WO2013075520A1 - 一种基站天线信息的获取方法、装置及基站天线 - Google Patents

一种基站天线信息的获取方法、装置及基站天线 Download PDF

Info

Publication number
WO2013075520A1
WO2013075520A1 PCT/CN2012/080400 CN2012080400W WO2013075520A1 WO 2013075520 A1 WO2013075520 A1 WO 2013075520A1 CN 2012080400 W CN2012080400 W CN 2012080400W WO 2013075520 A1 WO2013075520 A1 WO 2013075520A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
information
station antenna
baseline
receiving antenna
Prior art date
Application number
PCT/CN2012/080400
Other languages
English (en)
French (fr)
Inventor
赵虎
吴立昌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20212151.3A priority Critical patent/EP3862792A1/en
Priority to AU2012343109A priority patent/AU2012343109B2/en
Priority to EP12852405.5A priority patent/EP2784533B1/en
Priority to US13/728,051 priority patent/US8766847B2/en
Publication of WO2013075520A1 publication Critical patent/WO2013075520A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a base station antenna for acquiring base station antenna information.
  • engineering parameter information of the current antenna is usually collected manually, such as the geographical position, hanging height, mechanical azimuth, mechanical downtilt of the base station antenna, etc., according to these Engineering parameter information, network management and coverage performance analysis adjustment.
  • the engineering parameter information of the base station antenna is collected by the engineering personnel to the field using external equipment.
  • the manual collection efficiency is low, the real-time performance is poor, the cost is high, and the external equipment is susceptible to peripheral magnetic fields, atmospheric environment and other factors, and the accuracy is poor. defect. Summary of the invention
  • An object of the present invention is to provide a method, an apparatus, and a base station antenna for acquiring base station antenna information, which improve the accuracy and convenience of acquiring base station antenna information.
  • an embodiment of the present invention provides a device for acquiring base station antenna information, including:
  • At least two receiving antenna units for receiving satellite signals transmitted by satellite positioning system satellites, wherein the receiving antenna unit and the base station antenna meet a predetermined positional relationship;
  • a processing unit configured to obtain location information of the receiving antenna unit according to the satellite signal, and obtain the base station according to location information of the receiving antenna unit and a predetermined positional relationship between the receiving antenna unit and a base station antenna Antenna position information.
  • an embodiment of the present invention provides a method for acquiring base station antenna information, including:
  • an embodiment of the present invention provides a base station antenna, including the foregoing apparatus for acquiring base station antenna information. It can be seen from the technical solution provided by the above embodiments of the present invention that the acquisition of the antenna information of the base station by using the satellite signal avoids the low efficiency, low real-time and high cost of the external equipment collected by the engineering personnel to the field, and the external equipment is susceptible to the peripheral magnetic field. Factors such as the influence of factors such as poor accuracy. BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative work.
  • FIG. 1 is a schematic structural diagram of an apparatus for acquiring base station antenna information according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart diagram of a method for acquiring base station antenna information according to an embodiment of the present invention.
  • FIG. 3 is a first schematic diagram of application of an apparatus for acquiring base station antenna information according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of application 2 of a device for acquiring base station antenna information according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application flow of a method for acquiring base station antenna information according to an embodiment of the present invention.
  • FIG. 6 is a third schematic diagram of application of a device for acquiring base station antenna information according to an embodiment of the present invention.
  • the embodiments of the present invention are clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of them. Example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • an apparatus for acquiring base station antenna information includes:
  • At least two receiving antenna units 1 1 are configured to receive satellite signals transmitted by GPS satellites, and the receiving antenna unit and the base station antenna conform to a predetermined positional relationship.
  • the processing unit 12 is configured to obtain location information of the receiving antenna unit according to the satellite signal, and according to location information of the receiving antenna unit and a predetermined positional relationship between the receiving antenna unit and a base station antenna, Location information to the base station antenna.
  • the embodiment of the present invention is described by taking a GPS satellite positioning system as an example, but is not limited to GPS, and may be other satellite positioning systems.
  • obtaining antenna information of a base station by using a satellite signal does not require an engineering personnel to use an external device to collect base station antenna information, thereby avoiding low manual collection efficiency, poor real-time performance, and high cost.
  • External devices are susceptible to peripheral magnetic fields, atmospheric conditions and other factors, such as poor accuracy.
  • the predetermined positional relationship includes: a baseline formed by the connection between the receiving antenna units and a preset angle relationship between the base line of the base station antenna.
  • the preset angle value includes any angle value from 0 degrees to 180 degrees. Preferably, the preset value may be 90 degrees or 0 degrees.
  • the normal line of the base station antenna refers to the intersection line between the equatorial plane of the antenna and the meridian plane of the antenna, and can be understood by referring to the related prior art, and details are not described herein.
  • processing unit 12 may specifically include:
  • a first processing subunit configured to parse the satellite signal to obtain carrier phase information, carrier wavelength information, and satellite ephemeris information of the satellite signal.
  • a second processing subunit configured to obtain an azimuth of the baseline and/or a pitch angle of the baseline according to the carrier phase information, the carrier wavelength information, and the satellite ephemeris information, and according to the baseline
  • the azimuth angle and/or the pitch angle of the baseline and the predetermined positional relationship result in an azimuth of the base station antenna and/or a downtilt angle of the base station antenna.
  • carrier phase information can be understood with reference to the related prior art.
  • carrier wavelength information can be understood with reference to the related prior art.
  • satellite ephemeris information can be understood with reference to the related prior art.
  • Illustrative, satellite ephemeris mainly used to calculate GPS satellites in the geocentric coordinate system (WGS, World Geodetic
  • the coordinates in System The longitude and latitude of the receiving antenna unit can be obtained by satellite ephemeris.
  • the azimuth angle of the base station antenna refers to the clockwise angle from the north direction to the main lobe of the base station antenna.
  • Baseline azimuth An angle that is centered at the end of one end of the baseline and clockwise from the north to the baseline.
  • the downtilt angle of the base station antenna refers to the clockwise angle of the horizontal plane to the normal direction of the base station antenna.
  • Baseline pitch angle refers to a receiving antenna unit as a dot, and a line to another receiving antenna unit.
  • the clockwise angle of the beam to the horizontal plane is the pitch angle.
  • the second processing subunit may be specifically configured to: And obtaining a wave path of the GPS satellite to the two receiving antenna units according to the carrier phase information and the carrier wavelength information, and obtaining a wave path difference between the two receiving antenna units.
  • the coordinates of the GPS satellite in the geocentric coordinate system WGS are obtained according to the satellite ephemeris information.
  • the coordinates of the baseline in the geocentric coordinate system WGS are obtained according to the wave path of the GPS satellite to the two receiving antenna elements, the wave path difference, and the coordinates of the GPS satellite in the geocentric coordinate system WGS.
  • the coordinates of the baseline in the geocentric coordinate system WGS are converted to coordinates in a local coordinate system (LLS, Local Level System).
  • LLS Local Level System
  • the azimuth of the baseline and/or the elevation angle of the baseline is obtained.
  • the local coordinate is a station star rectangular coordinate system whose origin coincides with the origin of the carrier coordinate system, the X axis points to the local north meridian (North), and the Y axis is perpendicular to the X axis and points east (East ), the Z axis (Down) is orthogonal to the X and Y axes. Therefore, the azimuth of the baseline and the elevation angle of the baseline can be easily obtained by the local coordinates of the baseline.
  • the second processing subunit may further be used for:
