same-wavelength single-fiber bidirectional theory. Lossless transmission on the upper, achieving higher transmitted optical power and receiving sensitivity.

Abstract

一种单纤器件,包括用于接收入射光(21)的第一光电二极管(2)、用于发射出射光(31)的激光二极管(3)、以及具有一正方向的同波长分光器(1)。同波长分光器(1)包括沿正方向依次设置且垂直于正方向的第一双折射片(11)、半波片(12)、45°法拉第旋转片(13)以及与第一双折射片(11)相同的第二双折射片(14)。第一双折射片(11)的光轴与正方向之间的夹角为α,0°〈α〈90°,半波片(12)的e轴与第一双折射片(11)主截面之间的角度为β,β=22.5°或β=67.5°。入射光(21)沿正方向通过同波长分光器(1);出射光(31)沿与正方向相反的方向通过同波长分光器(1),出射光(31)为偏振方向垂直于第一双折射片(11)的主截面的线偏振光。该单纤器件实现同波长单纤双向理论上的无损传输,达到较大的发射光功率及接收灵敏度。

Description

单纤器件 技术领域 本发明涉及光通信技术领域, 尤其涉及一种单纤器件。 背景技术
目前, 在无源光纤网络 (Passive Optical Network, PON) 系统中, 同 波长单纤双向的收发, 也就是相同波长的光通过同一个光纤实现接收和发 射光路的分离是一个比较难解决的问题。 现有技术如图 1所示, 滤波片为部 分透过部分反射滤波片, 使得一个方向上的光直接透射通过滤波片, 而另 一个方向上的光在滤波片处反射, 从而改变光路, 进而使相同波长的光通 过同一个光纤实现接收和发射光路的分离。
然而, 使用部分透过部分反射滤波片, 会损失光器件的发射光功率及 接收灵敏度。 发明内容
本发明的实施例提供一种单纤器件, 达到较高的发射光功率及接收灵 敏度。
为解决上述技术问题, 本发明的实施例采用如下技术方案:
一种单纤器件, 包括用于接收入射光的第一光电二极管和用于发射出 射光的激光二极管, 还包括:
具有一正方向的同波长分光器, 包括沿所述正方向依次设置且垂直于 所述正方向的第一双折射片、 半波片、 45 ° 法拉第旋转片以及与所述第一 双折射片相同的第二双折射片;
所述第一双折射片的光轴与所述正方向之间的夹角为 α, 0 ° < α <90° ; 所述半波片的 e轴与所述第一双折射片主截面之间的角度为 β, β =67.5 ° 或 β =22.5 ° ;
所述入射光沿所述正方向通过所述同波长分光器;
所述出射光沿与所述正方向相反的方向通过所述同波长分光器; 所述出射光为偏振方向垂直于所述第一双折射片的主截面的线偏振光。 通过上述同波长分光器, 可实现接收和发射光路的分离, 与现有技术 相比, 无需使用部分透射部分反射滤波片, 从而实现同波长单纤双向理论 上的无损传输, 达到较高的发射光功率及接收灵敏度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为现有技术中部分透过部分反射滤波片实现光路分离的示意图; 图 2为本发明实施例一中一种单纤器件的示意图;
图 3为图 2中出射光的光路示意图;
图 4为本发明实施例二中一种单纤器件的示意图;
图 5为本发明实施例三中一种单纤器件的示意图;
图 6为本发明实施例四中一种单纤器件的示意图;
图 7为本发明实施例四中另一种单纤器件的示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
实施例一
本发明实施例提供一种单纤器件, 如图 2所示, 包括用于接收入射光 21的第一光电二极管 2 (Photo Diode, PD) 和用于发射出射光的激光二极 管 3 (Laser Diode, LD), 还包括: 具有一正方向 (即 z轴正向) 的同波长 分光器 1,包括沿正方向(即 z轴正向)依次设置且垂直于正方向(即 z轴) 的第一双折射片 11、 半波片 12、 45 ° 法拉第旋转片 13以及与第一双折射 片 11相同的第二双折射片 14; 第一双折射片 11的光轴与正方向 (即 z轴 正向) 之间的夹角为 α, 0° < α <90 ° ; 半波片 12的 e轴与第一双折射片 11主截面 (即 zy平面) 之间的角度为 β, β =67.5° 或 β =22.5 ° 。
