WO2013075467A1 - 一种特殊突发检测方法和系统 - Google Patents

一种特殊突发检测方法和系统 Download PDF

Info

Publication number
WO2013075467A1
WO2013075467A1 PCT/CN2012/075262 CN2012075262W WO2013075467A1 WO 2013075467 A1 WO2013075467 A1 WO 2013075467A1 CN 2012075262 W CN2012075262 W CN 2012075262W WO 2013075467 A1 WO2013075467 A1 WO 2013075467A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sequence
descrambled
scrambling code
special burst
Prior art date
Application number
PCT/CN2012/075262
Other languages
English (en)
French (fr)
Inventor
邱宁
李强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013075467A1 publication Critical patent/WO2013075467A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • H04L1/242Testing correct operation by comparing a transmitted test signal with a locally generated replica

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a special burst detection method and system. Background technique
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • TTI Transmission Time Interval
  • CCTrCH Composite Transport Channel
  • DTX Discontinuous Transmission
  • the CCTrCH stops normal data transmission and shifts to a special burst (SB) at a certain period.
  • SB special burst
  • the frame structure of the special burst is the same as the frame structure of the regular data. According to the relevant protocol, the sequence part of the frame structure of the special burst is a fixed sequence of 010101... (repeated in units of 01).
  • DTX may exist in both uplink and downlink.
  • the base station needs to detect special bursts.
  • the terminal needs to detect special bursts.
  • the terminal detects a special burst by: determining the similarity between the sequence part and the fixed sequence 010101 ⁇ in the demodulated signal, and obtaining the similarity and a preset The threshold is compared. If the similarity is less than the preset threshold, the received signal is a special burst.
  • the prior art can determine whether the received signal is a special burst by detecting, there is also a problem that the detection is unreliable. This is because there is an error between the signal obtained by the prior art demodulation and the original signal before modulation, which is caused by the signal scrambling step. Specifically, before the original signal is transmitted, it needs to undergo modulation, scrambling, etc., and the scrambled signal has a DC branch. The amount cannot pass through the front end of the receiver, so there is an error between the demodulated signal and the original signal. Therefore, the signal that the prior art detects is not representative of the original signal itself, so that the prior art detection method has the problem of unreliable detection. Summary of the invention
  • a special burst detection method including the following steps:
  • the terminal side performs error reconstruction on the received descrambled and descrambled signal, and performs despreading and demodulation and demodulation processing on the reconstructed signal to obtain a signal to be detected;
  • the terminal side performs error reconstruction on the received descrambled and descrambled signal to:
  • the terminal side calculates the DC component present in the to-be-despread and descrambled signal as:
  • the above methods also include:
  • the terminal side sets a preset bit sequence according to a special burst transmitted by the transmitting end, and sets the preset threshold according to the channel condition, the actual interference, and the noise condition.
  • the terminal side sets the preset bit sequence according to the special burst transmitted by the transmitting end: the terminal side sets the preset bit sequence to be consistent with the sequence part of the special burst transmitted by the transmitting end.
  • the preset threshold is set by the terminal side according to the channel condition, the actual interference, and the noise condition.
  • the terminal side determines that the preset threshold ranges from 0% to 20% according to the channel condition, the actual interference, and the noise condition.
  • the invention also discloses a special burst detection system, wherein the system comprises: an error reconstruction module, a signal processing module, and a signal decision module; wherein
  • the error reconstruction module is configured to perform error reconstruction on the received descrambled and descrambled signal;
  • the signal processing module is configured to perform despreading, descrambling, and demodulation processing on the reconstructed signal to obtain a signal to be detected. ;
  • the signal decision module is configured to compare the sequence part of the signal to be detected with the preset bit sequence by a bit-comparison, and calculate a ratio of the number of inconsistent bits to the total number of bits of the sequence part, when the ratio is less than When the threshold is set, it is determined that the signal to be detected is a special burst.
  • the error reconstruction module includes: a scrambling code sequence acquiring unit, a channelization code sequence acquiring unit, a DC component calculating unit, and a reconstructed signal generating unit;
  • the scrambling code sequence obtaining unit is configured to obtain, according to the scrambling code index of the current cell, a scrambling code sequence in which the corresponding scrambling code is complexized;
  • the channel code sequence acquiring unit is configured to obtain, according to a channelization code index of the current cell, a channelization code sequence in which the corresponding channelization code is complexized;
  • the DC component calculation unit is configured to calculate a DC component existing in the descrambled signal to be despread according to the scrambling code sequence and the channelization code sequence;
  • the reconstructed signal generating unit is configured to add the DC component to be despread and the DC component calculated by the DC component calculating unit to obtain a new signal to be despread and descrambled.
  • the above preset threshold ranges from 0% to 20%.
  • the present invention has the following beneficial technical effects: According to the characteristics of the channelization code and the scrambling code, the present invention performs error reconstruction on the signal received by the terminal side before despreading demodulation, so that the terminal side solution
  • the modulated signal has no error code; when the reconstructed signal is subjected to the special burst sequence part detection, it is more reliable and improves the detection performance of the special burst.
  • FIG. 1 is a flow chart of a special burst detection method in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a flow chart of a method for error reconstruction of a despreading and descrambling signal according to a preferred embodiment of the present invention
  • FIG. 3 is a block diagram of a special burst detection system in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a block diagram of a subunit module of an error reconstruction module in an embodiment of the present invention. detailed description