  • the azimuth of the base station antenna is obtained by subtracting the azimuth of the baseline from the preset angle value.
  • Subtracting the preset angle value from the pitch angle of the baseline results in a downtilt angle of the base station antenna.
  • the azimuth and elevation angle of the baseline are obtained by the GPS satellite signal, and the azimuth angle of the base station antenna and the downtilt angle of the base station antenna are obtained, thereby avoiding the low manual collection efficiency, the poor real-time performance, the high cost, and the external equipment is susceptible to the surrounding magnetic field. Factors such as atmospheric environment and poor accuracy.
  • the first processing subunit may further be configured to parse the satellite signal to obtain latitude and longitude information and/or altitude information of the receiving antenna unit.
  • the second processing sub-unit may be further configured to obtain latitude and longitude information and/or height information of the base station antenna according to the latitude and longitude information and/or height information of the receiving antenna unit and the predetermined positional relationship.
  • the predetermined location relationship includes: the receiving antenna unit is located at an upper portion of the base station antenna, and the height of the base station antenna is a high, and the second processing subunit may be specifically configured to:
  • the base station antenna is suspended: it can be the height calculated from the base station antenna center point. Therefore, it is necessary to consider the base station antenna's own height.
  • the base station antenna is suspended: it may also refer to a height difference between the base station antenna center point and the base station location. Therefore, in order to obtain the suspension height of the base station antenna, it is necessary to consider the height of the base station antenna itself and the altitude of the base station location, that is, remove the altitude of the base station location and the height of the base station antenna itself in the altitude of the base station antenna. , get the height of the base station antenna.
  • the receiving antenna unit may be three, and the positional relationship between the three receiving antenna units is determined, and the predetermined positional relationship between the receiving antenna unit and the base station antenna is met. .
  • connection between each two receiving antenna units constitutes a baseline, thereby obtaining the azimuth angle of the three sets of base station antennas and the downtilt angle of the base station antenna, and then calculating according to the azimuth angle of the three sets of base station antennas and the downtilt angle of the base station antenna.
  • the location information of the base station antenna may be obtained by referring to the method described in this embodiment, and details are not described herein.
  • At least two GPS satellites transmitting satellite signals are used, so that the receiving antenna unit can obtain the average of the obtained base station antennas by averaging the satellite signals transmitted by the plurality of GPS satellites, thereby improving the base station antenna.
  • the accuracy of the location information An embodiment of the present invention provides a base station antenna, which includes the base station antenna information acquiring apparatus of the foregoing embodiment.
  • the apparatus for acquiring base station antenna information can be understood by referring to the apparatus for acquiring base station antenna information of the foregoing embodiment and its configuration, and details are not described herein.
  • the acquiring device of the base station antenna information may be integrated with the base station antenna, or integrated with the base station antenna, without limitation.
  • a method for acquiring base station antenna information according to the foregoing embodiment of the present invention includes:
  • the embodiment of the present invention is described by taking a GPS satellite positioning system as an example, but is not limited to GPS, and may be other satellite positioning systems.
  • obtaining antenna information of a base station by using a satellite signal does not require an engineering personnel to use an external device to collect base station antenna information, thereby avoiding low manual collection efficiency, poor real-time performance, and high cost.
  • External devices are susceptible to peripheral magnetic fields, atmospheric conditions and other factors, such as poor accuracy.
  • the predetermined positional relationship includes: a baseline formed by the connection between the receiving antenna units and a preset angle relationship between the base line of the base station antenna, and a preset clip.
  • Angle value includes
  • the preset value may be 90 degrees or 0 degrees.
  • the foregoing step 22 may include: parsing the satellite signal to obtain carrier phase information, carrier wavelength information, and satellite ephemeris information of the satellite signal.
  • the satellite ephemeris, the normal of the base station antenna, the azimuth of the base station antenna, the azimuth of the baseline, the downtilt angle of the base station antenna, and the pitch angle of the baseline can be understood by referring to the above embodiments, and are not described herein.
  • the obtaining the azimuth of the baseline and/or the pitch angle of the baseline according to the carrier phase information, the carrier wavelength information, and the satellite ephemeris information may specifically include:
  • the coordinates of the GPS satellite in the geocentric coordinate system WGS are obtained according to the satellite ephemeris information.
  • the coordinates of the baseline in the geocentric coordinate system WGS are obtained according to the wave path of the GPS satellite to the two receiving antenna elements, the wave path difference, and the coordinates of the GPS satellite in the geocentric coordinate system WGS.
  • the coordinates of the baseline in the geocentric coordinate system WGS are converted to coordinates in the local coordinate system LLS.
  • the azimuth of the baseline and/or the elevation angle of the baseline is obtained.
  • the azimuth of the base station and/or the downtilt angle of the base station antenna may be obtained according to the azimuth of the baseline and/or the pitch angle of the baseline and the predetermined positional relationship.
  • the azimuth of the base station antenna is obtained by subtracting the azimuth of the baseline from the preset angle value.
  • Subtracting the preset angle value from the pitch angle of the baseline results in a downtilt angle of the base station antenna.
  • the foregoing step 22 may include: parsing the satellite signal to obtain latitude and longitude information and/or altitude information of the receiving antenna unit.
  • the latitude and longitude information and/or height information of the base station antenna is obtained according to the latitude and longitude information and/or height information of the receiving antenna unit and the predetermined positional relationship.
  • the predetermined positional relationship includes: the receiving antenna unit is located at an upper portion of the base station antenna, and the height of the base station antenna is a hanging height, according to the latitude and longitude information and/or height information of the receiving antenna unit, and the Determining the positional relationship and obtaining the latitude and longitude information and/or the height information of the base station antenna may include:
  • the sum of the heights of the receiving antenna units is divided by the number of the receiving antenna units, and the height of the base station antenna is combined with the height of the base station antenna.
  • the receiving antenna unit may be three, and the positional relationship between the three receiving antenna units is determined, and the predetermined position relationship is met between the receiving antenna unit and the base station antenna.
  • the connection between each two receiving antenna units constitutes a baseline, thereby obtaining the azimuth angle of the three sets of base station antennas and the downtilt angle of the base station antenna, and then integrating the azimuth angles of the three sets of base station antennas and the downtilt angle of the base station antenna to obtain a base station antenna. Azimuth and downtilt angle of the base station antenna.
  • the receiving antenna unit in step 21 can receive satellite signals sent by multiple GPS satellites, which can be The obtained position information of the base station antenna is integrated to improve the accuracy of the position information of the base station antenna.
  • the embodiment of the invention provides a device for acquiring base station antenna information, which improves the accuracy and efficiency of the measurement of the base station antenna engineering parameters and improves the ability of the subsequent network management system and the network optimization system to automatically acquire parameters.
  • two receiving antenna units 31 receive satellite signals of GPS satellites 35, two receiving antenna units 31 are connected to processing unit 32, and processing unit 32 is used to obtain position information of base station antennas 33 by satellite signals.
  • processing unit 32 The management center 34 is used to centrally collect and manage the bits of the base station antenna 33 through the transmission channel. Set the information.
  • the angle between the connection 311 between the two receiving antenna elements 31 and the normal 331 of the base station antenna 33 is 0 degrees.