以下以 β =67.5° 为例介绍入射光与出射光光路的分离原理, 此时 45 ° 法拉第旋转片 13对应设置为: 从 Ζ轴正向看, 使通过 45 ° 法拉第旋转片 13的线偏振光的偏振方向顺时针旋转 45 ° 。 一方面, 入射光 21沿正方向 (即 ζ轴正向)通过同波长分光器 1 ; 入射光 21为任意偏振态的光线, 经 过第一双折射片 11时分解为正交的两束线偏振光, 其中一束为偏振方向垂 直于 yz平面的 0光, 另一束为偏振方向平行于 yz平面的 e光, o光直接通 过第一双折射片 11, 而 e光偏移一定距离后通过第一双折射片 11, 经过半 波片 12时, 0光与 e光的偏振方向分别变为与半波片 12的 e轴对称的方向, 即从 z轴正向看, 0光与 e光的偏振方向都顺时针旋转了 45 ° ,从 z轴正向 看, 0光与 e光经过 45° 法拉第旋转片 13后,偏振方向都顺时针旋转 45 ° ·' 即 0光的偏振方向一共旋转了 90 ° , 变为平行于 yz平面的光, e光的偏振 方向一共旋转了 90° , 变为垂直于 yz平面的光, 在经过第二双折射片 14 时, 由于第二双折射片 14与第一双折射片 11相同, 其光轴与正方向(即 z 轴正向) 之间的夹角同样为 α, e光直接通过第二双折射片 14, 而 0光偏 移一定距离后与 e光合为入射光 21, 从而改变了沿正方向通过同波长分光 器 1的入射光 21的光路。
另一方面, 如图 3所示, 激光二极管 3发射的出射光 31沿与正方向相 反的方向 (即 z轴的负方向) 通过同波长分光器 1 ; 出射光 31为偏振方向 垂直于第一双折射片的主截面 (即 yz平面) 的线偏振光。 出射光 31直接 通过第二双折射片 14, 经过 45 ° 法拉第旋转片 13后, 从 z轴正向看, 出 射光 31的偏振方向顺时针旋转了 45 ° ,经过半波片 12时, 出射光 31的偏 振方向变为与半波片 12的 e轴对称的方向, 即从 z轴正向看, 出射光 31 的偏振方向逆时针旋转了 45 ° 。 即出射光 31的偏振方向又变为垂直于 yz 平面, 之后直接通过第一双折射片 11。 沿与正方向相反的方向通过同波长 分光器 1的出射光 31的光路没有改变。
与上述半波片 12的 e轴与第一双折射片 11主截面 (即 zy平面) 之间 的角度 β =67.5 ° 时类似, 当 β =22.5 ° 时, 45 ° 法拉第旋转片 13对应设置 为: 从 ζ轴正向看, 使通过 45 ° 法拉第旋转片 13的线偏振光的偏振方向逆 时针旋转 45 ° 。 0光与 e光经过半波片 12后, 从 z轴正向看, o光与 e光 的偏振方向都逆时针旋转了 45 ° , 45 ° 法拉第旋转片 13对应 β =22.5 ° 设 置, 从 ζ轴正向看, 使 0光与 e光经过 45 ° 法拉第旋转片 13后, 偏振方向 都逆时针旋转了 45 ° 。 同样使 0光的偏振方向一共旋转 90° , 变为平行于 yz平面的光, e光的偏振方向一共旋转 90 ° , 变为垂直于 yz平面的光, 从 而改变了沿正方向通过同波长分光器 1的入射光 21的光路。 另一方面, 出 射光 31直接通过第二双折射片 14, 经过 45 ° 法拉第旋转片 13后, 从 z轴 正向看, 出射光 31的偏振方向逆时针旋转了 45 ° , 经过半波片 12时, 出 射光 31的偏振方向变为与半波片 12的 e轴对称的方向, 即从 z轴正向看, 出射光 31的偏振方向顺时针旋转了 45 ° , 同样使出射光 31的偏振方向又 变为垂直于 yz平面, 之后直接通过第一双折射片 11。沿与正方向相反的方 向通过同波长分光器 1的出射光 31的光路没有改变。
综上所述, 在光纤和 LD与 PD之间设置上述同波长分光器, 可实现接 收和发射光路的分离, 与现有技术相比, 无需使用部分透射部分反射滤波 片, 从而实现同波长单纤双向理论上的无损传输, 达到较高的发射光功率 及接收灵敏度。
实施例二
基于实施例一, 本发明实施例提供一种单纤器件, 如图 4所示, 还包 括: 收发管芯 4 ( Transistor Outline, TO ) , 用于将第一光电二极管 2和激光 二极管 3封装在一起。 同波长分光器 1 的结构与原理与实施例一相同, 在 此不再赘述。 优选地, 上述第一双折射片的光轴与正方向之间的夹角 α =47.85 ° , 使入射光偏移的距离较大。
实现将 LD和 PD封装在同一个 TO中的单纤双向器件, 并且通过上述 同波长分光器, 可实现接收和发射光路的分离, 与现有技术相比, 无需使 用部分透射部分反射滤波片, 从而实现同波长单纤双向理论上的无损传输, 达到较高的发射光功率及接收灵敏度。 并且由于不需要滤波片, 从而减少 了反射产生杂散光带来的光串扰。
实施例三