  • FIG. 1 is a flow chart of a method for detecting a special burst in accordance with a preferred embodiment of the present invention. As shown in FIG. 1, the method of the preferred embodiment of the present invention includes the following steps:
  • Step S1 The terminal side performs error reconstruction on the received descrambled and descrambled signal, and reconstructs The signal is subjected to despreading and demodulation and demodulation processing to obtain a signal to be detected;
  • the error reconstruction of the despreading and descrambling signal is first performed, the error of the signal to be despreaded and descrambled is eliminated, and the signal to be despreaded and descrambled is restored to the original signal before the transmission. Therefore, the detection of the special burst of the present invention is performed on the original signal, and is more accurate.
  • FIG. 2 shows a specific process of error reconstruction for despreading and descrambling signals according to a preferred embodiment of the present invention.
  • the terminal side uses the following method to perform error reconstruction on the despreading and descrambling signal:
  • Step S101 Acquire, according to the scrambling code index of the current cell, the scrambling code sequence ScrmCodes (1: 16) after the corresponding scrambling code is pluralized;
  • Step S102 Acquire, according to the channelization code index of the current cell, the channelization code sequence ChnlCodes (l: 16) corresponding to the corresponding channelization code.
  • the scrambling code index and the channelization code index are sent by the base station side to the terminal side. Since the special burst transmitted by the transmitting end is 16 chips, the obtained scrambling code sequence and channelization code sequence length are 16 chips.
  • Step S103 Calculate, according to the scrambling code sequence and the channelization code sequence, the DC component Dc existing in the to-be-despread descrambled signal;
  • Step S104 Add the above-mentioned despreading and descrambling signal to the DC component Dc to obtain a new signal to be despreaded and descrambled.
  • the descrambled signal to be despread is added to the DC component Dc. It means that each bit sequence of the descrambled signal to be despread is respectively added to the DC component DC to obtain a new signal to be despread and descrambled.
  • step S1 the reconstructed signal, that is, the new despreading and descrambling signal to be despreaded and demodulated, is demodulated and demodulated by using the prior art, thereby obtaining a signal to be detected.
  • Step S2 Obtain a sequence part of the to-be-detected signal, and perform the above-mentioned sequence part and the preset bit sequence by bit-alignment to obtain an inconsistent number of bits; to set the preset bit sequence to a sequence with a special burst Partially consistent. Since the sequence portion of the special burst is generally a fixed sequence of 010101..., in the embodiment of the present invention, the preset bit sequence may be a sequence of 010101..., and the length may be 16 bits.
  • Step S3 calculating a ratio of the number of inconsistent bits to the total number of bits in the sequence part;
  • Step S4 determining the ratio and the preset threshold, if the ratio is less than a preset threshold, the signal to be detected is a special burst, and detecting End.
  • the above preset thresholds can be set according to channel conditions, actual interference, and noise conditions. Since the signal error is reconstructed before the signal is detected in the embodiment of the present invention, the signal to be detected should be exactly the same as the original signal sent from the transmitting end. That is to say, when the transmitting end emits a special burst, the sequence part of the signal to be detected should be a fixed sequence of 010101 ⁇ , so that the number of inconsistent bits should be 0, and the ratio calculated in step S3 should be It is 0%. However, considering that there may be other interference factors, the preset threshold can be set to any value between 0% and 20%. In this embodiment, the preset threshold is set to about 10%. As long as the ratio calculated in step S3 is within the preset threshold, it is considered that the signal received by the terminal side is a special burst.
  • FIG. 3 is a block diagram of a special burst detection system in accordance with a preferred embodiment of the present invention.
  • the system of the preferred embodiment of the present invention includes: an error reconstruction module 1, a signal processing module 2, and a signal decision module 3;
  • the error reconstruction module 1 is configured to perform error reconstruction on the received descrambled signal to be despreaded;
  • the signal processing module 2 is configured to perform despreading and demodulation and demodulation processing on the reconstructed signal to obtain a signal to be detected;
  • the signal decision module 3 is configured to compare the sequence part of the signal to be detected with the preset bit sequence by a bit-comparison, and calculate a ratio of the number of inconsistent bits to the total number of bits of the sequence part, if the ratio is less than If the threshold is preset, the signal to be detected is a special burst, and the detection ends.
  • the error reconstruction module 1 includes a scrambling code sequence acquisition unit 11, a channelization code sequence acquisition unit 12, a DC component calculation unit 13, and a reconstruction signal generation unit 14;
  • the scrambling code sequence obtaining unit 11 is configured to obtain, according to the scrambling code index of the current cell, a scrambling code sequence in which the corresponding scrambling code is complexized;
  • the channelization code sequence obtaining unit 12 is configured to obtain, according to a channelization code index of the current cell, a channelization code sequence that is corresponding to the channelization code being complexized;
  • the DC component calculation unit 13 is configured to calculate a DC component existing in the descrambled signal to be despread according to the scrambling code sequence and the channelization code sequence;
  • the reconstructed signal generating unit 14 is configured to add the DC component to be despread and the DC component calculated by the DC component calculating unit 13 to obtain a new signal to be despread and descrambled.
  • the above preset thresholds can be set according to channel conditions, actual interference, and noise conditions. In this embodiment, the preset threshold is set to about 10%, but in fact, the preset threshold may take any value between 0% and 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种特殊突发检测方法和系统,所述方法包括:终端侧对收到的待解扩解扰信号进行误差重构,并对重构后的信号进行解扩解扰及解调处理,得到待检测信号;将所述待检测信号的序列部分与预设比特序列按比特位进行一一比对,计算比对不一致的比特数占所述序列部分的比特总数的比例,当所述比例小于预设门限时,判定所述待检测信号为特殊突发。本发明消除了待检测信号存在的误码,检测更具有可靠性,改善了特殊突发的检测性能。