  • the processing unit 32 can directly calculate the final location information according to the satellite signal, and can also obtain some intermediate data of the calculated location information according to the satellite signal, and transmit it to the management center 34, and the final location information is calculated by the management center 34.
  • the processed information processed by the processing unit 32 may be packaged according to required specifications and transmitted to the management center 34.
  • the management center 34 sends the issued query command to the processing unit 32, or the processing unit 32 actively uploads the acquired information to the management center 34.
  • the transmission channel may be in the form of a wired, wireless, optical network or any other channel, and the transmission channel may be a dedicated channel or a shared channel for use with other information.
  • the processing unit 32 may further include: a first processing sub-unit 41 and a second processing sub-unit 42, the first processing sub-unit 41 parsing the satellite signal of the GPS satellite 35, and the second processing sub-unit 42 processes the information transmitted by the first processing sub-unit 41, and further obtains the location information of the base station antenna 33.
  • the information processed by the second processing sub-unit 42 can be transmitted to the near-end digital transmission station 43, and the near-end digital transmission station 43 can transmit the received information to the remote digital transmission station 44 via the wireless network, and transmit the remote digital transmission station 44.
  • the management center 34 To the management center 34.
  • Two receiving antenna units are installed, and the two receiving antenna units are fixed with the base station antenna to be tested by using a mechanical device, such that the baseline formed by the connection between the two receiving antenna units is at an angle of 0 degrees to the normal of the base station antenna. .
  • the two receiving antenna units receive the signals of the GPS satellites and send them to the processing unit.
  • the first processing subunit parses the received GPS satellite signal to obtain latitude and longitude information and/or altitude information of the receiving antenna unit, and sends the information to the second processing subunit, and enters 53.
  • the first processing subunit parses the received GPS satellite signal to obtain carrier phase information, carrier wavelength information, and satellite ephemeris information received by the receiving antenna unit, and transmits the information to the second processing subunit, and proceeds to 54.
  • the second processing subunit acquires latitude and longitude and altitude information (B1, L1, Ml), (B2, L2, M2) of the receiving antenna unit, where B represents longitude and latitude, L represents latitude, and M represents height.
  • two receiving antenna units are located at an upper portion of the base station antenna, and the second processing subunit calculates the latitude and longitude of the base station antenna by (B1+B2)/2 by the latitude, longitude and altitude information of the two receiving antenna units.
  • the hanging height of the base station antenna is (M1+M2) /2-h, where h is the height of the 1/2 base station antenna.
  • the second processing sub-unit may further packetize the latitude, longitude and altitude information of the base station antenna to the near-end digital transmission station, and enter 56.
  • 0 represents one receiving antenna unit
  • B represents another receiving antenna unit
  • OB is a baseline (can be understood as a baseline vector), where 0 is a coordinate center and its coordinate is (0, 0, 0), the coordinates of B are ( ⁇ , ⁇ , ⁇ ).
  • the wave paths of the GPS satellites to the two receiving antenna units are r0 and r, respectively, and the carrier phase information received by the two receiving antenna units is ⁇ , ⁇ .
  • the vertical line from the ⁇ point to the vector r, the intersection with the vector r, the wave path difference BC is the baseline vector OB
  • obtaining the azimuth of the baseline vector and the elevation angle of the baseline vector may include the following steps:
  • the wave paths rO and r of the GPS satellite to the two receiving antenna units are obtained, and the wave path is the carrier of the GPS satellite signal to The distance of the receiving antenna unit.
  • is the carrier wavelength of the GPS satellite signal.
  • Xs, Ys, Zs is the coordinates of the GPS satellite in the geocentric coordinate system (WGS), which can also be expressed as
  • the coordinates of the GPS satellite in the geocentric coordinate system can be obtained by satellite ephemeris.
  • ( , ⁇ , is the projection coordinate of the baseline in the geocentric coordinate system ( WGS ), which can also be expressed as [XYZ iWGS corresponds to cos 6>, ⁇ corresponds to cos ⁇ corresponds to cos.
  • e is the vector of the receiving antenna unit in the direction of the GPS satellite. Since the distance between the two receiving antenna units and the GPS satellite is much larger than the distance between the two receiving antenna units, the vector of any one of the two receiving antenna units in the direction of the GPS satellite can be regarded as the above e .
  • b is the vector of the baseline in the geocentric coordinate system (WGS).
  • B and L are respectively the longitude and latitude of the receiving antenna unit represented by B, and the longitude and latitude of the receiving antenna unit can be directly read by the satellite ephemeris.
  • the azimuth angle ⁇ of the baseline vector is calculated by Equation 4 below.
  • Equation 4 Calculates the pitch angle of the baseline vector by Equation 5 below.
  • the second processing subunit may further transmit the azimuth of the base station antenna and the downtilt data of the base station antenna to the near-end digital transmission station by the transmission subunit.
  • the near-end digital radio transmits the received data to the remote digital radio station via the wireless network.
  • the remote digital radio station can be transmitted to the management center through the AISG (Antenna Interface Standards Group) link, and the management center centrally records and manages the data.
  • AISG Application Service Interface Standards Group
  • the apparatus for acquiring base station antenna information and the obtaining method provided by the embodiments of the present invention realize that the antenna information of the base station is not remotely detected, and the errors that may exist in the engineering parameters are avoided, and the real-time data can be read at any time.
  • the antenna engineering parameters are measured, which provides a basis for network self-optimization;
  • the difference between the embodiment of the present invention and the foregoing embodiment is that there are three receiving antenna units, the positional relationship between the receiving antenna units is determined, and the predetermined positional relationship is met between the receiving antenna unit and the base station antenna.
  • connection between each of the two receiving antenna elements constitutes a baseline, and thus, the azimuth angle of the three sets of base station antennas and the downtilt angle of the base station antenna can be obtained by Equation 1 - Equation 5 of the above embodiment, and then, the three sets of base station antennas are further The azimuth and the downtilt angle of the base station antenna are averaged, and the azimuth of the base station antenna and the downtilt of the base station antenna are integrated. Corner.
  • the location information of the base station antenna may be obtained by referring to the method described in this embodiment, and details are not described herein.
  • the processing unit includes: a first processing subunit, and a transmission unit connected to the first processing subunit, wherein the first processing subunit parses the satellite signal of the GPS satellite, and parses the carrier phase information. , carrier wavelength information and satellite ephemeris information, or parsing the latitude and longitude and/or height information of the receiving antenna unit.
  • the transmission unit transmits the information input by the first processing sub-unit to the management center through the near-end digital transmission station and the remote digital transmission station, and the transmission unit can be physically a transmission unit.
  • the management center performs calculation processing based on the obtained information to obtain latitude and longitude and/or altitude information of the base station antenna, or obtains the azimuth angle of the base station antenna and the downtilt angle of the base station antenna, that is, the function of the second processing subunit is performed by the management center.
  • the management center centrally records and manages the location information of the base station antenna.
  • the processing unit may be a processor physically, the processing subunit may be a sub processor, and the receiving antenna unit may be a satellite positioning system receiving antenna, such as a GPS antenna, a transmission unit. It can be a data transceiver, such as a digital radio.
  • the above is only a preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or within the technical scope of the present disclosure. Alternatives are intended to be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. In execution, the flow of an embodiment of the methods as described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例公开了一种基站天线信息的获取方法、装置及基站天线,其中,基站天线信息的获取装置包括:至少两个接收天线单元,用于接收卫星定位系统卫星发送的卫星信号,所述接收天线单元与基站天线之间符合预定位置关系;处理单元,用于根据所述卫星信号得到所述接收天线单元的位置信息,并根据所述接收天线单元的位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到所述基站天线的位置信息。通过卫星信号实现获取基站天线信息,避免了由工程人员到现场使用外部设备采集的效率低、实时性差、成本高,外部设备易受周边磁场等因素影响,准确性差的等缺陷。