基于实施例一, 本发明实施例提供一种单纤器件, 如图 5所示, 还包 括: 设置在第一光电二极管 2与同波长分光器 1之间的入射光光路上的反 射镜 5,用于反射通过同波长分光器 1的入射光, 使第一光电二极管 2接收 入射光; 第一接收管芯 22, 用于封装第一光电二极管 2; 发射管芯 32, 用 于封装激光二极管 3。 同波长分光器 1的结构与原理与实施例一相同,在此 不再赘述。
实现了同波长单纤双向光器件 (Bi-Direction Optical Sub-Assembly , BOSA) , 并且通过上述同波长分光器, 可实现接收和发射光路的分离, 与 现有技术相比, 无需使用部分透射部分反射滤波片, 从而实现同波长单纤 双向理论上的无损传输, 达到较高的发射光功率及接收灵敏度。
实施例四 基于实施例二或实施例三, 本发明实施例提供一种单纤器件, 如图 6 所示, 还包括: 第二光电二极管 6, 用于接收特定波长的光; 特定波长滤波 片 61, 用于使特定波长的光反射, 其他波长的光透射; 第二接收管芯 62, 用于封装第二光电二极管 6; 特定波长滤波片 61和同波长分光器 1沿正方 向依次设置。 其他结构与实施例二相同, 或者如图 7所示, 与实施例三相 同。 光纤 7传输的特定波长的光在特定波长滤波片 61处反射, 至第二光电 二极管 6处被接收, 而另外的同波长的光直接通过特定波长滤波片 61, 具 体的结构与原理与上述实施例相同, 在此不再赘述。
实现了二波长单纤双向器件, 并且通过上述同波长分光器, 可实现接 收和发射光路的分离, 与现有技术相比, 无需使用部分透射部分反射滤波 片, 从而实现同波长单纤双向理论上的无损传输, 达到较高的发射光功率 及接收灵敏度。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种单纤器件, 包括用于接收入射光的第一光电二极管和用于发射 出射光的激光二极管, 其特征在于, 还包括:
具有一正方向的同波长分光器, 包括沿所述正方向依次设置且垂直于 所述正方向的第一双折射片、 半波片、 45 ° 法拉第旋转片以及与所述第一 双折射片相同的第二双折射片;
所述第一双折射片的光轴与所述正方向之间的夹角为 α, 0 ° < α <90 ° ; 所述半波片的 e轴与所述第一双折射片主截面之间的角度为 β, β =67.5 ° 或 β =22.5 ° ;
所述入射光沿所述正方向通过所述同波长分光器;
所述出射光沿与所述正方向相反的方向通过所述同波长分光器; 所述出射光为偏振方向垂直于所述第一双折射片的主截面的线偏振光。
2、 根据权利要求 1所述的单纤器件, 其特征在于,
所述第一双折射片的光轴与所述正方向之间的夹角为 α =47.85 ° 。
3、 根据权利要求 2所述的单纤器件, 其特征在于, 还包括:
收发管芯, 用于将所述第一光电二极管和激光二极管封装在一起。
4、 根据权利要求 2所述的单纤器件, 其特征在于, 还包括:
设置在所述第一光电二极管与所述同波长分光器之间的入射光光路上 的反射镜;
第一接收管芯, 用于封装所述第一光电二极管;
发射管芯, 用于封装所述激光二极管。
5、 根据权利要求 3或 4所述的单纤器件, 其特征在于, 还包括: 特定波长滤波片, 用于使特定波长的光反射, 其他波长的光透射; 第二光电二极管, 用于接收所述特定波长的光;
第二接收管芯, 用于封装所述第二光电二极管;
所述特定波长滤波片和同波长分光器沿所述正方向依次设置。
PCT/CN2012/085021 2011-11-22 2012-11-22 单纤器件 WO2013075637A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12852059.0A EP2685300B1 (en) 2011-11-22 2012-11-22 Single fibre device
US14/077,936 US9110262B2 (en) 2011-11-22 2013-11-12 Single-fiber subassembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110373989.7 2011-11-22
CN2011103739897A CN102401947A (zh) 2011-11-22 2011-11-22 单纤器件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/077,936 Continuation US9110262B2 (en) 2011-11-22 2013-11-12 Single-fiber subassembly