Description

一种特殊突发检测方法和系统 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种特殊突发检测方法和系 统。 背景技术
对于时分同步码分多址 ( Time Division-Synchronous Code Division Multiple Access, TD-SCDMA )系统, 如果基站或用户终端在传输时间间隔 ( Transmission Time Interval, TTI ) 内没有数据提供给编码组合传输信道 ( Coded Composite Transport Channel, CCTrCH ) 时, 基站和用户终端可以 以 CCTrCH为单位实施不连续传输(Discontinuous Transmission, DTX )。 当 DTX作用于某个 CCTrCH时,该 CCTrCH停止常规的数据发射,转变为 以一定周期发射特殊突发(Special Burst, SB )。 特殊突发的帧结构与常规 数据的帧结构相同, 根据有关协议, 特殊突发的帧结构中序列部分为 010101…… (以 01为单位重复) 的固定序列。
DTX在上下行都可能存在, 对于上行的 DTX, 基站需要对特殊突发进 行检测, 对于下行的 DTX, 终端需要对特殊突发进行检测。 现有技术中, 终端通过以下方法对特殊突发进行检测: 判断解调后的信号中, 序列部分 与固定序列 010101 ······的相似度, 并将得到的相似度与一个预设门限进行 比较, 若相似度小于预设门限则收到的信号为特殊突发。
虽然现有技术通过检测可以判断接收信号是否为特殊突发, 但还存在 检测不可靠的问题。 这是因为现有技术解调后得到的信号, 与调制前的原 始信号之间存在误差, 这种误差是由信号加扰步驟所引起的。 具体地说, 原始信号发射前, 需要经过调制、 加扰等步驟, 加扰后的信号存在直流分 量, 无法通过接收机前端, 从而解调得到的信号与原始信号之间存在误差。 因此, 现有技术检测所针对的信号, 并不能代表原始信号本身, 从而现有 技术的检测方法存在检测不可靠的问题。 发明内容
本发明的目的在于, 提供一种特殊突发检测方法和系统, 以解决现有 技术检测特殊突发时, 所存在的检测不可靠、 检测性能差的问题。
本发明采用以下技术方案解决上述技术问题:
一种特殊突发检测方法, 包括以下步驟:
终端侧对收到的待解扩解扰信号进行误差重构, 并对重构后的信号进 行解扩解扰及解调处理, 得到待检测信号;
将上述待检测信号的序列部分与预设比特序列按比特位进行——比 对, 计算比对不一致的比特数占上述序列部分的比特总数的比例, 当上述 比例 、于预设门限时, 判定上述待检测信号为特殊突发。
上述终端侧对收到的待解扩解扰信号进行误差重构为:
根据当前小区的扰码索引, 在本地获取对应扰码被复数化后的扰码序 列;
根据当前小区的信道化码索引, 在本地获取对应信道化码被复数化后 的信道化码序列;
根据上述扰码序列和上述信道化码序列, 计算上述待解扩解扰信号中 存在的直流分量;
将上述待解扩解扰信号与上述直流分量相加, 获得新的待解扩解扰信 上述终端侧计算上述待解扩解扰信号中存在的直流分量为:
将上述扰码序列和上述信道化码序列做点乘运算, 得到一个新序列; 计算上述新序列的平均数, 将得到的平均数作为上述直流分量。 上述方法还包括:
上述终端侧根据发射端发射的特殊突发设置预设比特序列, 并根据信 道情况、 实际干扰、 噪声情况设置上述预设门限。
上述终端侧根据发射端发射的特殊突发设置预设比特序列为: 所述终端侧将上述预设比特序列设置为与上述发射端发射的特殊突发 的序列部分一致。
上述终端侧根据信道情况、 实际干扰、 噪声情况设置所述预设门限为: 所述终端侧根据信道情况、 实际干扰、 噪声情况确定将上述预设门限 的取值范围为 0%-20%。