Description

一种基站天线信息的获取方法、 装置及基站天线 本申请要求于 2011年 11月 21日提交中国专利局、 申请号为 201110370910. 5、 发 明名称为 "一种基站天线信息的获取方法、装置及基站天线"的中国专利申请的优先权, 其全部内容通过弓 I用结合在本申请中。 技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种基站天线信息的获取方法、 装置及 基站天线。 发明背景 基站天线架设好后, 为了便于天线的维护及网络优化, 通常通过人工方式采集当前 天线的工程参数信息, 如基站天线的地理位置、 挂高、 机械方位角、 机械下倾角等, 根 据这些工程参数信息, 可以进行网络的管理以及覆盖性能分析调整等工作。
但是, 目前基站天线的工程参数信息是由工程人员到现场使用外部设备采集的, 存 在人工采集效率低、实时性差、成本高, 外部设备易受周边磁场、大气环境等因素影响, 准确性差的等缺陷。 发明内容
本发明实施例的目的是提供一种基站天线信息的获取方法、装置及基站天线, 提高 获取基站天线信息的准确度及便利性。
本发明实施例的目的是通过以下技术方案实现的:
一方面, 本发明实施例提供一种基站天线信息的获取装置, 包括:
至少两个接收天线单元, 用于接收卫星定位系统卫星发送的卫星信号, 所述接收天 线单元与基站天线之间符合预定位置关系;
处理单元, 用于根据所述卫星信号得到所述接收天线单元的位置信息, 并根据所述 接收天线单元的位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到 所述基站天线的位置信息。
另一方面, 本发明实施例提供一种基站天线信息的获取方法, 包括:
通过至少两个接收天线单元接收卫星定位系统卫星发送的卫星信号,所述接收天线 单元与基站天线之间符合预定位置关系; 根据所述卫星信号得到所述接收天线单元的位置信息,并根据所述接收天线单元的 位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到所述基站天线的 位置信息。
另一方面,本发明实施例提供一种基站天线,包括上述的基站天线信息的获取装置。 由上述本发明实施例提供的技术方案可以看出,通过卫星信号实现获取基站天线信 息, 避免了由工程人员到现场使用外部设备采集的效率低、 实时性差、 成本高, 外部设 备易受周边磁场等因素影响, 准确性差的等缺陷。 附图简要说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域的普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他附图。
图 1为本发明实施例提供的基站天线信息的获取装置的构成示意图。
图 2为本发明实施例提供的基站天线信息的获取方法的流程示意图。
图 3为本发明实施例提供的基站天线信息的获取装置的应用示意图一。
图 4为本发明实施例提供的基站天线信息的获取装置的应用示意图二。
图 5为本发明实施例提供的基站天线信息的获取方法的应用流程示意图。
图 6为本发明实施例提供的基站天线信息的获取装置的应用示意图三。 实施本发明的方式 下面结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明的保护范围。
如图 1所示, 本发明实施例一种基站天线信息的获取装置, 包括:
至少两个接收天线单元 1 1, 用于接收全球定位系统 GPS卫星发送的卫星信号, 所 述接收天线单元与基站天线之间符合预定位置关系。
处理单元 12,用于根据所述卫星信号得到所述接收天线单元的位置信息, 并根据所 述接收天线单元的位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得 到所述基站天线的位置信息。
本发明实施例以 GPS卫星定位系统为例进行说明, 但不限于 GPS, 也可以为其他 的卫星定位系统。
由上述本发明实施例提供的技术方案可以看出,通过卫星信号实现获取基站天线信 息,不需要由工程人员到现场使用外部设备采集基站天线信息,避免了人工采集效率低、 实时性差、成本高, 外部设备易受周边磁场、大气环境等因素影响, 准确性差的等缺陷。
本发明实施例的基站天线信息的获取装置中, 预定位置关系包括: 接收天线单元之 间连线构成的基线与基站天线的法线存在预设夹角关系。 预设夹角值包括 0度 -180度中 任一角度值。 较佳的, 所述预设值可以为 90度或 0度。
本领域技术人员可以知道,基站天线的法线:指天线赤道面与天线子午面的相交线, 可以参考相关的现有技术得以理解, 在此不作赘述。
可选的, 处理单元 12, 具体可以包括:
第一处理子单元, 用于解析所述卫星信号得到所述卫星信号的载波相位信息、载波 波长信息以及卫星星历信息。
第二处理子单元, 用于根据所述载波相位信息、所述载波波长信息以及所述卫星星 历信息得到所述基线的方位角和 /或所述基线的俯仰角, 并根据所述基线的方位角和 /或 所述基线的俯仰角以及所述预定位置关系,得到所述基站天线的方位角和 /或所述基站天 线的下倾角。
本领域技术人员可以知道, 载波相位信息、载波波长信息以及卫星星历信息均可以 参考相关的现有技术得以理解。
示例性的,卫星星历:主要用于计算 GPS卫星在地心坐标系(WGS, World Geodetic
System ) 中的坐标。 通过卫星星历可以得到接收天线单元的经度和纬度。
基站天线的方位角: 是指正北方向到基站天线主瓣方向上的顺时针角度。
基线的方位角: 是指以基线一端的端点为圆心, 从正北方向顺时针旋转到基线方向 的角度。
基站天线的下倾角: 是指水平面到基站天线的法线方向上的顺时针角度。
基线的俯仰角: 是指以一个接收天线单元为圆点, 向另一个接收天线单元引一条射 线, 该射线到水平面的顺时针角即为俯仰角。
具体的, 本发明实施例的基站天线信息的获取装置中, 第二处理子单元, 具体可以 用于: 根据所述载波相位信息以及所述载波波长信息, 得到所述 GPS 卫星到两个接收天 线单元的波程, 并得到两个接收天线单元的波程差。
根据所述卫星星历信息得到所述 GPS卫星在地心坐标系 WGS中的坐标。
根据所述 GPS卫星到两个接收天线单元的波程、 所述波程差以及所述 GPS卫星在 地心坐标系 WGS中的坐标, 获得所述基线在地心坐标系 WGS中的坐标。
将所述基线在地心坐标系 WGS中的坐标转换为当地坐标系 (LLS, Local Level System ) 中的坐标。
根据所述基线在当地坐标系 LLS中的坐标,得到所述基线的方位角和 /或所述基线的 俯仰角。
本领域技术人员可以知道, 当地坐标是一种站星直角坐标系, 它的原点与载体坐标 系的原点重合, X轴指向当地北子午线 (North), Y轴与 X轴垂直而指向东 (East), Z轴 (Down)与 X、 Y轴正交。 因此, 通过基线的当地坐标可以方便的得到基线的方位角以及 所述基线的俯仰角。
具体的, 本发明实施例的基站天线信息的获取装置中, 所述第二处理子单元, 还具 体可以用于:
将所述基线的方位角减去所述预设夹角值得到所述基站天线的方位角。
将所述预设夹角值减去所述基线的俯仰角得到所述基站天线的下倾角。
可见, 通过 GPS卫星信号实现获取基线的方位角、俯仰角, 再得到基站天线的方位 角、 基站天线的下倾角, 避免了人工采集效率低、 实时性差、 成本高, 外部设备易受周 边磁场、 大气环境等因素影响, 准确性差的等缺陷。
本发明实施例的基站天线信息的获取装置中, 可选的, 第一处理子单元, 还可以用 于解析所述卫星信号得到所述接收天线单元的经纬度信息和 /或高度信息。
第二处理子单元, 还可以用于根据所述接收天线单元的经纬度信息和 /或高度信息 以及所述预定位置关系, 得到所述基站天线的经纬度信息和 /或高度信息。
具体而言, 所述预定位置关系包括: 所述接收天线单元位于所述基站天线的上部, 所述基站天线的高度为挂高, 第二处理子单元, 可以具体用于:
将所述接收天线单元的经度之和除以所述接收天线单元的个数得到所述基站天线 的经度,将所述接收天线单元的经纬度之和除以所述接收天线单元的个数得到所述基站 天线的纬度。
将所述接收天线单元的高度之和除以所述接收天线单元的个数,并结合所述基站天 线的自身高度, 得到所述基站天线的挂高。
本领域技术人员可以知道,基站天线的挂高:可以是从基站天线中心点计算的高度, 因此, 需要考虑所述基站天线的自身高度。