Publications (1)

Publication Number Publication Date
WO2013075637A1 true WO2013075637A1 (zh) 2013-05-30

Family

ID=45884340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085021 WO2013075637A1 (zh) 2011-11-22 2012-11-22 单纤器件

Country Status (4)

Country Link
US (1) US9110262B2 (zh)
EP (1) EP2685300B1 (zh)
CN (1) CN102401947A (zh)
WO (1) WO2013075637A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401947A (zh) * 2011-11-22 2012-04-04 华为技术有限公司 单纤器件
WO2015081501A1 (zh) * 2013-12-03 2015-06-11 华为技术有限公司 一种光收发器及处理光信号的方法
CN106547055B (zh) * 2015-09-23 2019-04-16 青岛海信宽带多媒体技术有限公司 一种光探测模组和光模块
US9952387B2 (en) * 2016-09-02 2018-04-24 Acme Microsystem Inc. Optical fiber transmission system with a laser beam splitting and combining device
CN115166911A (zh) * 2021-04-01 2022-10-11 讯芸电子科技(中山)有限公司 晶体管外形封装光收发器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712880A (en) * 1982-06-28 1987-12-15 Fujitsu Limited Polarization rotation compensator and optical isolator using the same
CN1251426A (zh) * 1998-08-19 2000-04-26 富士通株式会社 可用作光学隔离器的光学器件、以及包括该光学器件的光学放大器和系统
CN2485662Y (zh) * 2001-06-11 2002-04-10 福建华科光电有限公司 一种新型的光纤隔离器
CN102183828A (zh) * 2011-06-02 2011-09-14 平湖中天合波通信科技有限公司 一种单纤双向组件
CN102401947A (zh) * 2011-11-22 2012-04-04 华为技术有限公司 单纤器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159245A (en) * 1978-06-06 1979-12-15 Mitsubishi Electric Corp Optical device
JPH063622A (ja) * 1992-06-19 1994-01-14 Mitsubishi Gas Chem Co Inc 偏波無依存型光アイソレータ
JPH07253559A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 双方向光通信装置
US6239900B1 (en) * 1997-09-19 2001-05-29 Nz Applied Technologies Corp. Reflective fiber-optic isolator
US6137619A (en) * 1998-04-08 2000-10-24 Nz Applied Technologies, Incorporated High-speed electro-optic modulator
CN1299472A (zh) * 1998-04-08 2001-06-13 科英应用技术公司 高速电光调制器
US20040184148A1 (en) * 2001-05-21 2004-09-23 Jds Uniphase Corporation Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JP2003066284A (ja) * 2001-08-23 2003-03-05 Sumitomo Metal Mining Co Ltd 光アイソレータモジュール
JP2003287713A (ja) * 2002-03-27 2003-10-10 Shin Etsu Chem Co Ltd 光アイソレータ
US7031574B2 (en) * 2002-07-10 2006-04-18 Finisar Corporation Plug-in module for providing bi-directional data transmission
US20040086214A1 (en) * 2002-07-10 2004-05-06 Finisar Corporation Optical circulator for bi-directional communication