本发明还公开一种特殊突发检测系统, 上述系统包括: 误差重构模块、 信号处理模块、 及信号判决模块; 其中,
上述误差重构模块, 用于对收到的待解扩解扰信号进行误差重构; 上述信号处理模块, 用于对重构后的信号进行解扩解扰及解调处理, 得到待检测信号;
上述信号判决模块, 用于将待检测信号的序列部分与预设比特序列按 比特位进行——比对, 计算比对不一致的比特数占上述序列部分的比特总 数的比例, 当上述比例小于预设门限时, 判定上述待检测信号为特殊突发。
上述误差重构模块包括: 扰码序列获取单元、 信道化码序列获取单元、 直流分量计算单元、 及重构信号生成单元; 其中,
上述扰码序列获取单元, 用于根据当前小区的扰码索引, 在本地获取 对应扰码被复数化后的扰码序列;
上述信道码序列获取单元, 用于根据当前小区的信道化码索引, 在本 地获取对应信道化码被复数化后的信道化码序列;
上述直流分量计算单元, 用于根据扰码序列和信道化码序列, 计算待 解扩解扰信号中存在的直流分量; 上述重构信号生成单元, 用于将待解扩解扰信号与上述直流分量计算 单元计算得到的直流分量相加 , 获得新的待解扩解扰信号。 上述预设门限的取值范围为 0%-20%。
与现有技术相比, 本发明具有如下有益技术效果: 本发明根据信道化 码和扰码的特征, 在解扩解调前对终端侧收到的信号进行了误差重构, 从 而终端侧解调得到的信号不存在误码; 对重构后的信号进行特殊突发的序 列部分检测时, 更加具有可靠性, 改善了特殊突发的检测性能。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中:
图 1是本发明优选实施例的特殊突发检测方法的流程图;
图 2是本发明优选实施例对待解扩解扰信号进行误差重构方法的流程 图;
图 3是本发明优选实施例的特殊突发检测系统的模块框图;
图 4是本发明实施例中误差重构模块的子单元模块框图。 具体实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定本发明。
图 1是本发明优选实施例的特殊突发的检测方法流程图。 如图 1所示, 本发明优选实施例的方法包括以下步驟:
步驟 S1: 终端侧对收到的待解扩解扰信号进行误差重构, 并对重构后 的信号进行解扩解扰及解调处理, 得到待检测信号;
本发明实施例的方法在解扩解扰步驟前, 首先对待解扩解扰信号进行 误差重构, 消除待解扩解扰信号的误差, 使待解扩解扰信号恢复为发射前 的原始信号, 从而本发明特殊突发的检测是针对原始信号进行, 更具有准 确性。
图 2示出了本发明优选实施例对待解扩解扰信号进行误差重构的具体 流程, 如图 2所示, 步驟 S1中, 终端侧采用以下方法对待解扩解扰信号进 行误差重构:
步驟 S101 : 根据当前小区的扰码索引, 在本地获取对应扰码被复数化 后的扰码序列 ScrmCodes (1: 16);
步驟 S102: 根据当前小区的信道化码索引, 在本地获取对应信道化码 被复数化后的信道化码序列 ChnlCodes(l: 16);
上述扰码索引及信道化码索引由基站侧下发通知给终端侧。 由于发射 端发射的特殊突发是以 16个码片为周期, 因此获取的扰码序列和信道化码 序列长度均为 16个码片。
步驟 S103: 根据上述扰码序列和信道化码序列, 计算上述待解扩解扰 信号中存在的直流分量 Dc;
本发明实施例通过以下公式计算直流分量 Dc:
Dc=mean(ScrmCodes(l: 16). *ChnlCodes(l: 16)); 其中. *表示点乘运算, 定义为两个序列中对应位置相乘构成新的序列, 例如, C=A. *B , A=[1,2,3,4]; B=[2,3,4,5] , 则 C=[2,6,12,20]; mean表示求平均数运算, 定义 为序列求和除以序列长度, 例如 C=mean(A), A=[l,2,3,4] , 则 C=2.5。
步驟 S104: 将上述待解扩解扰信号与上述直流分量 Dc相加, 获得新 的待解扩解扰信号。
在上述步驟 S104中 ,将上述待解扩解扰信号与上述直流分量 Dc相加, 表示将待解扩解扰信号的每一个比特序列分别与上述直流分量 DC相加,从 而得到一个新的待解扩解扰信号。
步驟 S1中, 采用现有技术对重构后的信号, 即新的待解扩解扰信号进 行解扩解扰及解调处理, 从而得到待检测信号。
步驟 S2: 获取上述待检测信号的序列部分, 将上述序列部分与预设比 特序列按比特位进行——比对, 得到不一致的比特数; 以将预设比特序列设置为与特殊突发的序列部分一致。 由于特殊突发的序 列部分一般为固定的 010101……序列, 因此本发明实施例中, 预设比特序 列可以为 010101……序列, 长度可以为 16个比特位。
步驟 S3: 计算不一致的比特数占上述序列部分的比特总数的比例; 步驟 S4: 将上述比例与预设门限进行判决, 若上述比例小于预设门限, 则上述待检测信号为特殊突发, 检测结束。
上述预设门限可以根据信道情况、 实际干扰、 噪声情况进行设置。 由 于本发明实施例对信号进行检测之前, 已对信号误差进行重构, 因此待检 测信号实际上应与发射端发出的原始信号完全相同。 也就是说, 当发射端 发出的是特殊突发时,待检测信号的序列部分应为固定的 010101 ······序列, 从而不一致的比特数应为 0, 步驟 S3计算得到的比例应为 0%。 但是考虑到 可能存在其他干扰因素,因此可以将预设门限设置为取 0%-20%之间的任意 值。 本实施例中, 预设门限设为 10%左右。 只要步驟 S3计算得到的比例在 该预设门限范围内, 即认为终端侧收到的信号为特殊突发。
图 3是本发明优选实施例的特殊突发检测系统的模块框图。 本发明优 选实施例的系统包括: 误差重构模块 1 , 信号处理模块 2, 及信号判决模块 3;
上述误差重构模块 1 , 用于对收到的待解扩解扰信号进行误差重构; 上述信号处理模块 2, 用于对重构后的信号进行解扩解扰及解调处理, 得到待检测信号;
上述信号判决模块 3,用于将待检测信号的序列部分与预设比特序列按 比特位进行——比对, 计算比对不一致的比特数占上述序列部分的比特总 数的比例, 若上述比例小于预设门限, 则上述待检测信号为特殊突发, 检 测结束。
图 4是本发明实施例中误差重构模块 1的子单元模块框图。 如图 4所 示, 上述误差重构模块 1包括扰码序列获取单元 11、 信道化码序列获取单 元 12、 直流分量计算单元 13、 及重构信号生成单元 14;
上述扰码序列获取单元 11 , 用于根据当前小区的扰码索引, 在本地获 取对应扰码被复数化后的扰码序列;
上述信道化码序列获取单元 12, 用于根据当前小区的信道化码索引, 在本地获取对应信道化码被复数化后的信道化码序列;
上述直流分量计算单元 13, 用于根据扰码序列和信道化码序列, 计算 待解扩解扰信号中存在的直流分量;
上述重构信号生成单元 14, 用于将待解扩解扰信号与上述直流分量计 算单元 13计算得到的直流分量相加, 获得新的待解扩解扰信号。 上述预设门限可以根据信道情况、 实际干扰、 噪声情况进行设置。 本 实施例中,上述预设门限设为 10%左右,但实际上预设门限可以取 0%-20% 之间的任意值。
上述说明示出并描述了本发明的优选实施例, 但如前所述, 应当理解 本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所进行的 改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利要求的 保护范围内。

Claims

权利要求书
1、 一种特殊突发检测方法, 其特征在于, 所述方法包括:
终端侧对收到的待解扩解扰信号进行误差重构, 并对重构后的信号进 行解扩解扰及解调处理, 得到待检测信号;
将所述待检测信号的序列部分与预设比特序列按比特位进行——比 对, 计算比对不一致的比特数占所述序列部分的比特总数的比例, 当所述 比例 、于预设门限时, 判定所述待检测信号为特殊突发。
2、 根据权利要求 1所述的方法, 其特征在于, 所述终端侧对收到的待 解扩解扰信号进行误差重构为:
根据当前小区的扰码索引, 在本地获取对应扰码被复数化后的扰码序 列;
根据当前小区的信道化码索引, 在本地获取对应信道化码被复数化后 的信道化码序列;
根据所述扰码序列和所述信道化码序列, 计算所述待解扩解扰信号中 存在的直流分量;
将所述待解扩解扰信号与所述直流分量相加, 获得新的待解扩解扰信
3、 根据权利要求 2所述的方法, 其特征在于, 所述终端侧计算所述待 解扩解扰信号中存在的直流分量为:
将所述扰码序列和所述信道化码序列做点乘运算, 得到一个新序列; 计算所述新序列的平均数, 将得到的平均数作为所述直流分量。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述方法还 包括:
所述终端侧根据发射端发射的特殊突发设置预设比特序列, 并根据信 道情况、 实际干扰、 噪声情况设置所述预设门限。
5、 根据权利要求 4所述的方法, 其特征在于, 所述终端侧根据发射端 发射的特殊突发设置预设比特序列为:
所述终端侧将所述预设比特序列设置为与所述发射端发射的特殊突发 的序列部分一致。
6、 根据权利要求 4所述的方法, 其特征在于: 所述终端侧根据信道情 况、 实际干扰、 噪声情况设置所述预设门限为:
所述终端侧根据信道情况、 实际干扰、 噪声情况确定所述预设门限的 取值范围为 0%-20%。
7、 一种特殊突发检测系统, 其特征在于, 所述系统包括: 误差重构模 块、 信号处理模块、 及信号判决模块; 其中,
所述误差重构模块, 用于对收到的待解扩解扰信号进行误差重构; 所述信号处理模块, 用于对重构后的信号进行解扩解扰及解调处理, 得到待检测信号;
所述信号判决模块, 用于将待检测信号的序列部分与预设比特序列按 比特位进行——比对, 计算比对不一致的比特数占所述序列部分的比特总 数的比例, 当所述比例小于预设门限时, 判定所述待检测信号为特殊突发。
8、根据权利要求 7所述的系统,其特征在于, 所述误差重构模块包括: 扰码序列获取单元、 信道化码序列获取单元、 直流分量计算单元、 及重构 信号生成单元; 其中,
所述扰码序列获取单元, 用于根据当前小区的扰码索引, 在本地获取 对应扰码被复数化后的扰码序列;
所述信道码序列获取单元, 用于根据当前小区的信道化码索引, 在本 地获取对应信道化码被复数化后的信道化码序列;
所述直流分量计算单元, 用于根据扰码序列和信道化码序列, 计算待 解扩解扰信号中存在的直流分量; 所述重构信号生成单元, 用于将待解扩解扰信号与所述直流分量计算 单元计算得到的直流分量相加 , 获得新的待解扩解扰信号。
9、 根据权利要求 7或 8所述的系统, 其特征在于, 所述预设比特序列 与发射端发射的特殊突发的序列部分一致。
10、 根据权利要求 7或 8所述的系统, 其特征在于, 所述预设门限的 取值范围为 0%-20%。
PCT/CN2012/075262 2011-11-23 2012-05-09 一种特殊突发检测方法和系统 WO2013075467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110376647.0A CN103138849B (zh) 2011-11-23 2011-11-23 一种特殊突发序列检测方法和系统
CN201110376647.0 2011-11-23

Publications (1)

Publication Number Publication Date
WO2013075467A1 true WO2013075467A1 (zh) 2013-05-30

Family

ID=48469063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075262 WO2013075467A1 (zh) 2011-11-23 2012-05-09 一种特殊突发检测方法和系统

Country Status (2)

Country Link
CN (1) CN103138849B (zh)
WO (1) WO2013075467A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141359A (zh) * 2015-09-23 2015-12-09 成都乐维斯科技有限公司 一种应用于光电通信的误码检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625833A (zh) * 2002-02-01 2005-06-08 皇家飞利浦电子股份有限公司 输入突发信号中包含的加性直流分量检测
CN101106436A (zh) * 2006-07-14 2008-01-16 大唐移动通信设备有限公司 一种特殊突发的发送、检测方法及装置
CN102231890A (zh) * 2011-06-30 2011-11-02 展讯通信(上海)有限公司 特殊突发的检测方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0420540D0 (en) * 2004-09-15 2004-10-20 Nokia Corp Burst transmission in a digital broadcasting network
EP1867071B1 (en) * 2005-03-30 2010-05-26 Freescale Semiconductor Inc. Method and device for transmitting a sequence of transmission bursts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625833A (zh) * 2002-02-01 2005-06-08 皇家飞利浦电子股份有限公司 输入突发信号中包含的加性直流分量检测
CN101106436A (zh) * 2006-07-14 2008-01-16 大唐移动通信设备有限公司 一种特殊突发的发送、检测方法及装置
CN102231890A (zh) * 2011-06-30 2011-11-02 展讯通信(上海)有限公司 特殊突发的检测方法及装置

Also Published As

Publication number Publication date
CN103138849B (zh) 2016-12-07
CN103138849A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
JP4528193B2 (ja) 誤り訂正復号方法、通信装置、及び、デジタル伝送システム
JP5094967B2 (ja) パイロットシーケンス信号を検出する方法、設備及びシステム
JP5386587B2 (ja) 干渉信号特性に関する事前知識を用いた干渉処理
US7389099B2 (en) Method and apparatus for canceling interference from high power, high data rate signals
US8270510B2 (en) Apparatus and method for time synchronization and reception apparatus of OFDM system
US20070014343A1 (en) Determination of data rate, based on power spectral density estimates
CN101034970B (zh) 一种阈值自适应选择的同步信号检测方法和装置
KR20060015636A (ko) 하이브리드 이퀄라이저 및 레이크 수신기를 가진 수신 장치및 그 수신 방법
WO2011044793A1 (zh) 信道质量的检测方法、装置和系统
US11316598B2 (en) Method and apparatus for low power synchronization of bluetooth systems
CN101253697A (zh) 用于广义rake接收机中qam解调的方法和设备
EP3185430A1 (en) Power-line carrier communication method
US7136428B2 (en) Systems and techniques for measuring the performance of a communications system
US8862085B2 (en) Detection of binary signaling in communications radio receiver
GB2559253A (en) Digital radio communication
CN101207401B (zh) 一种获取信噪比和幅噪比的方法、装置、基站和终端设备
WO2013075467A1 (zh) 一种特殊突发检测方法和系统
WO2014141628A1 (ja) 無線通信システムにおける受信装置およびチャネル推定制御方法
RU2402167C1 (ru) Обнаружение и демодуляция данных для систем беспроводной связи
TW201528695A (zh) 數位處理
CN100512035C (zh) Td-scdma接收信号解调时的块判决反馈的方法
WO2010135935A1 (zh) 一种频偏估计装置和方法
US9794023B2 (en) Detection of active spreading codes and modulation schemes
RU2496230C2 (ru) Способ и устройство достоверного определения весовых коэффициентов в системе cdma с помехами
TWI463809B (zh) 通訊系統及執行通訊系統中聯合偵測之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852340

Country of ref document: EP

Kind code of ref document: A1