可选的, 基站天线的挂高: 还可以指基站天线中心点到基站所在地面的高度差。 因 此, 为了得到基站天线的挂高, 需要考虑所述基站天线自身高度以及基站所在地面的海 拔高度, 即在基站天线的海拔高度中去除基站所在地面的海拔高度以及基站天线自身高 度的 1/2, 得到基站天线的挂高。 本发明实施例的基站天线信息的获取装置中, 可选的, 接收天线单元可以为 3个, 3个接收天线单元之间的位置关系确定, 且接收天线单元与基站天线之间符合预定位置 关系。 示例性的, 每两个接收天线单元之间连线构成基线, 从而得到三组基站天线的方 位角以及基站天线的下倾角, 再根据三组基站天线的方位角以及基站天线的下倾角计算 得到基站天线的方位角以及基站天线的下倾角。
本领域技术人员, 可以理解在接收天线单元为 3个以上时, 可以参考本实施例描述 的方式获取基站天线的位置信息, 在此不作赘述。
可选的, 发送卫星信号的 GPS卫星至少为 2颗, 这样, 接收天线单元通过接收多颗 GPS卫星发送的卫星信号, 可以对得到的基站天线的位置信息进行求平均数等整合, 提 高基站天线的位置信息的准确度。 本发明实施例提供一种基站天线, 包括上述实施例的基站天线信息的获取装置。 基站天线信息的获取装置可以参考上述实施例的基站天线信息的获取装置及其构 成得以理解, 在此不作赘述,
可选的, 基站天线信息的获取装置可以与作为基站天线的独立单元, 或者与基站天 线集成于一体, 不受限制。
由上述本发明实施例提供的技术方案可以看出,通过卫星信号实现获取基站天线信 息,不需要由工程人员到现场使用外部设备采集基站天线信息,避免了人工采集效率低、 实时性差、成本高, 外部设备易受周边磁场、大气环境等因素影响, 准确性差的等缺陷。 如图 2所示, 对应上述本实施例的基站天线信息的获取方法, 本发明实施例一种基 站天线信息的获取方法, 包括:
21、 通过至少两个接收天线单元接收全球定位系统 GPS卫星发送的卫星信号, 所 述接收天线单元与基站天线之间符合预定位置关系。
22、根据所述卫星信号得到所述接收天线单元的位置信息,并根据所述接收天线单 元的位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到所述基站天 线的位置信息。
本发明实施例以 GPS卫星定位系统为例进行说明, 但不限于 GPS, 也可以为其他 的卫星定位系统。
由上述本发明实施例提供的技术方案可以看出,通过卫星信号实现获取基站天线信 息,不需要由工程人员到现场使用外部设备采集基站天线信息,避免了人工采集效率低、 实时性差、成本高, 外部设备易受周边磁场、大气环境等因素影响, 准确性差的等缺陷。
本发明实施例的基站天线信息的获取方法中, 所述预定位置关系包括: 所述接收天 线单元之间连线构成的基线与所述基站天线的法线存在预设夹角关系,预设夹角值包括
0度 -180度中任一角度值。 较佳的, 所述预设值可以为 90度或 0度。
可选的, 本发明实施例的基站天线信息的获取方法, 上述步骤 22, 可以包括: 解析所述卫星信号得到所述卫星信号的载波相位信息、载波波长信息以及卫星星历 信息。
根据所述载波相位信息、所述载波波长信息以及所述卫星星历信息得到所述基线的 方位角和 /或所述基线的俯仰角, 并根据所述基线的方位角和 /或所述基线的俯仰角以及 所述预定位置关系, 得到所述基站天线的方位角和 /或所述基站天线的下倾角。
其中, 卫星星历、 基站天线的法线、 基站天线的方位角、 基线的方位角、 基站天线 的下倾角、 基线的俯仰角可以参考上述实施例得以理解, 在此不作赘述。
具体的, 根据所述载波相位信息、 所述载波波长信息以及所述卫星星历信息得到所 述基线的方位角和 /或所述基线的俯仰角, 具体可以包括:
根据所述载波相位信息以及所述载波波长信息, 得到所述 GPS 卫星到两个接收天 线单元的波程, 并得到两个接收天线单元的波程差。
根据所述卫星星历信息得到所述 GPS卫星在地心坐标系 WGS中的坐标。
根据所述 GPS卫星到两个接收天线单元的波程、 所述波程差以及所述 GPS卫星在 地心坐标系 WGS中的坐标, 获得所述基线在地心坐标系 WGS中的坐标。
将所述基线在地心坐标系 WGS中的坐标转换为当地坐标系 LLS中的坐标。
根据所述基线在当地坐标系 LLS中的坐标, 得到所述基线的方位角和 /或所述基线 的俯仰角。 具体的, 根据所述基线的方位角和 /或所述基线的俯仰角以及所述预定位置关系, 得到所述基站天线的方位角和 /或所述基站天线的下倾角, 具体可以包括:
将所述基线的方位角减去所述预设夹角值得到所述基站天线的方位角。
将所述预设夹角值减去所述基线的俯仰角得到所述基站天线的下倾角。
可选的, 本发明实施例的基站天线信息的获取方法中, 上述步骤 22, 可以包括: 解析所述卫星信号得到所述接收天线单元的经纬度信息和 /或高度信息。
根据所述接收天线单元的经纬度信息和 /或高度信息以及所述预定位置关系, 得到 所述基站天线的经纬度信息和 /或高度信息。
具体的, 所述预定位置关系包括: 所述接收天线单元位于所述基站天线的上部, 所 述基站天线的高度为挂高,根据所述接收天线单元的经纬度信息和 /或高度信息以及所述 预定位置关系, 得到所述基站天线的经纬度信息和 /或高度信息, 可以包括:
将所述接收天线单元的经度之和除以所述接收天线单元的个数得到所述基站天线 的经度,将所述接收天线单元的经纬度之和除以所述接收天线单元的个数得到所述基站 天线的纬度;
将所述接收天线单元的高度之和除以所述接收天线单元的个数,并结合所述基站天 线的自身高度, 得到所述基站天线的挂高。
可选的, 接收天线单元可以为 3个, 3个接收天线单元之间的位置关系确定, 且接 收天线单元与基站天线之间符合预定位置关系。 每两个接收天线单元之间连线构成基 线, 从而得到三组基站天线的方位角以及基站天线的下倾角, 再将三组基站天线的方位 角以及基站天线的下倾角求整合得到基站天线的方位角以及基站天线的下倾角。
可选的,本发明实施例的基站天线信息的获取方法中, 发送卫星信号的 GPS卫星至 少为 2颗, 这样, 步骤 21中接收天线单元可以通过接收多颗 GPS卫星发送的卫星信号, 可以对得到的基站天线的位置信息进行整合, 提高基站天线的位置信息的准确度。
本发明实施例一
本发明实施例提供一种基站天线信息的获取装置,提高基站天线工程参数测量的准 确性、 效率及提升后续网络管理系统以及网络优化系统自动获取参数的能力。
如图 3所示, 两个接收天线单元 31接收 GPS卫星 35的卫星信号, 两个接收天线单元 31连接处理单元 32, 处理单元 32用于通过卫星信号得到基站天线 33的位置信息, 处理单 元 32通过传输通道连接管理中心 34, 管理中心 34用于集中收集、 管理基站天线 33的位 置信息。
其中, 两个接收天线单元 31之间的连线 311与基站天线 33的法线 331之间的夹角成 0 度。
处理单元 32可以根据卫星信号直接计算得到最终位置信息,也可以根据卫星信号得 到计算位置信息的一些中间数据,并传输给管理中心 34, 由管理中心 34计算得到最终位 置信息。 可选的, 处理单元 32处理得到的信息可以按照需要的规格进行打包, 传输给管 理中心 34。
通过传输通道, 管理中心 34将下发的查询命令送到处理单元 32, 或者处理单元 32 主动将获取到的信息上传至管理中心 34。 可选的, 传输通道可以是有线、 无线、 光网络 或其他任何一种通道形式, 传输通道可以是专用通道, 也可以是与其他信息使用共享通 道。
具体而言, 如图 4所示, 处理单元 32还可以包括: 第一处理子单元 41和第二处理 子单元 42, 第一处理子单元 41解析 GPS卫星 35的卫星信号, 第二处理子单元 42处 理第一处理子单元 41传输来的信息, 进而得到基站天线 33的位置信息。
第二处理子单元 42处理得到的信息可以传输给近端数传电台 43,近端数传电台 43 可以将接收的信息通过无线网路传输给远端数传电台 44, 远端数传电台 44再传输给管 理中心 34。
如图 5所示,下面详细说明本发明实施例基站天线信息的获取装置对应的获取方法 的具体流程:
安装两个接收天线单元,使用机械装置将两个接收天线单元与待测的基站天线进行 固定, 如使两个接收天线单元之间连线构成的基线与基站天线的法线成 0度夹角。
51、 接收 GPS卫星的信号。
两个接收天线单元接收 GPS卫星的信号, 并发送给处理单元。
52、 第一处理子单元解析接收到的 GPS 卫星信号得到接收天线单元的经纬度信息 和 /或高度信息, 并将这些信息发送给第二处理子单元, 进入 53。
或者, 第一处理子单元解析接收到的 GPS 卫星信号, 得到接收天线单元接收到的 载波相位信息、载波波长信息以及卫星星历信息,并将这些信息发送给第二处理子单元, 进入 54。
53、根据接收天线单元的经纬度信息和 /或高度信息,从而得到基站天线的经纬度和 /或高度信息。 第二处理子单元获取接收天线单元的经纬度及高度信息(Bl, Ll, Ml ), (B2, L2, M2), 其中, B表示经度和纬度, L表示纬度, M表示高度。
同时参考图 3 ,两个接收天线单元位于基站天线的上部,第二处理子单元通过两个 接收天线单元的经纬度、高度信息,计算得到基站天线的经纬度为((B1+B2)/2,(L1+L2 ) /2), 基站天线的挂高为 (M1+M2) /2-h, 其中, h为 1/2基站天线的自身高度。
第二处理子单元还可以将基站天线的经纬度及高度信息进行打包传给近端数传电 台, 进入 56。
54、 根据载波相位、 载波波长以及卫星星历, 得到基线的方位角以及基线向量的俯 仰角。
如图 6所示, 0表示一个接收天线单元, B表示另一个接收天线单元, 则 OB为基 线 (可以理解为基线向量), 其中, 0点为坐标原心, 其坐标为 (0, 0, 0), B的坐标 为 (Χ, Υ, Ζ)。
GPS卫星到两个接收天线单元的波程分别为 r0和 r,两个接收天线单元接收到的载 波相位信息分别为 φο, φΒ。
从 Ο点向向量 r做垂线, 得到的与向量 r的交点 C, 波程差 BC是基线向量 OB在
GPS卫星信号的载波来波方向上的投影。
具体的, 获得基线向量的方位角以及基线向量的俯仰角, 可以包括以下步骤:
( 1 )通过下面的公式 1, 根据载波相位信息 φο, φΒ, 以及 GPS卫星信号的载波波 长, 得到 GPS卫星到两个接收天线单元的波程 rO和 r, 波程为 GPS卫星信号的载波到 接收天线单元的距离。
Γθ=φο*λ , Γ=φΒ *λ 公式 1
其中, λ为 GPS卫星信号的载波波长。
( 2 ) 通过下面的公式 2, 根据两个接收天线单元的波程差, 获得基线在地心坐标 系 (WGS) 中的投影坐标。
Ϊ" V "~
r r r
公式 2 其中, d为两个接收天线单元的波程差, 即 GPS载波信号到两个接收天线单元的距 离之差, d由若干个整数载波周期和不足一周期载波的小数部分组成, (1=(Ν+Δ)λ, λ为 载波波长, N为载波周整数, Δ为残留小数。
( Xs,Ys,Zs ) 为 GPS 卫星在地心坐标系(WGS)中的坐标, 还可以表示为
[ s Ys Zs ] S。 具体的, 可以通过卫星星历得到 GPS卫星在地心坐标系 (WGS ) 中 的坐标。
( , Υ, 为基线在地心坐标系 (WGS ) 中的投影坐标, 还可以表示为 [X Y Z iWGS 对应为 cos 6>, ―对应为 cos φ 对应为 cos 。
r r r
e为接收天线单元向 GPS卫星方向的向量。 由于两个接收天线单元与 GPS卫星之 间的距离远远大于两个接收天线单元之间的距离, 则两个接收天线单元中任一个接收天 线单元向 GPS卫星方向的向量即可以视作为上述 e。
b为基线在地心坐标系 (WGS ) 中的矢量。
可见, 通过上述公式 2 可以计算获得基线在地心坐标系 (WGS ) 中的投影坐标
[χ Y ZL。
( 3 ) 通过下面的公式 3, 将基线向量在地心坐标系 (WGS ) 中的投影坐标 [ 7 Ζ]^4专换为基线向量在当地坐标系 (LLS, Local Level System ) 中的坐标
X -sin 5 cos Ζ -sin Z -cosNcosZ X
Y -sin 5 sin Z cos -cos 5 sin Z Y Yo
Figure imgf000012_0001
-cos 5 0 -sin 5 z
3
其中, B, L分别为 B表示的接收天线单元的经度和纬度, 该接收天线单元的经度 和纬度可由卫星星历直接读取 。
( 4) 由于两个接收天线的位置相对固定, 即两个接收天线在载体坐标系中的坐标 位置是确定的, 通过下面的公式 4, 计算出基线向量的方位角 α。
Figure imgf000012_0002
公式 4 通过下面的公式 5, 计算出基线向量的俯仰角 ?。
Figure imgf000013_0001
公式 5
55、 获得基站天线的方位角以及基站天线的下倾角。
第二处理子单元通过基线向量的方位角《计算出基站天线的方位角,基站天线的方 位角 =« -两个接收天线单元之间连线构成的基线与基站天线的法线的夹角, 即基站天线 的方位角 = α -0, 基站天线的方位角 = α。
第二处理子单元通过基线向量的俯仰角 ?计算出基站天线的下倾角 ^, 即基站天线 的下倾角^=两个接收天线单元之间连线构成的基线与基站天线的法线的夹角- β , 即 基站天线的下倾角 =0- β , 。
第二处理子单元还可以将传输子单元将基站天线的方位角以及基站天线的下倾角 数据进行打包传给近端数传电台。
56、 近端数传电台将接收的数据通过无线网路传输给远端数传电台。
57、 远端数传电台可以通过 AISG (Antenna Interface Standards Group, 天线接 口标准) 链路传输到管理中心, 管理中心对数据进行集中的记录和管理。
可见, 本发明实施例提供的基站天线信息的获取装置及获取方法, 实现不进站远 程检测基站天线信息,避免人工读取、记录工程参数中可能存在的错误; 实时数据读取, 可以随时对天线工程参数进行测量, 为网络自优化提供了基础;
在受到周边环境 (如: 磁场、 气压)复杂的情况下提升测量的准确度; 提高基站天线 工程参数测量的准确性、效率及提升后续网络管理系统以及网络优化系统自动获取参数 的能力; 远程集中收集管理天线工程参数, 为网络分析、 网络优化等应用提供便捷的数 据接口。
本发明实施例二
本发明实施例与上述实施例的区别在于, 接收天线单元为 3个, 接收天线单元之间 的位置关系确定, 且接收天线单元与基站天线之间符合预定位置关系。
每两个接收天线单元之间连线构成基线, 从而,通过上述实施例的公式 1 -公式 5可 以得到三组基站天线的方位角以及基站天线的下倾角, 之后, 再将三组基站天线的方位 角以及基站天线的下倾角求平均数, 整合得到基站天线的方位角以及基站天线的下倾 角。
本领域技术人员, 可以理解在接收天线单元为 3个以上时, 可以参考本实施例描述 的方式获取基站天线的位置信息, 在此不作赘述。
本发明实施例三
本发明实施例与上述实施例的区别在于, 处理单元包括: 第一处理子单元, 以及与 第一处理子单元连接传输单元, 第一处理子单元解析 GPS卫星的卫星信号, 解析出载 波相位信息、 载波波长信息以及卫星星历信息, 或解析得到接收天线单元的经纬度和 / 或高度信息。
传输单元通过近端数传电台、远端数传电台将第一处理子单元输来的信息传输到管 理中心, 传输单元物理上可以为传输机。
管理中心根据得到的信息进行计算处理获得基站天线的经纬度和 /或高度信息,或得 到基站天线的方位角以及基站天线的下倾角, 即由管理中心执行第二处理子单元的功 能。 管理中心集中的记录和管理基站天线的位置信息。 本领域技术人员可以理解的是,上述各个实施例中,处理单元物理上可以为处理器, 处理子单元可以为子处理器, 接收天线单元可以为卫星定位系统接收天线, 如 GPS天 线, 传输单元可以为数据收发器, 如数传电台。 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明披露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求书的 保护范围为准。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以 通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可读取存储 介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储 介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only Memory, ROM ) 或随机存储记 忆体 ( Random Access Memory, RAM ) 等。

Claims

1、 一种基站天线信息的获取装置, 其特征在于, 包括:
至少两个接收天线单元, 用于接收卫星定位系统卫星发送的卫星信号, 所述至少两 个接收天线单元与基站天线之间符合预定位置关系;
处理单元, 用于根据所述卫星信号得到所述接收天线单元的位置信息, 并根据所述 接收天线单元的位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到 所述基站天线的位置信息。
2、 根据权利要求 1所述的装置, 其特征在于, 所述预定位置关系包括: 所述接收天 线单元之间连线构成的基线与所述基站天线的法线存在预设夹角关系,预设夹角值包括 0度 -180度中任一角度值, 且, 所述处理单元, 包括:
第一处理子单元, 用于解析所述卫星信号得到所述卫星信号的载波相位信息、载波 波长信息以及卫星星历信息; 以及
第二处理子单元, 用于根据所述载波相位信息、所述载波波长信息以及所述卫星星 历信息得到所述基线的方位角和 /或所述基线的俯仰角, 并根据所述基线的方位角和 /或 所述基线的俯仰角以及所述预定位置关系,得到所述基站天线的方位角和 /或所述基站天 线的下倾角。
3、 根据权利要求 2所述的装置, 其特征在于, 所述第二处理子单元, 具体用于: 根据所述载波相位信息以及所述载波波长信息,得到所述卫星到两个接收天线单元 的波程, 并得到两个接收天线单元的波程差;
根据所述卫星星历信息得到所述卫星在地心坐标系 WGS中的坐标;
根据所述卫星到两个接收天线单元的波程、所述波程差以及所述卫星在地心坐标系 WGS中的坐标, 获得所述基线在地心坐标系 WGS中的坐标;
将所述基线在地心坐标系 WGS中的坐标转换为当地坐标系 LLS中的坐标; 根据所述基线在当地坐标系 LLS中的坐标, 得到所述基线的方位角和 /或所述基线 的俯仰角;
将所述基线的方位角减去所述预设夹角值得到所述基站天线的方位角;
将所述预设夹角值减去所述基线的俯仰角得到所述基站天线的下倾角。
4、 根据权利要求 1所述的装置, 其特征在于, 所述处理单元, 包括:
第一处理子单元, 用于解析所述卫星信号得到所述接收天线单元的经纬度信息和 / 或高度信息; 第二处理子单元, 用于根据所述接收天线单元的经纬度信息和 /或高度信息以及所 述预定位置关系, 得到所述基站天线的经纬度信息和 /或高度信息。
5、 根据权利要求 4所述的装置, 其特征在于, 所述预定位置关系包括: 所述接收天 线单元位于所述基站天线的上部, 所述基站天线的高度为挂高, 所述第二处理子单元, 具体用于:
将所述接收天线单元的经度之和除以所述接收天线单元的个数得到所述基站天线 的经度,将所述接收天线单元的经纬度之和除以所述接收天线单元的个数得到所述基站 天线的纬度;
将所述接收天线单元的高度之和除以所述接收天线单元的个数,并结合所述基站天 线的自身高度, 得到所述基站天线的挂高。
6、 根据权利要求 1 -5任意一项所述的装置, 其特征在于, 所述卫星定位系统为全球 定位系统 GPS。
7、 一种基站天线, 其特征在于, 包括如权利要求 1 -6中任一所述的基站天线信息的 获取装置。
8、 一种基站天线信息的获取方法, 其特征在于, 包括:
通过至少两个接收天线单元接收卫星定位系统卫星发送的卫星信号,所述至少两个 接收天线单元与基站天线之间符合预定位置关系;
根据所述卫星信号得到所述接收天线单元的位置信息,并根据所述接收天线单元的 位置信息以及所述接收天线单元与基站天线之间的预定位置关系,得到所述基站天线的 位置信息。
9、 根据权利要求 8所述的方法, 其特征在于, 所述预定位置关系包括: 所述接收天 线单元之间连线构成的基线与所述基站天线的法线存在预设夹角关系,预设夹角值包括 0度 -180度中任一角度值, 此时, 所述根据所述卫星信号得到所述基线的位置信息, 并 根据所述基线的位置信息以及所述预定位置关系,得到所述基站天线的位置信息,包括: 解析所述卫星信号得到所述卫星信号的载波相位信息、载波波长信息以及卫星星历 信息;
根据所述载波相位信息、所述载波波长信息以及所述卫星星历信息得到所述基线的 方位角和 /或所述基线的俯仰角, 并根据所述基线的方位角和 /或所述基线的俯仰角以及 所述预定位置关系, 得到所述基站天线的方位角和 /或所述基站天线的下倾角。
10、 根据权利要求 9所述的方法, 其特征在于, 所述根据所述载波相位信息、 所述 载波波长信息以及所述卫星星历信息得到所述基线的方位角和 /或所述基线的俯仰角,包 括:
根据所述载波相位信息以及所述载波波长信息,得到所述卫星到两个接收天线单元 的波程, 并得到两个接收天线单元的波程差;
根据所述卫星星历信息得到所述卫星在地心坐标系 WGS中的坐标;
根据所述卫星到两个接收天线单元的波程、所述波程差以及所述卫星在地心坐标系 WGS中的坐标, 获得所述基线在地心坐标系 WGS中的坐标;
将所述基线在地心坐标系 WGS中的坐标转换为当地坐标系 LLS中的坐标; 根据所述基线在当地坐标系 LLS中的坐标,得到所述基线的方位角和 /或所述基线的 俯仰角。
1 1、 根据权利要求 10所述的方法, 其特征在于, 所述根据所述基线的方位角和 /或 所述基线的俯仰角以及所述预定位置关系,得到所述基站天线的方位角和 /或所述基站天 线的下倾角, 包括:
将所述基线的方位角减去所述预设夹角值得到所述基站天线的方位角; 将所述预设夹角值减去所述基线的俯仰角得到所述基站天线的下倾角。
12、 根据权利要求 8所述的方法, 其特征在于, 所述根据所述卫星信号得到所述基 线的位置信息, 并根据所述基线的位置信息以及所述预定位置关系, 得到所述基站天线 的位置信息, 包括:
解析所述卫星信号得到所述接收天线单元的经纬度信息和 /或高度信息; 根据所述接收天线单元的经纬度信息和 /或高度信息以及所述预定位置关系, 得到 所述基站天线的经纬度信息和 /或高度信息。
13、 根据权利要求 12所述的方法, 其特征在于, 所述预定位置关系包括: 所述接 收天线单元位于所述基站天线的上部, 所述基站天线的高度为挂高, 所述根据所述接收 天线单元的经纬度信息和 /或高度信息以及所述预定位置关系,得到所述基站天线的经纬 度信息和 /或高度信息, 包括:
将所述接收天线单元的经度之和除以所述接收天线单元的个数得到所述基站天线 的经度,将所述接收天线单元的经纬度之和除以所述接收天线单元的个数得到所述基站 天线的纬度; 将所述接收天线单元的高度之和除以所述接收天线单元的个数, 并结合所述基站 天线的自身高度, 得到所述基站天线的挂高。
14、 根据权利要求 8-13任意一项所述的方法, 其特征在于, 所述卫星定位系统为全 球定位系统 GPS。
PCT/CN2012/080400 2011-11-21 2012-08-21 一种基站天线信息的获取方法、装置及基站天线 WO2013075520A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20212151.3A EP3862792A1 (en) 2011-11-21 2012-08-21 Method and apparatus for acquiring information about base station antenna, and base station antenna
AU2012343109A AU2012343109B2 (en) 2011-11-21 2012-08-21 Method and device for acquiring information about base station antenna, and base station antenna
EP12852405.5A EP2784533B1 (en) 2011-11-21 2012-08-21 Method and device for acquiring information about base station antenna, and base station antenna
US13/728,051 US8766847B2 (en) 2011-11-21 2012-12-27 Method and apparatus for acquiring information about base station antenna, and base station antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110370910.5A CN102509902B (zh) 2011-11-21 2011-11-21 一种基站天线信息的获取方法、装置及基站天线
CN201110370910.5 2011-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/728,051 Continuation US8766847B2 (en) 2011-11-21 2012-12-27 Method and apparatus for acquiring information about base station antenna, and base station antenna

Publications (1)

Publication Number Publication Date
WO2013075520A1 true WO2013075520A1 (zh) 2013-05-30

Family

ID=46221966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080400 WO2013075520A1 (zh) 2011-11-21 2012-08-21 一种基站天线信息的获取方法、装置及基站天线

Country Status (4)

Country Link
EP (2) EP3862792A1 (zh)
CN (1) CN102509902B (zh)
AU (1) AU2012343109B2 (zh)
WO (1) WO2013075520A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723607A (zh) * 2019-03-20 2020-09-29 中国移动通信集团甘肃有限公司 天线工程参数确定方法及装置
CN113506986A (zh) * 2021-06-03 2021-10-15 星展测控科技股份有限公司 一种动中通控制系统及方法
CN113573348A (zh) * 2021-08-17 2021-10-29 杭州东信网络技术有限公司 一种基于人机指令实现5g基站参数自动化配置的方法
CN114252888A (zh) * 2020-09-23 2022-03-29 苏州宝时得电动工具有限公司 自主机器人、基站选址方法、装置和存储介质
CN114838701A (zh) * 2021-01-30 2022-08-02 华为技术有限公司 一种获取姿态信息的方法及电子设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766847B2 (en) 2011-11-21 2014-07-01 Huawei Technologies Co. Ltd. Method and apparatus for acquiring information about base station antenna, and base station antenna
CN102509902B (zh) * 2011-11-21 2014-05-07 华为技术有限公司 一种基站天线信息的获取方法、装置及基站天线
CN102637944B (zh) 2012-04-11 2014-05-07 华为技术有限公司 基站天线装置及基站天线工程参数采集装置
CN103840262B (zh) * 2014-03-07 2017-04-26 华为技术有限公司 调节天线的方法、天线和基站控制中心
CN105556742B (zh) * 2014-05-27 2018-05-11 华为技术有限公司 天线工程参数的获取方法和设备及系统
CN105813103B (zh) * 2014-12-31 2019-05-07 中国电信股份有限公司 基站俯仰角的测量方法和装置
TWI565347B (zh) * 2015-03-31 2017-01-01 佳世達科技股份有限公司 估算基站位置的方法
CN105472643B (zh) * 2015-11-24 2018-07-13 中国电信股份有限公司 用于感知天线参数的方法、天线设备和系统
EP3400460A4 (en) * 2016-01-08 2019-10-23 Commscope Technologies LLC IMPROVING AZIMUTE ACCURACY USING MULTIPLE GNSS ANTENNAS
CN105738935A (zh) * 2016-04-26 2016-07-06 重庆卓观科技有限公司 一种基于卫星导航的移动通信基站天线姿态测量终端
CN110970731A (zh) * 2018-09-30 2020-04-07 华为技术有限公司 调节装置、天线及通信设备
CN111796311B (zh) * 2020-07-17 2024-01-26 广东星舆科技有限公司 目标对象状态的监测方法、装置及计算机可读介质
CN112433237B (zh) * 2020-11-10 2023-04-07 广州肯赛特通信科技有限公司 一种自动卫星跟踪方法、装置、设备及存储介质
JP2022106272A (ja) * 2021-01-06 2022-07-19 スターライト テクノロジーズ リミテッド アンテナ構成パラメーターのリモートセンシングのための方法および装置
CN113746535B (zh) * 2021-11-04 2022-03-01 亚太卫星宽带通信(深圳)有限公司 一种多功能卫星通信信号装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464981A2 (en) * 2002-01-24 2004-10-06 Telecom Italia Mobile S.P.A. Measurement of parameters of an antenna of a radio base station used for cellular telephony.
CN101446634A (zh) * 2007-11-28 2009-06-03 中国科学院电子学研究所 一种高精度位置、方位角和俯仰角的组合测量方法及装置
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN102509902A (zh) * 2011-11-21 2012-06-20 华为技术有限公司 一种基站天线信息的获取方法、装置及基站天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349531A (en) * 1991-03-13 1994-09-20 Tokimec Inc. Navigation apparatus using a global positioning system
US5347286A (en) * 1992-02-13 1994-09-13 Trimble Navigation Limited Automatic antenna pointing system based on global positioning system (GPS) attitude information
US6897828B2 (en) * 2002-04-30 2005-05-24 Christian Boucher Antenna alignment system
US7180471B2 (en) * 2002-04-30 2007-02-20 Christian Boucher Antenna alignment system and method
DE202005019697U1 (de) * 2005-12-16 2006-03-02 Kathrein-Werke Kg Einrichtung zur Erfassung der Orientierung einer Antennenanordnung
US20090141623A1 (en) * 2007-11-27 2009-06-04 Hyun Jung Central Antenna Management System With Centralized Database
WO2009100437A1 (en) * 2008-02-10 2009-08-13 Hemisphere Gps Llc Antenna alignment and monitoring system and method using gnss
EP2196817B1 (en) * 2008-12-10 2016-04-27 Alcatel Lucent An antenna measurement system and method thereof
US8649930B2 (en) * 2009-09-17 2014-02-11 Agjunction Llc GNSS integrated multi-sensor control system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464981A2 (en) * 2002-01-24 2004-10-06 Telecom Italia Mobile S.P.A. Measurement of parameters of an antenna of a radio base station used for cellular telephony.
CN101446634A (zh) * 2007-11-28 2009-06-03 中国科学院电子学研究所 一种高精度位置、方位角和俯仰角的组合测量方法及装置
CN102170321A (zh) * 2011-04-20 2011-08-31 李英祥 一种基站天线参数监测仪及自动监测方法
CN102509902A (zh) * 2011-11-21 2012-06-20 华为技术有限公司 一种基站天线信息的获取方法、装置及基站天线

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723607A (zh) * 2019-03-20 2020-09-29 中国移动通信集团甘肃有限公司 天线工程参数确定方法及装置
CN114252888A (zh) * 2020-09-23 2022-03-29 苏州宝时得电动工具有限公司 自主机器人、基站选址方法、装置和存储介质
CN114838701A (zh) * 2021-01-30 2022-08-02 华为技术有限公司 一种获取姿态信息的方法及电子设备
CN114838701B (zh) * 2021-01-30 2023-08-22 华为技术有限公司 一种获取姿态信息的方法及电子设备
CN113506986A (zh) * 2021-06-03 2021-10-15 星展测控科技股份有限公司 一种动中通控制系统及方法
CN113506986B (zh) * 2021-06-03 2024-02-27 星展测控科技股份有限公司 一种动中通控制系统及方法
CN113573348A (zh) * 2021-08-17 2021-10-29 杭州东信网络技术有限公司 一种基于人机指令实现5g基站参数自动化配置的方法
CN113573348B (zh) * 2021-08-17 2024-02-02 杭州东信网络技术有限公司 一种基于人机指令实现5g基站参数自动化配置的方法

Also Published As

Publication number Publication date
EP3862792A1 (en) 2021-08-11
AU2012343109B2 (en) 2015-09-17
CN102509902B (zh) 2014-05-07
AU2012343109A1 (en) 2014-06-19
EP2784533A1 (en) 2014-10-01
EP2784533A4 (en) 2014-12-24
EP2784533B1 (en) 2020-12-30
CN102509902A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013075520A1 (zh) 一种基站天线信息的获取方法、装置及基站天线
US8787184B2 (en) Collaborative sharing of location information among devices in a network
US20170238136A1 (en) Method and System for Improving the Location of Fixed Wireless CBSD Nodes
CN105549060B (zh) 基于机载光电吊舱位置和姿态的目标定位系统
CN110892761B (zh) 远程用户设备的定位方法和系统
US20150223027A1 (en) Method and apparatus for calculating location of terminal in wireless communication system
JP2013539010A (ja) 無線ジオロケーションネットワークにおけるピアセンサー局のネットワーク定位および同期
KR101247964B1 (ko) 비콘을 이용한 전파식별 리더의 위치 측정 방법 및 그를 위한 전파식별 시스템
JPWO2005012939A1 (ja) 端末位置特定方法及びそのシステム
CN107567003B (zh) 干扰检测方法和系统以及飞行器和控制器
US20210239851A1 (en) Position determination method and device based on pose data
CN113568021A (zh) 一种室内外一体化精准定位的方法及系统
CN106705931A (zh) 一种自动获取基站天线方位角的方法、装置及系统
KR20170084613A (ko) 서로 다른 측위 자원들의 결합을 이용한 위치 추정 장치 및 방법
CN208968561U (zh) 一种基于自组网的室内惯导定位人员位置监控系统
US20150145721A1 (en) Method of positioning and electronic apparatus using the same
CN104792321A (zh) 一种基于辅助定位的土地信息采集系统及方法
KR101941855B1 (ko) V2x 통신 성능 평가 시스템
EP2196817B1 (en) An antenna measurement system and method thereof
CN110086843A (zh) 一种监测方法及终端
CN109387200A (zh) 一种基于自组网的室内惯导定位人员位置监控系统
US20190148813A1 (en) Imaging system and method for accurately directing antennas
EP2856199A1 (en) Determining location and orientation of directional tranceivers
CN111381267A (zh) 一种基于RTK和WiFi组合的定位系统及方法
JP6652400B2 (ja) 位置出力装置、及び位置出力方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012852405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012343109

Country of ref document: AU

Date of ref document: 20120821

Kind code of ref document: A