US7039278B1 (en) * 2002-07-10 2006-05-02 Finisar Corporation Single-fiber bi-directional transceiver
US7218436B2 (en) * 2003-08-08 2007-05-15 General Photonics Corporation Optical instrument and measurements using multiple tunable optical polarization rotators
JP4714811B2 (ja) * 2004-02-26 2011-06-29 並木精密宝石株式会社 光アイソレータ及び光学装置
US8514380B2 (en) * 2006-02-13 2013-08-20 Boston Applied Technologies, Inc. Polarization imaging apparatus with auto-calibration
JP5017959B2 (ja) * 2006-08-14 2012-09-05 富士通オプティカルコンポーネンツ株式会社 偏光無依存型光アイソレータ及び光送受信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712880A (en) * 1982-06-28 1987-12-15 Fujitsu Limited Polarization rotation compensator and optical isolator using the same
CN1251426A (zh) * 1998-08-19 2000-04-26 富士通株式会社 可用作光学隔离器的光学器件、以及包括该光学器件的光学放大器和系统
CN2485662Y (zh) * 2001-06-11 2002-04-10 福建华科光电有限公司 一种新型的光纤隔离器
CN102183828A (zh) * 2011-06-02 2011-09-14 平湖中天合波通信科技有限公司 一种单纤双向组件
CN102401947A (zh) * 2011-11-22 2012-04-04 华为技术有限公司 单纤器件

Also Published As

Publication number Publication date
EP2685300A1 (en) 2014-01-15
US20140064657A1 (en) 2014-03-06
EP2685300B1 (en) 2017-01-18
EP2685300A4 (en) 2014-08-20
CN102401947A (zh) 2012-04-04
US9110262B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
US9348157B2 (en) Optical module outputting polarization combined optical beam
CN104459904A (zh) 一种单纤双向bosa结构
WO2017185789A1 (zh) 一种单光口多路并行光发射组件
US7734121B2 (en) Bidirectional optical module
WO2013075637A1 (zh) 单纤器件
JP7169708B2 (ja) 単芯双方向光送受信アセンブリ
US9829637B2 (en) Multiplexer
CN104950407A (zh) 一种单纤双向bosa结构
JP2009222893A (ja) 一芯双方向光モジュール
KR20150070045A (ko) 단일섬유결합의 멀티파장광 송수신모듈
CN102183828A (zh) 一种单纤双向组件
US10007041B2 (en) Optical depolarizer
US8915602B2 (en) Optical module
WO2023065468A1 (zh) 光信号传输系统
JP2008262109A (ja) 光送受信装置
WO2015081501A1 (zh) 一种光收发器及处理光信号的方法
CN110531469B (zh) 单纤双向光模块
WO2014013640A1 (ja) 偏光分離器、偏光分離構造、光ミキサ、及び偏光分離器の製造方法
US20020118904A1 (en) Optical fiber systems for transmitting laser light with reduced back reflection interference
US6954307B2 (en) Four-port PM circulator
TWM639388U (zh) 環形器及光模組
CN111812776A (zh) 一种三端口光环形器
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
CN207924208U (zh) 在同波长下实现光收发一体的光器件
CN110531465B (zh) 光环形器以及单纤双向光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852059

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012852059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE